Recursion Removal as an Instructional Method to Enhance the Understanding of Recursion Tracing
ERIC Educational Resources Information Center
Velázquez-Iturbide, J. Ángel; Castellanos, M. Eugenia; Hijón-Neira, Raquel
2016-01-01
Recursion is one of the most difficult programming topics for students. In this paper, an instructional method is proposed to enhance students' understanding of recursion tracing. The proposal is based on the use of rules to translate linear recursion algorithms into equivalent, iterative ones. The paper has two main contributions: the…
Parallel scheduling of recursively defined arrays
NASA Technical Reports Server (NTRS)
Myers, T. J.; Gokhale, M. B.
1986-01-01
A new method of automatic generation of concurrent programs which constructs arrays defined by sets of recursive equations is described. It is assumed that the time of computation of an array element is a linear combination of its indices, and integer programming is used to seek a succession of hyperplanes along which array elements can be computed concurrently. The method can be used to schedule equations involving variable length dependency vectors and mutually recursive arrays. Portions of the work reported here have been implemented in the PS automatic program generation system.
Computer simulation results of attitude estimation of earth orbiting satellites
NASA Technical Reports Server (NTRS)
Kou, S. R.
1976-01-01
Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.
Scoring and staging systems using cox linear regression modeling and recursive partitioning.
Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H
2006-01-01
Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.
Constructivist Approach to Teacher Education: An Integrative Model for Reflective Teaching
ERIC Educational Resources Information Center
Vijaya Kumari, S. N.
2014-01-01
The theory of constructivism states that learning is non-linear, recursive, continuous, complex and relational--Despite the difficulty of deducing constructivist pedagogy from constructivist theories, there are models and common elements to consider in planning new program. Reflective activities are a common feature of all the programs of…
Recursive partitioned inversion of large (1500 x 1500) symmetric matrices
NASA Technical Reports Server (NTRS)
Putney, B. H.; Brownd, J. E.; Gomez, R. A.
1976-01-01
A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
A Survey on Teaching and Learning Recursive Programming
ERIC Educational Resources Information Center
Rinderknecht, Christian
2014-01-01
We survey the literature about the teaching and learning of recursive programming. After a short history of the advent of recursion in programming languages and its adoption by programmers, we present curricular approaches to recursion, including a review of textbooks and some programming methodology, as well as the functional and imperative…
Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.
2017-12-01
A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.
Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.
2018-06-01
A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.
Complex sample survey estimation in static state-space
Raymond L. Czaplewski
2010-01-01
Increased use of remotely sensed data is a key strategy adopted by the Forest Inventory and Analysis Program. However, multiple sensor technologies require complex sampling units and sampling designs. The Recursive Restriction Estimator (RRE) accommodates this complexity. It is a design-consistent Empirical Best Linear Unbiased Prediction for the state-vector, which...
How Learning Logic Programming Affects Recursion Comprehension
ERIC Educational Resources Information Center
Haberman, Bruria
2004-01-01
Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…
Recursive linearization of multibody dynamics equations of motion
NASA Technical Reports Server (NTRS)
Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.
Teaching and learning recursive programming: a review of the research literature
NASA Astrophysics Data System (ADS)
McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie
2015-01-01
Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion, and best practices in introducing recursion. Effective strategies for introducing the topic include using different contexts such as recurrence relations, programming examples, fractal images, and a description of how recursive methods are processed using a call stack. Several studies compared the efficacy of introducing iteration before recursion and vice versa. The paper concludes with suggestions for future research into how students learn and understand recursion, including a look at the possible impact of instructor attitude and newer pedagogies.
ERIC Educational Resources Information Center
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
Recursive inversion of externally defined linear systems
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1988-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.
Ibáñez-Escriche, N; López de Maturana, E; Noguera, J L; Varona, L
2010-11-01
We developed and implemented change-point recursive models and compared them with a linear recursive model and a standard mixed model (SMM), in the scope of the relationship between litter size (LS) and number of stillborns (NSB) in pigs. The proposed approach allows us to estimate the point of change in multiple-segment modeling of a nonlinear relationship between phenotypes. We applied the procedure to a data set provided by a commercial Large White selection nucleus. The data file consisted of LS and NSB records of 4,462 parities. The results of the analysis clearly identified the location of the change points between different structural regression coefficients. The magnitude of these coefficients increased with LS, indicating an increasing incidence of LS on the NSB ratio. However, posterior distributions of correlations were similar across subpopulations (defined by the change points on LS), except for those between residuals. The heritability estimates of NSB did not present differences between recursive models. Nevertheless, these heritabilities were greater than those obtained for SMM (0.05) with a posterior probability of 85%. These results suggest a nonlinear relationship between LS and NSB, which supports the adequacy of a change-point recursive model for its analysis. Furthermore, the results from model comparisons support the use of recursive models. However, the adequacy of the different recursive models depended on the criteria used: the linear recursive model was preferred on account of its smallest deviance value, whereas nonlinear recursive models provided a better fit and predictive ability based on the cross-validation approach.
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Recursive inversion of externally defined linear systems by FIR filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1989-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.
On Fusing Recursive Traversals of K-d Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less
Recursive inverse factorization.
Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N
2008-03-14
A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.
Human motion planning based on recursive dynamics and optimal control techniques
NASA Technical Reports Server (NTRS)
Lo, Janzen; Huang, Gang; Metaxas, Dimitris
2002-01-01
This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.
Cache Locality Optimization for Recursive Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifflander, Jonathan; Krishnamoorthy, Sriram
We present an approach to optimize the cache locality for recursive programs by dynamically splicing--recursively interleaving--the execution of distinct function invocations. By utilizing data effect annotations, we identify concurrency and data reuse opportunities across function invocations and interleave them to reduce reuse distance. We present algorithms that efficiently track effects in recursive programs, detect interference and dependencies, and interleave execution of function invocations using user-level (non-kernel) lightweight threads. To enable multi-core execution, a program is parallelized using a nested fork/join programming model. Our cache optimization strategy is designed to work in the context of a random work stealing scheduler. Wemore » present an implementation using the MIT Cilk framework that demonstrates significant improvements in sequential and parallel performance, competitive with a state-of-the-art compile-time optimizer for loop programs and a domain- specific optimizer for stencil programs.« less
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
The Event Based Language and Its Multiple Processor Implementations.
1980-01-01
10 6.1 "Recursive" Linear Fibonacci ................................................ 105 6.2 The Readers Writers Problem...kinds. Examples of such systems are: C.mmp [Wu-72], Pluribus [He-73], Data Flow [ De -75], the boolean n-cube parallel machine [Su-77], and the MuNet [Wa...concurrency within programs; therefore, we hate concentrated on two types of systems which seem suitable: a processor network, and a data flow processor [ De -77
Binary tree eigen solver in finite element analysis
NASA Technical Reports Server (NTRS)
Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.
1993-01-01
This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.
Teaching and Learning Recursive Programming: A Review of the Research Literature
ERIC Educational Resources Information Center
McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie
2015-01-01
Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion,…
ERIC Educational Resources Information Center
Simons, C. S.; Wright, M.
2007-01-01
With Simson's 1753 paper as a starting point, the current paper reports investigations of Simson's identity (also known as Cassini's) for the Fibonacci sequence as a means to explore some fundamental ideas about recursion. Simple algebraic operations allow one to reduce the standard linear Fibonacci recursion to the nonlinear Simon's recursion…
Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.
Hu, Liang; Wang, Zidong; Liu, Xiaohui
2016-08-01
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Virasoro constraints and polynomial recursion for the linear Hodge integrals
NASA Astrophysics Data System (ADS)
Guo, Shuai; Wang, Gehao
2017-04-01
The Hodge tau-function is a generating function for the linear Hodge integrals. It is also a tau-function of the KP hierarchy. In this paper, we first present the Virasoro constraints for the Hodge tau-function in the explicit form of the Virasoro equations. The expression of our Virasoro constraints is simply a linear combination of the Virasoro operators, where the coefficients are restored from a power series for the Lambert W function. Then, using this result, we deduce a simple version of the Virasoro constraints for the linear Hodge partition function, where the coefficients are restored from the Gamma function. Finally, we establish the equivalence relation between the Virasoro constraints and polynomial recursion formula for the linear Hodge integrals.
Attitude estimation of earth orbiting satellites by decomposed linear recursive filters
NASA Technical Reports Server (NTRS)
Kou, S. R.
1975-01-01
Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.
A Recursive Method for Calculating Certain Partition Functions.
ERIC Educational Resources Information Center
Woodrum, Luther; And Others
1978-01-01
Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
Health monitoring system for transmission shafts based on adaptive parameter identification
NASA Astrophysics Data System (ADS)
Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.
2018-05-01
A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.
A recursive linear predictive vocoder
NASA Astrophysics Data System (ADS)
Janssen, W. A.
1983-12-01
A non-real time 10 pole recursive autocorrelation linear predictive coding vocoder was created for use in studying effects of recursive autocorrelation on speech. The vocoder is composed of two interchangeable pitch detectors, a speech analyzer, and speech synthesizer. The time between updating filter coefficients is allowed to vary from .125 msec to 20 msec. The best quality was found using .125 msec between each update. The greatest change in quality was noted when changing from 20 msec/update to 10 msec/update. Pitch period plots for the center clipping autocorrelation pitch detector and simplified inverse filtering technique are provided. Plots of speech into and out of the vocoder are given. Formant versus time three dimensional plots are shown. Effects of noise on pitch detection and formants are shown. Noise effects the voiced/unvoiced decision process causing voiced speech to be re-constructed as unvoiced.
Statistical Inference in Hidden Markov Models Using k-Segment Constraints
Titsias, Michalis K.; Holmes, Christopher C.; Yau, Christopher
2016-01-01
Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence of most probable marginals using the forward–backward algorithm. In this article, we expand the amount of information we could obtain from the posterior distribution of an HMM by introducing linear-time dynamic programming recursions that, conditional on a user-specified constraint in the number of segments, allow us to (i) find MAP sequences, (ii) compute posterior probabilities, and (iii) simulate sample paths. We collectively call these recursions k-segment algorithms and illustrate their utility using simulated and real examples. We also highlight the prospective and retrospective use of k-segment constraints for fitting HMMs or exploring existing model fits. Supplementary materials for this article are available online. PMID:27226674
The determination of third order linear models from a seventh order nonlinear jet engine model
NASA Technical Reports Server (NTRS)
Lalonde, Rick J.; Hartley, Tom T.; De Abreu-Garcia, J. Alex
1989-01-01
Results are presented that demonstrate how good reduced-order models can be obtained directly by recursive parameter identification using input/output (I/O) data of high-order nonlinear systems. Three different methods of obtaining a third-order linear model from a seventh-order nonlinear turbojet engine model are compared. The first method is to obtain a linear model from the original model and then reduce the linear model by standard reduction techniques such as residualization and balancing. The second method is to identify directly a third-order linear model by recursive least-squares parameter estimation using I/O data of the original model. The third method is to obtain a reduced-order model from the original model and then linearize the reduced model. Frequency responses are used as the performance measure to evaluate the reduced models. The reduced-order models along with their Bode plots are presented for comparison purposes.
NASA Astrophysics Data System (ADS)
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
ERIC Educational Resources Information Center
Recker, Margaret M.; Pirolli, Peter
Students learning to program recursive LISP functions in a typical school-like lesson on recursion were observed. The typical lesson contains text and examples and involves solving a series of programming problems. The focus of this study is on students' learning strategies in new domains. In this light, a Soar computational model of…
User's Guide for the Precision Recursive Estimator for Ephemeris Refinement (PREFER)
NASA Technical Reports Server (NTRS)
Gibbs, B. P.
1982-01-01
PREFER is a recursive orbit determination program which is used to refine the ephemerides produced by a batch least squares program (e.g., GTDS). It is intended to be used primarily with GTDS and, thus, is compatible with some of the GTDS input/output files.
The Paradigm Recursion: Is It More Accessible When Introduced in Middle School?
ERIC Educational Resources Information Center
Gunion, Katherine; Milford, Todd; Stege, Ulrike
2009-01-01
Recursion is a programming paradigm as well as a problem solving strategy thought to be very challenging to grasp for university students. This article outlines a pilot study, which expands the age range of students exposed to the concept of recursion in computer science through instruction in a series of interesting and engaging activities. In…
ERIC Educational Resources Information Center
Lacave, Carmen; Molina, Ana I.; Redondo, Miguel A.
2018-01-01
Contribution: Findings are provided from an initial survey to evaluate the magnitude of the recursion problem from the student point of view. Background: A major difficulty that programming students must overcome--the learning of recursion--has been addressed by many authors, using various approaches, but none have considered how students perceive…
a Recursive Approach to Compute Normal Forms
NASA Astrophysics Data System (ADS)
HSU, L.; MIN, L. J.; FAVRETTO, L.
2001-06-01
Normal forms are instrumental in the analysis of dynamical systems described by ordinary differential equations, particularly when singularities close to a bifurcation are to be characterized. However, the computation of a normal form up to an arbitrary order is numerically hard. This paper focuses on the computer programming of some recursive formulas developed earlier to compute higher order normal forms. A computer program to reduce the system to its normal form on a center manifold is developed using the Maple symbolic language. However, it should be stressed that the program relies essentially on recursive numerical computations, while symbolic calculations are used only for minor tasks. Some strategies are proposed to save computation time. Examples are presented to illustrate the application of the program to obtain high order normalization or to handle systems with large dimension.
Adaptive Identification by Systolic Arrays.
1987-12-01
BIBLIOGRIAPHY Anton , Howard, Elementary Linear Algebra , John Wiley & Sons, 19S4. Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement...10 11. SYSTEM IDENTIFICATION M*YETHODS ....................... 12 A. LINEAR SYSTEM MODELING ......................... 12 B. SOLUTION OF SYSTEMS OF... LINEAR EQUATIONS ......... 13 C. QR DECOMPOSITION ................................ 14 D. RECURSIVE LEAST SQUARES ......................... 16 E. BLOCK
Context Switching with Multiple Register Windows: A RISC Performance Study
NASA Technical Reports Server (NTRS)
Konsek, Marion B.; Reed, Daniel A.; Watcharawittayakul, Wittaya
1987-01-01
Although previous studies have shown that a large file of overlapping register windows can greatly reduce procedure call/return overhead, the effects of register windows in a multiprogramming environment are poorly understood. This paper investigates the performance of multiprogrammed, reduced instruction set computers (RISCs) as a function of window management strategy. Using an analytic model that reflects context switch and procedure call overheads, we analyze the performance of simple, linearly self-recursive programs. For more complex programs, we present the results of a simulation study. These studies show that a simple strategy that saves all windows prior to a context switch, but restores only a single window following a context switch, performs near optimally.
NASA Astrophysics Data System (ADS)
Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.
2017-11-01
When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.
1988-01-01
This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1987-01-01
This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
A Note on Discrete Mathematics and Calculus.
ERIC Educational Resources Information Center
O'Reilly, Thomas J.
1987-01-01
Much of the current literature on the topic of discrete mathematics and calculus during the first two years of an undergraduate mathematics curriculum is cited. A relationship between the recursive integration formulas and recursively defined polynomials is described. A Pascal program is included. (Author/RH)
Recursive computer architecture for VLSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treleaven, P.C.; Hopkins, R.P.
1982-01-01
A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.
ERIC Educational Resources Information Center
Camp, Dane R.
1991-01-01
After introducing the two-dimensional Koch curve, which is generated by simple recursions on an equilateral triangle, the process is extended to three dimensions with simple recursions on a regular tetrahedron. Included, for both fractal sequences, are iterative formulae, illustrations of the first several iterations, and a sample PASCAL program.…
ERIC Educational Resources Information Center
Kemp, Andy
2007-01-01
"Geomlab" is a functional programming language used to describe pictures that are made up of tiles. The beauty of "Geomlab" is that it introduces students to recursion, a very powerful mathematical concept, through a very simple and enticing graphical environment. Alongside the software is a series of eight worksheets which lead into producing…
A recursive Bayesian updating model of haptic stiffness perception.
Wu, Bing; Klatzky, Roberta L
2018-06-01
Stiffness of many materials follows Hooke's Law, but the mechanism underlying the haptic perception of stiffness is not as simple as it seems in the physical definition. The present experiments support a model by which stiffness perception is adaptively updated during dynamic interaction. Participants actively explored virtual springs and estimated their stiffness relative to a reference. The stimuli were simulations of linear springs or nonlinear springs created by modulating a linear counterpart with low-amplitude, half-cycle (Experiment 1) or full-cycle (Experiment 2) sinusoidal force. Experiment 1 showed that subjective stiffness increased (decreased) as a linear spring was positively (negatively) modulated by a half-sinewave force. In Experiment 2, an opposite pattern was observed for full-sinewave modulations. Modeling showed that the results were best described by an adaptive process that sequentially and recursively updated an estimate of stiffness using the force and displacement information sampled over trajectory and time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
System IDentification Programs for AirCraft (SIDPAC)
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2002-01-01
A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.
An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Sudip K
2014-01-01
Block tridiagonal systems of linear equations arise in a wide variety of scientific and engineering applications. Recursive doubling algorithm is a well-known prefix computation-based numerical algorithm that requires O(M^3(N/P + log P)) work to compute the solution of a block tridiagonal system with N block rows and block size M on P processors. In real-world applications, solutions of tridiagonal systems are most often sought with multiple, often hundreds and thousands, of different right hand sides but with the same tridiagonal matrix. Here, we show that a recursive doubling algorithm is sub-optimal when computing solutions of block tridiagonal systems with multiplemore » right hand sides and present a novel algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement when solving block tridiagonal systems with R distinct right hand sides. Since R is typically about 100 1000, this improvement translates to very significant speedups in practice. Detailed complexity analyses of the new algorithm with empirical confirmation of runtime improvements are presented. To the best of our knowledge, this algorithm has not been reported before in the literature.« less
On the time-weighted quadratic sum of linear discrete systems
NASA Technical Reports Server (NTRS)
Jury, E. I.; Gutman, S.
1975-01-01
A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.
Cooperating reduction machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, W.E.
1983-11-01
This paper presents a concept and a system architecture for the concurrent execution of program expressions of a concrete reduction language based on lamda-expressions. If formulated appropriately, these expressions are well-suited for concurrent execution, following a demand-driven model of computation. In particular, recursive program expressions with nonlinear expansion may, at run time, recursively be partitioned into a hierarchy of independent subexpressions which can be reduced by a corresponding hierarchy of virtual reduction machines. This hierarchy unfolds and collapses dynamically, with virtual machines recursively assuming the role of masters that create and eventually terminate, or synchronize with, slaves. The paper alsomore » proposes a nonhierarchically organized system of reduction machines, each featuring a stack architecture, that effectively supports the allocation of virtual machines to the real machines of the system in compliance with their hierarchical order of creation and termination. 25 references.« less
Recursive heuristic classification
NASA Technical Reports Server (NTRS)
Wilkins, David C.
1994-01-01
The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.
The recursive maximum likelihood proportion estimator: User's guide and test results
NASA Technical Reports Server (NTRS)
Vanrooy, D. L.
1976-01-01
Implementation of the recursive maximum likelihood proportion estimator is described. A user's guide to programs as they currently exist on the IBM 360/67 at LARS, Purdue is included, and test results on LANDSAT data are described. On Hill County data, the algorithm yields results comparable to the standard maximum likelihood proportion estimator.
ERIC Educational Resources Information Center
Gibbons, Pamela
1995-01-01
Describes a study that investigated individual differences in the construction of mental models of recursion in LOGO programming. The learning process was investigated from the perspective of Norman's mental models theory and employed diSessa's ontology regarding distributed, functional, and surrogate mental models, and the Luria model of brain…
Polynomial compensation, inversion, and approximation of discrete time linear systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1987-01-01
The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.
Recurrence formulas for fully exponentially correlated four-body wave functions
NASA Astrophysics Data System (ADS)
Harris, Frank E.
2009-03-01
Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (≥-1) of all the interparticle distances rij , multiplied by an exponential containing an arbitrary linear combination of all the rij . These integrals are generalizations of those encountered using Hylleraas basis functions and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill plus some easily evaluated three-body “boundary” integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.
Computational Science in Armenia (Invited Talk)
NASA Astrophysics Data System (ADS)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
Varona, Luis; Sorensen, Daniel
2014-01-01
This work presents a model for the joint analysis of a binomial and a Gaussian trait using a recursive parametrization that leads to a computationally efficient implementation. The model is illustrated in an analysis of mortality and litter size in two breeds of Danish pigs, Landrace and Yorkshire. Available evidence suggests that mortality of piglets increased partly as a result of successful selection for total number of piglets born. In recent years there has been a need to decrease the incidence of mortality in pig-breeding programs. We report estimates of genetic variation at the level of the logit of the probability of mortality and quantify how it is affected by the size of the litter. Several models for mortality are considered and the best fits are obtained by postulating linear and cubic relationships between the logit of the probability of mortality and litter size, for Landrace and Yorkshire, respectively. An interpretation of how the presence of genetic variation affects the probability of mortality in the population is provided and we discuss and quantify the prospects of selecting for reduced mortality, without affecting litter size. PMID:24414548
Recent developments in learning control and system identification for robots and structures
NASA Technical Reports Server (NTRS)
Phan, M.; Juang, J.-N.; Longman, R. W.
1990-01-01
This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.
NASA Technical Reports Server (NTRS)
Choudhury, A. K.; Djalali, M.
1975-01-01
In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Orthogonal polynomials for refinable linear functionals
NASA Astrophysics Data System (ADS)
Laurie, Dirk; de Villiers, Johan
2006-12-01
A refinable linear functional is one that can be expressed as a convex combination and defined by a finite number of mask coefficients of certain stretched and shifted replicas of itself. The notion generalizes an integral weighted by a refinable function. The key to calculating a Gaussian quadrature formula for such a functional is to find the three-term recursion coefficients for the polynomials orthogonal with respect to that functional. We show how to obtain the recursion coefficients by using only the mask coefficients, and without the aid of modified moments. Our result implies the existence of the corresponding refinable functional whenever the mask coefficients are nonnegative, even when the same mask does not define a refinable function. The algorithm requires O(n^2) rational operations and, thus, can in principle deliver exact results. Numerical evidence suggests that it is also effective in floating-point arithmetic.
Tree-manipulating systems and Church-Rosser theorems.
NASA Technical Reports Server (NTRS)
Rosen, B. K.
1973-01-01
Study of a broad class of tree-manipulating systems called subtree replacement systems. The use of this framework is illustrated by general theorems analogous to the Church-Rosser theorem and by applications of these theorems. Sufficient conditions are derived for the Church-Rosser property, and their applications to recursive definitions, the lambda calculus, and parallel programming are discussed. McCarthy's (1963) recursive calculus is extended by allowing a choice between call-by-value and call-by-name. It is shown that recursively defined functions are single-valued despite the nondeterminism of the evaluation algorithm. It is also shown that these functions solve their defining equations in a 'canonical' manner.
Signal Prediction With Input Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin
1999-01-01
A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.
ERIC Educational Resources Information Center
Curley, Walter
1974-01-01
After a brief discussion of Pascal's triangle and description of four methods of hand construction, the author provides FORTRAN and BASIC programs for computer construction based on recursive definition. (SD)
NASA Astrophysics Data System (ADS)
Hinze, Ralf
Programmers happily use induction to prove properties of recursive programs. To show properties of corecursive programs they employ coinduction, but perhaps less enthusiastically. Coinduction is often considered a rather low-level proof method, in particular, as it departs quite radically from equational reasoning. Corecursive programs are conveniently defined using recursion equations. Suitably restricted, these equations possess unique solutions. Uniqueness gives rise to a simple and attractive proof technique, which essentially brings equational reasoning to the coworld. We illustrate the approach using two major examples: streams and infinite binary trees. Both coinductive types exhibit a rich structure: they are applicative functors or idioms, and they can be seen as memo-tables or tabulations. We show that definitions and calculations benefit immensely from this additional structure.
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Tiwari, A. K.; Hazra, B.
2017-08-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using recursive principal component analysis (RPCA) in conjunction with online damage indicators is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal modes in online using the rank-one perturbation method, and subsequently utilized to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/nonlinear-states that indicate damage. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. An online condition indicator (CI) based on the L2 norm of the error between actual response and the response projected using recursive eigenvector matrix updates over successive iterations is proposed. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data. The proposed CI, named recursive residual error, is also adopted for simultaneous spatio-temporal damage detection. Numerical simulations performed on five-degree of freedom nonlinear system under white noise and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate the robustness of the proposed algorithm. Successful results obtained from practical case studies involving experiments performed on a cantilever beam subjected to earthquake excitation, for full sensors and underdetermined cases; and data from recorded responses of the UCLA Factor building (full data and its subset) demonstrate the efficacy of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.
Computer aided design of digital controller for radial active magnetic bearings
NASA Technical Reports Server (NTRS)
Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin
1992-01-01
A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.
Toward using games to teach fundamental computer science concepts
NASA Astrophysics Data System (ADS)
Edgington, Jeffrey Michael
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.
An algorithm for the solution of dynamic linear programs
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation scheme.
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
Sim, K S; Lim, M S; Yeap, Z X
2016-07-01
A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.
Binary recursive partitioning: background, methods, and application to psychology.
Merkle, Edgar C; Shaffer, Victoria A
2011-02-01
Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.
Recursive Newton-Euler formulation of manipulator dynamics
NASA Technical Reports Server (NTRS)
Nasser, M. G.
1989-01-01
A recursive Newton-Euler procedure is presented for the formulation and solution of manipulator dynamical equations. The procedure includes rotational and translational joints and a topological tree. This model was verified analytically using a planar two-link manipulator. Also, the model was tested numerically against the Walker-Orin model using the Shuttle Remote Manipulator System data. The hinge accelerations obtained from both models were identical. The computational requirements of the model vary linearly with the number of joints. The computational efficiency of this method exceeds that of Walker-Orin methods. This procedure may be viewed as a considerable generalization of Armstrong's method. A six-by-six formulation is adopted which enhances both the computational efficiency and simplicity of the model.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Application of recursive approaches to differential orbit correction of near Earth asteroids
NASA Astrophysics Data System (ADS)
Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria
2016-10-01
Comparison of three approaches to the differential orbit correction of celestial bodies was performed: batch least squares fitting, Kalman filter, and recursive least squares filter. The first two techniques are well known and widely used (Montenbruck, O. & Gill, E., 2000). The most attention is paid to the algorithm and details of program realization of recursive least squares filter. The filter's algorithm was derived based on recursive least squares technique that are widely used in data processing applications (Simon, D, 2006). Usage recursive least squares filter, makes possible to process a new set of observational data, without reprocessing data, which has been processed before. Specific feature of such approach is that number of observation in data set may be variable. This feature makes recursive least squares filter more flexible approach compare to batch least squares (process complete set of observations in each iteration) and Kalman filtering (suppose updating state vector on each epoch with measurements).Advantages of proposed approach are demonstrated by processing of real astrometric observations of near Earth asteroids. The case of 2008 TC3 was studied. 2008 TC3 was discovered just before its impact with Earth. There are a many closely spaced observations of 2008 TC3 on the interval between discovering and impact, which creates favorable conditions for usage of recursive approaches. Each of approaches has very similar precision in case of 2008 TC3. At the same time, recursive least squares approaches have much higher performance. Thus, this approach more favorable for orbit fitting of a celestial body, which was detected shortly before the collision or close approach to the Earth.This work was carried out at MIIGAiK and supported by the Russian Science Foundation, Project no. 14-22-00197.References:O. Montenbruck and E. Gill, "Satellite Orbits, Models, Methods and Applications," Springer-Verlag, 2000, pp. 1-369.D. Simon, "Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches",1 edition. Hoboken, N.J.: Wiley-Interscience, 2006.
Recursive least-squares learning algorithms for neural networks
NASA Astrophysics Data System (ADS)
Lewis, Paul S.; Hwang, Jenq N.
1990-11-01
This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].
Full three-body problem in effective-field-theory models of gravity
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Esposito, Giampiero
2014-10-01
Recent work in the literature has studied the restricted three-body problem within the framework of effective-field-theory models of gravity. This paper extends such a program by considering the full three-body problem, when the Newtonian potential is replaced by a more general central potential which depends on the mutual separations of the three bodies. The general form of the equations of motion is written down, and they are studied when the interaction potential reduces to the quantum-corrected central potential considered recently in the literature. A recursive algorithm is found for solving the associated variational equations, which describe small departures from given periodic solutions of the equations of motion. Our scheme involves repeated application of a 2×2 matrix of first-order linear differential operators.
