Scoring and staging systems using cox linear regression modeling and recursive partitioning.
Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H
2006-01-01
Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.
Multi-jagged: A scalable parallel spatial partitioning algorithm
Deveci, Mehmet; Rajamanickam, Sivasankaran; Devine, Karen D.; ...
2015-03-18
Geometric partitioning is fast and effective for load-balancing dynamic applications, particularly those requiring geometric locality of data (particle methods, crash simulations). We present, to our knowledge, the first parallel implementation of a multidimensional-jagged geometric partitioner. In contrast to the traditional recursive coordinate bisection algorithm (RCB), which recursively bisects subdomains perpendicular to their longest dimension until the desired number of parts is obtained, our algorithm does recursive multi-section with a given number of parts in each dimension. By computing multiple cut lines concurrently and intelligently deciding when to migrate data while computing the partition, we minimize data movement compared to efficientmore » implementations of recursive bisection. We demonstrate the algorithm's scalability and quality relative to the RCB implementation in Zoltan on both real and synthetic datasets. Our experiments show that the proposed algorithm performs and scales better than RCB in terms of run-time without degrading the load balance. Lastly, our implementation partitions 24 billion points into 65,536 parts within a few seconds and exhibits near perfect weak scaling up to 6K cores.« less
Chan, An-Wen; Fung, Kinwah; Tran, Jennifer M; Kitchen, Jessica; Austin, Peter C; Weinstock, Martin A; Rochon, Paula A
2016-10-01
Keratinocyte carcinoma (nonmelanoma skin cancer) accounts for substantial burden in terms of high incidence and health care costs but is excluded by most cancer registries in North America. Administrative health insurance claims databases offer an opportunity to identify these cancers using diagnosis and procedural codes submitted for reimbursement purposes. To apply recursive partitioning to derive and validate a claims-based algorithm for identifying keratinocyte carcinoma with high sensitivity and specificity. Retrospective study using population-based administrative databases linked to 602 371 pathology episodes from a community laboratory for adults residing in Ontario, Canada, from January 1, 1992, to December 31, 2009. The final analysis was completed in January 2016. We used recursive partitioning (classification trees) to derive an algorithm based on health insurance claims. The performance of the derived algorithm was compared with 5 prespecified algorithms and validated using an independent academic hospital clinic data set of 2082 patients seen in May and June 2011. Sensitivity, specificity, positive predictive value, and negative predictive value using the histopathological diagnosis as the criterion standard. We aimed to achieve maximal specificity, while maintaining greater than 80% sensitivity. Among 602 371 pathology episodes, 131 562 (21.8%) had a diagnosis of keratinocyte carcinoma. Our final derived algorithm outperformed the 5 simple prespecified algorithms and performed well in both community and hospital data sets in terms of sensitivity (82.6% and 84.9%, respectively), specificity (93.0% and 99.0%, respectively), positive predictive value (76.7% and 69.2%, respectively), and negative predictive value (95.0% and 99.6%, respectively). Algorithm performance did not vary substantially during the 18-year period. This algorithm offers a reliable mechanism for ascertaining keratinocyte carcinoma for epidemiological research in the absence of cancer registry data. Our findings also demonstrate the value of recursive partitioning in deriving valid claims-based algorithms.
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Recursive inverse factorization.
Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N
2008-03-14
A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.
Recursive partitioned inversion of large (1500 x 1500) symmetric matrices
NASA Technical Reports Server (NTRS)
Putney, B. H.; Brownd, J. E.; Gomez, R. A.
1976-01-01
A recursive algorithm was designed to invert large, dense, symmetric, positive definite matrices using small amounts of computer core, i.e., a small fraction of the core needed to store the complete matrix. The described algorithm is a generalized Gaussian elimination technique. Other algorithms are also discussed for the Cholesky decomposition and step inversion techniques. The purpose of the inversion algorithm is to solve large linear systems of normal equations generated by working geodetic problems. The algorithm was incorporated into a computer program called SOLVE. In the past the SOLVE program has been used in obtaining solutions published as the Goddard earth models.
NASA Technical Reports Server (NTRS)
Charlesworth, Arthur
1990-01-01
The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.
An Element-Based Concurrent Partitioner for Unstructured Finite Element Meshes
NASA Technical Reports Server (NTRS)
Ding, Hong Q.; Ferraro, Robert D.
1996-01-01
A concurrent partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The partitioner uses an element-based partitioning strategy. Its main advantage over the more conventional node-based partitioning strategy is its modular programming approach to the development of parallel applications. The partitioner first partitions element centroids using a recursive inertial bisection algorithm. Elements and nodes then migrate according to the partitioned centroids, using a data request communication template for unpredictable incoming messages. Our scalable implementation is contrasted to a non-scalable implementation which is a straightforward parallelization of a sequential partitioner.
TREAT (TREe-based Association Test)
TREAT is an R package for detecting complex joint effects in case-control studies. The test statistic is derived from a tree-structure model by recursive partitioning the data. Ultra-fast algorithm is designed to evaluate the significance of association between candidate gene and disease outcome
Teh, Seng Khoon; Zheng, Wei; Lau, David P; Huang, Zhiwei
2009-06-01
In this work, we evaluated the diagnostic ability of near-infrared (NIR) Raman spectroscopy associated with the ensemble recursive partitioning algorithm based on random forests for identifying cancer from normal tissue in the larynx. A rapid-acquisition NIR Raman system was utilized for tissue Raman measurements at 785 nm excitation, and 50 human laryngeal tissue specimens (20 normal; 30 malignant tumors) were used for NIR Raman studies. The random forests method was introduced to develop effective diagnostic algorithms for classification of Raman spectra of different laryngeal tissues. High-quality Raman spectra in the range of 800-1800 cm(-1) can be acquired from laryngeal tissue within 5 seconds. Raman spectra differed significantly between normal and malignant laryngeal tissues. Classification results obtained from the random forests algorithm on tissue Raman spectra yielded a diagnostic sensitivity of 88.0% and specificity of 91.4% for laryngeal malignancy identification. The random forests technique also provided variables importance that facilitates correlation of significant Raman spectral features with cancer transformation. This study shows that NIR Raman spectroscopy in conjunction with random forests algorithm has a great potential for the rapid diagnosis and detection of malignant tumors in the larynx.
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
A Recursive Method for Calculating Certain Partition Functions.
ERIC Educational Resources Information Center
Woodrum, Luther; And Others
1978-01-01
Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)
Tear fluid proteomics multimarkers for diabetic retinopathy screening
2013-01-01
Background The aim of the project was to develop a novel method for diabetic retinopathy screening based on the examination of tear fluid biomarker changes. In order to evaluate the usability of protein biomarkers for pre-screening purposes several different approaches were used, including machine learning algorithms. Methods All persons involved in the study had diabetes. Diabetic retinopathy (DR) was diagnosed by capturing 7-field fundus images, evaluated by two independent ophthalmologists. 165 eyes were examined (from 119 patients), 55 were diagnosed healthy and 110 images showed signs of DR. Tear samples were taken from all eyes and state-of-the-art nano-HPLC coupled ESI-MS/MS mass spectrometry protein identification was performed on all samples. Applicability of protein biomarkers was evaluated by six different optimally parameterized machine learning algorithms: Support Vector Machine, Recursive Partitioning, Random Forest, Naive Bayes, Logistic Regression, K-Nearest Neighbor. Results Out of the six investigated machine learning algorithms the result of Recursive Partitioning proved to be the most accurate. The performance of the system realizing the above algorithm reached 74% sensitivity and 48% specificity. Conclusions Protein biomarkers selected and classified with machine learning algorithms alone are at present not recommended for screening purposes because of low specificity and sensitivity values. This tool can be potentially used to improve the results of image processing methods as a complementary tool in automatic or semiautomatic systems. PMID:23919537
High Performance Computing Based Parallel HIearchical Modal Association Clustering (HPAR HMAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patlolla, Dilip R; Surendran Nair, Sujithkumar; Graves, Daniel A.
For many applications, clustering is a crucial step in order to gain insight into the makeup of a dataset. The best approach to a given problem often depends on a variety of factors, such as the size of the dataset, time restrictions, and soft clustering requirements. The HMAC algorithm seeks to combine the strengths of 2 particular clustering approaches: model-based and linkage-based clustering. One particular weakness of HMAC is its computational complexity. HMAC is not practical for mega-scale data clustering. For high-definition imagery, a user would have to wait months or years for a result; for a 16-megapixel image, themore » estimated runtime skyrockets to over a decade! To improve the execution time of HMAC, it is reasonable to consider an multi-core implementation that utilizes available system resources. An existing imple-mentation (Ray and Cheng 2014) divides the dataset into N partitions - one for each thread prior to executing the HMAC algorithm. This implementation benefits from 2 types of optimization: parallelization and divide-and-conquer. By running each partition in parallel, the program is able to accelerate computation by utilizing more system resources. Although the parallel implementation provides considerable improvement over the serial HMAC, it still suffers from poor computational complexity, O(N2). Once the maximum number of cores on a system is exhausted, the program exhibits slower behavior. We now consider a modification to HMAC that involves a recursive partitioning scheme. Our modification aims to exploit divide-and-conquer benefits seen by the parallel HMAC implementation. At each level in the recursion tree, partitions are divided into 2 sub-partitions until a threshold size is reached. When the partition can no longer be divided without falling below threshold size, the base HMAC algorithm is applied. This results in a significant speedup over the parallel HMAC.« less
Greg C. Liknes; Christopher W. Woodall; Charles H. Perry
2009-01-01
Climate information frequently is included in geospatial modeling efforts to improve the predictive capability of other data sources. The selection of an appropriate climate data source requires consideration given the number of choices available. With regard to climate data, there are a variety of parameters (e.g., temperature, humidity, precipitation), time intervals...
Subarachnoid hemorrhage admissions retrospectively identified using a prediction model
McIntyre, Lauralyn; Fergusson, Dean; Turgeon, Alexis; dos Santos, Marlise P.; Lum, Cheemun; Chassé, Michaël; Sinclair, John; Forster, Alan; van Walraven, Carl
2016-01-01
Objective: To create an accurate prediction model using variables collected in widely available health administrative data records to identify hospitalizations for primary subarachnoid hemorrhage (SAH). Methods: A previously established complete cohort of consecutive primary SAH patients was combined with a random sample of control hospitalizations. Chi-square recursive partitioning was used to derive and internally validate a model to predict the probability that a patient had primary SAH (due to aneurysm or arteriovenous malformation) using health administrative data. Results: A total of 10,322 hospitalizations with 631 having primary SAH (6.1%) were included in the study (5,122 derivation, 5,200 validation). In the validation patients, our recursive partitioning algorithm had a sensitivity of 96.5% (95% confidence interval [CI] 93.9–98.0), a specificity of 99.8% (95% CI 99.6–99.9), and a positive likelihood ratio of 483 (95% CI 254–879). In this population, patients meeting criteria for the algorithm had a probability of 45% of truly having primary SAH. Conclusions: Routinely collected health administrative data can be used to accurately identify hospitalized patients with a high probability of having a primary SAH. This algorithm may allow, upon validation, an easy and accurate method to create validated cohorts of primary SAH from either ruptured aneurysm or arteriovenous malformation. PMID:27629096
Zhang, Pan; Moore, Cristopher
2014-01-01
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096
A Novel Space Partitioning Algorithm to Improve Current Practices in Facility Placement
Jimenez, Tamara; Mikler, Armin R; Tiwari, Chetan
2012-01-01
In the presence of naturally occurring and man-made public health threats, the feasibility of regional bio-emergency contingency plans plays a crucial role in the mitigation of such emergencies. While the analysis of in-place response scenarios provides a measure of quality for a given plan, it involves human judgment to identify improvements in plans that are otherwise likely to fail. Since resource constraints and government mandates limit the availability of service provided in case of an emergency, computational techniques can determine optimal locations for providing emergency response assuming that the uniform distribution of demand across homogeneous resources will yield and optimal service outcome. This paper presents an algorithm that recursively partitions the geographic space into sub-regions while equally distributing the population across the partitions. For this method, we have proven the existence of an upper bound on the deviation from the optimal population size for sub-regions. PMID:23853502
Hu, Chen; Steingrimsson, Jon Arni
2018-01-01
A crucial component of making individualized treatment decisions is to accurately predict each patient's disease risk. In clinical oncology, disease risks are often measured through time-to-event data, such as overall survival and progression/recurrence-free survival, and are often subject to censoring. Risk prediction models based on recursive partitioning methods are becoming increasingly popular largely due to their ability to handle nonlinear relationships, higher-order interactions, and/or high-dimensional covariates. The most popular recursive partitioning methods are versions of the Classification and Regression Tree (CART) algorithm, which builds a simple interpretable tree structured model. With the aim of increasing prediction accuracy, the random forest algorithm averages multiple CART trees, creating a flexible risk prediction model. Risk prediction models used in clinical oncology commonly use both traditional demographic and tumor pathological factors as well as high-dimensional genetic markers and treatment parameters from multimodality treatments. In this article, we describe the most commonly used extensions of the CART and random forest algorithms to right-censored outcomes. We focus on how they differ from the methods for noncensored outcomes, and how the different splitting rules and methods for cost-complexity pruning impact these algorithms. We demonstrate these algorithms by analyzing a randomized Phase III clinical trial of breast cancer. We also conduct Monte Carlo simulations to compare the prediction accuracy of survival forests with more commonly used regression models under various scenarios. These simulation studies aim to evaluate how sensitive the prediction accuracy is to the underlying model specifications, the choice of tuning parameters, and the degrees of missing covariates.
