Recursive Feature Extraction in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-14
ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.
Predictive Value of Morphological Features in Patients with Autism versus Normal Controls
ERIC Educational Resources Information Center
Ozgen, H.; Hellemann, G. S.; de Jonge, M. V.; Beemer, F. A.; van Engeland, H.
2013-01-01
We investigated the predictive power of morphological features in 224 autistic patients and 224 matched-pairs controls. To assess the relationship between the morphological features and autism, we used the receiver operator curves (ROC). In addition, we used recursive partitioning (RP) to determine a specific pattern of abnormalities that is…
Speech recognition features for EEG signal description in detection of neonatal seizures.
Temko, A; Boylan, G; Marnane, W; Lightbody, G
2010-01-01
In this work, features which are usually employed in automatic speech recognition (ASR) are used for the detection of neonatal seizures in newborn EEG. Three conventional ASR feature sets are compared to the feature set which has been previously developed for this task. The results indicate that the thoroughly-studied spectral envelope based ASR features perform reasonably well on their own. Additionally, the SVM Recursive Feature Elimination routine is applied to all extracted features pooled together. It is shown that ASR features consistently appear among the top-rank features.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A
2016-08-17
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A.
2016-01-01
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers. PMID:27548169
Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom
2016-01-01
The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640
Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom
2016-01-01
The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.
Towards rigorous analysis of the Levitov-Mirlin-Evers recursion
NASA Astrophysics Data System (ADS)
Fyodorov, Y. V.; Kupiainen, A.; Webb, C.
2016-12-01
This paper aims to develop a rigorous asymptotic analysis of an approximate renormalization group recursion for inverse participation ratios P q of critical powerlaw random band matrices. The recursion goes back to the work by Mirlin and Evers (2000 Phys. Rev. B 62 7920) and earlier works by Levitov (1990 Phys. Rev. Lett. 64 547, 1999 Ann. Phys. 8 697-706) and is aimed to describe the ensuing multifractality of the eigenvectors of such matrices. We point out both similarities and dissimilarities between the LME recursion and those appearing in the theory of multiplicative cascades and branching random walks and show that the methods developed in those fields can be adapted to the present case. In particular the LME recursion is shown to exhibit a phase transition, which we expect is a freezing transition, where the role of temperature is played by the exponent q. However, the LME recursion has features that make its rigorous analysis considerably harder and we point out several open problems for further study.
Application of recursive approaches to differential orbit correction of near Earth asteroids
NASA Astrophysics Data System (ADS)
Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria
2016-10-01
Comparison of three approaches to the differential orbit correction of celestial bodies was performed: batch least squares fitting, Kalman filter, and recursive least squares filter. The first two techniques are well known and widely used (Montenbruck, O. & Gill, E., 2000). The most attention is paid to the algorithm and details of program realization of recursive least squares filter. The filter's algorithm was derived based on recursive least squares technique that are widely used in data processing applications (Simon, D, 2006). Usage recursive least squares filter, makes possible to process a new set of observational data, without reprocessing data, which has been processed before. Specific feature of such approach is that number of observation in data set may be variable. This feature makes recursive least squares filter more flexible approach compare to batch least squares (process complete set of observations in each iteration) and Kalman filtering (suppose updating state vector on each epoch with measurements).Advantages of proposed approach are demonstrated by processing of real astrometric observations of near Earth asteroids. The case of 2008 TC3 was studied. 2008 TC3 was discovered just before its impact with Earth. There are a many closely spaced observations of 2008 TC3 on the interval between discovering and impact, which creates favorable conditions for usage of recursive approaches. Each of approaches has very similar precision in case of 2008 TC3. At the same time, recursive least squares approaches have much higher performance. Thus, this approach more favorable for orbit fitting of a celestial body, which was detected shortly before the collision or close approach to the Earth.This work was carried out at MIIGAiK and supported by the Russian Science Foundation, Project no. 14-22-00197.References:O. Montenbruck and E. Gill, "Satellite Orbits, Models, Methods and Applications," Springer-Verlag, 2000, pp. 1-369.D. Simon, "Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches",1 edition. Hoboken, N.J.: Wiley-Interscience, 2006.
ERIC Educational Resources Information Center
Strang, Kenneth David
2009-01-01
This paper discusses how a seldom-used statistical procedure, recursive regression (RR), can numerically and graphically illustrate data-driven nonlinear relationships and interaction of variables. This routine falls into the family of exploratory techniques, yet a few interesting features make it a valuable compliment to factor analysis and…
On the Hosoya index of a family of deterministic recursive trees
NASA Astrophysics Data System (ADS)
Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang
2017-01-01
In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.
Report to the High Order Language Working Group (HOLWG)
1977-01-14
as running, runnable, suspended or dormant, may be synchronized by semaphore variables, may be schedaled using clock and duration data types and mpy...Recursive and non-recursive routines G6. Parallel processes, synchronization , critical regions G7. User defined parameterized exception handling G8...typed and lacks extensibility, parallel processing, synchronization and real-time features. Overall Evaluation IBM strongly recommended PL/I as a
Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.
2015-01-01
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211
Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D
2015-07-10
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.
Parsimonious extreme learning machine using recursive orthogonal least squares.
Wang, Ning; Er, Meng Joo; Han, Min
2014-10-01
Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results.
Algorithm for Training a Recurrent Multilayer Perceptron
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.
2004-01-01
An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.
Recursive utility in a Markov environment with stochastic growth
Hansen, Lars Peter; Scheinkman, José A.
2012-01-01
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility. PMID:22778428
Recursive utility in a Markov environment with stochastic growth.
Hansen, Lars Peter; Scheinkman, José A
2012-07-24
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.
Efficient feature subset selection with probabilistic distance criteria. [pattern recognition
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
Recursive expressions are derived for efficiently computing the commonly used probabilistic distance measures as a change in the criteria both when a feature is added to and when a feature is deleted from the current feature subset. A combinatorial algorithm for generating all possible r feature combinations from a given set of s features in (s/r) steps with a change of a single feature at each step is presented. These expressions can also be used for both forward and backward sequential feature selection.
Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks.
Dinjaski, Nina; Huang, Wenwen; Kaplan, David L
2018-01-01
Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.
Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE.
Chen, Qi; Meng, Zhaopeng; Liu, Xinyi; Jin, Qianguo; Su, Ran
2018-06-15
Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.
Lin, Xiaohui; Li, Chao; Zhang, Yanhui; Su, Benzhe; Fan, Meng; Wei, Hai
2017-12-26
Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE) is an efficient feature selection technique that has shown its power in many applications. It ranks the features according to the recursive feature deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines the classification accuracy rate and the average overlapping ratio of the samples to determine the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA) algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration. The experiments on the eight public biological datasets show that the discriminative ability of the feature subset could be measured more accurately by combining the classification accuracy rate with the average overlapping degree of the samples compared with using the classification accuracy rate alone, and shielding the samples in the overlapping area made the calculation of the feature weights more stable and accurate. The methods proposed in this study can also be used with other RFE techniques to define potential biomarkers from big biological data.
Drug drug interaction extraction from the literature using a recursive neural network
Lim, Sangrak; Lee, Kyubum
2018-01-01
Detecting drug-drug interactions (DDI) is important because information on DDIs can help prevent adverse effects from drug combinations. Since there are many new DDI-related papers published in the biomedical domain, manually extracting DDI information from the literature is a laborious task. However, text mining can be used to find DDIs in the biomedical literature. Among the recently developed neural networks, we use a Recursive Neural Network to improve the performance of DDI extraction. Our recursive neural network model uses a position feature, a subtree containment feature, and an ensemble method to improve the performance of DDI extraction. Compared with the state-of-the-art models, the DDI detection and type classifiers of our model performed 4.4% and 2.8% better, respectively, on the DDIExtraction Challenge’13 test data. We also validated our model on the PK DDI corpus that consists of two types of DDIs data: in vivo DDI and in vitro DDI. Compared with the existing model, our detection classifier performed 2.3% and 6.7% better on in vivo and in vitro data respectively. The results of our validation demonstrate that our model can automatically extract DDIs better than existing models. PMID:29373599
Recursive feature selection with significant variables of support vectors.
Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh
2012-01-01
The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.
Cooperating reduction machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, W.E.
1983-11-01
This paper presents a concept and a system architecture for the concurrent execution of program expressions of a concrete reduction language based on lamda-expressions. If formulated appropriately, these expressions are well-suited for concurrent execution, following a demand-driven model of computation. In particular, recursive program expressions with nonlinear expansion may, at run time, recursively be partitioned into a hierarchy of independent subexpressions which can be reduced by a corresponding hierarchy of virtual reduction machines. This hierarchy unfolds and collapses dynamically, with virtual machines recursively assuming the role of masters that create and eventually terminate, or synchronize with, slaves. The paper alsomore » proposes a nonhierarchically organized system of reduction machines, each featuring a stack architecture, that effectively supports the allocation of virtual machines to the real machines of the system in compliance with their hierarchical order of creation and termination. 25 references.« less
Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind
Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke
2017-01-01
In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6–6;5 years) and one older (6;7–8;10 years). Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children’s second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck. PMID:28072823
A Synthetic Recursive “+1” Pathway for Carbon Chain Elongation
Marcheschi, Ryan J.; Li, Han; Zhang, Kechun; Noey, Elizabeth L.; Kim, Seonah; Chaubey, Asha; Houk, K. N.; Liao, James C.
2013-01-01
Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein–substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic “+1” recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The “+1” chemistry is a valuable metabolic tool in addition to the “+5” chemistry and “+2” chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides. PMID:22242720
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Kleene Monads: Handling Iteration in a Framework of Generic Effects
NASA Astrophysics Data System (ADS)
Goncharov, Sergey; Schröder, Lutz; Mossakowski, Till
Monads are a well-established tool for modelling various computational effects. They form the semantic basis of Moggi’s computational metalanguage, the metalanguage of effects for short, which made its way into modern functional programming in the shape of Haskell’s do-notation. Standard computational idioms call for specific classes of monads that support additional control operations. Here, we introduce Kleene monads, which additionally feature nondeterministic choice and Kleene star, i.e. nondeterministic iteration, and we provide a metalanguage and a sound calculus for Kleene monads, the metalanguage of control and effects, which is the natural joint extension of Kleene algebra and the metalanguage of effects. This provides a framework for studying abstract program equality focussing on iteration and effects. These aspects are known to have decidable equational theories when studied in isolation. However, it is well known that decidability breaks easily; e.g. the Horn theory of continuous Kleene algebras fails to be recursively enumerable. Here, we prove several negative results for the metalanguage of control and effects; in particular, already the equational theory of the unrestricted metalanguage of control and effects over continuous Kleene monads fails to be recursively enumerable. We proceed to identify a fragment of this language which still contains both Kleene algebra and the metalanguage of effects and for which the natural axiomatisation is complete, and indeed the equational theory is decidable.
Castro, Eduardo; Martínez-Ramón, Manel; Pearlson, Godfrey; Sui, Jing; Calhoun, Vince D.
2011-01-01
Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA. PMID:21723948
Implicit Learning of Recursive Context-Free Grammars
Rohrmeier, Martin; Fu, Qiufang; Dienes, Zoltan
2012-01-01
Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning. PMID:23094021
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai
2004-10-01
Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996
Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
NASA Astrophysics Data System (ADS)
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.
2009-08-01
In this paper, the state least-squares linear estimation problem from correlated uncertain observations coming from multiple sensors is addressed. It is assumed that, at each sensor, the state is measured in the presence of additive white noise and that the uncertainty in the observations is characterized by a set of Bernoulli random variables which are only correlated at consecutive time instants. Assuming that the statistical properties of such variables are not necessarily the same for all the sensors, a recursive filtering algorithm is proposed, and the performance of the estimators is illustrated by a numerical simulation example wherein a signal is estimated from correlated uncertain observations coming from two sensors with different uncertainty characteristics.
Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi
2014-01-01
Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.
What contributes to perceived stress in later life? A recursive partitioning approach.
Scott, Stacey B; Jackson, Brenda R; Bergeman, C S
2011-12-01
One possible explanation for the individual differences in outcomes of stress is the diversity of inputs that produce perceptions of being stressed. The current study examines how combinations of contextual features (e.g., social isolation, neighborhood quality, health problems, age discrimination, financial concerns, and recent life events) of later life contribute to overall feelings of stress. Recursive partitioning techniques (regression trees and random forests) were used to examine unique interrelations between predictors of perceived stress in a sample of 282 community-dwelling adults. Trees provided possible examples of equifinality (i.e., subsets of people with similar levels of perceived stress but different predictors) as well as identification both of contextual combinations that separated participants with very high and very low perceived stress. Random forest analyses aggregated across many trees based on permuted versions of the data and predictors; loneliness, financial strain, neighborhood strain, ageism, and to some extent life events emerged as important predictors. Interviews with a subsample of participants provided both thick description of the complex relationships identified in the trees, as well as additional risks not appearing in the survey results. Together, the analyses highlight what may be missed when stress is used as a simple unidimensional construct and can guide differential intervention efforts.
What contributes to perceived stress in later life? A recursive partitioning approach
Scott, Stacey B.; Jackson, Brenda R.; Bergeman, C. S.
2011-01-01
One possible explanation for the individual differences in outcomes of stress is the diversity of inputs that produce perceptions of being stressed. The current study examines how combinations of contextual features (e.g., social isolation, neighborhood quality, health problems, age discrimination, financial concerns, and recent life events) of later life contribute to overall feelings of stress. Recursive partitioning techniques (regression trees and random forests) were used to examine unique interrelations between predictors of perceived stress in a sample of 282 community-dwelling adults. Trees provided possible examples of equifinality (i.e., subsets of people with similar levels of perceived stress but different predictors) as well as for the identification both of contextual combinations that separated participants with very high and very low perceived stress. Random forest analyses aggregated across many trees based on permuted versions of the data and predictors; loneliness, financial strain, neighborhood strain, ageism, and to some extent life events emerged as important predictors. Interviews with a subsample of participants provided both thick description of the complex relationships identified in the trees, as well as additional risks not appearing in the survey results. Together, the analyses highlight what may be missed when stress is used as a simple unidimensional construct and can guide differential intervention efforts. PMID:21604885
Multiple-camera/motion stereoscopy for range estimation in helicopter flight
NASA Technical Reports Server (NTRS)
Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.
1993-01-01
Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.
NASA Astrophysics Data System (ADS)
Zheng, Lianqing; Yang, Wei
2008-07-01
Recently, accelerated molecular dynamics (AMD) technique was generalized to realize essential energy space random walks so that further sampling enhancement and effective localized enhanced sampling could be achieved. This method is especially meaningful when essential coordinates of the target events are not priori known; moreover, the energy space metadynamics method was also introduced so that biasing free energy functions can be robustly generated. Despite the promising features of this method, due to the nonequilibrium nature of the metadynamics recursion, it is challenging to rigorously use the data obtained at the recursion stage to perform equilibrium analysis, such as free energy surface mapping; therefore, a large amount of data ought to be wasted. To resolve such problem so as to further improve simulation convergence, as promised in our original paper, we are reporting an alternate approach: the adaptive-length self-healing (ALSH) strategy for AMD simulations; this development is based on a recent self-healing umbrella sampling method. Here, the unit simulation length for each self-healing recursion is increasingly updated based on the Wang-Landau flattening judgment. When the unit simulation length for each update is long enough, all the following unit simulations naturally run into the equilibrium regime. Thereafter, these unit simulations can serve for the dual purposes of recursion and equilibrium analysis. As demonstrated in our model studies, by applying ALSH, both fast recursion and short nonequilibrium data waste can be compromised. As a result, combining all the data obtained from all the unit simulations that are in the equilibrium regime via the weighted histogram analysis method, efficient convergence can be robustly ensured, especially for the purpose of free energy surface mapping.
Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking
NASA Astrophysics Data System (ADS)
Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.
2009-08-01
The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.
Constructivist Approach to Teacher Education: An Integrative Model for Reflective Teaching
ERIC Educational Resources Information Center
Vijaya Kumari, S. N.
2014-01-01
The theory of constructivism states that learning is non-linear, recursive, continuous, complex and relational--Despite the difficulty of deducing constructivist pedagogy from constructivist theories, there are models and common elements to consider in planning new program. Reflective activities are a common feature of all the programs of…
Parameter Estimation for a Hybrid Adaptive Flight Controller
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje
2009-01-01
This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.
Method for implementation of recursive hierarchical segmentation on parallel computers
NASA Technical Reports Server (NTRS)
Tilton, James C. (Inventor)
2005-01-01
A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.
Vicari, Giuseppe; Adenzato, Mauro
2014-05-01
In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Yang; Cui, Weigang; Luo, Meilin; Li, Ke; Wang, Lina
2018-01-25
The electroencephalogram (EEG) signal analysis is a valuable tool in the evaluation of neurological disorders, which is commonly used for the diagnosis of epileptic seizures. This paper presents a novel automatic EEG signal classification method for epileptic seizure detection. The proposed method first employs a continuous wavelet transform (CWT) method for obtaining the time-frequency images (TFI) of EEG signals. The processed EEG signals are then decomposed into five sub-band frequency components of clinical interest since these sub-band frequency components indicate much better discriminative characteristics. Both Gaussian Mixture Model (GMM) features and Gray Level Co-occurrence Matrix (GLCM) descriptors are then extracted from these sub-band TFI. Additionally, in order to improve classification accuracy, a compact feature selection method by combining the ReliefF and the support vector machine-based recursive feature elimination (RFE-SVM) algorithm is adopted to select the most discriminative feature subset, which is an input to the SVM with the radial basis function (RBF) for classifying epileptic seizure EEG signals. The experimental results from a publicly available benchmark database demonstrate that the proposed approach provides better classification accuracy than the recently proposed methods in the literature, indicating the effectiveness of the proposed method in the detection of epileptic seizures.
Generalized recursion relations for correlators in the gauge-gravity correspondence.
Raju, Suvrat
2011-03-04
We show that a generalization of the Britto-Cachazo-Feng-Witten recursion relations gives a new and efficient method of computing correlation functions of the stress tensor or conserved currents in conformal field theories with an (d+1)-dimensional anti-de Sitter space dual, for d≥4, in the limit where the bulk theory is approximated by tree-level Yang-Mills theory or gravity. In supersymmetric theories, additional correlators of operators that live in the same multiplet as a conserved current or stress tensor can be computed by these means.
González Redondo, Francisco A; Martín-Loeches, Manuel; Silván Pobes, Enrique
2010-01-01
In the present article, we begin by reviewing the different types of symbolic records produced by prehistoric groups from the oldest probable origins of the modern human mind. Next, we review some of the most outstanding prehistoric pieces related to counting, enhancing the relevance (both quantitatively and qualitatively) of this type of piece in the Franco-Cantabrian region. These reviews lead us finally to note the tremendous relevance, within this context, of four horse-bone plaques from the Altamira Cave, dated in the Solutrean period (18,500 years). These small plaques, apparently constituting a coherent group of interrelated elements, are proposed here as the representation of a recursive process, recursion being a feature proposed as proper and exclusive of human language.
A note on NMHV form factors from the Graßmannian and the twistor string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meidinger, David; Nandan, Dhritiman; Penante, Brenda
In this note we investigate Graßmannian formulas for form factors of the chiral part of the stress-tensor multiplet in N = 4 superconformal Yang-Mills theory. We present an all-n contour for the G(3, n + 2) Graßmannian integral of NMHV form factors derived from on-shell diagrams and the BCFW recursion relation. In addition, we study other G(3, n + 2) formulas obtained from the connected prescription introduced recently. We find a recursive expression for all n and study its properties. For n ≥ 6, our formula has the same recursive structure as its amplitude counterpart, making its soft behaviour manifest.more » Finally, we explore the connection between the two Graßmannian formulations, using the global residue theorem, and find that it is much more intricate compared to scattering amplitudes.« less
A note on NMHV form factors from the Graßmannian and the twistor string
Meidinger, David; Nandan, Dhritiman; Penante, Brenda; ...
2017-09-06
In this note we investigate Graßmannian formulas for form factors of the chiral part of the stress-tensor multiplet in N = 4 superconformal Yang-Mills theory. We present an all-n contour for the G(3, n + 2) Graßmannian integral of NMHV form factors derived from on-shell diagrams and the BCFW recursion relation. In addition, we study other G(3, n + 2) formulas obtained from the connected prescription introduced recently. We find a recursive expression for all n and study its properties. For n ≥ 6, our formula has the same recursive structure as its amplitude counterpart, making its soft behaviour manifest.more » Finally, we explore the connection between the two Graßmannian formulations, using the global residue theorem, and find that it is much more intricate compared to scattering amplitudes.« less
Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis
Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert
2016-01-01
Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257
Teaching and learning recursive programming: a review of the research literature
NASA Astrophysics Data System (ADS)
McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie
2015-01-01
Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion, and best practices in introducing recursion. Effective strategies for introducing the topic include using different contexts such as recurrence relations, programming examples, fractal images, and a description of how recursive methods are processed using a call stack. Several studies compared the efficacy of introducing iteration before recursion and vice versa. The paper concludes with suggestions for future research into how students learn and understand recursion, including a look at the possible impact of instructor attitude and newer pedagogies.
ERIC Educational Resources Information Center
Ferrara, Francesca; Sinclair, Nathalie
2016-01-01
This paper focuses on pattern generalisation as a way to introduce young students to early algebra. We build on research on patterning activities that feature, in their work with algebraic thinking, both looking for sameness recursively in a pattern (especially figural patterns, but also numerical ones) and conjecturing about function-based…
Recursion Removal as an Instructional Method to Enhance the Understanding of Recursion Tracing
ERIC Educational Resources Information Center
Velázquez-Iturbide, J. Ángel; Castellanos, M. Eugenia; Hijón-Neira, Raquel
2016-01-01
Recursion is one of the most difficult programming topics for students. In this paper, an instructional method is proposed to enhance students' understanding of recursion tracing. The proposal is based on the use of rules to translate linear recursion algorithms into equivalent, iterative ones. The paper has two main contributions: the…
Lu, Xiaobing; Yang, Yongzhe; Wu, Fengchun; Gao, Minjian; Xu, Yong; Zhang, Yue; Yao, Yongcheng; Du, Xin; Li, Chengwei; Wu, Lei; Zhong, Xiaomei; Zhou, Yanling; Fan, Ni; Zheng, Yingjun; Xiong, Dongsheng; Peng, Hongjun; Escudero, Javier; Huang, Biao; Li, Xiaobo; Ning, Yuping; Wu, Kai
2016-07-01
Structural abnormalities in schizophrenia (SZ) patients have been well documented with structural magnetic resonance imaging (MRI) data using voxel-based morphometry (VBM) and region of interest (ROI) analyses. However, these analyses can only detect group-wise differences and thus, have a poor predictive value for individuals. In the present study, we applied a machine learning method that combined support vector machine (SVM) with recursive feature elimination (RFE) to discriminate SZ patients from normal controls (NCs) using their structural MRI data. We first employed both VBM and ROI analyses to compare gray matter volume (GMV) and white matter volume (WMV) between 41 SZ patients and 42 age- and sex-matched NCs. The method of SVM combined with RFE was used to discriminate SZ patients from NCs using significant between-group differences in both GMV and WMV as input features. We found that SZ patients showed GM and WM abnormalities in several brain structures primarily involved in the emotion, memory, and visual systems. An SVM with a RFE classifier using the significant structural abnormalities identified by the VBM analysis as input features achieved the best performance (an accuracy of 88.4%, a sensitivity of 91.9%, and a specificity of 84.4%) in the discriminative analyses of SZ patients. These results suggested that distinct neuroanatomical profiles associated with SZ patients might provide a potential biomarker for disease diagnosis, and machine-learning methods can reveal neurobiological mechanisms in psychiatric diseases.
Dong, Zuoli; Zhang, Naiqian; Li, Chun; Wang, Haiyun; Fang, Yun; Wang, Jun; Zheng, Xiaoqi
2015-06-30
An enduring challenge in personalized medicine is to select right drug for individual patients. Testing drugs on patients in large clinical trials is one way to assess their efficacy and toxicity, but it is impractical to test hundreds of drugs currently under development. Therefore the preclinical prediction model is highly expected as it enables prediction of drug response to hundreds of cell lines in parallel. Recently, two large-scale pharmacogenomic studies screened multiple anticancer drugs on over 1000 cell lines in an effort to elucidate the response mechanism of anticancer drugs. To this aim, we here used gene expression features and drug sensitivity data in Cancer Cell Line Encyclopedia (CCLE) to build a predictor based on Support Vector Machine (SVM) and a recursive feature selection tool. Robustness of our model was validated by cross-validation and an independent dataset, the Cancer Genome Project (CGP). Our model achieved good cross validation performance for most drugs in the Cancer Cell Line Encyclopedia (≥80% accuracy for 10 drugs, ≥75% accuracy for 19 drugs). Independent tests on eleven common drugs between CCLE and CGP achieved satisfactory performance for three of them, i.e., AZD6244, Erlotinib and PD-0325901, using expression levels of only twelve, six and seven genes, respectively. These results suggest that drug response could be effectively predicted from genomic features. Our model could be applied to predict drug response for some certain drugs and potentially play a complementary role in personalized medicine.
Giotto, Nina; Gerard, Jean-François; Ziv, Alon; Bouskila, Amos; Bar-David, Shirli
2015-01-01
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore's space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat selection analyses. We studied the endangered Asiatic wild ass (Equus hemionus) in the Negev Desert, Israel, using GPS monitoring and direct observation. We found that the main landscape-related factors affecting the species' space-use patterns, on a daily and seasonal basis, were vegetation cover, water sources and topography. Two main habitat types were selected: high-elevation sites during the day (specific microclimate: windy on warm summer days) and streambed surroundings during the night (coupled with high vegetation when the animals were active in summer). Distribution of recursion times (duration between visits) revealed a 24-hour periodicity, a pattern that could be widespread among large herbivores. Characterizing frequently revisited sites suggested that recursion movements were mainly driven by a few landscape features (water sources, vegetation patches, high-elevation points), but also by social factors, such as territoriality, which should be further explored. This study provided complementary insights into the space-use patterns of E. hemionus. Understanding of the species' space-use patterns, at both large and fine spatial scale, is required for developing appropriate conservation protocols. Our approach could be further applied for studying the space-use patterns of other species in heterogeneous landscapes.
Giotto, Nina; Gerard, Jean-François; Ziv, Alon; Bouskila, Amos; Bar-David, Shirli
2015-01-01
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore’s space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat selection analyses. We studied the endangered Asiatic wild ass (Equus hemionus) in the Negev Desert, Israel, using GPS monitoring and direct observation. We found that the main landscape-related factors affecting the species’ space-use patterns, on a daily and seasonal basis, were vegetation cover, water sources and topography. Two main habitat types were selected: high-elevation sites during the day (specific microclimate: windy on warm summer days) and streambed surroundings during the night (coupled with high vegetation when the animals were active in summer). Distribution of recursion times (duration between visits) revealed a 24-hour periodicity, a pattern that could be widespread among large herbivores. Characterizing frequently revisited sites suggested that recursion movements were mainly driven by a few landscape features (water sources, vegetation patches, high-elevation points), but also by social factors, such as territoriality, which should be further explored. This study provided complementary insights into the space-use patterns of E. hemionus. Understanding of the species’ space-use patterns, at both large and fine spatial scale, is required for developing appropriate conservation protocols. Our approach could be further applied for studying the space-use patterns of other species in heterogeneous landscapes. PMID:26630393
Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging.
Wang, Rui; Li, Rui; Lei, Yanyan; Zhu, Quing
2015-01-01
Support vector machine (SVM) is one of the most effective classification methods for cancer detection. The efficiency and quality of a SVM classifier depends strongly on several important features and a set of proper parameters. Here, a series of classification analyses, with one set of photoacoustic data from ovarian tissues ex vivo and a widely used breast cancer dataset- the Wisconsin Diagnostic Breast Cancer (WDBC), revealed the different accuracy of a SVM classification in terms of the number of features used and the parameters selected. A pattern recognition system is proposed by means of SVM-Recursive Feature Elimination (RFE) with the Radial Basis Function (RBF) kernel. To improve the effectiveness and robustness of the system, an optimized tuning ensemble algorithm called as SVM-RFE(C) with correlation filter was implemented to quantify feature and parameter information based on cross validation. The proposed algorithm is first demonstrated outperforming SVM-RFE on WDBC. Then the best accuracy of 94.643% and sensitivity of 94.595% were achieved when using SVM-RFE(C) to test 57 new PAT data from 19 patients. The experiment results show that the classifier constructed with SVM-RFE(C) algorithm is able to learn additional information from new data and has significant potential in ovarian cancer diagnosis.
Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software
NASA Technical Reports Server (NTRS)
Tilton, James C.
2003-01-01
A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic region growing.
Li, Baopu; Meng, Max Q-H
2012-05-01
Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.
Phillips, Steven; Wilson, William H.
2012-01-01
Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language. PMID:22514704
What's special about human language? The contents of the "narrow language faculty" revisited.
Traxler, Matthew J; Boudewyn, Megan; Loudermilk, Jessica
2012-10-01
In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language.
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Three applications of a bonus relation for gravity amplitudes
NASA Astrophysics Data System (ADS)
Spradlin, Marcus; Volovich, Anastasia; Wen, Congkao
2009-04-01
Arkani-Hamed et al. have recently shown that all tree-level scattering amplitudes in maximal supergravity exhibit exceptionally soft behavior when two supermomenta are taken to infinity in a particular complex direction, and that this behavior implies new non-trivial relations amongst amplitudes in addition to the well-known on-shell recursion relations. We consider the application of these new 'bonus relations' to MHV amplitudes, showing that they can be used quite generally to relate (n - 2) !-term formulas typically obtained from recursion relations to (n - 3) !-term formulas related to the original BGK conjecture. Specifically we provide (1) a direct proof of a formula presented by Elvang and Freedman, (2) a new formula based on one due to Bedford et al., and (3) an alternate proof of a formula recently obtained by Mason and Skinner. Our results also provide the first direct proof that the conjectured BGK formula, only very recently proven via completely different methods, satisfies the on-shell recursion.
Are Khovanov-Rozansky polynomials consistent with evolution in the space of knots?
NASA Astrophysics Data System (ADS)
Anokhina, A.; Morozov, A.
2018-04-01
R-coloured knot polynomials for m-strand torus knots Torus [ m, n] are described by the Rosso-Jones formula, which is an example of evolution in n with Lyapunov exponents, labelled by Young diagrams from R ⊗ m . This means that they satisfy a finite-difference equation (recursion) of finite degree. For the gauge group SL( N ) only diagrams with no more than N lines can contribute and the recursion degree is reduced. We claim that these properties (evolution/recursion and reduction) persist for Khovanov-Rozansky (KR) polynomials, obtained by additional factorization modulo 1 + t, which is not yet adequately described in quantum field theory. Also preserved is some weakened version of differential expansion, which is responsible at least for a simple relation between reduced and unreduced Khovanov polynomials. However, in the KR case evolution is incompatible with the mirror symmetry under the change n -→ - n, what can signal about an ambiguity in the KR factorization even for torus knots.
What's special about human language? The contents of the "narrow language faculty" revisited
Traxler, Matthew J.; Boudewyn, Megan; Loudermilk, Jessica
2012-01-01
In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language. PMID:23105948
Discovery of novel SERCA inhibitors by virtual screening of a large compound library.
Elam, Christopher; Lape, Michael; Deye, Joel; Zultowsky, Jodie; Stanton, David T; Paula, Stefan
2011-05-01
Two screening protocols based on recursive partitioning and computational ligand docking methodologies, respectively, were employed for virtual screens of a compound library with 345,000 entries for novel inhibitors of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA), a potential target for cancer chemotherapy. A total of 72 compounds that were predicted to be potential inhibitors of SERCA were tested in bioassays and 17 displayed inhibitory potencies at concentrations below 100 μM. The majority of these inhibitors were composed of two phenyl rings tethered to each other by a short link of one to three atoms. Putative interactions between SERCA and the inhibitors were identified by inspection of docking-predicted poses and some of the structural features required for effective SERCA inhibition were determined by analysis of the classification pattern employed by the recursive partitioning models. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
A Survey on Teaching and Learning Recursive Programming
ERIC Educational Resources Information Center
Rinderknecht, Christian
2014-01-01
We survey the literature about the teaching and learning of recursive programming. After a short history of the advent of recursion in programming languages and its adoption by programmers, we present curricular approaches to recursion, including a review of textbooks and some programming methodology, as well as the functional and imperative…
Bánréti, Zoltán
2010-11-01
This study investigates how aphasic impairment impinges on syntactic and/or semantic recursivity of human language. A series of tests has been conducted with the participation of five Hungarian speaking aphasic subjects and 10 control subjects. Photographs representing simple situations were presented to subjects and questions were asked about them. The responses are supposed to involve formal structural recursion, but they contain semantic-pragmatic operations instead, with 'theory of mind' type embeddings. Aphasic individuals tend to exploit the parallel between 'theory of mind' embeddings and syntactic-structural embeddings in order to avoid formal structural recursion. Formal structural recursion may be more impaired in Broca's aphasia and semantic recursivity may remain selectively unimpaired in this type of aphasia.
Teaching and Learning Recursive Programming: A Review of the Research Literature
ERIC Educational Resources Information Center
McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie
2015-01-01
Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion,…
How Learning Logic Programming Affects Recursion Comprehension
ERIC Educational Resources Information Center
Haberman, Bruria
2004-01-01
Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…
Recursive Objects--An Object Oriented Presentation of Recursion
ERIC Educational Resources Information Center
Sher, David B.
2004-01-01
Generally, when recursion is introduced to students the concept is illustrated with a toy (Towers of Hanoi) and some abstract mathematical functions (factorial, power, Fibonacci). These illustrate recursion in the same sense that counting to 10 can be used to illustrate a for loop. These are all good illustrations, but do not represent serious…
How children perceive fractals: Hierarchical self-similarity and cognitive development
Martins, Maurício Dias; Laaha, Sabine; Freiberger, Eva Maria; Choi, Soonja; Fitch, W. Tecumseh
2014-01-01
The ability to understand and generate hierarchical structures is a crucial component of human cognition, available in language, music, mathematics and problem solving. Recursion is a particularly useful mechanism for generating complex hierarchies by means of self-embedding rules. In the visual domain, fractals are recursive structures in which simple transformation rules generate hierarchies of infinite depth. Research on how children acquire these rules can provide valuable insight into the cognitive requirements and learning constraints of recursion. Here, we used fractals to investigate the acquisition of recursion in the visual domain, and probed for correlations with grammar comprehension and general intelligence. We compared second (n = 26) and fourth graders (n = 26) in their ability to represent two types of rules for generating hierarchical structures: Recursive rules, on the one hand, which generate new hierarchical levels; and iterative rules, on the other hand, which merely insert items within hierarchies without generating new levels. We found that the majority of fourth graders, but not second graders, were able to represent both recursive and iterative rules. This difference was partially accounted by second graders’ impairment in detecting hierarchical mistakes, and correlated with between-grade differences in grammar comprehension tasks. Empirically, recursion and iteration also differed in at least one crucial aspect: While the ability to learn recursive rules seemed to depend on the previous acquisition of simple iterative representations, the opposite was not true, i.e., children were able to acquire iterative rules before they acquired recursive representations. These results suggest that the acquisition of recursion in vision follows learning constraints similar to the acquisition of recursion in language, and that both domains share cognitive resources involved in hierarchical processing. PMID:24955884
Recursive regularization step for high-order lattice Boltzmann methods
NASA Astrophysics Data System (ADS)
Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre
2017-09-01
A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.