Recursive-operator method in vibration problems for rod systems
NASA Astrophysics Data System (ADS)
Rozhkova, E. V.
2009-12-01
Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448-449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.
A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan
2014-10-01
The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
An efficient parallel algorithm for the solution of a tridiagonal linear system of equations
NASA Technical Reports Server (NTRS)
Stone, H. S.
1971-01-01
Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.
Optimal cure cycle design of a resin-fiber composite laminate
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Sheen, Jeenson
1987-01-01
A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.
A biased filter for linear discrete dynamic systems.
NASA Technical Reports Server (NTRS)
Chang, J. W.; Hoerl, A. E.; Leathrum, J. F.
1972-01-01
A recursive estimator, the ridge filter, was developed for the linear discrete dynamic estimation problem. Theorems were established to show that the ridge filter can be, on the average, closer to the expected value of the system state than the Kalman filter. On the other hand, Kalman filter, on the average, is closer to the instantaneous system state than the ridge filter. The ridge filter has been formulated in such a way that the computational features of the Kalman filter are preserved.
Curriculum Designed for an Equitable Pedagogy
ERIC Educational Resources Information Center
Cullen, Roxanne; Hill, Reinhold R.
2013-01-01
Rather than viewing curriculum as linear, a post-modern, learner-centered curriculum design is a spiral or recursive curriculum. Post-modernism provides a much less stable foundation upon which to build a model of student learning, a model that recognizes and even celebrates individual difference and one that is supported by research on how people…
"A Complicated Tangle of Circumstances"
ERIC Educational Resources Information Center
Miller, Carole; Saxton, Juliana
2009-01-01
The post-modern curriculum, drawing on chaos and complexity theory, recognises the realities of a world in flux and posits that the teacher and the class are always teetering "in the midst" of chaos, "not linked by chains of causality but [by] layers of meaning, recursive dynamics, non-linear effects and chance" (Osberg 2008,…
An implementation of the QMR method based on coupled two-term recurrences
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noeel M.
1992-01-01
The authors have proposed a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR), for solving non-Hermitian linear systems. In the original implementation of the QMR method, the Lanczos process with look-ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos algorithm, these basis vectors are computed by means of three-term recurrences. It has been observed that, in finite precision arithmetic, vector iterations based on three-term recursions are usually less robust than mathematically equivalent coupled two-term vector recurrences. This paper presents a look-ahead algorithm that constructs the Lanczos basis vectors by means of coupled two-term recursions. Implementation details are given, and the look-ahead strategy is described. A new implementation of the QMR method, based on this coupled two-term algorithm, is described. A simplified version of the QMR algorithm without look-ahead is also presented, and the special case of QMR for complex symmetric linear systems is considered. Results of numerical experiments comparing the original and the new implementations of the QMR method are reported.
What lies behind crop decisions?Coming to terms with revealing farmers' preferences
NASA Astrophysics Data System (ADS)
Gomez, C.; Gutierrez, C.; Pulido-Velazquez, M.; López Nicolás, A.
2016-12-01
The paper offers a fully-fledged applied revealed preference methodology to screen and represent farmers' choices as the solution of an optimal program involving trade-offs among the alternative welfare outcomes of crop decisions such as profits, income security and management easiness. The recursive two-stage method is proposed as an alternative to cope with the methodological problems inherent to common practice positive mathematical program methodologies (PMP). Differently from PMP, in the model proposed in this paper, the non-linear costs that are required for both calibration and smooth adjustment are not at odds with the assumptions of linear Leontief technologies and fixed crop prices and input costs. The method frees the model from ad-hoc assumptions about costs and then recovers the potential of economic analysis as a means to understand the rationale behind observed and forecasted farmers' decisions and then to enhance the potential of the model to support policy making in relevant domains such as agricultural policy, water management, risk management and climate change adaptation. After the introduction, where the methodological drawbacks and challenges are set up, section two presents the theoretical model, section three develops its empirical application and presents its implementation to a Spanish irrigation district and finally section four concludes and makes suggestions for further research.
Direct evaluation of fault trees using object-oriented programming techniques
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1989-01-01
Object-oriented programming techniques are used in an algorithm for the direct evaluation of fault trees. The algorithm combines a simple bottom-up procedure for trees without repeated events with a top-down recursive procedure for trees with repeated events. The object-oriented approach results in a dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. An example is presented in which the results of the algorithm implemented with conventional techniques are compared to those of the object-oriented approach.
Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański
NASA Astrophysics Data System (ADS)
Sheftel, Mikhail; Yazıcı, Devrim
2016-09-01
We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.
Leading multi-soft limits from scattering equations
NASA Astrophysics Data System (ADS)
Zlotnikov, Michael
2017-10-01
A Cachazo-He-Yuan (CHY) type formula is derived for the leading gluon, bi-adjoint scalar ϕ 3, Yang-Mills-scalar and non-linear sigma model m-soft factors S m in arbitrary dimension. The general formula is used to evaluate explicit examples for up to three soft legs analytically and up to four soft legs numerically via comparison with amplitude ratios under soft kinematics. A structural pattern for gluon m-soft factor is inferred and a simpler formula for its calculation is conjectured. In four dimensions, a Cachazo-Svrček-Witten (CSW) recursive procedure producing the leading m-soft gluon factor in spinor helicity formalism is developed as an alternative, and Britto-Cachazo-Feng-Witten (BCFW) recursion is used to obtain the leading four-soft gluon factor for all analytically distinct helicity configurations.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
1988-02-01
in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
A recursive algorithm for Zernike polynomials
NASA Technical Reports Server (NTRS)
Davenport, J. W.
1982-01-01
The analysis of a function defined on a rotationally symmetric system, with either a circular or annular pupil is discussed. In order to numerically analyze such systems it is typical to expand the given function in terms of a class of orthogonal polynomials. Because of their particular properties, the Zernike polynomials are especially suited for numerical calculations. Developed is a recursive algorithm that can be used to generate the Zernike polynomials up to a given order. The algorithm is recursively defined over J where R(J,N) is the Zernike polynomial of degree N obtained by orthogonalizing the sequence R(J), R(J+2), ..., R(J+2N) over (epsilon, 1). The terms in the preceding row - the (J-1) row - up to the N+1 term is needed for generating the (J,N)th term. Thus, the algorith generates an upper left-triangular table. This algorithm was placed in the computer with the necessary support program also included.
Aesthetic Responses to Exact Fractals Driven by Physical Complexity
Bies, Alexander J.; Blanc-Goldhammer, Daryn R.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.
2016-01-01
Fractals are physically complex due to their repetition of patterns at multiple size scales. Whereas the statistical characteristics of the patterns repeat for fractals found in natural objects, computers can generate patterns that repeat exactly. Are these exact fractals processed differently, visually and aesthetically, than their statistical counterparts? We investigated the human aesthetic response to the complexity of exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the number of segments in the generator. Across two studies, a variety of fractal patterns were visually presented to human participants to determine the typical response to exact fractals. In the first study, we found that preference ratings for exact midpoint displacement fractals can be described by a linear trend with preference increasing as fractal dimension increases. For the majority of individuals, preference increased with dimension. We replicated these results for other exact fractal patterns in a second study. In the second study, we also tested the effects of symmetry and recursion by presenting asymmetric dragon fractals, symmetric dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial and mirror symmetry. We found a strong interaction among recursion, symmetry and fractal dimension. Specifically, at low levels of recursion, the presence of symmetry was enough to drive high preference ratings for patterns with moderate to high levels of fractal dimension. Most individuals required a much higher level of recursion to recover this level of preference in a pattern that lacked mirror or radial symmetry, while others were less discriminating. This suggests that exact fractals are processed differently than their statistical counterparts. We propose a set of four factors that influence complexity and preference judgments in fractals that may extend to other patterns: fractal dimension, recursion, symmetry and the number of segments in a pattern. Conceptualizations such as Berlyne’s and Redies’ theories of aesthetics also provide a suitable framework for interpretation of our data with respect to the individual differences that we detect. Future studies that incorporate physiological methods to measure the human aesthetic response to exact fractal patterns would further elucidate our responses to such timeless patterns. PMID:27242475
Some estimation formulae for continuous time-invariant linear systems
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Sidhu, G. S.
1975-01-01
In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.
Modeling, Control, and Estimation of Flexible, Aerodynamic Structures
NASA Astrophysics Data System (ADS)
Ray, Cody W.
Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.
2018-02-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving experiments performed on a cantilever beam subjected to earthquake excitation; a two-storey benchscale model with a TMD and, data from recorded responses of UCLA factor building demonstrate the efficacy of the proposed methodology as an ideal candidate for real time, reference free structural health monitoring.
Control of linear uncertain systems utilizing mismatched state observers
NASA Technical Reports Server (NTRS)
Goldstein, B.
1972-01-01
The control of linear continuous dynamical systems is investigated as a problem of limited state feedback control. The equations which describe the structure of an observer are developed constrained to time-invarient systems. The optimal control problem is formulated, accounting for the uncertainty in the design parameters. Expressions for bounds on closed loop stability are also developed. The results indicate that very little uncertainty may be tolerated before divergence occurs in the recursive computation algorithms, and the derived stability bound yields extremely conservative estimates of regions of allowable parameter variations.
Nam, Haewon
2017-01-01
We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects. PMID:28604794
A Rather Intelligent Language Teacher.
ERIC Educational Resources Information Center
Cerri, Stefano; Breuker, Joost
1981-01-01
Characteristics of DART (Didactic Augmented Recursive Transition), an ATN-based system for writing intelligent computer assisted instruction (ICAI) programs that is available on the PLATO system are described. DART allows writing programs in an ATN dialect, compiling them in machine code for the PLATO system, and executing them as if the original…
Doulamis, A D; Doulamis, N D; Kollias, S D
2003-01-01
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
Optimal tactics for close support operations. III - Degraded intelligence and communications
NASA Astrophysics Data System (ADS)
Hess, J.; Kalaba, R.; Kagiwada, H.; Spingarn, K.; Tsokos, C.
1980-04-01
A new generation of C3 (command, control, and communication) models for military cybernetics is developed. Recursive equations for the solution of the C3 problem are derived for an amphibious campaign with linear time-varying dynamics. Air and ground commanders are assumed to have no intelligence and no communications. Numerical results are given for the optimal decision rules.
ECG compression using non-recursive wavelet transform with quality control
NASA Astrophysics Data System (ADS)
Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching
2016-09-01
While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.
Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Masuda, Y; Aguilar, I; Misztal, I
2015-10-01
The purpose of this study was to examine accuracy of genomic selection via single-step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix (G) is replaced by an approximation of G(-1) based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G(-1) and the approximated G(-1) via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G(-1) and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method. © 2015 Blackwell Verlag GmbH.
Method for implementation of recursive hierarchical segmentation on parallel computers
NASA Technical Reports Server (NTRS)
Tilton, James C. (Inventor)
2005-01-01
A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.
Vicari, Giuseppe; Adenzato, Mauro
2014-05-01
In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains. Copyright © 2014 Elsevier Inc. All rights reserved.
TOPICAL REVIEW: Nonlinear aspects of the renormalization group flows of Dyson's hierarchical model
NASA Astrophysics Data System (ADS)
Meurice, Y.
2007-06-01
We review recent results concerning the renormalization group (RG) transformation of Dyson's hierarchical model (HM). This model can be seen as an approximation of a scalar field theory on a lattice. We introduce the HM and show that its large group of symmetry simplifies drastically the blockspinning procedure. Several equivalent forms of the recursion formula are presented with unified notations. Rigourous and numerical results concerning the recursion formula are summarized. It is pointed out that the recursion formula of the HM is inequivalent to both Wilson's approximate recursion formula and Polchinski's equation in the local potential approximation (despite the very small difference with the exponents of the latter). We draw a comparison between the RG of the HM and functional RG equations in the local potential approximation. The construction of the linear and nonlinear scaling variables is discussed in an operational way. We describe the calculation of non-universal critical amplitudes in terms of the scaling variables of two fixed points. This question appears as a problem of interpolation between these fixed points. Universal amplitude ratios are calculated. We discuss the large-N limit and the complex singularities of the critical potential calculable in this limit. The interpolation between the HM and more conventional lattice models is presented as a symmetry breaking problem. We briefly introduce models with an approximate supersymmetry. One important goal of this review is to present a configuration space counterpart, suitable for lattice formulations, of functional RG equations formulated in momentum space (often called exact RG equations and abbreviated ERGE).
Fixed interval smoothing with discrete measurements.
NASA Technical Reports Server (NTRS)
Bierman, G. J.
1972-01-01
Smoothing equations for a linear continuous dynamic system with linear discrete measurements, derived from the discrete results of Rauch, Tung, and Striebel (1965), (R-T-S), are used to extend, through recursive updating, the previously published results of Bryson and Frazier (1963), (B-F), and yield a modified Bryson and Frazier, (M-B-F), algorithm. A comparison of the (M-B-F) and (R-T-S) algorithms leads to the conclusion that the former is to be preferred because it entails less computation, less storage, and less instability. It is felt that the presented (M-B-F) smoothing algorithm is a practical mechanization and should be of value in smoothing discretely observed dynamic linear systems.
Implementing a Recursive Retention Assessment System for Engineering Programs. AIR 2002 Forum Paper.
ERIC Educational Resources Information Center
Acker, Jon Charles; Hughes, William; Fendley, William R., Jr.
This study was conducted to ascertain the factors associated with attrition in engineering programs on all fronts. Academic underpreparedness, psychosocial variables, and their interconnectivity were examined. Subjects included all enrolled University of Alabama students, as of the spring term 2001, who at one time or another were classified as…
NASA Astrophysics Data System (ADS)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
NASA Technical Reports Server (NTRS)
Charlesworth, Arthur
1990-01-01
The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.
Image defog algorithm based on open close filter and gradient domain recursive bilateral filter
NASA Astrophysics Data System (ADS)
Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen
2017-11-01
To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.
Optimal Recursive Digital Filters for Active Bending Stabilization
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2013-01-01
In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Cosmological power spectrum in a noncommutative spacetime
NASA Astrophysics Data System (ADS)
Kothari, Rahul; Rath, Pranati K.; Jain, Pankaj
2016-09-01
We propose a generalized star product that deviates from the standard one when the fields are considered at different spacetime points by introducing a form factor in the standard star product. We also introduce a recursive definition by which we calculate the explicit form of the generalized star product at any number of spacetime points. We show that our generalized star product is associative and cyclic at linear order. As a special case, we demonstrate that our recursive approach can be used to prove the associativity of standard star products for same or different spacetime points. The introduction of a form factor has no effect on the standard Lagrangian density in a noncommutative spacetime because it reduces to the standard star product when spacetime points become the same. We show that the generalized star product leads to physically consistent results and can fit the observed data on hemispherical anisotropy in the cosmic microwave background radiation.
Identification and stochastic control of helicopter dynamic modes
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Bar-Shalom, Y.
1983-01-01
A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.
Ridge Regression Signal Processing
NASA Technical Reports Server (NTRS)
Kuhl, Mark R.
1990-01-01
The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J. C.; Baillet, S.; Jerbi, K.
2001-01-01
We describe the use of truncated multipolar expansions for producing dynamic images of cortical neural activation from measurements of the magnetoencephalogram. We use a signal-subspace method to find the locations of a set of multipolar sources, each of which represents a region of activity in the cerebral cortex. Our method builds up an estimate of the sources in a recursive manner, i.e. we first search for point current dipoles, then magnetic dipoles, and finally first order multipoles. The dynamic behavior of these sources is then computed using a linear fit to the spatiotemporal data. The final step in the proceduremore » is to map each of the multipolar sources into an equivalent distributed source on the cortical surface. The method is illustrated through an application to epileptic interictal MEG data.« less
On optimal infinite impulse response edge detection filters
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1991-01-01
The authors outline the design of an optimal, computationally efficient, infinite impulse response edge detection filter. The optimal filter is computed based on Canny's high signal to noise ratio, good localization criteria, and a criterion on the spurious response of the filter to noise. An expression for the width of the filter, which is appropriate for infinite-length filters, is incorporated directly in the expression for spurious responses. The three criteria are maximized using the variational method and nonlinear constrained optimization. The optimal filter parameters are tabulated for various values of the filter performance criteria. A complete methodology for implementing the optimal filter using approximating recursive digital filtering is presented. The approximating recursive digital filter is separable into two linear filters operating in two orthogonal directions. The implementation is very simple and computationally efficient, has a constant time of execution for different sizes of the operator, and is readily amenable to real-time hardware implementation.
Exploiting loop level parallelism in nonprocedural dataflow programs
NASA Technical Reports Server (NTRS)
Gokhale, Maya B.
1987-01-01
Discussed are how loop level parallelism is detected in a nonprocedural dataflow program, and how a procedural program with concurrent loops is scheduled. Also discussed is a program restructuring technique which may be applied to recursive equations so that concurrent loops may be generated for a seemingly iterative computation. A compiler which generates C code for the language described below has been implemented. The scheduling component of the compiler and the restructuring transformation are described.
Lax, Leila R; Russell, M Lynn; Nelles, Laura J; Smith, Cathy M
2009-10-01
Professional behaviors, tacitly understood by Canadian-trained physicians, are difficult to teach and often create practice barriers for IMGs. The purpose of this design research study was to develop a Web-based program simulating Canadian medical literacy and culture, and to evaluate strategies of scaffolding individual knowledge building. Study 1 (N = 20) examined usability and pedagogic design. Studies 2 (N = 39) and 3 (N = 33) examined case participation patterns. Model design was validated in Study 1. Studies 2 and 3 demonstrated high levels of participation, on unprompted third tries, on knowledge tests. Recursive patterns were strongest on Reflective Exercises. Five strategies scaffolded knowledge building: (1) video simulations, (2) contextualized resources, (3) concurrent feedback, (4) Reflective Exercises, and (5) commentaries prompting "reflection on reflection." Scaffolded design supports complex knowledge building. These findings are concurrent with educational research on the importance of recursion and revision of knowledge for improvable and relational understanding.
Making It Better: Research, Assessment, and Recursive Learning Cycles
ERIC Educational Resources Information Center
Brookover, Robert; Timmerman, Danielle
2013-01-01
This article provides case study examples of how assessment efforts led to and have been enhanced by the creation of integrated curriculum delivery models in parks, recreation, and tourism programs at Clemson University and the University of Utah.
Graphical Tools for Linear Structural Equation Modeling
2014-06-01
others. 4Kenny and Milan (2011) write, “Identification is perhaps the most difficult concept for SEM researchers to understand. We have seen SEM...model to using typical SEM software to determine model identifia- bility. Kenny and Milan (2011) list the following drawbacks: (i) If poor starting...the well known recursive and null rules (Bollen, 1989) and the regression rule (Kenny and Milan , 2011). A Simple Criterion for Identifying Individual
An innovations approach to decoupling of multibody dynamics and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1989-01-01
The problem of hinged multibody dynamics is solved using an extension of the innovations approach of linear filtering and prediction theory to the problem of mechanical system modeling and control. This approach has been used quite effectively to diagonalize the equations for filtering and prediction for linear state space systems. It has similar advantages in the study of dynamics and control of multibody systems. The innovations approach advanced here consists of expressing the equations of motion in terms of two closely related processes: (1) the innovations process e, a sequence of moments, obtained from the applied moments T by means of a spatially recursive Kalman filter that goes from the tip of the manipulator to its base; (2) a residual process, a sequence of velocities, obtained from the joint-angle velocities by means of an outward smoothing operations. The innovations e and the applied moments T are related by means of the relationships e = (I - L)T and T = (I + K)e. The operation (I - L) is a causal lower triangular matrix which is generated by a spatially recursive Kalman filter and the corresponding discrete-step Riccati equation. Hence, the innovations and the applied moments can be obtained from each other by means of a causal operation which is itself casually invertible.
Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N
2016-07-12
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.
Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...
2016-06-06
We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less
Computing anticipatory systems with incursion and hyperincursion
NASA Astrophysics Data System (ADS)
Dubois, Daniel M.
1998-07-01
An anticipatory system is a system which contains a model of itself and/or of its environment in view of computing its present state as a function of the prediction of the model. With the concepts of incursion and hyperincursion, anticipatory discrete systems can be modelled, simulated and controlled. By definition an incursion, an inclusive or implicit recursion, can be written as: x(t+1)=F[…,x(t-1),x(t),x(t+1),…] where the value of a variable x(t+1) at time t+1 is a function of this variable at past, present and future times. This is an extension of recursion. Hyperincursion is an incursion with multiple solutions. For example, chaos in the Pearl-Verhulst map model: x(t+1)=a.x(t).[1-x(t)] is controlled by the following anticipatory incursive model: x(t+1)=a.x(t).[1-x(t+1)] which corresponds to the differential anticipatory equation: dx(t)/dt=a.x(t).[1-x(t+1)]-x(t). The main part of this paper deals with the discretisation of differential equation systems of linear and non-linear oscillators. The non-linear oscillator is based on the Lotka-Volterra equations model. The discretisation is made by incursion. The incursive discrete equation system gives the same stability condition than the original differential equations without numerical instabilities. The linearisation of the incursive discrete non-linear Lotka-Volterra equation system gives rise to the classical harmonic oscillator. The incursive discretisation of the linear oscillator is similar to define backward and forward discrete derivatives. A generalized complex derivative is then considered and applied to the harmonic oscillator. Non-locality seems to be a property of anticipatory systems. With some mathematical assumption, the Schrödinger quantum equation is derived for a particle in a uniform potential. Finally an hyperincursive system is given in the case of a neural stack memory.
Recursive least squares estimation and its application to shallow trench isolation
NASA Astrophysics Data System (ADS)
Wang, Jin; Qin, S. Joe; Bode, Christopher A.; Purdy, Matthew A.
2003-06-01
In recent years, run-to-run (R2R) control technology has received tremendous interest in semiconductor manufacturing. One class of widely used run-to-run controllers is based on the exponentially weighted moving average (EWMA) statistics to estimate process deviations. Using an EWMA filter to smooth the control action on a linear process has been shown to provide good results in a number of applications. However, for a process with severe drifts, the EWMA controller is insufficient even when large weights are used. This problem becomes more severe when there is measurement delay, which is almost inevitable in semiconductor industry. In order to control drifting processes, a predictor-corrector controller (PCC) and a double EWMA controller have been developed. Chen and Guo (2001) show that both PCC and double-EWMA controller are in effect Integral-double-Integral (I-II) controllers, which are able to control drifting processes. However, since offset is often within the noise of the process, the second integrator can actually cause jittering. Besides, tuning the second filter is not as intuitive as a single EWMA filter. In this work, we look at an alternative way Recursive Least Squares (RLS), to estimate and control the drifting process. EWMA and double-EWMA are shown to be the least squares estimate for locally constant mean model and locally constant linear trend model. Then the recursive least squares with exponential factor is applied to shallow trench isolation etch process to predict the future etch rate. The etch process, which is a critical process in the flash memory manufacturing, is known to suffer from significant etch rate drift due to chamber seasoning. In order to handle the metrology delay, we propose a new time update scheme. RLS with the new time update method gives very good result. The estimate error variance is smaller than that from EWMA, and mean square error decrease more than 10% compared to that from EWMA.
Phillips, Steven; Wilson, William H.
2012-01-01
Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language. PMID:22514704
Efficient dynamic optimization of logic programs
NASA Technical Reports Server (NTRS)
Laird, Phil
1992-01-01
A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.
What's special about human language? The contents of the "narrow language faculty" revisited.
Traxler, Matthew J; Boudewyn, Megan; Loudermilk, Jessica
2012-10-01
In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language.
Transportable Maps Software. Volume I.
1982-07-01
being collected at the beginning or end of the routine. This allows the interaction to be followed sequentially through its steps by anyone reading the...flow is either simple sequential , simple conditional (the equivalent of ’if-then-else’), simple iteration (’DO-loop’), or the non-linear recursion...input raster images to be in the form of sequential binary files with a SEGMENTED record type. The advantage of this form is that large logical records
Concatenated shift registers generating maximally spaced phase shifts of PN-sequences
NASA Technical Reports Server (NTRS)
Hurd, W. J.; Welch, L. R.
1977-01-01
A large class of linearly concatenated shift registers is shown to generate approximately maximally spaced phase shifts of pn-sequences, for use in pseudorandom number generation. A constructive method is presented for finding members of this class, for almost all degrees for which primitive trinomials exist. The sequences which result are not normally characterized by trinomial recursions, which is desirable since trinomial sequences can have some undesirable randomness properties.
NASA Astrophysics Data System (ADS)
Noreen, Amna; Olaussen, Kåre
2012-10-01
A subroutine for a very-high-precision numerical solution of a class of ordinary differential equations is provided. For a given evaluation point and equation parameters the memory requirement scales linearly with precision P, and the number of algebraic operations scales roughly linearly with P when P becomes sufficiently large. We discuss results from extensive tests of the code, and how one, for a given evaluation point and equation parameters, may estimate precision loss and computing time in advance. Program summary Program title: seriesSolveOde1 Catalogue identifier: AEMW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 991 No. of bytes in distributed program, including test data, etc.: 488116 Distribution format: tar.gz Programming language: C++ Computer: PC's or higher performance computers. Operating system: Linux and MacOS RAM: Few to many megabytes (problem dependent). Classification: 2.7, 4.3 External routines: CLN — Class Library for Numbers [1] built with the GNU MP library [2], and GSL — GNU Scientific Library [3] (only for time measurements). Nature of problem: The differential equation -s2({d2}/{dz2}+{1-ν+-ν-}/{z}{d}/{dz}+{ν+ν-}/{z2})ψ(z)+{1}/{z} ∑n=0N vnznψ(z)=0, is solved numerically to very high precision. The evaluation point z and some or all of the equation parameters may be complex numbers; some or all of them may be represented exactly in terms of rational numbers. Solution method: The solution ψ(z), and optionally ψ'(z), is evaluated at the point z by executing the recursion A(z)={s-2}/{(m+1+ν-ν+)(m+1+ν-ν-)} ∑n=0N Vn(z)A(z), ψ(z)=ψ(z)+A(z), to sufficiently large m. Here ν is either ν+ or ν-, and Vn(z)=vnz. The recursion is initialized by A(z)=δzν,for n=0,1,…,N ψ(z)=A0(z). Restrictions: No solution is computed if z=0, or s=0, or if ν=ν- (assuming Reν+≥Reν-) with ν+-ν- an integer, except when ν+-ν-=1 and v =0 (i.e. when z is an ordinary point for zψ(z)). Additional comments: The code of the main algorithm is in the file seriesSolveOde1.cc, which "#include" the file checkForBreakOde1.cc. These routines, and the programs using them, must "#include" the file seriesSolveOde1.cc. Running time: On a Linux PC that is a few years old, at y=√{10} to an accuracy of P=200 decimal digits, evaluating the ground state wavefunction of the anharmonic oscillator (with the eigenvalue known in advance); (cf. Eq. (6)) takes about 2 ms, and about 40 min at an accuracy of P=100000 decimal digits. References: [1] B. Haible and R.B. Kreckel, CLN — Class Library for Numbers, http://www.ginac.de/CLN/ [2] T. Granlund and collaborators, GMP — The GNU Multiple Precision Arithmetic Library, http://gmplib.org/ [3] M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078., http://www.gnu.org/software/gsl/
Recursive causality in evolution: a model for epigenetic mechanisms in cancer development.
Haslberger, A; Varga, F; Karlic, H
2006-01-01
Interactions between adaptative and selective processes are illustrated in the model of recursive causality as defined in Rupert Riedl's systems theory of evolution. One of the main features of this theory also termed as theory of evolving complexity is the centrality of the notion of 'recursive' or 'feedback' causality - 'the idea that every biological effect in living systems, in some way, feeds back to its own cause'. Our hypothesis is that "recursive" or "feedback" causality provides a model for explaining the consequences of interacting genetic and epigenetic mechanisms which are known to play a key role in development of cancer. Epigenetics includes any process that alters gene activity without changes of the DNA sequence. The most important epigenetic mechanisms are DNA-methylation and chromatin remodeling. Hypomethylation of so-called oncogenes and hypermethylation of tumor suppressor genes appear to be critical determinants of cancer. Folic acid, vitamin B12 and other nutrients influence the function of enzymes that participate in various methylation processes by affecting the supply of methyl groups into a variety of molecules which may be directly or indirectly associated with cancerogenesis. We present an example from our own studies by showing that vitamin D3 has the potential to de-methylate the osteocalcin-promoter in MG63 osteosarcoma cells. Consequently, a stimulation of osteocalcin synthesis can be observed. The above mentioned enzymes also play a role in development and differentiation of cells and organisms and thus illustrate the close association between evolutionary and developmental mechanisms. This enabled new ways to understand the interaction between the genome and environment and may improve biomedical concepts including environmental health aspects where epigenetic and genetic modifications are closely associated. Recent observations showed that methylated nucleotides in the gene promoter may serve as a target for solar UV-induced mutations of the p53 tumor suppressor gene. This illustrates the close interaction of genetic and epigenetic mechanisms in cancerogenesis resulting from changes in transcriptional regulation and its contribution to a phenotype at the micro- or macroevolutionary level. Above-mentioned interactions of genetic and epigenetic mechanisms in oncogenesis defy explanation by plain linear causality, things like the continuing adaptability of complex systems. They can be explained by the concept of recursive causality and has introduced molecular biology into the realm of cognition science and systems theory: based on the notion of so-called feedback- or recursive causality a model for epigenetic mechanisms with relevance for oncology and biomedicine is provided.