Goodin, Douglas S.; Jones, Jason; Li, David; Traboulsee, Anthony; Reder, Anthony T.; Beckmann, Karola; Konieczny, Andreas; Knappertz, Volker
2011-01-01
Context Establishing the long-term benefit of therapy in chronic diseases has been challenging. Long-term studies require non-randomized designs and, thus, are often confounded by biases. For example, although disease-modifying therapy in MS has a convincing benefit on several short-term outcome-measures in randomized trials, its impact on long-term function remains uncertain. Objective Data from the 16-year Long-Term Follow-up study of interferon-beta-1b is used to assess the relationship between drug-exposure and long-term disability in MS patients. Design/Setting To mitigate the bias of outcome-dependent exposure variation in non-randomized long-term studies, drug-exposure was measured as the medication-possession-ratio, adjusted up or down according to multiple different weighting-schemes based on MS severity and MS duration at treatment initiation. A recursive-partitioning algorithm assessed whether exposure (using any weighing scheme) affected long-term outcome. The optimal cut-point that was used to define “high” or “low” exposure-groups was chosen by the algorithm. Subsequent to verification of an exposure-impact that included all predictor variables, the two groups were compared using a weighted propensity-stratified analysis in order to mitigate any treatment-selection bias that may have been present. Finally, multiple sensitivity-analyses were undertaken using different definitions of long-term outcome and different assumptions about the data. Main Outcome Measure Long-Term Disability. Results In these analyses, the same weighting-scheme was consistently selected by the recursive-partitioning algorithm. This scheme reduced (down-weighted) the effectiveness of drug exposure as either disease duration or disability at treatment-onset increased. Applying this scheme and using propensity-stratification to further mitigate bias, high-exposure had a consistently better clinical outcome compared to low-exposure (Cox proportional hazard ratio = 0.30–0.42; p<0.0001). Conclusions Early initiation and sustained use of interferon-beta-1b has a beneficial impact on long-term outcome in MS. Our analysis strategy provides a methodological framework for bias-mitigation in the analysis of non-randomized clinical data. Trial Registration Clinicaltrials.gov NCT00206635 PMID:22140424
Item-focussed Trees for the Identification of Items in Differential Item Functioning.
Tutz, Gerhard; Berger, Moritz
2016-09-01
A novel method for the identification of differential item functioning (DIF) by means of recursive partitioning techniques is proposed. We assume an extension of the Rasch model that allows for DIF being induced by an arbitrary number of covariates for each item. Recursive partitioning on the item level results in one tree for each item and leads to simultaneous selection of items and variables that induce DIF. For each item, it is possible to detect groups of subjects with different item difficulties, defined by combinations of characteristics that are not pre-specified. The way a DIF item is determined by covariates is visualized in a small tree and therefore easily accessible. An algorithm is proposed that is based on permutation tests. Various simulation studies, including the comparison with traditional approaches to identify items with DIF, show the applicability and the competitive performance of the method. Two applications illustrate the usefulness and the advantages of the new method.
Recursions for the exchangeable partition function of the seedbank coalescent.
Kurt, Noemi; Rafler, Mathias
2017-04-01
For the seedbank coalescent with mutation under the infinite alleles assumption, which describes the gene genealogy of a population with a strong seedbank effect subject to mutations, we study the distribution of the final partition with mutation. This generalizes the coalescent with freeze by Dong et al. (2007) to coalescents where ancestral lineages are blocked from coalescing. We derive an implicit recursion which we show to have a unique solution and give an interpretation in terms of absorption problems of a random walk. Moreover, we derive recursions for the distribution of the number of blocks in the final partition. Copyright © 2017 Elsevier Inc. All rights reserved.
Developing the surveillance algorithm for detection of failure to recognize and treat severe sepsis.
Harrison, Andrew M; Thongprayoon, Charat; Kashyap, Rahul; Chute, Christopher G; Gajic, Ognjen; Pickering, Brian W; Herasevich, Vitaly
2015-02-01
To develop and test an automated surveillance algorithm (sepsis "sniffer") for the detection of severe sepsis and monitoring failure to recognize and treat severe sepsis in a timely manner. We conducted an observational diagnostic performance study using independent derivation and validation cohorts from an electronic medical record database of the medical intensive care unit (ICU) of a tertiary referral center. All patients aged 18 years and older who were admitted to the medical ICU from January 1 through March 31, 2013 (N=587), were included. The criterion standard for severe sepsis/septic shock was manual review by 2 trained reviewers with a third superreviewer for cases of interobserver disagreement. Critical appraisal of false-positive and false-negative alerts, along with recursive data partitioning, was performed for algorithm optimization. An algorithm based on criteria for suspicion of infection, systemic inflammatory response syndrome, organ hypoperfusion and dysfunction, and shock had a sensitivity of 80% and a specificity of 96% when applied to the validation cohort. In order, low systolic blood pressure, systemic inflammatory response syndrome positivity, and suspicion of infection were determined through recursive data partitioning to be of greatest predictive value. Lastly, 117 alert-positive patients (68% of the 171 patients with severe sepsis) had a delay in recognition and treatment, defined as no lactate and central venous pressure measurement within 2 hours of the alert. The optimized sniffer accurately identified patients with severe sepsis that bedside clinicians failed to recognize and treat in a timely manner. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Recursive least-squares learning algorithms for neural networks
NASA Astrophysics Data System (ADS)
Lewis, Paul S.; Hwang, Jenq N.
1990-11-01
This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].
ERIC Educational Resources Information Center
Strobl, Carolin; Malley, James; Tutz, Gerhard
2009-01-01
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
Pirkle, Catherine M; Wu, Yan Yan; Zunzunegui, Maria-Victoria; Gómez, José Fernando
2018-01-01
Objective Conceptual models underpinning much epidemiological research on ageing acknowledge that environmental, social and biological systems interact to influence health outcomes. Recursive partitioning is a data-driven approach that allows for concurrent exploration of distinct mixtures, or clusters, of individuals that have a particular outcome. Our aim is to use recursive partitioning to examine risk clusters for metabolic syndrome (MetS) and its components, in order to identify vulnerable populations. Study design Cross-sectional analysis of baseline data from a prospective longitudinal cohort called the International Mobility in Aging Study (IMIAS). Setting IMIAS includes sites from three middle-income countries—Tirana (Albania), Natal (Brazil) and Manizales (Colombia)—and two from Canada—Kingston (Ontario) and Saint-Hyacinthe (Quebec). Participants Community-dwelling male and female adults, aged 64–75 years (n=2002). Primary and secondary outcome measures We apply recursive partitioning to investigate social and behavioural risk factors for MetS and its components. Model-based recursive partitioning (MOB) was used to cluster participants into age-adjusted risk groups based on variabilities in: study site, sex, education, living arrangements, childhood adversities, adult occupation, current employment status, income, perceived income sufficiency, smoking status and weekly minutes of physical activity. Results 43% of participants had MetS. Using MOB, the primary partitioning variable was participant sex. Among women from middle-incomes sites, the predicted proportion with MetS ranged from 58% to 68%. Canadian women with limited physical activity had elevated predicted proportions of MetS (49%, 95% CI 39% to 58%). Among men, MetS ranged from 26% to 41% depending on childhood social adversity and education. Clustering for MetS components differed from the syndrome and across components. Study site was a primary partitioning variable for all components except HDL cholesterol. Sex was important for most components. Conclusion MOB is a promising technique for identifying disease risk clusters (eg, vulnerable populations) in modestly sized samples. PMID:29500203
A Framework for Parallel Unstructured Grid Generation for Complex Aerodynamic Simulations
NASA Technical Reports Server (NTRS)
Zagaris, George; Pirzadeh, Shahyar Z.; Chrisochoides, Nikos
2009-01-01
A framework for parallel unstructured grid generation targeting both shared memory multi-processors and distributed memory architectures is presented. The two fundamental building-blocks of the framework consist of: (1) the Advancing-Partition (AP) method used for domain decomposition and (2) the Advancing Front (AF) method used for mesh generation. Starting from the surface mesh of the computational domain, the AP method is applied recursively to generate a set of sub-domains. Next, the sub-domains are meshed in parallel using the AF method. The recursive nature of domain decomposition naturally maps to a divide-and-conquer algorithm which exhibits inherent parallelism. For the parallel implementation, the Master/Worker pattern is employed to dynamically balance the varying workloads of each task on the set of available CPUs. Performance results by this approach are presented and discussed in detail as well as future work and improvements.
Method for implementation of recursive hierarchical segmentation on parallel computers
NASA Technical Reports Server (NTRS)
Tilton, James C. (Inventor)
2005-01-01
A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.
Algorithms for the automatic generation of 2-D structured multi-block grids
NASA Technical Reports Server (NTRS)
Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.
1995-01-01
Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.
Data-driven process decomposition and robust online distributed modelling for large-scale processes
NASA Astrophysics Data System (ADS)
Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou
2018-02-01
With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.
ERIC Educational Resources Information Center
Cai, Li
2013-01-01
Lord and Wingersky's (1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined…
CD process control through machine learning
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2016-10-01
For the specific requirements of the 14nm and 20nm site applications a new CD map approach was developed at the AMTC. This approach relies on a well established machine learning technique called recursive partitioning. Recursive partitioning is a powerful technique which creates a decision tree by successively testing whether the quantity of interest can be explained by one of the supplied covariates. The test performed is generally a statistical test with a pre-supplied significance level. Once the test indicates significant association between the variable of interest and a covariate a split performed at a threshold value which minimizes the variation within the newly attained groups. This partitioning is recurred until either no significant association can be detected or the resulting sub group size falls below a pre-supplied level.
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U J; Seemann, Gunnar; Dossel, Olaf; Pitman, Michael C; Rice, John J
2009-01-01
Orthogonal recursive bisection (ORB) algorithm can be used as data decomposition strategy to distribute a large data set of a cardiac model to a distributed memory supercomputer. It has been shown previously that good scaling results can be achieved using the ORB algorithm for data decomposition. However, the ORB algorithm depends on the distribution of computational load of each element in the data set. In this work we investigated the dependence of data decomposition and load balancing on different rotations of the anatomical data set to achieve optimization in load balancing. The anatomical data set was given by both ventricles of the Visible Female data set in a 0.2 mm resolution. Fiber orientation was included. The data set was rotated by 90 degrees around x, y and z axis, respectively. By either translating or by simply taking the magnitude of the resulting negative coordinates we were able to create 14 data set of the same anatomy with different orientation and position in the overall volume. Computation load ratios for non - tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100 to investigate the effect of different load ratios on the data decomposition. The ten Tusscher et al. (2004) electrophysiological cell model was used in monodomain simulations of 1 ms simulation time to compare performance using the different data sets and orientations. The simulations were carried out for load ratio 1:10, 1:25 and 1:38.85 on a 512 processor partition of the IBM Blue Gene/L supercomputer. Th results show that the data decomposition does depend on the orientation and position of the anatomy in the global volume. The difference in total run time between the data sets is 10 s for a simulation time of 1 ms. This yields a difference of about 28 h for a simulation of 10 s simulation time. However, given larger processor partitions, the difference in run time decreases and becomes less significant. Depending on the processor partition size, future work will have to consider the orientation of the anatomy in the global volume for longer simulation runs.