Kim, Hyun-Chul; Yoo, Seung-Schik; Lee, Jong-Hwan
2015-01-01
Electroencephalography (EEG) data simultaneously acquired with functional magnetic resonance imaging (fMRI) data are preprocessed to remove gradient artifacts (GAs) and ballistocardiographic artifacts (BCAs). Nonetheless, these data, especially in the gamma frequency range, can be contaminated by residual artifacts produced by mechanical vibrations in the MRI system, in particular the cryogenic pump that compresses and transports the helium that chills the magnet (the helium-pump). However, few options are available for the removal of helium-pump artifacts. In this study, we propose a recursive approach of EEG-segment-based principal component analysis (rsPCA) that enables the removal of these helium-pump artifacts. Using the rsPCA method, feature vectors representing helium-pump artifacts were successfully extracted as eigenvectors, and the reconstructed signals of the feature vectors were subsequently removed. A test using simultaneous EEG-fMRI data acquired from left-hand (LH) and right-hand (RH) clenching tasks performed by volunteers found that the proposed rsPCA method substantially reduced helium-pump artifacts in the EEG data and significantly enhanced task-related gamma band activity levels (p=0.0038 and 0.0363 for LH and RH tasks, respectively) in EEG data that have had GAs and BCAs removed. The spatial patterns of the fMRI data were estimated using a hemodynamic response function (HRF) modeled from the estimated gamma band activity in a general linear model (GLM) framework. Active voxel clusters were identified in the post-/pre-central gyri of motor area, only from the rsPCA method (uncorrected p<0.001 for both LH/RH tasks). In addition, the superior temporal pole areas were consistently observed (uncorrected p<0.001 for the LH task and uncorrected p<0.05 for the RH task) in the spatial patterns of the HRF model for gamma band activity when the task paradigm and movement were also included in the GLM. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, Chunren; Guo, Shengwen; Cheng, Lina; Wang, Wensheng; Wu, Kai
2017-02-01
It's very important to differentiate the temporal lobe epilepsy (TLE) patients from healthy people and localize the abnormal brain regions of the TLE patients. The cortical features and changes can reveal the unique anatomical patterns of brain regions from the structural MR images. In this study, structural MR images from 28 normal controls (NC), 18 left TLE (LTLE), and 21 right TLE (RTLE) were acquired, and four types of cortical feature, namely cortical thickness (CTh), cortical surface area (CSA), gray matter volume (GMV), and mean curvature (MCu), were explored for discriminative analysis. Three feature selection methods, the independent sample t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM), and the support vector machine-recursive feature elimination (SVM-RFE), were investigated to extract dominant regions with significant differences among the compared groups for classification using the SVM classifier. The results showed that the SVM-REF achieved the highest performance (most classifications with more than 92% accuracy), followed by the SCDRM, and the t-test. Especially, the surface area and gray volume matter exhibited prominent discriminative ability, and the performance of the SVM was improved significantly when the four cortical features were combined. Additionally, the dominant regions with higher classification weights were mainly located in temporal and frontal lobe, including the inferior temporal, entorhinal cortex, fusiform, parahippocampal cortex, middle frontal and frontal pole. It was demonstrated that the cortical features provided effective information to determine the abnormal anatomical pattern and the proposed method has the potential to improve the clinical diagnosis of the TLE.
Martins, Mauricio Dias; Gingras, Bruno; Puig-Waldmueller, Estela; Fitch, W Tecumseh
2017-04-01
The human ability to process hierarchical structures has been a longstanding research topic. However, the nature of the cognitive machinery underlying this faculty remains controversial. Recursion, the ability to embed structures within structures of the same kind, has been proposed as a key component of our ability to parse and generate complex hierarchies. Here, we investigated the cognitive representation of both recursive and iterative processes in the auditory domain. The experiment used a two-alternative forced-choice paradigm: participants were exposed to three-step processes in which pure-tone sequences were built either through recursive or iterative processes, and had to choose the correct completion. Foils were constructed according to generative processes that did not match the previous steps. Both musicians and non-musicians were able to represent recursion in the auditory domain, although musicians performed better. We also observed that general 'musical' aptitudes played a role in both recursion and iteration, although the influence of musical training was somehow independent from melodic memory. Moreover, unlike iteration, recursion in audition was well correlated with its non-auditory (recursive) analogues in the visual and action sequencing domains. These results suggest that the cognitive machinery involved in establishing recursive representations is domain-general, even though this machinery requires access to information resulting from domain-specific processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Discriminant analysis of multiple cortical changes in mild cognitive impairment
NASA Astrophysics Data System (ADS)
Wu, Congling; Guo, Shengwen; Lai, Chunren; Wu, Yupeng; Zhao, Di; Jiang, Xingjun
2017-02-01
To reveal the differences in brain structures and morphological changes between the mild cognitive impairment (MCI) and the normal control (NC), analyze and predict the risk of MCI conversion. First, the baseline and 2-year longitudinal follow-up magnetic resonance (MR) images of 73 NC, 46 patients with stable MCI (sMCI) and 40 patients with converted MCI (cMCI) were selected. Second, the FreeSurfer was used to extract the cortical features, including the cortical thickness, surface area, gray matter volume and mean curvature. Third, the support vector machine-recursive feature elimination method (SVM-RFE) were adopted to determine salient features for effective discrimination. Finally, the distribution and importance of essential brain regions were described. The experimental results showed that the cortical thickness and gray matter volume exhibited prominent capability in discrimination, and surface area and mean curvature behaved relatively weak. Furthermore, the combination of different morphological features, especially the baseline combined with the longitudinal changes, can be used to evidently improve the performance of classification. In addition, brain regions with high weights predominately located in the temporal lobe and the frontal lobe, which were relative to emotional control and memory functions. It suggests that there were significant different patterns in the brain structure and changes between the compared group, which could not only be effectively applied for classification, but also be used to evaluate and predict the conversion of the patients with MCI.
Machine learning for predicting soil classes in three semi-arid landscapes
Brungard, Colby W.; Boettinger, Janis L.; Duniway, Michael C.; Wills, Skye A.; Edwards, Thomas C.
2015-01-01
Mapping the spatial distribution of soil taxonomic classes is important for informing soil use and management decisions. Digital soil mapping (DSM) can quantitatively predict the spatial distribution of soil taxonomic classes. Key components of DSM are the method and the set of environmental covariates used to predict soil classes. Machine learning is a general term for a broad set of statistical modeling techniques. Many different machine learning models have been applied in the literature and there are different approaches for selecting covariates for DSM. However, there is little guidance as to which, if any, machine learning model and covariate set might be optimal for predicting soil classes across different landscapes. Our objective was to compare multiple machine learning models and covariate sets for predicting soil taxonomic classes at three geographically distinct areas in the semi-arid western United States of America (southern New Mexico, southwestern Utah, and northeastern Wyoming). All three areas were the focus of digital soil mapping studies. Sampling sites at each study area were selected using conditioned Latin hypercube sampling (cLHS). We compared models that had been used in other DSM studies, including clustering algorithms, discriminant analysis, multinomial logistic regression, neural networks, tree based methods, and support vector machine classifiers. Tested machine learning models were divided into three groups based on model complexity: simple, moderate, and complex. We also compared environmental covariates derived from digital elevation models and Landsat imagery that were divided into three different sets: 1) covariates selected a priori by soil scientists familiar with each area and used as input into cLHS, 2) the covariates in set 1 plus 113 additional covariates, and 3) covariates selected using recursive feature elimination. Overall, complex models were consistently more accurate than simple or moderately complex models. Random forests (RF) using covariates selected via recursive feature elimination was consistently the most accurate, or was among the most accurate, classifiers between study areas and between covariate sets within each study area. We recommend that for soil taxonomic class prediction, complex models and covariates selected by recursive feature elimination be used. Overall classification accuracy in each study area was largely dependent upon the number of soil taxonomic classes and the frequency distribution of pedon observations between taxonomic classes. Individual subgroup class accuracy was generally dependent upon the number of soil pedon observations in each taxonomic class. The number of soil classes is related to the inherent variability of a given area. The imbalance of soil pedon observations between classes is likely related to cLHS. Imbalanced frequency distributions of soil pedon observations between classes must be addressed to improve model accuracy. Solutions include increasing the number of soil pedon observations in classes with few observations or decreasing the number of classes. Spatial predictions using the most accurate models generally agree with expected soil–landscape relationships. Spatial prediction uncertainty was lowest in areas of relatively low relief for each study area.
Greedy feature selection for glycan chromatography data with the generalized Dirichlet distribution
2013-01-01
Background Glycoproteins are involved in a diverse range of biochemical and biological processes. Changes in protein glycosylation are believed to occur in many diseases, particularly during cancer initiation and progression. The identification of biomarkers for human disease states is becoming increasingly important, as early detection is key to improving survival and recovery rates. To this end, the serum glycome has been proposed as a potential source of biomarkers for different types of cancers. High-throughput hydrophilic interaction liquid chromatography (HILIC) technology for glycan analysis allows for the detailed quantification of the glycan content in human serum. However, the experimental data from this analysis is compositional by nature. Compositional data are subject to a constant-sum constraint, which restricts the sample space to a simplex. Statistical analysis of glycan chromatography datasets should account for their unusual mathematical properties. As the volume of glycan HILIC data being produced increases, there is a considerable need for a framework to support appropriate statistical analysis. Proposed here is a methodology for feature selection in compositional data. The principal objective is to provide a template for the analysis of glycan chromatography data that may be used to identify potential glycan biomarkers. Results A greedy search algorithm, based on the generalized Dirichlet distribution, is carried out over the feature space to search for the set of “grouping variables” that best discriminate between known group structures in the data, modelling the compositional variables using beta distributions. The algorithm is applied to two glycan chromatography datasets. Statistical classification methods are used to test the ability of the selected features to differentiate between known groups in the data. Two well-known methods are used for comparison: correlation-based feature selection (CFS) and recursive partitioning (rpart). CFS is a feature selection method, while recursive partitioning is a learning tree algorithm that has been used for feature selection in the past. Conclusions The proposed feature selection method performs well for both glycan chromatography datasets. It is computationally slower, but results in a lower misclassification rate and a higher sensitivity rate than both correlation-based feature selection and the classification tree method. PMID:23651459
NASA Astrophysics Data System (ADS)
Hinze, Ralf
Programmers happily use induction to prove properties of recursive programs. To show properties of corecursive programs they employ coinduction, but perhaps less enthusiastically. Coinduction is often considered a rather low-level proof method, in particular, as it departs quite radically from equational reasoning. Corecursive programs are conveniently defined using recursion equations. Suitably restricted, these equations possess unique solutions. Uniqueness gives rise to a simple and attractive proof technique, which essentially brings equational reasoning to the coworld. We illustrate the approach using two major examples: streams and infinite binary trees. Both coinductive types exhibit a rich structure: they are applicative functors or idioms, and they can be seen as memo-tables or tabulations. We show that definitions and calculations benefit immensely from this additional structure.
Multitarget mixture reduction algorithm with incorporated target existence recursions
NASA Astrophysics Data System (ADS)
Ristic, Branko; Arulampalam, Sanjeev
2000-07-01
The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.
Recursive causality in evolution: a model for epigenetic mechanisms in cancer development.
Haslberger, A; Varga, F; Karlic, H
2006-01-01
Interactions between adaptative and selective processes are illustrated in the model of recursive causality as defined in Rupert Riedl's systems theory of evolution. One of the main features of this theory also termed as theory of evolving complexity is the centrality of the notion of 'recursive' or 'feedback' causality - 'the idea that every biological effect in living systems, in some way, feeds back to its own cause'. Our hypothesis is that "recursive" or "feedback" causality provides a model for explaining the consequences of interacting genetic and epigenetic mechanisms which are known to play a key role in development of cancer. Epigenetics includes any process that alters gene activity without changes of the DNA sequence. The most important epigenetic mechanisms are DNA-methylation and chromatin remodeling. Hypomethylation of so-called oncogenes and hypermethylation of tumor suppressor genes appear to be critical determinants of cancer. Folic acid, vitamin B12 and other nutrients influence the function of enzymes that participate in various methylation processes by affecting the supply of methyl groups into a variety of molecules which may be directly or indirectly associated with cancerogenesis. We present an example from our own studies by showing that vitamin D3 has the potential to de-methylate the osteocalcin-promoter in MG63 osteosarcoma cells. Consequently, a stimulation of osteocalcin synthesis can be observed. The above mentioned enzymes also play a role in development and differentiation of cells and organisms and thus illustrate the close association between evolutionary and developmental mechanisms. This enabled new ways to understand the interaction between the genome and environment and may improve biomedical concepts including environmental health aspects where epigenetic and genetic modifications are closely associated. Recent observations showed that methylated nucleotides in the gene promoter may serve as a target for solar UV-induced mutations of the p53 tumor suppressor gene. This illustrates the close interaction of genetic and epigenetic mechanisms in cancerogenesis resulting from changes in transcriptional regulation and its contribution to a phenotype at the micro- or macroevolutionary level. Above-mentioned interactions of genetic and epigenetic mechanisms in oncogenesis defy explanation by plain linear causality, things like the continuing adaptability of complex systems. They can be explained by the concept of recursive causality and has introduced molecular biology into the realm of cognition science and systems theory: based on the notion of so-called feedback- or recursive causality a model for epigenetic mechanisms with relevance for oncology and biomedicine is provided.
Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind.
Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika
2016-01-01
The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures ("What may X be thinking/asking Y to do?"). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies "situative statements." Where the question concerned the mental state of the character but did not require an answer with sentence embedding ("What does X hate?"), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem.
Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind
Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika
2016-01-01
The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures (“What may X be thinking/asking Y to do?”). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies “situative statements.” Where the question concerned the mental state of the character but did not require an answer with sentence embedding (“What does X hate?”), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem. PMID:27064887
Nonrecursive formulations of multibody dynamics and concurrent multiprocessing
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Menon, Ramesh
1993-01-01
Since the late 1980's, research in recursive formulations of multibody dynamics has flourished. Historically, much of this research can be traced to applications of low dimensionality in mechanism and vehicle dynamics. Indeed, there is little doubt that recursive order N methods are the method of choice for this class of systems. This approach has the advantage that a minimal number of coordinates are utilized, parallelism can be induced for certain system topologies, and the method is of order N computational cost for systems of N rigid bodies. Despite the fact that many authors have dismissed redundant coordinate formulations as being of order N(exp 3), and hence less attractive than recursive formulations, we present recent research that demonstrates that at least three distinct classes of redundant, nonrecursive multibody formulations consistently achieve order N computational cost for systems of rigid and/or flexible bodies. These formulations are as follows: (1) the preconditioned range space formulation; (2) penalty methods; and (3) augmented Lagrangian methods for nonlinear multibody dynamics. The first method can be traced to its foundation in equality constrained quadratic optimization, while the last two methods have been studied extensively in the context of coercive variational boundary value problems in computational mechanics. Until recently, however, they have not been investigated in the context of multibody simulation, and present theoretical questions unique to nonlinear dynamics. All of these nonrecursive methods have additional advantages with respect to recursive order N methods: (1) the formalisms retain the highly desirable order N computational cost; (2) the techniques are amenable to concurrent simulation strategies; (3) the approaches do not depend upon system topology to induce concurrency; and (4) the methods can be derived to balance the computational load automatically on concurrent multiprocessors. In addition to the presentation of the fundamental formulations, this paper presents new theoretical results regarding the rate of convergence of order N constraint stabilization schemes associated with the newly introduced class of methods.
SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306
Ibáñez-Escriche, N; López de Maturana, E; Noguera, J L; Varona, L
2010-11-01
We developed and implemented change-point recursive models and compared them with a linear recursive model and a standard mixed model (SMM), in the scope of the relationship between litter size (LS) and number of stillborns (NSB) in pigs. The proposed approach allows us to estimate the point of change in multiple-segment modeling of a nonlinear relationship between phenotypes. We applied the procedure to a data set provided by a commercial Large White selection nucleus. The data file consisted of LS and NSB records of 4,462 parities. The results of the analysis clearly identified the location of the change points between different structural regression coefficients. The magnitude of these coefficients increased with LS, indicating an increasing incidence of LS on the NSB ratio. However, posterior distributions of correlations were similar across subpopulations (defined by the change points on LS), except for those between residuals. The heritability estimates of NSB did not present differences between recursive models. Nevertheless, these heritabilities were greater than those obtained for SMM (0.05) with a posterior probability of 85%. These results suggest a nonlinear relationship between LS and NSB, which supports the adequacy of a change-point recursive model for its analysis. Furthermore, the results from model comparisons support the use of recursive models. However, the adequacy of the different recursive models depended on the criteria used: the linear recursive model was preferred on account of its smallest deviance value, whereas nonlinear recursive models provided a better fit and predictive ability based on the cross-validation approach.
Pfeiffenberger, Erik; Chaleil, Raphael A.G.; Moal, Iain H.
2017-01-01
ABSTRACT Reliable identification of near‐native poses of docked protein–protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein–protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near‐native from incorrect clusters. The results show that our approach is able to identify clusters containing near‐native protein–protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528–543. © 2016 Wiley Periodicals, Inc. PMID:27935158
FormTracer. A mathematica tracing package using FORM
NASA Astrophysics Data System (ADS)
Cyrol, Anton K.; Mitter, Mario; Strodthoff, Nils
2017-10-01
We present FormTracer, a high-performance, general purpose, easy-to-use Mathematica tracing package which uses FORM. It supports arbitrary space and spinor dimensions as well as an arbitrary number of simple compact Lie groups. While keeping the usability of the Mathematica interface, it relies on the efficiency of FORM. An additional performance gain is achieved by a decomposition algorithm that avoids redundant traces in the product tensors spaces. FormTracer supports a wide range of syntaxes which endows it with a high flexibility. Mathematica notebooks that automatically install the package and guide the user through performing standard traces in space-time, spinor and gauge-group spaces are provided. Program Files doi:http://dx.doi.org/10.17632/7rd29h4p3m.1 Licensing provisions: GPLv3 Programming language: Mathematica and FORM Nature of problem: Efficiently compute traces of large expressions Solution method: The expression to be traced is decomposed into its subspaces by a recursive Mathematica expansion algorithm. The result is subsequently translated to a FORM script that takes the traces. After FORM is executed, the final result is either imported into Mathematica or exported as optimized C/C++/Fortran code. Unusual features: The outstanding features of FormTracer are the simple interface, the capability to efficiently handle an arbitrary number of Lie groups in addition to Dirac and Lorentz tensors, and a customizable input-syntax.
NASA Astrophysics Data System (ADS)
Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Nowak, Robert M.; Okuniewski, Rafał; Oleszkiewicz, Witold; Cichosz, Paweł
2016-09-01
This contribution introduces the method of cancer pathologies detection on breast skin temperature distribution images. The use of thermosensitive foils applied to the breasts skin allows to create thermograms, which displays the amount of infrared energy emitted by all breast cells. The significant foci of hyperthermia or inflammation are typical for cancer cells. That foci can be recognized on thermograms as a contours, which are the areas of higher temperature. Every contour can be converted to a feature set that describe it, using the raw, central, Hu, outline, Fourier and colour moments of image pixels processing. This paper defines also the new way of describing a set of contours through theirs neighbourhood relations. Contribution introduces moreover the way of ranking and selecting most relevant features. Authors used Neural Network with Gevrey`s concept and recursive feature elimination, to estimate feature importance.
A Recursive Method for Calculating Certain Partition Functions.
ERIC Educational Resources Information Center
Woodrum, Luther; And Others
1978-01-01
Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)
Recursive inverse factorization.
Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N
2008-03-14
A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.
Scoring and staging systems using cox linear regression modeling and recursive partitioning.
Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H
2006-01-01
Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.
Recursion to food plants by free-ranging Bornean elephant
Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne
2015-01-01
Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant’s preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed. PMID:26290779
Recursion to food plants by free-ranging Bornean elephant.
English, Megan; Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne
2015-01-01
Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed.
Nodal domains of a non-separable problem—the right-angled isosceles triangle
NASA Astrophysics Data System (ADS)
Aronovitch, Amit; Band, Ram; Fajman, David; Gnutzmann, Sven
2012-03-01
We study the nodal set of eigenfunctions of the Laplace operator on the right-angled isosceles triangle. A local analysis of the nodal pattern provides an algorithm for computing the number νn of nodal domains for any eigenfunction. In addition, an exact recursive formula for the number of nodal domains is found to reproduce all existing data. Eventually, we use the recursion formula to analyse a large sequence of nodal counts statistically. Our analysis shows that the distribution of nodal counts for this triangular shape has a much richer structure than the known cases of regular separable shapes or completely irregular shapes. Furthermore, we demonstrate that the nodal count sequence contains information about the periodic orbits of the corresponding classical ray dynamics.
Distinctive signatures of recursion.
Martins, Maurício Dias
2012-07-19
Although recursion has been hypothesized to be a necessary capacity for the evolution of language, the multiplicity of definitions being used has undermined the broader interpretation of empirical results. I propose that only a definition focused on representational abilities allows the prediction of specific behavioural traits that enable us to distinguish recursion from non-recursive iteration and from hierarchical embedding: only subjects able to represent recursion, i.e. to represent different hierarchical dependencies (related by parenthood) with the same set of rules, are able to generalize and produce new levels of embedding beyond those specified a priori (in the algorithm or in the input). The ability to use such representations may be advantageous in several domains: action sequencing, problem-solving, spatial navigation, social navigation and for the emergence of conventionalized communication systems. The ability to represent contiguous hierarchical levels with the same rules may lead subjects to expect unknown levels and constituents to behave similarly, and this prior knowledge may bias learning positively. Finally, a new paradigm to test for recursion is presented. Preliminary results suggest that the ability to represent recursion in the spatial domain recruits both visual and verbal resources. Implications regarding language evolution are discussed.
Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods
NASA Astrophysics Data System (ADS)
Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric
2018-03-01
Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.
Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction
Cruz-Cano, Raul; Chew, David S.H.; Kwok-Pui, Choi; Ming-Ying, Leung
2010-01-01
Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications. PMID:20729987
Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction.
Cruz-Cano, Raul; Chew, David S H; Kwok-Pui, Choi; Ming-Ying, Leung
2010-06-01
Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications.
The Recursive Paradigm: Suppose We Already Knew.
ERIC Educational Resources Information Center
Maurer, Stephen B.
1995-01-01
Explains the recursive model in discrete mathematics through five examples and problems. Discusses the relationship between the recursive model, mathematical induction, and inductive reasoning and the relevance of these concepts in the school curriculum. Provides ideas for approaching this material with students. (Author/DDD)
The language faculty that wasn't: a usage-based account of natural language recursion
Christiansen, Morten H.; Chater, Nick
2015-01-01
In the generative tradition, the language faculty has been shrinking—perhaps to include only the mechanism of recursion. This paper argues that even this view of the language faculty is too expansive. We first argue that a language faculty is difficult to reconcile with evolutionary considerations. We then focus on recursion as a detailed case study, arguing that our ability to process recursive structure does not rely on recursion as a property of the grammar, but instead emerges gradually by piggybacking on domain-general sequence learning abilities. Evidence from genetics, comparative work on non-human primates, and cognitive neuroscience suggests that humans have evolved complex sequence learning skills, which were subsequently pressed into service to accommodate language. Constraints on sequence learning therefore have played an important role in shaping the cultural evolution of linguistic structure, including our limited abilities for processing recursive structure. Finally, we re-evaluate some of the key considerations that have often been taken to require the postulation of a language faculty. PMID:26379567
The language faculty that wasn't: a usage-based account of natural language recursion.
Christiansen, Morten H; Chater, Nick
2015-01-01
In the generative tradition, the language faculty has been shrinking-perhaps to include only the mechanism of recursion. This paper argues that even this view of the language faculty is too expansive. We first argue that a language faculty is difficult to reconcile with evolutionary considerations. We then focus on recursion as a detailed case study, arguing that our ability to process recursive structure does not rely on recursion as a property of the grammar, but instead emerges gradually by piggybacking on domain-general sequence learning abilities. Evidence from genetics, comparative work on non-human primates, and cognitive neuroscience suggests that humans have evolved complex sequence learning skills, which were subsequently pressed into service to accommodate language. Constraints on sequence learning therefore have played an important role in shaping the cultural evolution of linguistic structure, including our limited abilities for processing recursive structure. Finally, we re-evaluate some of the key considerations that have often been taken to require the postulation of a language faculty.
Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.
NASA Astrophysics Data System (ADS)
Huang, Ran
The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.
Improvement in Recursive Hierarchical Segmentation of Data
NASA Technical Reports Server (NTRS)
Tilton, James C.
2006-01-01
A further modification has been made in the algorithm and implementing software reported in Modified Recursive Hierarchical Segmentation of Data (GSC- 14681-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 51. That software performs recursive hierarchical segmentation of data having spatial characteristics (e.g., spectral-image data). The output of a prior version of the software contained artifacts, including spurious segmentation-image regions bounded by processing-window edges. The modification for suppressing the artifacts, mentioned in the cited article, was addition of a subroutine that analyzes data in the vicinities of seams to find pairs of regions that tend to lie adjacent to each other on opposite sides of the seams. Within each such pair, pixels in one region that are more similar to pixels in the other region are reassigned to the other region. The present modification provides for a parameter ranging from 0 to 1 for controlling the relative priority of merges between spatially adjacent and spatially non-adjacent regions. At 1, spatially-adjacent-/spatially- non-adjacent-region merges have equal priority. At 0, only spatially-adjacent-region merges (no spectral clustering) are allowed. Between 0 and 1, spatially-adjacent- region merges have priority over spatially- non-adjacent ones.
Adaptive model reduction for continuous systems via recursive rational interpolation
NASA Technical Reports Server (NTRS)
Lilly, John H.
1994-01-01
A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.
Valle, Annalisa; Massaro, Davide; Castelli, Ilaria; Marchetti, Antonella
2015-01-01
This study explores the development of theory of mind, operationalized as recursive thinking ability, from adolescence to early adulthood (N = 110; young adolescents = 47; adolescents = 43; young adults = 20). The construct of theory of mind has been operationalized in two different ways: as the ability to recognize the correct mental state of a character, and as the ability to attribute the correct mental state in order to predict the character’s behaviour. The Imposing Memory Task, with five recursive thinking levels, and a third-order false-belief task with three recursive thinking levels (devised for this study) have been used. The relationship among working memory, executive functions, and linguistic skills are also analysed. Results show that subjects exhibit less understanding of elevated recursive thinking levels (third, fourth, and fifth) compared to the first and second levels. Working memory is correlated with total recursive thinking, whereas performance on the linguistic comprehension task is related to third level recursive thinking in both theory of mind tasks. An effect of age on third-order false-belief task performance was also found. A key finding of the present study is that the third-order false-belief task shows significant age differences in the application of recursive thinking that involves the prediction of others’ behaviour. In contrast, such an age effect is not observed in the Imposing Memory Task. These results may support the extension of the investigation of the third order false belief after childhood. PMID:27247645
Selka, F; Nicolau, S; Agnus, V; Bessaid, A; Marescaux, J; Soler, L
2015-03-01
In minimally invasive surgery, the tracking of deformable tissue is a critical component for image-guided applications. Deformation of the tissue can be recovered by tracking features using tissue surface information (texture, color,...). Recent work in this field has shown success in acquiring tissue motion. However, the performance evaluation of detection and tracking algorithms on such images are still difficult and are not standardized. This is mainly due to the lack of ground truth data on real data. Moreover, in order to avoid supplementary techniques to remove outliers, no quantitative work has been undertaken to evaluate the benefit of a pre-process based on image filtering, which can improve feature tracking robustness. In this paper, we propose a methodology to validate detection and feature tracking algorithms, using a trick based on forward-backward tracking that provides an artificial ground truth data. We describe a clear and complete methodology to evaluate and compare different detection and tracking algorithms. In addition, we extend our framework to propose a strategy to identify the best combinations from a set of detector, tracker and pre-process algorithms, according to the live intra-operative data. Experimental results have been performed on in vivo datasets and show that pre-process can have a strong influence on tracking performance and that our strategy to find the best combinations is relevant for a reasonable computation cost. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Bai, Peirui; Torigian, Drew A.
2017-03-01
Much has been published on finding landmarks on object surfaces in the context of shape modeling. While this is still an open problem, many of the challenges of past approaches can be overcome by removing the restriction that landmarks must be on the object surface. The virtual landmarks we propose may reside inside, on the boundary of, or outside the object and are tethered to the object. Our solution is straightforward, simple, and recursive in nature, proceeding from global features initially to local features in later levels to detect landmarks. Principal component analysis (PCA) is used as an engine to recursively subdivide the object region. The object itself may be represented in binary or fuzzy form or with gray values. The method is illustrated in 3D space (although it generalizes readily to spaces of any dimensionality) on four objects (liver, trachea and bronchi, and outer boundaries of left and right lungs along pleura) derived from 5 patient computed tomography (CT) image data sets of the thorax and abdomen. The virtual landmark identification approach seems to work well on different structures in different subjects and seems to detect landmarks that are homologously located in different samples of the same object. The approach guarantees that virtual landmarks are invariant to translation, scaling, and rotation of the object/image. Landmarking techniques are fundamental for many computer vision and image processing applications, and we are currently exploring the use virtual landmarks in automatic anatomy recognition and object analytics.
Recursive sequences in first-year calculus
NASA Astrophysics Data System (ADS)
Krainer, Thomas
2016-02-01
This article provides ready-to-use supplementary material on recursive sequences for a second-semester calculus class. It equips first-year calculus students with a basic methodical procedure based on which they can conduct a rigorous convergence or divergence analysis of many simple recursive sequences on their own without the need to invoke inductive arguments as is typically required in calculus textbooks. The sequences that are accessible to this kind of analysis are predominantly (eventually) monotonic, but also certain recursive sequences that alternate around their limit point as they converge can be considered.
On Fusing Recursive Traversals of K-d Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less
Human motion planning based on recursive dynamics and optimal control techniques
NASA Technical Reports Server (NTRS)
Lo, Janzen; Huang, Gang; Metaxas, Dimitris
2002-01-01
This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.
Temperature dependence of the kinetic energy in the Zr40Be60 amorphous alloy
NASA Astrophysics Data System (ADS)
Syrykh, G. F.; Stolyarov, A. A.; Krzystyniak, M.; Romanelli, G.; Sadykov, R. A.
2017-05-01
The average kinetic energy < E(T)> of the atomic nucleus for each element of the amorphous alloy Zr40Be60 in the temperature range 10-300 K has been measured for the first time using VESUVIO spectrometer (ISIS). The experimental values of < E(T)> have been compared to the partial ZrBe spectra refined by a recursion method based on the data obtained with thermal neutron scattering. The satisfactory agreement has been reached with the calculations using partial spectra based on thermal neutron spectra obtained with recursion method. In addition, the experimental data have been compared to the Debye model. The measurements at different temperatures (10, 200, and 300 K) will provide an opportunity to evaluate the significance of anharmonicity in the dynamics of metallic glasses.
Jongin Kim; Boreom Lee
2017-07-01
The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.
Recursion, Language, and Starlings
ERIC Educational Resources Information Center
Corballis, Michael C.
2007-01-01
It has been claimed that recursion is one of the properties that distinguishes human language from any other form of animal communication. Contrary to this claim, a recent study purports to demonstrate center-embedded recursion in starlings. I show that the performance of the birds in this study can be explained by a counting strategy, without any…
NASA Astrophysics Data System (ADS)
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
Inner and Outer Recursive Neural Networks for Chemoinformatics Applications.
Urban, Gregor; Subrahmanya, Niranjan; Baldi, Pierre
2018-02-26
Deep learning methods applied to problems in chemoinformatics often require the use of recursive neural networks to handle data with graphical structure and variable size. We present a useful classification of recursive neural network approaches into two classes, the inner and outer approach. The inner approach uses recursion inside the underlying graph, to essentially "crawl" the edges of the graph, while the outer approach uses recursion outside the underlying graph, to aggregate information over progressively longer distances in an orthogonal direction. We illustrate the inner and outer approaches on several examples. More importantly, we provide open-source implementations [available at www.github.com/Chemoinformatics/InnerOuterRNN and cdb.ics.uci.edu ] for both approaches in Tensorflow which can be used in combination with training data to produce efficient models for predicting the physical, chemical, and biological properties of small molecules.
Quantum field theory and the linguistic Minimalist Program: a remarkable isomorphism
NASA Astrophysics Data System (ADS)
Piattelli-Palmarini, M.; Vitiello, G.
2017-08-01
By resorting to recent results, we show that an isomorphism exist between linguistic features of the Minimalist Program and the quantum field theory formalism of condensed matter physics. Specific linguistic features which admit a representation in terms of the many-body algebraic formalism are the unconstrained nature of recursive Merge, the operation of the Labeling Algorithm, the difference between pronounced and un-pronounced copies of elements in a sentence and the build-up of the Fibonacci sequence in the syntactic derivation of sentence structures. The collective dynamical nature of the formation process of Logical Forms leading to the individuation of the manifold of concepts and the computational self-consistency of languages are also discussed.
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
A basic recursion concept inventory
NASA Astrophysics Data System (ADS)
Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.
2017-04-01
Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.
A biased filter for linear discrete dynamic systems.
NASA Technical Reports Server (NTRS)
Chang, J. W.; Hoerl, A. E.; Leathrum, J. F.
1972-01-01
A recursive estimator, the ridge filter, was developed for the linear discrete dynamic estimation problem. Theorems were established to show that the ridge filter can be, on the average, closer to the expected value of the system state than the Kalman filter. On the other hand, Kalman filter, on the average, is closer to the instantaneous system state than the ridge filter. The ridge filter has been formulated in such a way that the computational features of the Kalman filter are preserved.
The Paradigm Recursion: Is It More Accessible When Introduced in Middle School?
ERIC Educational Resources Information Center
Gunion, Katherine; Milford, Todd; Stege, Ulrike
2009-01-01
Recursion is a programming paradigm as well as a problem solving strategy thought to be very challenging to grasp for university students. This article outlines a pilot study, which expands the age range of students exposed to the concept of recursion in computer science through instruction in a series of interesting and engaging activities. In…
ERIC Educational Resources Information Center
Lacave, Carmen; Molina, Ana I.; Redondo, Miguel A.
2018-01-01
Contribution: Findings are provided from an initial survey to evaluate the magnitude of the recursion problem from the student point of view. Background: A major difficulty that programming students must overcome--the learning of recursion--has been addressed by many authors, using various approaches, but none have considered how students perceive…
Using Spreadsheets to Help Students Think Recursively
ERIC Educational Resources Information Center
Webber, Robert P.
2012-01-01
Spreadsheets lend themselves naturally to recursive computations, since a formula can be defined as a function of one of more preceding cells. A hypothesized closed form for the "n"th term of a recursive sequence can be tested easily by using a spreadsheet to compute a large number of the terms. Similarly, a conjecture about the limit of a series…
ERIC Educational Resources Information Center
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS
Watumull, Jeffrey; Hauser, Marc D; Roberts, Ian G; Hornstein, Norbert
2014-01-08
It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However, the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauseretal's. (2002) articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language-the faculty of language in the narrow sense (FLN)-is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded-existent or non-existent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension); definition by induction (i.e., rules strongly generative of structure); and mathematical induction (i.e., rules for the principled-and potentially unbounded-expansion of strongly generated structure). By these necessary and sufficient criteria, the grammars of all natural languages are recursive.
Experiments with recursive estimation in astronomical image processing
NASA Technical Reports Server (NTRS)
Busko, I.
1992-01-01
Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.