What's special about human language? The contents of the "narrow language faculty" revisited
Traxler, Matthew J.; Boudewyn, Megan; Loudermilk, Jessica
2012-01-01
In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language. PMID:23105948
LISP on a Reduced-Instruction-Set-Processor,
1986-01-01
Digital * Press, 1984. 19. Steele, G. L. Jr., and Sussman, G.J. LAMBDA : The Ultimate Imperative. Al Memo 353, MIT, Artificial ,, Inteligence Laboratory...procedure B is No 444, MIT Artificial Intelligence Laboratory, August, recursive, if procedure A can be reexecuted before the call 1977. returns. This...the programs Artificial Intelligence Programming. Lawrence Erlbaum use apply and eval, and of these three only frl uses eval Associates, Hillsdale, New
ERIC Educational Resources Information Center
Computer Symbolic, Inc., Washington, DC.
A pseudo assembly language, PAL, was developed and specified for use as the lowest level in a general, multilevel programing system for the realization of cost-effective, hardware-independent Naval software. The language was developed as part of the system called FIRMS (Fast Iterative Recursive Macro System) and is sufficiently general to allow…
NASA Astrophysics Data System (ADS)
Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol
2015-08-01
The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.
Neural networks for feedback feedforward nonlinear control systems.
Parisini, T; Zoppoli, R
1994-01-01
This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.
XAPiir: A recursive digital filtering package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, D.
1990-09-21
XAPiir is a basic recursive digital filtering package, containing both design and implementation subroutines. XAPiir was developed for the experimental array processor (XAP) software package, and is written in FORTRAN. However, it is intended to be incorporated into any general- or special-purpose signal analysis program. It replaces the older package RECFIL, offering several enhancements. RECFIL is used in several large analysis programs developed at LLNL, including the seismic analysis package SAC, several expert systems (NORSEA and NETSEA), and two general purpose signal analysis packages (SIG and VIEW). This report is divided into two sections: the first describes the use ofmore » the subroutine package, and the second, its internal organization. In the first section, the filter design problem is briefly reviewed, along with the definitions of the filter design parameters and their relationship to the subroutine input parameters. In the second section, the internal organization is documented to simplify maintenance and extensions to the package. 5 refs., 9 figs.« less
An extended harmonic balance method based on incremental nonlinear control parameters
NASA Astrophysics Data System (ADS)
Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.
2017-02-01
A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.
Bánréti, Zoltán
2010-11-01
This study investigates how aphasic impairment impinges on syntactic and/or semantic recursivity of human language. A series of tests has been conducted with the participation of five Hungarian speaking aphasic subjects and 10 control subjects. Photographs representing simple situations were presented to subjects and questions were asked about them. The responses are supposed to involve formal structural recursion, but they contain semantic-pragmatic operations instead, with 'theory of mind' type embeddings. Aphasic individuals tend to exploit the parallel between 'theory of mind' embeddings and syntactic-structural embeddings in order to avoid formal structural recursion. Formal structural recursion may be more impaired in Broca's aphasia and semantic recursivity may remain selectively unimpaired in this type of aphasia.
Lambert W function for applications in physics
NASA Astrophysics Data System (ADS)
Veberič, Darko
2012-12-01
The Lambert W(x) function and its possible applications in physics are presented. The actual numerical implementation in C++ consists of Halley's and Fritsch's iterations with initial approximations based on branch-point expansion, asymptotic series, rational fits, and continued-logarithm recursion. Program summaryProgram title: LambertW Catalogue identifier: AENC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 1335 No. of bytes in distributed program, including test data, etc.: 25 283 Distribution format: tar.gz Programming language: C++ (with suitable wrappers it can be called from C, Fortran etc.), the supplied command-line utility is suitable for other scripting languages like sh, csh, awk, perl etc. Computer: All systems with a C++ compiler. Operating system: All Unix flavors, Windows. It might work with others. RAM: Small memory footprint, less than 1 MB Classification: 1.1, 4.7, 11.3, 11.9. Nature of problem: Find fast and accurate numerical implementation for the Lambert W function. Solution method: Halley's and Fritsch's iterations with initial approximations based on branch-point expansion, asymptotic series, rational fits, and continued logarithm recursion. Additional comments: Distribution file contains the command-line utility lambert-w. Doxygen comments, included in the source files. Makefile. Running time: The tests provided take only a few seconds to run.
Two dimensional recursive digital filters for near real time image processing
NASA Technical Reports Server (NTRS)
Olson, D.; Sherrod, E.
1980-01-01
A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.
Recursive Objects--An Object Oriented Presentation of Recursion
ERIC Educational Resources Information Center
Sher, David B.
2004-01-01
Generally, when recursion is introduced to students the concept is illustrated with a toy (Towers of Hanoi) and some abstract mathematical functions (factorial, power, Fibonacci). These illustrate recursion in the same sense that counting to 10 can be used to illustrate a for loop. These are all good illustrations, but do not represent serious…
How children perceive fractals: Hierarchical self-similarity and cognitive development
Martins, Maurício Dias; Laaha, Sabine; Freiberger, Eva Maria; Choi, Soonja; Fitch, W. Tecumseh
2014-01-01
The ability to understand and generate hierarchical structures is a crucial component of human cognition, available in language, music, mathematics and problem solving. Recursion is a particularly useful mechanism for generating complex hierarchies by means of self-embedding rules. In the visual domain, fractals are recursive structures in which simple transformation rules generate hierarchies of infinite depth. Research on how children acquire these rules can provide valuable insight into the cognitive requirements and learning constraints of recursion. Here, we used fractals to investigate the acquisition of recursion in the visual domain, and probed for correlations with grammar comprehension and general intelligence. We compared second (n = 26) and fourth graders (n = 26) in their ability to represent two types of rules for generating hierarchical structures: Recursive rules, on the one hand, which generate new hierarchical levels; and iterative rules, on the other hand, which merely insert items within hierarchies without generating new levels. We found that the majority of fourth graders, but not second graders, were able to represent both recursive and iterative rules. This difference was partially accounted by second graders’ impairment in detecting hierarchical mistakes, and correlated with between-grade differences in grammar comprehension tasks. Empirically, recursion and iteration also differed in at least one crucial aspect: While the ability to learn recursive rules seemed to depend on the previous acquisition of simple iterative representations, the opposite was not true, i.e., children were able to acquire iterative rules before they acquired recursive representations. These results suggest that the acquisition of recursion in vision follows learning constraints similar to the acquisition of recursion in language, and that both domains share cognitive resources involved in hierarchical processing. PMID:24955884
Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X
2010-05-01
Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.
Aspects of Integrability in One and Several Dimensions,
1986-01-01
Kadomtsev - Petviashvili (KP) equation , the modified KdV to the modified KP, the non-linear Schr6d- inger to the Davey-Stewartson, etc. Furthermore...but a function de- noted in 20 by T12. This function also generates recursion operators in analogy with T. i % 61 4. THE KADOMTSEV - PETVIASHVILI EQUATION ...and its Appl., 19 L • 11 (1985). [41] Caudrey, P.J., Discrete and Periodic Spectral Transforms Related to the Kadomtsev - Petviashvili Equation (preprint
New syndrome decoder for (n, 1) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.
Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani
2015-03-01
In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Reduced kernel recursive least squares algorithm for aero-engine degradation prediction
NASA Astrophysics Data System (ADS)
Zhou, Haowen; Huang, Jinquan; Lu, Feng
2017-10-01
Kernel adaptive filters (KAFs) generate a linear growing radial basis function (RBF) network with the number of training samples, thereby lacking sparseness. To deal with this drawback, traditional sparsification techniques select a subset of original training data based on a certain criterion to train the network and discard the redundant data directly. Although these methods curb the growth of the network effectively, it should be noted that information conveyed by these redundant samples is omitted, which may lead to accuracy degradation. In this paper, we present a novel online sparsification method which requires much less training time without sacrificing the accuracy performance. Specifically, a reduced kernel recursive least squares (RKRLS) algorithm is developed based on the reduced technique and the linear independency. Unlike conventional methods, our novel methodology employs these redundant data to update the coefficients of the existing network. Due to the effective utilization of the redundant data, the novel algorithm achieves a better accuracy performance, although the network size is significantly reduced. Experiments on time series prediction and online regression demonstrate that RKRLS algorithm requires much less computational consumption and maintains the satisfactory accuracy performance. Finally, we propose an enhanced multi-sensor prognostic model based on RKRLS and Hidden Markov Model (HMM) for remaining useful life (RUL) estimation. A case study in a turbofan degradation dataset is performed to evaluate the performance of the novel prognostic approach.
Style and Usage Software: Mentor, not Judge.
ERIC Educational Resources Information Center
Smye, Randy
Computer software style and usage checkers can encourage students' recursive revision strategies. For example, HOMER is based on the revision pedagogy presented in Richard Lanham's "Revising Prose," while Grammatik II focuses on readability, passive voice, and possibly misused words or phrases. Writer's Workbench "Style" (a UNIX program) provides…
On Directionality of Phrase Structure Building
ERIC Educational Resources Information Center
Chesi, Cristiano
2015-01-01
Minimalism in grammatical theorizing (Chomsky in "The minimalist program." MIT Press, Cambridge, 1995) led to simpler linguistic devices and a better focalization of the core properties of the structure building engine: a lexicon and a free (recursive) phrase formation operation, dubbed Merge, are the basic components that serve in…
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
NASA Astrophysics Data System (ADS)
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.
2009-08-01
In this paper, the state least-squares linear estimation problem from correlated uncertain observations coming from multiple sensors is addressed. It is assumed that, at each sensor, the state is measured in the presence of additive white noise and that the uncertainty in the observations is characterized by a set of Bernoulli random variables which are only correlated at consecutive time instants. Assuming that the statistical properties of such variables are not necessarily the same for all the sensors, a recursive filtering algorithm is proposed, and the performance of the estimators is illustrated by a numerical simulation example wherein a signal is estimated from correlated uncertain observations coming from two sensors with different uncertainty characteristics.
An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy
NASA Astrophysics Data System (ADS)
Matsushima, Masatomo; Ohmiya, Mayumi
2009-09-01
The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.
Parallel algorithms for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
Martins, Mauricio Dias; Gingras, Bruno; Puig-Waldmueller, Estela; Fitch, W Tecumseh
2017-04-01
The human ability to process hierarchical structures has been a longstanding research topic. However, the nature of the cognitive machinery underlying this faculty remains controversial. Recursion, the ability to embed structures within structures of the same kind, has been proposed as a key component of our ability to parse and generate complex hierarchies. Here, we investigated the cognitive representation of both recursive and iterative processes in the auditory domain. The experiment used a two-alternative forced-choice paradigm: participants were exposed to three-step processes in which pure-tone sequences were built either through recursive or iterative processes, and had to choose the correct completion. Foils were constructed according to generative processes that did not match the previous steps. Both musicians and non-musicians were able to represent recursion in the auditory domain, although musicians performed better. We also observed that general 'musical' aptitudes played a role in both recursion and iteration, although the influence of musical training was somehow independent from melodic memory. Moreover, unlike iteration, recursion in audition was well correlated with its non-auditory (recursive) analogues in the visual and action sequencing domains. These results suggest that the cognitive machinery involved in establishing recursive representations is domain-general, even though this machinery requires access to information resulting from domain-specific processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Van Hulst, Andraea; Roy-Gagnon, Marie-Hélène; Gauvin, Lise; Kestens, Yan; Henderson, Mélanie; Barnett, Tracie A
2015-02-15
Few studies consider how risk factors within multiple levels of influence operate synergistically to determine childhood obesity. We used recursive partitioning analysis to identify unique combinations of individual, familial, and neighborhood factors that best predict obesity in children, and tested whether these predict 2-year changes in body mass index (BMI). Data were collected in 2005-2008 and in 2008-2011 for 512 Quebec youth (8-10 years at baseline) with a history of parental obesity (QUALITY study). CDC age- and sex-specific BMI percentiles were computed and children were considered obese if their BMI was ≥95th percentile. Individual (physical activity and sugar-sweetened beverage intake), familial (household socioeconomic status and measures of parental obesity including both BMI and waist circumference), and neighborhood (disadvantage, prestige, and presence of parks, convenience stores, and fast food restaurants) factors were examined. Recursive partitioning, a method that generates a classification tree predicting obesity based on combined exposure to a series of variables, was used. Associations between resulting varying risk group membership and BMI percentile at baseline and 2-year follow up were examined using linear regression. Recursive partitioning yielded 7 subgroups with a prevalence of obesity equal to 8%, 11%, 26%, 28%, 41%, 60%, and 63%, respectively. The 2 highest risk subgroups comprised i) children not meeting physical activity guidelines, with at least one BMI-defined obese parent and 2 abdominally obese parents, living in disadvantaged neighborhoods without parks and, ii) children with these characteristics, except with access to ≥1 park and with access to ≥1 convenience store. Group membership was strongly associated with BMI at baseline, but did not systematically predict change in BMI. Findings support the notion that obesity is predicted by multiple factors in different settings and provide some indications of potentially obesogenic environments. Alternate group definitions as well as longer duration of follow up should be investigated to predict change in obesity.
Structure of the conversion laws in quantum integrable spin chains with short range interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabowski, M.P.; Mathieu, P.
1995-11-01
The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, formore » two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model`s free parameter for all charges is derived in closed form. 62 refs., 4 figs.« less
Predictive IP controller for robust position control of linear servo system.
Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi
2016-07-01
Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Badia, Santiago; Martín, Alberto F.; Planas, Ramon
2014-10-01
The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.
A Tool for Intersecting Context-Free Grammars and Its Applications
NASA Technical Reports Server (NTRS)
Gange, Graeme; Navas, Jorge A.; Schachte, Peter; Sondergaard, Harald; Stuckey, Peter J.
2015-01-01
This paper describes a tool for intersecting context-free grammars. Since this problem is undecidable the tool follows a refinement-based approach and implements a novel refinement which is complete for regularly separable grammars. We show its effectiveness for safety verification of recursive multi-threaded programs.
ASIC implementation of recursive scaled discrete cosine transform algorithm
NASA Astrophysics Data System (ADS)
On, Bill N.; Narasimhan, Sam; Huang, Victor K.
1994-05-01
A program to implement the Recursive Scaled Discrete Cosine Transform (DCT) algorithm as proposed by H. S. Hou has been undertaken at the Institute of Microelectronics. Implementation of the design was done using top-down design methodology with VHDL (VHSIC Hardware Description Language) for chip modeling. When the VHDL simulation has been satisfactorily completed, the design is synthesized into gates using a synthesis tool. The architecture of the design consists of two processing units together with a memory module for data storage and transpose. Each processing unit is composed of four pipelined stages which allow the internal clock to run at one-eighth (1/8) the speed of the pixel clock. Each stage operates on eight pixels in parallel. As the data flows through each stage, there are various adders and multipliers to transform them into the desired coefficients. The Scaled IDCT was implemented in a similar fashion with the adders and multipliers rearranged to perform the inverse DCT algorithm. The chip has been verified using Field Programmable Gate Array devices. The design is operational. The combination of fewer multiplications required and pipelined architecture give Hou's Recursive Scaled DCT good potential of achieving high performance at a low cost in using Very Large Scale Integration implementation.
Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory
NASA Astrophysics Data System (ADS)
Mafra, Carlos R.; Schlotterer, Oliver
2015-09-01
In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.
Superresolution restoration of an image sequence: adaptive filtering approach.
Elad, M; Feuer, A
1999-01-01
This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.
Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind.
Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika
2016-01-01
The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures ("What may X be thinking/asking Y to do?"). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies "situative statements." Where the question concerned the mental state of the character but did not require an answer with sentence embedding ("What does X hate?"), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem.
Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind
Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika
2016-01-01
The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures (“What may X be thinking/asking Y to do?”). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies “situative statements.” Where the question concerned the mental state of the character but did not require an answer with sentence embedding (“What does X hate?”), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem. PMID:27064887
NASA Astrophysics Data System (ADS)
Filimonov, M. Yu.
2017-12-01
The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.
Real-Time Parameter Estimation in the Frequency Domain
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2000-01-01
A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented
Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal
ERIC Educational Resources Information Center
Steinley, Douglas; Hubert, Lawrence
2008-01-01
This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…
Conceptualizing the dynamics of workplace stress: a systems-based study of nursing aides.
Jetha, Arif; Kernan, Laura; Kurowski, Alicia
2017-01-05
Workplace stress is a complex phenomenon that may often be dynamic and evolving over time. Traditional linear modeling does not allow representation of recursive feedback loops among the implicated factors. The objective of this study was to develop a multidimensional system dynamics model (SDM) of workplace stress among nursing aides and conduct simulations to illustrate how changes in psychosocial perceptions and workplace factors might influence workplace stress over time. Eight key informants with prior experience in a large study of US nursing home workers participated in model building. Participants brainstormed the range of components related to workplace stress. Components were grouped together based on common themes and translated into feedback loops. The SDM was parameterized through key informant insight on the shape and magnitude of the relationship between model components. Model construction was also supported utilizing survey data collected as part of the larger study. All data was entered into the software program, Vensim. Simulations were conducted to examine how adaptations to model components would influence workplace stress. The SDM included perceptions of organizational conditions (e.g., job demands and job control), workplace social support (i.e., managerial and coworker social support), workplace safety, and demands outside of work (i.e. work-family conflict). Each component was part of a reinforcing feedback loop. Simulations exhibited that scenarios with increasing job control and decreasing job demands led to a decline in workplace stress. Within the context of the system, the effects of workplace social support, workplace safety, and work-family conflict were relatively minor. SDM methodology offers a unique perspective for researchers and practitioners to view workplace stress as a dynamic process. The portrayal of multiple recursive feedback loops can guide the development of policies and programs within complex organizational contexts with attention both to interactions among causes and avoidance of adverse unintended consequences. While additional research is needed to further test the modeling approach, findings might underscore the need to direct workplace interventions towards changing organizational conditions for nursing aides.
Flatness-based control and Kalman filtering for a continuous-time macroeconomic model
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.
2017-11-01
The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.
NASA Astrophysics Data System (ADS)
Nordtvedt, Kenneth
2018-01-01
In the author's previous publications, a recursive linear algebraic method was introduced for obtaining (without gravitational radiation) the full potential expansions for the gravitational metric field components and the Lagrangian for a general N-body system. Two apparent properties of gravity— Exterior Effacement and Interior Effacement—were defined and fully enforced to obtain the recursive algebra, especially for the motion-independent potential expansions of the general N-body situation. The linear algebraic equations of this method determine the potential coefficients at any order n of the expansions in terms of the lower-order coefficients. Then, enforcing Exterior and Interior Effacement on a selecedt few potential series of the full motion-independent potential expansions, the complete exterior metric field for a single, spherically-symmetric mass source was obtained, producing the Schwarzschild metric field of general relativity. In this fourth paper of this series, the complete spatial metric's motion-independent potentials for N bodies are obtained using enforcement of Interior Effacement and knowledge of the Schwarzschild potentials. From the full spatial metric, the complete set of temporal metric potentials and Lagrangian potentials in the motion-independent case can then be found by transfer equations among the coefficients κ( n, α) → λ( n, ɛ) → ξ( n, α) with κ( n, α), λ( n, ɛ), ξ( n, α) being the numerical coefficients in the spatial metric, the Lagrangian, and the temporal metric potential expansions, respectively.
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan
2009-02-01
The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.
Recursion to food plants by free-ranging Bornean elephant
Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne
2015-01-01
Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant’s preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed. PMID:26290779
Recursion to food plants by free-ranging Bornean elephant.
English, Megan; Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne
2015-01-01
Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed.
A generalized theory for the design of contraction cones and other low speed ducts
NASA Technical Reports Server (NTRS)
Barger, R. L.; Bowen, J. T.
1972-01-01
A generalization of the Tsien method of contraction cone design is described. The design velocity distribution is expressed in such a form that the required high order derivatives can be obtained by recursion rather than by numerical or analytic differentiation. The method is applicable to the design of diffusers and converging-diverging ducts as well as contraction cones. The computer program is described and a FORTRAN listing of the program is provided.
From Turing machines to computer viruses.
Marion, Jean-Yves
2012-07-28
Self-replication is one of the fundamental aspects of computing where a program or a system may duplicate, evolve and mutate. Our point of view is that Kleene's (second) recursion theorem is essential to understand self-replication mechanisms. An interesting example of self-replication codes is given by computer viruses. This was initially explained in the seminal works of Cohen and of Adleman in the 1980s. In fact, the different variants of recursion theorems provide and explain constructions of self-replicating codes and, as a result, of various classes of malware. None of the results are new from the point of view of computability theory. We now propose a self-modifying register machine as a model of computation in which we can effectively deal with the self-reproduction and in which new offsprings can be activated as independent organisms.
Recursive model for the fragmentation of polarized quarks
NASA Astrophysics Data System (ADS)
Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.
2018-04-01
We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.
Distinctive signatures of recursion.
Martins, Maurício Dias
2012-07-19
Although recursion has been hypothesized to be a necessary capacity for the evolution of language, the multiplicity of definitions being used has undermined the broader interpretation of empirical results. I propose that only a definition focused on representational abilities allows the prediction of specific behavioural traits that enable us to distinguish recursion from non-recursive iteration and from hierarchical embedding: only subjects able to represent recursion, i.e. to represent different hierarchical dependencies (related by parenthood) with the same set of rules, are able to generalize and produce new levels of embedding beyond those specified a priori (in the algorithm or in the input). The ability to use such representations may be advantageous in several domains: action sequencing, problem-solving, spatial navigation, social navigation and for the emergence of conventionalized communication systems. The ability to represent contiguous hierarchical levels with the same rules may lead subjects to expect unknown levels and constituents to behave similarly, and this prior knowledge may bias learning positively. Finally, a new paradigm to test for recursion is presented. Preliminary results suggest that the ability to represent recursion in the spatial domain recruits both visual and verbal resources. Implications regarding language evolution are discussed.
Quraishi, B M; Zhang, H; Everson, T M; Ray, M; Lockett, G A; Holloway, J W; Tetali, S R; Arshad, S H; Kaushal, A; Rezwan, F I; Karmaus, W
2015-01-01
The prevalence of eczema is increasing in industrialized nations. Limited evidence has shown the association of DNA methylation (DNA-M) with eczema. We explored this association at the epigenome-scale to better understand the role of DNA-M. Data from the first generation (F1) of the Isle of Wight (IoW) birth cohort participants and the second generation (F2) were examined in our study. Epigenome-scale DNA methylation of F1 at age 18 years and F2 in cord blood was measured using the Illumina Infinium HumanMethylation450 Beadchip. A total of 307,357 cytosine-phosphate-guanine sites (CpGs) in the F1 generation were screened via recursive random forest (RF) for their potential association with eczema at age 18. Functional enrichment and pathway analysis of resulting genes were carried out using DAVID gene functional classification tool. Log-linear models were performed in F1 to corroborate the identified CpGs. Findings in F1 were further replicated in F2. The recursive RF yielded 140 CpGs, 88 of which showed statistically significant associations with eczema at age 18, corroborated by log-linear models after controlling for false discovery rate (FDR) of 0.05. These CpGs were enriched among many biological pathways, including pathways related to creating transcriptional variety and pathways mechanistically linked to eczema such as cadherins, cell adhesion, gap junctions, tight junctions, melanogenesis, and apoptosis. In the F2 generation, about half of the 83 CpGs identified in F1 showed the same direction of association with eczema risk as in F1, of which two CpGs were significantly associated with eczema risk, cg04850479 of the PROZ gene (risk ratio (RR) = 15.1 in F1, 95 % confidence interval (CI) 1.71, 79.5; RR = 6.82 in F2, 95 % CI 1.52, 30.62) and cg01427769 of the NEU1 gene (RR = 0.13 in F1, 95 % CI 0.03, 0.46; RR = 0.09 in F2, 95 % CI 0.03, 0.36). Via epigenome-scaled analyses using recursive RF followed by log-linear models, we identified 88 CpGs associated with eczema in F1, of which 41 were replicated in F2. Several identified CpGs are located within genes in biological pathways relating to skin barrier integrity, which is central to the pathogenesis of eczema. Novel genes associated with eczema risk were identified (e.g., the PROZ and NEU1 genes).
The Recursive Paradigm: Suppose We Already Knew.
ERIC Educational Resources Information Center
Maurer, Stephen B.
1995-01-01
Explains the recursive model in discrete mathematics through five examples and problems. Discusses the relationship between the recursive model, mathematical induction, and inductive reasoning and the relevance of these concepts in the school curriculum. Provides ideas for approaching this material with students. (Author/DDD)
Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti
2017-01-01
District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR <= 2.7. The next left side branch was again married illiteracy with splits at 23% to determine TFR <= 2.1. We conclude that female married illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run.
HELAC-PHEGAS: A generator for all parton level processes
NASA Astrophysics Data System (ADS)
Cafarella, Alessandro; Papadopoulos, Costas G.; Worek, Malgorzata
2009-10-01
The updated version of the HELAC-PHEGAS event generator is presented. The matrix elements are calculated through Dyson-Schwinger recursive equations using color connection representation. Phase-space generation is based on a multichannel approach, including optimization. HELAC-PHEGAS generates parton level events with all necessary information, in the most recent Les Houches Accord format, for the study of any process within the Standard Model in hadron and lepton colliders. New version program summaryProgram title: HELAC-PHEGAS Catalogue identifier: ADMS_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADMS_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 986 No. of bytes in distributed program, including test data, etc.: 380 214 Distribution format: tar.gz Programming language: Fortran Computer: All Operating system: Linux Classification: 11.1, 11.2 External routines: Optionally Les Houches Accord (LHA) PDF Interface library ( http://projects.hepforge.org/lhapdf/) Catalogue identifier of previous version: ADMS_v1_0 Journal reference of previous version: Comput. Phys. Comm. 132 (2000) 306 Does the new version supersede the previous version?: Yes, partly Nature of problem: One of the most striking features of final states in current and future colliders is the large number of events with several jets. Being able to predict their features is essential. To achieve this, the calculations need to describe as accurately as possible the full matrix elements for the underlying hard processes. Even at leading order, perturbation theory based on Feynman graphs runs into computational problems, since the number of graphs contributing to the amplitude grows as n!. Solution method: Recursive algorithms based on Dyson-Schwinger equations have been developed recently in order to overcome the computational obstacles. The calculation of the amplitude, using Dyson-Schwinger recursive equations, results in a computational cost growing asymptotically as 3 n, where n is the number of particles involved in the process. Off-shell subamplitudes are introduced, for which a recursion relation has been obtained allowing to express an n-particle amplitude in terms of subamplitudes, with 1-, 2-, … up to (n-1) particles. The color connection representation is used in order to treat amplitudes involving colored particles. In the present version HELAC-PHEGAS can be used to efficiently obtain helicity amplitudes, total cross sections, parton-level event samples in LHA format, for arbitrary multiparticle processes in the Standard Model in leptonic, pp¯ and pp collisions. Reasons for new version: Substantial improvements, major functionality upgrade. Summary of revisions: Color connection representation, efficient integration over PDF via the PARNI algorithm, interface to LHAPDF, parton level events generated in the most recent LHA format, k reweighting for Parton Shower matching, numerical predictions for amplitudes for arbitrary processes for phase-space points provided by the user, new user interface and the possibility to run over computer clusters. Running time: Depending on the process studied. Usually from seconds to hours. References:A. Kanaki, C.G. Papadopoulos, Comput. Phys. Comm. 132 (2000) 306. C.G. Papadopoulos, Comput. Phys. Comm. 137 (2001) 247. URL: http://www.cern.ch/helac-phegas.