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Ejlskov, Linda; Wulff, Jesper; Bøggild, Henrik; Kuh, Diana; Stafford, Mai
2017-09-08
Improving the design and targeting of interventions is important for alleviating loneliness among older adults. This requires identifying which correlates are the most important predictors of loneliness. This study demonstrates the use of recursive partitioning in exploring the characteristics and assessing the relative importance of correlates of loneliness in older adults. Using exploratory regression trees and random forests, we examined combinations and the relative importance of 42 correlates in relation to loneliness at age 68 among 2453 participants from the birth cohort study the MRC National Survey of Health and Development. Positive mental well-being, personal mastery, identifying the spouse as the closest confidant, being extrovert and informal social contact were the most important correlates of lower loneliness levels. Participation in organised groups and demographic correlates were poor identifiers of loneliness. The regression tree suggested that loneliness was not raised among those with poor mental wellbeing if they identified their partner as closest confidante and had frequent social contact. Recursive partitioning can identify which combinations of experiences and circumstances characterise high-risk groups. Poor mental wellbeing and sparse social contact emerged as especially important and classical demographic factors as insufficient in identifying high loneliness levels among older adults.
Finch, Holmes W; Davis, Andrew; Dean, Raymond S
2015-03-01
The accurate and early identification of individuals with pervasive conditions such as attention deficit hyperactivity disorder (ADHD) is crucial to ensuring that they receive appropriate and timely assistance and treatment. Heretofore, identification of such individuals has proven somewhat difficult, typically involving clinical decision making based on descriptions and observations of behavior, in conjunction with the administration of cognitive assessments. The present study reports on the use of a sensory motor battery in conjunction with a recursive partitioning computer algorithm, boosted trees, to develop a prediction heuristic for identifying individuals with ADHD. Results of the study demonstrate that this method is able to do so with accuracy rates of over 95 %, much higher than the popular logistic regression model against which it was compared. Implications of these results for practice are provided.
Cai, Li
2015-06-01
Lord and Wingersky's (Appl Psychol Meas 8:453-461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.
An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Sudip K
2014-01-01
Block tridiagonal systems of linear equations arise in a wide variety of scientific and engineering applications. Recursive doubling algorithm is a well-known prefix computation-based numerical algorithm that requires O(M^3(N/P + log P)) work to compute the solution of a block tridiagonal system with N block rows and block size M on P processors. In real-world applications, solutions of tridiagonal systems are most often sought with multiple, often hundreds and thousands, of different right hand sides but with the same tridiagonal matrix. Here, we show that a recursive doubling algorithm is sub-optimal when computing solutions of block tridiagonal systems with multiplemore » right hand sides and present a novel algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement when solving block tridiagonal systems with R distinct right hand sides. Since R is typically about 100 1000, this improvement translates to very significant speedups in practice. Detailed complexity analyses of the new algorithm with empirical confirmation of runtime improvements are presented. To the best of our knowledge, this algorithm has not been reported before in the literature.« less
Algorithm for Training a Recurrent Multilayer Perceptron
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.
2004-01-01
An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2012-01-01
A previously introduced partitioning of the molecular one-electron density matrix over atoms and bonds [D. Vanfleteren et al., J. Chem. Phys. 133, 231103 (2010)] is investigated in detail. Orthogonal projection operators are used to define atomic subspaces, as in Natural Population Analysis. The orthogonal projection operators are constructed with a recursive scheme. These operators are chemically relevant and obey a stockholder principle, familiar from the Hirshfeld-I partitioning of the electron density. The stockholder principle is extended to density matrices, where the orthogonal projectors are considered to be atomic fractions of the summed contributions. All calculations are performed as matrix manipulations in one-electron Hilbert space. Mathematical proofs and numerical evidence concerning this recursive scheme are provided in the present paper. The advantages associated with the use of these stockholder projection operators are examined with respect to covalent bond orders, bond polarization, and transferability.
Liao, Quan; Yao, Jianhua; Yuan, Shengang
2007-05-01
The study of prediction of toxicity is very important and necessary because measurement of toxicity is typically time-consuming and expensive. In this paper, Recursive Partitioning (RP) method was used to select descriptors. RP and Support Vector Machines (SVM) were used to construct structure-toxicity relationship models, RP model and SVM model, respectively. The performances of the two models are different. The prediction accuracies of the RP model are 80.2% for mutagenic compounds in MDL's toxicity database, 83.4% for compounds in CMC and 84.9% for agrochemicals in in-house database respectively. Those of SVM model are 81.4%, 87.0% and 87.3% respectively.
Binary recursive partitioning: background, methods, and application to psychology.
Merkle, Edgar C; Shaffer, Victoria A
2011-02-01
Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.
Bouchard, M
2001-01-01
In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.
Recursion Removal as an Instructional Method to Enhance the Understanding of Recursion Tracing
ERIC Educational Resources Information Center
Velázquez-Iturbide, J. Ángel; Castellanos, M. Eugenia; Hijón-Neira, Raquel
2016-01-01
Recursion is one of the most difficult programming topics for students. In this paper, an instructional method is proposed to enhance students' understanding of recursion tracing. The proposal is based on the use of rules to translate linear recursion algorithms into equivalent, iterative ones. The paper has two main contributions: the…
P-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Biswas, R.; Simon, H.D.
1997-05-01
Partitioning unstructured graphs is central to the parallel solution of problems in computational science and engineering. The authors have introduced earlier the sequential version of an inertial spectral partitioner called HARP which maintains the quality of recursive spectral bisection (RSB) while forming the partitions an order of magnitude faster than RSB. The serial HARP is known to be the fastest spectral partitioner to date, three to four times faster than similar partitioners on a variety of meshes. This paper presents a parallel version of HARP, called P-HARP. Two types of parallelism have been exploited: loop level parallelism and recursive parallelism.more » P-HARP has been implemented in MPI on the SGI/Cray T3E and the IBM SP2. Experimental results demonstrate that P-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.25 seconds on a 64-processor T3E. Experimental results further show that P-HARP can give nearly a 20-fold speedup on 64 processors. These results indicate that graph partitioning is no longer a major bottleneck that hinders the advancement of computational science and engineering for dynamically-changing real-world applications.« less
Overlapping communities detection based on spectral analysis of line graphs
NASA Astrophysics Data System (ADS)
Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan
2018-05-01
Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.
Van Hulst, Andraea; Roy-Gagnon, Marie-Hélène; Gauvin, Lise; Kestens, Yan; Henderson, Mélanie; Barnett, Tracie A
2015-02-15
Few studies consider how risk factors within multiple levels of influence operate synergistically to determine childhood obesity. We used recursive partitioning analysis to identify unique combinations of individual, familial, and neighborhood factors that best predict obesity in children, and tested whether these predict 2-year changes in body mass index (BMI). Data were collected in 2005-2008 and in 2008-2011 for 512 Quebec youth (8-10 years at baseline) with a history of parental obesity (QUALITY study). CDC age- and sex-specific BMI percentiles were computed and children were considered obese if their BMI was ≥95th percentile. Individual (physical activity and sugar-sweetened beverage intake), familial (household socioeconomic status and measures of parental obesity including both BMI and waist circumference), and neighborhood (disadvantage, prestige, and presence of parks, convenience stores, and fast food restaurants) factors were examined. Recursive partitioning, a method that generates a classification tree predicting obesity based on combined exposure to a series of variables, was used. Associations between resulting varying risk group membership and BMI percentile at baseline and 2-year follow up were examined using linear regression. Recursive partitioning yielded 7 subgroups with a prevalence of obesity equal to 8%, 11%, 26%, 28%, 41%, 60%, and 63%, respectively. The 2 highest risk subgroups comprised i) children not meeting physical activity guidelines, with at least one BMI-defined obese parent and 2 abdominally obese parents, living in disadvantaged neighborhoods without parks and, ii) children with these characteristics, except with access to ≥1 park and with access to ≥1 convenience store. Group membership was strongly associated with BMI at baseline, but did not systematically predict change in BMI. Findings support the notion that obesity is predicted by multiple factors in different settings and provide some indications of potentially obesogenic environments. Alternate group definitions as well as longer duration of follow up should be investigated to predict change in obesity.
Greedy feature selection for glycan chromatography data with the generalized Dirichlet distribution
2013-01-01
Background Glycoproteins are involved in a diverse range of biochemical and biological processes. Changes in protein glycosylation are believed to occur in many diseases, particularly during cancer initiation and progression. The identification of biomarkers for human disease states is becoming increasingly important, as early detection is key to improving survival and recovery rates. To this end, the serum glycome has been proposed as a potential source of biomarkers for different types of cancers. High-throughput hydrophilic interaction liquid chromatography (HILIC) technology for glycan analysis allows for the detailed quantification of the glycan content in human serum. However, the experimental data from this analysis is compositional by nature. Compositional data are subject to a constant-sum constraint, which restricts the sample space to a simplex. Statistical analysis of glycan chromatography datasets should account for their unusual mathematical properties. As the volume of glycan HILIC data being produced increases, there is a considerable need for a framework to support appropriate statistical analysis. Proposed here is a methodology for feature selection in compositional data. The principal objective is to provide a template for the analysis of glycan chromatography data that may be used to identify potential glycan biomarkers. Results A greedy search algorithm, based on the generalized Dirichlet distribution, is carried out over the feature space to search for the set of “grouping variables” that best discriminate between known group structures in the data, modelling the compositional variables using beta distributions. The algorithm is applied to two glycan chromatography datasets. Statistical classification methods are used to test the ability of the selected features to differentiate between known groups in the data. Two well-known methods are used for comparison: correlation-based feature selection (CFS) and recursive partitioning (rpart). CFS is a feature selection method, while recursive partitioning is a learning tree algorithm that has been used for feature selection in the past. Conclusions The proposed feature selection method performs well for both glycan chromatography datasets. It is computationally slower, but results in a lower misclassification rate and a higher sensitivity rate than both correlation-based feature selection and the classification tree method. PMID:23651459
Lim, Jun-Seok; Pang, Hee-Suk
2016-01-01
In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Recursive Implementations of the Consider Filter
NASA Technical Reports Server (NTRS)
Zanetti, Renato; DSouza, Chris
2012-01-01
One method to account for parameters errors in the Kalman filter is to consider their effect in the so-called Schmidt-Kalman filter. This work addresses issues that arise when implementing a consider Kalman filter as a real-time, recursive algorithm. A favorite implementation of the Kalman filter as an onboard navigation subsystem is the UDU formulation. A new way to implement a UDU consider filter is proposed. The non-optimality of the recursive consider filter is also analyzed, and a modified algorithm is proposed to overcome this limitation.
A decoupled recursive approach for constrained flexible multibody system dynamics
NASA Technical Reports Server (NTRS)
Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung
1989-01-01
A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
Proceedings of the second SISAL users` conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feo, J T; Frerking, C; Miller, P J
1992-12-01
This report contains papers on the following topics: A sisal code for computing the fourier transform on S{sub N}; five ways to fill your knapsack; simulating material dislocation motion in sisal; candis as an interface for sisal; parallelisation and performance of the burg algorithm on a shared-memory multiprocessor; use of genetic algorithm in sisal to solve the file design problem; implementing FFT`s in sisal; programming and evaluating the performance of signal processing applications in the sisal programming environment; sisal and Von Neumann-based languages: translation and intercommunication; an IF2 code generator for ADAM architecture; program partitioning for NUMA multiprocessor computer systems;more » mapping functional parallelism on distributed memory machines; implicit array copying: prevention is better than cure ; mathematical syntax for sisal; an approach for optimizing recursive functions; implementing arrays in sisal 2.0; Fol: an object oriented extension to the sisal language; twine: a portable, extensible sisal execution kernel; and investigating the memory performance of the optimizing sisal compiler.« less
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
Efficient method for computing the electronic transport properties of a multiterminal system
NASA Astrophysics Data System (ADS)
Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio
2018-04-01
We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.
Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.
Hu, Liang; Wang, Zidong; Liu, Xiaohui
2016-08-01
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Wang, Fei
2015-06-01
With the rapid development of information technologies, tremendous amount of data became readily available in various application domains. This big data era presents challenges to many conventional data analytics research directions including data capture, storage, search, sharing, analysis, and visualization. It is no surprise to see that the success of next-generation healthcare systems heavily relies on the effective utilization of gigantic amounts of medical data. The ability of analyzing big data in modern healthcare systems plays a vital role in the improvement of the quality of care delivery. Specifically, patient similarity evaluation aims at estimating the clinical affinity and diagnostic proximity of patients. As one of the successful data driven techniques adopted in healthcare systems, patient similarity evaluation plays a fundamental role in many healthcare research areas such as prognosis, risk assessment, and comparative effectiveness analysis. However, existing algorithms for patient similarity evaluation are inefficient in handling massive patient data. In this paper, we propose an Adaptive Semi-Supervised Recursive Tree Partitioning (ART) framework for large scale patient indexing such that the patients with similar clinical or diagnostic patterns can be correctly and efficiently retrieved. The framework is designed for semi-supervised settings since it is crucial to leverage experts' supervision knowledge in medical scenario, which are fairly limited compared to the available data. Starting from the proposed ART framework, we will discuss several specific instantiations and validate them on both benchmark and real world healthcare data. Our results show that with the ART framework, the patients can be efficiently and effectively indexed in the sense that (1) similarity patients can be retrieved in a very short time; (2) the retrieval performance can beat the state-of-the art indexing methods. Copyright © 2015. Published by Elsevier Inc.
Rodeberg, David A.; Stoner, Julie A.; Garcia-Henriquez, Norbert; Randall, R. Lor; Spunt, Sheri L.; Arndt, Carola A.; Kao, Simon; Paidas, Charles N.; Million, Lynn; Hawkins, Douglas S.
2010-01-01
Background To compare tumor volume and patient weight vs. traditional factors of tumor diameter and patient age, to determine which parameters best discriminates outcome among intermediate risk RMS patients. Methods Complete patient information for non-metastatic RMS patients enrolled in the Children’s Oncology Group (COG) intermediate risk study D9803 (1999–2005) was available for 370 patients. The Kaplan-Meier method was used to estimate survival distributions. A recursive partitioning model was used to identify prognostic factors associated with event-free survival (EFS). Cox-proportional hazards regression models were used to estimate the association between patient characteristics and the risk of failure or death. Results For all intermediate risk patients with RMS, a recursive partitioning algorithm for EFS suggests that prognostic groups should optimally be defined by tumor volume (transition point 20 cm3), weight (transition point 50 kg), and embryonal histology. Tumor volume and patient weight added significant outcome information to the standard prognostic factors including tumor diameter and age (p=0.02). The ability to resect the tumor completely was not significantly associated with the size of the patient, and patient weight did not significantly modify the association between tumor volume and EFS after adjustment for standard risk factors (p=0.2). Conclusion The factors most strongly associated with EFS were tumor volume, patient weight, and histology. Based on regression modeling, volume and weight are superior predictors of outcome compared to tumor diameter and patient age in children with intermediate risk RMS. Prognostic performance of tumor volume and patient weight should be assessed in an independent prospective study. PMID:24048802
NASA Astrophysics Data System (ADS)
Chen, Naijin
2013-03-01
Level Based Partitioning (LBP) algorithm, Cluster Based Partitioning (CBP) algorithm and Enhance Static List (ESL) temporal partitioning algorithm based on adjacent matrix and adjacent table are designed and implemented in this paper. Also partitioning time and memory occupation based on three algorithms are compared. Experiment results show LBP partitioning algorithm possesses the least partitioning time and better parallel character, as far as memory occupation and partitioning time are concerned, algorithms based on adjacent table have less partitioning time and less space memory occupation.
A recursive algorithm for Zernike polynomials
NASA Technical Reports Server (NTRS)
Davenport, J. W.
1982-01-01
The analysis of a function defined on a rotationally symmetric system, with either a circular or annular pupil is discussed. In order to numerically analyze such systems it is typical to expand the given function in terms of a class of orthogonal polynomials. Because of their particular properties, the Zernike polynomials are especially suited for numerical calculations. Developed is a recursive algorithm that can be used to generate the Zernike polynomials up to a given order. The algorithm is recursively defined over J where R(J,N) is the Zernike polynomial of degree N obtained by orthogonalizing the sequence R(J), R(J+2), ..., R(J+2N) over (epsilon, 1). The terms in the preceding row - the (J-1) row - up to the N+1 term is needed for generating the (J,N)th term. Thus, the algorith generates an upper left-triangular table. This algorithm was placed in the computer with the necessary support program also included.
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996
Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.
Discovery of novel SERCA inhibitors by virtual screening of a large compound library.
Elam, Christopher; Lape, Michael; Deye, Joel; Zultowsky, Jodie; Stanton, David T; Paula, Stefan
2011-05-01
Two screening protocols based on recursive partitioning and computational ligand docking methodologies, respectively, were employed for virtual screens of a compound library with 345,000 entries for novel inhibitors of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA), a potential target for cancer chemotherapy. A total of 72 compounds that were predicted to be potential inhibitors of SERCA were tested in bioassays and 17 displayed inhibitory potencies at concentrations below 100 μM. The majority of these inhibitors were composed of two phenyl rings tethered to each other by a short link of one to three atoms. Putative interactions between SERCA and the inhibitors were identified by inspection of docking-predicted poses and some of the structural features required for effective SERCA inhibition were determined by analysis of the classification pattern employed by the recursive partitioning models. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
Differential diagnosis of jaw pain using informatics technology.
Nam, Y; Kim, H-G; Kho, H-S
2018-05-21
This study aimed to deduce evidence-based clinical clues that differentiate temporomandibular disorders (TMD)-mimicking conditions from genuine TMD by text mining using natural language processing (NLP) and recursive partitioning. We compared the medical records of 29 patients diagnosed with TMD-mimicking conditions and 290 patients diagnosed with genuine TMD. Chief complaints and medical histories were preprocessed via NLP to compare the frequency of word usage. In addition, recursive partitioning was used to deduce the optimal size of mouth opening, which could differentiate TMD-mimicking from genuine TMD groups. The prevalence of TMD-mimicking conditions was more evenly distributed across all age groups and showed a nearly equal gender ratio, which was significantly different from genuine TMD. TMD-mimicking conditions were caused by inflammation, infection, hereditary disease and neoplasm. Patients with TMD-mimicking conditions frequently used "mouth opening limitation" (P < .001), but less commonly used words such as "noise" (P < .001) and "temporomandibular joint" (P < .001) than patients with genuine TMD. A diagnostic classification tree on the basis of recursive partitioning suggested that 12.0 mm of comfortable mouth opening and 26.5 mm of maximum mouth opening were deduced as the most optimal mouth-opening cutoff sizes. When the combined analyses were performed based on both the text mining and clinical examination data, the predictive performance of the model was 96.6% with 69.0% sensitivity and 99.3% specificity in predicting TMD-mimicking conditions. In conclusion, this study showed that AI technology-based methods could be applied in the field of differential diagnosis of orofacial pain disorders. © 2018 John Wiley & Sons Ltd.
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Pitman, Michael C; Rice, John J
2011-06-01
We present the orthogonal recursive bisection algorithm that hierarchically segments the anatomical model structure into subvolumes that are distributed to cores. The anatomy is derived from the Visible Human Project, with electrophysiology based on the FitzHugh-Nagumo (FHN) and ten Tusscher (TT04) models with monodomain diffusion. Benchmark simulations with up to 16,384 and 32,768 cores on IBM Blue Gene/P and L supercomputers for both FHN and TT04 results show good load balancing with almost perfect speedup factors that are close to linear with the number of cores. Hence, strong scaling is demonstrated. With 32,768 cores, a 1000 ms simulation of full heart beat requires about 6.5 min of wall clock time for a simulation of the FHN model. For the largest machine partitions, the simulations execute at a rate of 0.548 s (BG/P) and 0.394 s (BG/L) of wall clock time per 1 ms of simulation time. To our knowledge, these simulations show strong scaling to substantially higher numbers of cores than reported previously for organ-level simulation of the heart, thus significantly reducing run times. The ability to reduce runtimes could play a critical role in enabling wider use of cardiac models in research and clinical applications.
Blankers, Matthijs; Frijns, Tom; Belackova, Vendula; Rossi, Carla; Svensson, Bengt; Trautmann, Franz; van Laar, Margriet
2014-01-01
Cannabis is Europe's most commonly used illicit drug. Some users do not develop dependence or other problems, whereas others do. Many factors are associated with the occurrence of cannabis-related disorders. This makes it difficult to identify key risk factors and markers to profile at-risk cannabis users using traditional hypothesis-driven approaches. Therefore, the use of a data-mining technique called binary recursive partitioning is demonstrated in this study by creating a classification tree to profile at-risk users. 59 variables on cannabis use and drug market experiences were extracted from an internet-based survey dataset collected in four European countries (Czech Republic, Italy, Netherlands and Sweden), n = 2617. These 59 potential predictors of problematic cannabis use were used to partition individual respondents into subgroups with low and high risk of having a cannabis use disorder, based on their responses on the Cannabis Abuse Screening Test. Both a generic model for the four countries combined and four country-specific models were constructed. Of the 59 variables included in the first analysis step, only three variables were required to construct a generic partitioning model to classify high risk cannabis users with 65-73% accuracy. Based on the generic model for the four countries combined, the highest risk for cannabis use disorder is seen in participants reporting a cannabis use on more than 200 days in the last 12 months. In comparison to the generic model, the country-specific models led to modest, non-significant improvements in classification accuracy, with an exception for Italy (p = 0.01). Using recursive partitioning, it is feasible to construct classification trees based on only a few variables with acceptable performance to classify cannabis users into groups with low or high risk of meeting criteria for cannabis use disorder. The number of cannabis use days in the last 12 months is the most relevant variable. The identified variables may be considered for use in future screeners for cannabis use disorders.
Adaptive mesh refinement for characteristic grids
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan
2011-05-01
I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.
REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1996-01-01
In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.
Efficient block processing of long duration biotelemetric brain data for health care monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soumya, I.; Zia Ur Rahman, M., E-mail: mdzr-5@ieee.org; Rama Koti Reddy, D. V.
In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS,more » which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.« less
Recursive Algorithms for Real-Time Digital CR-RCn Pulse Shaping
NASA Astrophysics Data System (ADS)
Nakhostin, M.
2011-10-01
This paper reports on recursive algorithms for real-time implementation of CR-(RC)n filters in digital nuclear spectroscopy systems. The algorithms are derived by calculating the Z-transfer function of the filters for filter orders up to n=4 . The performances of the filters are compared with the performance of the conventional digital trapezoidal filter using a noise generator which separately generates pure series, 1/f and parallel noise. The results of our study enable one to select the optimum digital filter for different noise and rate conditions.
Face recognition using tridiagonal matrix enhanced multivariance products representation
NASA Astrophysics Data System (ADS)
Ã-zay, Evrim Korkmaz
2017-01-01
This study aims to retrieve face images from a database according to a target face image. For this purpose, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) is taken into consideration. TMEMPR is a recursive algorithm based on Enhanced Multivariance Products Representation (EMPR). TMEMPR decomposes a matrix into three components which are a matrix of left support terms, a tridiagonal matrix of weight parameters for each recursion, and a matrix of right support terms, respectively. In this sense, there is an analogy between Singular Value Decomposition (SVD) and TMEMPR. However TMEMPR is a more flexible algorithm since its initial support terms (or vectors) can be chosen as desired. Low computational complexity is another advantage of TMEMPR because the algorithm has been constructed with recursions of certain arithmetic operations without requiring any iteration. The algorithm has been trained and tested with ORL face image database with 400 different grayscale images of 40 different people. TMEMPR's performance has been compared with SVD's performance as a result.