Watumull, Jeffrey; Hauser, Marc D.; Roberts, Ian G.; Hornstein, Norbert
2014-01-01
It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However, the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauseretal's. (2002) articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language—the faculty of language in the narrow sense (FLN)—is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded—existent or non-existent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension); definition by induction (i.e., rules strongly generative of structure); and mathematical induction (i.e., rules for the principled—and potentially unbounded—expansion of strongly generated structure). By these necessary and sufficient criteria, the grammars of all natural languages are recursive. PMID:24409164
Serial turbo trellis coded modulation using a serially concatenated coder
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Pollara, Fabrizio (Inventor)
2010-01-01
Serial concatenated trellis coded modulation (SCTCM) includes an outer coder, an interleaver, a recursive inner coder and a mapping element. The outer coder receives data to be coded and produces outer coded data. The interleaver permutes the outer coded data to produce interleaved data. The recursive inner coder codes the interleaved data to produce inner coded data. The mapping element maps the inner coded data to a symbol. The recursive inner coder has a structure which facilitates iterative decoding of the symbols at a decoder system. The recursive inner coder and the mapping element are selected to maximize the effective free Euclidean distance of a trellis coded modulator formed from the recursive inner coder and the mapping element. The decoder system includes a demodulation unit, an inner SISO (soft-input soft-output) decoder, a deinterleaver, an outer SISO decoder, and an interleaver.
Recursive feature elimination for biomarker discovery in resting-state functional connectivity.
Ravishankar, Hariharan; Madhavan, Radhika; Mullick, Rakesh; Shetty, Teena; Marinelli, Luca; Joel, Suresh E
2016-08-01
Biomarker discovery involves finding correlations between features and clinical symptoms to aid clinical decision. This task is especially difficult in resting state functional magnetic resonance imaging (rs-fMRI) data due to low SNR, high-dimensionality of images, inter-subject and intra-subject variability and small numbers of subjects compared to the number of derived features. Traditional univariate analysis suffers from the problem of multiple comparisons. Here, we adopt an alternative data-driven method for identifying population differences in functional connectivity. We propose a machine-learning approach to down-select functional connectivity features associated with symptom severity in mild traumatic brain injury (mTBI). Using this approach, we identified functional regions with altered connectivity in mTBI. including the executive control, visual and precuneus networks. We compared functional connections at multiple resolutions to determine which scale would be more sensitive to changes related to patient recovery. These modular network-level features can be used as diagnostic tools for predicting disease severity and recovery profiles.
Probabilistic Multi-Person Tracking Using Dynamic Bayes Networks
NASA Astrophysics Data System (ADS)
Klinger, T.; Rottensteiner, F.; Heipke, C.
2015-08-01
Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.
Fang, Wai-Chi; Huang, Kuan-Ju; Chou, Chia-Ching; Chang, Jui-Chung; Cauwenberghs, Gert; Jung, Tzyy-Ping
2014-01-01
This is a proposal for an efficient very-large-scale integration (VLSI) design, 16-channel on-line recursive independent component analysis (ORICA) processor ASIC for real-time EEG system, implemented with TSMC 40 nm CMOS technology. ORICA is appropriate to be used in real-time EEG system to separate artifacts because of its highly efficient and real-time process features. The proposed ORICA processor is composed of an ORICA processing unit and a singular value decomposition (SVD) processing unit. Compared with previous work [1], this proposed ORICA processor has enhanced effectiveness and reduced hardware complexity by utilizing a deeper pipeline architecture, shared arithmetic processing unit, and shared registers. The 16-channel random signals which contain 8-channel super-Gaussian and 8-channel sub-Gaussian components are used to analyze the dependence of the source components, and the average correlation coefficient is 0.95452 between the original source signals and extracted ORICA signals. Finally, the proposed ORICA processor ASIC is implemented with TSMC 40 nm CMOS technology, and it consumes 15.72 mW at 100 MHz operating frequency.
Language, Mind, Practice: Families of Recursive Thinking in Human Reasoning
ERIC Educational Resources Information Center
Josephson, Marika
2011-01-01
In 2002, Chomsky, Hauser, and Fitch asserted that recursion may be the one aspect of the human language faculty that makes human language unique in the narrow sense--unique to language and unique to human beings. They also argue somewhat more quietly (as do Pinker and Jackendoff 2005) that recursion may be possible outside of language: navigation,…
ERIC Educational Resources Information Center
Cai, Li
2013-01-01
Lord and Wingersky's (1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined…
On the Shock-Response-Spectrum Recursive Algorithm of Kelly and Richman
NASA Technical Reports Server (NTRS)
Martin, Justin N.; Sinclair, Andrew J.; Foster, Winfred A.
2010-01-01
The monograph Principles and Techniques of Shock Data Analysis written by Kelly and Richman in 1969 has become a seminal reference on the shock response spectrum (SRS) [1]. Because of its clear physical descriptions and mathematical presentation of the SRS, it has been cited in multiple handbooks on the subject [2, 3] and research articles [4 10]. Because of continued interest, two additional versions of the monograph have been published: a second edition by Scavuzzo and Pusey in 1996 [11] and a reprint of the original edition in 2008 [12]. The main purpose of this note is to correct several typographical errors in the manuscript's presentation of a recursive algorithm for SRS calculations. These errors are consistent across all three editions of the monograph. The secondary purpose of this note is to present a Matlab implementation of the corrected algorithm.
[What is impaired consciousness? Revisiting impaired consciousness as psychiatric concept].
Kanemoto, Kousuke
2004-01-01
For decades, psychiatrists have considered that concepts of impaired consciousness in the study of psychiatry were inconsistent with those applied in the field of neurology, in which the usefulness of the concept of consciousness has long been seriously doubted. Gloor concluded that the concept of consciousness does not further the understanding of seizure mechanisms or brain function, which is the current representative opinion of most epileptologists. Loss of consciousness tends to be reduced to aggregates of individual impairments of higher cognitive functions, and the concept of consciousness is preferably avoided by neurologists by assigning various behavioral disturbances during disturbed consciousness to particular neuropsychological centers. In contrast, psychiatrists, especially those in Europe, are more likely to include phenomena involving problems related to phenomenological intentionality in impaired consciousness. For the present study, we first divided consciousness into vigilance and recursive consciousness, and then attempted to determine what kind of impaired consciousness would be an ideal candidate to represent pure disturbance of recursive consciousness. Then, 4 patients, 1 each with pure amnestic states followed immediately by complex partial seizures, an akinetic mutistic state caused by absence status, and mental diplopia as a manifestation of postictal psychosis, as well as a patient with Alzheimer's disease who gracefully performed Japanese tea ceremony, were studied. Based on our findings, we concluded that impaired consciousness as a generic term in general medicine does not indicate any unitary entity corresponding to some well-demarcated physiological function or constitute a base from which recursive consciousness emerges as a superstructure. From that, we stressed that a pure form of impairment of recursive consciousness could occur without the impaired consciousness named generically in general medicine. Second, following observation of an additional 3 cases, descriptions of naissance of the first word (taken from the autobiography of Helen Keller), visual object agnosia, and chronic schizophrenia with schizophasia were discussed to examine the relationship between impairments of recursive consciousness and semantic generation dysfunction. Attempts to bridge semantic generation and recursive consciousness, performed by psychopathologists such as Bin Kimura and Hiroyuki Koide, were also briefly discussed. In light of these case presentations and related discussions, we re-examined traditional theories of impaired consciousness, including Mayer-Gross's Gestalt theory, later replaced by Conrad and Henri Ey's theory related to intentionality. Furthermore, we attempted to link Denett's theory of consciousness to those traditional theories as well as to our own postulations, and neuropsychological data such as those of implicit memory and blindsight. Finally, the significance of Freud's unconsciousness in the framework of neuroscience was discussed.
Furlanello, Cesare; Serafini, Maria; Merler, Stefano; Jurman, Giuseppe
2003-11-06
We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process). With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.
Recursive dynamics for flexible multibody systems using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1990-01-01
Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described here permits a user to choose the algorithm which is optimal for the multibody system at hand. The availability of a number of algorithms is even more important for real-time applications, where implementation on parallel processors or custom computing hardware is often necessary to maximize speed.
Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.
Zhang, Fan; Kaufman, Howard L; Deng, Youping; Drabier, Renee
2013-01-01
Breast cancer is worldwide the second most common type of cancer after lung cancer. Traditional mammography and Tissue Microarray has been studied for early cancer detection and cancer prediction. However, there is a need for more reliable diagnostic tools for early detection of breast cancer. This can be a challenge due to a number of factors and logistics. First, obtaining tissue biopsies can be difficult. Second, mammography may not detect small tumors, and is often unsatisfactory for younger women who typically have dense breast tissue. Lastly, breast cancer is not a single homogeneous disease but consists of multiple disease states, each arising from a distinct molecular mechanism and having a distinct clinical progression path which makes the disease difficult to detect and predict in early stages. In the paper, we present a Support Vector Machine based on Recursive Feature Elimination and Cross Validation (SVM-RFE-CV) algorithm for early detection of breast cancer in peripheral blood and show how to use SVM-RFE-CV to model the classification and prediction problem of early detection of breast cancer in peripheral blood.The training set which consists of 32 health and 33 cancer samples and the testing set consisting of 31 health and 34 cancer samples were randomly separated from a dataset of peripheral blood of breast cancer that is downloaded from Gene Express Omnibus. First, we identified the 42 differentially expressed biomarkers between "normal" and "cancer". Then, with the SVM-RFE-CV we extracted 15 biomarkers that yield zero cross validation score. Lastly, we compared the classification and prediction performance of SVM-RFE-CV with that of SVM and SVM Recursive Feature Elimination (SVM-RFE). We found that 1) the SVM-RFE-CV is suitable for analyzing noisy high-throughput microarray data, 2) it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features, and 3) it can improve the prediction performance (Area Under Curve) in the testing data set from 0.5826 to 0.7879. Further pathway analysis showed that the biomarkers are associated with Signaling, Hemostasis, Hormones, and Immune System, which are consistent with previous findings. Our prediction model can serve as a general model for biomarker discovery in early detection of other cancers. In the future, Polymerase Chain Reaction (PCR) is planned for validation of the ability of these potential biomarkers for early detection of breast cancer.
Recursive heuristic classification
NASA Technical Reports Server (NTRS)
Wilkins, David C.
1994-01-01
The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil
2014-08-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922
Recursive formulas for determining perturbing accelerations in intermediate satellite motion
NASA Astrophysics Data System (ADS)
Stoianov, L.
Recursive formulas for Legendre polynomials and associated Legendre functions are used to obtain recursive relationships for determining acceleration components which perturb intermediate satellite motion. The formulas are applicable in all cases when the perturbation force function is presented as a series in spherical functions (gravitational, tidal, thermal, geomagnetic, and other perturbations of intermediate motion). These formulas can be used to determine the order of perturbing accelerations.
Comparison of methods for developing the dynamics of rigid-body systems
NASA Technical Reports Server (NTRS)
Ju, M. S.; Mansour, J. M.
1989-01-01
Several approaches for developing the equations of motion for a three-degree-of-freedom PUMA robot were compared on the basis of computational efficiency (i.e., the number of additions, subtractions, multiplications, and divisions). Of particular interest was the investigation of the use of computer algebra as a tool for developing the equations of motion. Three approaches were implemented algebraically: Lagrange's method, Kane's method, and Wittenburg's method. Each formulation was developed in absolute and relative coordinates. These six cases were compared to each other and to a recursive numerical formulation. The results showed that all of the formulations implemented algebraically required fewer calculations than the recursive numerical algorithm. The algebraic formulations required fewer calculations in absolute coordinates than in relative coordinates. Each of the algebraic formulations could be simplified, using patterns from Kane's method, to yield the same number of calculations in a given coordinate system.
Recursive Techniques for Computing Gluon Scattering in Anti-de-Sitter Space
NASA Astrophysics Data System (ADS)
Shyaka, Claude; Kharel, Savan
2016-03-01
The anti-de Sitter/conformal field theory correspondence is a relationship between two kinds of physical theories. On one side of the duality are special type of quantum (conformal) field theories known as the Yang-Mills theory. These quantum field theories are known to be equivalent to theories of gravity in Anti-de Sitter (AdS) space. The physical observables in the theory are the correlation functions that live in the boundary of AdS space. In general correlation functions are computed using configuration space and the expressions are extremely complicated. Using momentum basis and recursive techniques developed by Raju, we extend tree level correlation functions for four and five-point correlation functions in Yang-Mills theory in Anti-de Sitter space. In addition, we show that for certain external helicity, the correlation functions have simple analytic structure. Finally, we discuss how one can generalize these results to n-point functions. Hendrix college odyssey Grant.
Recursive Fact-finding: A Streaming Approach to Truth Estimation in Crowdsourcing Applications
2013-07-01
are reported over the course of the campaign, lending themselves better to the abstraction of a data stream arriving from the community of sources. In...EM Recursive EM Figure 4. Recursive EM Algorithm Convergence V. RELATED WORK Social sensing which is also referred to as human- centric sensing [4...systems, where different sources offer reviews on products (or brands, companies) they have experienced [16]. Customers are affected by those reviews
Recursive computation of mutual potential between two polyhedra
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel J.
2013-11-01
Recursive computation of mutual potential, force, and torque between two polyhedra is studied. Based on formulations by Werner and Scheeres (Celest Mech Dyn Astron 91:337-349, 2005) and Fahnestock and Scheeres (Celest Mech Dyn Astron 96:317-339, 2006) who applied the Legendre polynomial expansion to gravity interactions and expressed each order term by a shape-dependent part and a shape-independent part, this paper generalizes the computation of each order term, giving recursive relations of the shape-dependent part. To consider the potential, force, and torque, we introduce three tensors. This method is applicable to any multi-body systems. Finally, we implement this recursive computation to simulate the dynamics of a two rigid-body system that consists of two equal-sized parallelepipeds.
Line fitting based feature extraction for object recognition
NASA Astrophysics Data System (ADS)
Li, Bing
2014-06-01
Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.
NASA Astrophysics Data System (ADS)
Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.
2015-03-01
Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.
Methods for assessing movement path recursion with application to African buffalo in South Africa
Bar-David, S.; Bar-David, I.; Cross, P.C.; Ryan, S.J.; Knechtel, C.U.; Getz, W.M.
2009-01-01
Recent developments of automated methods for monitoring animal movement, e.g., global positioning systems (GPS) technology, yield high-resolution spatiotemporal data. To gain insights into the processes creating movement patterns, we present two new techniques for extracting information from these data on repeated visits to a particular site or patch ("recursions"). Identification of such patches and quantification of recursion pathways, when combined with patch-related ecological data, should contribute to our understanding of the habitat requirements of large herbivores, of factors governing their space-use patterns, and their interactions with the ecosystem. We begin by presenting output from a simple spatial model that simulates movements of large-herbivore groups based on minimal parameters: resource availability and rates of resource recovery after a local depletion. We then present the details of our new techniques of analyses (recursion analysis and circle analysis) and apply them to data generated by our model, as well as two sets of empirical data on movements of African buffalo (Syncerus coffer): the first collected in Klaserie Private Nature Reserve and the second in Kruger National Park, South Africa. Our recursion analyses of model outputs provide us with a basis for inferring aspects of the processes governing the production of buffalo recursion patterns, particularly the potential influence of resource recovery rate. Although the focus of our simulations was a comparison of movement patterns produced by different resource recovery rates, we conclude our paper with a comprehensive discussion of how recursion analyses can be used when appropriate ecological data are available to elucidate various factors influencing movement. Inter alia, these include the various limiting and preferred resources, parasites, and topographical and landscape factors. ?? 2009 by the Ecological Society of America.
Cai, Li
2015-06-01
Lord and Wingersky's (Appl Psychol Meas 8:453-461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.
Simple recursion relations for general field theories
Cheung, Clifford; Shen, Chia -Hsien; Trnka, Jaroslav
2015-06-17
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensionalmore » analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. In conclusion, our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.« less
NASA Astrophysics Data System (ADS)
Liu, X. Y.; Alfi, S.; Bruni, S.
2016-06-01
A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.
Liu, Hesheng; Schimpf, Paul H; Dong, Guoya; Gao, Xiaorong; Yang, Fusheng; Gao, Shangkai
2005-10-01
This paper presents a new algorithm called Standardized Shrinking LORETA-FOCUSS (SSLOFO) for solving the electroencephalogram (EEG) inverse problem. Multiple techniques are combined in a single procedure to robustly reconstruct the underlying source distribution with high spatial resolution. This algorithm uses a recursive process which takes the smooth estimate of sLORETA as initialization and then employs the re-weighted minimum norm introduced by FOCUSS. An important technique called standardization is involved in the recursive process to enhance the localization ability. The algorithm is further improved by automatically adjusting the source space according to the estimate of the previous step, and by the inclusion of temporal information. Simulation studies are carried out on both spherical and realistic head models. The algorithm achieves very good localization ability on noise-free data. It is capable of recovering complex source configurations with arbitrary shapes and can produce high quality images of extended source distributions. We also characterized the performance with noisy data in a realistic head model. An important feature of this algorithm is that the temporal waveforms are clearly reconstructed, even for closely spaced sources. This provides a convenient way to estimate neural dynamics directly from the cortical sources.
Teh, Seng Khoon; Zheng, Wei; Lau, David P; Huang, Zhiwei
2009-06-01
In this work, we evaluated the diagnostic ability of near-infrared (NIR) Raman spectroscopy associated with the ensemble recursive partitioning algorithm based on random forests for identifying cancer from normal tissue in the larynx. A rapid-acquisition NIR Raman system was utilized for tissue Raman measurements at 785 nm excitation, and 50 human laryngeal tissue specimens (20 normal; 30 malignant tumors) were used for NIR Raman studies. The random forests method was introduced to develop effective diagnostic algorithms for classification of Raman spectra of different laryngeal tissues. High-quality Raman spectra in the range of 800-1800 cm(-1) can be acquired from laryngeal tissue within 5 seconds. Raman spectra differed significantly between normal and malignant laryngeal tissues. Classification results obtained from the random forests algorithm on tissue Raman spectra yielded a diagnostic sensitivity of 88.0% and specificity of 91.4% for laryngeal malignancy identification. The random forests technique also provided variables importance that facilitates correlation of significant Raman spectral features with cancer transformation. This study shows that NIR Raman spectroscopy in conjunction with random forests algorithm has a great potential for the rapid diagnosis and detection of malignant tumors in the larynx.
Recursive Implementations of the Consider Filter
NASA Technical Reports Server (NTRS)
Zanetti, Renato; DSouza, Chris
2012-01-01
One method to account for parameters errors in the Kalman filter is to consider their effect in the so-called Schmidt-Kalman filter. This work addresses issues that arise when implementing a consider Kalman filter as a real-time, recursive algorithm. A favorite implementation of the Kalman filter as an onboard navigation subsystem is the UDU formulation. A new way to implement a UDU consider filter is proposed. The non-optimality of the recursive consider filter is also analyzed, and a modified algorithm is proposed to overcome this limitation.
Recursive computer architecture for VLSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treleaven, P.C.; Hopkins, R.P.
1982-01-01
A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.
Waltman, Ludo; Yan, Erjia; van Eck, Nees Jan
2011-10-01
Two commonly used ideas in the development of citation-based research performance indicators are the idea of normalizing citation counts based on a field classification scheme and the idea of recursive citation weighing (like in PageRank-inspired indicators). We combine these two ideas in a single indicator, referred to as the recursive mean normalized citation score indicator, and we study the validity of this indicator. Our empirical analysis shows that the proposed indicator is highly sensitive to the field classification scheme that is used. The indicator also has a strong tendency to reinforce biases caused by the classification scheme. Based on these observations, we advise against the use of indicators in which the idea of normalization based on a field classification scheme and the idea of recursive citation weighing are combined.
Practical low-cost visual communication using binary images for deaf sign language.
Manoranjan, M D; Robinson, J A
2000-03-01
Deaf sign language transmitted by video requires a temporal resolution of 8 to 10 frames/s for effective communication. Conventional videoconferencing applications, when operated over low bandwidth telephone lines, provide very low temporal resolution of pictures, of the order of less than a frame per second, resulting in jerky movement of objects. This paper presents a practical solution for sign language communication, offering adequate temporal resolution of images using moving binary sketches or cartoons, implemented on standard personal computer hardware with low-cost cameras and communicating over telephone lines. To extract cartoon points an efficient feature extraction algorithm adaptive to the global statistics of the image is proposed. To improve the subjective quality of the binary images, irreversible preprocessing techniques, such as isolated point removal and predictive filtering, are used. A simple, efficient and fast recursive temporal prefiltering scheme, using histograms of successive frames, reduces the additive and multiplicative noise from low-cost cameras. An efficient three-dimensional (3-D) compression scheme codes the binary sketches. Subjective tests performed on the system confirm that it can be used for sign language communication over telephone lines.
Joint passive radar tracking and target classification using radar cross section
NASA Astrophysics Data System (ADS)
Herman, Shawn M.
2004-01-01
We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.
Joint passive radar tracking and target classification using radar cross section
NASA Astrophysics Data System (ADS)
Herman, Shawn M.
2003-12-01
We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.
Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1987-01-01
This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.
WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensheimer, M; Trister, A; Ermoian, R
2014-06-15
Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segmentsmore » at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was shorter when the primary tumor exhibited larger scale of heterogeneity on contrast-enhanced MRI. If validated on a larger dataset, this imaging biomarker could be useful to help personalize treatment.« less
Recursive multibody dynamics and discrete-time optimal control
NASA Technical Reports Server (NTRS)
Deleuterio, G. M. T.; Damaren, C. J.
1989-01-01
A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.
A decoupled recursive approach for constrained flexible multibody system dynamics
NASA Technical Reports Server (NTRS)
Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung
1989-01-01
A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.
Contribution of zonal harmonics to gravitational moment
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.
1991-01-01
It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.
Contribution of zonal harmonics to gravitational moment
NASA Astrophysics Data System (ADS)
Roithmayr, Carlos M.
1991-02-01
It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.
Recursive Construction of Noiseless Subsystem for Qudits
NASA Astrophysics Data System (ADS)
Güngördü, Utkan; Li, Chi-Kwong; Nakahara, Mikio; Poon, Yiu-Tung; Sze, Nung-Sing
2014-03-01
When the environmental noise acting on the system has certain symmetries, a subsystem of the total system can avoid errors. Encoding information into such a subsystem is advantageous since it does not require any error syndrome measurements, which may introduce further errors to the system. However, utilizing such a subsystem for large systems gets impractical with the increasing number of qudits. A recursive scheme offers a solution to this problem. Here, we review the recursive construct introduced in, which can asymptotically protect 1/d of the qudits in system against collective errors.
Parallel scheduling of recursively defined arrays
NASA Technical Reports Server (NTRS)
Myers, T. J.; Gokhale, M. B.
1986-01-01
A new method of automatic generation of concurrent programs which constructs arrays defined by sets of recursive equations is described. It is assumed that the time of computation of an array element is a linear combination of its indices, and integer programming is used to seek a succession of hyperplanes along which array elements can be computed concurrently. The method can be used to schedule equations involving variable length dependency vectors and mutually recursive arrays. Portions of the work reported here have been implemented in the PS automatic program generation system.
Connolly, Patrick; van Deventer, Vasi
2017-01-01
The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization) provides the critical theoretical context within which the significance of Friston's (2010a) Free Energy Principle (FEP) for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated) organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while “psychoanalytic” mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989) offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect), which is itself founded upon the tendency toward autopoiesis (self-making) within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a) theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis underscores the necessity of reengagement with the core concepts of psychoanalytic theory, and the usefulness that a systems theory epistemology—particularly hierarchical recursive description—can have for this goal. PMID:29038652
Connolly, Patrick; van Deventer, Vasi
2017-01-01
The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization) provides the critical theoretical context within which the significance of Friston's (2010a) Free Energy Principle (FEP) for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated) organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while "psychoanalytic" mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989) offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect), which is itself founded upon the tendency toward autopoiesis (self-making) within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a) theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis underscores the necessity of reengagement with the core concepts of psychoanalytic theory, and the usefulness that a systems theory epistemology-particularly hierarchical recursive description-can have for this goal.
NASA Astrophysics Data System (ADS)
Lowenthal, Francis
2010-11-01
This paper examines whether the recursive structure imbedded in some exercises used in the Non Verbal Communication Device (NVCD) approach is actually the factor that enables this approach to favor language acquisition and reacquisition in the case of children with cerebral lesions. For that a definition of the principle of recursion as it is used by logicians is presented. The two opposing approaches to the problem of language development are explained. For many authors such as Chomsky [1] the faculty of language is innate. This is known as the Standard Theory; the other researchers in this field, e.g. Bates and Elman [2], claim that language is entirely constructed by the young child: they thus speak of Language Acquisition. It is also shown that in both cases, a version of the principle of recursion is relevant for human language. The NVCD approach is defined and the results obtained in the domain of language while using this approach are presented: young subjects using this approach acquire a richer language structure or re-acquire such a structure in the case of cerebral lesions. Finally it is shown that exercises used in this framework imply the manipulation of recursive structures leading to regular grammars. It is thus hypothesized that language development could be favored using recursive structures with the young child. It could also be the case that the NVCD like exercises used with children lead to the elaboration of a regular language, as defined by Chomsky [3], which could be sufficient for language development but would not require full recursion. This double claim could reconcile Chomsky's approach with psychological observations made by adherents of the Language Acquisition approach, if it is confirmed by researches combining the use of NVCDs, psychometric methods and the use of Neural Networks. This paper thus suggests that a research group oriented towards this problematic should be organized.
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Cache Locality Optimization for Recursive Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifflander, Jonathan; Krishnamoorthy, Sriram
We present an approach to optimize the cache locality for recursive programs by dynamically splicing--recursively interleaving--the execution of distinct function invocations. By utilizing data effect annotations, we identify concurrency and data reuse opportunities across function invocations and interleave them to reduce reuse distance. We present algorithms that efficiently track effects in recursive programs, detect interference and dependencies, and interleave execution of function invocations using user-level (non-kernel) lightweight threads. To enable multi-core execution, a program is parallelized using a nested fork/join programming model. Our cache optimization strategy is designed to work in the context of a random work stealing scheduler. Wemore » present an implementation using the MIT Cilk framework that demonstrates significant improvements in sequential and parallel performance, competitive with a state-of-the-art compile-time optimizer for loop programs and a domain- specific optimizer for stencil programs.« less
Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2016-01-01
A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.
NASA Technical Reports Server (NTRS)
Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.
1995-01-01
In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.
Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions
NASA Technical Reports Server (NTRS)
Favaregh, Noah M.
2010-01-01
The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2012-04-01
By extending the exponent of floating point numbers with an additional integer as the power index of a large radix, we compute fully normalized associated Legendre functions (ALF) by recursion without underflow problem. The new method enables us to evaluate ALFs of extremely high degree as 232 = 4,294,967,296, which corresponds to around 1 cm resolution on the Earth's surface. By limiting the application of exponent extension to a few working variables in the recursion, choosing a suitable large power of 2 as the radix, and embedding the contents of the basic arithmetic procedure of floating point numbers with the exponent extension directly in the program computing the recurrence formulas, we achieve the evaluation of ALFs in the double-precision environment at the cost of around 10% increase in computational time per single ALF. This formulation realizes meaningful execution of the spherical harmonic synthesis and/or analysis of arbitrary degree and order.
Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.
Kostoglou, Kyriaki; Debert, Chantel T; Poulin, Marc J; Mitsis, Georgios D
2014-05-01
We examined the time-varying characteristics of cerebral autoregulation and hemodynamics during a step hypercapnic stimulus by using recursively estimated multivariate (two-input) models which quantify the dynamic effects of mean arterial blood pressure (ABP) and end-tidal CO2 tension (PETCO2) on middle cerebral artery blood flow velocity (CBFV). Beat-to-beat values of ABP and CBFV, as well as breath-to-breath values of PETCO2 during baseline and sustained euoxic hypercapnia were obtained in 8 female subjects. The multiple-input, single-output models used were based on the Laguerre expansion technique, and their parameters were updated using recursive least squares with multiple forgetting factors. The results reveal the presence of nonstationarities that confirm previously reported effects of hypercapnia on autoregulation, i.e. a decrease in the MABP phase lead, and suggest that the incorporation of PETCO2 as an additional model input yields less time-varying estimates of dynamic pressure autoregulation obtained from single-input (ABP-CBFV) models. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Ohri, Nitin; Duan, Fenghai; Snyder, Bradley S; Wei, Bo; Machtay, Mitchell; Alavi, Abass; Siegel, Barry A; Johnson, Douglas W; Bradley, Jeffrey D; DeNittis, Albert; Werner-Wasik, Maria; El Naqa, Issam
2016-06-01
In a secondary analysis of American College of Radiology Imaging Network (ACRIN) 6668/RTOG 0235, high pretreatment metabolic tumor volume (MTV) on (18)F-FDG PET was found to be a poor prognostic factor for patients treated with chemoradiotherapy for locally advanced non-small cell lung cancer (NSCLC). Here we utilize the same dataset to explore whether heterogeneity metrics based on PET textural features can provide additional prognostic information. Patients with locally advanced NSCLC underwent (18)F-FDG PET prior to treatment. A gradient-based segmentation tool was used to contour each patient's primary tumor. MTV, maximum SUV, and 43 textural features were extracted for each tumor. To address overfitting and high collinearity among PET features, the least absolute shrinkage and selection operator (LASSO) method was applied to identify features that were independent predictors of overall survival (OS) after adjusting for MTV. Recursive binary partitioning in a conditional inference framework was utilized to identify optimal thresholds. Kaplan-Meier curves and log-rank testing were used to compare outcomes among patient groups. Two hundred one patients met inclusion criteria. The LASSO procedure identified 1 textural feature (SumMean) as an independent predictor of OS. The optimal cutpoint for MTV was 93.3 cm(3), and the optimal SumMean cutpoint for tumors above 93.3 cm(3) was 0.018. This grouped patients into three categories: low tumor MTV (n = 155; median OS, 22.6 mo), high tumor MTV and high SumMean (n = 23; median OS, 20.0 mo), and high tumor MTV and low SumMean (n = 23; median OS, 6.2 mo; log-rank P < 0.001). We have described an appropriate methodology to evaluate the prognostic value of textural PET features in the context of established prognostic factors. We have also identified a promising feature that may have prognostic value in locally advanced NSCLC patients with large tumors who are treated with chemoradiotherapy. Validation studies are warranted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Ohri, Nitin; Duan, Fenghai; Snyder, Bradley S.; Wei, Bo; Machtay, Mitchell; Alavi, Abass; Siegel, Barry A.; Johnson, Douglas W.; Bradley, Jeffrey D.; DeNittis, Albert; Werner-Wasik, Maria; El Naqa, Issam
2016-01-01
In a secondary analysis of American College of Radiology Imaging Network (ACRIN) 6668/RTOG 0235, high pretreatment metabolic tumor volume (MTV) on 18F-FDG PET was found to be a poor prognostic factor for patients treated with chemoradiotherapy for locally advanced non–small cell lung cancer (NSCLC). Here we utilize the same dataset to explore whether heterogeneity metrics based on PET textural features can provide additional prognostic information. Methods Patients with locally advanced NSCLC underwent 18F-FDG PET prior to treatment. A gradient-based segmentation tool was used to contour each patient’s primary tumor. MTV, maximum SUV, and 43 textural features were extracted for each tumor. To address over-fitting and high collinearity among PET features, the least absolute shrinkage and selection operator (LASSO) method was applied to identify features that were independent predictors of overall survival (OS) after adjusting for MTV. Recursive binary partitioning in a conditional inference framework was utilized to identify optimal thresholds. Kaplan–Meier curves and log-rank testing were used to compare outcomes among patient groups. Results Two hundred one patients met inclusion criteria. The LASSO procedure identified 1 textural feature (SumMean) as an independent predictor of OS. The optimal cutpoint for MTV was 93.3 cm3, and the optimal Sum-Mean cutpoint for tumors above 93.3 cm3 was 0.018. This grouped patients into three categories: low tumor MTV (n = 155; median OS, 22.6 mo), high tumor MTV and high SumMean (n = 23; median OS, 20.0 mo), and high tumor MTV and low SumMean (n = 23; median OS, 6.2 mo; log-rank P < 0.001). Conclusion We have described an appropriate methodology to evaluate the prognostic value of textural PET features in the context of established prognostic factors. We have also identified a promising feature that may have prognostic value in locally advanced NSCLC patients with large tumors who are treated with chemoradiotherapy. Validation studies are warranted. PMID:26912429
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.
NASA Astrophysics Data System (ADS)
Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore
2017-10-01
This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.
Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X
2010-05-01
Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.
McKim, James M.; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa
2016-01-01
Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose–response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimension-ality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals’ potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced "false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. PMID:26046447
Zhang, Haipeng; Fu, Tong; Zhang, Zhiru; Fan, Zhimin; Zheng, Chao; Han, Bing
2014-08-01
To explore the value of application of support vector machine-recursive feature elimination (SVM-RFE) method in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases. Fresh breast tissue samples of 168 patients (all female; ages 22-75) were obtained by routine surgical resection from May 2011 to May 2012 at the Department of Breast Surgery, the First Hospital of Jilin University. Among them, there were 51 normal tissues, 66 benign and 51 malignant breast lesions. All the specimens were assessed by Raman spectroscopy, and the SVM-RFE algorithm was used to process the data and build the mathematical model. Mahalanobis distance and spectral residuals were used as discriminating criteria to evaluate this data-processing method. 1 800 Raman spectra were acquired from the fresh samples of human breast tissues. Based on spectral profiles, the presence of 1 078, 1 267, 1 301, 1 437, 1 653, and 1 743 cm(-1) peaks were identified in the normal tissues; and 1 281, 1 341, 1 381, 1 417, 1 465, 1 530, and 1 637 cm(-1) peaks were found in the benign and malignant tissues. The main characteristic peaks differentiating benign and malignant lesions were 1 340 and 1 480 cm(-1). The accuracy of SVM-RFE in discriminating normal and malignant lesions was 100.0%, while that in the assessment of benign lesions was 93.0%. There are distinct differences among the Raman spectra of normal, benign and malignant breast tissues, and SVM-RFE method can be used to build differentiation model of breast lesions.
Luechtefeld, Thomas; Maertens, Alexandra; McKim, James M; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa
2015-11-01
Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose-response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimensionality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals' potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced " false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. Copyright © 2015 John Wiley & Sons, Ltd.
On the time-weighted quadratic sum of linear discrete systems
NASA Technical Reports Server (NTRS)
Jury, E. I.; Gutman, S.
1975-01-01
A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.
Remaining useful life assessment of lithium-ion batteries in implantable medical devices
NASA Astrophysics Data System (ADS)
Hu, Chao; Ye, Hui; Jain, Gaurav; Schmidt, Craig
2018-01-01
This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid data-driven/model-based method is employed for remaining useful life assessment. The method is developed on and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications exhibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules: 1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade behavior switches between multiple fade models.
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Tiwari, A. K.; Hazra, B.
2017-08-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using recursive principal component analysis (RPCA) in conjunction with online damage indicators is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal modes in online using the rank-one perturbation method, and subsequently utilized to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/nonlinear-states that indicate damage. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. An online condition indicator (CI) based on the L2 norm of the error between actual response and the response projected using recursive eigenvector matrix updates over successive iterations is proposed. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data. The proposed CI, named recursive residual error, is also adopted for simultaneous spatio-temporal damage detection. Numerical simulations performed on five-degree of freedom nonlinear system under white noise and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate the robustness of the proposed algorithm. Successful results obtained from practical case studies involving experiments performed on a cantilever beam subjected to earthquake excitation, for full sensors and underdetermined cases; and data from recorded responses of the UCLA Factor building (full data and its subset) demonstrate the efficacy of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.
Recursive Vocal Pattern Learning and Generalization in Starlings
ERIC Educational Resources Information Center
Bloomfield, Tiffany Corinna
2012-01-01
Among known communication systems, human language alone exhibits open-ended productivity of meaning. Interest in the psychological mechanisms supporting this ability, and their evolutionary origins, has resurged following the suggestion that the only uniquely human ability underlying language is a mechanism of recursion. This "Unique…
ERIC Educational Resources Information Center
Simons, C. S.; Wright, M.