Towards rigorous analysis of the Levitov-Mirlin-Evers recursion
NASA Astrophysics Data System (ADS)
Fyodorov, Y. V.; Kupiainen, A.; Webb, C.
2016-12-01
This paper aims to develop a rigorous asymptotic analysis of an approximate renormalization group recursion for inverse participation ratios P q of critical powerlaw random band matrices. The recursion goes back to the work by Mirlin and Evers (2000 Phys. Rev. B 62 7920) and earlier works by Levitov (1990 Phys. Rev. Lett. 64 547, 1999 Ann. Phys. 8 697-706) and is aimed to describe the ensuing multifractality of the eigenvectors of such matrices. We point out both similarities and dissimilarities between the LME recursion and those appearing in the theory of multiplicative cascades and branching random walks and show that the methods developed in those fields can be adapted to the present case. In particular the LME recursion is shown to exhibit a phase transition, which we expect is a freezing transition, where the role of temperature is played by the exponent q. However, the LME recursion has features that make its rigorous analysis considerably harder and we point out several open problems for further study.
The language faculty that wasn't: a usage-based account of natural language recursion
Christiansen, Morten H.; Chater, Nick
2015-01-01
In the generative tradition, the language faculty has been shrinking—perhaps to include only the mechanism of recursion. This paper argues that even this view of the language faculty is too expansive. We first argue that a language faculty is difficult to reconcile with evolutionary considerations. We then focus on recursion as a detailed case study, arguing that our ability to process recursive structure does not rely on recursion as a property of the grammar, but instead emerges gradually by piggybacking on domain-general sequence learning abilities. Evidence from genetics, comparative work on non-human primates, and cognitive neuroscience suggests that humans have evolved complex sequence learning skills, which were subsequently pressed into service to accommodate language. Constraints on sequence learning therefore have played an important role in shaping the cultural evolution of linguistic structure, including our limited abilities for processing recursive structure. Finally, we re-evaluate some of the key considerations that have often been taken to require the postulation of a language faculty. PMID:26379567
The language faculty that wasn't: a usage-based account of natural language recursion.
Christiansen, Morten H; Chater, Nick
2015-01-01
In the generative tradition, the language faculty has been shrinking-perhaps to include only the mechanism of recursion. This paper argues that even this view of the language faculty is too expansive. We first argue that a language faculty is difficult to reconcile with evolutionary considerations. We then focus on recursion as a detailed case study, arguing that our ability to process recursive structure does not rely on recursion as a property of the grammar, but instead emerges gradually by piggybacking on domain-general sequence learning abilities. Evidence from genetics, comparative work on non-human primates, and cognitive neuroscience suggests that humans have evolved complex sequence learning skills, which were subsequently pressed into service to accommodate language. Constraints on sequence learning therefore have played an important role in shaping the cultural evolution of linguistic structure, including our limited abilities for processing recursive structure. Finally, we re-evaluate some of the key considerations that have often been taken to require the postulation of a language faculty.
Valle, Annalisa; Massaro, Davide; Castelli, Ilaria; Marchetti, Antonella
2015-01-01
This study explores the development of theory of mind, operationalized as recursive thinking ability, from adolescence to early adulthood (N = 110; young adolescents = 47; adolescents = 43; young adults = 20). The construct of theory of mind has been operationalized in two different ways: as the ability to recognize the correct mental state of a character, and as the ability to attribute the correct mental state in order to predict the character’s behaviour. The Imposing Memory Task, with five recursive thinking levels, and a third-order false-belief task with three recursive thinking levels (devised for this study) have been used. The relationship among working memory, executive functions, and linguistic skills are also analysed. Results show that subjects exhibit less understanding of elevated recursive thinking levels (third, fourth, and fifth) compared to the first and second levels. Working memory is correlated with total recursive thinking, whereas performance on the linguistic comprehension task is related to third level recursive thinking in both theory of mind tasks. An effect of age on third-order false-belief task performance was also found. A key finding of the present study is that the third-order false-belief task shows significant age differences in the application of recursive thinking that involves the prediction of others’ behaviour. In contrast, such an age effect is not observed in the Imposing Memory Task. These results may support the extension of the investigation of the third order false belief after childhood. PMID:27247645
Yang, Xiong; Liu, Derong; Wang, Ding; Wei, Qinglai
2014-07-01
In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded disturbances. We investigate multi-input-multi-output unknown nonaffine nonlinear DT systems and employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The weights of both the action NN and the critic NN are directly updated online instead of offline training. By utilizing Lyapunov's direct method, the closed-loop tracking errors and the NN estimated weights are demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the effectiveness of the present approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.
2017-06-26
Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased slightly high and some biased slightly low compared to the recursive digital filter. There were notable differences between the days at base flow estimated by the different methods, with the recursive digital filter having a smaller range of values. This was attributed to how the different methods determine cessation of quickflow (the part of streamflow which is not base flow).For 109 Chesapeake Bay watershed sites with available specific conductance data, the parameters of the filter were optimized using a chemical-mass-balance constraint and two different models for the time-dependence of base-flow specific conductance. Sixty-seven models were deemed acceptable and the results compared well with non-optimized results. There are a number of limitations to the optimal hydrograph-separation approach resulting from the assumptions implicit in the conceptual model, the mathematical model, and the approach taken to impose chemical mass balance (including tracer choice). These limitations may be evidenced by poor model results; conversely, poor model fit may provide an indication that two-component separation does not adequately describe the hydrologic system’s runoff response.The results of this study may be used to address a number of questions regarding the role of groundwater in understanding past changes in stream-water quality and forecasting possible future changes, such as the timing and magnitude of land-use and management practice effects on stream and groundwater quality. Ongoing and future modeling efforts may benefit from the estimates of base flow as calibration targets or as a means to filter chemical data to model base-flow loads and trends. Ultimately, base-flow estimation might provide the basis for future work aimed at improving the ability to quantify groundwater discharge, not only at the scale of a gaged watershed, but at the scale of individual reaches as well.
Twinning "Practices of Change" with "Theory of Change": Room for Emergence in Advocacy Evaluation
ERIC Educational Resources Information Center
Arensman, Bodille; van Waegeningh, Cornelie; van Wessel, Margit
2018-01-01
Theory of change (ToC) is currently "the" approach for the evaluation and planning of international development programs. This approach is considered especially suitable for complex interventions. We question this assumption and argue that ToC's focus on cause-effect logic and intended outcomes does not do justice to the recursive nature…
Teacher Research as a Robust and Reflective Path to Professional Development
ERIC Educational Resources Information Center
Roberts, Sherron Killingsworth; Crawford, Patricia A.; Hickmann, Rosemary
2010-01-01
This article explores the role of teacher research as part of a robust program of professional development. Teacher research offers teachers at every stage of development a recursive and reflective means of bridging the gap between current practice and potential professional growth. The purpose of this dual level inquiry was to probe the concept…
Observability under recurrent loss of data
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok; Halevi, Yoram
1992-01-01
An account is given of the concept of extended observability in finite-dimensional linear time-invariant systems under recurrent loss of data, where the state vector has to be reconstructed from an ensemble of sensor data at nonconsecutive samples. An at once necessary and sufficient condition for extended observability that can be expressed via a recursive relation is presented, together with such conditions for this as may be related to the characteristic polynomial of the state transition matrix in a discrete-time setting, or of the system matrix in a continuous-time setting.
Numerical solution of inverse scattering for near-field optics.
Bao, Gang; Li, Peijun
2007-06-01
A novel regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium located on a substrate from data accessible through photon scanning tunneling microscopy experiments. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to weak scattering at a low frequency, and each update is obtained by continuation on the wavenumber from solutions of one forward problem and one adjoint problem of the Helmholtz equation.
Recursive sequences in first-year calculus
NASA Astrophysics Data System (ADS)
Krainer, Thomas
2016-02-01
This article provides ready-to-use supplementary material on recursive sequences for a second-semester calculus class. It equips first-year calculus students with a basic methodical procedure based on which they can conduct a rigorous convergence or divergence analysis of many simple recursive sequences on their own without the need to invoke inductive arguments as is typically required in calculus textbooks. The sequences that are accessible to this kind of analysis are predominantly (eventually) monotonic, but also certain recursive sequences that alternate around their limit point as they converge can be considered.
Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator
NASA Astrophysics Data System (ADS)
Dube, Chioniso; Pedro, Jimoh O.
2018-05-01
This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.
High effective inverse dynamics modelling for dual-arm robot
NASA Astrophysics Data System (ADS)
Shen, Haoyu; Liu, Yanli; Wu, Hongtao
2018-05-01
To deal with the problem of inverse dynamics modelling for dual arm robot, a recursive inverse dynamics modelling method based on decoupled natural orthogonal complement is presented. In this model, the concepts and methods of Decoupled Natural Orthogonal Complement matrices are used to eliminate the constraint forces in the Newton-Euler kinematic equations, and the screws is used to express the kinematic and dynamics variables. On this basis, the paper has developed a special simulation program with symbol software of Mathematica and conducted a simulation research on the a dual-arm robot. Simulation results show that the proposed method based on decoupled natural orthogonal complement can save an enormous amount of CPU time that was spent in computing compared with the recursive Newton-Euler kinematic equations and the results is correct and reasonable, which can verify the reliability and efficiency of the method.
Recursive Feature Extraction in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-14
ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.
Recursion, Language, and Starlings
ERIC Educational Resources Information Center
Corballis, Michael C.
2007-01-01
It has been claimed that recursion is one of the properties that distinguishes human language from any other form of animal communication. Contrary to this claim, a recent study purports to demonstrate center-embedded recursion in starlings. I show that the performance of the birds in this study can be explained by a counting strategy, without any…
1980-02-01
implemented to test ANSI FORTRAN set D3. Using theorem 6 we then have programs. In building real testing tools for Theorem 18 : The recursion constructors...constants, scalar in theorems 10, 15, 16, and 18 , then Q must be variables, and array references) times the number equivalent to P. of unique data...for j,,rd1s longer thlan a fixed .1; 0. erot 2., .12.’Ie 1). Ullman2. li21122 arnd isolates and plrints each telegram along hI 2 .. 222.2.J~12.2.1 It
Inner and Outer Recursive Neural Networks for Chemoinformatics Applications.
Urban, Gregor; Subrahmanya, Niranjan; Baldi, Pierre
2018-02-26
Deep learning methods applied to problems in chemoinformatics often require the use of recursive neural networks to handle data with graphical structure and variable size. We present a useful classification of recursive neural network approaches into two classes, the inner and outer approach. The inner approach uses recursion inside the underlying graph, to essentially "crawl" the edges of the graph, while the outer approach uses recursion outside the underlying graph, to aggregate information over progressively longer distances in an orthogonal direction. We illustrate the inner and outer approaches on several examples. More importantly, we provide open-source implementations [available at www.github.com/Chemoinformatics/InnerOuterRNN and cdb.ics.uci.edu ] for both approaches in Tensorflow which can be used in combination with training data to produce efficient models for predicting the physical, chemical, and biological properties of small molecules.
Analysis and testing of numerical formulas for the initial value problem
NASA Technical Reports Server (NTRS)
Brown, R. L.; Kovach, K. R.; Popyack, J. L.
1980-01-01
Three computer programs for evaluating and testing numerical integration formulas used with fixed stepsize programs to solve initial value systems of ordinary differential equations are described. A program written in PASCAL SERIES, takes as input the differential equations and produces a FORTRAN subroutine for the derivatives of the system and for computing the actual solution through recursive power series techniques. Both of these are used by STAN, a FORTRAN program that interactively displays a discrete analog of the Liapunov stability region of any two dimensional subspace of the system. The derivatives may be used by CLMP, a FORTRAN program, to test the fixed stepsize formula against a good numerical result and interactively display the solutions.
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
A basic recursion concept inventory
NASA Astrophysics Data System (ADS)
Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.
2017-04-01
Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.
ERIC Educational Resources Information Center
Karakus, Mustafa C.; Salkever, David S.; Slade, Eric P.; Ialongo, Nicholas; Stuart, Elizabeth
2012-01-01
The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear. As an…
Using Spreadsheets to Help Students Think Recursively
ERIC Educational Resources Information Center
Webber, Robert P.
2012-01-01
Spreadsheets lend themselves naturally to recursive computations, since a formula can be defined as a function of one of more preceding cells. A hypothesized closed form for the "n"th term of a recursive sequence can be tested easily by using a spreadsheet to compute a large number of the terms. Similarly, a conjecture about the limit of a series…
Critic: a new program for the topological analysis of solid-state electron densities
NASA Astrophysics Data System (ADS)
Otero-de-la-Roza, A.; Blanco, M. A.; Pendás, A. Martín; Luaña, Víctor
2009-01-01
In this paper we introduce CRITIC, a new program for the topological analysis of the electron densities of crystalline solids. Two different versions of the code are provided, one adapted to the LAPW (Linear Augmented Plane Wave) density calculated by the WIEN2K package and the other to the ab initio Perturbed Ion ( aiPI) density calculated with the PI7 code. Using the converged ground state densities, CRITIC can locate their critical points, determine atomic basins and integrate properties within them, and generate several graphical representations which include topological atomic basins and primary bundles, contour maps of ρ and ∇ρ, vector maps of ∇ρ, chemical graphs, etc. Program summaryProgram title: CRITIC Catalogue identifier: AECB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL, version 3 No. of lines in distributed program, including test data, etc.: 1 206 843 No. of bytes in distributed program, including test data, etc.: 12 648 065 Distribution format: tar.gz Programming language: FORTRAN 77 and 90 Computer: Any computer capable of compiling Fortran Operating system: Unix, GNU/Linux Classification: 7.3 Nature of problem: Topological analysis of the electron density in periodic solids. Solution method: The automatic localization of the electron density critical points is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed by a Newton search from significant points on each tetrahedra. Plotting of and integration on the atomic basins is currently based on a new implementation of Keith's promega algorithm. Running time: Variable, depending on the task. From seconds to a few minutes for the localization of critical points. Hours to days for the determination of the atomic basins shape and properties. Times correspond to a typical 2007 PC.
Hypoglycemia early alarm systems based on recursive autoregressive partial least squares models.
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. © 2012 Diabetes Technology Society.
Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179
ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS
Watumull, Jeffrey; Hauser, Marc D; Roberts, Ian G; Hornstein, Norbert
2014-01-08
It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However, the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauseretal's. (2002) articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language-the faculty of language in the narrow sense (FLN)-is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded-existent or non-existent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension); definition by induction (i.e., rules strongly generative of structure); and mathematical induction (i.e., rules for the principled-and potentially unbounded-expansion of strongly generated structure). By these necessary and sufficient criteria, the grammars of all natural languages are recursive.
Experiments with recursive estimation in astronomical image processing
NASA Technical Reports Server (NTRS)
Busko, I.
1992-01-01
Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.
Watumull, Jeffrey; Hauser, Marc D.; Roberts, Ian G.; Hornstein, Norbert
2014-01-01
It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However, the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauseretal's. (2002) articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language—the faculty of language in the narrow sense (FLN)—is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded—existent or non-existent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension); definition by induction (i.e., rules strongly generative of structure); and mathematical induction (i.e., rules for the principled—and potentially unbounded—expansion of strongly generated structure). By these necessary and sufficient criteria, the grammars of all natural languages are recursive. PMID:24409164
Serial turbo trellis coded modulation using a serially concatenated coder
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Pollara, Fabrizio (Inventor)
2010-01-01
Serial concatenated trellis coded modulation (SCTCM) includes an outer coder, an interleaver, a recursive inner coder and a mapping element. The outer coder receives data to be coded and produces outer coded data. The interleaver permutes the outer coded data to produce interleaved data. The recursive inner coder codes the interleaved data to produce inner coded data. The mapping element maps the inner coded data to a symbol. The recursive inner coder has a structure which facilitates iterative decoding of the symbols at a decoder system. The recursive inner coder and the mapping element are selected to maximize the effective free Euclidean distance of a trellis coded modulator formed from the recursive inner coder and the mapping element. The decoder system includes a demodulation unit, an inner SISO (soft-input soft-output) decoder, a deinterleaver, an outer SISO decoder, and an interleaver.
Huang, Jian; Zhang, Cun-Hui
2013-01-01
The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100
A nearly-linear computational-cost scheme for the forward dynamics of an N-body pendulum
NASA Technical Reports Server (NTRS)
Chou, Jack C. K.
1989-01-01
The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system of differential and algebraic equations (DAE's). The DAE's are kept in implicit form to save arithmetic and preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution point, the predicted solution is corrected to its exact solution within given tolerance using Newton's iterative method. For each iteration, a linear system of the form J delta X = E has to be solved. The computational cost for solving this linear system directly by LU factorization is O(n exp 3), and it can be reduced significantly by exploring the structure of J. It is shown that by recognizing the recursive patterns and exploiting the sparsity of the system the multiplicative and additive computational costs for solving J delta X = E are O(n) and O(n exp 2), respectively. The formulation and solution method for an n-body pendulum is presented. The computational cost is shown to be nearly linearly proportional to the number of bodies.
Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements
2015-01-01
We present an implementation of single residues for response functions to arbitrary order using a recursive approach. Explicit expressions in terms of density-matrix-based response theory for the single residues of the linear, quadratic, cubic, and quartic response functions are also presented. These residues correspond to one-, two-, three- and four-photon transition matrix elements. The newly developed code is used to calculate the one-, two-, three- and four-photon absorption cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon absorption in the framework of response theory. We find that the calculated multiphoton absorption cross sections are not very sensitive to the size of the basis set as long as a reasonably large basis set with diffuse functions is used. The choice of exchange–correlation functional, however, significantly affects the calculated cross sections of both charge-transfer transitions and other transitions, in particular, for the larger para-nitroaminostilbene molecule. We therefore recommend the use of a range-separated exchange–correlation functional in combination with the augmented correlation-consistent double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton absorption properties. PMID:25821415
Language, Mind, Practice: Families of Recursive Thinking in Human Reasoning
ERIC Educational Resources Information Center
Josephson, Marika
2011-01-01
In 2002, Chomsky, Hauser, and Fitch asserted that recursion may be the one aspect of the human language faculty that makes human language unique in the narrow sense--unique to language and unique to human beings. They also argue somewhat more quietly (as do Pinker and Jackendoff 2005) that recursion may be possible outside of language: navigation,…
ERIC Educational Resources Information Center
Cai, Li
2013-01-01
Lord and Wingersky's (1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined…
A new adaptive multiple modelling approach for non-linear and non-stationary systems
NASA Astrophysics Data System (ADS)
Chen, Hao; Gong, Yu; Hong, Xia
2016-07-01
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu
The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution ofmore » dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.« less
NASA Astrophysics Data System (ADS)
Morozov, A.
2012-08-01
Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.
A multi-frequency iterative imaging method for discontinuous inverse medium problem
NASA Astrophysics Data System (ADS)
Zhang, Lei; Feng, Lixin
2018-06-01
The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.
New Syndrome Decoding Techniques for the (n, K) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
This paper presents a new syndrome decoding algorithm for the (n,k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3,1)CC.
Simplified Syndrome Decoding of (n, 1) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.
Evaluation of geopotential and luni-solar perturbations by a recursive algorithm
NASA Technical Reports Server (NTRS)
Giacaglia, G. E. O.
1975-01-01
The disturbing functions due to the geopotential and Luni-solar attractions are linear and bilinear forms in spherical harmonics. Making use of recurrence relations for the solid spherical harmonics and their derivatives, recurrence formulas are obtained for high degree terms as function of lower degree for any term of those disturbing functions and their derivative with respect to any element. The equations obtained are effective when a numerical integration of the equations of motion is appropriate. In analytical theories, they provide a fast way of obtaining high degree terms starting from initial very simple functions.
ERIC Educational Resources Information Center
Karakus, Mustafa C.; Salkever, David S.; Slade, Eric P.; Ialongo, Nicholas; Stuart, Elizabeth
2010-01-01
The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear. As an…
Kumar, Rajesh; Dogra, Vishal; Rani, Khushbu; Sahu, Kanti
2017-01-01
Background: District level determinants of total fertility rate in Empowered Action Group states of India can help in ongoing population stabilization programs in India. Objective: Present study intends to assess the role of district level determinants in predicting total fertility rate among districts of the Empowered Action Group states of India. Material and Methods: Data from Annual Health Survey (2011-12) was analysed using STATA and R software packages. Multiple linear regression models were built and evaluated using Akaike Information Criterion. For further understanding, recursive partitioning was used to prepare a regression tree. Results: Female married illiteracy positively associated with total fertility rate and explained more than half (53%) of variance. Under multiple linear regression model, married illiteracy, infant mortality rate, Ante natal care registration, household size, median age of live birth and sex ratio explained 70% of total variance in total fertility rate. In regression tree, female married illiteracy was the root node and splits at 42% determined TFR <= 2.7. The next left side branch was again married illiteracy with splits at 23% to determine TFR <= 2.1. Conclusion: We conclude that female married illiteracy is one of the most important determinants explaining total fertility rate among the districts of an Empowered Action Group states. Focus on female literacy is required to stabilize the population growth in long run. PMID:29416999
A phylogenetic Kalman filter for ancestral trait reconstruction using molecular data.
Lartillot, Nicolas
2014-02-15
Correlation between life history or ecological traits and genomic features such as nucleotide or amino acid composition can be used for reconstructing the evolutionary history of the traits of interest along phylogenies. Thus far, however, such ancestral reconstructions have been done using simple linear regression approaches that do not account for phylogenetic inertia. These reconstructions could instead be seen as a genuine comparative regression problem, such as formalized by classical generalized least-square comparative methods, in which the trait of interest and the molecular predictor are represented as correlated Brownian characters coevolving along the phylogeny. Here, a Bayesian sampler is introduced, representing an alternative and more efficient algorithmic solution to this comparative regression problem, compared with currently existing generalized least-square approaches. Technically, ancestral trait reconstruction based on a molecular predictor is shown to be formally equivalent to a phylogenetic Kalman filter problem, for which backward and forward recursions are developed and implemented in the context of a Markov chain Monte Carlo sampler. The comparative regression method results in more accurate reconstructions and a more faithful representation of uncertainty, compared with simple linear regression. Application to the reconstruction of the evolution of optimal growth temperature in Archaea, using GC composition in ribosomal RNA stems and amino acid composition of a sample of protein-coding genes, confirms previous findings, in particular, pointing to a hyperthermophilic ancestor for the kingdom. The program is freely available at www.phylobayes.org.
Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind
Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke
2017-01-01
In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6–6;5 years) and one older (6;7–8;10 years). Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children’s second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck. PMID:28072823
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil
2014-08-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922
Recursive formulas for determining perturbing accelerations in intermediate satellite motion
NASA Astrophysics Data System (ADS)
Stoianov, L.
Recursive formulas for Legendre polynomials and associated Legendre functions are used to obtain recursive relationships for determining acceleration components which perturb intermediate satellite motion. The formulas are applicable in all cases when the perturbation force function is presented as a series in spherical functions (gravitational, tidal, thermal, geomagnetic, and other perturbations of intermediate motion). These formulas can be used to determine the order of perturbing accelerations.
NASA Astrophysics Data System (ADS)
Chen, Zhongbi; Krishnaswamy, Sridhar
2014-03-01
In earlier work, we have demonstrated an assisted self-assembly fabrication method for unidirectional submicron patterns using pre-programmed shape memory polymers (SMP) as the substrate in an organic/inorganic bilayer structure. In this paper, we propose a complete bottom-up method for fabrication of uniaxial wrinkles whose wavelength is below 300 nm. The method starts with using the aforementioned self-assembled bi-layer wrinkled surface as the template to make a replica of surface wrinkles on a PDMS layer which is spin-coated on a pre-programmed SMP substrate. When the shape recovery of the substrate is triggered by heating it to its transition temperature, the substrate has been programmed in such a way that it shrinks uniaxially to return to its permanent shape. Consequently, the wrinkle wavelength on PDMS reduces accordingly. A subsequent contact molding process is carried out on the PDMS layer spin-coated on another pre-programmed SMP substrate, but using the wrinkled PDMS surface obtained in the previous step as the master. By activating the shape recovery of the substrate, the wrinkle wavelength is further reduced a second time in a similar fashion. Our experiments showed that the starting wavelength of 640 nm decreased to 290 nm after two cycles of recursive molding. We discuss the advantages and limitations of our recursive molding approach compared to the prevalent top-down fabrication methods represented by lithography. The present study is expected to o er a simple and cost-e ective fabrication method of nano-scale uniaxial wrinkle patterns with the potential for large-scale mass-production.
Recursive Fact-finding: A Streaming Approach to Truth Estimation in Crowdsourcing Applications
2013-07-01
are reported over the course of the campaign, lending themselves better to the abstraction of a data stream arriving from the community of sources. In...EM Recursive EM Figure 4. Recursive EM Algorithm Convergence V. RELATED WORK Social sensing which is also referred to as human- centric sensing [4...systems, where different sources offer reviews on products (or brands, companies) they have experienced [16]. Customers are affected by those reviews
Recursive computation of mutual potential between two polyhedra
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel J.
2013-11-01
Recursive computation of mutual potential, force, and torque between two polyhedra is studied. Based on formulations by Werner and Scheeres (Celest Mech Dyn Astron 91:337-349, 2005) and Fahnestock and Scheeres (Celest Mech Dyn Astron 96:317-339, 2006) who applied the Legendre polynomial expansion to gravity interactions and expressed each order term by a shape-dependent part and a shape-independent part, this paper generalizes the computation of each order term, giving recursive relations of the shape-dependent part. To consider the potential, force, and torque, we introduce three tensors. This method is applicable to any multi-body systems. Finally, we implement this recursive computation to simulate the dynamics of a two rigid-body system that consists of two equal-sized parallelepipeds.
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
Karakus, Mustafa C; Salkever, David S; Slade, Eric P; Ialongo, Nicholas; Stuart, Elizabeth
2012-01-01
The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear As an initial step in exploring this issue, we specify and estimate a recursive bivariate probit model that 1) relates middle school behavior problems to high school graduation and 2) models later employment in young adulthood as a function of these behavior problems and of high school graduation. Our model thus allows for both a direct effect of behavior problems on later employment as well as an indirect effect that operates via graduation from high school. Our empirical results, based on analysis of data from the NELS, suggest that the direct effects of externalizing behavior problems on later employment are not significant but that these problems have important indirect effects operating through high school graduation.
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2012-04-01
By extending the exponent of floating point numbers with an additional integer as the power index of a large radix, we compute fully normalized associated Legendre functions (ALF) by recursion without underflow problem. The new method enables us to evaluate ALFs of extremely high degree as 232 = 4,294,967,296, which corresponds to around 1 cm resolution on the Earth's surface. By limiting the application of exponent extension to a few working variables in the recursion, choosing a suitable large power of 2 as the radix, and embedding the contents of the basic arithmetic procedure of floating point numbers with the exponent extension directly in the program computing the recurrence formulas, we achieve the evaluation of ALFs in the double-precision environment at the cost of around 10% increase in computational time per single ALF. This formulation realizes meaningful execution of the spherical harmonic synthesis and/or analysis of arbitrary degree and order.
Linear-algebraic bath transformation for simulating complex open quantum systems
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...
2014-12-02
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1977-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1978-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
On-line estimation of nonlinear physical systems
Christakos, G.
1988-01-01
Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.
Tests of peak flow scaling in simulated self-similar river networks
Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.
2001-01-01
The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.
Jongin Kim; Boreom Lee
2017-07-01
The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.
Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey
2015-12-01
The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.
Solving Graph Laplacian Systems Through Recursive Bisections and Two-Grid Preconditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, Colin; Vassilevski, Panayot S.
2016-02-18
We present a parallelizable direct method for computing the solution to graph Laplacian-based linear systems derived from graphs that can be hierarchically bipartitioned with small edge cuts. For a graph of size n with constant-size edge cuts, our method decomposes a graph Laplacian in time O(n log n), and then uses that decomposition to perform a linear solve in time O(n log n). We then use the developed technique to design a preconditioner for graph Laplacians that do not have this property. Finally, we augment this preconditioner with a two-grid method that accounts for much of the preconditioner's weaknesses. Wemore » present an analysis of this method, as well as a general theorem for the condition number of a general class of two-grid support graph-based preconditioners. Numerical experiments illustrate the performance of the studied methods.« less
Pseudo-Linear Attitude Determination of Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2004-01-01
This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.
NASA Astrophysics Data System (ADS)
Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.
2015-03-01
Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.