Recurrence relations in one-dimensional Ising models.
da Conceição, C M Silva; Maia, R N P
2017-09-01
The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.
Cooperating reduction machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, W.E.
1983-11-01
This paper presents a concept and a system architecture for the concurrent execution of program expressions of a concrete reduction language based on lamda-expressions. If formulated appropriately, these expressions are well-suited for concurrent execution, following a demand-driven model of computation. In particular, recursive program expressions with nonlinear expansion may, at run time, recursively be partitioned into a hierarchy of independent subexpressions which can be reduced by a corresponding hierarchy of virtual reduction machines. This hierarchy unfolds and collapses dynamically, with virtual machines recursively assuming the role of masters that create and eventually terminate, or synchronize with, slaves. The paper alsomore » proposes a nonhierarchically organized system of reduction machines, each featuring a stack architecture, that effectively supports the allocation of virtual machines to the real machines of the system in compliance with their hierarchical order of creation and termination. 25 references.« less
A Random Walk Approach to Query Informative Constraints for Clustering.
Abin, Ahmad Ali
2017-08-09
This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.
WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensheimer, M; Trister, A; Ermoian, R
2014-06-15
Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segmentsmore » at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was shorter when the primary tumor exhibited larger scale of heterogeneity on contrast-enhanced MRI. If validated on a larger dataset, this imaging biomarker could be useful to help personalize treatment.« less
Recursive approach to the moment-based phase unwrapping method.
Langley, Jason A; Brice, Robert G; Zhao, Qun
2010-06-01
The moment-based phase unwrapping algorithm approximates the phase map as a product of Gegenbauer polynomials, but the weight function for the Gegenbauer polynomials generates artificial singularities along the edge of the phase map. A method is presented to remove the singularities inherent to the moment-based phase unwrapping algorithm by approximating the phase map as a product of two one-dimensional Legendre polynomials and applying a recursive property of derivatives of Legendre polynomials. The proposed phase unwrapping algorithm is tested on simulated and experimental data sets. The results are then compared to those of PRELUDE 2D, a widely used phase unwrapping algorithm, and a Chebyshev-polynomial-based phase unwrapping algorithm. It was found that the proposed phase unwrapping algorithm provides results that are comparable to those obtained by using PRELUDE 2D and the Chebyshev phase unwrapping algorithm.
NASA Astrophysics Data System (ADS)
Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.
2017-12-01
In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.
Liang, Hong-Ming; Lin, Ting-Hsiang; Chiou, Jeng-Min; Yeh, Kuo-Chen
2009-06-01
Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup.
Entanglement distillation protocols and number theory
NASA Astrophysics Data System (ADS)
Bombin, H.; Martin-Delgado, M. A.
2005-09-01
We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set ZDn associated with Bell diagonal states is a module rather than a vector space. We find that a partition of ZDn into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D . When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.
Structural Group-based Auditing of Missing Hierarchical Relationships in UMLS
Chen, Yan; Gu, Huanying(Helen); Perl, Yehoshua; Geller, James
2009-01-01
The Metathesaurus of the UMLS was created by integrating various source terminologies. The inter-concept relationships were either integrated into the UMLS from the source terminologies or specially generated. Due to the extensive size and inherent complexity of the Metathesaurus, the accidental omission of some hierarchical relationships was inevitable. We present a recursive procedure which allows a human expert, with the support of an algorithm, to locate missing hierarchical relationships. The procedure starts with a group of concepts with exactly the same (correct) semantic type assignments. It then partitions the concepts, based on child-of hierarchical relationships, into smaller, singly rooted, hierarchically connected subgroups. The auditor only needs to focus on the subgroups with very few concepts and their concepts with semantic type reassignments. The procedure was evaluated by comparing it with a comprehensive manual audit and it exhibits a perfect error recall. PMID:18824248
Multitarget mixture reduction algorithm with incorporated target existence recursions
NASA Astrophysics Data System (ADS)
Ristic, Branko; Arulampalam, Sanjeev
2000-07-01
The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.
Performance analysis of a dual-tree algorithm for computing spatial distance histograms
Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni
2011-01-01
Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753
Recursive Fact-finding: A Streaming Approach to Truth Estimation in Crowdsourcing Applications
2013-07-01
are reported over the course of the campaign, lending themselves better to the abstraction of a data stream arriving from the community of sources. In...EM Recursive EM Figure 4. Recursive EM Algorithm Convergence V. RELATED WORK Social sensing which is also referred to as human- centric sensing [4...systems, where different sources offer reviews on products (or brands, companies) they have experienced [16]. Customers are affected by those reviews
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Masuda, Y; Aguilar, I; Misztal, I
2015-10-01
The purpose of this study was to examine accuracy of genomic selection via single-step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix (G) is replaced by an approximation of G(-1) based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G(-1) and the approximated G(-1) via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G(-1) and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method. © 2015 Blackwell Verlag GmbH.
Image defog algorithm based on open close filter and gradient domain recursive bilateral filter
NASA Astrophysics Data System (ADS)
Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen
2017-11-01
To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.
Recursive dynamics for flexible multibody systems using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1990-01-01
Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described here permits a user to choose the algorithm which is optimal for the multibody system at hand. The availability of a number of algorithms is even more important for real-time applications, where implementation on parallel processors or custom computing hardware is often necessary to maximize speed.
Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.
ERIC Educational Resources Information Center
Magel, E. Terry
1989-01-01
Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…
Detection of Problem Gambler Subgroups Using Recursive Partitioning
ERIC Educational Resources Information Center
Markham, Francis; Young, Martin; Doran, Bruce
2013-01-01
The multivariate socio-demographic risk factors for problem gambling have been well documented. While this body of research is valuable in determining risk factors aggregated across various populations, the majority of studies tend not to specifically identify particular subgroups of problem gamblers based on the interaction between variables. The…
Condensate statistics and thermodynamics of weakly interacting Bose gas: Recursion relation approach
NASA Astrophysics Data System (ADS)
Dorfman, K. E.; Kim, M.; Svidzinsky, A. A.
2011-03-01
We study condensate statistics and thermodynamics of weakly interacting Bose gas with a fixed total number N of particles in a cubic box. We find the exact recursion relation for the canonical ensemble partition function. Using this relation, we calculate the distribution function of condensate particles for N=200. We also calculate the distribution function based on multinomial expansion of the characteristic function. Similar to the ideal gas, both approaches give exact statistical moments for all temperatures in the framework of Bogoliubov model. We compare them with the results of unconstraint canonical ensemble quasiparticle formalism and the hybrid master equation approach. The present recursion relation can be used for any external potential and boundary conditions. We investigate the temperature dependence of the first few statistical moments of condensate fluctuations as well as thermodynamic potentials and heat capacity analytically and numerically in the whole temperature range.
Recursive time-varying filter banks for subband image coding
NASA Technical Reports Server (NTRS)
Smith, Mark J. T.; Chung, Wilson C.
1992-01-01
Filter banks and wavelet decompositions that employ recursive filters have been considered previously and are recognized for their efficiency in partitioning the frequency spectrum. This paper presents an analysis of a new infinite impulse response (IIR) filter bank in which these computationally efficient filters may be changed adaptively in response to the input. The filter bank is presented and discussed in the context of finite-support signals with the intended application in subband image coding. In the absence of quantization errors, exact reconstruction can be achieved and by the proper choice of an adaptation scheme, it is shown that IIR time-varying filter banks can yield improvement over conventional ones.
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai
2004-10-01
Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
Direct evaluation of fault trees using object-oriented programming techniques
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1989-01-01
Object-oriented programming techniques are used in an algorithm for the direct evaluation of fault trees. The algorithm combines a simple bottom-up procedure for trees without repeated events with a top-down recursive procedure for trees with repeated events. The object-oriented approach results in a dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. An example is presented in which the results of the algorithm implemented with conventional techniques are compared to those of the object-oriented approach.
NASA Technical Reports Server (NTRS)
Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.
1995-01-01
In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.
A Partitioning Algorithm for Block-Diagonal Matrices With Overlap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina
2008-02-02
We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile ismore » performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.« less
Active impulsive noise control using maximum correntropy with adaptive kernel size
NASA Astrophysics Data System (ADS)
Lu, Lu; Zhao, Haiquan
2017-03-01
The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.
Fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, R.
1986-01-01
A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.
Beating the Odds: Trees to Success in Different Countries
ERIC Educational Resources Information Center
Finch, W. Holmes; Marchant, Gregory J.
2017-01-01
A recursive partitioning model approach in the form of classification and regression trees (CART) was used with 2012 PISA data for five countries (Canada, Finland, Germany, Singapore-China, and the Unites States). The objective of the study was to determine demographic and educational variables that differentiated between low SES student that were…
Predictive Value of Morphological Features in Patients with Autism versus Normal Controls
ERIC Educational Resources Information Center
Ozgen, H.; Hellemann, G. S.; de Jonge, M. V.; Beemer, F. A.; van Engeland, H.
2013-01-01
We investigated the predictive power of morphological features in 224 autistic patients and 224 matched-pairs controls. To assess the relationship between the morphological features and autism, we used the receiver operator curves (ROC). In addition, we used recursive partitioning (RP) to determine a specific pattern of abnormalities that is…
Efficiently Exploring Multilevel Data with Recursive Partitioning
ERIC Educational Resources Information Center
Martin, Daniel P.; von Oertzen, Timo; Rimm-Kaufman, Sara E.
2015-01-01
There is an increasing number of datasets with many participants, variables, or both, in education and other fields that often deal with large, multilevel data structures. Once initial confirmatory hypotheses are exhausted, it can be difficult to determine how best to explore the dataset to discover hidden relationships that could help to inform…
ERIC Educational Resources Information Center
Finch, W. Holmes; Hernández Finch, Maria E.; French, Brian F.
2016-01-01
Differential item functioning (DIF) assessment is key in score validation. When DIF is present scores may not accurately reflect the construct of interest for some groups of examinees, leading to incorrect conclusions from the scores. Given rising immigration, and the increased reliance of educational policymakers on cross-national assessments…
Perceived Organizational Support for Enhancing Welfare at Work: A Regression Tree Model
Giorgi, Gabriele; Dubin, David; Perez, Javier Fiz
2016-01-01
When trying to examine outcomes such as welfare and well-being, research tends to focus on main effects and take into account limited numbers of variables at a time. There are a number of techniques that may help address this problem. For example, many statistical packages available in R provide easy-to-use methods of modeling complicated analysis such as classification and tree regression (i.e., recursive partitioning). The present research illustrates the value of recursive partitioning in the prediction of perceived organizational support in a sample of more than 6000 Italian bankers. Utilizing the tree function party package in R, we estimated a regression tree model predicting perceived organizational support from a multitude of job characteristics including job demand, lack of job control, lack of supervisor support, training, etc. The resulting model appears particularly helpful in pointing out several interactions in the prediction of perceived organizational support. In particular, training is the dominant factor. Another dimension that seems to influence organizational support is reporting (perceived communication about safety and stress concerns). Results are discussed from a theoretical and methodological point of view. PMID:28082924
Fragment-based prediction of skin sensitization using recursive partitioning
NASA Astrophysics Data System (ADS)
Lu, Jing; Zheng, Mingyue; Wang, Yong; Shen, Qiancheng; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2011-09-01
Skin sensitization is an important toxic endpoint in the risk assessment of chemicals. In this paper, structure-activity relationships analysis was performed on the skin sensitization potential of 357 compounds with local lymph node assay data. Structural fragments were extracted by GASTON (GrAph/Sequence/Tree extractiON) from the training set. Eight fragments with accuracy significantly higher than 0.73 ( p < 0.1) were retained to make up an indicator descriptor fragment. The fragment descriptor and eight other physicochemical descriptors closely related to the endpoint were calculated to construct the recursive partitioning tree (RP tree) for classification. The balanced accuracy of the training set, test set I, and test set II in the leave-one-out model were 0.846, 0.800, and 0.809, respectively. The results highlight that fragment-based RP tree is a preferable method for identifying skin sensitizers. Moreover, the selected fragments provide useful structural information for exploring sensitization mechanisms, and RP tree creates a graphic tree to identify the most important properties associated with skin sensitization. They can provide some guidance for designing of drugs with lower sensitization level.