2007-01-01
With Simson's 1753 paper as a starting point, the current paper reports investigations of Simson's identity (also known as Cassini's) for the Fibonacci sequence as a means to explore some fundamental ideas about recursion. Simple algebraic operations allow one to reduce the standard linear Fibonacci recursion to the nonlinear Simon's recursion…
NASA Astrophysics Data System (ADS)
Borodachev, S. M.
2016-06-01
The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.
A Note on Discrete Mathematics and Calculus.
ERIC Educational Resources Information Center
O'Reilly, Thomas J.
1987-01-01
Much of the current literature on the topic of discrete mathematics and calculus during the first two years of an undergraduate mathematics curriculum is cited. A relationship between the recursive integration formulas and recursively defined polynomials is described. A Pascal program is included. (Author/RH)
Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.
Hu, Liang; Wang, Zidong; Liu, Xiaohui
2016-08-01
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.
2017-12-01
A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.
Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.
2018-06-01
A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.
Cho, Pyeong Whan; Szkudlarek, Emily; Tabor, Whitney
2016-01-01
Learning is typically understood as a process in which the behavior of an organism is progressively shaped until it closely approximates a target form. It is easy to comprehend how a motor skill or a vocabulary can be progressively learned—in each case, one can conceptualize a series of intermediate steps which lead to the formation of a proficient behavior. With grammar, it is more difficult to think in these terms. For example, center embedding recursive structures seem to involve a complex interplay between multiple symbolic rules which have to be in place simultaneously for the system to work at all, so it is not obvious how the mechanism could gradually come into being. Here, we offer empirical evidence from a new artificial language (or “artificial grammar”) learning paradigm, Locus Prediction, that, despite the conceptual conundrum, recursion acquisition occurs gradually, at least for a simple formal language. In particular, we focus on a variant of the simplest recursive language, anbn, and find evidence that (i) participants trained on two levels of structure (essentially ab and aabb) generalize to the next higher level (aaabbb) more readily than participants trained on one level of structure (ab) combined with a filler sentence; nevertheless, they do not generalize immediately; (ii) participants trained up to three levels (ab, aabb, aaabbb) generalize more readily to four levels than participants trained on two levels generalize to three; (iii) when we present the levels in succession, starting with the lower levels and including more and more of the higher levels, participants show evidence of transitioning between the levels gradually, exhibiting intermediate patterns of behavior on which they were not trained; (iv) the intermediate patterns of behavior are associated with perturbations of an attractor in the sense of dynamical systems theory. We argue that all of these behaviors indicate a theory of mental representation in which recursive systems lie on a continuum of grammar systems which are organized so that grammars that produce similar behaviors are near one another, and that people learning a recursive system are navigating progressively through the space of these grammars. PMID:27375543
Cho, Pyeong Whan; Szkudlarek, Emily; Tabor, Whitney
2016-01-01
Learning is typically understood as a process in which the behavior of an organism is progressively shaped until it closely approximates a target form. It is easy to comprehend how a motor skill or a vocabulary can be progressively learned-in each case, one can conceptualize a series of intermediate steps which lead to the formation of a proficient behavior. With grammar, it is more difficult to think in these terms. For example, center embedding recursive structures seem to involve a complex interplay between multiple symbolic rules which have to be in place simultaneously for the system to work at all, so it is not obvious how the mechanism could gradually come into being. Here, we offer empirical evidence from a new artificial language (or "artificial grammar") learning paradigm, Locus Prediction, that, despite the conceptual conundrum, recursion acquisition occurs gradually, at least for a simple formal language. In particular, we focus on a variant of the simplest recursive language, a (n) b (n) , and find evidence that (i) participants trained on two levels of structure (essentially ab and aabb) generalize to the next higher level (aaabbb) more readily than participants trained on one level of structure (ab) combined with a filler sentence; nevertheless, they do not generalize immediately; (ii) participants trained up to three levels (ab, aabb, aaabbb) generalize more readily to four levels than participants trained on two levels generalize to three; (iii) when we present the levels in succession, starting with the lower levels and including more and more of the higher levels, participants show evidence of transitioning between the levels gradually, exhibiting intermediate patterns of behavior on which they were not trained; (iv) the intermediate patterns of behavior are associated with perturbations of an attractor in the sense of dynamical systems theory. We argue that all of these behaviors indicate a theory of mental representation in which recursive systems lie on a continuum of grammar systems which are organized so that grammars that produce similar behaviors are near one another, and that people learning a recursive system are navigating progressively through the space of these grammars.
Recursions for the exchangeable partition function of the seedbank coalescent.
Kurt, Noemi; Rafler, Mathias
2017-04-01
For the seedbank coalescent with mutation under the infinite alleles assumption, which describes the gene genealogy of a population with a strong seedbank effect subject to mutations, we study the distribution of the final partition with mutation. This generalizes the coalescent with freeze by Dong et al. (2007) to coalescents where ancestral lineages are blocked from coalescing. We derive an implicit recursion which we show to have a unique solution and give an interpretation in terms of absorption problems of a random walk. Moreover, we derive recursions for the distribution of the number of blocks in the final partition. Copyright © 2017 Elsevier Inc. All rights reserved.
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Tree-manipulating systems and Church-Rosser theorems.
NASA Technical Reports Server (NTRS)
Rosen, B. K.
1973-01-01
Study of a broad class of tree-manipulating systems called subtree replacement systems. The use of this framework is illustrated by general theorems analogous to the Church-Rosser theorem and by applications of these theorems. Sufficient conditions are derived for the Church-Rosser property, and their applications to recursive definitions, the lambda calculus, and parallel programming are discussed. McCarthy's (1963) recursive calculus is extended by allowing a choice between call-by-value and call-by-name. It is shown that recursively defined functions are single-valued despite the nondeterminism of the evaluation algorithm. It is also shown that these functions solve their defining equations in a 'canonical' manner.
Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.
ERIC Educational Resources Information Center
Magel, E. Terry
1989-01-01
Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…
ERIC Educational Resources Information Center
Camp, Dane R.
1991-01-01
After introducing the two-dimensional Koch curve, which is generated by simple recursions on an equilateral triangle, the process is extended to three dimensions with simple recursions on a regular tetrahedron. Included, for both fractal sequences, are iterative formulae, illustrations of the first several iterations, and a sample PASCAL program.…
The Free Energy in the Derrida-Retaux Recursive Model
NASA Astrophysics Data System (ADS)
Hu, Yueyun; Shi, Zhan
2018-05-01
We are interested in a simple max-type recursive model studied by Derrida and Retaux (J Stat Phys 156:268-290, 2014) in the context of a physics problem, and find a wide range for the exponent in the free energy in the nearly supercritical regime.
Differential diagnosis of jaw pain using informatics technology.
Nam, Y; Kim, H-G; Kho, H-S
2018-05-21
This study aimed to deduce evidence-based clinical clues that differentiate temporomandibular disorders (TMD)-mimicking conditions from genuine TMD by text mining using natural language processing (NLP) and recursive partitioning. We compared the medical records of 29 patients diagnosed with TMD-mimicking conditions and 290 patients diagnosed with genuine TMD. Chief complaints and medical histories were preprocessed via NLP to compare the frequency of word usage. In addition, recursive partitioning was used to deduce the optimal size of mouth opening, which could differentiate TMD-mimicking from genuine TMD groups. The prevalence of TMD-mimicking conditions was more evenly distributed across all age groups and showed a nearly equal gender ratio, which was significantly different from genuine TMD. TMD-mimicking conditions were caused by inflammation, infection, hereditary disease and neoplasm. Patients with TMD-mimicking conditions frequently used "mouth opening limitation" (P < .001), but less commonly used words such as "noise" (P < .001) and "temporomandibular joint" (P < .001) than patients with genuine TMD. A diagnostic classification tree on the basis of recursive partitioning suggested that 12.0 mm of comfortable mouth opening and 26.5 mm of maximum mouth opening were deduced as the most optimal mouth-opening cutoff sizes. When the combined analyses were performed based on both the text mining and clinical examination data, the predictive performance of the model was 96.6% with 69.0% sensitivity and 99.3% specificity in predicting TMD-mimicking conditions. In conclusion, this study showed that AI technology-based methods could be applied in the field of differential diagnosis of orofacial pain disorders. © 2018 John Wiley & Sons Ltd.
An effective method on pornographic images realtime recognition
NASA Astrophysics Data System (ADS)
Wang, Baosong; Lv, Xueqiang; Wang, Tao; Wang, Chengrui
2013-03-01
In this paper, skin detection, texture filtering and face detection are used to extract feature on an image library, training them with the decision tree arithmetic to create some rules as a decision tree classifier to distinguish an unknown image. Experiment based on more than twenty thousand images, the precision rate can get 76.21% when testing on 13025 pornographic images and elapsed time is less than 0.2s. This experiment shows it has a good popularity. Among the steps mentioned above, proposing a new skin detection model which called irregular polygon region skin detection model based on YCbCr color space. This skin detection model can lower the false detection rate on skin detection. A new method called sequence region labeling on binary connected area can calculate features on connected area, it is faster and needs less memory than other recursive methods.
Scattering transform and LSPTSVM based fault diagnosis of rotating machinery
NASA Astrophysics Data System (ADS)
Ma, Shangjun; Cheng, Bo; Shang, Zhaowei; Liu, Geng
2018-05-01
This paper proposes an algorithm for fault diagnosis of rotating machinery to overcome the shortcomings of classical techniques which are noise sensitive in feature extraction and time consuming for training. Based on the scattering transform and the least squares recursive projection twin support vector machine (LSPTSVM), the method has the advantages of high efficiency and insensitivity for noise signal. Using the energy of the scattering coefficients in each sub-band, the features of the vibration signals are obtained. Then, an LSPTSVM classifier is used for fault diagnosis. The new method is compared with other common methods including the proximal support vector machine, the standard support vector machine and multi-scale theory by using fault data for two systems, a motor bearing and a gear box. The results show that the new method proposed in this study is more effective for fault diagnosis of rotating machinery.
User's Guide for the Precision Recursive Estimator for Ephemeris Refinement (PREFER)
NASA Technical Reports Server (NTRS)
Gibbs, B. P.
1982-01-01
PREFER is a recursive orbit determination program which is used to refine the ephemerides produced by a batch least squares program (e.g., GTDS). It is intended to be used primarily with GTDS and, thus, is compatible with some of the GTDS input/output files.
NASA Technical Reports Server (NTRS)
Tilton, James C. (Inventor)
2010-01-01
A method, computer readable storage, and apparatus for implementing recursive segmentation of data with spatial characteristics into regions including splitting-remerging of pixels with contagious region designations and a user controlled parameter for providing a preference for merging adjacent regions to eliminate window artifacts.
A Recursive Theory for the Mathematical Understanding--Some Elements and Implications.
ERIC Educational Resources Information Center
Pirie, Susan; Kieren, Thomas
There has been considerable interest in mathematical understanding. Both those attempting to build, and those questioning the possibility of building intelligent artificial tutoring systems, struggle with the notions of mathematical understanding. The purpose of this essay is to show a transcendently recursive theory of mathematical understanding…
ERIC Educational Resources Information Center
Kemp, Andy
2007-01-01
"Geomlab" is a functional programming language used to describe pictures that are made up of tiles. The beauty of "Geomlab" is that it introduces students to recursion, a very powerful mathematical concept, through a very simple and enticing graphical environment. Alongside the software is a series of eight worksheets which lead into producing…
NASA Astrophysics Data System (ADS)
Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny
2018-02-01
Deep-learning models are highly parameterized, causing difficulty in inference and transfer learning. We propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in DBT while maintaining the classification accuracy. Two-stage transfer learning was used to adapt the ImageNet-trained DCNN to mammography and then to DBT. In the first-stage transfer learning, transfer learning from ImageNet trained DCNN was performed using mammography data. In the second-stage transfer learning, the mammography-trained DCNN was trained on the DBT data using feature extraction from fully connected layer, recursive feature elimination and random forest classification. The layered pathway evolution encapsulates the feature extraction to the classification stages to compress the DCNN. Genetic algorithm was used in an iterative approach with tournament selection driven by count-preserving crossover and mutation to identify the necessary nodes in each convolution layer while eliminating the redundant nodes. The DCNN was reduced by 99% in the number of parameters and 95% in mathematical operations in the convolutional layers. The lesion-based area under the receiver operating characteristic curve on an independent DBT test set from the original and the compressed network resulted in 0.88+/-0.05 and 0.90+/-0.04, respectively. The difference did not reach statistical significance. We demonstrated a DCNN compression approach without additional fine-tuning or loss of performance for classification of masses in DBT. The approach can be extended to other DCNNs and transfer learning tasks. An ensemble of these smaller and focused DCNNs has the potential to be used in multi-target transfer learning.
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Ledesma, Ragnar
1993-01-01
A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.
Applying Metabolomics to differentiate amphibian responses ...
Introduction/Objectives/Methods One of the biggest challenges in ecological risk assessment is determining the impact of multiple stressors on individual organisms and populations in ‘real world’ scenarios. Emerging ‘omic technologies, notably, metabolomics, provides an opportunity to address the uncertainties surrounding ecological risk assessment of multiple stressors. The objective of this study was to use a metabolomics biomarker approach to investigate the effect of multiple stressors on amphibian metamorphs. To this end, metamorphs of Rana pipiens (northern leopard frogs) were exposed to the insecticide Carbaryl (0.32 μg/L), a conspecific predator alarm call (Lithobates catesbeianus), Carbaryl and the predator alarm call, and a control with no stressor. In addition to metabolomic fingerprinting, we measured corticosterone levels in each treatment to assess general stress response. We analyzed relative abundances of endogenous metabolites collected in liver tissue with gas chromatography coupled with mass spectrometry. Support vector machine (SVM) methods with recursive feature elimination (RFE) were applied to rank the metabolomic profiles produced. Results/Conclusions SVM-RFE of the acquired metabolomic spectra demonstrated 85-96% classification accuracy among control and all treatment groups when using the top 75 ranked retention time bins. Biochemical fluxes observed in the groups exposed to carbaryl, predation threat, and the combined treatmen
Confidence level estimation in multi-target classification problems
NASA Astrophysics Data System (ADS)
Chang, Shi; Isaacs, Jason; Fu, Bo; Shin, Jaejeong; Zhu, Pingping; Ferrari, Silvia
2018-04-01
This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix. The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled data, and recursively updated as additional images become available. Based on the learned joint probability mass function, the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori, i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels and ensure that all targets are classified with satisfactory confidence after the path is executed.
Application of machine learning on brain cancer multiclass classification
NASA Astrophysics Data System (ADS)
Panca, V.; Rustam, Z.
2017-07-01
Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.
Öztoprak, Hüseyin; Toycan, Mehmet; Alp, Yaşar Kemal; Arıkan, Orhan; Doğutepe, Elvin; Karakaş, Sirel
2017-12-01
Attention-deficit/hyperactivity disorder (ADHD) is the most frequent diagnosis among children who are referred to psychiatry departments. Although ADHD was discovered at the beginning of the 20th century, its diagnosis is still confronted with many problems. A novel classification approach that discriminates ADHD and nonADHD groups over the time-frequency domain features of event-related potential (ERP) recordings that are taken during Stroop task is presented. Time-Frequency Hermite-Atomizer (TFHA) technique is used for the extraction of high resolution time-frequency domain features that are highly localized in time-frequency domain. Based on an extensive investigation, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) was used to obtain the best discriminating features. When the best three features were used, the classification accuracy for the training dataset reached 98%, and the use of five features further improved the accuracy to 99.5%. The accuracy was 100% for the testing dataset. Based on extensive experiments, the delta band emerged as the most contributing frequency band and statistical parameters emerged as the most contributing feature group. The classification performance of this study suggests that TFHA can be employed as an auxiliary component of the diagnostic and prognostic procedures for ADHD. The features obtained in this study can potentially contribute to the neuroelectrical understanding and clinical diagnosis of ADHD. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Recursion and the Competence/Performance Distinction in AGL Tasks
ERIC Educational Resources Information Center
Lobina, David J.
2011-01-01
The term "recursion" is used in at least four distinct theoretical senses within cognitive science. Some of these senses in turn relate to the different levels of analysis described by David Marr some 20 years ago; namely, the underlying competence capacity (the "computational" level), the performance operations used in real-time processing (the…
Recursivity: A Working Paper on Rhetoric and "Mnesis"
ERIC Educational Resources Information Center
Stormer, Nathan
2013-01-01
This essay proposes the genealogical study of remembering and forgetting as recursive rhetorical capacities that enable discourse to place itself in an ever-changing present. "Mnesis" is a meta-concept for the arrangements of remembering and forgetting that enable rhetoric to function. Most of the essay defines the materiality of "mnesis", first…
Recursive Optimization of Digital Circuits
1990-12-14
Obverse- Specification . . . A-23 A.14 Non-MDS Optimization of SAMPLE .. .. .. .. .. .. ..... A-24 Appendix B . BORIS Recursive Optimization System...Software ...... B -i B .1 DESIGN.S File . .... .. .. .. .. .. .. .. .. .. ... ... B -2 B .2 PARSE.S File. .. .. .. .. .. .. .. .. ... .. ... .... B -1i B .3...TABULAR.S File. .. .. .. .. .. .. ... .. ... .. ... B -22 B .4 MDS.S File. .. .. .. .. .. .. .. ... .. ... .. ...... B -28 B .5 COST.S File
ERIC Educational Resources Information Center
Chang, Huo-Tsan; Chi, Nai-Wen; Miao, Min-Chih
2007-01-01
This study explored the relationship between three-component organizational/occupational commitment and organizational/occupational turnover intention, and the reciprocal relationship between organizational and occupational turnover intention with a non-recursive model in collectivist cultural settings. We selected 177 nursing staffs out of 30…
TORTIS (Toddler's Own Recursive Turtle Interpreter System).
ERIC Educational Resources Information Center
Perlman, Radia
TORTIS (Toddler's Own Recursive Turtle Interpreter System) is a device which can be used to study or nurture the cognitive development of preschool children. The device consists of a "turtle" which the child can control by use of buttons on a control panel. The "turtle" can be made to move in prescribed directions, to take a…
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cattafesta, L. N.; Ha, C.
2002-01-01
Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.
Signal Prediction With Input Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin
1999-01-01
A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.
NASA Astrophysics Data System (ADS)
Julaiti, Alafate; Wu, Bin; Zhang, Zhongzhi
2013-05-01
The eigenvalues of the normalized Laplacian matrix of a network play an important role in its structural and dynamical aspects associated with the network. In this paper, we study the spectra and their applications of normalized Laplacian matrices of a family of fractal trees and dendrimers modeled by Cayley trees, both of which are built in an iterative way. For the fractal trees, we apply the spectral decimation approach to determine analytically all the eigenvalues and their corresponding multiplicities, with the eigenvalues provided by a recursive relation governing the eigenvalues of networks at two successive generations. For Cayley trees, we show that all their eigenvalues can be obtained by computing the roots of several small-degree polynomials defined recursively. By using the relation between normalized Laplacian spectra and eigentime identity, we derive the explicit solution to the eigentime identity for random walks on the two treelike networks, the leading scalings of which follow quite different behaviors. In addition, we corroborate the obtained eigenvalues and their degeneracies through the link between them and the number of spanning trees.
Recursive processes in self-affirmation: intervening to close the minority achievement gap.
Cohen, Geoffrey L; Garcia, Julio; Purdie-Vaughns, Valerie; Apfel, Nancy; Brzustoski, Patricia
2009-04-17
A 2-year follow-up of a randomized field experiment previously reported in Science is presented. A subtle intervention to lessen minority students' psychological threat related to being negatively stereotyped in school was tested in an experiment conducted three times with three independent cohorts (N = 133, 149, and 134). The intervention, a series of brief but structured writing assignments focusing students on a self-affirming value, reduced the racial achievement gap. Over 2 years, the grade point average (GPA) of African Americans was, on average, raised by 0.24 grade points. Low-achieving African Americans were particularly benefited. Their GPA improved, on average, 0.41 points, and their rate of remediation or grade repetition was less (5% versus 18%). Additionally, treated students' self-perceptions showed long-term benefits. Findings suggest that because initial psychological states and performance determine later outcomes by providing a baseline and initial trajectory for a recursive process, apparently small but early alterations in trajectory can have long-term effects. Implications for psychological theory and educational practice are discussed.
An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Sudip K
2014-01-01
Block tridiagonal systems of linear equations arise in a wide variety of scientific and engineering applications. Recursive doubling algorithm is a well-known prefix computation-based numerical algorithm that requires O(M^3(N/P + log P)) work to compute the solution of a block tridiagonal system with N block rows and block size M on P processors. In real-world applications, solutions of tridiagonal systems are most often sought with multiple, often hundreds and thousands, of different right hand sides but with the same tridiagonal matrix. Here, we show that a recursive doubling algorithm is sub-optimal when computing solutions of block tridiagonal systems with multiplemore » right hand sides and present a novel algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement when solving block tridiagonal systems with R distinct right hand sides. Since R is typically about 100 1000, this improvement translates to very significant speedups in practice. Detailed complexity analyses of the new algorithm with empirical confirmation of runtime improvements are presented. To the best of our knowledge, this algorithm has not been reported before in the literature.« less
Martins, Mauricio D; Fitch, W Tecumseh
2015-12-15
The relationship between linguistic syntax and action planning is of considerable interest in cognitive science because many researchers suggest that "motor syntax" shares certain key traits with language. In a recent manuscript in this journal, Vicari and Adenzato (henceforth VA) critiqued Hauser, Chomsky and Fitch's 2002 (henceforth HCF's) hypothesis that recursion is language-specific, and that its usage in other domains is parasitic on language resources. VA's main argument is that HCF's hypothesis is falsified by the fact that recursion typifies the structure of intentional action, and recursion in the domain of action is independent of language. Here, we argue that VA's argument is incomplete, and that their formalism can be contrasted with alternative frameworks that are equally consistent with existing data. Therefore their conclusions are premature without further empirical testing and support. In particular, to accept VA's argument it would be necessary to demonstrate both that humans in fact represent self-embedding in the structure of intentional action, and that language is not used to construct these representations. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-jagged: A scalable parallel spatial partitioning algorithm
Deveci, Mehmet; Rajamanickam, Sivasankaran; Devine, Karen D.; ...
2015-03-18
Geometric partitioning is fast and effective for load-balancing dynamic applications, particularly those requiring geometric locality of data (particle methods, crash simulations). We present, to our knowledge, the first parallel implementation of a multidimensional-jagged geometric partitioner. In contrast to the traditional recursive coordinate bisection algorithm (RCB), which recursively bisects subdomains perpendicular to their longest dimension until the desired number of parts is obtained, our algorithm does recursive multi-section with a given number of parts in each dimension. By computing multiple cut lines concurrently and intelligently deciding when to migrate data while computing the partition, we minimize data movement compared to efficientmore » implementations of recursive bisection. We demonstrate the algorithm's scalability and quality relative to the RCB implementation in Zoltan on both real and synthetic datasets. Our experiments show that the proposed algorithm performs and scales better than RCB in terms of run-time without degrading the load balance. Lastly, our implementation partitions 24 billion points into 65,536 parts within a few seconds and exhibits near perfect weak scaling up to 6K cores.« less
Automated detection of diabetic retinopathy on digital fundus images.
Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D
2002-02-01
The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.
Mishra, Alok; Swati, D
2015-09-01
Variation in the interval between the R-R peaks of the electrocardiogram represents the modulation of the cardiac oscillations by the autonomic nervous system. This variation is contaminated by anomalous signals called ectopic beats, artefacts or noise which mask the true behaviour of heart rate variability. In this paper, we have proposed a combination filter of recursive impulse rejection filter and recursive 20% filter, with recursive application and preference of replacement over removal of abnormal beats to improve the pre-processing of the inter-beat intervals. We have tested this novel recursive combinational method with median method replacement to estimate the standard deviation of normal to normal (SDNN) beat intervals of congestive heart failure (CHF) and normal sinus rhythm subjects. This work discusses the improvement in pre-processing over single use of impulse rejection filter and removal of abnormal beats for heart rate variability for the estimation of SDNN and Poncaré plot descriptors (SD1, SD2, and SD1/SD2) in detail. We have found the 22 ms value of SDNN and 36 ms value of SD2 descriptor of Poincaré plot as clinical indicators in discriminating the normal cases from CHF cases. The pre-processing is also useful in calculation of Lyapunov exponent which is a nonlinear index as Lyapunov exponents calculated after proposed pre-processing modified in a way that it start following the notion of less complex behaviour of diseased states.
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.
1988-01-01
This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.
Li, Liqi; Luo, Qifa; Xiao, Weidong; Li, Jinhui; Zhou, Shiwen; Li, Yongsheng; Zheng, Xiaoqi; Yang, Hua
2017-02-01
Palmitoylation is the covalent attachment of lipids to amino acid residues in proteins. As an important form of protein posttranslational modification, it increases the hydrophobicity of proteins, which contributes to the protein transportation, organelle localization, and functions, therefore plays an important role in a variety of cell biological processes. Identification of palmitoylation sites is necessary for understanding protein-protein interaction, protein stability, and activity. Since conventional experimental techniques to determine palmitoylation sites in proteins are both labor intensive and costly, a fast and accurate computational approach to predict palmitoylation sites from protein sequences is in urgent need. In this study, a support vector machine (SVM)-based method was proposed through integrating PSI-BLAST profile, physicochemical properties, [Formula: see text]-mer amino acid compositions (AACs), and [Formula: see text]-mer pseudo AACs into the principal feature vector. A recursive feature selection scheme was subsequently implemented to single out the most discriminative features. Finally, an SVM method was implemented to predict palmitoylation sites in proteins based on the optimal features. The proposed method achieved an accuracy of 99.41% and Matthews Correlation Coefficient of 0.9773 for a benchmark dataset. The result indicates the efficiency and accuracy of our method in prediction of palmitoylation sites based on protein sequences.
Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani
2015-03-01
In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NETRA: A parallel architecture for integrated vision systems. 1: Architecture and organization
NASA Technical Reports Server (NTRS)
Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing for a high level application (such as object recognition). A model of computation is presented for parallel processing for an IVS. Using the model, desired features and capabilities of a parallel architecture suitable for IVSs are derived. Then a multiprocessor architecture (called NETRA) is presented. This architecture is highly flexible without the use of complex interconnection schemes. The topology of NETRA is recursively defined and hence is easily scalable from small to large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. It is a recursively defined tree-type hierarchical architecture where each of the leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then general schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their communication requirements for parallel processing. An extensive analysis of inter-cluster communication strategies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.
The recursive maximum likelihood proportion estimator: User's guide and test results
NASA Technical Reports Server (NTRS)
Vanrooy, D. L.
1976-01-01
Implementation of the recursive maximum likelihood proportion estimator is described. A user's guide to programs as they currently exist on the IBM 360/67 at LARS, Purdue is included, and test results on LANDSAT data are described. On Hill County data, the algorithm yields results comparable to the standard maximum likelihood proportion estimator.
ERIC Educational Resources Information Center
Strobl, Carolin; Malley, James; Tutz, Gerhard
2009-01-01
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
Vehicle Sprung Mass Estimation for Rough Terrain
2011-03-01
distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended
N =4 supergravity next-to-maximally-helicity-violating six-point one-loop amplitude
NASA Astrophysics Data System (ADS)
Dunbar, David C.; Perkins, Warren B.
2016-12-01
We construct the six-point, next-to-maximally-helicity-violating one-loop amplitude in N =4 supergravity using unitarity and recursion. The use of recursion requires the introduction of rational descendants of the cut-constructible pieces of the amplitude and the computation of the nonstandard factorization terms arising from the loop integrals.
On the design of recursive digital filters
NASA Technical Reports Server (NTRS)
Shenoi, K.; Narasimha, M. J.; Peterson, A. M.
1976-01-01
A change of variables is described which transforms the problem of designing a recursive digital filter to that of approximation by a ratio of polynomials on a finite interval. Some analytic techniques for the design of low-pass filters are presented, illustrating the use of the transformation. Also considered are methods for the design of phase equalizers.
1994-03-16
105 2.10 Decidability ........ ................................ 116 3 Declaring Refinements of Recursive Data Types 165 3.1...However, when we introduce polymorphic constructors in Chapter 5, tuples will become a polymorphic data type very similar to other polymorphic data types...terminate. 0 Chapter 3 Declaring Refinements of Recursive Data Types 3.1 Introduction The previous chapter defined refinement type inference in terms of
ERIC Educational Resources Information Center
Reinertsen, Anne Beate
2014-01-01
This article is about developing school-based self-assessing recursive pedagogies and case/action research practices and/or approaches in schools, and teachers, teacher researchers and researchers simultaneously producing and theorising their own practices using second-order cybernetics as a thinking tool. It is a move towards pragmatic…
Raymond L. Czaplewski
2010-01-01
Numerous government surveys of natural resources use Post-Stratification to improve statistical efficiency, where strata are defined by full-coverage, remotely sensed data and geopolitical boundaries. Recursive Restriction Estimation, which may be considered a special case of the static Kalman filter, is an attractive alternative. It decomposes a complex estimation...
ERIC Educational Resources Information Center
Mori, Miki
2013-01-01
This article discusses my (recursive) process of theory building and the relationship between research, teaching, and theory development for graduate students. It shows how graduate students can reshape their conceptual frameworks not only through course work, but also through researching classes they teach. Specifically, while analyzing the…
Semantics Boosts Syntax in Artificial Grammar Learning Tasks with Recursion
ERIC Educational Resources Information Center
Fedor, Anna; Varga, Mate; Szathmary, Eors
2012-01-01
Center-embedded recursion (CER) in natural language is exemplified by sentences such as "The malt that the rat ate lay in the house." Parsing center-embedded structures is in the focus of attention because this could be one of the cognitive capacities that make humans distinct from all other animals. The ability to parse CER is usually…
ERIC Educational Resources Information Center
Gibbons, Pamela
1995-01-01
Describes a study that investigated individual differences in the construction of mental models of recursion in LOGO programming. The learning process was investigated from the perspective of Norman's mental models theory and employed diSessa's ontology regarding distributed, functional, and surrogate mental models, and the Luria model of brain…
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
NASA Astrophysics Data System (ADS)
Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2018-07-01
In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Deciding Termination for Ancestor Match- Bounded String Rewriting Systems
NASA Technical Reports Server (NTRS)
Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes
2005-01-01
Termination of a string rewriting system can be characterized by termination on suitable recursively defined languages. This kind of termination criteria has been criticized for its lack of automation. In an earlier paper we have shown how to construct an automated termination criterion if the recursion is aligned with the rewrite relation. We have demonstrated the technique with Dershowitz's forward closure criterion. In this paper we show that a different approach is suitable when the recursion is aligned with the inverse of the rewrite relation. We apply this idea to Kurth's ancestor graphs and obtain ancestor match-bounded string rewriting systems. Termination is shown to be decidable for this class. The resulting method improves upon those based on match-boundedness or inverse match-boundedness.
A Note on Local Stability Conditions for Two Types of Monetary Models with Recursive Utility
NASA Astrophysics Data System (ADS)
Miyazaki, Kenji; Utsunomiya, Hitoshi
2009-09-01
This note explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility. Although Chen et al. [Chen, B.-L., M. Hsu, and C.-H. Lin, 2008, Inflation and growth: impatience and a qualitative equivalent, Journal of Money, Credit, and Banking, Vol. 40, No. 6, 1310-1323] investigated the relationship between inflation and growth in MIUF and TC models with recursive utility, they conducted only a comparative static analysis in a steady state. By establishing sufficient conditions for local stability, this note proves that impatience should be increasing in consumption and real balances. Increasing impatience, although less plausible from an empirical point of view, receives more support from a theoretical viewpoint.
Theory of Mind: Did Evolution Fool Us?
Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean
2014-01-01
Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort “I think that you think that I think, etc.”. Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other’s beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the “social Bayesian brain” hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels. PMID:24505296
Theory of mind: did evolution fool us?
Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean
2014-01-01
Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort "I think that you think that I think, etc.". Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other's beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the "social Bayesian brain" hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels.
Algorithms for System Identification and Source Location.
NASA Astrophysics Data System (ADS)
Nehorai, Arye
This thesis deals with several topics in least squares estimation and applications to source location. It begins with a derivation of a mapping between Wiener theory and Kalman filtering for nonstationary autoregressive moving average (ARMO) processes. Applying time domain analysis, connections are found between time-varying state space realizations and input-output impulse response by matrix fraction description (MFD). Using these connections, the whitening filters are derived by the two approaches, and the Kalman gain is expressed in terms of Wiener theory. Next, fast estimation algorithms are derived in a unified way as special cases of the Conjugate Direction Method. The fast algorithms included are the block Levinson, fast recursive least squares, ladder (or lattice) and fast Cholesky algorithms. The results give a novel derivation and interpretation for all these methods, which are efficient alternatives to available recursive system identification algorithms. Multivariable identification algorithms are usually designed only for left MFD models. In this work, recursive multivariable identification algorithms are derived for right MFD models with diagonal denominator matrices. The algorithms are of prediction error and model reference type. Convergence analysis results obtained by the Ordinary Differential Equation (ODE) method are presented along with simulations. Sources of energy can be located by estimating time differences of arrival (TDOA's) of waves between the receivers. A new method for TDOA estimation is proposed for multiple unknown ARMA sources and additive correlated receiver noise. The method is based on a formula that uses only the receiver cross-spectra and the source poles. Two algorithms are suggested that allow tradeoffs between computational complexity and accuracy. A new time delay model is derived and used to show the applicability of the methods for non -integer TDOA's. Results from simulations illustrate the performance of the algorithms. The last chapter analyzes the response of exact least squares predictors for enhancement of sinusoids with additive colored noise. Using the matrix inversion lemma and the Christoffel-Darboux formula, the frequency response and amplitude gain of the sinusoids are expressed as functions of the signal and noise characteristics. The results generalize the available white noise case.
On the Multilevel Solution Algorithm for Markov Chains
NASA Technical Reports Server (NTRS)
Horton, Graham
1997-01-01
We discuss the recently introduced multilevel algorithm for the steady-state solution of Markov chains. The method is based on an aggregation principle which is well established in the literature and features a multiplicative coarse-level correction. Recursive application of the aggregation principle, which uses an operator-dependent coarsening, yields a multi-level method which has been shown experimentally to give results significantly faster than the typical methods currently in use. When cast as a multigrid-like method, the algorithm is seen to be a Galerkin-Full Approximation Scheme with a solution-dependent prolongation operator. Special properties of this prolongation lead to the cancellation of the computationally intensive terms of the coarse-level equations.
Detecting modification of biomedical events using a deep parsing approach.
Mackinlay, Andrew; Martinez, David; Baldwin, Timothy
2012-04-30
This work describes a system for identifying event mentions in bio-molecular research abstracts that are either speculative (e.g. analysis of IkappaBalpha phosphorylation, where it is not specified whether phosphorylation did or did not occur) or negated (e.g. inhibition of IkappaBalpha phosphorylation, where phosphorylation did not occur). The data comes from a standard dataset created for the BioNLP 2009 Shared Task. The system uses a machine-learning approach, where the features used for classification are a combination of shallow features derived from the words of the sentences and more complex features based on the semantic outputs produced by a deep parser. To detect event modification, we use a Maximum Entropy learner with features extracted from the data relative to the trigger words of the events. The shallow features are bag-of-words features based on a small sliding context window of 3-4 tokens on either side of the trigger word. The deep parser features are derived from parses produced by the English Resource Grammar and the RASP parser. The outputs of these parsers are converted into the Minimal Recursion Semantics formalism, and from this, we extract features motivated by linguistics and the data itself. All of these features are combined to create training or test data for the machine learning algorithm. Over the test data, our methods produce approximately a 4% absolute increase in F-score for detection of event modification compared to a baseline based only on the shallow bag-of-words features. Our results indicate that grammar-based techniques can enhance the accuracy of methods for detecting event modification.