Methods for assessing movement path recursion with application to African buffalo in South Africa
Bar-David, S.; Bar-David, I.; Cross, P.C.; Ryan, S.J.; Knechtel, C.U.; Getz, W.M.
2009-01-01
Recent developments of automated methods for monitoring animal movement, e.g., global positioning systems (GPS) technology, yield high-resolution spatiotemporal data. To gain insights into the processes creating movement patterns, we present two new techniques for extracting information from these data on repeated visits to a particular site or patch ("recursions"). Identification of such patches and quantification of recursion pathways, when combined with patch-related ecological data, should contribute to our understanding of the habitat requirements of large herbivores, of factors governing their space-use patterns, and their interactions with the ecosystem. We begin by presenting output from a simple spatial model that simulates movements of large-herbivore groups based on minimal parameters: resource availability and rates of resource recovery after a local depletion. We then present the details of our new techniques of analyses (recursion analysis and circle analysis) and apply them to data generated by our model, as well as two sets of empirical data on movements of African buffalo (Syncerus coffer): the first collected in Klaserie Private Nature Reserve and the second in Kruger National Park, South Africa. Our recursion analyses of model outputs provide us with a basis for inferring aspects of the processes governing the production of buffalo recursion patterns, particularly the potential influence of resource recovery rate. Although the focus of our simulations was a comparison of movement patterns produced by different resource recovery rates, we conclude our paper with a comprehensive discussion of how recursion analyses can be used when appropriate ecological data are available to elucidate various factors influencing movement. Inter alia, these include the various limiting and preferred resources, parasites, and topographical and landscape factors. ?? 2009 by the Ecological Society of America.
Cai, Li
2015-06-01
Lord and Wingersky's (Appl Psychol Meas 8:453-461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.
Simple recursion relations for general field theories
Cheung, Clifford; Shen, Chia -Hsien; Trnka, Jaroslav
2015-06-17
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensionalmore » analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. In conclusion, our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.« less
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Pitman, Michael C; Rice, John J
2011-06-01
We present the orthogonal recursive bisection algorithm that hierarchically segments the anatomical model structure into subvolumes that are distributed to cores. The anatomy is derived from the Visible Human Project, with electrophysiology based on the FitzHugh-Nagumo (FHN) and ten Tusscher (TT04) models with monodomain diffusion. Benchmark simulations with up to 16,384 and 32,768 cores on IBM Blue Gene/P and L supercomputers for both FHN and TT04 results show good load balancing with almost perfect speedup factors that are close to linear with the number of cores. Hence, strong scaling is demonstrated. With 32,768 cores, a 1000 ms simulation of full heart beat requires about 6.5 min of wall clock time for a simulation of the FHN model. For the largest machine partitions, the simulations execute at a rate of 0.548 s (BG/P) and 0.394 s (BG/L) of wall clock time per 1 ms of simulation time. To our knowledge, these simulations show strong scaling to substantially higher numbers of cores than reported previously for organ-level simulation of the heart, thus significantly reducing run times. The ability to reduce runtimes could play a critical role in enabling wider use of cardiac models in research and clinical applications.
Multivariate Spline Algorithms for CAGD
NASA Technical Reports Server (NTRS)
Boehm, W.
1985-01-01
Two special polyhedra present themselves for the definition of B-splines: a simplex S and a box or parallelepiped B, where the edges of S project into an irregular grid, while the edges of B project into the edges of a regular grid. More general splines may be found by forming linear combinations of these B-splines, where the three-dimensional coefficients are called the spline control points. Univariate splines are simplex splines, where s = 1, whereas splines over a regular triangular grid are box splines, where s = 2. Two simple facts render the development of the construction of B-splines: (1) any face of a simplex or a box is again a simplex or box but of lower dimension; and (2) any simplex or box can be easily subdivided into smaller simplices or boxes. The first fact gives a geometric approach to Mansfield-like recursion formulas that express a B-spline in B-splines of lower order, where the coefficients depend on x. By repeated recursion, the B-spline will be expressed as B-splines of order 1; i.e., piecewise constants. In the case of a simplex spline, the second fact gives a so-called insertion algorithm that constructs the new control points if an additional knot is inserted.
Statistical estimation of ultrasonic propagation path parameters for aberration correction.
Waag, Robert C; Astheimer, Jeffrey P
2005-05-01
Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.
Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia
2016-01-01
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.
1996-01-01
This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.
Nonplanar on-shell diagrams and leading singularities of scattering amplitudes
NASA Astrophysics Data System (ADS)
Chen, Baoyi; Chen, Gang; Cheung, Yeuk-Kwan E.; Li, Yunxuan; Xie, Ruofei; Xin, Yuan
2017-02-01
Bipartite on-shell diagrams are the latest tool in constructing scattering amplitudes. In this paper we prove that a Britto-Cachazo-Feng-Witten (BCFW) decomposable on-shell diagram process a rational top form if and only if the algebraic ideal comprised the geometrical constraints are shifted linearly during successive BCFW integrations. With a proper geometric interpretation of the constraints in the Grassmannian manifold, the rational top form integration contours can thus be obtained, and understood, in a straightforward way. All rational top form integrands of arbitrary higher loops leading singularities can therefore be derived recursively, as long as the corresponding on-shell diagram is BCFW decomposable.
Design of multi-body Lambert type orbits with specified departure and arrival positions
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Kawaguchi, Jun'ichiro; Matsuo, Hiroki
1991-10-01
A new procedure for designing a multi-body Lambert type orbit comprising a multiple swingby process is developed, aiming at relieving a numerical difficulty inherent to a highly nonlinear swingby mechanism. The proposed algorithm, Recursive Multi-Step Linearization, first divides a whole orbit into several trajectory segments. Then, with a maximum use of piecewised transition matrices, a segmentized orbit is repeatedly upgraded until an approximated orbit initially based on a patched conics method eventually converges. In application to the four body earth-moon system with sun's gravitation, one of the double lunar swingby orbits including 12 lunar swingbys is successfully designed without any velocity mismatch.
New syndrome decoding techniques for the (n, k) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2013-01-01
Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.
Recursive Implementations of the Consider Filter
NASA Technical Reports Server (NTRS)
Zanetti, Renato; DSouza, Chris
2012-01-01
One method to account for parameters errors in the Kalman filter is to consider their effect in the so-called Schmidt-Kalman filter. This work addresses issues that arise when implementing a consider Kalman filter as a real-time, recursive algorithm. A favorite implementation of the Kalman filter as an onboard navigation subsystem is the UDU formulation. A new way to implement a UDU consider filter is proposed. The non-optimality of the recursive consider filter is also analyzed, and a modified algorithm is proposed to overcome this limitation.
NASA Technical Reports Server (NTRS)
West, M. E.
1992-01-01
A real-time estimation filter which reduces sensitivity to system variations and reduces the amount of preflight computation is developed for the instrument pointing subsystem (IPS). The IPS is a three-axis stabilized platform developed to point various astronomical observation instruments aboard the shuttle. Currently, the IPS utilizes a linearized Kalman filter (LKF), with premission defined gains, to compensate for system drifts and accumulated attitude errors. Since the a priori gains are generated for an expected system, variations result in a suboptimal estimation process. This report compares the performance of three real-time estimation filters with the current LKF implementation. An extended Kalman filter and a second-order Kalman filter are developed to account for the system nonlinearities, while a linear Kalman filter implementation assumes that the nonlinearities are negligible. The performance of each of the four estimation filters are compared with respect to accuracy, stability, settling time, robustness, and computational requirements. It is shown, that for the current IPS pointing requirements, the linear Kalman filter provides improved robustness over the LKF with less computational requirements than the two real-time nonlinear estimation filters.
Generalised Transfer Functions of Neural Networks
NASA Astrophysics Data System (ADS)
Fung, C. F.; Billings, S. A.; Zhang, H.
1997-11-01
When artificial neural networks are used to model non-linear dynamical systems, the system structure which can be extremely useful for analysis and design, is buried within the network architecture. In this paper, explicit expressions for the frequency response or generalised transfer functions of both feedforward and recurrent neural networks are derived in terms of the network weights. The derivation of the algorithm is established on the basis of the Taylor series expansion of the activation functions used in a particular neural network. This leads to a representation which is equivalent to the non-linear recursive polynomial model and enables the derivation of the transfer functions to be based on the harmonic expansion method. By mapping the neural network into the frequency domain information about the structure of the underlying non-linear system can be recovered. Numerical examples are included to demonstrate the application of the new algorithm. These examples show that the frequency response functions appear to be highly sensitive to the network topology and training, and that the time domain properties fail to reveal deficiencies in the trained network structure.
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-15
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than amore » single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.« less
NASA Astrophysics Data System (ADS)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-01
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems - a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.
A Synthetic Recursive “+1” Pathway for Carbon Chain Elongation
Marcheschi, Ryan J.; Li, Han; Zhang, Kechun; Noey, Elizabeth L.; Kim, Seonah; Chaubey, Asha; Houk, K. N.; Liao, James C.
2013-01-01
Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein–substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic “+1” recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The “+1” chemistry is a valuable metabolic tool in addition to the “+5” chemistry and “+2” chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides. PMID:22242720
Waltman, Ludo; Yan, Erjia; van Eck, Nees Jan
2011-10-01
Two commonly used ideas in the development of citation-based research performance indicators are the idea of normalizing citation counts based on a field classification scheme and the idea of recursive citation weighing (like in PageRank-inspired indicators). We combine these two ideas in a single indicator, referred to as the recursive mean normalized citation score indicator, and we study the validity of this indicator. Our empirical analysis shows that the proposed indicator is highly sensitive to the field classification scheme that is used. The indicator also has a strong tendency to reinforce biases caused by the classification scheme. Based on these observations, we advise against the use of indicators in which the idea of normalization based on a field classification scheme and the idea of recursive citation weighing are combined.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A
2016-08-17
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A.
2016-01-01
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers. PMID:27548169
Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus.
Lourenco, D A L; Tsuruta, S; Fragomeni, B O; Masuda, Y; Aguilar, I; Legarra, A; Bertrand, J K; Amen, T S; Wang, L; Moser, D W; Misztal, I
2015-06-01
Predictive ability of genomic EBV when using single-step genomic BLUP (ssGBLUP) in Angus cattle was investigated. Over 6 million records were available on birth weight (BiW) and weaning weight (WW), almost 3.4 million on postweaning gain (PWG), and over 1.3 million on calving ease (CE). Genomic information was available on, at most, 51,883 animals, which included high and low EBV accuracy animals. Traditional EBV was computed by BLUP and genomic EBV by ssGBLUP and indirect prediction based on SNP effects was derived from ssGBLUP; SNP effects were calculated based on the following reference populations: ref_2k (contains top bulls and top cows that had an EBV accuracy for BiW ≥0.85), ref_8k (contains all parents that were genotyped), and ref_33k (contains all genotyped animals born up to 2012). Indirect prediction was obtained as direct genomic value (DGV) or as an index of DGV and parent average (PA). Additionally, runs with ssGBLUP used the inverse of the genomic relationship matrix calculated by an algorithm for proven and young animals (APY) that uses recursions on a small subset of reference animals. An extra reference subset included 3,872 genotyped parents of genotyped animals (ref_4k). Cross-validation was used to assess predictive ability on a validation population of 18,721 animals born in 2013. Computations for growth traits used multiple-trait linear model and, for CE, a bivariate CE-BiW threshold-linear model. With BLUP, predictivities were 0.29, 0.34, 0.23, and 0.12 for BiW, WW, PWG, and CE, respectively. With ssGBLUP and ref_2k, predictivities were 0.34, 0.35, 0.27, and 0.13 for BiW, WW, PWG, and CE, respectively, and with ssGBLUP and ref_33k, predictivities were 0.39, 0.38, 0.29, and 0.13 for BiW, WW, PWG, and CE, respectively. Low predictivity for CE was due to low incidence rate of difficult calving. Indirect predictions with ref_33k were as accurate as with full ssGBLUP. Using the APY and recursions on ref_4k gave 88% gains of full ssGBLUP and using the APY and recursions on ref_8k gave 97% gains of full ssGBLUP. Genomic evaluation in beef cattle with ssGBLUP is feasible while keeping the models (maternal, multiple trait, and threshold) already used in regular BLUP. Gains in predictivity are dependent on the composition of the reference population. Indirect predictions via SNP effects derived from ssGBLUP allow for accurate genomic predictions on young animals, with no advantage of including PA in the index if the reference population is large. With the APY conditioning on about 10,000 reference animals, ssGBLUP is potentially applicable to a large number of genotyped animals without compromising predictive ability.
A Scalable Nonuniform Pointer Analysis for Embedded Program
NASA Technical Reports Server (NTRS)
Venet, Arnaud
2004-01-01
In this paper we present a scalable pointer analysis for embedded applications that is able to distinguish between instances of recursively defined data structures and elements of arrays. The main contribution consists of an efficient yet precise algorithm that can handle multithreaded programs. We first perform an inexpensive flow-sensitive analysis of each function in the program that generates semantic equations describing the effect of the function on the memory graph. These equations bear numerical constraints that describe nonuniform points-to relationships. We then iteratively solve these equations in order to obtain an abstract storage graph that describes the shape of data structures at every point of the program for all possible thread interleavings. We bring experimental evidence that this approach is tractable and precise for real-size embedded applications.
Recursive multibody dynamics and discrete-time optimal control
NASA Technical Reports Server (NTRS)
Deleuterio, G. M. T.; Damaren, C. J.
1989-01-01
A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.
A decoupled recursive approach for constrained flexible multibody system dynamics
NASA Technical Reports Server (NTRS)
Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung
1989-01-01
A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.
Contribution of zonal harmonics to gravitational moment
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.
1991-01-01
It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.
Contribution of zonal harmonics to gravitational moment
NASA Astrophysics Data System (ADS)
Roithmayr, Carlos M.
1991-02-01
It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.
Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks.
Dinjaski, Nina; Huang, Wenwen; Kaplan, David L
2018-01-01
Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.
Recursive Construction of Noiseless Subsystem for Qudits
NASA Astrophysics Data System (ADS)
Güngördü, Utkan; Li, Chi-Kwong; Nakahara, Mikio; Poon, Yiu-Tung; Sze, Nung-Sing
2014-03-01
When the environmental noise acting on the system has certain symmetries, a subsystem of the total system can avoid errors. Encoding information into such a subsystem is advantageous since it does not require any error syndrome measurements, which may introduce further errors to the system. However, utilizing such a subsystem for large systems gets impractical with the increasing number of qudits. A recursive scheme offers a solution to this problem. Here, we review the recursive construct introduced in, which can asymptotically protect 1/d of the qudits in system against collective errors.
Connolly, Patrick; van Deventer, Vasi
2017-01-01
The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization) provides the critical theoretical context within which the significance of Friston's (2010a) Free Energy Principle (FEP) for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated) organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while “psychoanalytic” mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989) offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect), which is itself founded upon the tendency toward autopoiesis (self-making) within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a) theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis underscores the necessity of reengagement with the core concepts of psychoanalytic theory, and the usefulness that a systems theory epistemology—particularly hierarchical recursive description—can have for this goal. PMID:29038652
Connolly, Patrick; van Deventer, Vasi
2017-01-01
The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization) provides the critical theoretical context within which the significance of Friston's (2010a) Free Energy Principle (FEP) for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated) organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while "psychoanalytic" mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989) offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect), which is itself founded upon the tendency toward autopoiesis (self-making) within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a) theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis underscores the necessity of reengagement with the core concepts of psychoanalytic theory, and the usefulness that a systems theory epistemology-particularly hierarchical recursive description-can have for this goal.
NASA Astrophysics Data System (ADS)
Lowenthal, Francis
2010-11-01
This paper examines whether the recursive structure imbedded in some exercises used in the Non Verbal Communication Device (NVCD) approach is actually the factor that enables this approach to favor language acquisition and reacquisition in the case of children with cerebral lesions. For that a definition of the principle of recursion as it is used by logicians is presented. The two opposing approaches to the problem of language development are explained. For many authors such as Chomsky [1] the faculty of language is innate. This is known as the Standard Theory; the other researchers in this field, e.g. Bates and Elman [2], claim that language is entirely constructed by the young child: they thus speak of Language Acquisition. It is also shown that in both cases, a version of the principle of recursion is relevant for human language. The NVCD approach is defined and the results obtained in the domain of language while using this approach are presented: young subjects using this approach acquire a richer language structure or re-acquire such a structure in the case of cerebral lesions. Finally it is shown that exercises used in this framework imply the manipulation of recursive structures leading to regular grammars. It is thus hypothesized that language development could be favored using recursive structures with the young child. It could also be the case that the NVCD like exercises used with children lead to the elaboration of a regular language, as defined by Chomsky [3], which could be sufficient for language development but would not require full recursion. This double claim could reconcile Chomsky's approach with psychological observations made by adherents of the Language Acquisition approach, if it is confirmed by researches combining the use of NVCDs, psychometric methods and the use of Neural Networks. This paper thus suggests that a research group oriented towards this problematic should be organized.
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2016-01-01
A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.
Kleene Monads: Handling Iteration in a Framework of Generic Effects
NASA Astrophysics Data System (ADS)
Goncharov, Sergey; Schröder, Lutz; Mossakowski, Till
Monads are a well-established tool for modelling various computational effects. They form the semantic basis of Moggi’s computational metalanguage, the metalanguage of effects for short, which made its way into modern functional programming in the shape of Haskell’s do-notation. Standard computational idioms call for specific classes of monads that support additional control operations. Here, we introduce Kleene monads, which additionally feature nondeterministic choice and Kleene star, i.e. nondeterministic iteration, and we provide a metalanguage and a sound calculus for Kleene monads, the metalanguage of control and effects, which is the natural joint extension of Kleene algebra and the metalanguage of effects. This provides a framework for studying abstract program equality focussing on iteration and effects. These aspects are known to have decidable equational theories when studied in isolation. However, it is well known that decidability breaks easily; e.g. the Horn theory of continuous Kleene algebras fails to be recursively enumerable. Here, we prove several negative results for the metalanguage of control and effects; in particular, already the equational theory of the unrestricted metalanguage of control and effects over continuous Kleene monads fails to be recursively enumerable. We proceed to identify a fragment of this language which still contains both Kleene algebra and the metalanguage of effects and for which the natural axiomatisation is complete, and indeed the equational theory is decidable.
A new order-theoretic characterisation of the polytime computable functions☆
Avanzini, Martin; Eguchi, Naohi; Moser, Georg
2015-01-01
We propose a new order-theoretic characterisation of the class of polytime computable functions. To this avail we define the small polynomial path order (sPOP⁎ for short). This termination order entails a new syntactic method to analyse the innermost runtime complexity of term rewrite systems fully automatically: for any rewrite system compatible with sPOP⁎ that employs recursion up to depth d, the (innermost) runtime complexity is polynomially bounded of degree d. This bound is tight. Thus we obtain a direct correspondence between a syntactic (and easily verifiable) condition of a program and the asymptotic worst-case complexity of the program. PMID:26412933
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.
Karakus, Mustafa C.; Salkever, David S.; Slade, Eric P.; Ialongo, Nicholas; Stuart, Elizabeth
2013-01-01
The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear As an initial step in exploring this issue, we specify and estimate a recursive bivariate probit model that 1) relates middle school behavior problems to high school graduation and 2) models later employment in young adulthood as a function of these behavior problems and of high school graduation. Our model thus allows for both a direct effect of behavior problems on later employment as well as an indirect effect that operates via graduation from high school. Our empirical results, based on analysis of data from the NELS, suggest that the direct effects of externalizing behavior problems on later employment are not significant but that these problems have important indirect effects operating through high school graduation. PMID:23576834
NASA Technical Reports Server (NTRS)
Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob
1994-01-01
An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'
Linear grammar as a possible stepping-stone in the evolution of language.
Jackendoff, Ray; Wittenberg, Eva
2017-02-01
We suggest that one way to approach the evolution of language is through reverse engineering: asking what components of the language faculty could have been useful in the absence of the full complement of components. We explore the possibilities offered by linear grammar, a form of language that lacks syntax and morphology altogether, and that structures its utterances through a direct mapping between semantics and phonology. A language with a linear grammar would have no syntactic categories or syntactic phrases, and therefore no syntactic recursion. It would also have no functional categories such as tense, agreement, and case inflection, and no derivational morphology. Such a language would still be capable of conveying certain semantic relations through word order-for instance by stipulating that agents should precede patients. However, many other semantic relations would have to be based on pragmatics and discourse context. We find evidence of linear grammar in a wide range of linguistic phenomena: pidgins, stages of late second language acquisition, home signs, village sign languages, language comprehension (even in fully syntactic languages), aphasia, and specific language impairment. We also find a full-blown language, Riau Indonesian, whose grammar is arguably close to a pure linear grammar. In addition, when subjects are asked to convey information through nonlinguistic gesture, their gestures make use of semantically based principles of linear ordering. Finally, some pockets of English grammar, notably compounds, can be characterized in terms of linear grammar. We conclude that linear grammar is a plausible evolutionary precursor of modern fully syntactic grammar, one that is still active in the human mind.
Digital Simulation Of Precise Sensor Degradations Including Non-Linearities And Shift Variance
NASA Astrophysics Data System (ADS)
Kornfeld, Gertrude H.
1987-09-01
Realistic atmospheric and Forward Looking Infrared Radiometer (FLIR) degradations were digitally simulated. Inputs to the routine are environmental observables and the FLIR specifications. It was possible to achieve realism in the thermal domain within acceptable computer time and random access memory (RAM) requirements because a shift variant recursive convolution algorithm that well describes thermal properties was invented and because each picture element (pixel) has radiative temperature, a materials parameter and range and altitude information. The computer generation steps start with the image synthesis of an undegraded scene. Atmospheric and sensor degradation follow. The final result is a realistic representation of an image seen on the display of a specific FLIR.
NASA Technical Reports Server (NTRS)
Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.
2013-01-01
It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.
On the Hosoya index of a family of deterministic recursive trees
NASA Astrophysics Data System (ADS)
Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang
2017-01-01
In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.
Stochastic optimal operation of reservoirs based on copula functions
NASA Astrophysics Data System (ADS)
Lei, Xiao-hui; Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wen, Xin; Wang, Chao; Zhang, Jing-wen
2018-02-01
Stochastic dynamic programming (SDP) has been widely used to derive operating policies for reservoirs considering streamflow uncertainties. In SDP, there is a need to calculate the transition probability matrix more accurately and efficiently in order to improve the economic benefit of reservoir operation. In this study, we proposed a stochastic optimization model for hydropower generation reservoirs, in which 1) the transition probability matrix was calculated based on copula functions; and 2) the value function of the last period was calculated by stepwise iteration. Firstly, the marginal distribution of stochastic inflow in each period was built and the joint distributions of adjacent periods were obtained using the three members of the Archimedean copulas, based on which the conditional probability formula was derived. Then, the value in the last period was calculated by a simple recursive equation with the proposed stepwise iteration method and the value function was fitted with a linear regression model. These improvements were incorporated into the classic SDP and applied to the case study in Ertan reservoir, China. The results show that the transition probability matrix can be more easily and accurately obtained by the proposed copula function based method than conventional methods based on the observed or synthetic streamflow series, and the reservoir operation benefit can also be increased.
NASA Astrophysics Data System (ADS)
Song, Wanjun; Zhang, Hou
2017-11-01
Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.
Calculation of Radau?Kronrod and Lobatto?Kronrod quadrature formulas
NASA Astrophysics Data System (ADS)
Laurie, Dirk
2007-08-01
We show how to apply routines from the software package OPQ by Walter Gautschi in order to compute the optimal extension of an n-point generalized Radau or Lobatto formula. The method is applicable to any weight function for which enough three-term recursion coefficients are known. The idea on which the method is based was first shown by Paola Baratella in 1979. Program code in the format of M-files conforming to the conventions of OPQ is given.
ITAS - A Better Way of Coding.
1980-03-01
ray tube, eliminates the tedium and time delays associated with conventional language programing. G ! vii SECTION I The Problem Our objective was to...8217 Input Gan+ Delay •Del ay Gai Figure 1 - An Itagram of a first order recursive digital filter. 3 ktmuIeN PAM NO FILMED MAR Using a light pen, the user... the computer in a positive active role, i.e. the user has to determine why an answer is wrong and take action to correct the fault. This is accomplished
Analyzing nonstationary financial time series via hilbert-huang transform (HHT)
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2008-01-01
An apparatus, computer program product and method of analyzing non-stationary time varying phenomena. A representation of a non-stationary time varying phenomenon is recursively sifted using Empirical Mode Decomposition (EMD) to extract intrinsic mode functions (IMFs). The representation is filtered to extract intrinsic trends by combining a number of IMFs. The intrinsic trend is inherent in the data and identifies an IMF indicating the variability of the phenomena. The trend also may be used to detrend the data.
Mao, Yong; Zhou, Xiao-Bo; Pi, Dao-Ying; Sun, You-Xian; Wong, Stephen T C
2005-10-01
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented.
Recursive Vocal Pattern Learning and Generalization in Starlings
ERIC Educational Resources Information Center
Bloomfield, Tiffany Corinna
2012-01-01
Among known communication systems, human language alone exhibits open-ended productivity of meaning. Interest in the psychological mechanisms supporting this ability, and their evolutionary origins, has resurged following the suggestion that the only uniquely human ability underlying language is a mechanism of recursion. This "Unique…
NASA Astrophysics Data System (ADS)
Borodachev, S. M.
2016-06-01
The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.
Algorithm for Training a Recurrent Multilayer Perceptron
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.
2004-01-01
An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.
Cho, Pyeong Whan; Szkudlarek, Emily; Tabor, Whitney
2016-01-01
Learning is typically understood as a process in which the behavior of an organism is progressively shaped until it closely approximates a target form. It is easy to comprehend how a motor skill or a vocabulary can be progressively learned—in each case, one can conceptualize a series of intermediate steps which lead to the formation of a proficient behavior. With grammar, it is more difficult to think in these terms. For example, center embedding recursive structures seem to involve a complex interplay between multiple symbolic rules which have to be in place simultaneously for the system to work at all, so it is not obvious how the mechanism could gradually come into being. Here, we offer empirical evidence from a new artificial language (or “artificial grammar”) learning paradigm, Locus Prediction, that, despite the conceptual conundrum, recursion acquisition occurs gradually, at least for a simple formal language. In particular, we focus on a variant of the simplest recursive language, anbn, and find evidence that (i) participants trained on two levels of structure (essentially ab and aabb) generalize to the next higher level (aaabbb) more readily than participants trained on one level of structure (ab) combined with a filler sentence; nevertheless, they do not generalize immediately; (ii) participants trained up to three levels (ab, aabb, aaabbb) generalize more readily to four levels than participants trained on two levels generalize to three; (iii) when we present the levels in succession, starting with the lower levels and including more and more of the higher levels, participants show evidence of transitioning between the levels gradually, exhibiting intermediate patterns of behavior on which they were not trained; (iv) the intermediate patterns of behavior are associated with perturbations of an attractor in the sense of dynamical systems theory. We argue that all of these behaviors indicate a theory of mental representation in which recursive systems lie on a continuum of grammar systems which are organized so that grammars that produce similar behaviors are near one another, and that people learning a recursive system are navigating progressively through the space of these grammars. PMID:27375543
Cho, Pyeong Whan; Szkudlarek, Emily; Tabor, Whitney
2016-01-01
Learning is typically understood as a process in which the behavior of an organism is progressively shaped until it closely approximates a target form. It is easy to comprehend how a motor skill or a vocabulary can be progressively learned-in each case, one can conceptualize a series of intermediate steps which lead to the formation of a proficient behavior. With grammar, it is more difficult to think in these terms. For example, center embedding recursive structures seem to involve a complex interplay between multiple symbolic rules which have to be in place simultaneously for the system to work at all, so it is not obvious how the mechanism could gradually come into being. Here, we offer empirical evidence from a new artificial language (or "artificial grammar") learning paradigm, Locus Prediction, that, despite the conceptual conundrum, recursion acquisition occurs gradually, at least for a simple formal language. In particular, we focus on a variant of the simplest recursive language, a (n) b (n) , and find evidence that (i) participants trained on two levels of structure (essentially ab and aabb) generalize to the next higher level (aaabbb) more readily than participants trained on one level of structure (ab) combined with a filler sentence; nevertheless, they do not generalize immediately; (ii) participants trained up to three levels (ab, aabb, aaabbb) generalize more readily to four levels than participants trained on two levels generalize to three; (iii) when we present the levels in succession, starting with the lower levels and including more and more of the higher levels, participants show evidence of transitioning between the levels gradually, exhibiting intermediate patterns of behavior on which they were not trained; (iv) the intermediate patterns of behavior are associated with perturbations of an attractor in the sense of dynamical systems theory. We argue that all of these behaviors indicate a theory of mental representation in which recursive systems lie on a continuum of grammar systems which are organized so that grammars that produce similar behaviors are near one another, and that people learning a recursive system are navigating progressively through the space of these grammars.