Health monitoring system for transmission shafts based on adaptive parameter identification
NASA Astrophysics Data System (ADS)
Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.
2018-05-01
A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking
NASA Astrophysics Data System (ADS)
Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.
2009-08-01
The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.
Recursive multibody dynamics and discrete-time optimal control
NASA Technical Reports Server (NTRS)
Deleuterio, G. M. T.; Damaren, C. J.
1989-01-01
A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.
Application of recursive approaches to differential orbit correction of near Earth asteroids
NASA Astrophysics Data System (ADS)
Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria
2016-10-01
Comparison of three approaches to the differential orbit correction of celestial bodies was performed: batch least squares fitting, Kalman filter, and recursive least squares filter. The first two techniques are well known and widely used (Montenbruck, O. & Gill, E., 2000). The most attention is paid to the algorithm and details of program realization of recursive least squares filter. The filter's algorithm was derived based on recursive least squares technique that are widely used in data processing applications (Simon, D, 2006). Usage recursive least squares filter, makes possible to process a new set of observational data, without reprocessing data, which has been processed before. Specific feature of such approach is that number of observation in data set may be variable. This feature makes recursive least squares filter more flexible approach compare to batch least squares (process complete set of observations in each iteration) and Kalman filtering (suppose updating state vector on each epoch with measurements).Advantages of proposed approach are demonstrated by processing of real astrometric observations of near Earth asteroids. The case of 2008 TC3 was studied. 2008 TC3 was discovered just before its impact with Earth. There are a many closely spaced observations of 2008 TC3 on the interval between discovering and impact, which creates favorable conditions for usage of recursive approaches. Each of approaches has very similar precision in case of 2008 TC3. At the same time, recursive least squares approaches have much higher performance. Thus, this approach more favorable for orbit fitting of a celestial body, which was detected shortly before the collision or close approach to the Earth.This work was carried out at MIIGAiK and supported by the Russian Science Foundation, Project no. 14-22-00197.References:O. Montenbruck and E. Gill, "Satellite Orbits, Models, Methods and Applications," Springer-Verlag, 2000, pp. 1-369.D. Simon, "Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches",1 edition. Hoboken, N.J.: Wiley-Interscience, 2006.
The recursive maximum likelihood proportion estimator: User's guide and test results
NASA Technical Reports Server (NTRS)
Vanrooy, D. L.
1976-01-01
Implementation of the recursive maximum likelihood proportion estimator is described. A user's guide to programs as they currently exist on the IBM 360/67 at LARS, Purdue is included, and test results on LANDSAT data are described. On Hill County data, the algorithm yields results comparable to the standard maximum likelihood proportion estimator.
Vehicle Sprung Mass Estimation for Rough Terrain
2011-03-01
distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended
Hierarchical image segmentation via recursive superpixel with adaptive regularity
NASA Astrophysics Data System (ADS)
Nakamura, Kensuke; Hong, Byung-Woo
2017-11-01
A fast and accurate segmentation algorithm in a hierarchical way based on a recursive superpixel technique is presented. We propose a superpixel energy formulation in which the trade-off between data fidelity and regularization is dynamically determined based on the local residual in the energy optimization procedure. We also present an energy optimization algorithm that allows a pixel to be shared by multiple regions to improve the accuracy and appropriate the number of segments. The qualitative and quantitative evaluations demonstrate that our algorithm, combining the proposed energy and optimization, outperforms the conventional k-means algorithm by up to 29.10% in F-measure. We also perform comparative analysis with state-of-the-art algorithms in the hierarchical segmentation. Our algorithm yields smooth regions throughout the hierarchy as opposed to the others that include insignificant details. Our algorithm overtakes the other algorithms in terms of balance between accuracy and computational time. Specifically, our method runs 36.48% faster than the region-merging approach, which is the fastest of the comparing algorithms, while achieving a comparable accuracy.
EEG and MEG source localization using recursively applied (RAP) MUSIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Leahy, R.M.
1996-12-31
The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which usesmore » the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.« less
On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hsieh, Shih-Fu
1990-01-01
In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application.
Reduction of artifacts in computer simulation of breast Cooper's ligaments
NASA Astrophysics Data System (ADS)
Pokrajac, David D.; Kuperavage, Adam; Maidment, Andrew D. A.; Bakic, Predrag R.
2016-03-01
Anthropomorphic software breast phantoms have been introduced as a tool for quantitative validation of breast imaging systems. Efficacy of the validation results depends on the realism of phantom images. The recursive partitioning algorithm based upon the octree simulation has been demonstrated as versatile and capable of efficiently generating large number of phantoms to support virtual clinical trials of breast imaging. Previously, we have observed specific artifacts, (here labeled "dents") on the boundaries of simulated Cooper's ligaments. In this work, we have demonstrated that these "dents" result from the approximate determination of the closest simulated ligament to an examined subvolume (i.e., octree node) of the phantom. We propose a modification of the algorithm that determines the closest ligament by considering a pre-specified number of neighboring ligaments selected based upon the functions that govern the shape of ligaments simulated in the subvolume. We have qualitatively and quantitatively demonstrated that the modified algorithm can lead to elimination or reduction of dent artifacts in software phantoms. In a proof-of concept example, we simulated a 450 ml phantom with 333 compartments at 100 micrometer resolution. After the proposed modification, we corrected 148,105 dents, with an average size of 5.27 voxels (5.27nl). We have also qualitatively analyzed the corresponding improvement in the appearance of simulated mammographic images. The proposed algorithm leads to reduction of linear and star-like artifacts in simulated phantom projections, which can be attributed to dents. Analysis of a larger number of phantoms is ongoing.
E. Matthew Hansen; Barbara J. Bentz; A. Steven Munson; James C. Vandygriff; David L. Turner
2006-01-01
Although funnel traps are routinely used to manage bark beetles, little is known regarding the relationship between trap captures of spruce beetle (Dendroctonus rufipennis Kirby) and mortality of Engelmann spruce (Picea engelmannii Parry ex Engelm.) within a 10 ha block of the trap. Using recursive partitioning tree analyses, rules...
Application of dynamic recurrent neural networks in nonlinear system identification
NASA Astrophysics Data System (ADS)
Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang
2006-11-01
An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.
Least square neural network model of the crude oil blending process.
Rubio, José de Jesús
2016-06-01
In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward neural network. The proposed method as the combination of the recursive least square and feedforward neural network obtains four advantages over the alone algorithms: it requires less number of regressors, it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced strategy is applied for the modeling of the crude oil blending process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H
2016-01-01
Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P < 0.01). A clinically useful classification tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.
NASA Astrophysics Data System (ADS)
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.
Fast and stable algorithms for computing the principal square root of a complex matrix
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Lian, Sui R.; Mcinnis, Bayliss C.
1987-01-01
This note presents recursive algorithms that are rapidly convergent and more stable for finding the principal square root of a complex matrix. Also, the developed algorithms are utilized to derive the fast and stable matrix sign algorithms which are useful in developing applications to control system problems.
Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan
2009-02-01
The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.
A Method to Predict the Structure and Stability of RNA/RNA Complexes.
Xu, Xiaojun; Chen, Shi-Jie
2016-01-01
RNA/RNA interactions are essential for genomic RNA dimerization and regulation of gene expression. Intermolecular loop-loop base pairing is a widespread and functionally important tertiary structure motif in RNA machinery. However, computational prediction of intermolecular loop-loop base pairing is challenged by the entropy and free energy calculation due to the conformational constraint and the intermolecular interactions. In this chapter, we describe a recently developed statistical mechanics-based method for the prediction of RNA/RNA complex structures and stabilities. The method is based on the virtual bond RNA folding model (Vfold). The main emphasis in the method is placed on the evaluation of the entropy and free energy for the loops, especially tertiary kissing loops. The method also uses recursive partition function calculations and two-step screening algorithm for large, complicated structures of RNA/RNA complexes. As case studies, we use the HIV-1 Mal dimer and the siRNA/HIV-1 mutant (T4) to illustrate the method.
Adventures in Topological Field Theory
NASA Astrophysics Data System (ADS)
Horne, James H.
1990-01-01
This thesis consists of 5 parts. In part I, the topological Yang-Mills theory and the topological sigma model are presented in a superspace formulation. This greatly simplifies the field content of the theories, and makes the Q-invariance more obvious. The Feynman rules for the topological Yang -Mills theory are derived. We calculate the one-loop beta-functions of the topological sigma model in superspace. The lattice version of these theories is presented. The self-duality constraints of both models lead to spectrum doubling. In part II, we show that conformally invariant gravity in three dimensions is equivalent to the Yang-Mills gauge theory of the conformal group in three dimensions, with a Chern-Simons action. This means that conformal gravity is finite and exactly soluble. In part III, we derive the skein relations for the fundamental representations of SO(N), Sp(2n), Su(m| n), and OSp(m| 2n). These relations can be used recursively to calculate the expectation values of Wilson lines in three-dimensional Chern-Simons gauge theory with these gauge groups. A combination of braiding and tying of Wilson lines completely describes the skein relations. In part IV, we show that the k = 1 two dimensional gravity amplitudes at genus 3 agree precisely with the results from intersection theory on moduli space. Predictions for the genus 4 intersection numbers follow from the two dimensional gravity theory. In part V, we discuss the partition function in two dimensional gravity. For the one matrix model at genus 2, we use the partition function to derive a recursion relation. We show that the k = 1 amplitudes completely determine the partition function at arbitrary genus. We present a conjecture for the partition function for the arbitrary topological field theory coupled to topological gravity.
On the Hosoya index of a family of deterministic recursive trees
NASA Astrophysics Data System (ADS)
Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang
2017-01-01
In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.
Virasoro constraints and polynomial recursion for the linear Hodge integrals
NASA Astrophysics Data System (ADS)
Guo, Shuai; Wang, Gehao
2017-04-01
The Hodge tau-function is a generating function for the linear Hodge integrals. It is also a tau-function of the KP hierarchy. In this paper, we first present the Virasoro constraints for the Hodge tau-function in the explicit form of the Virasoro equations. The expression of our Virasoro constraints is simply a linear combination of the Virasoro operators, where the coefficients are restored from a power series for the Lambert W function. Then, using this result, we deduce a simple version of the Virasoro constraints for the linear Hodge partition function, where the coefficients are restored from the Gamma function. Finally, we establish the equivalence relation between the Virasoro constraints and polynomial recursion formula for the linear Hodge integrals.
Distinctive signatures of recursion.
Martins, Maurício Dias
2012-07-19
Although recursion has been hypothesized to be a necessary capacity for the evolution of language, the multiplicity of definitions being used has undermined the broader interpretation of empirical results. I propose that only a definition focused on representational abilities allows the prediction of specific behavioural traits that enable us to distinguish recursion from non-recursive iteration and from hierarchical embedding: only subjects able to represent recursion, i.e. to represent different hierarchical dependencies (related by parenthood) with the same set of rules, are able to generalize and produce new levels of embedding beyond those specified a priori (in the algorithm or in the input). The ability to use such representations may be advantageous in several domains: action sequencing, problem-solving, spatial navigation, social navigation and for the emergence of conventionalized communication systems. The ability to represent contiguous hierarchical levels with the same rules may lead subjects to expect unknown levels and constituents to behave similarly, and this prior knowledge may bias learning positively. Finally, a new paradigm to test for recursion is presented. Preliminary results suggest that the ability to represent recursion in the spatial domain recruits both visual and verbal resources. Implications regarding language evolution are discussed.
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Identification of observer/Kalman filter Markov parameters: Theory and experiments
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh; Horta, Lucas G.; Longman, Richard W.