HELAC-PHEGAS: A generator for all parton level processes
NASA Astrophysics Data System (ADS)
Cafarella, Alessandro; Papadopoulos, Costas G.; Worek, Malgorzata
2009-10-01
The updated version of the HELAC-PHEGAS event generator is presented. The matrix elements are calculated through Dyson-Schwinger recursive equations using color connection representation. Phase-space generation is based on a multichannel approach, including optimization. HELAC-PHEGAS generates parton level events with all necessary information, in the most recent Les Houches Accord format, for the study of any process within the Standard Model in hadron and lepton colliders. New version program summaryProgram title: HELAC-PHEGAS Catalogue identifier: ADMS_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADMS_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 986 No. of bytes in distributed program, including test data, etc.: 380 214 Distribution format: tar.gz Programming language: Fortran Computer: All Operating system: Linux Classification: 11.1, 11.2 External routines: Optionally Les Houches Accord (LHA) PDF Interface library ( http://projects.hepforge.org/lhapdf/) Catalogue identifier of previous version: ADMS_v1_0 Journal reference of previous version: Comput. Phys. Comm. 132 (2000) 306 Does the new version supersede the previous version?: Yes, partly Nature of problem: One of the most striking features of final states in current and future colliders is the large number of events with several jets. Being able to predict their features is essential. To achieve this, the calculations need to describe as accurately as possible the full matrix elements for the underlying hard processes. Even at leading order, perturbation theory based on Feynman graphs runs into computational problems, since the number of graphs contributing to the amplitude grows as n!. Solution method: Recursive algorithms based on Dyson-Schwinger equations have been developed recently in order to overcome the computational obstacles. The calculation of the amplitude, using Dyson-Schwinger recursive equations, results in a computational cost growing asymptotically as 3 n, where n is the number of particles involved in the process. Off-shell subamplitudes are introduced, for which a recursion relation has been obtained allowing to express an n-particle amplitude in terms of subamplitudes, with 1-, 2-, … up to (n-1) particles. The color connection representation is used in order to treat amplitudes involving colored particles. In the present version HELAC-PHEGAS can be used to efficiently obtain helicity amplitudes, total cross sections, parton-level event samples in LHA format, for arbitrary multiparticle processes in the Standard Model in leptonic, pp¯ and pp collisions. Reasons for new version: Substantial improvements, major functionality upgrade. Summary of revisions: Color connection representation, efficient integration over PDF via the PARNI algorithm, interface to LHAPDF, parton level events generated in the most recent LHA format, k reweighting for Parton Shower matching, numerical predictions for amplitudes for arbitrary processes for phase-space points provided by the user, new user interface and the possibility to run over computer clusters. Running time: Depending on the process studied. Usually from seconds to hours. References:A. Kanaki, C.G. Papadopoulos, Comput. Phys. Comm. 132 (2000) 306. C.G. Papadopoulos, Comput. Phys. Comm. 137 (2001) 247. URL: http://www.cern.ch/helac-phegas.
NASA Astrophysics Data System (ADS)
Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.
2017-12-01
Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.
Computation of Symmetric Discrete Cosine Transform Using Bakhvalov's Algorithm
NASA Technical Reports Server (NTRS)
Aburdene, Maurice F.; Strojny, Brian C.; Dorband, John E.
2005-01-01
A number of algorithms for recursive computation of the discrete cosine transform (DCT) have been developed recently. This paper presents a new method for computing the discrete cosine transform and its inverse using Bakhvalov's algorithm, a method developed for evaluation of a polynomial at a point. In this paper, we will focus on both the application of the algorithm to the computation of the DCT-I and its complexity. In addition, Bakhvalov s algorithm is compared with Clenshaw s algorithm for the computation of the DCT.
ERIC Educational Resources Information Center
Recker, Margaret M.; Pirolli, Peter
Students learning to program recursive LISP functions in a typical school-like lesson on recursion were observed. The typical lesson contains text and examples and involves solving a series of programming problems. The focus of this study is on students' learning strategies in new domains. In this light, a Soar computational model of…
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.
Relatively Recursive Rational Choice.
1981-11-01
for the decision procedure of recursively representable rational choice. Alternatively phrased, we wish to inquire into its degrees of unsolvability. We...may first make the observation that there are three classic notions of reducibility of decision procedures for subsets of the natural numbers... rational choice function defined as an effectively computable represent- ation of Richter’s [1971] concept of rational choice, attains by means of an
Recursive inversion of externally defined linear systems
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1988-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.
The Recursive Process in and of Critical Literacy: Action Research in an Urban Elementary School
ERIC Educational Resources Information Center
Cooper, Karyn; White, Robert E.
2012-01-01
This paper provides an overview of the recursive process of initiating an action research project on literacy for students-at-risk in a Canadian urban elementary school. As this paper demonstrates, this requires development of a school-wide framework, which frames the action research project and desired outcomes, and a shared ownership of this…
ERIC Educational Resources Information Center
Rey, Arnaud; Perruchet, Pierre; Fagot, Joel
2012-01-01
Influential theories have claimed that the ability for recursion forms the computational core of human language faculty distinguishing our communication system from that of other animals (Hauser, Chomsky, & Fitch, 2002). In the present study, we consider an alternative view on recursion by studying the contribution of associative and working…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstone, H.J.; Moats, R.K.
1981-04-01
With the aim of high-order calculations, a new recursive solution for the degenerate Rayleigh-Schroedinger perturbation-theory wave function and energy has been derived. The final formulas, chi/sup (N/)/sub sigma/ = R/sup () -sigma/summation/sup N/-1/sub k/ = 0 H/sup (sigma+1+k/)/sub sigma+1/chi/sup (N/-1-k), E/sup (N/+sigma) = <0Vertical BarH/sup (N/+sigma)/sub sigma+1/Vertical Bar0> + < 0Vertical Barsummation/sup N/-2/sub k/ = 0H/sup (sigma+1+k/)/sub sigma+1/ Vertical Barchi/sup (N/-1-k)>,which involve new Hamiltonian-related operators H/sup (sigma+k/)/sub sigma/ and H/sup( sigma+k/)/sub sigma/, strongly resemble the standard nondegenerate recursive formulas. As an illustration, the perturbed energy coefficients for the 3s-3d/sub 0/ states of hydrogen in the Zeeman effect have been calculatedmore » recursively through 87th order in the square of the magnetic field. Our treatment is compared with that of Hirschfelder and Certain (J. Chem. Phys. 60, 1118 (1974)), and some relative advantages of each are pointed out.« less
Experimental evaluation of a recursive model identification technique for type 1 diabetes.
Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E
2009-09-01
A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
NASA Astrophysics Data System (ADS)
Burke, Mark E.
2010-11-01
Dubois coined the term incursion, for an inclusive or implicit recursion, to describe a discrete-time anticipatory system which computes its future states by reference to its future states as well as its current and past states. In this paper, we look at a model which has been proposed in the context of a social system which has functionally differentiated subsystems. The model is derived from a discrete-time compartmental SIS epidemic model. We analyse a low order instance of the model both in its form as a recursion with no anticipatory capacity, and also as an incursion with associated anticipatory capacity. The properties of the incursion are compared and contrasted with those of the underlying recursion.
An iterative approach to region growing using associative memories
NASA Technical Reports Server (NTRS)
Snyder, W. E.; Cowart, A.
1983-01-01
Region growing, often given as a classical example of the recursive control structures used in image processing which are often awkward to implement in hardware where the intent is the segmentation of an image at raster scan rates, is addressed in light of the postulate that any computation which can be performed recursively can be performed easily and efficiently by iteration coupled with association. Attention is given to an algorithm and hardware structure able to perform region labeling iteratively at scan rates. Every pixel is individually labeled with an identifier which signifies the region to which it belongs. Difficulties otherwise requiring recursion are handled by maintaining an equivalence table in hardware transparent to the computer, which reads the labeled pixels. A simulation of the associative memory has demonstrated its effectiveness.
Lim, Jun-Seok; Pang, Hee-Suk
2016-01-01
In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
a Recursive Approach to Compute Normal Forms
NASA Astrophysics Data System (ADS)
HSU, L.; MIN, L. J.; FAVRETTO, L.
2001-06-01
Normal forms are instrumental in the analysis of dynamical systems described by ordinary differential equations, particularly when singularities close to a bifurcation are to be characterized. However, the computation of a normal form up to an arbitrary order is numerically hard. This paper focuses on the computer programming of some recursive formulas developed earlier to compute higher order normal forms. A computer program to reduce the system to its normal form on a center manifold is developed using the Maple symbolic language. However, it should be stressed that the program relies essentially on recursive numerical computations, while symbolic calculations are used only for minor tasks. Some strategies are proposed to save computation time. Examples are presented to illustrate the application of the program to obtain high order normalization or to handle systems with large dimension.
Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina
2016-01-01
The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew’s Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions. PMID:26861308
Qiu, Jiliang; Peng, Baogang; Tang, Yunqiang; Qian, Yeben; Guo, Pi; Li, Mengfeng; Luo, Junhang; Chen, Bin; Tang, Hui; Lu, Canliang; Cai, Muyan; Ke, Zunfu; He, Wei; Zheng, Yun; Xie, Dan; Li, Binkui; Yuan, Yunfei
2017-03-01
Purpose Early-stage hepatocellular carcinoma (E-HCC) is being diagnosed increasingly, and in one half of diagnosed patients, recurrence will develop. Thus, it is urgent to identify recurrence-related markers. We investigated the effectiveness of CpG methylation in predicting recurrence for patients with E-HCCs. Patients and Methods In total, 576 patients with E-HCC from four independent centers were sorted by three phases. In the discovery phase, 66 tumor samples were analyzed using the Illumina Methylation 450k Beadchip. Two algorithms, Least Absolute Shrinkage and Selector Operation and Support Vector Machine-Recursive Feature Elimination, were used to select significant CpGs. In the training phase, penalized Cox regression was used to further narrow CpGs into 140 samples. In the validation phase, candidate CpGs were validated using an internal cohort (n = 141) and two external cohorts (n = 191 and n =104). Results After combining the 46 CpGs selected by the Least Absolute Shrinkage and Selector Operation and the Support Vector Machine-Recursive Feature Elimination algorithms, three CpGs corresponding to SCAN domain containing 3, Src homology 3-domain growth factor receptor-bound 2-like interacting protein 1, and peptidase inhibitor 3 were highlighted as candidate predictors in the training phase. On the basis of the three CpGs, a methylation signature for E-HCC (MSEH) was developed to classify patients into high- and low-risk recurrence groups in the training cohort ( P < .001). The performance of MSEH was validated in the internal cohort ( P < .001) and in the two external cohorts ( P < .001; P = .002). Furthermore, a nomogram comprising MSEH, tumor differentiation, cirrhosis, hepatitis B virus surface antigen, and antivirus therapy was generated to predict the 5-year recurrence-free survival in the training cohort, and it performed well in the three validation cohorts (concordance index: 0.725, 0.697, and 0.693, respectively). Conclusion MSEH, a three-CpG-based signature, is useful in predicting recurrence for patients with E-HCC.
Competing endogenous RNA regulatory network in papillary thyroid carcinoma.
Chen, Shouhua; Fan, Xiaobin; Gu, He; Zhang, Lili; Zhao, Wenhua
2018-05-11
The present study aimed to screen all types of RNAs involved in the development of papillary thyroid carcinoma (PTC). RNA‑sequencing data of PTC and normal samples were used for screening differentially expressed (DE) microRNAs (DE‑miRNAs), long non‑coding RNAs (DE‑lncRNAs) and genes (DEGs). Subsequently, lncRNA‑miRNA, miRNA‑gene (that is, miRNA‑mRNA) and gene‑gene interaction pairs were extracted and used to construct regulatory networks. Feature genes in the miRNA‑mRNA network were identified by topological analysis and recursive feature elimination analysis. A support vector machine (SVM) classifier was built using 15 feature genes, and its classification effect was validated using two microarray data sets that were downloaded from the Gene Expression Omnibus (GEO) database. In addition, Gene Ontology function and Kyoto Encyclopedia Genes and Genomes pathway enrichment analyses were conducted for genes identified in the ceRNA network. A total of 506 samples, including 447 tumor samples and 59 normal samples, were obtained from The Cancer Genome Atlas (TCGA); 16 DE‑lncRNAs, 917 DEGs and 30 DE‑miRNAs were screened. The miRNA‑mRNA regulatory network comprised 353 nodes and 577 interactions. From these data, 15 feature genes with high predictive precision (>95%) were extracted from the network and were used to form an SVM classifier with an accuracy of 96.05% (486/506) for PTC samples downloaded from TCGA, and accuracies of 96.81 and 98.46% for GEO downloaded data sets. The ceRNA regulatory network comprised 596 lines (or interactions) and 365 nodes. Genes in the ceRNA network were significantly enriched in 'neuron development', 'differentiation', 'neuroactive ligand‑receptor interaction', 'metabolism of xenobiotics by cytochrome P450', 'drug metabolism' and 'cytokine‑cytokine receptor interaction' pathways. Hox transcript antisense RNA, miRNA‑206 and kallikrein‑related peptidase 10 were nodes in the ceRNA regulatory network of the selected feature gene, and they may serve import roles in the development of PTC.
Computation of transform domain covariance matrices
NASA Technical Reports Server (NTRS)
Fino, B. J.; Algazi, V. R.
1975-01-01
It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.
Recursive inversion of externally defined linear systems by FIR filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1989-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.
Recursive search method for the image elements of functionally defined surfaces
NASA Astrophysics Data System (ADS)
Vyatkin, S. I.
2017-05-01
This paper touches upon the synthesis of high-quality images in real time and the technique for specifying three-dimensional objects on the basis of perturbation functions. The recursive search method for the image elements of functionally defined objects with the use of graphics processing units is proposed. The advantages of such an approach over the frame-buffer visualization method are shown.
ERIC Educational Resources Information Center
Keeney, Hillary; Keeney, Bradford
2013-01-01
The Ju/'hoan Bushman origin myth is depicted as a contextual frame for their healing and transformative ways. Using Recursive Frame Analysis, these performances are shown to be an enactment of the border crossing between First and Second Creation, that is, pre-linguistic and linguistic domains of experience. Here n/om, or the presumed creative…
Aesthetic Responses to Exact Fractals Driven by Physical Complexity
Bies, Alexander J.; Blanc-Goldhammer, Daryn R.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.
2016-01-01
Fractals are physically complex due to their repetition of patterns at multiple size scales. Whereas the statistical characteristics of the patterns repeat for fractals found in natural objects, computers can generate patterns that repeat exactly. Are these exact fractals processed differently, visually and aesthetically, than their statistical counterparts? We investigated the human aesthetic response to the complexity of exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the number of segments in the generator. Across two studies, a variety of fractal patterns were visually presented to human participants to determine the typical response to exact fractals. In the first study, we found that preference ratings for exact midpoint displacement fractals can be described by a linear trend with preference increasing as fractal dimension increases. For the majority of individuals, preference increased with dimension. We replicated these results for other exact fractal patterns in a second study. In the second study, we also tested the effects of symmetry and recursion by presenting asymmetric dragon fractals, symmetric dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial and mirror symmetry. We found a strong interaction among recursion, symmetry and fractal dimension. Specifically, at low levels of recursion, the presence of symmetry was enough to drive high preference ratings for patterns with moderate to high levels of fractal dimension. Most individuals required a much higher level of recursion to recover this level of preference in a pattern that lacked mirror or radial symmetry, while others were less discriminating. This suggests that exact fractals are processed differently than their statistical counterparts. We propose a set of four factors that influence complexity and preference judgments in fractals that may extend to other patterns: fractal dimension, recursion, symmetry and the number of segments in a pattern. Conceptualizations such as Berlyne’s and Redies’ theories of aesthetics also provide a suitable framework for interpretation of our data with respect to the individual differences that we detect. Future studies that incorporate physiological methods to measure the human aesthetic response to exact fractal patterns would further elucidate our responses to such timeless patterns. PMID:27242475
NASA Astrophysics Data System (ADS)
Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.
2014-04-01
Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.
Motion adaptive Kalman filter for super-resolution
NASA Astrophysics Data System (ADS)
Richter, Martin; Nasse, Fabian; Schröder, Hartmut
2011-01-01
Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.
Shatabda, Swakkhar; Saha, Sanjay; Sharma, Alok; Dehzangi, Abdollah
2017-12-21
Bacteriophage proteins are viruses that can significantly impact on the functioning of bacteria and can be used in phage based therapy. The functioning of Bacteriophage in the host bacteria depends on its location in those host cells. It is very important to know the subcellular location of the phage proteins in a host cell in order to understand their working mechanism. In this paper, we propose iPHLoc-ES, a prediction method for subcellular localization of bacteriophage proteins. We aim to solve two problems: discriminating between host located and non-host located phage proteins and discriminating between the locations of host located protein in a host cell (membrane or cytoplasm). To do this, we extract sets of evolutionary and structural features of phage protein and employ Support Vector Machine (SVM) as our classifier. We also use recursive feature elimination (RFE) to reduce the number of features for effective prediction. On standard dataset using standard evaluation criteria, our method significantly outperforms the state-of-the-art predictor. iPHLoc-ES is readily available to use as a standalone tool from: https://github.com/swakkhar/iPHLoc-ES/ and as a web application from: http://brl.uiu.ac.bd/iPHLoc-ES/. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.
2016-03-01
The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.
Expansion of all multitrace tree level EYM amplitudes
NASA Astrophysics Data System (ADS)
Du, Yi-Jian; Feng, Bo; Teng, Fei
2017-12-01
In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.
Health monitoring system for transmission shafts based on adaptive parameter identification
NASA Astrophysics Data System (ADS)
Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.
2018-05-01
A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.
NASA Technical Reports Server (NTRS)
Mcclain, W. D.
1977-01-01
A recursively formulated, first-order, semianalytic artificial satellite theory, based on the generalized method of averaging is presented in two volumes. Volume I comprehensively discusses the theory of the generalized method of averaging applied to the artificial satellite problem. Volume II presents the explicit development in the nonsingular equinoctial elements of the first-order average equations of motion. The recursive algorithms used to evaluate the first-order averaged equations of motion are also presented in Volume II. This semianalytic theory is, in principle, valid for a term of arbitrary degree in the expansion of the third-body disturbing function (nonresonant cases only) and for a term of arbitrary degree and order in the expansion of the nonspherical gravitational potential function.
Geomagnetic modeling by optimal recursive filtering
NASA Technical Reports Server (NTRS)
Gibbs, B. P.; Estes, R. H.
1981-01-01
The results of a preliminary study to determine the feasibility of using Kalman filter techniques for geomagnetic field modeling are given. Specifically, five separate field models were computed using observatory annual means, satellite, survey and airborne data for the years 1950 to 1976. Each of the individual field models used approximately five years of data. These five models were combined using a recursive information filter (a Kalman filter written in terms of information matrices rather than covariance matrices.) The resulting estimate of the geomagnetic field and its secular variation was propogated four years past the data to the time of the MAGSAT data. The accuracy with which this field model matched the MAGSAT data was evaluated by comparisons with predictions from other pre-MAGSAT field models. The field estimate obtained by recursive estimation was found to be superior to all other models.
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
A recursive linear predictive vocoder
NASA Astrophysics Data System (ADS)
Janssen, W. A.
1983-12-01
A non-real time 10 pole recursive autocorrelation linear predictive coding vocoder was created for use in studying effects of recursive autocorrelation on speech. The vocoder is composed of two interchangeable pitch detectors, a speech analyzer, and speech synthesizer. The time between updating filter coefficients is allowed to vary from .125 msec to 20 msec. The best quality was found using .125 msec between each update. The greatest change in quality was noted when changing from 20 msec/update to 10 msec/update. Pitch period plots for the center clipping autocorrelation pitch detector and simplified inverse filtering technique are provided. Plots of speech into and out of the vocoder are given. Formant versus time three dimensional plots are shown. Effects of noise on pitch detection and formants are shown. Noise effects the voiced/unvoiced decision process causing voiced speech to be re-constructed as unvoiced.
Roll Angle Estimation Using Thermopiles for a Flight Controlled Mortar
2012-06-01
Using Xilinx’s System generator, the entire design was implemented at a relatively high level within Malab’s Simulink. This allowed VHDL code to...thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA). These results demonstrate the...accurately estimated by processing the thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J. N.; Turner, J. D.; Chun, H. M.
1986-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.
Toward using games to teach fundamental computer science concepts
NASA Astrophysics Data System (ADS)
Edgington, Jeffrey Michael
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.
Recursive linearization of multibody dynamics equations of motion
NASA Technical Reports Server (NTRS)
Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baykara, N. A.
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraicmore » equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.« less
Bouchard, M
2001-01-01
In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.
Detecting modification of biomedical events using a deep parsing approach
2012-01-01
Background This work describes a system for identifying event mentions in bio-molecular research abstracts that are either speculative (e.g. analysis of IkappaBalpha phosphorylation, where it is not specified whether phosphorylation did or did not occur) or negated (e.g. inhibition of IkappaBalpha phosphorylation, where phosphorylation did not occur). The data comes from a standard dataset created for the BioNLP 2009 Shared Task. The system uses a machine-learning approach, where the features used for classification are a combination of shallow features derived from the words of the sentences and more complex features based on the semantic outputs produced by a deep parser. Method To detect event modification, we use a Maximum Entropy learner with features extracted from the data relative to the trigger words of the events. The shallow features are bag-of-words features based on a small sliding context window of 3-4 tokens on either side of the trigger word. The deep parser features are derived from parses produced by the English Resource Grammar and the RASP parser. The outputs of these parsers are converted into the Minimal Recursion Semantics formalism, and from this, we extract features motivated by linguistics and the data itself. All of these features are combined to create training or test data for the machine learning algorithm. Results Over the test data, our methods produce approximately a 4% absolute increase in F-score for detection of event modification compared to a baseline based only on the shallow bag-of-words features. Conclusions Our results indicate that grammar-based techniques can enhance the accuracy of methods for detecting event modification. PMID:22595089
The value of nodal information in predicting lung cancer relapse using 4DPET/4DCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Heyse, E-mail: heyse.li@mail.utoronto.ca; Becker, Nathan; Raman, Srinivas
2015-08-15
Purpose: There is evidence that computed tomography (CT) and positron emission tomography (PET) imaging metrics are prognostic and predictive in nonsmall cell lung cancer (NSCLC) treatment outcomes. However, few studies have explored the use of standardized uptake value (SUV)-based image features of nodal regions as predictive features. The authors investigated and compared the use of tumor and node image features extracted from the radiotherapy target volumes to predict relapse in a cohort of NSCLC patients undergoing chemoradiation treatment. Methods: A prospective cohort of 25 patients with locally advanced NSCLC underwent 4DPET/4DCT imaging for radiation planning. Thirty-seven image features were derivedmore » from the CT-defined volumes and SUVs of the PET image from both the tumor and nodal target regions. The machine learning methods of logistic regression and repeated stratified five-fold cross-validation (CV) were used to predict local and overall relapses in 2 yr. The authors used well-known feature selection methods (Spearman’s rank correlation, recursive feature elimination) within each fold of CV. Classifiers were ranked on their Matthew’s correlation coefficient (MCC) after CV. Area under the curve, sensitivity, and specificity values are also presented. Results: For predicting local relapse, the best classifier found had a mean MCC of 0.07 and was composed of eight tumor features. For predicting overall relapse, the best classifier found had a mean MCC of 0.29 and was composed of a single feature: the volume greater than 0.5 times the maximum SUV (N). Conclusions: The best classifier for predicting local relapse had only tumor features. In contrast, the best classifier for predicting overall relapse included a node feature. Overall, the methods showed that nodes add value in predicting overall relapse but not local relapse.« less
Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1992-01-01
Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.
The autonomy of biological individuals and artificial models.
Moreno, Alvaro; Etxeberria, Arantza; Umerez, Jon
2008-02-01
This paper aims to offer an overview of the meaning of autonomy for biological individuals and artificial models rooted in a specific perspective that pays attention to the historical and structural aspects of its origins and evolution. Taking autopoiesis and the recursivity characteristic of its circular logic as a starting point, we depart from some of its consequences to claim that the theory of autonomy should also take into account historical and structural features. Autonomy should not be considered only in internal or constitutive terms, the largely neglected interactive aspects stemming from it should be equally addressed. Artificial models contribute to get a better understanding of the role of autonomy for life and the varieties of its organization and phenomenological diversity.
NASA Astrophysics Data System (ADS)
Karczewicz, Marta; Chen, Peisong; Joshi, Rajan; Wang, Xianglin; Chien, Wei-Jung; Panchal, Rahul; Coban, Muhammed; Chong, In Suk; Reznik, Yuriy A.
2011-01-01
This paper describes video coding technology proposal submitted by Qualcomm Inc. in response to a joint call for proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64x64), recursive integer transforms, single pass switched interpolation filters with offsets (single pass SIFO), mode dependent directional transform (MDDT) for intra-coding, luma and chroma high precision filtering, geometry motion partitioning, adaptive motion vector resolution. It also incorporates internal bit-depth increase (IBDI), and modified quadtree based adaptive loop filtering (QALF). Simulation results are presented for a variety of bit rates, resolutions and coding configurations to demonstrate the high compression efficiency achieved by the proposed video codec at moderate level of encoding and decoding complexity. For random access hierarchical B configuration (HierB), the proposed video codec achieves an average BD-rate reduction of 30.88c/o compared to the H.264/AVC alpha anchor. For low delay hierarchical P (HierP) configuration, the proposed video codec achieves an average BD-rate reduction of 32.96c/o and 48.57c/o, compared to the H.264/AVC beta and gamma anchors, respectively.
Layfield, Lester J; Esebua, Magda; Schmidt, Robert L
2016-07-01
The separation of branchial cleft cysts from metastatic cystic squamous cell carcinomas in adults can be clinically and cytologically challenging. Diagnostic accuracy for separation is reported to be as low as 75% prompting some authors to recommend frozen section evaluation of suspected branchial cleft cysts before resection. We evaluated 19 cytologic features to determine which were useful in this distinction. Thirty-three cases (21 squamous carcinoma and 12 branchial cysts) of histologically confirmed cystic lesions of the lateral neck were graded for the presence or absence of 19 cytologic features by two cytopathologists. The cytologic features were analyzed for agreement between observers and underwent multivariate analysis for correlation with the diagnosis of carcinoma. Interobserver agreement was greatest for increased nuclear/cytoplasmic (N/C) ratio, pyknotic nuclei, and irregular nuclear membranes. Recursive partitioning analysis showed increased N/C ratio, small clusters of cells, and irregular nuclear membranes were the best discriminators. The distinction of branchial cleft cysts from cystic squamous cell carcinoma is cytologically difficult. Both digital image analysis and p16 testing have been suggested as aids in this separation, but analysis of cytologic features remains the main method for diagnosis. In an analysis of 19 cytologic features, we found that high nuclear cytoplasmic ratio, irregular nuclear membranes, and small cell clusters were most helpful in their distinction. Diagn. Cytopathol. 2016;44:561-567. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
On the use of feature selection to improve the detection of sea oil spills in SAR images
NASA Astrophysics Data System (ADS)
Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo
2017-03-01
Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
A Scalable Distributed Syntactic, Semantic, and Lexical Language Model
2012-09-01
Here pa(τ) denotes the set of parent states of τ. If the recursive factorization refers to a graph , then we have a Bayesian network (Lauritzen 1996...Broadly speaking, however, the recursive factorization can refer to a representation more complicated than a graph with a fixed set of nodes and edges...factored language (FL) model (Bilmes and Kirchhoff 2003) is close to the smoothing technique we propose here, the major difference is that FL
A recursive algorithm for Zernike polynomials
NASA Technical Reports Server (NTRS)
Davenport, J. W.
1982-01-01
The analysis of a function defined on a rotationally symmetric system, with either a circular or annular pupil is discussed. In order to numerically analyze such systems it is typical to expand the given function in terms of a class of orthogonal polynomials. Because of their particular properties, the Zernike polynomials are especially suited for numerical calculations. Developed is a recursive algorithm that can be used to generate the Zernike polynomials up to a given order. The algorithm is recursively defined over J where R(J,N) is the Zernike polynomial of degree N obtained by orthogonalizing the sequence R(J), R(J+2), ..., R(J+2N) over (epsilon, 1). The terms in the preceding row - the (J-1) row - up to the N+1 term is needed for generating the (J,N)th term. Thus, the algorith generates an upper left-triangular table. This algorithm was placed in the computer with the necessary support program also included.
A recursive vesicle-based model protocell with a primitive model cell cycle
NASA Astrophysics Data System (ADS)
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-09-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution.
The TAR effect: when the ones who dislike become the ones who are disliked.
Gawronski, Bertram; Walther, Eva
2008-09-01
Four studies tested whether a source's evaluations of other individuals can recursively transfer to the source, such that people who like others acquire a positive valence, whereas people who dislike others acquire a negative valence (Transfer of Attitudes Recursively; TAR). Experiment 1 provides first evidence for TAR effects, showing recursive transfers of evaluations regardless of whether participants did or did not have prior knowledge about the (dis)liking source. Experiment 2 shows that previously but not subsequently acquired knowledge about targets that were (dis)liked by a source overrode TAR effects in a manner consistent with cognitive balance. Finally, Experiments 3 and 4 demonstrate that TAR effects are mediated by higher order propositional inferences (in contrast to lower order associative processes), in that TAR effects on implicit attitude measures were fully mediated by TAR effects on explicit attitude measures. Commonalities and differences between the TAR effect and previously established phenomena are discussed.
Condensate statistics and thermodynamics of weakly interacting Bose gas: Recursion relation approach
NASA Astrophysics Data System (ADS)
Dorfman, K. E.; Kim, M.; Svidzinsky, A. A.
2011-03-01
We study condensate statistics and thermodynamics of weakly interacting Bose gas with a fixed total number N of particles in a cubic box. We find the exact recursion relation for the canonical ensemble partition function. Using this relation, we calculate the distribution function of condensate particles for N=200. We also calculate the distribution function based on multinomial expansion of the characteristic function. Similar to the ideal gas, both approaches give exact statistical moments for all temperatures in the framework of Bogoliubov model. We compare them with the results of unconstraint canonical ensemble quasiparticle formalism and the hybrid master equation approach. The present recursion relation can be used for any external potential and boundary conditions. We investigate the temperature dependence of the first few statistical moments of condensate fluctuations as well as thermodynamic potentials and heat capacity analytically and numerically in the whole temperature range.
Development of a recursion RNG-based turbulence model
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Thangam, S.
1993-01-01
Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
EEG and MEG source localization using recursively applied (RAP) MUSIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Leahy, R.M.
1996-12-31
The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which usesmore » the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.« less
Rehbein, Pia; Brügemann, Kerstin; Yin, Tong; V Borstel, U König; Wu, Xiao-Lin; König, Sven
2013-10-01
A dataset of test-day records, fertility traits, and one health trait including 1275 Brown Swiss cows kept in 46 small-scale organic farms was used to infer relationships among these traits based on recursive Gaussian-threshold models. Test-day records included milk yield (MY), protein percentage (PROT-%), fat percentage (FAT-%), somatic cell score (SCS), the ratio of FAT-% to PROT-% (FPR), lactose percentage (LAC-%), and milk urea nitrogen (MUN). Female fertility traits were defined as the interval from calving to first insemination (CTFS) and success of a first insemination (SFI), and the health trait was clinical mastitis (CM). First, a tri-trait model was used which postulated the recursive effect of a test-day observation in the early period of lactation on liability to CM (LCM), and further the recursive effect of LCM on the following test-day observation. For CM and female fertility traits, a bi-trait recursive Gaussian-threshold model was employed to estimate the effects from CM to CTFS and from CM on SFI. The recursive effects from CTFS and SFI onto CM were not relevant, because CM was recorded prior to the measurements for CTFS and SFI. Results show that the posterior heritability for LCM was 0.05, and for all other traits, heritability estimates were in reasonable ranges, each with a small posterior SD. Lowest heritability estimates were obtained for female reproduction traits, i.e. h(2)=0.02 for SFI, and h(2)≈0 for CTFS. Posterior estimates of genetic correlations between LCM and production traits (MY and MUN), and between LCM and somatic cell score (SCS), were large and positive (0.56-0.68). Results confirm the genetic antagonism between MY and LCM, and the suitability of SCS as an indicator trait for CM. Structural equation coefficients describe the impact of one trait on a second trait on the phenotypic pathway. Higher values for FAT-% and FPR were associated with a higher LCM. The rate of change in FAT-% and in FPR in the ongoing lactation with respect to the previous LCM was close to zero. Estimated recursive effects between SCS and CM were positive, implying strong phenotypic impacts between both traits. Structural equation coefficients explained a detrimental impact of CM on female fertility traits CTFS and SFI. The cow-specific CM treatment had no significant impact on performance traits in the ongoing lactation. For most treatments, beta-lactam-antibiotics were used, but test-day SCS and production traits after the beta-lactam-treatment were comparable to those after other antibiotic as well as homeopathic treatments. Copyright © 2013 Elsevier B.V. All rights reserved.
Gaspari, Romolo J; Blehar, David; Polan, David; Montoya, Anthony; Alsulaibikh, Amal; Liteplo, Andrew
2014-05-01
Treatment failure rates for incision and drainage (I&D) of skin abscesses have increased in recent years and may be attributable to an increased prevalence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). Previous authors have described sonographic features of abscesses, such as the presence of interstitial fluid, characteristics of abscess debris, and depth of abscess cavity. It is possible that the sonographic features are associated with MRSA and can be used to predict the presence of MRSA. The authors describe a potential clinical decision rule (CDR) using sonographic images to predict the presence of CA-MRSA. This was a pilot CDR derivation study using databases from two emergency departments (EDs) of patients presenting to the ED with uncomplicated skin abscesses who underwent I&D and culture of the abscess contents. Patients underwent ultrasound (US) imaging of the abscesses prior to I&D. Abscess contents were sent for culture and sensitivity. Two independent physicians experienced in soft tissue US blinded to the culture results and clinical data reviewed the images in a standardized fashion for the presence or absence of the predetermined image characteristics. In the instance of a disagreement between the initial two investigators, a third reviewer adjudicated the findings prior to analysis. The association between the primary outcome (presence of MRSA) and each sonographic feature was assessed using univariate and multivariate analysis. The reliability of each sonographic feature was measured by calculating the kappa (κ) coefficient of interobserver agreement. The decision tree model for the CDR was created with recursive partitioning using variables that were both reliable and strongly associated with MRSA. Of the total of 2,167 patients who presented with skin and soft tissue infections during the study period, 605 patients met inclusion criteria with US imaging and culture and sensitivity of purulence. Among the pathogenic organisms, MRSA was the most frequently isolated, representing 50.1% of all patients. Six of the sonographic features were associated with the presence of MRSA, but only four of these features were reliable using the kappa analysis. Recursive partitioning identified three independent variables that were both associated with MRSA and reliable: 1) the lack of a well-defined edge, 2) small volume, and 3) irregular or indistinct shape. This decision rule demonstrates a sensitivity of 89.2% (95% confidence interval [CI] = 84.7% to 92.7%), a specificity of 44.7% (95% CI = 40.9% to 47.8%), a positive predictive value of 57.9 (95% CI = 55.0 to 60.2), a negative predictive value of 82.9 (95% CI = 75.9 to 88.5), and an odds ratio (OR) of 7.0 (95% CI = 4.0 to 12.2). According to our putative CDR, patients with skin abscesses that are small, irregularly shaped, or indistinct, with ill-defined edges, are seven times more likely to demonstrate MRSA on culture. © 2014 by the Society for Academic Emergency Medicine.