Learning to play Go using recursive neural networks.
Wu, Lin; Baldi, Pierre
2008-11-01
Go is an ancient board game that poses unique opportunities and challenges for artificial intelligence. Currently, there are no computer Go programs that can play at the level of a good human player. However, the emergence of large repositories of games is opening the door for new machine learning approaches to address this challenge. Here we develop a machine learning approach to Go, and related board games, focusing primarily on the problem of learning a good evaluation function in a scalable way. Scalability is essential at multiple levels, from the library of local tactical patterns, to the integration of patterns across the board, to the size of the board itself. The system we propose is capable of automatically learning the propensity of local patterns from a library of games. Propensity and other local tactical information are fed into recursive neural networks, derived from a probabilistic Bayesian network architecture. The recursive neural networks in turn integrate local information across the board in all four cardinal directions and produce local outputs that represent local territory ownership probabilities. The aggregation of these probabilities provides an effective strategic evaluation function that is an estimate of the expected area at the end, or at various other stages, of the game. Local area targets for training can be derived from datasets of games played by human players. In this approach, while requiring a learning time proportional to N(4), skills learned on a board of size N(2) can easily be transferred to boards of other sizes. A system trained using only 9 x 9 amateur game data performs surprisingly well on a test set derived from 19 x 19 professional game data. Possible directions for further improvements are briefly discussed.
Marcotte, Thomas D.; Deutsch, Reena; Michael, Benedict Daniel; Franklin, Donald; Cookson, Debra Rosario; Bharti, Ajay R.; Grant, Igor; Letendre, Scott L.
2013-01-01
Background Neurocognitive (NC) impairment (NCI) occurs commonly in people living with HIV. Despite substantial effort, no biomarkers have been sufficiently validated for diagnosis and prognosis of NCI in the clinic. The goal of this project was to identify diagnostic or prognostic biomarkers for NCI in a comprehensively characterized HIV cohort. Methods Multidisciplinary case review selected 98 HIV-infected individuals and categorized them into four NC groups using normative data: stably normal (SN), stably impaired (SI), worsening (Wo), or improving (Im). All subjects underwent comprehensive NC testing, phlebotomy, and lumbar puncture at two timepoints separated by a median of 6.2 months. Eight biomarkers were measured in CSF and blood by immunoassay. Results were analyzed using mixed model linear regression and staged recursive partitioning. Results At the first visit, subjects were mostly middle-aged (median 45) white (58%) men (84%) who had AIDS (70%). Of the 73% who took antiretroviral therapy (ART), 54% had HIV RNA levels below 50 c/mL in plasma. Mixed model linear regression identified that only MCP-1 in CSF was associated with neurocognitive change group. Recursive partitioning models aimed at diagnosis (i.e., correctly classifying neurocognitive status at the first visit) were complex and required most biomarkers to achieve misclassification limits. In contrast, prognostic models were more efficient. A combination of three biomarkers (sCD14, MCP-1, SDF-1α) correctly classified 82% of Wo and SN subjects, including 88% of SN subjects. A combination of two biomarkers (MCP-1, TNF-α) correctly classified 81% of Im and SI subjects, including 100% of SI subjects. Conclusions This analysis of well-characterized individuals identified concise panels of biomarkers associated with NC change. Across all analyses, the two most frequently identified biomarkers were sCD14 and MCP-1, indicators of monocyte/macrophage activation. While the panels differed depending on the outcome and on the degree of misclassification, nearly all stable patients were correctly classified. PMID:24101401
Recursions for the exchangeable partition function of the seedbank coalescent.
Kurt, Noemi; Rafler, Mathias
2017-04-01
For the seedbank coalescent with mutation under the infinite alleles assumption, which describes the gene genealogy of a population with a strong seedbank effect subject to mutations, we study the distribution of the final partition with mutation. This generalizes the coalescent with freeze by Dong et al. (2007) to coalescents where ancestral lineages are blocked from coalescing. We derive an implicit recursion which we show to have a unique solution and give an interpretation in terms of absorption problems of a random walk. Moreover, we derive recursions for the distribution of the number of blocks in the final partition. Copyright © 2017 Elsevier Inc. All rights reserved.
Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.
ERIC Educational Resources Information Center
Magel, E. Terry
1989-01-01
Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…
The Free Energy in the Derrida-Retaux Recursive Model
NASA Astrophysics Data System (ADS)
Hu, Yueyun; Shi, Zhan
2018-05-01
We are interested in a simple max-type recursive model studied by Derrida and Retaux (J Stat Phys 156:268-290, 2014) in the context of a physics problem, and find a wide range for the exponent in the free energy in the nearly supercritical regime.
Quantum field theory and the linguistic Minimalist Program: a remarkable isomorphism
NASA Astrophysics Data System (ADS)
Piattelli-Palmarini, M.; Vitiello, G.
2017-08-01
By resorting to recent results, we show that an isomorphism exist between linguistic features of the Minimalist Program and the quantum field theory formalism of condensed matter physics. Specific linguistic features which admit a representation in terms of the many-body algebraic formalism are the unconstrained nature of recursive Merge, the operation of the Labeling Algorithm, the difference between pronounced and un-pronounced copies of elements in a sentence and the build-up of the Fibonacci sequence in the syntactic derivation of sentence structures. The collective dynamical nature of the formation process of Logical Forms leading to the individuation of the manifold of concepts and the computational self-consistency of languages are also discussed.
NASA Technical Reports Server (NTRS)
Tilton, James C. (Inventor)
2010-01-01
A method, computer readable storage, and apparatus for implementing recursive segmentation of data with spatial characteristics into regions including splitting-remerging of pixels with contagious region designations and a user controlled parameter for providing a preference for merging adjacent regions to eliminate window artifacts.
A Recursive Theory for the Mathematical Understanding--Some Elements and Implications.
ERIC Educational Resources Information Center
Pirie, Susan; Kieren, Thomas
There has been considerable interest in mathematical understanding. Both those attempting to build, and those questioning the possibility of building intelligent artificial tutoring systems, struggle with the notions of mathematical understanding. The purpose of this essay is to show a transcendently recursive theory of mathematical understanding…
Large-Capacity Three-Party Quantum Digital Secret Sharing Using Three Particular Matrices Coding
NASA Astrophysics Data System (ADS)
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Tao, Li; Liu, Zhi-Ming; Orgun, Mehmet A.
2016-11-01
In this paper, we develop a large-capacity quantum digital secret sharing (QDSS) scheme, combined the Fibonacci- and Lucas-valued orbital angular momentum (OAM) entanglement with the recursive Fibonacci and Lucas matrices. To be exact, Alice prepares pairs of photons in the Fibonacci- and Lucas-valued OAM entangled states, and then allocates them to two participants, say, Bob and Charlie, to establish the secret key. Moreover, the available Fibonacci and Lucas values from the matching entangled states are used as the seed for generating the Fibonacci and Lucas matrices. This is achieved because the entries of the Fibonacci and Lucas matrices are recursive. The secret key can only be obtained jointly by Bob and Charlie, who can further recover the secret. Its security is based on the facts that nonorthogonal states are indistinguishable, and Bob or Charlie detects a Fibonacci number, there is still a twofold uncertainty for Charlie' (Bob') detected value. Supported by the Fundamental Research Funds for the Central Universities under Grant No. XDJK2016C043 and the Doctoral Program of Higher Education under Grant No. SWU115091, the National Natural Science Foundation of China under Grant No. 61303039, the Fundamental Research Funds for the Central Universities under Grant No. XDJK2015C153 and the Doctoral Program of Higher Education under Grant No. SWU114112, and the Financial Support the 1000-Plan of Chongqing by Southwest University under Grant No. SWU116007
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2015-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789
Current-mode subthreshold MOS implementation of the Herault-Jutten autoadaptive network
NASA Astrophysics Data System (ADS)
Cohen, Marc H.; Andreou, Andreas G.
1992-05-01
The translinear circuits in subthreshold MOS technology and current-mode design techniques for the implementation of neuromorphic analog network processing are investigated. The architecture, also known as the Herault-Jutten network, performs an independent component analysis and is essentially a continuous-time recursive linear adaptive filter. Analog I/O interface, weight coefficients, and adaptation blocks are all integrated on the chip. A small network with six neurons and 30 synapses was fabricated in a 2-microns n-well double-polysilicon, double-metal CMOS process. Circuit designs at the transistor level yield area-efficient implementations for neurons, synapses, and the adaptation blocks. The design methodology and constraints as well as test results from the fabricated chips are discussed.
Recurrence relations in one-dimensional Ising models.
da Conceição, C M Silva; Maia, R N P
2017-09-01
The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.
Parameter Estimation for a Hybrid Adaptive Flight Controller
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje
2009-01-01
This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Ledesma, Ragnar
1993-01-01
A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.
Recursion and the Competence/Performance Distinction in AGL Tasks
ERIC Educational Resources Information Center
Lobina, David J.
2011-01-01
The term "recursion" is used in at least four distinct theoretical senses within cognitive science. Some of these senses in turn relate to the different levels of analysis described by David Marr some 20 years ago; namely, the underlying competence capacity (the "computational" level), the performance operations used in real-time processing (the…
Recursivity: A Working Paper on Rhetoric and "Mnesis"
ERIC Educational Resources Information Center
Stormer, Nathan
2013-01-01
This essay proposes the genealogical study of remembering and forgetting as recursive rhetorical capacities that enable discourse to place itself in an ever-changing present. "Mnesis" is a meta-concept for the arrangements of remembering and forgetting that enable rhetoric to function. Most of the essay defines the materiality of "mnesis", first…
Recursive Optimization of Digital Circuits
1990-12-14
Obverse- Specification . . . A-23 A.14 Non-MDS Optimization of SAMPLE .. .. .. .. .. .. ..... A-24 Appendix B . BORIS Recursive Optimization System...Software ...... B -i B .1 DESIGN.S File . .... .. .. .. .. .. .. .. .. .. ... ... B -2 B .2 PARSE.S File. .. .. .. .. .. .. .. .. ... .. ... .... B -1i B .3...TABULAR.S File. .. .. .. .. .. .. ... .. ... .. ... B -22 B .4 MDS.S File. .. .. .. .. .. .. .. ... .. ... .. ...... B -28 B .5 COST.S File
ERIC Educational Resources Information Center
Chang, Huo-Tsan; Chi, Nai-Wen; Miao, Min-Chih
2007-01-01
This study explored the relationship between three-component organizational/occupational commitment and organizational/occupational turnover intention, and the reciprocal relationship between organizational and occupational turnover intention with a non-recursive model in collectivist cultural settings. We selected 177 nursing staffs out of 30…
TORTIS (Toddler's Own Recursive Turtle Interpreter System).
ERIC Educational Resources Information Center
Perlman, Radia
TORTIS (Toddler's Own Recursive Turtle Interpreter System) is a device which can be used to study or nurture the cognitive development of preschool children. The device consists of a "turtle" which the child can control by use of buttons on a control panel. The "turtle" can be made to move in prescribed directions, to take a…
Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking
NASA Astrophysics Data System (ADS)
Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.
2009-08-01
The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.
Martins, Mauricio D; Fitch, W Tecumseh
2015-12-15
The relationship between linguistic syntax and action planning is of considerable interest in cognitive science because many researchers suggest that "motor syntax" shares certain key traits with language. In a recent manuscript in this journal, Vicari and Adenzato (henceforth VA) critiqued Hauser, Chomsky and Fitch's 2002 (henceforth HCF's) hypothesis that recursion is language-specific, and that its usage in other domains is parasitic on language resources. VA's main argument is that HCF's hypothesis is falsified by the fact that recursion typifies the structure of intentional action, and recursion in the domain of action is independent of language. Here, we argue that VA's argument is incomplete, and that their formalism can be contrasted with alternative frameworks that are equally consistent with existing data. Therefore their conclusions are premature without further empirical testing and support. In particular, to accept VA's argument it would be necessary to demonstrate both that humans in fact represent self-embedding in the structure of intentional action, and that language is not used to construct these representations. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-jagged: A scalable parallel spatial partitioning algorithm
Deveci, Mehmet; Rajamanickam, Sivasankaran; Devine, Karen D.; ...
2015-03-18
Geometric partitioning is fast and effective for load-balancing dynamic applications, particularly those requiring geometric locality of data (particle methods, crash simulations). We present, to our knowledge, the first parallel implementation of a multidimensional-jagged geometric partitioner. In contrast to the traditional recursive coordinate bisection algorithm (RCB), which recursively bisects subdomains perpendicular to their longest dimension until the desired number of parts is obtained, our algorithm does recursive multi-section with a given number of parts in each dimension. By computing multiple cut lines concurrently and intelligently deciding when to migrate data while computing the partition, we minimize data movement compared to efficientmore » implementations of recursive bisection. We demonstrate the algorithm's scalability and quality relative to the RCB implementation in Zoltan on both real and synthetic datasets. Our experiments show that the proposed algorithm performs and scales better than RCB in terms of run-time without degrading the load balance. Lastly, our implementation partitions 24 billion points into 65,536 parts within a few seconds and exhibits near perfect weak scaling up to 6K cores.« less
Hasegawa, Chihiro; Duffull, Stephen B
2018-02-01
Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.
Recursive least squares background prediction of univariate syndromic surveillance data
2009-01-01
Background Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Methods Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. Results We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. Conclusion The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems. PMID:19149886
Recursive least squares background prediction of univariate syndromic surveillance data.
Najmi, Amir-Homayoon; Burkom, Howard
2009-01-16
Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems.
Mishra, Alok; Swati, D
2015-09-01
Variation in the interval between the R-R peaks of the electrocardiogram represents the modulation of the cardiac oscillations by the autonomic nervous system. This variation is contaminated by anomalous signals called ectopic beats, artefacts or noise which mask the true behaviour of heart rate variability. In this paper, we have proposed a combination filter of recursive impulse rejection filter and recursive 20% filter, with recursive application and preference of replacement over removal of abnormal beats to improve the pre-processing of the inter-beat intervals. We have tested this novel recursive combinational method with median method replacement to estimate the standard deviation of normal to normal (SDNN) beat intervals of congestive heart failure (CHF) and normal sinus rhythm subjects. This work discusses the improvement in pre-processing over single use of impulse rejection filter and removal of abnormal beats for heart rate variability for the estimation of SDNN and Poncaré plot descriptors (SD1, SD2, and SD1/SD2) in detail. We have found the 22 ms value of SDNN and 36 ms value of SD2 descriptor of Poincaré plot as clinical indicators in discriminating the normal cases from CHF cases. The pre-processing is also useful in calculation of Lyapunov exponent which is a nonlinear index as Lyapunov exponents calculated after proposed pre-processing modified in a way that it start following the notion of less complex behaviour of diseased states.
Commande de vol non lineaire d'un drone a voilure fixe par la methode du backstepping
NASA Astrophysics Data System (ADS)
Finoki, Edouard
This thesis describes the design of a non-linear controller for a UAV using the backstepping method. It is a fixed-wing UAV, the NexSTAR ARF from HobbicoRTM. The aim is to find the expressions of the aileron, the elevator, and the rudder deflection in order to command the flight path angle, the heading angle and the sideslip angle. Controlling the flight path angle allows a steady, climb or descent flight, controlling the heading cap allows to choose the heading and annul the sideslip angle allows an efficient flight. A good technical control has to ensure the stability of the system and provide optimal performances. Backstepping interlaces the choice of a Lyapunov function with the design of feedback control. This control technique works with the true non-linear model without any approximation. The procedure is to transform intermediate state variables into virtual inputs which will control other state variables. Advantages of this technique are its recursivity, its minimum control effort and its cascaded structure that allows dividing a high order system into several simpler lower order systems. To design this non-linear controller, a non-linear model of the UAV was used. Equations of motion are very accurate, aerodynamic coefficients result from interpolations between several essential variables in flight. The controller has been implemented in Matlab/Simulink and FlightGear.
NASA Astrophysics Data System (ADS)
Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu
2018-04-01
In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.
1990-03-01
Assmus, E. F., and J. D. Key, "Affine and projective planes", to appear in Discrete Math (Special Coding Theory Issue). 5. Assumus, E. F. and J. D...S. Locke, ’The subchromatic number of a graph", Discrete Math . 74 (1989)33-49. 24. Hedetniemi, S. T., and T. V. Wimer, "K-terminal recursive families...34Designs and geometries with Cayley", submitted to Journal of Symbolic Computation. 34. Key, J. D., "Regular sets in geometries", Annals of Discrete Math . 37
New directions in photonics simulation: Lanczos recursion and finite-difference time-domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkins, R.J.; McLeod, R.R.; Kallman, J.S.
1992-06-01
Computational Integrated Photonics (CIP) is the area of computational physics that treats the propagation of light in optical fibers and in integrated optical circuits. The purpose of integrated photonics simulation is to develop the computational tools that will support the design of photonic and optoelectronic integrated devices. CIP has, in general, two thrusts: (1) predictive models of photonic device behavior that can be used reliably to enhance significantly the speed with which designs axe optimized for development applications, and (2) to further our ability to describe the linear and nonlinear processes that occur - and can be exploited - inmore » real photonic devices. Experimental integrated optics has been around for over a decade with much of the work during this period. centered on proof-of-principle devices that could be described using simple analytic and numerical models. Recent advances in material growths, photolithography, and device complexity have conspired to reduce significantly the number of devices that can be designed with simple models and to increase dramatically the interest in CIP. In the area of device design, CIP is viewed as critical to understanding device behavior and to optimization. In the area of propagation physics, CIP is an important tool in the study of nonlinear processes in integrated optical devices and fibers. In this talk I will discuss two of the new directions we have been investigating in CIP: Lanczos recursion and finite-difference time-domain.« less
Castro, Eduardo; Martínez-Ramón, Manel; Pearlson, Godfrey; Sui, Jing; Calhoun, Vince D.
2011-01-01
Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA. PMID:21723948
ERIC Educational Resources Information Center
Strobl, Carolin; Malley, James; Tutz, Gerhard
2009-01-01
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
ERIC Educational Resources Information Center
Strang, Kenneth David
2009-01-01
This paper discusses how a seldom-used statistical procedure, recursive regression (RR), can numerically and graphically illustrate data-driven nonlinear relationships and interaction of variables. This routine falls into the family of exploratory techniques, yet a few interesting features make it a valuable compliment to factor analysis and…
Vehicle Sprung Mass Estimation for Rough Terrain
2011-03-01
distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended
N =4 supergravity next-to-maximally-helicity-violating six-point one-loop amplitude
NASA Astrophysics Data System (ADS)
Dunbar, David C.; Perkins, Warren B.
2016-12-01
We construct the six-point, next-to-maximally-helicity-violating one-loop amplitude in N =4 supergravity using unitarity and recursion. The use of recursion requires the introduction of rational descendants of the cut-constructible pieces of the amplitude and the computation of the nonstandard factorization terms arising from the loop integrals.
On the design of recursive digital filters
NASA Technical Reports Server (NTRS)
Shenoi, K.; Narasimha, M. J.; Peterson, A. M.
1976-01-01
A change of variables is described which transforms the problem of designing a recursive digital filter to that of approximation by a ratio of polynomials on a finite interval. Some analytic techniques for the design of low-pass filters are presented, illustrating the use of the transformation. Also considered are methods for the design of phase equalizers.
1994-03-16
105 2.10 Decidability ........ ................................ 116 3 Declaring Refinements of Recursive Data Types 165 3.1...However, when we introduce polymorphic constructors in Chapter 5, tuples will become a polymorphic data type very similar to other polymorphic data types...terminate. 0 Chapter 3 Declaring Refinements of Recursive Data Types 3.1 Introduction The previous chapter defined refinement type inference in terms of
ERIC Educational Resources Information Center
Reinertsen, Anne Beate
2014-01-01
This article is about developing school-based self-assessing recursive pedagogies and case/action research practices and/or approaches in schools, and teachers, teacher researchers and researchers simultaneously producing and theorising their own practices using second-order cybernetics as a thinking tool. It is a move towards pragmatic…
Raymond L. Czaplewski
2010-01-01
Numerous government surveys of natural resources use Post-Stratification to improve statistical efficiency, where strata are defined by full-coverage, remotely sensed data and geopolitical boundaries. Recursive Restriction Estimation, which may be considered a special case of the static Kalman filter, is an attractive alternative. It decomposes a complex estimation...
ERIC Educational Resources Information Center
Mori, Miki
2013-01-01
This article discusses my (recursive) process of theory building and the relationship between research, teaching, and theory development for graduate students. It shows how graduate students can reshape their conceptual frameworks not only through course work, but also through researching classes they teach. Specifically, while analyzing the…
Semantics Boosts Syntax in Artificial Grammar Learning Tasks with Recursion
ERIC Educational Resources Information Center
Fedor, Anna; Varga, Mate; Szathmary, Eors
2012-01-01
Center-embedded recursion (CER) in natural language is exemplified by sentences such as "The malt that the rat ate lay in the house." Parsing center-embedded structures is in the focus of attention because this could be one of the cognitive capacities that make humans distinct from all other animals. The ability to parse CER is usually…
NASA Astrophysics Data System (ADS)
Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2018-07-01
In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Deciding Termination for Ancestor Match- Bounded String Rewriting Systems
NASA Technical Reports Server (NTRS)
Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes
2005-01-01
Termination of a string rewriting system can be characterized by termination on suitable recursively defined languages. This kind of termination criteria has been criticized for its lack of automation. In an earlier paper we have shown how to construct an automated termination criterion if the recursion is aligned with the rewrite relation. We have demonstrated the technique with Dershowitz's forward closure criterion. In this paper we show that a different approach is suitable when the recursion is aligned with the inverse of the rewrite relation. We apply this idea to Kurth's ancestor graphs and obtain ancestor match-bounded string rewriting systems. Termination is shown to be decidable for this class. The resulting method improves upon those based on match-boundedness or inverse match-boundedness.
A Note on Local Stability Conditions for Two Types of Monetary Models with Recursive Utility
NASA Astrophysics Data System (ADS)
Miyazaki, Kenji; Utsunomiya, Hitoshi
2009-09-01
This note explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility. Although Chen et al. [Chen, B.-L., M. Hsu, and C.-H. Lin, 2008, Inflation and growth: impatience and a qualitative equivalent, Journal of Money, Credit, and Banking, Vol. 40, No. 6, 1310-1323] investigated the relationship between inflation and growth in MIUF and TC models with recursive utility, they conducted only a comparative static analysis in a steady state. By establishing sufficient conditions for local stability, this note proves that impatience should be increasing in consumption and real balances. Increasing impatience, although less plausible from an empirical point of view, receives more support from a theoretical viewpoint.
Wang, Yong; Wu, Qiao-Feng; Chen, Chen; Wu, Ling-Yun; Yan, Xian-Zhong; Yu, Shu-Guang; Zhang, Xiang-Sun; Liang, Fan-Rong
2012-01-01
Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics.
2012-01-01
Background Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. Results In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Conclusions Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics. PMID:23046877
NASA Astrophysics Data System (ADS)
Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.
2017-12-01
Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.
Relatively Recursive Rational Choice.
1981-11-01
for the decision procedure of recursively representable rational choice. Alternatively phrased, we wish to inquire into its degrees of unsolvability. We...may first make the observation that there are three classic notions of reducibility of decision procedures for subsets of the natural numbers... rational choice function defined as an effectively computable represent- ation of Richter’s [1971] concept of rational choice, attains by means of an
The Recursive Process in and of Critical Literacy: Action Research in an Urban Elementary School
ERIC Educational Resources Information Center
Cooper, Karyn; White, Robert E.
2012-01-01
This paper provides an overview of the recursive process of initiating an action research project on literacy for students-at-risk in a Canadian urban elementary school. As this paper demonstrates, this requires development of a school-wide framework, which frames the action research project and desired outcomes, and a shared ownership of this…
ERIC Educational Resources Information Center
Rey, Arnaud; Perruchet, Pierre; Fagot, Joel
2012-01-01
Influential theories have claimed that the ability for recursion forms the computational core of human language faculty distinguishing our communication system from that of other animals (Hauser, Chomsky, & Fitch, 2002). In the present study, we consider an alternative view on recursion by studying the contribution of associative and working…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstone, H.J.; Moats, R.K.
1981-04-01
With the aim of high-order calculations, a new recursive solution for the degenerate Rayleigh-Schroedinger perturbation-theory wave function and energy has been derived. The final formulas, chi/sup (N/)/sub sigma/ = R/sup () -sigma/summation/sup N/-1/sub k/ = 0 H/sup (sigma+1+k/)/sub sigma+1/chi/sup (N/-1-k), E/sup (N/+sigma) = <0Vertical BarH/sup (N/+sigma)/sub sigma+1/Vertical Bar0> + < 0Vertical Barsummation/sup N/-2/sub k/ = 0H/sup (sigma+1+k/)/sub sigma+1/ Vertical Barchi/sup (N/-1-k)>,which involve new Hamiltonian-related operators H/sup (sigma+k/)/sub sigma/ and H/sup( sigma+k/)/sub sigma/, strongly resemble the standard nondegenerate recursive formulas. As an illustration, the perturbed energy coefficients for the 3s-3d/sub 0/ states of hydrogen in the Zeeman effect have been calculatedmore » recursively through 87th order in the square of the magnetic field. Our treatment is compared with that of Hirschfelder and Certain (J. Chem. Phys. 60, 1118 (1974)), and some relative advantages of each are pointed out.« less
Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.
Angular-Rate Estimation Using Delayed Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.
NASA Astrophysics Data System (ADS)
Gregorio, Fernando; Cousseau, Juan; Werner, Stefan; Riihonen, Taneli; Wichman, Risto
2011-12-01
The design of predistortion techniques for broadband multiple input multiple output-OFDM (MIMO-OFDM) systems raises several implementation challenges. First, the large bandwidth of the OFDM signal requires the introduction of memory effects in the PD model. In addition, it is usual to consider an imbalanced in-phase and quadrature (IQ) modulator to translate the predistorted baseband signal to RF. Furthermore, the coupling effects, which occur when the MIMO paths are implemented in the same reduced size chipset, cannot be avoided in MIMO transceivers structures. This study proposes a MIMO-PD system that linearizes the power amplifier response and compensates nonlinear crosstalk and IQ imbalance effects for each branch of the multiantenna system. Efficient recursive algorithms are presented to estimate the complete MIMO-PD coefficients. The algorithms avoid the high computational complexity in previous solutions based on least squares estimation. The performance of the proposed MIMO-PD structure is validated by simulations using a two-transmitter antenna MIMO system. Error vector magnitude and adjacent channel power ratio are evaluated showing significant improvement compared with conventional MIMO-PD systems.
Experimental evaluation of a recursive model identification technique for type 1 diabetes.
Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E
2009-09-01
A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
Recursive utility in a Markov environment with stochastic growth
Hansen, Lars Peter; Scheinkman, José A.
2012-01-01
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility. PMID:22778428
NASA Astrophysics Data System (ADS)
Burke, Mark E.
2010-11-01
Dubois coined the term incursion, for an inclusive or implicit recursion, to describe a discrete-time anticipatory system which computes its future states by reference to its future states as well as its current and past states. In this paper, we look at a model which has been proposed in the context of a social system which has functionally differentiated subsystems. The model is derived from a discrete-time compartmental SIS epidemic model. We analyse a low order instance of the model both in its form as a recursion with no anticipatory capacity, and also as an incursion with associated anticipatory capacity. The properties of the incursion are compared and contrasted with those of the underlying recursion.
An iterative approach to region growing using associative memories
NASA Technical Reports Server (NTRS)
Snyder, W. E.; Cowart, A.
1983-01-01
Region growing, often given as a classical example of the recursive control structures used in image processing which are often awkward to implement in hardware where the intent is the segmentation of an image at raster scan rates, is addressed in light of the postulate that any computation which can be performed recursively can be performed easily and efficiently by iteration coupled with association. Attention is given to an algorithm and hardware structure able to perform region labeling iteratively at scan rates. Every pixel is individually labeled with an identifier which signifies the region to which it belongs. Difficulties otherwise requiring recursion are handled by maintaining an equivalence table in hardware transparent to the computer, which reads the labeled pixels. A simulation of the associative memory has demonstrated its effectiveness.