1991-01-01
An algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed. The Markov parameters can then be used for identification of a state space representation, with associated Kalman gain or observer gain, for the purpose of controller design. The algorithm is a non-recursive matrix version of two recursive algorithms developed in previous works for different purposes. The relationship between these other algorithms is developed. The new matrix formulation here gives insight into the existence and uniqueness of solutions of certain equations and gives bounds on the proper choice of observer order. It is shown that if one uses data containing noise, and seeks the fastest possible deterministic observer, the deadbeat observer, one instead obtains the Kalman filter, which is the fastest possible observer in the stochastic environment. Results are demonstrated in numerical studies and in experiments on an ten-bay truss structure.
Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning
ERIC Educational Resources Information Center
Strobl, Carolin; Wickelmaier, Florian; Zeileis, Achim
2011-01-01
The preference scaling of a group of subjects may not be homogeneous, but different groups of subjects with certain characteristics may show different preference scalings, each of which can be derived from paired comparisons by means of the Bradley-Terry model. Usually, either different models are fit in predefined subsets of the sample or the…
ReHypar: A Recursive Hybrid Chunk Partitioning Method Using NAND-Flash Memory SSD
Park, Sung-Soon; Lim, Cheol-Su
2014-01-01
Due to the rapid development of flash memory, SSD is considered to be the replacement of HDD in the storage market. Although SSD retains several promising characteristics, such as high random I/O performance and nonvolatility, its high expense per capacity is the main obstacle in replacing HDD in all storage solutions. An alternative is to provide a hybrid structure where a small portion of SSD address space is combined with the much larger HDD address space. In such a structure, maximizing the space utilization of SSD in a cost-effective way is extremely important to generate high I/O performance. We developed ReHypar (recursive hybrid chunk partitioning) that enables improving the space utilization of SSD in the hybrid structure. The first objective of ReHypar is to mitigate the fragmentation overhead of SSD address space, by reusing the remaining free space of I/O units as much as possible. Furthermore, ReHypar allows defining several, logical data sections in SSD address space, with each of those sections being configured with the different I/O unit. We integrated ReHypar with ext2 and ext4 and evaluated it using two public benchmarks including IOzone and Postmark. PMID:24987741
Censored quantile regression with recursive partitioning-based weights
Wey, Andrew; Wang, Lan; Rudser, Kyle
2014-01-01
Censored quantile regression provides a useful alternative to the Cox proportional hazards model for analyzing survival data. It directly models the conditional quantile of the survival time and hence is easy to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with the popular Cox model and is natural for modeling heterogeneity of the data. Recently, Wang and Wang (2009. Locally weighted censored quantile regression. Journal of the American Statistical Association 103, 1117–1128) proposed a locally weighted censored quantile regression approach that allows for covariate-dependent censoring and is less restrictive than other censored quantile regression methods. However, their kernel smoothing-based weighting scheme requires all covariates to be continuous and encounters practical difficulty with even a moderate number of covariates. We propose a new weighting approach that uses recursive partitioning, e.g. survival trees, that offers greater flexibility in handling covariate-dependent censoring in moderately high dimensions and can incorporate both continuous and discrete covariates. We prove that this new weighting scheme leads to consistent estimation of the quantile regression coefficients and demonstrate its effectiveness via Monte Carlo simulations. We also illustrate the new method using a widely recognized data set from a clinical trial on primary biliary cirrhosis. PMID:23975800
ASIC implementation of recursive scaled discrete cosine transform algorithm
NASA Astrophysics Data System (ADS)
On, Bill N.; Narasimhan, Sam; Huang, Victor K.
1994-05-01
A program to implement the Recursive Scaled Discrete Cosine Transform (DCT) algorithm as proposed by H. S. Hou has been undertaken at the Institute of Microelectronics. Implementation of the design was done using top-down design methodology with VHDL (VHSIC Hardware Description Language) for chip modeling. When the VHDL simulation has been satisfactorily completed, the design is synthesized into gates using a synthesis tool. The architecture of the design consists of two processing units together with a memory module for data storage and transpose. Each processing unit is composed of four pipelined stages which allow the internal clock to run at one-eighth (1/8) the speed of the pixel clock. Each stage operates on eight pixels in parallel. As the data flows through each stage, there are various adders and multipliers to transform them into the desired coefficients. The Scaled IDCT was implemented in a similar fashion with the adders and multipliers rearranged to perform the inverse DCT algorithm. The chip has been verified using Field Programmable Gate Array devices. The design is operational. The combination of fewer multiplications required and pipelined architecture give Hou's Recursive Scaled DCT good potential of achieving high performance at a low cost in using Very Large Scale Integration implementation.
Modeling, Control, and Estimation of Flexible, Aerodynamic Structures
NASA Astrophysics Data System (ADS)
Ray, Cody W.
Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Tiwari, A. K.; Hazra, B.
2017-08-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using recursive principal component analysis (RPCA) in conjunction with online damage indicators is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal modes in online using the rank-one perturbation method, and subsequently utilized to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/nonlinear-states that indicate damage. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. An online condition indicator (CI) based on the L2 norm of the error between actual response and the response projected using recursive eigenvector matrix updates over successive iterations is proposed. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data. The proposed CI, named recursive residual error, is also adopted for simultaneous spatio-temporal damage detection. Numerical simulations performed on five-degree of freedom nonlinear system under white noise and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate the robustness of the proposed algorithm. Successful results obtained from practical case studies involving experiments performed on a cantilever beam subjected to earthquake excitation, for full sensors and underdetermined cases; and data from recorded responses of the UCLA Factor building (full data and its subset) demonstrate the efficacy of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.
Distribution-Preserving Stratified Sampling for Learning Problems.
Cervellera, Cristiano; Maccio, Danilo
2017-06-09
The need for extracting a small sample from a large amount of real data, possibly streaming, arises routinely in learning problems, e.g., for storage, to cope with computational limitations, obtain good training/test/validation sets, and select minibatches for stochastic gradient neural network training. Unless we have reasons to select the samples in an active way dictated by the specific task and/or model at hand, it is important that the distribution of the selected points is as similar as possible to the original data. This is obvious for unsupervised learning problems, where the goal is to gain insights on the distribution of the data, but it is also relevant for supervised problems, where the theory explains how the training set distribution influences the generalization error. In this paper, we analyze the technique of stratified sampling from the point of view of distances between probabilities. This allows us to introduce an algorithm, based on recursive binary partition of the input space, aimed at obtaining samples that are distributed as much as possible as the original data. A theoretical analysis is proposed, proving the (greedy) optimality of the procedure together with explicit error bounds. An adaptive version of the algorithm is also introduced to cope with streaming data. Simulation tests on various data sets and different learning tasks are also provided.
A probabilistic, distributed, recursive mechanism for decision-making in the brain
Gurney, Kevin N.
2018-01-01
Decision formation recruits many brain regions, but the procedure they jointly execute is unknown. Here we characterize its essential composition, using as a framework a novel recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demonstrate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses of otherwise usable information from MT. Its architecture maps to the recurrent cortico-basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-making. We show that the dynamics of its mapped computations match those of neural activity in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia output and thalamus. This also predicts which aspects of neural dynamics are and are not part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that the mechanism implemented by the brain has these same characteristics. PMID:29614077
NASA Technical Reports Server (NTRS)
Shareef, N. H.; Amirouche, F. M. L.
1991-01-01
A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.
Tree-manipulating systems and Church-Rosser theorems.
NASA Technical Reports Server (NTRS)
Rosen, B. K.
1973-01-01
Study of a broad class of tree-manipulating systems called subtree replacement systems. The use of this framework is illustrated by general theorems analogous to the Church-Rosser theorem and by applications of these theorems. Sufficient conditions are derived for the Church-Rosser property, and their applications to recursive definitions, the lambda calculus, and parallel programming are discussed. McCarthy's (1963) recursive calculus is extended by allowing a choice between call-by-value and call-by-name. It is shown that recursively defined functions are single-valued despite the nondeterminism of the evaluation algorithm. It is also shown that these functions solve their defining equations in a 'canonical' manner.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Prognostic Indexes for Brain Metastases: Which Is the Most Powerful?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arruda Viani, Gustavo, E-mail: gusviani@gmail.com; Bernardes da Silva, Lucas Godoi; Stefano, Eduardo Jose
Purpose: The purpose of the present study was to compare the prognostic indexes (PIs) of patients with brain metastases (BMs) treated with whole brain radiotherapy (WBRT) using an artificial neural network. This analysis is important, because it evaluates the prognostic power of each PI to guide clinical decision-making and outcomes research. Methods and Materials: A retrospective prognostic study was conducted of 412 patients with BMs who underwent WBRT between April 1998 and March 2010. The eligibility criteria for patients included having undergone WBRT or WBRT plus neurosurgery. The data were analyzed using the artificial neural network. The input neural datamore » consisted of all prognostic factors included in the 5 PIs (recursive partitioning analysis, graded prognostic assessment [GPA], basic score for BMs, Rotterdam score, and Germany score). The data set was randomly divided into 300 training and 112 testing examples for survival prediction. All 5 PIs were compared using our database of 412 patients with BMs. The sensibility of the 5 indexes to predict survival according to their input variables was determined statistically using receiver operating characteristic curves. The importance of each variable from each PI was subsequently evaluated. Results: The overall 1-, 2-, and 3-year survival rate was 22%, 10.2%, and 5.1%, respectively. All classes of PIs were significantly associated with survival (recursive partitioning analysis, P < .0001; GPA, P < .0001; basic score for BMs, P = .002; Rotterdam score, P = .001; and Germany score, P < .0001). Comparing the areas under the curves, the GPA was statistically most sensitive in predicting survival (GPA, 86%; recursive partitioning analysis, 81%; basic score for BMs, 79%; Rotterdam, 73%; and Germany score, 77%; P < .001). Among the variables included in each PI, the performance status and presence of extracranial metastases were the most important factors. Conclusion: A variety of prognostic models describe the survival of patients with BMs to a more or less satisfactory degree. Among the 5 PIs evaluated in the present study, GPA was the most powerful in predicting survival. Additional studies should include emerging biologic prognostic factors to improve the sensibility of these PIs.« less
On the Shock-Response-Spectrum Recursive Algorithm of Kelly and Richman
NASA Technical Reports Server (NTRS)
Martin, Justin N.; Sinclair, Andrew J.; Foster, Winfred A.
2010-01-01
The monograph Principles and Techniques of Shock Data Analysis written by Kelly and Richman in 1969 has become a seminal reference on the shock response spectrum (SRS) [1]. Because of its clear physical descriptions and mathematical presentation of the SRS, it has been cited in multiple handbooks on the subject [2, 3] and research articles [4 10]. Because of continued interest, two additional versions of the monograph have been published: a second edition by Scavuzzo and Pusey in 1996 [11] and a reprint of the original edition in 2008 [12]. The main purpose of this note is to correct several typographical errors in the manuscript's presentation of a recursive algorithm for SRS calculations. These errors are consistent across all three editions of the monograph. The secondary purpose of this note is to present a Matlab implementation of the corrected algorithm.
Monkey search algorithm for ECE components partitioning
NASA Astrophysics Data System (ADS)
Kuliev, Elmar; Kureichik, Vladimir; Kureichik, Vladimir, Jr.
2018-05-01
The paper considers one of the important design problems – a partitioning of electronic computer equipment (ECE) components (blocks). It belongs to the NP-hard class of problems and has a combinatorial and logic nature. In the paper, a partitioning problem formulation can be found as a partition of graph into parts. To solve the given problem, the authors suggest using a bioinspired approach based on a monkey search algorithm. Based on the developed software, computational experiments were carried out that show the algorithm efficiency, as well as its recommended settings for obtaining more effective solutions in comparison with a genetic algorithm.
Exact analytical solution of irreversible binary dynamics on networks.
Laurence, Edward; Young, Jean-Gabriel; Melnik, Sergey; Dubé, Louis J
2018-03-01
In binary cascade dynamics, the nodes of a graph are in one of two possible states (inactive, active), and nodes in the inactive state make an irreversible transition to the active state, as soon as their precursors satisfy a predetermined condition. We introduce a set of recursive equations to compute the probability of reaching any final state, given an initial state, and a specification of the transition probability function of each node. Because the naive recursive approach for solving these equations takes factorial time in the number of nodes, we also introduce an accelerated algorithm, built around a breath-first search procedure. This algorithm solves the equations as efficiently as possible in exponential time.