Moderate deviations-based importance sampling for stochastic recursive equations
Dupuis, Paul; Johnson, Dane
2017-11-17
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
Dissociative Electron Attachment to Rovibrationally Excited Molecules
1987-08-31
obtained in some recent papers.4’ - In Sec. IV of the present L,(0, (00 paper we will obtain some general recursion relations among where these matrix... general five-term From the generating function of Hermite polynomials , recursion relation (32) is obtained which is valid for the matrix elements of...for the generation of the functions for increasing 1. One convenient way to evaluate a Q, function is to write it in terms of Gaussian hypergeometric
Moderate deviations-based importance sampling for stochastic recursive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Paul; Johnson, Dane
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
NASA Technical Reports Server (NTRS)
Nikravesh, Parviz E.; Gim, Gwanghum; Arabyan, Ara; Rein, Udo
1989-01-01
The formulation of a method known as the joint coordinate method for automatic generation of the equations of motion for multibody systems is summarized. For systems containing open or closed kinematic loops, the equations of motion can be reduced systematically to a minimum number of second order differential equations. The application of recursive and nonrecursive algorithms to this formulation, computational considerations and the feasibility of implementing this formulation on multiprocessor computers are discussed.
Recursive-operator method in vibration problems for rod systems
NASA Astrophysics Data System (ADS)
Rozhkova, E. V.
2009-12-01
Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448-449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.
IDH mutation assessment of glioma using texture features of multimodal MR images
NASA Astrophysics Data System (ADS)
Zhang, Xi; Tian, Qiang; Wu, Yu-Xia; Xu, Xiao-Pan; Li, Bao-Juan; Liu, Yi-Xiong; Liu, Yang; Lu, Hong-Bing
2017-03-01
Purpose: To 1) find effective texture features from multimodal MRI that can distinguish IDH mutant and wild status, and 2) propose a radiomic strategy for preoperatively detecting IDH mutation patients with glioma. Materials and Methods: 152 patients with glioma were retrospectively included from the Cancer Genome Atlas. Corresponding T1-weighted image before- and post-contrast, T2-weighted image and fluid-attenuation inversion recovery image from the Cancer Imaging Archive were analyzed. Specific statistical tests were applied to analyze the different kind of baseline information of LrGG patients. Finally, 168 texture features were derived from multimodal MRI per patient. Then the support vector machine-based recursive feature elimination (SVM-RFE) and classification strategy was adopted to find the optimal feature subset and build the identification models for detecting the IDH mutation. Results: Among 152 patients, 92 and 60 were confirmed to be IDH-wild and mutant, respectively. Statistical analysis showed that the patients without IDH mutation was significant older than patients with IDH mutation (p<0.01), and the distribution of some histological subtypes was significant different between IDH wild and mutant groups (p<0.01). After SVM-RFE, 15 optimal features were determined for IDH mutation detection. The accuracy, sensitivity, specificity, and AUC after SVM-RFE and parameter optimization were 82.2%, 85.0%, 78.3%, and 0.841, respectively. Conclusion: This study presented a radiomic strategy for noninvasively discriminating IDH mutation of patients with glioma. It effectively incorporated kinds of texture features from multimodal MRI, and SVM-based classification strategy. Results suggested that features selected from SVM-RFE were more potential to identifying IDH mutation. The proposed radiomics strategy could facilitate the clinical decision making in patients with glioma.
Insights into multimodal imaging classification of ADHD
Colby, John B.; Rudie, Jeffrey D.; Brown, Jesse A.; Douglas, Pamela K.; Cohen, Mark S.; Shehzad, Zarrar
2012-01-01
Attention deficit hyperactivity disorder (ADHD) currently is diagnosed in children by clinicians via subjective ADHD-specific behavioral instruments and by reports from the parents and teachers. Considering its high prevalence and large economic and societal costs, a quantitative tool that aids in diagnosis by characterizing underlying neurobiology would be extremely valuable. This provided motivation for the ADHD-200 machine learning (ML) competition, a multisite collaborative effort to investigate imaging classifiers for ADHD. Here we present our ML approach, which used structural and functional magnetic resonance imaging data, combined with demographic information, to predict diagnostic status of individuals with ADHD from typically developing (TD) children across eight different research sites. Structural features included quantitative metrics from 113 cortical and non-cortical regions. Functional features included Pearson correlation functional connectivity matrices, nodal and global graph theoretical measures, nodal power spectra, voxelwise global connectivity, and voxelwise regional homogeneity. We performed feature ranking for each site and modality using the multiple support vector machine recursive feature elimination (SVM-RFE) algorithm, and feature subset selection by optimizing the expected generalization performance of a radial basis function kernel SVM (RBF-SVM) trained across a range of the top features. Site-specific RBF-SVMs using these optimal feature sets from each imaging modality were used to predict the class labels of an independent hold-out test set. A voting approach was used to combine these multiple predictions and assign final class labels. With this methodology we were able to predict diagnosis of ADHD with 55% accuracy (versus a 39% chance level in this sample), 33% sensitivity, and 80% specificity. This approach also allowed us to evaluate predictive structural and functional features giving insight into abnormal brain circuitry in ADHD. PMID:22912605
Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei
2018-04-01
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
Low-mobility channel tracking for MIMO-OFDM communication systems
NASA Astrophysics Data System (ADS)
Pagadarai, Srikanth; Wyglinski, Alexander M.; Anderson, Christopher R.
2013-12-01
It is now well understood that by exploiting the available additional spatial dimensions, multiple-input multiple-output (MIMO) communication systems provide capacity gains, compared to a single-input single-output systems without increasing the overall transmit power or requiring additional bandwidth. However, these large capacity gains are feasible only when the perfect knowledge of the channel is available to the receiver. Consequently, when the channel knowledge is imperfect, as is common in practical settings, the impact of the achievable capacity needs to be evaluated. In this study, we begin with a general MIMO framework at the outset and specialize it to the case of orthogonal frequency division multiplexing (OFDM) systems by decoupling channel estimation from data detection. Cyclic-prefixed OFDM systems have attracted widespread interest due to several appealing characteristics not least of which is the fact that a single-tap frequency-domain equalizer per subcarrier is sufficient due to the circulant structure of the resulting channel matrix. We consider a low-mobility wireless channel which exhibits inter-block channel variations and apply Kalman tracking when MIMO-OFDM communication is performed. Furthermore, we consider the signal transmission to contain a stream of training and information symbols followed by information symbols alone. By relying on predicted channel states when training symbols are absent, we aim to understand how the improvements in channel capacity are affected by imperfect channel knowledge. We show that the Kalman recursion procedure can be simplified by the optimal minimum mean square error training design. Using the simplified recursion, we derive capacity upper and lower bounds to evaluate the performance of the system.
Pirkle, Catherine M; Wu, Yan Yan; Zunzunegui, Maria-Victoria; Gómez, José Fernando
2018-01-01
Objective Conceptual models underpinning much epidemiological research on ageing acknowledge that environmental, social and biological systems interact to influence health outcomes. Recursive partitioning is a data-driven approach that allows for concurrent exploration of distinct mixtures, or clusters, of individuals that have a particular outcome. Our aim is to use recursive partitioning to examine risk clusters for metabolic syndrome (MetS) and its components, in order to identify vulnerable populations. Study design Cross-sectional analysis of baseline data from a prospective longitudinal cohort called the International Mobility in Aging Study (IMIAS). Setting IMIAS includes sites from three middle-income countries—Tirana (Albania), Natal (Brazil) and Manizales (Colombia)—and two from Canada—Kingston (Ontario) and Saint-Hyacinthe (Quebec). Participants Community-dwelling male and female adults, aged 64–75 years (n=2002). Primary and secondary outcome measures We apply recursive partitioning to investigate social and behavioural risk factors for MetS and its components. Model-based recursive partitioning (MOB) was used to cluster participants into age-adjusted risk groups based on variabilities in: study site, sex, education, living arrangements, childhood adversities, adult occupation, current employment status, income, perceived income sufficiency, smoking status and weekly minutes of physical activity. Results 43% of participants had MetS. Using MOB, the primary partitioning variable was participant sex. Among women from middle-incomes sites, the predicted proportion with MetS ranged from 58% to 68%. Canadian women with limited physical activity had elevated predicted proportions of MetS (49%, 95% CI 39% to 58%). Among men, MetS ranged from 26% to 41% depending on childhood social adversity and education. Clustering for MetS components differed from the syndrome and across components. Study site was a primary partitioning variable for all components except HDL cholesterol. Sex was important for most components. Conclusion MOB is a promising technique for identifying disease risk clusters (eg, vulnerable populations) in modestly sized samples. PMID:29500203
Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Masuda, Y; Aguilar, I; Misztal, I
2015-10-01
The purpose of this study was to examine accuracy of genomic selection via single-step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix (G) is replaced by an approximation of G(-1) based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G(-1) and the approximated G(-1) via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G(-1) and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method. © 2015 Blackwell Verlag GmbH.
Wang, Yong; Wu, Qiao-Feng; Chen, Chen; Wu, Ling-Yun; Yan, Xian-Zhong; Yu, Shu-Guang; Zhang, Xiang-Sun; Liang, Fan-Rong
2012-01-01
Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics.
2012-01-01
Background Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. Results In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Conclusions Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics. PMID:23046877
The rid-redundant procedure in C-Prolog
NASA Technical Reports Server (NTRS)
Chen, Huo-Yan; Wah, Benjamin W.
1987-01-01
C-Prolog can conveniently be used for logical inferences on knowledge bases. However, as similar to many search methods using backward chaining, a large number of redundant computation may be produced in recursive calls. To overcome this problem, the 'rid-redundant' procedure was designed to rid all redundant computations in running multi-recursive procedures. Experimental results obtained for C-Prolog on the Vax 11/780 computer show that there is an order of magnitude improvement in the running time and solvable problem size.
Adaptive Control and Parameter Identification of a Doubly-Fed Induction Generator for Wind Power
2011-09-01
Computer Controlled Systems, Theory and Design, Third Edition, Prentice Hall, New Jersey, 1997. [27] R. G. Brown and P. Y.C. Hwang , Introduction to...V n y iT iT , (0.0) with Ts as the sampling interval. From [26], the recursive estimate can be interpreted as a Kalman Filter for the process...by substituting t with n. The recursive equations for the RLS can then be derived from the Kalman filter equations used in [27]: 29 $ $ $ 1 1
Attitude estimation of earth orbiting satellites by decomposed linear recursive filters
NASA Technical Reports Server (NTRS)
Kou, S. R.
1975-01-01
Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.
Efficient method for computing the electronic transport properties of a multiterminal system
NASA Astrophysics Data System (ADS)
Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio
2018-04-01
We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.
Corona graphs as a model of small-world networks
NASA Astrophysics Data System (ADS)
Lv, Qian; Yi, Yuhao; Zhang, Zhongzhi
2015-11-01
We introduce recursive corona graphs as a model of small-world networks. We investigate analytically the critical characteristics of the model, including order and size, degree distribution, average path length, clustering coefficient, and the number of spanning trees, as well as Kirchhoff index. Furthermore, we study the spectra for the adjacency matrix and the Laplacian matrix for the model. We obtain explicit results for all the quantities of the recursive corona graphs, which are similar to those observed in real-life networks.
Event Compression Using Recursive Least Squares Signal Processing.
1980-07-01
decimation of the Burstl signal with and without all-pole prefiltering to reduce aliasing . Figures 3.32a-c and 3.33a-c show the same examples but with 4/1...to reduce aliasing , w~t found that it did not improve the quality of the event compressed signals . If filtering must be performed, all-pole filtering...A-AO89 785 MASSACHUSETTS IN T OF TECH CAMBRIDGE RESEARCH LAB OF--ETC F/B 17/9 EVENT COMPRESSION USING RECURSIVE LEAST SQUARES SIGNAL PROCESSI-ETC(t
The Lehmer Matrix and Its Recursive Analogue
2010-01-01
LU factorization of matrix A by considering det A = det U = ∏n i=1 2i−1 i2 . The nth Catalan number is given in terms of binomial coefficients by Cn...for failing to comply with a collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE 2010 2. REPORT...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE The Lehmer matrix and its recursive analogue 5a. CONTRACT NUMBER 5b
Audiovisual physics reports: students' video production as a strategy for the didactic laboratory
NASA Astrophysics Data System (ADS)
Vinicius Pereira, Marcus; de Souza Barros, Susana; de Rezende Filho, Luiz Augusto C.; Fauth, Leduc Hermeto de A.
2012-01-01
Constant technological advancement has facilitated access to digital cameras and cell phones. Involving students in a video production project can work as a motivating aspect to make them active and reflective in their learning, intellectually engaged in a recursive process. This project was implemented in high school level physics laboratory classes resulting in 22 videos which are considered as audiovisual reports and analysed under two components: theoretical and experimental. This kind of project allows the students to spontaneously use features such as music, pictures, dramatization, animations, etc, even when the didactic laboratory may not be the place where aesthetic and cultural dimensions are generally developed. This could be due to the fact that digital media are more legitimately used as cultural tools than as teaching strategies.
NASA Astrophysics Data System (ADS)
Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang
2016-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.
A structural model of the dimensions of teacher stress.
Boyle, G J; Borg, M G; Falzon, J M; Baglioni, A J
1995-03-01
A comprehensive survey of teacher stress, job satisfaction and career commitment among 710 full-time primary school teachers was undertaken by Borg, Riding & Falzon (1991) in the Mediterranean islands of Malta and Gozo. A principal components analysis of a 20-item sources of teacher stress inventory had suggested four distinct dimensions which were labelled: Pupil Misbehaviour, Time/Resource Difficulties, Professional Recognition Needs, and Poor Relationships, respectively. To check on the validity of the Borg et al. factor solution, the group of 710 teachers was randomly split into two separate samples. Exploratory factor analysis was carried out on the data from Sample 1 (N = 335), while Sample 2 (N = 375) provided the cross-validational data for a LISREL confirmatory factor analysis. Results supported the proposed dimensionality of the sources of teacher stress (measurement model), along with evidence of an additional teacher stress factor (Workload). Consequently, structural modelling of the 'causal relationships' between the various latent variables and self-reported stress was undertaken on the combined samples (N = 710). Although both non-recursive and recursive models incorporating Poor Colleague Relations as a mediating variable were tested for their goodness-of-fit, a simple regression model provided the most parsimonious fit to the empirical data, wherein Workload and Student Misbehaviour accounted for most of the variance in predicting teaching stress.
Multiple-hypothesis multiple-model line tracking
NASA Astrophysics Data System (ADS)
Pace, Donald W.; Owen, Mark W.; Cox, Henry
2000-07-01
Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.
Multivariate Spline Algorithms for CAGD
NASA Technical Reports Server (NTRS)
Boehm, W.
1985-01-01
Two special polyhedra present themselves for the definition of B-splines: a simplex S and a box or parallelepiped B, where the edges of S project into an irregular grid, while the edges of B project into the edges of a regular grid. More general splines may be found by forming linear combinations of these B-splines, where the three-dimensional coefficients are called the spline control points. Univariate splines are simplex splines, where s = 1, whereas splines over a regular triangular grid are box splines, where s = 2. Two simple facts render the development of the construction of B-splines: (1) any face of a simplex or a box is again a simplex or box but of lower dimension; and (2) any simplex or box can be easily subdivided into smaller simplices or boxes. The first fact gives a geometric approach to Mansfield-like recursion formulas that express a B-spline in B-splines of lower order, where the coefficients depend on x. By repeated recursion, the B-spline will be expressed as B-splines of order 1; i.e., piecewise constants. In the case of a simplex spline, the second fact gives a so-called insertion algorithm that constructs the new control points if an additional knot is inserted.
Statistical estimation of ultrasonic propagation path parameters for aberration correction.
Waag, Robert C; Astheimer, Jeffrey P
2005-05-01
Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.
Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A
2014-01-01
Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).
Extracting biomedical events from pairs of text entities
2015-01-01
Background Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline. Results We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition. PMID:26201478
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
Parsing recursive sentences with a connectionist model including a neural stack and synaptic gating.
Fedor, Anna; Ittzés, Péter; Szathmáry, Eörs
2011-02-21
It is supposed that humans are genetically predisposed to be able to recognize sequences of context-free grammars with centre-embedded recursion while other primates are restricted to the recognition of finite state grammars with tail-recursion. Our aim was to construct a minimalist neural network that is able to parse artificial sentences of both grammars in an efficient way without using the biologically unrealistic backpropagation algorithm. The core of this network is a neural stack-like memory where the push and pop operations are regulated by synaptic gating on the connections between the layers of the stack. The network correctly categorizes novel sentences of both grammars after training. We suggest that the introduction of the neural stack memory will turn out to be substantial for any biological 'hierarchical processor' and the minimalist design of the model suggests a quest for similar, realistic neural architectures. Copyright © 2010 Elsevier Ltd. All rights reserved.
A recursive vesicle-based model protocell with a primitive model cell cycle
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-01-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution. PMID:26418735
Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.
2013-01-01
RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432
Recursion Relations for Double Ramification Hierarchies
NASA Astrophysics Data System (ADS)
Buryak, Alexandr; Rossi, Paolo
2016-03-01
In this paper we study various properties of the double ramification hierarchy, an integrable hierarchy of hamiltonian PDEs introduced in Buryak (CommunMath Phys 336(3):1085-1107, 2015) using intersection theory of the double ramification cycle in the moduli space of stable curves. In particular, we prove a recursion formula that recovers the full hierarchy starting from just one of the Hamiltonians, the one associated to the first descendant of the unit of a cohomological field theory. Moreover, we introduce analogues of the topological recursion relations and the divisor equation both for the Hamiltonian densities and for the string solution of the double ramification hierarchy. This machinery is very efficient and we apply it to various computations for the trivial and Hodge cohomological field theories, and for the r -spin Witten's classes. Moreover, we prove the Miura equivalence between the double ramification hierarchy and the Dubrovin-Zhang hierarchy for the Gromov-Witten theory of the complex projective line (extended Toda hierarchy).
A probabilistic, distributed, recursive mechanism for decision-making in the brain
Gurney, Kevin N.
2018-01-01
Decision formation recruits many brain regions, but the procedure they jointly execute is unknown. Here we characterize its essential composition, using as a framework a novel recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demonstrate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses of otherwise usable information from MT. Its architecture maps to the recurrent cortico-basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-making. We show that the dynamics of its mapped computations match those of neural activity in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia output and thalamus. This also predicts which aspects of neural dynamics are and are not part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that the mechanism implemented by the brain has these same characteristics. PMID:29614077
NASA Technical Reports Server (NTRS)
Shareef, N. H.; Amirouche, F. M. L.
1991-01-01
A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.
Face recognition using tridiagonal matrix enhanced multivariance products representation
NASA Astrophysics Data System (ADS)
Ã-zay, Evrim Korkmaz
2017-01-01
This study aims to retrieve face images from a database according to a target face image. For this purpose, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) is taken into consideration. TMEMPR is a recursive algorithm based on Enhanced Multivariance Products Representation (EMPR). TMEMPR decomposes a matrix into three components which are a matrix of left support terms, a tridiagonal matrix of weight parameters for each recursion, and a matrix of right support terms, respectively. In this sense, there is an analogy between Singular Value Decomposition (SVD) and TMEMPR. However TMEMPR is a more flexible algorithm since its initial support terms (or vectors) can be chosen as desired. Low computational complexity is another advantage of TMEMPR because the algorithm has been constructed with recursions of certain arithmetic operations without requiring any iteration. The algorithm has been trained and tested with ORL face image database with 400 different grayscale images of 40 different people. TMEMPR's performance has been compared with SVD's performance as a result.
WKB solutions of difference equations and reconstruction by the topological recursion
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2018-01-01
The purpose of this article is to analyze the connection between Eynard-Orantin topological recursion and formal WKB solutions of a \\hbar -difference equation: \\Psi(x+\\hbar)=≤ft(e\\hbar\\fracd{dx}\\right) \\Psi(x)=L(x;\\hbar)\\Psi(x) with L(x;\\hbar)\\in GL_2( ({C}(x))[\\hbar]) . In particular, we extend the notion of determinantal formulas and topological type property proposed for formal WKB solutions of \\hbar -differential systems to this setting. We apply our results to a specific \\hbar -difference system associated to the quantum curve of the Gromov-Witten invariants of {P}1 for which we are able to prove that the correlation functions are reconstructed from the Eynard-Orantin differentials computed from the topological recursion applied to the spectral curve y=\\cosh-1\\frac{x}{2} . Finally, identifying the large x expansion of the correlation functions, proves a recent conjecture made by Dubrovin and Yang regarding a new generating series for Gromov-Witten invariants of {P}1 .
Testing the Stability of 2-D Recursive QP, NSHP and General Digital Filters of Second Order
NASA Astrophysics Data System (ADS)
Rathinam, Ananthanarayanan; Ramesh, Rengaswamy; Reddy, P. Subbarami; Ramaswami, Ramaswamy
Several methods for testing stability of first quadrant quarter-plane two dimensional (2-D) recursive digital filters have been suggested in 1970's and 80's. Though Jury's row and column algorithms, row and column concatenation stability tests have been considered as highly efficient mapping methods. They still fall short of accuracy as they need infinite number of steps to conclude about the exact stability of the filters and also the computational time required is enormous. In this paper, we present procedurally very simple algebraic method requiring only two steps when applied to the second order 2-D quarter - plane filter. We extend the same method to the second order Non-Symmetric Half-plane (NSHP) filters. Enough examples are given for both these types of filters as well as some lower order general recursive 2-D digital filters. We applied our method to barely stable or barely unstable filter examples available in the literature and got the same decisions thus showing that our method is accurate enough.
NASA Technical Reports Server (NTRS)
Charlesworth, Arthur
1990-01-01
The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.
2017-04-01
To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.
Statistical learning and the challenge of syntax: Beyond finite state automata
NASA Astrophysics Data System (ADS)
Elman, Jeff
2003-10-01
Over the past decade, it has been clear that even very young infants are sensitive to the statistical structure of language input presented to them, and use the distributional regularities to induce simple grammars. But can such statistically-driven learning also explain the acquisition of more complex grammar, particularly when the grammar includes recursion? Recent claims (e.g., Hauser, Chomsky, and Fitch, 2002) have suggested that the answer is no, and that at least recursion must be an innate capacity of the human language acquisition device. In this talk evidence will be presented that indicates that, in fact, statistically-driven learning (embodied in recurrent neural networks) can indeed enable the learning of complex grammatical patterns, including those that involve recursion. When the results are generalized to idealized machines, it is found that the networks are at least equivalent to Push Down Automata. Perhaps more interestingly, with limited and finite resources (such as are presumed to exist in the human brain) these systems demonstrate patterns of performance that resemble those in humans.
Multi-fidelity Gaussian process regression for prediction of random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less
NASA Astrophysics Data System (ADS)
Chair, Noureddine
2014-02-01
We have recently developed methods for obtaining exact two-point resistance of the complete graph minus N edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott's conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2) and SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
Rotational-path decomposition based recursive planning for spacecraft attitude reorientation
NASA Astrophysics Data System (ADS)
Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying
2018-02-01
The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.
Quadcopter Control Using Speech Recognition
NASA Astrophysics Data System (ADS)
Malik, H.; Darma, S.; Soekirno, S.
2018-04-01
This research reported a comparison from a success rate of speech recognition systems that used two types of databases they were existing databases and new databases, that were implemented into quadcopter as motion control. Speech recognition system was using Mel frequency cepstral coefficient method (MFCC) as feature extraction that was trained using recursive neural network method (RNN). MFCC method was one of the feature extraction methods that most used for speech recognition. This method has a success rate of 80% - 95%. Existing database was used to measure the success rate of RNN method. The new database was created using Indonesian language and then the success rate was compared with results from an existing database. Sound input from the microphone was processed on a DSP module with MFCC method to get the characteristic values. Then, the characteristic values were trained using the RNN which result was a command. The command became a control input to the single board computer (SBC) which result was the movement of the quadcopter. On SBC, we used robot operating system (ROS) as the kernel (Operating System).
Chang, M; Raimondi, S C; Ravindranath, Y; Carroll, A J; Camitta, B; Gresik, M V; Steuber, C P; Weinstein, H
2000-07-01
The purpose of the paper was to define clinical or biological features associated with the risk for treatment failure for children with acute myeloid leukemia. Data from 560 children and adolescents with newly diagnosed acute myeloid leukemia who entered the Pediatric Oncology Group Study 8821 from June 1988 to March 1993 were analyzed by univariate and recursive partitioning methods. Children with Down syndrome or acute promyelocytic leukemia were excluded from the study. Factors examined included age, number of leukocytes, sex, FAB morphologic subtype, cytogenetic findings, and extramedullary disease at the time of diagnosis. The overall event-free survival (EFS) rate at 4 years was 32.7% (s.e. = 2.2%). Age > or =2 years, fewer than 50 x 10(9)/I leukocytes, and t(8;21) or inv(16), and normal chromosomes were associated with higher rates of EFS (P value = 0.003, 0.049, 0.0003, 0.031, respectively), whereas the M5 subtype of AML (P value = 0.0003) and chromosome abnormalities other than t(8;21) and inv(16) were associated with lower rates of EFS (P value = 0.0001). Recursive partitioning analysis defined three groups of patients with widely varied prognoses: female patients with t(8;21), inv(16), or a normal karyotype (n = 89) had the best prognosis (4-year EFS = 55.1%, s.e. = 5.7%); male patients with t(8;21), inv(16) or normal chromosomes (n = 106) had an intermediate prognosis (4-year EFS = 38.1%, s.e. = 5.3%); patients with chromosome abnormalities other than t(8;21) and inv(16) (n = 233) had the worst prognosis (4-year EFS = 27.0%, s.e. = 3.2%). One hundred and thirty-two patients (24%) could not be grouped because of missing cytogenetic data, mainly due to inadequate marrow samples. The results suggest that pediatric patients with acute myeloid leukemia can be categorized into three potential risk groups for prognosis and that differences in sex and chromosomal abnormalities are associated with differences in estimates of EFS. These results are tentative and must be confirmed by a large prospective clinical trial.
Recursive regularization for inferring gene networks from time-course gene expression profiles
Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru
2009-01-01
Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091
Double soft limit of the graviton amplitude from the Cachazo-He-Yuan formalism
NASA Astrophysics Data System (ADS)
Saha, Arnab Priya
2017-08-01
We present a complete analysis for double soft limit of graviton scattering amplitude using the formalism proposed by Cachazo, He, and Yuan. Our results agree with that obtained via Britto-Cachazo-Feng-Witten (BCFW) recursion relations in [T. Klose, T. McLoughlin, D. Nandan, J. Plefka, and G. Travaglini, Double-soft limits of gluons and gravitons, J. High Energy Phys. 07 (2015) 135., 10.1007/JHEP07(2015)135]. In addition we find precise relations between degenerate and nondegenerate solutions of scattering equations with local and nonlocal terms in the soft factor.
Design and analysis of compound flexible skin based on deformable honeycomb
NASA Astrophysics Data System (ADS)
Zou, Tingting; Zhou, Li
2017-04-01
In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.
NASA Astrophysics Data System (ADS)
Mustapha, S.; Braytee, A.; Ye, L.
2017-04-01
In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.
A novel noncommutative KdV-type equation, its recursion operator, and solitons
NASA Astrophysics Data System (ADS)
Carillo, Sandra; Lo Schiavo, Mauro; Porten, Egmont; Schiebold, Cornelia
2018-04-01
A noncommutative KdV-type equation is introduced extending the Bäcklund chart in Carillo et al. [Symmetry Integrability Geom.: Methods Appl. 12, 087 (2016)]. This equation, called meta-mKdV here, is linked by Cole-Hopf transformations to the two noncommutative versions of the mKdV equations listed in Olver and Sokolov [Commun. Math. Phys. 193, 245 (1998), Theorem 3.6]. For this meta-mKdV, and its mirror counterpart, recursion operators, hierarchies, and an explicit solution class are derived.
FRPA: A Framework for Recursive Parallel Algorithms
2015-05-01
a t o i ( argv [ 1 ] ) ; s td : : s t r i n g i n t e r l e a v i n g = ( argc > 2) ? argv [ 2 ] : " " ; double ∗ A = randomArray ( l e n g t h...actually determines how deep the recursion is. For example, a configuration with schedule ‘BBDB’ and depth 3 represents the in- terleaving ‘ BBD ’. This means...depth 3 represents the same interleaving as the configuration with schedule ‘BBDD’ and depth 3, namely ‘ BBD ’. In our experiments, this redundancy did
Recursive Algorithms for Real-Time Digital CR-RCn Pulse Shaping
NASA Astrophysics Data System (ADS)
Nakhostin, M.
2011-10-01
This paper reports on recursive algorithms for real-time implementation of CR-(RC)n filters in digital nuclear spectroscopy systems. The algorithms are derived by calculating the Z-transfer function of the filters for filter orders up to n=4 . The performances of the filters are compared with the performance of the conventional digital trapezoidal filter using a noise generator which separately generates pure series, 1/f and parallel noise. The results of our study enable one to select the optimum digital filter for different noise and rate conditions.
Recursive solution of number of reachable states of a simple subclass of FMS
NASA Astrophysics Data System (ADS)
Chao, Daniel Yuh
2014-03-01
This paper aims to compute the number of reachable (forbidden, live and deadlock) states for flexible manufacturing systems (FMS) without the construction of reachability graph. The problem is nontrivial and takes, in general, an exponential amount of time to solve. Hence, this paper focusses on a simple version of Systems of Simple Sequential Processes with Resources (S3PR), called kth-order system, where each resource place holds one token to be shared between two processes. The exact number of reachable (forbidden, live and deadlock) states can be computed recursively.
DemQSAR: predicting human volume of distribution and clearance of drugs
NASA Astrophysics Data System (ADS)
Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter
2011-12-01
In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VDss) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VDss and CL is available on the webpage of DemPRED: http://agknapp.chemie.fu-berlin.de/dempred/.
DemQSAR: predicting human volume of distribution and clearance of drugs.
Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter
2011-12-01
In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VD(ss)) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VD(ss) and CL is available on the webpage of DemPRED: http://agknapp.chemie.fu-berlin.de/dempred/ .
Temperature distribution and heat radiation of patterned surfaces at short wavelengths.
Emig, Thorsten
2017-05-01
We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.
Temperature distribution and heat radiation of patterned surfaces at short wavelengths
NASA Astrophysics Data System (ADS)
Emig, Thorsten
2017-05-01
We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.
Automation of the guiding center expansion
NASA Astrophysics Data System (ADS)
Burby, J. W.; Squire, J.; Qin, H.
2013-07-01
We report on the use of the recently developed Mathematica package VEST (Vector Einstein Summation Tools) to automatically derive the guiding center transformation. Our Mathematica code employs a recursive procedure to derive the transformation order-by-order. This procedure has several novel features. (1) It is designed to allow the user to easily explore the guiding center transformation's numerous non-unique forms or representations. (2) The procedure proceeds entirely in cartesian position and velocity coordinates, thereby producing manifestly gyrogauge invariant results; the commonly used perpendicular unit vector fields e1,e2 are never even introduced. (3) It is easy to apply in the derivation of higher-order contributions to the guiding center transformation without fear of human error. Our code therefore stands as a useful tool for exploring subtle issues related to the physics of toroidal momentum conservation in tokamaks.
Automation of The Guiding Center Expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. W. Burby, J. Squire and H. Qin
2013-03-19
We report on the use of the recently-developed Mathematica package VEST (Vector Einstein Summation Tools) to automatically derive the guiding center transformation. Our Mathematica code employs a recursive procedure to derive the transformation order-by-order. This procedure has several novel features. (1) It is designed to allow the user to easily explore the guiding center transformation's numerous nonunique forms or representations. (2) The procedure proceeds entirely in cartesian position and velocity coordinates, thereby producing manifestly gyrogauge invariant results; the commonly-used perpendicular unit vector fields e1, e2 are never even introduced. (3) It is easy to apply in the derivation of higher-ordermore » contributions to the guiding center transformation without fear of human error. Our code therefore stands as a useful tool for exploring subtle issues related to the physics of toroidal momentum conservation in tokamaks« less
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
Palma Orozco, Rosaura
2018-01-01
Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. PMID:29568310
TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model
NASA Astrophysics Data System (ADS)
Meurice, Y.
2007-06-01
We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).
Generalized recursive solutions to Ornstein-Zernike integral equations
NASA Astrophysics Data System (ADS)
Rossky, Peter J.; Dale, William D. T.
1980-09-01
Recursive procedures for the solution of a class of integral equations based on the Ornstein-Zernike equation are developed; the hypernetted chain and Percus-Yevick equations are two special cases of the class considered. It is shown that certain variants of the new procedures developed here are formally equivalent to those recently developed by Dale and Friedman, if the new recursive expressions are initialized in the same way as theirs. However, the computational solution of the new equations is significantly more efficient. Further, the present analysis leads to the identification of various graphical quantities arising in the earlier study with more familiar quantities related to pair correlation functions. The analysis is greatly facilitated by the use of several identities relating simple chain sums whose graphical elements can be written as a sum of two or more parts. In particular, the use of these identities permits renormalization of the equivalent series solution to the integral equation to be directly incorporated into the recursive solution in a straightforward manner. Formulas appropriate to renormalization with respect to long and short range parts of the pair potential, as well as more general components of the direct correlation function, are obtained. To further illustrate the utility of this approach, we show that a simple generalization of the hypernetted chain closure relation for the direct correlation function leads directly to the reference hypernetted chain (RHNC) equation due to Lado. The form of the correlation function used in the exponential approximation of Andersen and Chandler is then seen to be equivalent to the first estimate obtained from a renormalized RHNC equation.
Yang, Yi-Chao; Sun, Da-Wen; Wang, Nan-Nan; Xie, Anguo
2015-07-01
A novel method of using hyperspectral imaging technique with the weighted combination of spectral data and image features by fuzzy neural network (FNN) was proposed for real-time prediction of polyphenol oxidase (PPO) activity in lychee pericarp. Lychee images were obtained by a hyperspectral reflectance imaging system operating in the range of 400-1000nm. A support vector machine-recursive feature elimination (SVM-RFE) algorithm was applied to eliminating variables with no or little information for the prediction from all bands, resulting in a reduced set of optimal wavelengths. Spectral information at the optimal wavelengths and image color features were then used respectively to develop calibration models for the prediction of PPO in pericarp during storage, and the results of two models were compared. In order to improve the prediction accuracy, a decision strategy was developed based on weighted combination of spectral data and image features, in which the weights were determined by FNN for a better estimation of PPO activity. The results showed that the combined decision model was the best among all of the calibration models, with high R(2) values of 0.9117 and 0.9072 and low RMSEs of 0.45% and 0.459% for calibration and prediction, respectively. These results demonstrate that the proposed weighted combined decision method has great potential for improving model performance. The proposed technique could be used for a better prediction of other internal and external quality attributes of fruits. Copyright © 2015 Elsevier B.V. All rights reserved.
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
Atmospheric turbulence simulation for Shuttle orbiter
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1979-01-01
An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4.
Stability of recursive out-of-sequence measurement filters: an open problem
NASA Astrophysics Data System (ADS)
Chen, Lingji; Moshtagh, Nima; Mehra, Raman K.
2011-06-01
In many applications where communication delays are present, measurements with earlier time stamps can arrive out-of-sequence, i.e., after state estimates have been obtained for the current time instant. To incorporate such an Out-Of-Sequence Measurement (OOSM), many algorithms have been proposed in the literature to obtain or approximate the optimal estimate that would have been obtained if the OOSM had arrived in-sequence. When OOSM occurs repeatedly, approximate estimations as a result of incorporating one OOSM have to serve as the basis for incorporating yet another OOSM. The question of whether the "approximation of approximation" is well behaved, i.e., whether approximation errors accumulate in a recursive setting, has not been adequately addressed in the literature. This paper draws attention to the stability question of recursive OOSM processing filters, formulates the problem in a specific setting, and presents some simulation results that suggest that such filters are indeed well-behaved. Our hope is that more research will be conducted in the future to rigorously establish stability properties of these filters.
Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti
2017-08-11
In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.
Ensemble Feature Learning of Genomic Data Using Support Vector Machine
Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.
2016-01-01
The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923
Paiva, Joana S; Cardoso, João; Pereira, Tânia
2018-01-01
The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. Copyright © 2017 Elsevier B.V. All rights reserved.
Hatamikia, Sepideh; Maghooli, Keivan; Nasrabadi, Ali Motie
2014-01-01
Electroencephalogram (EEG) is one of the useful biological signals to distinguish different brain diseases and mental states. In recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classifiers are suggested to recognize emotions from EEG signals. In this research, we introduce an emotion recognition system using autoregressive (AR) model, sequential forward feature selection (SFS) and K-nearest neighbor (KNN) classifier using EEG signals during emotional audio-visual inductions. The main purpose of this paper is to investigate the performance of AR features in the classification of emotional states. To achieve this goal, a distinguished AR method (Burg's method) based on Levinson-Durbin's recursive algorithm is used and AR coefficients are extracted as feature vectors. In the next step, two different feature selection methods based on SFS algorithm and Davies–Bouldin index are used in order to decrease the complexity of computing and redundancy of features; then, three different classifiers include KNN, quadratic discriminant analysis and linear discriminant analysis are used to discriminate two and three different classes of valence and arousal levels. The proposed method is evaluated with EEG signals of available database for emotion analysis using physiological signals, which are recorded from 32 participants during 40 1 min audio visual inductions. According to the results, AR features are efficient to recognize emotional states from EEG signals, and KNN performs better than two other classifiers in discriminating of both two and three valence/arousal classes. The results also show that SFS method improves accuracies by almost 10-15% as compared to Davies–Bouldin based feature selection. The best accuracies are %72.33 and %74.20 for two classes of valence and arousal and %61.10 and %65.16 for three classes, respectively. PMID:25298928
A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.
Baur, Brittany; Bozdag, Serdar
2016-01-01
DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.
Modeling level change in Lake Urmia using hybrid artificial intelligence approaches
NASA Astrophysics Data System (ADS)
Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali
2017-06-01
The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.
Thermal bioaerosol cloud tracking with Bayesian classification
NASA Astrophysics Data System (ADS)
Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.
2017-05-01
The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.
Nam, Haewon
2017-01-01
We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects. PMID:28604794
Exact partition functions for deformed N=2 theories with N_f=4 flavours
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi
2016-12-01
We consider the Ω-deformed N=2 SU(2) gauge theory in four dimensions with N f = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ɛ 1 , ɛ 2, the scalar field expectation value a, and the hypermultiplet masses m = ( m 1 , m 2 , m 3 , m 4). Motivated by recent findings in the N={2}^{*} theory, we explore the theories that are characterized by special fixed ratios ɛ 2 /ɛ 1 and m /ɛ 1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N={2}^{*} gauge theory, the full prepotential of the Π N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov's recursion for the Π N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.
NASA Astrophysics Data System (ADS)
Ma, Fei; Su, Jing; Yao, Bing
2018-05-01
The problem of determining and calculating the number of spanning trees of any finite graph (model) is a great challenge, and has been studied in various fields, such as discrete applied mathematics, theoretical computer science, physics, chemistry and the like. In this paper, firstly, thank to lots of real-life systems and artificial networks built by all kinds of functions and combinations among some simpler and smaller elements (components), we discuss some helpful network-operation, including link-operation and merge-operation, to design more realistic and complicated network models. Secondly, we present a method for computing the total number of spanning trees. As an accessible example, we apply this method to space of trees and cycles respectively, and our results suggest that it is indeed a better one for such models. In order to reflect more widely practical applications and potentially theoretical significance, we study the enumerating method in some existing scale-free network models. On the other hand, we set up a class of new models displaying scale-free feature, that is to say, following P(k) k-γ, where γ is the degree exponent. Based on detailed calculation, the degree exponent γ of our deterministic scale-free models satisfies γ > 3. In the rest of our discussions, we not only calculate analytically the solutions of average path length, which indicates our models have small-world property being prevailing in amounts of complex systems, but also derive the number of spanning trees by means of the recursive method described in this paper, which clarifies our method is convenient to research these models.
Multichannel signal enhancement
Lewis, Paul S.
1990-01-01
A mixed adaptive filter is formulated for the signal processing problem where desired a priori signal information is not available. The formulation generates a least squares problem which enables the filter output to be calculated directly from an input data matrix. In one embodiment, a folded processor array enables bidirectional data flow to solve the recursive problem by back substitution without global communications. In another embodiment, a balanced processor array solves the recursive problem by forward elimination through the array. In a particular application to magnetoencephalography, the mixed adaptive filter enables an evoked response to an auditory stimulus to be identified from only a single trial.
System Simulation by Recursive Feedback: Coupling A Set of Stand-Alone Subsystem Simulations
NASA Technical Reports Server (NTRS)
Nixon, Douglas D.; Hanson, John M. (Technical Monitor)
2002-01-01
Recursive feedback is defined and discussed as a framework for development of specific algorithms and procedures that propagate the time-domain solution for a dynamical system simulation consisting of multiple numerically coupled self-contained stand-alone subsystem simulations. A satellite motion example containing three subsystems (other dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Centralized and distributed versions of coupling structure have been addressed. Numerical results are evaluated by direct comparison with a standard total-system simultaneous-solution approach.
Harnessing molecular excited states with Lanczos chains.
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-24
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
Painlevé equations, topological type property and reconstruction by the topological recursion
NASA Astrophysics Data System (ADS)
Iwaki, K.; Marchal, O.; Saenz, A.
2018-01-01
In this article we prove that Lax pairs associated with ħ-dependent six Painlevé equations satisfy the topological type property proposed by Bergère, Borot and Eynard for any generic choice of the monodromy parameters. Consequently we show that one can reconstruct the formal ħ-expansion of the isomonodromic τ-function and of the determinantal formulas by applying the so-called topological recursion to the spectral curve attached to the Lax pair in all six Painlevé cases. Finally we illustrate the former results with the explicit computations of the first orders of the six τ-functions.
Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-08-01
We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.
Computer simulation results of attitude estimation of earth orbiting satellites
NASA Technical Reports Server (NTRS)
Kou, S. R.
1976-01-01
Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.
Recent developments in learning control and system identification for robots and structures
NASA Technical Reports Server (NTRS)
Phan, M.; Juang, J.-N.; Longman, R. W.
1990-01-01
This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.
Harnessing molecular excited states with Lanczos chains
NASA Astrophysics Data System (ADS)
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-01
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
Least square neural network model of the crude oil blending process.
Rubio, José de Jesús
2016-06-01
In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward neural network. The proposed method as the combination of the recursive least square and feedforward neural network obtains four advantages over the alone algorithms: it requires less number of regressors, it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced strategy is applied for the modeling of the crude oil blending process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Choudhury, A. K.; Djalali, M.
1975-01-01
In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.
Burgansky-Eliash, Zvia; Wollstein, Gadi; Chu, Tianjiao; Ramsey, Joseph D.; Glymour, Clark; Noecker, Robert J.; Ishikawa, Hiroshi; Schuman, Joel S.
2007-01-01
Purpose Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Methods Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] ≥ −6 dB) and 20 had advanced glaucoma (MD < −6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. Results The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Conclusions Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. PMID:16249492
Neural Basis of Strategic Decision Making
Lee, Daeyeol; Seo, Hyojung
2015-01-01
Human choice behaviors during social interactions often deviate from the predictions of game theory. This might arise partly from the limitations in cognitive abilities necessary for recursive reasoning about the behaviors of others. In addition, during iterative social interactions, choices might change dynamically, as knowledge about the intentions of others and estimates for choice outcomes are incrementally updated via reinforcement learning. Some of the brain circuits utilized during social decision making might be general-purpose and contribute to isomorphic individual and social decision making. By contrast, regions in the medial prefrontal cortex and temporal parietal junction might be recruited for cognitive processes unique to social decision making. PMID:26688301
On transonic flow past a wave-shaped wall
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1953-01-01
This report is an extension of a previous investigation (described in NACA rep. 1069) concerned with the solution of the nonlinear differential equation for transonic flow past a wavy wall. In the present work several new notions are introduced which permit the solution of the recursion formulas arising from the method of integration in series. In addition, a novel numerical tests of convergence, applied to the power series (in transonic similarity parameter) representing the local Mach number distribution at the boundary, indicates that smooth symmetrical potential flow past the wavy wall is no longer possible once the critical value of the stream Mach number has been exceeded.
Some more similarities between Peirce and Skinner
Moxley, Roy A.
2002-01-01
C. S. Peirce is noted for pioneering a variety of views, and the case is made here for the similarities and parallels between his views and B. F. Skinner's radical behaviorism. In addition to parallels previously noted, these similarities include an advancement of experimental science, a behavioral psychology, a shift from nominalism to realism, an opposition to positivism, a selectionist account for strengthening behavior, the importance of a community of selves, a recursive approach to method, and the probabilistic nature of truth. Questions are raised as to the extent to which Skinner's radical behaviorism, as distinguished from his S-R positivism, may be seen as an extension of Peirce's pragmatism. PMID:22478387
Prognostic Indexes for Brain Metastases: Which Is the Most Powerful?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arruda Viani, Gustavo, E-mail: gusviani@gmail.com; Bernardes da Silva, Lucas Godoi; Stefano, Eduardo Jose
Purpose: The purpose of the present study was to compare the prognostic indexes (PIs) of patients with brain metastases (BMs) treated with whole brain radiotherapy (WBRT) using an artificial neural network. This analysis is important, because it evaluates the prognostic power of each PI to guide clinical decision-making and outcomes research. Methods and Materials: A retrospective prognostic study was conducted of 412 patients with BMs who underwent WBRT between April 1998 and March 2010. The eligibility criteria for patients included having undergone WBRT or WBRT plus neurosurgery. The data were analyzed using the artificial neural network. The input neural datamore » consisted of all prognostic factors included in the 5 PIs (recursive partitioning analysis, graded prognostic assessment [GPA], basic score for BMs, Rotterdam score, and Germany score). The data set was randomly divided into 300 training and 112 testing examples for survival prediction. All 5 PIs were compared using our database of 412 patients with BMs. The sensibility of the 5 indexes to predict survival according to their input variables was determined statistically using receiver operating characteristic curves. The importance of each variable from each PI was subsequently evaluated. Results: The overall 1-, 2-, and 3-year survival rate was 22%, 10.2%, and 5.1%, respectively. All classes of PIs were significantly associated with survival (recursive partitioning analysis, P < .0001; GPA, P < .0001; basic score for BMs, P = .002; Rotterdam score, P = .001; and Germany score, P < .0001). Comparing the areas under the curves, the GPA was statistically most sensitive in predicting survival (GPA, 86%; recursive partitioning analysis, 81%; basic score for BMs, 79%; Rotterdam, 73%; and Germany score, 77%; P < .001). Among the variables included in each PI, the performance status and presence of extracranial metastases were the most important factors. Conclusion: A variety of prognostic models describe the survival of patients with BMs to a more or less satisfactory degree. Among the 5 PIs evaluated in the present study, GPA was the most powerful in predicting survival. Additional studies should include emerging biologic prognostic factors to improve the sensibility of these PIs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Dejun, E-mail: dejun.lin@gmail.com
2015-09-21
Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A software library based on this algorithm has been implemented in C++11 and has been released.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hao; Tan, Shan; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan
2014-01-01
Purpose: To construct predictive models using comprehensive tumor features for the evaluation of tumor response to neoadjuvant chemoradiation therapy (CRT) in patients with esophageal cancer. Methods and Materials: This study included 20 patients who underwent trimodality therapy (CRT + surgery) and underwent {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) both before and after CRT. Four groups of tumor features were examined: (1) conventional PET/CT response measures (eg, standardized uptake value [SUV]{sub max}, tumor diameter); (2) clinical parameters (eg, TNM stage, histology) and demographics; (3) spatial-temporal PET features, which characterize tumor SUV intensity distribution, spatial patterns, geometry, and associated changesmore » resulting from CRT; and (4) all features combined. An optimal feature set was identified with recursive feature selection and cross-validations. Support vector machine (SVM) and logistic regression (LR) models were constructed for prediction of pathologic tumor response to CRT, cross-validations being used to avoid model overfitting. Prediction accuracy was assessed by area under the receiver operating characteristic curve (AUC), and precision was evaluated by confidence intervals (CIs) of AUC. Results: When applied to the 4 groups of tumor features, the LR model achieved AUCs (95% CI) of 0.57 (0.10), 0.73 (0.07), 0.90 (0.06), and 0.90 (0.06). The SVM model achieved AUCs (95% CI) of 0.56 (0.07), 0.60 (0.06), 0.94 (0.02), and 1.00 (no misclassifications). With the use of spatial-temporal PET features combined with conventional PET/CT measures and clinical parameters, the SVM model achieved very high accuracy (AUC 1.00) and precision (no misclassifications)—results that were significantly better than when conventional PET/CT measures or clinical parameters and demographics alone were used. For groups with many tumor features (groups 3 and 4), the SVM model achieved significantly higher accuracy than did the LR model. Conclusions: The SVM model that used all features including spatial-temporal PET features accurately and precisely predicted pathologic tumor response to CRT in esophageal cancer.« less
NASA Astrophysics Data System (ADS)
Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio
2014-03-01
Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.
Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin
2013-03-01
Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prediction of Peptide and Protein Propensity for Amyloid Formation
Família, Carlos; Dennison, Sarah R.; Quintas, Alexandre; Phoenix, David A.
2015-01-01
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation. PMID:26241652
2010-01-01
Background Long-distance ocean voyages may have substantial impacts on seamen's health, possibly causing malnutrition and other illness. Measures can possibly be taken to prevent such problems from happening through preparing special diet and making special precautions prior or during the sailing if a detailed understanding can be gained about what specific health effects such voyages may have on the seamen. Methods We present a computational study on 200 seamen using 41 chemistry indicators measured on their blood samples collected before and after the sailing. Our computational study is done using a data classification approach with a support vector machine-based classifier in conjunction with feature selections using a recursive feature elimination procedure. Results Our analysis results suggest that among the 41 blood chemistry measures, nine are most likely to be affected during the sailing, which provide important clues about the specific effects of ocean voyage on seamen's health. Conclusions The identification of the nine blood chemistry measures provides important clues about the effects of long-distance voyage on seamen's health. These findings will prove to be useful to guide in improving the living and working environment, as well as food preparation on ships. PMID:20219089
A fast, robust algorithm for power line interference cancellation in neural recording.
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-04-01
Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. The proposed algorithm features a highly robust operation, fast adaptation to interference variations, significant SNR improvement, low computational complexity and memory requirement and straightforward parameter adjustment. These features render the algorithm suitable for wearable and implantable sensor applications, where reliable and real-time cancellation of the interference is desired.
A fast, robust algorithm for power line interference cancellation in neural recording
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-04-01
Objective. Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. Approach. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. Main results. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. Significance. The proposed algorithm features a highly robust operation, fast adaptation to interference variations, significant SNR improvement, low computational complexity and memory requirement and straightforward parameter adjustment. These features render the algorithm suitable for wearable and implantable sensor applications, where reliable and real-time cancellation of the interference is desired.
DeepStack: Expert-level artificial intelligence in heads-up no-limit poker.
Moravčík, Matej; Schmid, Martin; Burch, Neil; Lisý, Viliam; Morrill, Dustin; Bard, Nolan; Davis, Trevor; Waugh, Kevin; Johanson, Michael; Bowling, Michael
2017-05-05
Artificial intelligence has seen several breakthroughs in recent years, with games often serving as milestones. A common feature of these games is that players have perfect information. Poker, the quintessential game of imperfect information, is a long-standing challenge problem in artificial intelligence. We introduce DeepStack, an algorithm for imperfect-information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning. In a study involving 44,000 hands of poker, DeepStack defeated, with statistical significance, professional poker players in heads-up no-limit Texas hold'em. The approach is theoretically sound and is shown to produce strategies that are more difficult to exploit than prior approaches. Copyright © 2017, American Association for the Advancement of Science.
Theoretical study of the density of states and magnetic properties of LaCoO3
NASA Astrophysics Data System (ADS)
Zhuang, Min; Zhang, Weiyi; Hu, Cheng; Ming, Naiben
1998-05-01
The density of states and magnetic properties of low-spin, high-spin, and mixing states of LaCoO3 have been studied within the unrestricted Hartree-Fock approximation. The real-space recursion method is adopted for computing the electronic structure of the disordered system. The paramagnetic high-spin state is dealt with using the usual binary alloy coherent potential approximation (CPA); an extended trinary alloy CPA approximation is developed to describe the mixing state. In agreement with experiments, our results show that the main features of the quasiparticle spectra in the mixing state are not a sensitive function of the high-spin component, but the spectrum does get broadened due to spin scattering. The increasing of the high-spin component also results in a pileup of the density of states at the Fermi energy which indicates an insulator to metal phase transition. Some limitations of the present approach are also discussed.
Multisensory visual servoing by a neural network.
Wei, G Q; Hirzinger, G
1999-01-01
Conventional computer vision methods for determining a robot's end-effector motion based on sensory data needs sensor calibration (e.g., camera calibration) and sensor-to-hand calibration (e.g., hand-eye calibration). This involves many computations and even some difficulties, especially when different kinds of sensors are involved. In this correspondence, we present a neural network approach to the motion determination problem without any calibration. Two kinds of sensory data, namely, camera images and laser range data, are used as the input to a multilayer feedforward network to associate the direct transformation from the sensory data to the required motions. This provides a practical sensor fusion method. Using a recursive motion strategy and in terms of a network correction, we relax the requirement for the exactness of the learned transformation. Another important feature of our work is that the goal position can be changed without having to do network retraining. Experimental results show the effectiveness of our method.
Chen, Xiaozhong; He, Kunjin; Chen, Zhengming
2017-01-01
The present study proposes an integrated computer-aided approach combining femur surface modeling, fracture evidence recover plate creation, and plate modification in order to conduct a parametric investigation of the design of custom plate for a specific patient. The study allows for improving the design efficiency of specific plates on the patients' femur parameters and the fracture information. Furthermore, the present approach will lead to exploration of plate modification and optimization. The three-dimensional (3D) surface model of a detailed femur and the corresponding fixation plate were represented with high-level feature parameters, and the shape of the specific plate was recursively modified in order to obtain the optimal plate for a specific patient. The proposed approach was tested and verified on a case study, and it could be helpful for orthopedic surgeons to design and modify the plate in order to fit the specific femur anatomy and the fracture information.
Automation of the guiding center expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burby, J. W.; Squire, J.; Qin, H.
2013-07-15
We report on the use of the recently developed Mathematica package VEST (Vector Einstein Summation Tools) to automatically derive the guiding center transformation. Our Mathematica code employs a recursive procedure to derive the transformation order-by-order. This procedure has several novel features. (1) It is designed to allow the user to easily explore the guiding center transformation's numerous non-unique forms or representations. (2) The procedure proceeds entirely in cartesian position and velocity coordinates, thereby producing manifestly gyrogauge invariant results; the commonly used perpendicular unit vector fields e{sub 1},e{sub 2} are never even introduced. (3) It is easy to apply in themore » derivation of higher-order contributions to the guiding center transformation without fear of human error. Our code therefore stands as a useful tool for exploring subtle issues related to the physics of toroidal momentum conservation in tokamaks.« less
Spatiotemporal attention operator using isotropic contrast and regional homogeneity
NASA Astrophysics Data System (ADS)
Palenichka, Roman; Lakhssassi, Ahmed; Zaremba, Marek
2011-04-01
A multiscale operator for spatiotemporal isotropic attention is proposed to reliably extract attention points during image sequence analysis. Its consecutive local maxima indicate attention points as the centers of image fragments of variable size with high intensity contrast, region homogeneity, regional shape saliency, and temporal change presence. The scale-adaptive estimation of temporal change (motion) and its aggregation with the regional shape saliency contribute to the accurate determination of attention points in image sequences. Multilocation descriptors of an image sequence are extracted at the attention points in the form of a set of multidimensional descriptor vectors. A fast recursive implementation is also proposed to make the operator's computational complexity independent from the spatial scale size, which is the window size in the spatial averaging filter. Experiments on the accuracy of attention-point detection have proved the operator consistency and its high potential for multiscale feature extraction from image sequences.
Communication-Avoiding Parallel Recursive Algorithms for Matrix Multiplication
2013-05-17
cost recurrence is FUM(n, P ) = 15 ( n2 4P ) + FUM ( n 2 , P 7 ) with base case FUM(n, 1) = csn ω0 − 5n2, where cs is the constant of Strassen-Winograd...message varies according to the recursion depth, and is the number of words a processor owns of any Si, Ti, or Qi, namely n2 4P words. 1If one does not...recurrence for the entire UM scheme: WUM(n, P ) = 36 n2 4P +WUM ( n 2 , P 7 ) SUM(n, P ) = 36 + SUM ( n 2 , P 7 ) with base case SUM(n, 1) = WUM(n, 1
Recursive partitioned inversion of large (1500 x 1500) symmetric matrices
NASA Technical Reports Server (NTRS)
Putney, B. H.; Brownd, J. E.; Gomez, R. A.
1976-01-01
A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.
Recursive time-varying filter banks for subband image coding
NASA Technical Reports Server (NTRS)
Smith, Mark J. T.; Chung, Wilson C.
1992-01-01
Filter banks and wavelet decompositions that employ recursive filters have been considered previously and are recognized for their efficiency in partitioning the frequency spectrum. This paper presents an analysis of a new infinite impulse response (IIR) filter bank in which these computationally efficient filters may be changed adaptively in response to the input. The filter bank is presented and discussed in the context of finite-support signals with the intended application in subband image coding. In the absence of quantization errors, exact reconstruction can be achieved and by the proper choice of an adaptation scheme, it is shown that IIR time-varying filter banks can yield improvement over conventional ones.
Application of the Feynman-tree theorem together with BCFW recursion relations
NASA Astrophysics Data System (ADS)
Maniatis, M.
2018-03-01
Recently, it has been shown that on-shell scattering amplitudes can be constructed by the Feynman-tree theorem combined with the BCFW recursion relations. Since the BCFW relations are restricted to tree diagrams, the preceding application of the Feynman-tree theorem is essential. In this way, amplitudes can be constructed by on-shell and gauge-invariant tree amplitudes. Here, we want to apply this method to the electron-photon vertex correction. We present all the single, double, and triple phase-space tensor integrals explicitly and show that the sum of amplitudes coincides with the result of the conventional calculation of a virtual loop correction.
ASIC implementation of recursive scaled discrete cosine transform algorithm
NASA Astrophysics Data System (ADS)
On, Bill N.; Narasimhan, Sam; Huang, Victor K.
1994-05-01
A program to implement the Recursive Scaled Discrete Cosine Transform (DCT) algorithm as proposed by H. S. Hou has been undertaken at the Institute of Microelectronics. Implementation of the design was done using top-down design methodology with VHDL (VHSIC Hardware Description Language) for chip modeling. When the VHDL simulation has been satisfactorily completed, the design is synthesized into gates using a synthesis tool. The architecture of the design consists of two processing units together with a memory module for data storage and transpose. Each processing unit is composed of four pipelined stages which allow the internal clock to run at one-eighth (1/8) the speed of the pixel clock. Each stage operates on eight pixels in parallel. As the data flows through each stage, there are various adders and multipliers to transform them into the desired coefficients. The Scaled IDCT was implemented in a similar fashion with the adders and multipliers rearranged to perform the inverse DCT algorithm. The chip has been verified using Field Programmable Gate Array devices. The design is operational. The combination of fewer multiplications required and pipelined architecture give Hou's Recursive Scaled DCT good potential of achieving high performance at a low cost in using Very Large Scale Integration implementation.
Modeling, Control, and Estimation of Flexible, Aerodynamic Structures
NASA Astrophysics Data System (ADS)
Ray, Cody W.
Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.
Farms, Families, and Markets: New Evidence on Completeness of Markets in Agricultural Settings
LaFave, Daniel; Thomas, Duncan
2016-01-01
The farm household model has played a central role in improving the understanding of small-scale agricultural households and non-farm enterprises. Under the assumptions that all current and future markets exist and that farmers treat all prices as given, the model simplifies households’ simultaneous production and consumption decisions into a recursive form in which production can be treated as independent of preferences of household members. These assumptions, which are the foundation of a large literature in labor and development, have been tested and not rejected in several important studies including Benjamin (1992). Using multiple waves of longitudinal survey data from Central Java, Indonesia, this paper tests a key prediction of the recursive model: demand for farm labor is unrelated to the demographic composition of the farm household. The prediction is unambiguously rejected. The rejection cannot be explained by contamination due to unobserved heterogeneity that is fixed at the farm level, local area shocks or farm-specific shocks that affect changes in household composition and farm labor demand. We conclude that the recursive form of the farm household model is not consistent with the data. Developing empirically tractable models of farm households when markets are incomplete remains an important challenge. PMID:27688430
Ejlskov, Linda; Wulff, Jesper; Bøggild, Henrik; Kuh, Diana; Stafford, Mai
2017-09-08
Improving the design and targeting of interventions is important for alleviating loneliness among older adults. This requires identifying which correlates are the most important predictors of loneliness. This study demonstrates the use of recursive partitioning in exploring the characteristics and assessing the relative importance of correlates of loneliness in older adults. Using exploratory regression trees and random forests, we examined combinations and the relative importance of 42 correlates in relation to loneliness at age 68 among 2453 participants from the birth cohort study the MRC National Survey of Health and Development. Positive mental well-being, personal mastery, identifying the spouse as the closest confidant, being extrovert and informal social contact were the most important correlates of lower loneliness levels. Participation in organised groups and demographic correlates were poor identifiers of loneliness. The regression tree suggested that loneliness was not raised among those with poor mental wellbeing if they identified their partner as closest confidante and had frequent social contact. Recursive partitioning can identify which combinations of experiences and circumstances characterise high-risk groups. Poor mental wellbeing and sparse social contact emerged as especially important and classical demographic factors as insufficient in identifying high loneliness levels among older adults.
Probabilistic multi-person localisation and tracking in image sequences
NASA Astrophysics Data System (ADS)
Klinger, T.; Rottensteiner, F.; Heipke, C.
2017-05-01
The localisation and tracking of persons in image sequences in commonly guided by recursive filters. Especially in a multi-object tracking environment, where mutual occlusions are inherent, the predictive model is prone to drift away from the actual target position when not taking context into account. Further, if the image-based observations are imprecise, the trajectory is prone to be updated towards a wrong position. In this work we address both these problems by using a new predictive model on the basis of Gaussian Process Regression, and by using generic object detection, as well as instance-specific classification, for refined localisation. The predictive model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of neighbouring persons. In contrast to existing methods our approach uses a Dynamic Bayesian Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image, are modelled as unknowns. This allows the detection to be corrected before it is incorporated into the recursive filter. Our method is evaluated on a publicly available benchmark dataset and outperforms related methods in terms of geometric precision and tracking accuracy.
Stable and verifiable state estimation methods and systems with spacecraft applications
NASA Technical Reports Server (NTRS)
Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor)
2001-01-01
The stability of a recursive estimator process (e.g., a Kalman filter is assured for long time periods by periodically resetting an error covariance P(t.sub.n) of the system to a predetermined reset value P.sub.r. The recursive process is thus repetitively forced to start from a selected covariance and continue for a time period that is short compared to the system's total operational time period. The time period in which the process must maintain its numerical stability is significantly reduced as is the demand on the system's numerical stability. The process stability for an extended operational time period T.sub.o is verified by performing the resetting step at the end of at least one reset time period T.sub.r whose duration is less than the operational time period T.sub.o and then confirming stability of the process over the reset time period T.sub.r. Because the recursive process starts from a selected covariance at the beginning of each reset time period T.sub.r, confirming stability of the process over at least one reset time period substantially confirms stability over the longer operational time period T.sub.o.
Adaptive mesh refinement for characteristic grids
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan
2011-05-01
I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.
A recursive technique for adaptive vector quantization
NASA Technical Reports Server (NTRS)
Lindsay, Robert A.
1989-01-01
Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh
In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a techniquemore » to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank« less
Recursive mentalizing and common knowledge in the bystander effect.
Thomas, Kyle A; De Freitas, Julian; DeScioli, Peter; Pinker, Steven
2016-05-01
The more potential helpers there are, the less likely any individual is to help. A traditional explanation for this bystander effect is that responsibility diffuses across the multiple bystanders, diluting the responsibility of each. We investigate an alternative, which combines the volunteer's dilemma (each bystander is best off if another responds) with recursive theory of mind (each infers what the others know about what he knows) to predict that actors will strategically shirk when they think others feel compelled to help. In 3 experiments, participants responded to a (fictional) person who needed help from at least 1 volunteer. Participants were in groups of 2 or 5 and had varying information about whether other group members knew that help was needed. As predicted, people's decision to help zigzagged with the depth of their asymmetric, recursive knowledge (e.g., "John knows that Michael knows that John knows help is needed"), and replicated the classic bystander effect when they had common knowledge (everyone knowing what everyone knows). The results demonstrate that the bystander effect may result not from a mere diffusion of responsibility but specifically from actors' strategic computations. (c) 2016 APA, all rights reserved).
The cortical microstructural basis of lateralized cognition: a review
Chance, Steven A.
2014-01-01
The presence of asymmetry in the human cerebral hemispheres is detectable at both the macroscopic and microscopic scales. The horizontal expansion of cortical surface during development (within individual brains), and across evolutionary time (between species), is largely due to the proliferation and spacing of the microscopic vertical columns of cells that form the cortex. In the asymmetric planum temporale (PT), minicolumn width asymmetry is associated with surface area asymmetry. Although the human minicolumn asymmetry is not large, it is estimated to account for a surface area asymmetry of approximately 9% of the region’s size. Critically, this asymmetry of minicolumns is absent in the equivalent areas of the brains of other apes. The left-hemisphere dominance for processing speech is thought to depend, partly, on a bias for higher resolution processing across widely spaced minicolumns with less overlapping dendritic fields, whereas dense minicolumn spacing in the right hemisphere is associated with more overlapping, lower resolution, holistic processing. This concept refines the simple notion that a larger brain area is associated with dominance for a function and offers an alternative explanation associated with “processing type.” This account is mechanistic in the sense that it offers a mechanism whereby asymmetrical components of structure are related to specific functional biases yielding testable predictions, rather than the generalization that “bigger is better” for any given function. Face processing provides a test case – it is the opposite of language, being dominant in the right hemisphere. Consistent with the bias for holistic, configural processing of faces, the minicolumns in the right-hemisphere fusiform gyrus are thinner than in the left hemisphere, which is associated with featural processing. Again, this asymmetry is not found in chimpanzees. The difference between hemispheres may also be seen in terms of processing speed, facilitated by asymmetric myelination of white matter tracts (Anderson et al., 1999 found that axons of the left posterior superior temporal lobe were more thickly myelinated). By cross-referencing the differences between the active fields of the two hemispheres, via tracts such as the corpus callosum, the relationship of local features to global features may be encoded. The emergent hierarchy of features within features is a recursive structure that may functionally contribute to generativity – the ability to perceive and express layers of structure and their relations to each other. The inference is that recursive generativity, an essential component of language, reflects an interaction between processing biases that may be traceable in the microstructure of the cerebral cortex. Minicolumn organization in the PT and the prefrontal cortex has been found to correlate with cognitive scores in humans. Altered minicolumn organization is also observed in neuropsychiatric disorders including autism and schizophrenia. Indeed, altered interhemispheric connections correlated with minicolumn asymmetry in schizophrenia may relate to language-processing anomalies that occur in the disorder. Schizophrenia is associated with over-interpretation of word meaning at the semantic level and over-interpretation of relevance at the level of pragmatic competence, whereas autism is associated with overly literal interpretation of word meaning and under-interpretation of social relevance at the pragmatic level. Both appear to emerge from a disruption of the ability to interpret layers of meaning and their relations to each other. This may be a consequence of disequilibrium in the processing of local and global features related to disorganization of minicolumnar units of processing. PMID:25126082
Janet, Jon Paul; Kulik, Heather J
2017-11-22
Machine learning (ML) of quantum mechanical properties shows promise for accelerating chemical discovery. For transition metal chemistry where accurate calculations are computationally costly and available training data sets are small, the molecular representation becomes a critical ingredient in ML model predictive accuracy. We introduce a series of revised autocorrelation functions (RACs) that encode relationships of the heuristic atomic properties (e.g., size, connectivity, and electronegativity) on a molecular graph. We alter the starting point, scope, and nature of the quantities evaluated in standard ACs to make these RACs amenable to inorganic chemistry. On an organic molecule set, we first demonstrate superior standard AC performance to other presently available topological descriptors for ML model training, with mean unsigned errors (MUEs) for atomization energies on set-aside test molecules as low as 6 kcal/mol. For inorganic chemistry, our RACs yield 1 kcal/mol ML MUEs on set-aside test molecules in spin-state splitting in comparison to 15-20× higher errors for feature sets that encode whole-molecule structural information. Systematic feature selection methods including univariate filtering, recursive feature elimination, and direct optimization (e.g., random forest and LASSO) are compared. Random-forest- or LASSO-selected subsets 4-5× smaller than the full RAC set produce sub- to 1 kcal/mol spin-splitting MUEs, with good transferability to metal-ligand bond length prediction (0.004-5 Å MUE) and redox potential on a smaller data set (0.2-0.3 eV MUE). Evaluation of feature selection results across property sets reveals the relative importance of local, electronic descriptors (e.g., electronegativity, atomic number) in spin-splitting and distal, steric effects in redox potential and bond lengths.
Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin
2018-06-15
The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.
Mamidi, Ashalatha Sreshty; Surolia, Avadhesha
2015-01-01
Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin's exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate-aromatic interactions including CH-π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.
Fast content-based image retrieval using dynamic cluster tree
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping
2008-03-01
A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.
A New Method for 3D Radiative Transfer with Adaptive Grids
NASA Astrophysics Data System (ADS)
Folini, D.; Walder, R.; Psarros, M.; Desboeufs, A.
2003-01-01
We present a new method for 3D NLTE radiative transfer in moving media, including an adaptive grid, along with some test examples and first applications. The central features of our approach we briefly outline in the following. For the solution of the radiative transfer equation, we make use of a generalized mean intensity approach. In this approach, the transfer eqation is solved directly, instead of using the moments of the transfer equation, thus avoiding the associated closure problem. In a first step, a system of equations for the transfer of each directed intensity is set up, using short characteristics. Next, the entity of systems of equations for each directed intensity is re-formulated in the form of one system of equations for the angle-integrated mean intensity. This system then is solved by a modern, fast BiCGStab iterative solver. An additional advantage of this procedure is that convergence rates barely depend on the spatial discretization. For the solution of the rate equations we use Housholder transformations. Lines are treated by a 3D generalization of the well-known Sobolev-approximation. The two parts, solution of the transfer equation and solution of the rate equations, are iteratively coupled. We recently have implemented an adaptive grid, which allows for recursive refinement on a cell-by-cell basis. The spatial resolution, which is always a problematic issue in 3D simulations, we can thus locally reduce or augment, depending on the problem to be solved.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.