Lim, Jun-Seok; Pang, Hee-Suk
2016-01-01
In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.
Recursive utility in a Markov environment with stochastic growth.
Hansen, Lars Peter; Scheinkman, José A
2012-07-24
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.
Self-tuning regulators for multicyclic control of helicopter vibration
NASA Technical Reports Server (NTRS)
Johnson, W.
1982-01-01
A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.
A numerical identifiability test for state-space models--application to optimal experimental design.
Hidalgo, M E; Ayesa, E
2001-01-01
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.
Solution of the Fokker-Planck equation with mixing of angular harmonics by beam-beam charge exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikkelsen, D.R.
1989-09-01
A method for solving the linear Fokker-Planck equation with anisotropic beam-beam charge exchange loss is presented. The 2-D equation is transformed to a system of coupled 1-D equations which are solved iteratively as independent equations. Although isotropic approximations to the beam-beam losses lead to inaccurate fast ion distributions, typically only a few angular harmonics are needed to include accurately the effect of the beam-beam charge exchange loss on the usual integrals of the fast ion distribution. Consequently, the algorithm converges very rapidly and is much more efficient than a 2-D finite difference method. A convenient recursion formula for the couplingmore » coefficients is given and generalization of the method is discussed. 13 refs., 2 figs.« less
A Stochastic Total Least Squares Solution of Adaptive Filtering Problem
Ahmad, Noor Atinah
2014-01-01
An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function. Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS) algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system identification under noisy inputs. PMID:24688412
Optimal estimation for the satellite attitude using star tracker measurements
NASA Technical Reports Server (NTRS)
Lo, J. T.-H.
1986-01-01
An optimal estimation scheme is presented, which determines the satellite attitude using the gyro readings and the star tracker measurements of a commonly used satellite attitude measuring unit. The scheme is mainly based on the exponential Fourier densities that have the desirable closure property under conditioning. By updating a finite and fixed number of parameters, the conditional probability density, which is an exponential Fourier density, is recursively determined. Simulation results indicate that the scheme is more accurate and robust than extended Kalman filtering. It is believed that this approach is applicable to many other attitude measuring units. As no linearization and approximation are necessary in the approach, it is ideal for systems involving high levels of randomness and/or low levels of observability and systems for which accuracy is of overriding importance.
Image Algebra Matlab language version 2.3 for image processing and compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric
2010-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation of IAM to include polymorphic operations over different point sets, as well as recursive convolution operations and functional composition. We also show how image algebra and IAM can be employed in image processing and compression research, as well as algorithm development and analysis.
The Adam language: Ada extended with support for multiway activities
NASA Technical Reports Server (NTRS)
Charlesworth, Arthur
1993-01-01
The Adam language is an extension of Ada that supports multiway activities, which are cooperative activities involving two or more processes. This support is provided by three new constructs: diva procedures, meet statements, and multiway accept statements. Diva procedures are recursive generic procedures having a particular restrictive syntax that facilitates translation for parallel computers. Meet statements and multiway accept statements provide two ways to express a multiway rendezvous, which is an n-way rendezvous generalizing Ada's 2-way rendezvous. While meet statements tend to have simpler rules than multiway accept statements, the latter approach is a more straightforward extension of Ada. The only nonnull statements permitted within meet statements and multiway accept statements are calls on instantiated diva procedures. A call on an instantiated diva procedure is also permitted outside a multiway rendezvous; thus sequential Adam programs using diva procedures can be written. Adam programs are translated into Ada programs appropriate for use on parallel computers.
Report to the High Order Language Working Group (HOLWG)
1977-01-14
as running, runnable, suspended or dormant, may be synchronized by semaphore variables, may be schedaled using clock and duration data types and mpy...Recursive and non-recursive routines G6. Parallel processes, synchronization , critical regions G7. User defined parameterized exception handling G8...typed and lacks extensibility, parallel processing, synchronization and real-time features. Overall Evaluation IBM strongly recommended PL/I as a
Computation of transform domain covariance matrices
NASA Technical Reports Server (NTRS)
Fino, B. J.; Algazi, V. R.
1975-01-01
It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.
Recursive search method for the image elements of functionally defined surfaces
NASA Astrophysics Data System (ADS)
Vyatkin, S. I.
2017-05-01
This paper touches upon the synthesis of high-quality images in real time and the technique for specifying three-dimensional objects on the basis of perturbation functions. The recursive search method for the image elements of functionally defined objects with the use of graphics processing units is proposed. The advantages of such an approach over the frame-buffer visualization method are shown.
ERIC Educational Resources Information Center
Keeney, Hillary; Keeney, Bradford
2013-01-01
The Ju/'hoan Bushman origin myth is depicted as a contextual frame for their healing and transformative ways. Using Recursive Frame Analysis, these performances are shown to be an enactment of the border crossing between First and Second Creation, that is, pre-linguistic and linguistic domains of experience. Here n/om, or the presumed creative…
NASA Astrophysics Data System (ADS)
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.
The application of dynamic programming in production planning
NASA Astrophysics Data System (ADS)
Wu, Run
2017-05-01
Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.
NASA Astrophysics Data System (ADS)
Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.
2014-04-01
Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.
NASA Astrophysics Data System (ADS)
Zheng, Lianqing; Yang, Wei
2008-07-01
Recently, accelerated molecular dynamics (AMD) technique was generalized to realize essential energy space random walks so that further sampling enhancement and effective localized enhanced sampling could be achieved. This method is especially meaningful when essential coordinates of the target events are not priori known; moreover, the energy space metadynamics method was also introduced so that biasing free energy functions can be robustly generated. Despite the promising features of this method, due to the nonequilibrium nature of the metadynamics recursion, it is challenging to rigorously use the data obtained at the recursion stage to perform equilibrium analysis, such as free energy surface mapping; therefore, a large amount of data ought to be wasted. To resolve such problem so as to further improve simulation convergence, as promised in our original paper, we are reporting an alternate approach: the adaptive-length self-healing (ALSH) strategy for AMD simulations; this development is based on a recent self-healing umbrella sampling method. Here, the unit simulation length for each self-healing recursion is increasingly updated based on the Wang-Landau flattening judgment. When the unit simulation length for each update is long enough, all the following unit simulations naturally run into the equilibrium regime. Thereafter, these unit simulations can serve for the dual purposes of recursion and equilibrium analysis. As demonstrated in our model studies, by applying ALSH, both fast recursion and short nonequilibrium data waste can be compromised. As a result, combining all the data obtained from all the unit simulations that are in the equilibrium regime via the weighted histogram analysis method, efficient convergence can be robustly ensured, especially for the purpose of free energy surface mapping.
An Element-Based Concurrent Partitioner for Unstructured Finite Element Meshes
NASA Technical Reports Server (NTRS)
Ding, Hong Q.; Ferraro, Robert D.
1996-01-01
A concurrent partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The partitioner uses an element-based partitioning strategy. Its main advantage over the more conventional node-based partitioning strategy is its modular programming approach to the development of parallel applications. The partitioner first partitions element centroids using a recursive inertial bisection algorithm. Elements and nodes then migrate according to the partitioned centroids, using a data request communication template for unpredictable incoming messages. Our scalable implementation is contrasted to a non-scalable implementation which is a straightforward parallelization of a sequential partitioner.
NASA Technical Reports Server (NTRS)
Abboud, S.; Blatt, C. M.; Lown, B.; Graboys, T. B.; Sadeh, D.; Cohen, R. J.
1987-01-01
An advanced non invasive signal averaging technique was used to detect late potentials in two groups of patients: Group A (24 patients) with coronary artery disease (CAD) and without sustained ventricular tachycardia (VT) and Group B (8 patients) with CAD and sustained VT. Recorded analog data were digitized and aligned using a cross correlation function with fast Fourier transform schema, averaged and band pass filtered between 60 and 200 Hz with a non-recursive digital filter. Averaged filtered waveforms were analyzed by computer program for 3 parameters: (1) filtered QRS (fQRS) duration (2) interval between the peak of the R wave peak and the end of fQRS (R-LP) (3) RMS value of last 40 msec of fQRS (RMS). Significant change was found between Groups A and B in fQRS (101 -/+ 13 msec vs 123 -/+ 15 msec; p < .0005) and in R-LP vs 52 -/+ 11 msec vs 71-/+18 msec, p <.002). We conclude that (1) the use of a cross correlation triggering method and non-recursive digital filter enables a reliable recording of late potentials from the body surface; (2) fQRS and R-LP durations are sensitive indicators of CAD patients susceptible to VT.
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.
2016-03-01
The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.
Expansion of all multitrace tree level EYM amplitudes
NASA Astrophysics Data System (ADS)
Du, Yi-Jian; Feng, Bo; Teng, Fei
2017-12-01
In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.
NASA Technical Reports Server (NTRS)
Mcclain, W. D.
1977-01-01
A recursively formulated, first-order, semianalytic artificial satellite theory, based on the generalized method of averaging is presented in two volumes. Volume I comprehensively discusses the theory of the generalized method of averaging applied to the artificial satellite problem. Volume II presents the explicit development in the nonsingular equinoctial elements of the first-order average equations of motion. The recursive algorithms used to evaluate the first-order averaged equations of motion are also presented in Volume II. This semianalytic theory is, in principle, valid for a term of arbitrary degree in the expansion of the third-body disturbing function (nonresonant cases only) and for a term of arbitrary degree and order in the expansion of the nonspherical gravitational potential function.
Geomagnetic modeling by optimal recursive filtering
NASA Technical Reports Server (NTRS)
Gibbs, B. P.; Estes, R. H.
1981-01-01
The results of a preliminary study to determine the feasibility of using Kalman filter techniques for geomagnetic field modeling are given. Specifically, five separate field models were computed using observatory annual means, satellite, survey and airborne data for the years 1950 to 1976. Each of the individual field models used approximately five years of data. These five models were combined using a recursive information filter (a Kalman filter written in terms of information matrices rather than covariance matrices.) The resulting estimate of the geomagnetic field and its secular variation was propogated four years past the data to the time of the MAGSAT data. The accuracy with which this field model matched the MAGSAT data was evaluated by comparisons with predictions from other pre-MAGSAT field models. The field estimate obtained by recursive estimation was found to be superior to all other models.
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
Roll Angle Estimation Using Thermopiles for a Flight Controlled Mortar
2012-06-01
Using Xilinx’s System generator, the entire design was implemented at a relatively high level within Malab’s Simulink. This allowed VHDL code to...thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA). These results demonstrate the...accurately estimated by processing the thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J. N.; Turner, J. D.; Chun, H. M.
1986-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baykara, N. A.
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraicmore » equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.« less
Bouchard, M
2001-01-01
In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.
Major depressive disorder subtypes to predict long-term course
van Loo, Hanna M.; Cai, Tianxi; Gruber, Michael J.; Li, Junlong; de Jonge, Peter; Petukhova, Maria; Rose, Sherri; Sampson, Nancy A.; Schoevers, Robert A.; Wardenaar, Klaas J.; Wilcox, Marsha A.; Al-Hamzawi, Ali Obaid; Andrade, Laura Helena; Bromet, Evelyn J.; Bunting, Brendan; Fayyad, John; Florescu, Silvia E.; Gureje, Oye; Hu, Chiyi; Huang, Yueqin; Levinson, Daphna; Medina-Mora, Maria Elena; Nakane, Yoshibumi; Posada-Villa, Jose; Scott, Kate M.; Xavier, Miguel; Zarkov, Zahari; Kessler, Ronald C.
2016-01-01
Background Variation in course of major depressive disorder (MDD) is not strongly predicted by existing subtype distinctions. A new subtyping approach is considered here. Methods Two data mining techniques, ensemble recursive partitioning and Lasso generalized linear models (GLMs) followed by k-means cluster analysis, are used to search for subtypes based on index episode symptoms predicting subsequent MDD course in the World Mental Health (WMH) Surveys. The WMH surveys are community surveys in 16 countries. Lifetime DSM-IV MDD was reported by 8,261 respondents. Retrospectively reported outcomes included measures of persistence (number of years with an episode; number of with an episode lasting most of the year) and severity (hospitalization for MDD; disability due to MDD). Results Recursive partitioning found significant clusters defined by the conjunctions of early onset, suicidality, and anxiety (irritability, panic, nervousness-worry-anxiety) during the index episode. GLMs found additional associations involving a number of individual symptoms. Predicted values of the four outcomes were strongly correlated. Cluster analysis of these predicted values found three clusters having consistently high, intermediate, or low predicted scores across all outcomes. The high-risk cluster (30.0% of respondents) accounted for 52.9-69.7% of high persistence and severity and was most strongly predicted by index episode severe dysphoria, suicidality, anxiety, and early onset. A total symptom count, in comparison, was not a significant predictor. Conclusions Despite being based on retrospective reports, results suggest that useful MDD subtyping distinctions can be made using data mining methods. Further studies are needed to test and expand these results with prospective data. PMID:24425049
Menu-Driven Solver Of Linear-Programming Problems
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
A Scalable Distributed Syntactic, Semantic, and Lexical Language Model
2012-09-01
Here pa(τ) denotes the set of parent states of τ. If the recursive factorization refers to a graph , then we have a Bayesian network (Lauritzen 1996...Broadly speaking, however, the recursive factorization can refer to a representation more complicated than a graph with a fixed set of nodes and edges...factored language (FL) model (Bilmes and Kirchhoff 2003) is close to the smoothing technique we propose here, the major difference is that FL
A note on NMHV form factors from the Graßmannian and the twistor string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meidinger, David; Nandan, Dhritiman; Penante, Brenda
In this note we investigate Graßmannian formulas for form factors of the chiral part of the stress-tensor multiplet in N = 4 superconformal Yang-Mills theory. We present an all-n contour for the G(3, n + 2) Graßmannian integral of NMHV form factors derived from on-shell diagrams and the BCFW recursion relation. In addition, we study other G(3, n + 2) formulas obtained from the connected prescription introduced recently. We find a recursive expression for all n and study its properties. For n ≥ 6, our formula has the same recursive structure as its amplitude counterpart, making its soft behaviour manifest.more » Finally, we explore the connection between the two Graßmannian formulations, using the global residue theorem, and find that it is much more intricate compared to scattering amplitudes.« less
A recursive vesicle-based model protocell with a primitive model cell cycle
NASA Astrophysics Data System (ADS)
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-09-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution.
The TAR effect: when the ones who dislike become the ones who are disliked.
Gawronski, Bertram; Walther, Eva
2008-09-01
Four studies tested whether a source's evaluations of other individuals can recursively transfer to the source, such that people who like others acquire a positive valence, whereas people who dislike others acquire a negative valence (Transfer of Attitudes Recursively; TAR). Experiment 1 provides first evidence for TAR effects, showing recursive transfers of evaluations regardless of whether participants did or did not have prior knowledge about the (dis)liking source. Experiment 2 shows that previously but not subsequently acquired knowledge about targets that were (dis)liked by a source overrode TAR effects in a manner consistent with cognitive balance. Finally, Experiments 3 and 4 demonstrate that TAR effects are mediated by higher order propositional inferences (in contrast to lower order associative processes), in that TAR effects on implicit attitude measures were fully mediated by TAR effects on explicit attitude measures. Commonalities and differences between the TAR effect and previously established phenomena are discussed.
Condensate statistics and thermodynamics of weakly interacting Bose gas: Recursion relation approach
NASA Astrophysics Data System (ADS)
Dorfman, K. E.; Kim, M.; Svidzinsky, A. A.
2011-03-01
We study condensate statistics and thermodynamics of weakly interacting Bose gas with a fixed total number N of particles in a cubic box. We find the exact recursion relation for the canonical ensemble partition function. Using this relation, we calculate the distribution function of condensate particles for N=200. We also calculate the distribution function based on multinomial expansion of the characteristic function. Similar to the ideal gas, both approaches give exact statistical moments for all temperatures in the framework of Bogoliubov model. We compare them with the results of unconstraint canonical ensemble quasiparticle formalism and the hybrid master equation approach. The present recursion relation can be used for any external potential and boundary conditions. We investigate the temperature dependence of the first few statistical moments of condensate fluctuations as well as thermodynamic potentials and heat capacity analytically and numerically in the whole temperature range.
Development of a recursion RNG-based turbulence model
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George; Thangam, S.
1993-01-01
Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.
A note on NMHV form factors from the Graßmannian and the twistor string
Meidinger, David; Nandan, Dhritiman; Penante, Brenda; ...
2017-09-06
In this note we investigate Graßmannian formulas for form factors of the chiral part of the stress-tensor multiplet in N = 4 superconformal Yang-Mills theory. We present an all-n contour for the G(3, n + 2) Graßmannian integral of NMHV form factors derived from on-shell diagrams and the BCFW recursion relation. In addition, we study other G(3, n + 2) formulas obtained from the connected prescription introduced recently. We find a recursive expression for all n and study its properties. For n ≥ 6, our formula has the same recursive structure as its amplitude counterpart, making its soft behaviour manifest.more » Finally, we explore the connection between the two Graßmannian formulations, using the global residue theorem, and find that it is much more intricate compared to scattering amplitudes.« less
EEG and MEG source localization using recursively applied (RAP) MUSIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Leahy, R.M.
1996-12-31
The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which usesmore » the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.« less
Rehbein, Pia; Brügemann, Kerstin; Yin, Tong; V Borstel, U König; Wu, Xiao-Lin; König, Sven
2013-10-01
A dataset of test-day records, fertility traits, and one health trait including 1275 Brown Swiss cows kept in 46 small-scale organic farms was used to infer relationships among these traits based on recursive Gaussian-threshold models. Test-day records included milk yield (MY), protein percentage (PROT-%), fat percentage (FAT-%), somatic cell score (SCS), the ratio of FAT-% to PROT-% (FPR), lactose percentage (LAC-%), and milk urea nitrogen (MUN). Female fertility traits were defined as the interval from calving to first insemination (CTFS) and success of a first insemination (SFI), and the health trait was clinical mastitis (CM). First, a tri-trait model was used which postulated the recursive effect of a test-day observation in the early period of lactation on liability to CM (LCM), and further the recursive effect of LCM on the following test-day observation. For CM and female fertility traits, a bi-trait recursive Gaussian-threshold model was employed to estimate the effects from CM to CTFS and from CM on SFI. The recursive effects from CTFS and SFI onto CM were not relevant, because CM was recorded prior to the measurements for CTFS and SFI. Results show that the posterior heritability for LCM was 0.05, and for all other traits, heritability estimates were in reasonable ranges, each with a small posterior SD. Lowest heritability estimates were obtained for female reproduction traits, i.e. h(2)=0.02 for SFI, and h(2)≈0 for CTFS. Posterior estimates of genetic correlations between LCM and production traits (MY and MUN), and between LCM and somatic cell score (SCS), were large and positive (0.56-0.68). Results confirm the genetic antagonism between MY and LCM, and the suitability of SCS as an indicator trait for CM. Structural equation coefficients describe the impact of one trait on a second trait on the phenotypic pathway. Higher values for FAT-% and FPR were associated with a higher LCM. The rate of change in FAT-% and in FPR in the ongoing lactation with respect to the previous LCM was close to zero. Estimated recursive effects between SCS and CM were positive, implying strong phenotypic impacts between both traits. Structural equation coefficients explained a detrimental impact of CM on female fertility traits CTFS and SFI. The cow-specific CM treatment had no significant impact on performance traits in the ongoing lactation. For most treatments, beta-lactam-antibiotics were used, but test-day SCS and production traits after the beta-lactam-treatment were comparable to those after other antibiotic as well as homeopathic treatments. Copyright © 2013 Elsevier B.V. All rights reserved.
Adaptive MPC based on MIMO ARX-Laguerre model.
Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais
2017-03-01
This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Momentum-Based Dynamics for Spacecraft with Chained Revolute Appendages
NASA Technical Reports Server (NTRS)
Queen, Steven; London, Ken; Gonzalez, Marcelo
2005-01-01
An efficient formulation is presented for a sub-class of multi-body dynamics problems that involve a six degree-of-freedom base body and a chain of N rigid linkages connected in series by single degree-of-freedom revolute joints. This general method is particularly well suited for simulations of spacecraft dynamics and control that include the modeling of an orbiting platform with or without internal degrees of freedom such as reaction wheels, dampers, and/or booms. In the present work, particular emphasis is placed on dynamic simulation of multi-linkage robotic manipulators. The differential equations of motion are explicitly given in terms of linear and angular momentum states, which can be evaluated recursively along a serial chain of linkages for an efficient real-time solution on par with the best of the O(N3) methods.
Multidimensional density shaping by sigmoids.
Roth, Z; Baram, Y
1996-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.
A simple approach to nonlinear estimation of physical systems
Christakos, G.
1988-01-01
Recursive algorithms for estimating the states of nonlinear physical systems are developed. This requires some key hypotheses regarding the structure of the underlying processes. Members of this class of random processes have several desirable properties for the nonlinear estimation of random signals. An assumption is made about the form of the estimator, which may then take account of a wide range of applications. Under the above assumption, the estimation algorithm is mathematically suboptimal but effective and computationally attractive. It may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. To link theory with practice, some numerical results for a simulated system are presented, in which the responses from the proposed and the extended Kalman algorithms are compared. ?? 1988.
NASA Astrophysics Data System (ADS)
Bu, Xianye; Dong, Hongli; Han, Fei; Li, Gongfa
2018-07-01
This paper is concerned with the distributed filtering problem for a class of time-varying systems subject to deception attacks and event-triggering protocols. Due to the bandwidth limitation, an event-triggered communication strategy is adopted to alleviate the data transmission pressure in the algorithm implementation process. The partial nodes-based filtering problem is considered, where only a partial of nodes can measure the information of the plant. Meanwhile, the measurement information possibly suffers the deception attacks in the transmission process. Sufficient conditions can be established such that the error dynamics satisfies the prescribed average ? performance constraints. The parameters of designed filters can be calculated by solving a series of recursive linear matrix inequalities. A simulation example is presented to demonstrate the effectiveness of the proposed filtering method in this paper.
Ward identities and combinatorics of rainbow tensor models
NASA Astrophysics Data System (ADS)
Itoyama, H.; Mironov, A.; Morozov, A.
2017-06-01
We discuss the notion of renormalization group (RG) completion of non-Gaussian Lagrangians and its treatment within the framework of Bogoliubov-Zimmermann theory in application to the matrix and tensor models. With the example of the simplest non-trivial RGB tensor theory (Aristotelian rainbow), we introduce a few methods, which allow one to connect calculations in the tensor models to those in the matrix models. As a byproduct, we obtain some new factorization formulas and sum rules for the Gaussian correlators in the Hermitian and complex matrix theories, square and rectangular. These sum rules describe correlators as solutions to finite linear systems, which are much simpler than the bilinear Hirota equations and the infinite Virasoro recursion. Search for such relations can be a way to solving the tensor models, where an explicit integrability is still obscure.
NASA Astrophysics Data System (ADS)
Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang
2016-01-01
In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
Palma Orozco, Rosaura
2018-01-01
Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. PMID:29568310
Semilinear programming: applications and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, S.
Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less
ERIC Educational Resources Information Center
Moody, John Charles
Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…
Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
Lee, Dongha; Jang, Changwon; Park, Hae-Jeong
2015-03-01
Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.
Volitional and Real-Time Control Cursor Based on Eye Movement Decoding Using a Linear Decoding Model
Zhang, Cheng
2016-01-01
The aim of this study is to build a linear decoding model that reveals the relationship between the movement information and the EOG (electrooculogram) data to online control a cursor continuously with blinks and eye pursuit movements. First of all, a blink detection method is proposed to reject a voluntary single eye blink or double-blink information from EOG. Then, a linear decoding model of time series is developed to predict the position of gaze, and the model parameters are calibrated by the RLS (Recursive Least Square) algorithm; besides, the assessment of decoding accuracy is assessed through cross-validation procedure. Additionally, the subsection processing, increment control, and online calibration are presented to realize the online control. Finally, the technology is applied to the volitional and online control of a cursor to hit the multiple predefined targets. Experimental results show that the blink detection algorithm performs well with the voluntary blink detection rate over 95%. Through combining the merits of blinks and smooth pursuit movements, the movement information of eyes can be decoded in good conformity with the average Pearson correlation coefficient which is up to 0.9592, and all signal-to-noise ratios are greater than 0. The novel system allows people to successfully and economically control a cursor online with a hit rate of 98%. PMID:28058044
Moderate deviations-based importance sampling for stochastic recursive equations
Dupuis, Paul; Johnson, Dane
2017-11-17
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
Dissociative Electron Attachment to Rovibrationally Excited Molecules
1987-08-31
obtained in some recent papers.4’ - In Sec. IV of the present L,(0, (00 paper we will obtain some general recursion relations among where these matrix... general five-term From the generating function of Hermite polynomials , recursion relation (32) is obtained which is valid for the matrix elements of...for the generation of the functions for increasing 1. One convenient way to evaluate a Q, function is to write it in terms of Gaussian hypergeometric
Moderate deviations-based importance sampling for stochastic recursive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Paul; Johnson, Dane
Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
NASA Technical Reports Server (NTRS)
Nikravesh, Parviz E.; Gim, Gwanghum; Arabyan, Ara; Rein, Udo
1989-01-01
The formulation of a method known as the joint coordinate method for automatic generation of the equations of motion for multibody systems is summarized. For systems containing open or closed kinematic loops, the equations of motion can be reduced systematically to a minimum number of second order differential equations. The application of recursive and nonrecursive algorithms to this formulation, computational considerations and the feasibility of implementing this formulation on multiprocessor computers are discussed.
Recursive regularization step for high-order lattice Boltzmann methods
NASA Astrophysics Data System (ADS)
Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre
2017-09-01
A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
Compressible or incompressible blend of interacting monodisperse linear polymers near a surface.
Batman, Richard; Gujrati, P D
2007-08-28
We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse linear polymers of two species, A and B, with a third monomeric species C, which may be taken to represent free volume. The mixture is confined between two hard, parallel plates of variable separation whose interactions with A and C may be attractive, repulsive, or neutral, and may be different from each other. The interactions with A and C are all that are required to completely specify the effect of each surface on all three components. We numerically study various density profiles as we move away from the surface, by using the recursive method of Gujrati and Chhajer [J. Chem. Phys. 106, 5599 (1997)] that has already been previously applied to study polydisperse solutions and blends next to surfaces. The resulting density profiles show the oscillations that are seen in Monte Carlo simulations and the enrichment of the smaller species at a neutral surface. The method is computationally ultrafast and can be carried out on a personal computer (PC), even in the incompressible case, when Monte Carlo simulations are not feasible. The calculations of density profiles usually take less than 20 min on a PC.
Multi-step splicing of sphingomyelin synthase linear and circular RNAs.
Filippenkov, Ivan B; Sudarkina, Olga Yu; Limborska, Svetlana A; Dergunova, Lyudmila V
2018-05-15
The SGMS1 gene encodes the enzyme sphingomyelin synthase 1 (SMS1), which is involved in the regulation of lipid metabolism, apoptosis, intracellular vesicular transport and other significant processes. The SGMS1 gene is located on chromosome 10 and has a size of 320 kb. Previously, we showed that dozens of alternative transcripts of the SGMS1 gene are present in various human tissues. In addition to mRNAs that provide synthesis of the SMS1 protein, this gene participates in the synthesis of non-coding transcripts, including circular RNAs (circRNAs), which include exons of the 5'-untranslated region (5'-UTR) and are highly represented in the brain. In this study, using the high-throughput technology RNA-CaptureSeq, many new SGMS1 transcripts were identified, including both intronic unspliced RNAs (premature RNAs) and RNAs formed via alternative splicing. Recursive exons (RS-exons) that can participate in the multi-step splicing of long introns of the gene were also identified. These exons participate in the formation of circRNAs. Thus, multi-step splicing may provide a variety of linear and circular RNAs of eukaryotic genes in tissues. Copyright © 2018 Elsevier B.V. All rights reserved.
Efficient least angle regression for identification of linear-in-the-parameters models
Beach, Thomas H.; Rezgui, Yacine
2017-01-01
Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140
Multilevel Mixture Kalman Filter
NASA Astrophysics Data System (ADS)
Guo, Dong; Wang, Xiaodong; Chen, Rong
2004-12-01
The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS) and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.
Real-time flutter identification
NASA Technical Reports Server (NTRS)
Roy, R.; Walker, R.
1985-01-01
The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.
An investigation of new methods for estimating parameter sensitivities
NASA Technical Reports Server (NTRS)
Beltracchi, Todd J.; Gabriele, Gary A.
1989-01-01
The method proposed for estimating sensitivity derivatives is based on the Recursive Quadratic Programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This method is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RQP algorithm. Initial testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity.
Simulation of cooperating robot manipulators on a mobile platform
NASA Technical Reports Server (NTRS)
Murphy, Steve H.; Wen, John T.; Saridis, George N.
1990-01-01
The dynamic equations of motion for two manipulators holding a common object on a freely moving mobile platform are developed. The full dynamic interactions from arms to platform and arm-tip to arm-tip are included in the formulation. The development of the closed chain dynamics allows for the use of any solution for the open topological tree of base and manipulator links. In particular, because the system has 18 degrees of freedom, recursive solutions for the dynamic simulation become more promising for efficient calculations of the motion. Simulation of the system is accomplished through a MATLAB program, and the response is visualized graphically using the SILMA Cimstation.
Pirkle, Catherine M; Wu, Yan Yan; Zunzunegui, Maria-Victoria; Gómez, José Fernando
2018-01-01
Objective Conceptual models underpinning much epidemiological research on ageing acknowledge that environmental, social and biological systems interact to influence health outcomes. Recursive partitioning is a data-driven approach that allows for concurrent exploration of distinct mixtures, or clusters, of individuals that have a particular outcome. Our aim is to use recursive partitioning to examine risk clusters for metabolic syndrome (MetS) and its components, in order to identify vulnerable populations. Study design Cross-sectional analysis of baseline data from a prospective longitudinal cohort called the International Mobility in Aging Study (IMIAS). Setting IMIAS includes sites from three middle-income countries—Tirana (Albania), Natal (Brazil) and Manizales (Colombia)—and two from Canada—Kingston (Ontario) and Saint-Hyacinthe (Quebec). Participants Community-dwelling male and female adults, aged 64–75 years (n=2002). Primary and secondary outcome measures We apply recursive partitioning to investigate social and behavioural risk factors for MetS and its components. Model-based recursive partitioning (MOB) was used to cluster participants into age-adjusted risk groups based on variabilities in: study site, sex, education, living arrangements, childhood adversities, adult occupation, current employment status, income, perceived income sufficiency, smoking status and weekly minutes of physical activity. Results 43% of participants had MetS. Using MOB, the primary partitioning variable was participant sex. Among women from middle-incomes sites, the predicted proportion with MetS ranged from 58% to 68%. Canadian women with limited physical activity had elevated predicted proportions of MetS (49%, 95% CI 39% to 58%). Among men, MetS ranged from 26% to 41% depending on childhood social adversity and education. Clustering for MetS components differed from the syndrome and across components. Study site was a primary partitioning variable for all components except HDL cholesterol. Sex was important for most components. Conclusion MOB is a promising technique for identifying disease risk clusters (eg, vulnerable populations) in modestly sized samples. PMID:29500203
The linear transformation model with frailties for the analysis of item response times.
Wang, Chun; Chang, Hua-Hua; Douglas, Jeffrey A
2013-02-01
The item response times (RTs) collected from computerized testing represent an underutilized source of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. In this paper, we propose a semi-parametric model for RTs, the linear transformation model with a latent speed covariate, which combines the flexibility of non-parametric modelling and the brevity as well as interpretability of parametric modelling. In this new model, the RTs, after some non-parametric monotone transformation, become a linear model with latent speed as covariate plus an error term. The distribution of the error term implicitly defines the relationship between the RT and examinees' latent speeds; whereas the non-parametric transformation is able to describe various shapes of RT distributions. The linear transformation model represents a rich family of models that includes the Cox proportional hazards model, the Box-Cox normal model, and many other models as special cases. This new model is embedded in a hierarchical framework so that both RTs and responses are modelled simultaneously. A two-stage estimation method is proposed. In the first stage, the Markov chain Monte Carlo method is employed to estimate the parametric part of the model. In the second stage, an estimating equation method with a recursive algorithm is adopted to estimate the non-parametric transformation. Applicability of the new model is demonstrated with a simulation study and a real data application. Finally, methods to evaluate the model fit are suggested. © 2012 The British Psychological Society.
Dynamics of electricity market correlations
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, J.; Escarela-Perez, R.; Espinosa-Perez, G.; Urrea, R.
2009-06-01
Electricity market participants rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. However, forecasting is hampered by the non-linear and stochastic nature of price time series. Diverse modeling strategies, from neural networks to traditional transfer functions, have been explored. These approaches are based on the assumption that price series contain correlations that can be exploited for model-based prediction purposes. While many works have been devoted to the demand and price modeling, a limited number of reports on the nature and dynamics of electricity market correlations are available. This paper uses detrended fluctuation analysis to study correlations in the demand and price time series and takes the Australian market as a case study. The results show the existence of correlations in both demand and prices over three orders of magnitude in time ranging from hours to months. However, the Hurst exponent is not constant over time, and its time evolution was computed over a subsample moving window of 250 observations. The computations, also made for two Canadian markets, show that the correlations present important fluctuations over a seasonal one-year cycle. Interestingly, non-linearities (measured in terms of a multifractality index) and reduced price predictability are found for the June-July periods, while the converse behavior is displayed during the December-January period. In terms of forecasting models, our results suggest that non-linear recursive models should be considered for accurate day-ahead price estimation. On the other hand, linear models seem to suffice for demand forecasting purposes.
The rid-redundant procedure in C-Prolog
NASA Technical Reports Server (NTRS)
Chen, Huo-Yan; Wah, Benjamin W.
1987-01-01
C-Prolog can conveniently be used for logical inferences on knowledge bases. However, as similar to many search methods using backward chaining, a large number of redundant computation may be produced in recursive calls. To overcome this problem, the 'rid-redundant' procedure was designed to rid all redundant computations in running multi-recursive procedures. Experimental results obtained for C-Prolog on the Vax 11/780 computer show that there is an order of magnitude improvement in the running time and solvable problem size.
Adaptive Control and Parameter Identification of a Doubly-Fed Induction Generator for Wind Power
2011-09-01
Computer Controlled Systems, Theory and Design, Third Edition, Prentice Hall, New Jersey, 1997. [27] R. G. Brown and P. Y.C. Hwang , Introduction to...V n y iT iT , (0.0) with Ts as the sampling interval. From [26], the recursive estimate can be interpreted as a Kalman Filter for the process...by substituting t with n. The recursive equations for the RLS can then be derived from the Kalman filter equations used in [27]: 29 $ $ $ 1 1
Efficient method for computing the electronic transport properties of a multiterminal system
NASA Astrophysics Data System (ADS)
Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio
2018-04-01
We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.
Corona graphs as a model of small-world networks
NASA Astrophysics Data System (ADS)
Lv, Qian; Yi, Yuhao; Zhang, Zhongzhi
2015-11-01
We introduce recursive corona graphs as a model of small-world networks. We investigate analytically the critical characteristics of the model, including order and size, degree distribution, average path length, clustering coefficient, and the number of spanning trees, as well as Kirchhoff index. Furthermore, we study the spectra for the adjacency matrix and the Laplacian matrix for the model. We obtain explicit results for all the quantities of the recursive corona graphs, which are similar to those observed in real-life networks.
Event Compression Using Recursive Least Squares Signal Processing.
1980-07-01
decimation of the Burstl signal with and without all-pole prefiltering to reduce aliasing . Figures 3.32a-c and 3.33a-c show the same examples but with 4/1...to reduce aliasing , w~t found that it did not improve the quality of the event compressed signals . If filtering must be performed, all-pole filtering...A-AO89 785 MASSACHUSETTS IN T OF TECH CAMBRIDGE RESEARCH LAB OF--ETC F/B 17/9 EVENT COMPRESSION USING RECURSIVE LEAST SQUARES SIGNAL PROCESSI-ETC(t
The Lehmer Matrix and Its Recursive Analogue
2010-01-01
LU factorization of matrix A by considering det A = det U = ∏n i=1 2i−1 i2 . The nth Catalan number is given in terms of binomial coefficients by Cn...for failing to comply with a collection of information if it does not display a currently valid OMB control number . 1. REPORT DATE 2010 2. REPORT...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE The Lehmer matrix and its recursive analogue 5a. CONTRACT NUMBER 5b
Helicopter rotor blade frequency evolution with damage growth and signal processing
NASA Astrophysics Data System (ADS)
Roy, Niranjan; Ganguli, Ranjan
2005-05-01
Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.
A Few Discrete Lattice Systems and Their Hamiltonian Structures, Conservation Laws
NASA Astrophysics Data System (ADS)
Guo, Xiu-Rong; Zhang, Yu-Feng; Zhang, Xiang-Zhi; Yue, Rong
2017-04-01
With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie-Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore, we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Innovation Team of Jiangsu Province Hosted by China University of Mining and Technology (2014), the the Key Discipline Construction by China University of Mining and Technology under Grant No. XZD201602, the Shandong Provincial Natural Science Foundation, China under Grant Nos. ZR2016AM31, ZR2016AQ19, ZR2015EM042, the Development of Science and Technology Plan Projects of TaiAn City under Grant No. 2015NS1048, National Social Science Foundation of China under Grant No. 13BJY026, and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58
Proceedings of the second SISAL users` conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feo, J T; Frerking, C; Miller, P J
1992-12-01
This report contains papers on the following topics: A sisal code for computing the fourier transform on S{sub N}; five ways to fill your knapsack; simulating material dislocation motion in sisal; candis as an interface for sisal; parallelisation and performance of the burg algorithm on a shared-memory multiprocessor; use of genetic algorithm in sisal to solve the file design problem; implementing FFT`s in sisal; programming and evaluating the performance of signal processing applications in the sisal programming environment; sisal and Von Neumann-based languages: translation and intercommunication; an IF2 code generator for ADAM architecture; program partitioning for NUMA multiprocessor computer systems;more » mapping functional parallelism on distributed memory machines; implicit array copying: prevention is better than cure ; mathematical syntax for sisal; an approach for optimizing recursive functions; implementing arrays in sisal 2.0; Fol: an object oriented extension to the sisal language; twine: a portable, extensible sisal execution kernel; and investigating the memory performance of the optimizing sisal compiler.« less
A Tensor Product Formulation of Strassen's Matrix Multiplication Algorithm with Memory Reduction
Kumar, B.; Huang, C. -H.; Sadayappan, P.; ...
1995-01-01
In this article, we present a program generation strategy of Strassen's matrix multiplication algorithm using a programming methodology based on tensor product formulas. In this methodology, block recursive programs such as the fast Fourier Transforms and Strassen's matrix multiplication algorithm are expressed as algebraic formulas involving tensor products and other matrix operations. Such formulas can be systematically translated to high-performance parallel/vector codes for various architectures. In this article, we present a nonrecursive implementation of Strassen's algorithm for shared memory vector processors such as the Cray Y-MP. A previous implementation of Strassen's algorithm synthesized from tensor product formulas required working storagemore » of size O(7 n ) for multiplying 2 n × 2 n matrices. We present a modified formulation in which the working storage requirement is reduced to O(4 n ). The modified formulation exhibits sufficient parallelism for efficient implementation on a shared memory multiprocessor. Performance results on a Cray Y-MP8/64 are presented.« less
Techniques for the Enhancement of Linear Predictive Speech Coding in Adverse Conditions
NASA Astrophysics Data System (ADS)
Wrench, Alan A.
Available from UMI in association with The British Library. Requires signed TDF. The Linear Prediction model was first applied to speech two and a half decades ago. Since then it has been the subject of intense research and continues to be one of the principal tools in the analysis of speech. Its mathematical tractability makes it a suitable subject for study and its proven success in practical applications makes the study worthwhile. The model is known to be unsuited to speech corrupted by background noise. This has led many researchers to investigate ways of enhancing the speech signal prior to Linear Predictive analysis. In this thesis this body of work is extended. The chosen application is low bit-rate (2.4 kbits/sec) speech coding. For this task the performance of the Linear Prediction algorithm is crucial because there is insufficient bandwidth to encode the error between the modelled speech and the original input. A review of the fundamentals of Linear Prediction and an independent assessment of the relative performance of methods of Linear Prediction modelling are presented. A new method is proposed which is fast and facilitates stability checking, however, its stability is shown to be unacceptably poorer than existing methods. A novel supposition governing the positioning of the analysis frame relative to a voiced speech signal is proposed and supported by observation. The problem of coding noisy speech is examined. Four frequency domain speech processing techniques are developed and tested. These are: (i) Combined Order Linear Prediction Spectral Estimation; (ii) Frequency Scaling According to an Aural Model; (iii) Amplitude Weighting Based on Perceived Loudness; (iv) Power Spectrum Squaring. These methods are compared with the Recursive Linearised Maximum a Posteriori method. Following on from work done in the frequency domain, a time domain implementation of spectrum squaring is developed. In addition, a new method of power spectrum estimation is developed based on the Minimum Variance approach. This new algorithm is shown to be closely related to Linear Prediction but produces slightly broader spectral peaks. Spectrum squaring is applied to both the new algorithm and standard Linear Prediction and their relative performance is assessed. (Abstract shortened by UMI.).
Signal processing for distributed sensor concept: DISCO
NASA Astrophysics Data System (ADS)
Rafailov, Michael K.
2007-04-01
Distributed Sensor concept - DISCO proposed for multiplication of individual sensor capabilities through cooperative target engagement. DISCO relies on ability of signal processing software to format, to process and to transmit and receive sensor data and to exploit those data in signal synthesis process. Each sensor data is synchronized formatted, Signal-to-Noise Ration (SNR) enhanced and distributed inside of the sensor network. Signal processing technique for DISCO is Recursive Adaptive Frame Integration of Limited data - RAFIL technique that was initially proposed [1] as a way to improve the SNR, reduce data rate and mitigate FPA correlated noise of an individual sensor digital video-signal processing. In Distributed Sensor Concept RAFIL technique is used in segmented way, when constituencies of the technique are spatially and/or temporally separated between transmitters and receivers. Those constituencies include though not limited to two thresholds - one is tuned for optimum probability of detection, the other - to manage required false alarm rate, and limited frame integration placed somewhere between the thresholds as well as formatters, conventional integrators and more. RAFIL allows a non-linear integration that, along with SNR gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability [2]. DISCO architecture allows flexible optimization of SNR gain, data rates and noise suppression on sensor's side and limited integration, re-formatting and final threshold on node's side. DISCO with Recursive Adaptive Frame Integration of Limited data may have flexible architecture that allows segmenting the hardware and software to be best suitable for specific DISCO applications and sensing needs - whatever it is air-or-space platforms, ground terminals or integration of sensors network.
Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model
Li, Xiaoqing; Wang, Yu
2018-01-01
Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology. PMID:29351254
Stream Kriging: Incremental and recursive ordinary Kriging over spatiotemporal data streams
NASA Astrophysics Data System (ADS)
Zhong, Xu; Kealy, Allison; Duckham, Matt
2016-05-01
Ordinary Kriging is widely used for geospatial interpolation and estimation. Due to the O (n3) time complexity of solving the system of linear equations, ordinary Kriging for a large set of source points is computationally intensive. Conducting real-time Kriging interpolation over continuously varying spatiotemporal data streams can therefore be especially challenging. This paper develops and tests two new strategies for improving the performance of an ordinary Kriging interpolator adapted to a stream-processing environment. These strategies rely on the expectation that, over time, source data points will frequently refer to the same spatial locations (for example, where static sensor nodes are generating repeated observations of a dynamic field). First, an incremental strategy improves efficiency in cases where a relatively small proportion of previously processed spatial locations are absent from the source points at any given iteration. Second, a recursive strategy improves efficiency in cases where there is substantial set overlap between the sets of spatial locations of source points at the current and previous iterations. These two strategies are evaluated in terms of their computational efficiency in comparison to ordinary Kriging algorithm. The results show that these two strategies can reduce the time taken to perform the interpolation by up to 90%, and approach average-case time complexity of O (n2) when most but not all source points refer to the same locations over time. By combining the approaches developed in this paper with existing heuristic ordinary Kriging algorithms, the conclusions indicate how further efficiency gains could potentially be accrued. The work ultimately contributes to the development of online ordinary Kriging interpolation algorithms, capable of real-time spatial interpolation with large streaming data sets.
Development of adaptive control applied to chaotic systems
NASA Astrophysics Data System (ADS)
Rhode, Martin Andreas
1997-12-01
Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.
Learning from adaptive neural dynamic surface control of strict-feedback systems.
Wang, Min; Wang, Cong
2015-06-01
Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.
Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.
Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu
2018-01-19
Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology.
An Instructional Note on Linear Programming--A Pedagogically Sound Approach.
ERIC Educational Resources Information Center
Mitchell, Richard
1998-01-01
Discusses the place of linear programming in college curricula and the advantages of using linear-programming software. Lists important characteristics of computer software used in linear programming for more effective teaching and learning. (ASK)
Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai
2004-10-01
Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Parsing recursive sentences with a connectionist model including a neural stack and synaptic gating.
Fedor, Anna; Ittzés, Péter; Szathmáry, Eörs
2011-02-21
It is supposed that humans are genetically predisposed to be able to recognize sequences of context-free grammars with centre-embedded recursion while other primates are restricted to the recognition of finite state grammars with tail-recursion. Our aim was to construct a minimalist neural network that is able to parse artificial sentences of both grammars in an efficient way without using the biologically unrealistic backpropagation algorithm. The core of this network is a neural stack-like memory where the push and pop operations are regulated by synaptic gating on the connections between the layers of the stack. The network correctly categorizes novel sentences of both grammars after training. We suggest that the introduction of the neural stack memory will turn out to be substantial for any biological 'hierarchical processor' and the minimalist design of the model suggests a quest for similar, realistic neural architectures. Copyright © 2010 Elsevier Ltd. All rights reserved.
A recursive vesicle-based model protocell with a primitive model cell cycle
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-01-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution. PMID:26418735
Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.
2013-01-01
RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432
Recursion Relations for Double Ramification Hierarchies
NASA Astrophysics Data System (ADS)
Buryak, Alexandr; Rossi, Paolo
2016-03-01
In this paper we study various properties of the double ramification hierarchy, an integrable hierarchy of hamiltonian PDEs introduced in Buryak (CommunMath Phys 336(3):1085-1107, 2015) using intersection theory of the double ramification cycle in the moduli space of stable curves. In particular, we prove a recursion formula that recovers the full hierarchy starting from just one of the Hamiltonians, the one associated to the first descendant of the unit of a cohomological field theory. Moreover, we introduce analogues of the topological recursion relations and the divisor equation both for the Hamiltonian densities and for the string solution of the double ramification hierarchy. This machinery is very efficient and we apply it to various computations for the trivial and Hodge cohomological field theories, and for the r -spin Witten's classes. Moreover, we prove the Miura equivalence between the double ramification hierarchy and the Dubrovin-Zhang hierarchy for the Gromov-Witten theory of the complex projective line (extended Toda hierarchy).
A probabilistic, distributed, recursive mechanism for decision-making in the brain
Gurney, Kevin N.
2018-01-01
Decision formation recruits many brain regions, but the procedure they jointly execute is unknown. Here we characterize its essential composition, using as a framework a novel recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demonstrate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses of otherwise usable information from MT. Its architecture maps to the recurrent cortico-basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-making. We show that the dynamics of its mapped computations match those of neural activity in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia output and thalamus. This also predicts which aspects of neural dynamics are and are not part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that the mechanism implemented by the brain has these same characteristics. PMID:29614077
NASA Technical Reports Server (NTRS)
Shareef, N. H.; Amirouche, F. M. L.
1991-01-01
A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.
Face recognition using tridiagonal matrix enhanced multivariance products representation
NASA Astrophysics Data System (ADS)
Ã-zay, Evrim Korkmaz
2017-01-01
This study aims to retrieve face images from a database according to a target face image. For this purpose, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) is taken into consideration. TMEMPR is a recursive algorithm based on Enhanced Multivariance Products Representation (EMPR). TMEMPR decomposes a matrix into three components which are a matrix of left support terms, a tridiagonal matrix of weight parameters for each recursion, and a matrix of right support terms, respectively. In this sense, there is an analogy between Singular Value Decomposition (SVD) and TMEMPR. However TMEMPR is a more flexible algorithm since its initial support terms (or vectors) can be chosen as desired. Low computational complexity is another advantage of TMEMPR because the algorithm has been constructed with recursions of certain arithmetic operations without requiring any iteration. The algorithm has been trained and tested with ORL face image database with 400 different grayscale images of 40 different people. TMEMPR's performance has been compared with SVD's performance as a result.
WKB solutions of difference equations and reconstruction by the topological recursion
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2018-01-01
The purpose of this article is to analyze the connection between Eynard-Orantin topological recursion and formal WKB solutions of a \\hbar -difference equation: \\Psi(x+\\hbar)=≤ft(e\\hbar\\fracd{dx}\\right) \\Psi(x)=L(x;\\hbar)\\Psi(x) with L(x;\\hbar)\\in GL_2( ({C}(x))[\\hbar]) . In particular, we extend the notion of determinantal formulas and topological type property proposed for formal WKB solutions of \\hbar -differential systems to this setting. We apply our results to a specific \\hbar -difference system associated to the quantum curve of the Gromov-Witten invariants of {P}1 for which we are able to prove that the correlation functions are reconstructed from the Eynard-Orantin differentials computed from the topological recursion applied to the spectral curve y=\\cosh-1\\frac{x}{2} . Finally, identifying the large x expansion of the correlation functions, proves a recent conjecture made by Dubrovin and Yang regarding a new generating series for Gromov-Witten invariants of {P}1 .
Three applications of a bonus relation for gravity amplitudes
NASA Astrophysics Data System (ADS)
Spradlin, Marcus; Volovich, Anastasia; Wen, Congkao
2009-04-01
Arkani-Hamed et al. have recently shown that all tree-level scattering amplitudes in maximal supergravity exhibit exceptionally soft behavior when two supermomenta are taken to infinity in a particular complex direction, and that this behavior implies new non-trivial relations amongst amplitudes in addition to the well-known on-shell recursion relations. We consider the application of these new 'bonus relations' to MHV amplitudes, showing that they can be used quite generally to relate (n - 2) !-term formulas typically obtained from recursion relations to (n - 3) !-term formulas related to the original BGK conjecture. Specifically we provide (1) a direct proof of a formula presented by Elvang and Freedman, (2) a new formula based on one due to Bedford et al., and (3) an alternate proof of a formula recently obtained by Mason and Skinner. Our results also provide the first direct proof that the conjectured BGK formula, only very recently proven via completely different methods, satisfies the on-shell recursion.
Testing the Stability of 2-D Recursive QP, NSHP and General Digital Filters of Second Order
NASA Astrophysics Data System (ADS)
Rathinam, Ananthanarayanan; Ramesh, Rengaswamy; Reddy, P. Subbarami; Ramaswami, Ramaswamy
Several methods for testing stability of first quadrant quarter-plane two dimensional (2-D) recursive digital filters have been suggested in 1970's and 80's. Though Jury's row and column algorithms, row and column concatenation stability tests have been considered as highly efficient mapping methods. They still fall short of accuracy as they need infinite number of steps to conclude about the exact stability of the filters and also the computational time required is enormous. In this paper, we present procedurally very simple algebraic method requiring only two steps when applied to the second order 2-D quarter - plane filter. We extend the same method to the second order Non-Symmetric Half-plane (NSHP) filters. Enough examples are given for both these types of filters as well as some lower order general recursive 2-D digital filters. We applied our method to barely stable or barely unstable filter examples available in the literature and got the same decisions thus showing that our method is accurate enough.
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.
2017-04-01
To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.
Statistical learning and the challenge of syntax: Beyond finite state automata
NASA Astrophysics Data System (ADS)
Elman, Jeff
2003-10-01
Over the past decade, it has been clear that even very young infants are sensitive to the statistical structure of language input presented to them, and use the distributional regularities to induce simple grammars. But can such statistically-driven learning also explain the acquisition of more complex grammar, particularly when the grammar includes recursion? Recent claims (e.g., Hauser, Chomsky, and Fitch, 2002) have suggested that the answer is no, and that at least recursion must be an innate capacity of the human language acquisition device. In this talk evidence will be presented that indicates that, in fact, statistically-driven learning (embodied in recurrent neural networks) can indeed enable the learning of complex grammatical patterns, including those that involve recursion. When the results are generalized to idealized machines, it is found that the networks are at least equivalent to Push Down Automata. Perhaps more interestingly, with limited and finite resources (such as are presumed to exist in the human brain) these systems demonstrate patterns of performance that resemble those in humans.
Multi-fidelity Gaussian process regression for prediction of random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996
NASA Astrophysics Data System (ADS)
Chair, Noureddine
2014-02-01
We have recently developed methods for obtaining exact two-point resistance of the complete graph minus N edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott's conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2) and SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory.
Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.
Are Khovanov-Rozansky polynomials consistent with evolution in the space of knots?
NASA Astrophysics Data System (ADS)
Anokhina, A.; Morozov, A.
2018-04-01
R-coloured knot polynomials for m-strand torus knots Torus [ m, n] are described by the Rosso-Jones formula, which is an example of evolution in n with Lyapunov exponents, labelled by Young diagrams from R ⊗ m . This means that they satisfy a finite-difference equation (recursion) of finite degree. For the gauge group SL( N ) only diagrams with no more than N lines can contribute and the recursion degree is reduced. We claim that these properties (evolution/recursion and reduction) persist for Khovanov-Rozansky (KR) polynomials, obtained by additional factorization modulo 1 + t, which is not yet adequately described in quantum field theory. Also preserved is some weakened version of differential expansion, which is responsible at least for a simple relation between reduced and unreduced Khovanov polynomials. However, in the KR case evolution is incompatible with the mirror symmetry under the change n -→ - n, what can signal about an ambiguity in the KR factorization even for torus knots.
Rotational-path decomposition based recursive planning for spacecraft attitude reorientation
NASA Astrophysics Data System (ADS)
Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying
2018-02-01
The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.
NASA Astrophysics Data System (ADS)
Bian, Leixiang; Zhu, Wei
2018-07-01
In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.
NASA Astrophysics Data System (ADS)
Sarna, Neeraj; Torrilhon, Manuel
2018-01-01
We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.
Chaos control in delayed phase space constructed by the Takens embedding theory
NASA Astrophysics Data System (ADS)
Hajiloo, R.; Salarieh, H.; Alasty, A.
2018-01-01
In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.
Liang, Hong-Ming; Lin, Ting-Hsiang; Chiou, Jeng-Min; Yeh, Kuo-Chen
2009-06-01
Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, T.; Bartsch, M.; Becker, U.
1997-02-01
MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D--3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures. {copyright} {ital 1997 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, T.; Bartsch, M.; Becker, U.
1997-02-01
MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D-3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures.« less
Prediction of Composite Laminate Strength Properties Using a Refined Zigzag Plate Element
NASA Technical Reports Server (NTRS)
Barut, Atila; Madenci, Erdogan; Tessler, Alexander
2013-01-01
This study presents an approach that uses the refined zigzag element, RZE(exp2,2) in conjunction with progressive failure criteria to predict the ultimate strength of composite laminates based on only ply-level strength properties. The methodology involves four major steps: (1) Determination of accurate stress and strain fields under complex loading conditions using RZE(exp2,2)-based finite element analysis, (2) Determination of failure locations and failure modes using the commonly accepted Hashin's failure criteria, (3) Recursive degradation of the material stiffness, and (4) Non-linear incremental finite element analysis to obtain stress redistribution until global failure. The validity of this approach is established by considering the published test data and predictions for (1) strength of laminates under various off-axis loading, (2) strength of laminates with a hole under compression, and (3) strength of laminates with a hole under tension.
The development rainfall forecasting using kalman filter
NASA Astrophysics Data System (ADS)
Zulfi, Mohammad; Hasan, Moh.; Dwidja Purnomo, Kosala
2018-04-01
Rainfall forecasting is very interesting for agricultural planing. Rainfall information is useful to make decisions about the plan planting certain commodities. In this studies, the rainfall forecasting by ARIMA and Kalman Filter method. Kalman Filter method is used to declare a time series model of which is shown in the form of linear state space to determine the future forecast. This method used a recursive solution to minimize error. The rainfall data in this research clustered by K-means clustering. Implementation of Kalman Filter method is for modelling and forecasting rainfall in each cluster. We used ARIMA (p,d,q) to construct a state space for KalmanFilter model. So, we have four group of the data and one model in each group. In conclusions, Kalman Filter method is better than ARIMA model for rainfall forecasting in each group. It can be showed from error of Kalman Filter method that smaller than error of ARIMA model.