Tan, Lirong; Holland, Scott K; Deshpande, Aniruddha K; Chen, Ye; Choo, Daniel I; Lu, Long J
2015-12-01
We developed a machine learning model to predict whether or not a cochlear implant (CI) candidate will develop effective language skills within 2 years after the CI surgery by using the pre-implant brain fMRI data from the candidate. The language performance was measured 2 years after the CI surgery by the Clinical Evaluation of Language Fundamentals-Preschool, Second Edition (CELF-P2). Based on the CELF-P2 scores, the CI recipients were designated as either effective or ineffective CI users. For feature extraction from the fMRI data, we constructed contrast maps using the general linear model, and then utilized the Bag-of-Words (BoW) approach that we previously published to convert the contrast maps into feature vectors. We trained both supervised models and semi-supervised models to classify CI users as effective or ineffective. Compared with the conventional feature extraction approach, which used each single voxel as a feature, our BoW approach gave rise to much better performance for the classification of effective versus ineffective CI users. The semi-supervised model with the feature set extracted by the BoW approach from the contrast of speech versus silence achieved a leave-one-out cross-validation AUC as high as 0.97. Recursive feature elimination unexpectedly revealed that two features were sufficient to provide highly accurate classification of effective versus ineffective CI users based on our current dataset. We have validated the hypothesis that pre-implant cortical activation patterns revealed by fMRI during infancy correlate with language performance 2 years after cochlear implantation. The two brain regions highlighted by our classifier are potential biomarkers for the prediction of CI outcomes. Our study also demonstrated the superiority of the semi-supervised model over the supervised model. It is always worthwhile to try a semi-supervised model when unlabeled data are available.
Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury.
Christian, Josef; Kröll, Josef; Strutzenberger, Gerda; Alexander, Nathalie; Ofner, Michael; Schwameder, Hermann
2016-03-01
Gait analysis is a useful tool to evaluate the functional status of patients with anterior cruciate ligament injury. Pattern recognition methods can be used to automatically assess walking patterns and objectively support clinical decisions. This study aimed to test a pattern recognition system for analyzing kinematic gait patterns of recently anterior cruciate ligament injured patients and for evaluating the effects of a therapeutic treatment. Gait kinematics of seven male patients with an acute unilateral anterior cruciate ligament rupture and seven healthy males were recorded. A support vector machine was trained to distinguish the groups. Principal component analysis and recursive feature elimination were used to extract features from 3D marker trajectories. A Classifier Oriented Gait Score was defined as a measure of gait quality. Visualizations were used to allow functional interpretations of characteristic group differences. The injured group was evaluated by the system after a therapeutic treatment. The results were compared against a clinical rating of the patients' gait. Cross validation yielded 100% accuracy. After the treatment the score improved significantly (P<0.01) as well as the clinical rating (P<0.05). The visualizations revealed characteristic kinematic features, which differentiated between the groups. The results show that gait alterations in the early phase after anterior cruciate ligament injury can be detected automatically. The results of the automatic analysis are comparable with the clinical rating and support the validity of the system. The visualizations allow interpretations on discriminatory features and can facilitate the integration of the results into the diagnostic process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Driving behavior recognition using EEG data from a simulated car-following experiment.
Yang, Liu; Ma, Rui; Zhang, H Michael; Guan, Wei; Jiang, Shixiong
2018-07-01
Driving behavior recognition is the foundation of driver assistance systems, with potential applications in automated driving systems. Most prevailing studies have used subjective questionnaire data and objective driving data to classify driving behaviors, while few studies have used physiological signals such as electroencephalography (EEG) to gather data. To bridge this gap, this paper proposes a two-layer learning method for driving behavior recognition using EEG data. A simulated car-following driving experiment was designed and conducted to simultaneously collect data on the driving behaviors and EEG data of drivers. The proposed learning method consists of two layers. In Layer I, two-dimensional driving behavior features representing driving style and stability were selected and extracted from raw driving behavior data using K-means and support vector machine recursive feature elimination. Five groups of driving behaviors were classified based on these two-dimensional driving behavior features. In Layer II, the classification results from Layer I were utilized as inputs to generate a k-Nearest-Neighbor classifier identifying driving behavior groups using EEG data. Using independent component analysis, a fast Fourier transformation, and linear discriminant analysis sequentially, the raw EEG signals were processed to extract two core EEG features. Classifier performance was enhanced using the adaptive synthetic sampling approach. A leave-one-subject-out cross validation was conducted. The results showed that the average classification accuracy for all tested traffic states was 69.5% and the highest accuracy reached 83.5%, suggesting a significant correlation between EEG patterns and car-following behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, Hongwei; Liu, Yue; Wang, Shengpei; Li, Zuoyong; Zhang, Jishui; Peng, Yun; He, Huiguang
2017-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. To date, TS is still misdiagnosed due to its varied presentation and lacking of obvious clinical symptoms. Therefore, studies of objective imaging biomarkers are of great importance for early TS diagnosis. As tic generation has been linked to disturbed structural networks, and many efforts have been made recently to investigate brain functional or structural networks using machine learning methods, for the purpose of disease diagnosis. However, few studies were related to TS and some drawbacks still existed in them. Therefore, we propose a novel classification framework integrating a multi-threshold strategy and a network fusion scheme to address the preexisting drawbacks. Here we used diffusion MRI probabilistic tractography to construct the structural networks of 44 TS children and 48 healthy children. We ameliorated the similarity network fusion algorithm specially to fuse the multi-threshold structural networks. Graph theoretical analysis was then implemented, and nodal degree, nodal efficiency and nodal betweenness centrality were selected as features. Finally, support vector machine recursive feature extraction (SVM-RFE) algorithm was used for feature selection, and then optimal features are fed into SVM to automatically discriminate TS children from controls. We achieved a high accuracy of 89.13% evaluated by a nested cross validation, demonstrated the superior performance of our framework over other comparison methods. The involved discriminative regions for classification primarily located in the basal ganglia and frontal cortico-cortical networks, all highly related to the pathology of TS. Together, our study may provide potential neuroimaging biomarkers for early-stage TS diagnosis.
Lambert W function for applications in physics
NASA Astrophysics Data System (ADS)
Veberič, Darko
2012-12-01
The Lambert W(x) function and its possible applications in physics are presented. The actual numerical implementation in C++ consists of Halley's and Fritsch's iterations with initial approximations based on branch-point expansion, asymptotic series, rational fits, and continued-logarithm recursion. Program summaryProgram title: LambertW Catalogue identifier: AENC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 1335 No. of bytes in distributed program, including test data, etc.: 25 283 Distribution format: tar.gz Programming language: C++ (with suitable wrappers it can be called from C, Fortran etc.), the supplied command-line utility is suitable for other scripting languages like sh, csh, awk, perl etc. Computer: All systems with a C++ compiler. Operating system: All Unix flavors, Windows. It might work with others. RAM: Small memory footprint, less than 1 MB Classification: 1.1, 4.7, 11.3, 11.9. Nature of problem: Find fast and accurate numerical implementation for the Lambert W function. Solution method: Halley's and Fritsch's iterations with initial approximations based on branch-point expansion, asymptotic series, rational fits, and continued logarithm recursion. Additional comments: Distribution file contains the command-line utility lambert-w. Doxygen comments, included in the source files. Makefile. Running time: The tests provided take only a few seconds to run.
NASA Astrophysics Data System (ADS)
Chen, Tzikang J.; Shiao, Michael
2016-04-01
This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.
Chang, Jee Suk; Kim, Kyung Hwan; Keum, Ki Chang; Noh, Sung Hoon; Lim, Joon Seok; Kim, Hyo Song; Rha, Sun Young; Lee, Yong Chan; Hyung, Woo Jin; Koom, Woong Sub
2016-12-01
To classify patients with nonmetastatic advanced gastric cancer who underwent D2-gastrectomy into prognostic groups based on peritoneal and systemic recurrence risks. Between 2004 and 2007, 1,090 patients with T3-4 or N+ gastric cancer were identified from our registry. Recurrence rates were estimated using a competing-risk analysis. Different prognostic groups were defined using recursive partitioning analysis (RPA). Median follow-up was 7 years. In the RPA-model for peritoneal recurrence risk, the initial node was split by T stage, indicating that differences between patients with T1-3 and T4 cancer were the greatest. The 5-year peritoneal recurrence rates for patients with T4 (n = 627) and T1-3 (n = 463) disease were 34.3% and 9.1%, respectively. N stage and neural invasion had an additive impact on high-risk patients. The RPA model for systemic relapse incorporated N stage alone and gave two terminal nodes: N0-2 (n = 721) and N3 (n = 369). The 5-year cumulative incidences were 7.7% and 24.5%, respectively. We proposed risk stratification models of peritoneal and systemic recurrence in patients undergoing D2-gastrectomy. This classification could be used for stratification protocols in future studies evaluating adjuvant therapies such as preoperative chemoradiotherapy. J. Surg. Oncol. 2016;114:859-864. © 2016 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Neural Basis of Strategic Decision Making.
Lee, Daeyeol; Seo, Hyojung
2016-01-01
Human choice behaviors during social interactions often deviate from the predictions of game theory. This might arise partly from the limitations in the cognitive abilities necessary for recursive reasoning about the behaviors of others. In addition, during iterative social interactions, choices might change dynamically as knowledge about the intentions of others and estimates for choice outcomes are incrementally updated via reinforcement learning. Some of the brain circuits utilized during social decision making might be general-purpose and contribute to isomorphic individual and social decision making. By contrast, regions in the medial prefrontal cortex (mPFC) and temporal parietal junction (TPJ) might be recruited for cognitive processes unique to social decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.
Camacho-Bello, César; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Báez-Rojas, José Javier
2016-01-01
Abstract. A detailed analysis of the quaternion generic Jacobi-Fourier moments (QGJFMs) for color image description is presented. In order to reach numerical stability, a recursive approach is used during the computation of the generic Jacobi radial polynomials. Moreover, a search criterion is performed to establish the best values for the parameters α and β of the radial Jacobi polynomial families. Additionally, a polar pixel approach is taken into account to increase the numerical accuracy in the calculation of the QGJFMs. To prove the mathematical theory, some color images from optical microscopy and human retina are used. Experiments and results about color image reconstruction are presented. PMID:27014716
Chaotic behavior of a spin-glass model on a Cayley tree
NASA Astrophysics Data System (ADS)
da Costa, F. A.; de Araújo, J. M.; Salinas, S. R.
2015-06-01
We investigate the phase diagram of a spin-1 Ising spin-glass model on a Cayley tree. According to early work of Thompson and collaborators, this problem can be formulated in terms of a set of nonlinear discrete recursion relations along the branches of the tree. Physically relevant solutions correspond to the attractors of these mapping equations. In the limit of infinite coordination of the tree, and for some choices of the model parameters, we make contact with findings for the phase diagram of more recently investigated versions of the Blume-Emery-Griffiths spin-glass model. In addition to the anticipated phases, we numerically characterize the existence of modulated and chaotic structures.
SX User's Manual for SX version 2. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.A.; Braddy, D.
1993-01-04
Scheme is a lexically scoped, properly tail recursive dialect of the LISP programming language. The PACT implementation is described abstractly in Abelson and Sussman's book, Structure and Interpretation of Computer Programs. It features all of the essential procedures'' described in the Revised Report on Scheme'' which defines the standard for Scheme. In PACT, Scheme is implemented as a library; however, a small driver delivers a stand alone Scheme interpreter. The PACT implementation features a reference counting incremental garbage collector. This distributes the overhead of memory management throughout the running of Scheme code. It also tends to keep Scheme from tryingmore » to grab the entire machine on which it is running which some garbage collection schemes will attempt to do. SX is perhaps the ultimate PACT statement. It is simply Scheme plus the other parts of PACT. A more precise way to describe it is as a dialect of LISP with extensions for PGS, PDB, PDBX, PML, and PANACEA. What this yields is an interpretive language whose primitive procedures span the functionality of all of PACT. Like the Scheme implementation which it extends, SX provides both a library and a stand alone application. The stand alone interpreter is the engine behind applications such as PDBView and PDBDiff. The SX library is the heart of TRANSL, a tool to translate data files from one database format to another. The modularization and layering make it possible to use the PACT components like building blocks. In addition, SX contains functionality which is the generalization of that found in ULTRA II. This means that as the development of SX proceeds, an SX driven application will be able to,perform arbitrary dimensional presentation, analysis, and manipulation tasks. Because of the fundamental unity of these two PACT parts, they are documented in a single manual. The first part will cover the standard Scheme functionality and the second part will discuss the SX extensions.« less
SX User`s Manual for SX version 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.A.; Braddy, D.
1993-01-04
Scheme is a lexically scoped, properly tail recursive dialect of the LISP programming language. The PACT implementation is described abstractly in Abelson and Sussman`s book, Structure and Interpretation of Computer Programs. It features all of the ``essential procedures`` described in the ``Revised Report on Scheme`` which defines the standard for Scheme. In PACT, Scheme is implemented as a library; however, a small driver delivers a stand alone Scheme interpreter. The PACT implementation features a reference counting incremental garbage collector. This distributes the overhead of memory management throughout the running of Scheme code. It also tends to keep Scheme from tryingmore » to grab the entire machine on which it is running which some garbage collection schemes will attempt to do. SX is perhaps the ultimate PACT statement. It is simply Scheme plus the other parts of PACT. A more precise way to describe it is as a dialect of LISP with extensions for PGS, PDB, PDBX, PML, and PANACEA. What this yields is an interpretive language whose primitive procedures span the functionality of all of PACT. Like the Scheme implementation which it extends, SX provides both a library and a stand alone application. The stand alone interpreter is the engine behind applications such as PDBView and PDBDiff. The SX library is the heart of TRANSL, a tool to translate data files from one database format to another. The modularization and layering make it possible to use the PACT components like building blocks. In addition, SX contains functionality which is the generalization of that found in ULTRA II. This means that as the development of SX proceeds, an SX driven application will be able to,perform arbitrary dimensional presentation, analysis, and manipulation tasks. Because of the fundamental unity of these two PACT parts, they are documented in a single manual. The first part will cover the standard Scheme functionality and the second part will discuss the SX extensions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, Katherine O., E-mail: kocastle@mdanderson.org; Hoffman, Karen E.; Levy, Lawrence B.
Purpose: The benefit of adding androgen deprivation therapy (ADT) to dose-escalated radiation therapy (RT) for men with intermediate-risk prostate cancer is unclear; therefore, we assessed the impact of adding ADT to dose-escalated RT on freedom from failure (FFF). Methods: Three groups of men treated with intensity modulated RT or 3-dimensional conformal RT (75.6-78 Gy) from 1993-2008 for prostate cancer were categorized as (1) 326 intermediate-risk patients treated with RT alone, (2) 218 intermediate-risk patients treated with RT and ≤6 months of ADT, and (3) 274 low-risk patients treated with definitive RT. Median follow-up was 58 months. Recursive partitioning analysis basedmore » on FFF using Gleason score (GS), T stage, and pretreatment PSA concentration was applied to the intermediate-risk patients treated with RT alone. The Kaplan-Meier method was used to estimate 5-year FFF. Results: Based on recursive partitioning analysis, intermediate-risk patients treated with RT alone were divided into 3 prognostic groups: (1) 188 favorable patients: GS 6, ≤T2b or GS 3+4, ≤T1c; (2) 71 marginal patients: GS 3+4, T2a-b; and (3) 68 unfavorable patients: GS 4+3 or T2c disease. Hazard ratios (HR) for recurrence in each group were 1.0, 2.1, and 4.6, respectively. When intermediate-risk patients treated with RT alone were compared to intermediate-risk patients treated with RT and ADT, the greatest benefit from ADT was seen for the unfavorable intermediate-risk patients (FFF, 74% vs 94%, respectively; P=.005). Favorable intermediate-risk patients had no significant benefit from the addition of ADT to RT (FFF, 94% vs 95%, respectively; P=.85), and FFF for favorable intermediate-risk patients treated with RT alone approached that of low-risk patients treated with RT alone (98%). Conclusions: Patients with favorable intermediate-risk prostate cancer did not benefit from the addition of ADT to dose-escalated RT, and their FFF was nearly as good as patients with low-risk disease. In patients with GS 4+3 or T2c disease, the addition of ADT to dose-escalated RT did improve FFF.« less
Exact analytical solution of irreversible binary dynamics on networks.
Laurence, Edward; Young, Jean-Gabriel; Melnik, Sergey; Dubé, Louis J
2018-03-01
In binary cascade dynamics, the nodes of a graph are in one of two possible states (inactive, active), and nodes in the inactive state make an irreversible transition to the active state, as soon as their precursors satisfy a predetermined condition. We introduce a set of recursive equations to compute the probability of reaching any final state, given an initial state, and a specification of the transition probability function of each node. Because the naive recursive approach for solving these equations takes factorial time in the number of nodes, we also introduce an accelerated algorithm, built around a breath-first search procedure. This algorithm solves the equations as efficiently as possible in exponential time.
Exact analytical solution of irreversible binary dynamics on networks
NASA Astrophysics Data System (ADS)
Laurence, Edward; Young, Jean-Gabriel; Melnik, Sergey; Dubé, Louis J.
2018-03-01
In binary cascade dynamics, the nodes of a graph are in one of two possible states (inactive, active), and nodes in the inactive state make an irreversible transition to the active state, as soon as their precursors satisfy a predetermined condition. We introduce a set of recursive equations to compute the probability of reaching any final state, given an initial state, and a specification of the transition probability function of each node. Because the naive recursive approach for solving these equations takes factorial time in the number of nodes, we also introduce an accelerated algorithm, built around a breath-first search procedure. This algorithm solves the equations as efficiently as possible in exponential time.
Recursive algorithms for bias and gain nonuniformity correction in infrared videos.
Pipa, Daniel R; da Silva, Eduardo A B; Pagliari, Carla L; Diniz, Paulo S R
2012-12-01
Infrared focal-plane array (IRFPA) detectors suffer from fixed-pattern noise (FPN) that degrades image quality, which is also known as spatial nonuniformity. FPN is still a serious problem, despite recent advances in IRFPA technology. This paper proposes new scene-based correction algorithms for continuous compensation of bias and gain nonuniformity in FPA sensors. The proposed schemes use recursive least-square and affine projection techniques that jointly compensate for both the bias and gain of each image pixel, presenting rapid convergence and robustness to noise. The synthetic and real IRFPA videos experimentally show that the proposed solutions are competitive with the state-of-the-art in FPN reduction, by presenting recovered images with higher fidelity.
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.
Liao, Quan; Yao, Jianhua; Yuan, Shengang
2007-05-01
The study of prediction of toxicity is very important and necessary because measurement of toxicity is typically time-consuming and expensive. In this paper, Recursive Partitioning (RP) method was used to select descriptors. RP and Support Vector Machines (SVM) were used to construct structure-toxicity relationship models, RP model and SVM model, respectively. The performances of the two models are different. The prediction accuracies of the RP model are 80.2% for mutagenic compounds in MDL's toxicity database, 83.4% for compounds in CMC and 84.9% for agrochemicals in in-house database respectively. Those of SVM model are 81.4%, 87.0% and 87.3% respectively.
Binary recursive partitioning: background, methods, and application to psychology.
Merkle, Edgar C; Shaffer, Victoria A
2011-02-01
Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.
Recursive Newton-Euler formulation of manipulator dynamics
NASA Technical Reports Server (NTRS)
Nasser, M. G.
1989-01-01
A recursive Newton-Euler procedure is presented for the formulation and solution of manipulator dynamical equations. The procedure includes rotational and translational joints and a topological tree. This model was verified analytically using a planar two-link manipulator. Also, the model was tested numerically against the Walker-Orin model using the Shuttle Remote Manipulator System data. The hinge accelerations obtained from both models were identical. The computational requirements of the model vary linearly with the number of joints. The computational efficiency of this method exceeds that of Walker-Orin methods. This procedure may be viewed as a considerable generalization of Armstrong's method. A six-by-six formulation is adopted which enhances both the computational efficiency and simplicity of the model.
Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y
2011-01-01
To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Presti, Giovambattista; Premarini, Claudio; Leuzzi, Martina; Di Blasi, Melina; Squatrito, Valeria
2017-11-01
The operant was conceptualized by Skinner as a class of behaviors which have common effect on the environment and that, as a class can be shown to vary lawfully in their relations to the other environmental variables, namely antecedents and consequences. And Skinner himself underlined the fact that "operant field is the very field purpose of behavior". The operant offers interesting basic and applied characteristic to conceptualize complex behavior as a recursive process of learning. In this paper we will discuss how the operant concept can be applied in the implementation of software oriented to increase cognitive skills in autistic children and provide an example.
NASA Technical Reports Server (NTRS)
Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
Spacecraft control, state estimation, and fault-detection-and-isolation systems are affected by unknown v aerations in the vehicle mass properties. It is often difficult to accurately measure inertia terms on the ground, and mass properties can change on-orbit as fuel is expended, the configuration changes, or payloads are added or removed. Recursive least squares -based algorithms that use gyro signals to identify the center of mass and inverse inertia matrix are presented. They are applied in simulation to 3 thruster-controlled vehicles: the X-38 and Mini-AERCam under development at NASA-JSC, and the SAM, an air-bearing spacecraft simulator at the NASA-Ames Smart Systems Research Lab (SSRL).
NASA Astrophysics Data System (ADS)
Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.
2017-11-01
When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2018-07-01
A new third-order integrable equation is constructed via combining the recursion operator of the modified KdV equation (MKdV) and its inverse recursion operator. The developed equation will be termed the modified KdV-negative order modified KdV equation (MKdV-nMKdV). The complete integrability of this equation is confirmed by showing that it nicely possesses the Painlevé property. We obtain multiple soliton solutions for the newly developed integrable equation. Moreover, this equation enjoys a variety of solutions which include solitons, peakons, cuspons, negaton, positon, complexiton and other solutions.
A recursive solution for a fading memory filter derived from Kalman filter theory
NASA Technical Reports Server (NTRS)
Statman, J. I.
1986-01-01
A simple recursive solution for a class of fading memory tracking filters is presented. A fading memory filter provides estimates of filter states based on past measurements, similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying weight is applied to older measurements, discounting their effect on present state estimates. It is shown that Kalman filters and fading memory filters are closely related solutions to a general least squares estimator problem. Closed form filter transfer functions are derived for a time invariant, steady state, fading memory filter. These can be applied in loop filter implementation of the Deep Space Network (DSN) Advanced Receiver carrier phase locked loop (PLL).
Image defog algorithm based on open close filter and gradient domain recursive bilateral filter
NASA Astrophysics Data System (ADS)
Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen
2017-11-01
To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.
REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1996-01-01
In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.
Optimal Recursive Digital Filters for Active Bending Stabilization
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2013-01-01
In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.
Controlling under-actuated robot arms using a high speed dynamics process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)
1994-01-01
The invention controls an under-actuated manipulator by first obtaining predetermined active joint accelerations of the active joints and the passive joint friction forces of the passive joints, then computing articulated body qualities for each of the joints from the current positions of the links, and finally computing from the articulated body qualities and from the active joint accelerations and the passive joint forces, active joint forces of the active joints. Ultimately, the invention transmits servo commands to the active joint forces thus computed to the respective ones of the joint servos. The computation of the active joint forces is accomplished using a recursive dynamics algorithm. In this computation, an inward recursion is first carried out for each link, beginning with the outermost link in order to compute the residual link force of each link from the active joint acceleration if the corresponding joint is active, or from the known passive joint force if the corresponding joint is passive. Then, an outward recursion is carried out for each link in which the active joint force is computed from the residual link force if the corresponding joint is active or the passive joint acceleration is computed from the residual link force if the corresponding joint is passive.
Anand, Madhu; McLeod, M Chandler; Bell, Philip W; Roberts, Christopher B
2005-12-08
This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and antisolvent to be recovered, thereby rendering it a green solvent process.
Ironside, Kirsten E.; Mattson, David J.; Theimer, Tad; Jansen, Brian; Holton, Brandon; Arundel, Terry; Peters, Michael; Sexton, Joseph O.; Edwards, Thomas C.
2017-01-01
Relocation studies of animal movement have focused on directed versus area restricted movement, which rely on correlations between step-length and turn angles, along with a degree of stationarity through time to define behavioral states. Although these approaches may work well for grazing foraging strategies in a patchy landscape, species that do not spend a significant amount of time searching out and gathering small dispersed food items, but instead feed for short periods on large, concentrated sources or cache food result in movements that maybe difficult to analyze using turning and velocity alone. We use GPS telemetry collected from a prey-caching predator, the cougar (Puma concolor), to test whether adding additional movement metrics capturing site recursion, to the more traditional velocity and turning, improve the ability to identify behaviors. We evaluated our movement index’s ability to identify behaviors using field investigations. We further tested for statistical stationarity across behaviors for use of topographic view-sheds. We found little correlation between turn angle, velocity, tortuosity, and site fidelity and combined them into a movement index used to identify movement paths (temporally autocorrelated movements) related to fast directed movements (taxis), area restricted movements (search), and prey caching (foraging). Changes in the frequency and duration of these movements were helpful for identifying seasonal activities such as migration and denning in females. Comparison of field investigations of cougar activities to behavioral classes defined using the movement index and found an overall classification accuracy of 81%. Changes in behaviors resulted in changes in how cougars used topographic view-sheds, showing statistical non-stationarity over time. The movement index shows promise for identifying behaviors in species that frequently return to specific locations such as food caches, watering holes, or dens, and highlights the role memory and cognitive abilities may play in determining animal movements. With the addition of measures capturing site recursion the temporal structure in movements of a caching forager was revealed.
Model-based morphological segmentation and labeling of coronary angiograms.
Haris, K; Efstratiadis, S N; Maglaveras, N; Pappas, C; Gourassas, J; Louridas, G
1999-10-01
A method for extraction and labeling of the coronary arterial tree (CAT) using minimal user supervision in single-view angiograms is proposed. The CAT structural description (skeleton and borders) is produced, along with quantitative information for the artery dimensions and assignment of coded labels, based on a given coronary artery model represented by a graph. The stages of the method are: 1) CAT tracking and detection; 2) artery skeleton and border estimation; 3) feature graph creation; and iv) artery labeling by graph matching. The approximate CAT centerline and borders are extracted by recursive tracking based on circular template analysis. The accurate skeleton and borders of each CAT segment are computed, based on morphological homotopy modification and watershed transform. The approximate centerline and borders are used for constructing the artery segment enclosing area (ASEA), where the defined skeleton and border curves are considered as markers. Using the marked ASEA, an artery gradient image is constructed where all the ASEA pixels (except the skeleton ones) are assigned the gradient magnitude of the original image. The artery gradient image markers are imposed as its unique regional minima by the homotopy modification method, the watershed transform is used for extracting the artery segment borders, and the feature graph is updated. Finally, given the created feature graph and the known model graph, a graph matching algorithm assigns the appropriate labels to the extracted CAT using weighted maximal cliques on the association graph corresponding to the two given graphs. Experimental results using clinical digitized coronary angiograms are presented.
Chan, An-Wen; Fung, Kinwah; Tran, Jennifer M; Kitchen, Jessica; Austin, Peter C; Weinstock, Martin A; Rochon, Paula A
2016-10-01
Keratinocyte carcinoma (nonmelanoma skin cancer) accounts for substantial burden in terms of high incidence and health care costs but is excluded by most cancer registries in North America. Administrative health insurance claims databases offer an opportunity to identify these cancers using diagnosis and procedural codes submitted for reimbursement purposes. To apply recursive partitioning to derive and validate a claims-based algorithm for identifying keratinocyte carcinoma with high sensitivity and specificity. Retrospective study using population-based administrative databases linked to 602 371 pathology episodes from a community laboratory for adults residing in Ontario, Canada, from January 1, 1992, to December 31, 2009. The final analysis was completed in January 2016. We used recursive partitioning (classification trees) to derive an algorithm based on health insurance claims. The performance of the derived algorithm was compared with 5 prespecified algorithms and validated using an independent academic hospital clinic data set of 2082 patients seen in May and June 2011. Sensitivity, specificity, positive predictive value, and negative predictive value using the histopathological diagnosis as the criterion standard. We aimed to achieve maximal specificity, while maintaining greater than 80% sensitivity. Among 602 371 pathology episodes, 131 562 (21.8%) had a diagnosis of keratinocyte carcinoma. Our final derived algorithm outperformed the 5 simple prespecified algorithms and performed well in both community and hospital data sets in terms of sensitivity (82.6% and 84.9%, respectively), specificity (93.0% and 99.0%, respectively), positive predictive value (76.7% and 69.2%, respectively), and negative predictive value (95.0% and 99.6%, respectively). Algorithm performance did not vary substantially during the 18-year period. This algorithm offers a reliable mechanism for ascertaining keratinocyte carcinoma for epidemiological research in the absence of cancer registry data. Our findings also demonstrate the value of recursive partitioning in deriving valid claims-based algorithms.
Van Hulst, Andraea; Roy-Gagnon, Marie-Hélène; Gauvin, Lise; Kestens, Yan; Henderson, Mélanie; Barnett, Tracie A
2015-02-15
Few studies consider how risk factors within multiple levels of influence operate synergistically to determine childhood obesity. We used recursive partitioning analysis to identify unique combinations of individual, familial, and neighborhood factors that best predict obesity in children, and tested whether these predict 2-year changes in body mass index (BMI). Data were collected in 2005-2008 and in 2008-2011 for 512 Quebec youth (8-10 years at baseline) with a history of parental obesity (QUALITY study). CDC age- and sex-specific BMI percentiles were computed and children were considered obese if their BMI was ≥95th percentile. Individual (physical activity and sugar-sweetened beverage intake), familial (household socioeconomic status and measures of parental obesity including both BMI and waist circumference), and neighborhood (disadvantage, prestige, and presence of parks, convenience stores, and fast food restaurants) factors were examined. Recursive partitioning, a method that generates a classification tree predicting obesity based on combined exposure to a series of variables, was used. Associations between resulting varying risk group membership and BMI percentile at baseline and 2-year follow up were examined using linear regression. Recursive partitioning yielded 7 subgroups with a prevalence of obesity equal to 8%, 11%, 26%, 28%, 41%, 60%, and 63%, respectively. The 2 highest risk subgroups comprised i) children not meeting physical activity guidelines, with at least one BMI-defined obese parent and 2 abdominally obese parents, living in disadvantaged neighborhoods without parks and, ii) children with these characteristics, except with access to ≥1 park and with access to ≥1 convenience store. Group membership was strongly associated with BMI at baseline, but did not systematically predict change in BMI. Findings support the notion that obesity is predicted by multiple factors in different settings and provide some indications of potentially obesogenic environments. Alternate group definitions as well as longer duration of follow up should be investigated to predict change in obesity.
Structure of the conversion laws in quantum integrable spin chains with short range interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabowski, M.P.; Mathieu, P.
1995-11-01
The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, formore » two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model`s free parameter for all charges is derived in closed form. 62 refs., 4 figs.« less
Chang, G C; Kang, W J; Luh, J J; Cheng, C K; Lai, J S; Chen, J J; Kuo, T S
1996-10-01
The purpose of this study was to develop a real-time electromyogram (EMG) discrimination system to provide control commands for man-machine interface applications. A host computer with a plug-in data acquisition and processing board containing a TMS320 C31 floating-point digital signal processor was used to attain real-time EMG classification. Two-channel EMG signals were collected by two pairs of surface electrodes located bilaterally between the sternocleidomastoid and the upper trapezius. Five motions of the neck and shoulders were discriminated for each subject. The zero-crossing rate was employed to detect the onset of muscle contraction. The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, were used as the recognition features. These features were then discriminated using a modified maximum likelihood distance classifier. The total response time of this EMG discrimination system was achieved about within 0.17 s. Four able bodied and two C5/6 quadriplegic subjects took part in the experiment, and achieved 95% mean recognition rate in discrimination between the five specific motions. The response time and the reliability of recognition indicate that this system has the potential to discriminate body motions for man-machine interface applications.
S-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Simon, H.
1998-01-01
Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less
NASA Astrophysics Data System (ADS)
Falocchi, Marco; Giovannini, Lorenzo; Franceschi, Massimiliano de; Zardi, Dino
2018-05-01
We present a refinement of the recursive digital filter proposed by McMillen (Boundary-Layer Meteorol 43:231-245, 1988), for separating surface-layer turbulence from low-frequency fluctuations affecting the mean flow, especially over complex terrain. In fact, a straightforward application of the filter causes both an amplitude attenuation and a forward phase shift in the filtered signal. As a consequence turbulence fluctuations, evaluated as the difference between the original series and the filtered one, as well as higher-order moments calculated from them, may be affected by serious inaccuracies. The new algorithm (i) produces a rigorous zero-phase filter, (ii) restores the amplitude of the low-frequency signal, and (iii) corrects all filter-induced signal distortions.
NASA Astrophysics Data System (ADS)
An, Chan-Ho; Yang, Janghoon; Jang, Seunghun; Kim, Dong Ku
In this letter, a pre-processed lattice reduction (PLR) scheme is developed for the lattice reduction aided (LRA) detection of multiple input multiple-output (MIMO) systems in spatially correlated channel. The PLR computes the LLL-reduced matrix of the equivalent matrix, which is the product of the present channel matrix and unimodular transformation matrix for LR of spatial correlation matrix, rather than the present channel matrix itself. In conjunction with PLR followed by recursive lattice reduction (RLR) scheme [7], pre-processed RLR (PRLR) is shown to efficiently carry out the LR of the channel matrix, especially for the burst packet message in spatially and temporally correlated channel while matching the performance of conventional LRA detection.
A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.
Le Rolle, Virginie; Ojeda, David; Beuchée, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernández, Alfredo I
2013-01-01
This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions.
Two dimensional recursive digital filters for near real time image processing
NASA Technical Reports Server (NTRS)
Olson, D.; Sherrod, E.
1980-01-01
A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.
A low-complexity Reed-Solomon decoder using new key equation solver
NASA Astrophysics Data System (ADS)
Xie, Jun; Yuan, Songxin; Tu, Xiaodong; Zhang, Chongfu
2006-09-01
This paper presents a low-complexity parallel Reed-Solomon (RS) (255,239) decoder architecture using a novel pipelined variable stages recursive Modified Euclidean (ME) algorithm for optical communication. The pipelined four-parallel syndrome generator is proposed. The time multiplexing and resource sharing schemes are used in the novel recursive ME algorithm to reduce the logic gate count. The new key equation solver can be shared by two decoder macro. A new Chien search cell which doesn't need initialization is proposed in the paper. The proposed decoder can be used for 2.5Gb/s data rates device. The decoder is implemented in Altera' Stratixll device. The resource utilization is reduced about 40% comparing to the conventional method.
Virasoro constraints and polynomial recursion for the linear Hodge integrals
NASA Astrophysics Data System (ADS)
Guo, Shuai; Wang, Gehao
2017-04-01
The Hodge tau-function is a generating function for the linear Hodge integrals. It is also a tau-function of the KP hierarchy. In this paper, we first present the Virasoro constraints for the Hodge tau-function in the explicit form of the Virasoro equations. The expression of our Virasoro constraints is simply a linear combination of the Virasoro operators, where the coefficients are restored from a power series for the Lambert W function. Then, using this result, we deduce a simple version of the Virasoro constraints for the linear Hodge partition function, where the coefficients are restored from the Gamma function. Finally, we establish the equivalence relation between the Virasoro constraints and polynomial recursion formula for the linear Hodge integrals.
Signal detection by means of orthogonal decomposition
NASA Astrophysics Data System (ADS)
Hajdu, C. F.; Dabóczi, T.; Péceli, G.; Zamantzas, C.
2018-03-01
Matched filtering is a well-known method frequently used in digital signal processing to detect the presence of a pattern in a signal. In this paper, we suggest a time variant matched filter, which, unlike a regular matched filter, maintains a given alignment between the input signal and the template carrying the pattern, and can be realized recursively. We introduce a method to synchronize the two signals for presence detection, usable in case direct synchronization between the signal generator and the receiver is not possible or not practical. We then propose a way of realizing and extending the same filter by modifying a recursive spectral observer, which gives rise to orthogonal filter channels and also leads to another way to synchronize the two signals.