Exact analytical solution of irreversible binary dynamics on networks
NASA Astrophysics Data System (ADS)
Laurence, Edward; Young, Jean-Gabriel; Melnik, Sergey; Dubé, Louis J.
2018-03-01
In binary cascade dynamics, the nodes of a graph are in one of two possible states (inactive, active), and nodes in the inactive state make an irreversible transition to the active state, as soon as their precursors satisfy a predetermined condition. We introduce a set of recursive equations to compute the probability of reaching any final state, given an initial state, and a specification of the transition probability function of each node. Because the naive recursive approach for solving these equations takes factorial time in the number of nodes, we also introduce an accelerated algorithm, built around a breath-first search procedure. This algorithm solves the equations as efficiently as possible in exponential time.
Recursive algorithms for bias and gain nonuniformity correction in infrared videos.
Pipa, Daniel R; da Silva, Eduardo A B; Pagliari, Carla L; Diniz, Paulo S R
2012-12-01
Infrared focal-plane array (IRFPA) detectors suffer from fixed-pattern noise (FPN) that degrades image quality, which is also known as spatial nonuniformity. FPN is still a serious problem, despite recent advances in IRFPA technology. This paper proposes new scene-based correction algorithms for continuous compensation of bias and gain nonuniformity in FPA sensors. The proposed schemes use recursive least-square and affine projection techniques that jointly compensate for both the bias and gain of each image pixel, presenting rapid convergence and robustness to noise. The synthetic and real IRFPA videos experimentally show that the proposed solutions are competitive with the state-of-the-art in FPN reduction, by presenting recovered images with higher fidelity.
S-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Simon, H.
1998-01-01
Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less
ERIC Educational Resources Information Center
Kim, Seonghoon
2013-01-01
With known item response theory (IRT) item parameters, Lord and Wingersky provided a recursive algorithm for computing the conditional frequency distribution of number-correct test scores, given proficiency. This article presents a generalized algorithm for computing the conditional distribution of summed test scores involving real-number item…
A PML-FDTD ALGORITHM FOR SIMULATING PLASMA-COVERED CAVITY-BACKED SLOT ANTENNAS. (R825225)
A three-dimensional frequency-dependent finite-difference time-domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) and recursive convolution approaches is developed to model plasma-covered open-ended waveguide or cavity-backed slot antenn...
New Parallel Algorithms for Landscape Evolution Model
NASA Astrophysics Data System (ADS)
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Computationally efficient algorithm for high sampling-frequency operation of active noise control
NASA Astrophysics Data System (ADS)
Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati
2015-05-01
In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.
A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering
ERIC Educational Resources Information Center
Chahine, Firas Safwan
2012-01-01
Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…
Cache Locality Optimization for Recursive Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifflander, Jonathan; Krishnamoorthy, Sriram
We present an approach to optimize the cache locality for recursive programs by dynamically splicing--recursively interleaving--the execution of distinct function invocations. By utilizing data effect annotations, we identify concurrency and data reuse opportunities across function invocations and interleave them to reduce reuse distance. We present algorithms that efficiently track effects in recursive programs, detect interference and dependencies, and interleave execution of function invocations using user-level (non-kernel) lightweight threads. To enable multi-core execution, a program is parallelized using a nested fork/join programming model. Our cache optimization strategy is designed to work in the context of a random work stealing scheduler. Wemore » present an implementation using the MIT Cilk framework that demonstrates significant improvements in sequential and parallel performance, competitive with a state-of-the-art compile-time optimizer for loop programs and a domain- specific optimizer for stencil programs.« less
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Ledesma, Ragnar
1993-01-01
A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.
Zhou, Miaolei; Wang, Shoubin; Gao, Wei
2013-01-01
As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.
An implementation of the QMR method based on coupled two-term recurrences
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noeel M.
1992-01-01
The authors have proposed a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR), for solving non-Hermitian linear systems. In the original implementation of the QMR method, the Lanczos process with look-ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos algorithm, these basis vectors are computed by means of three-term recurrences. It has been observed that, in finite precision arithmetic, vector iterations based on three-term recursions are usually less robust than mathematically equivalent coupled two-term vector recurrences. This paper presents a look-ahead algorithm that constructs the Lanczos basis vectors by means of coupled two-term recursions. Implementation details are given, and the look-ahead strategy is described. A new implementation of the QMR method, based on this coupled two-term algorithm, is described. A simplified version of the QMR algorithm without look-ahead is also presented, and the special case of QMR for complex symmetric linear systems is considered. Results of numerical experiments comparing the original and the new implementations of the QMR method are reported.
Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model
Wang, Shoubin; Gao, Wei
2013-01-01
As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator. PMID:23737730
2012-06-01
neoadjuvant therapies on disease-free, progression-free, and overall survival will vary across prognostically distinct groups. 3. Specific molecular... prognostically distinct subpopulations of patients with resectable NSCLC, and to assess the extent to which these molecular profiles correlate with tumor...overall survival, and will use Cox proportional hazards models and recursive partitioning methods to identify important biomarkers and prognostically
What contributes to perceived stress in later life? A recursive partitioning approach.
Scott, Stacey B; Jackson, Brenda R; Bergeman, C S
2011-12-01
One possible explanation for the individual differences in outcomes of stress is the diversity of inputs that produce perceptions of being stressed. The current study examines how combinations of contextual features (e.g., social isolation, neighborhood quality, health problems, age discrimination, financial concerns, and recent life events) of later life contribute to overall feelings of stress. Recursive partitioning techniques (regression trees and random forests) were used to examine unique interrelations between predictors of perceived stress in a sample of 282 community-dwelling adults. Trees provided possible examples of equifinality (i.e., subsets of people with similar levels of perceived stress but different predictors) as well as identification both of contextual combinations that separated participants with very high and very low perceived stress. Random forest analyses aggregated across many trees based on permuted versions of the data and predictors; loneliness, financial strain, neighborhood strain, ageism, and to some extent life events emerged as important predictors. Interviews with a subsample of participants provided both thick description of the complex relationships identified in the trees, as well as additional risks not appearing in the survey results. Together, the analyses highlight what may be missed when stress is used as a simple unidimensional construct and can guide differential intervention efforts.
What contributes to perceived stress in later life? A recursive partitioning approach
Scott, Stacey B.; Jackson, Brenda R.; Bergeman, C. S.
2011-01-01
One possible explanation for the individual differences in outcomes of stress is the diversity of inputs that produce perceptions of being stressed. The current study examines how combinations of contextual features (e.g., social isolation, neighborhood quality, health problems, age discrimination, financial concerns, and recent life events) of later life contribute to overall feelings of stress. Recursive partitioning techniques (regression trees and random forests) were used to examine unique interrelations between predictors of perceived stress in a sample of 282 community-dwelling adults. Trees provided possible examples of equifinality (i.e., subsets of people with similar levels of perceived stress but different predictors) as well as for the identification both of contextual combinations that separated participants with very high and very low perceived stress. Random forest analyses aggregated across many trees based on permuted versions of the data and predictors; loneliness, financial strain, neighborhood strain, ageism, and to some extent life events emerged as important predictors. Interviews with a subsample of participants provided both thick description of the complex relationships identified in the trees, as well as additional risks not appearing in the survey results. Together, the analyses highlight what may be missed when stress is used as a simple unidimensional construct and can guide differential intervention efforts. PMID:21604885
Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia
2016-01-01
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwinska, Anna, E-mail: alphaonetau@poczta.onet.pl; Murawska, Magdalena
2012-04-01
Purpose: The aim of the study was to present a new breast cancer recursive partitioning analysis (RPA) prognostic index for patients with newly diagnosed brain metastases as a guide in clinical decision making. Methods and Materials: A prospectively collected group of 441 consecutive patients with breast cancer and brain metastases treated between the years 2003 and 2009 was assessed. Prognostic factors significant for univariate analysis were included into RPA. Results: Three prognostic classes of a new breast cancer RPA prognostic index were selected. The median survival of patients within prognostic Classes I, II, and III was 29, 9, and 2.4more » months, respectively (p < 0.0001). Class I included patients with one or two brain metastases, without extracranial disease or with controlled extracranial disease, and with Karnofsky performance status (KPS) of 100. Class III included patients with multiple brain metastases with KPS of {<=}60. Class II included all other cases. Conclusions: The breast cancer RPA prognostic index is an easy and valuable tool for use in clinical practice. It can select patients who require aggressive treatment and those in whom whole-brain radiotherapy or symptomatic therapy is the most reasonable option. An individual approach is required for patients from prognostic Class II.« less
Pathways to Early Coital Debut for Adolescent Girls: A Recursive Partitioning Analysis
Pearson, Matthew R.; Kholodkov, Tatyana; Henson, James M.; Impett, Emily A.
2011-01-01
The current study examined pathways to early coital debut among early to middle adolescent girls in the United States. In a two-year longitudinal study of 104 adolescent girls, we conducted Recursive Partitioning (RP) analyses to examine the specific factors that were related to engaging in first intercourse by the 10th grade among adolescent girls who had not yet engaged in sexual intercourse by the 8th grade. RP analyses identified subsamples of girls who had low, medium, and high likelihoods of engaging in early coital debut based on six variables (i.e., school aspirations, early physical intimacy experiences, depression, body objectification, body image, and relationship inauthenticity). For example, girls in the lowest likelihood group (3% had engaged in sex by the 10th grade) reported no prior experiences with being touched under their clothes, low body objectification, high aspirations to complete graduate education, and low depressive symptoms; girls in the highest likelihood group (75% had engaged in sex by the 10th grade) also reported no prior experiences with being touched under their clothes but had high levels of body objectification. The implications of these analyses for the development of female adolescent sexuality as well as for advances in quantitative methods are discussed. PMID:21512947
Statistical Inference in Hidden Markov Models Using k-Segment Constraints
Titsias, Michalis K.; Holmes, Christopher C.; Yau, Christopher
2016-01-01
Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence of most probable marginals using the forward–backward algorithm. In this article, we expand the amount of information we could obtain from the posterior distribution of an HMM by introducing linear-time dynamic programming recursions that, conditional on a user-specified constraint in the number of segments, allow us to (i) find MAP sequences, (ii) compute posterior probabilities, and (iii) simulate sample paths. We collectively call these recursions k-segment algorithms and illustrate their utility using simulated and real examples. We also highlight the prospective and retrospective use of k-segment constraints for fitting HMMs or exploring existing model fits. Supplementary materials for this article are available online. PMID:27226674
Computation of Symmetric Discrete Cosine Transform Using Bakhvalov's Algorithm
NASA Technical Reports Server (NTRS)
Aburdene, Maurice F.; Strojny, Brian C.; Dorband, John E.
2005-01-01
A number of algorithms for recursive computation of the discrete cosine transform (DCT) have been developed recently. This paper presents a new method for computing the discrete cosine transform and its inverse using Bakhvalov's algorithm, a method developed for evaluation of a polynomial at a point. In this paper, we will focus on both the application of the algorithm to the computation of the DCT-I and its complexity. In addition, Bakhvalov s algorithm is compared with Clenshaw s algorithm for the computation of the DCT.
Liu, Hesheng; Schimpf, Paul H; Dong, Guoya; Gao, Xiaorong; Yang, Fusheng; Gao, Shangkai
2005-10-01
This paper presents a new algorithm called Standardized Shrinking LORETA-FOCUSS (SSLOFO) for solving the electroencephalogram (EEG) inverse problem. Multiple techniques are combined in a single procedure to robustly reconstruct the underlying source distribution with high spatial resolution. This algorithm uses a recursive process which takes the smooth estimate of sLORETA as initialization and then employs the re-weighted minimum norm introduced by FOCUSS. An important technique called standardization is involved in the recursive process to enhance the localization ability. The algorithm is further improved by automatically adjusting the source space according to the estimate of the previous step, and by the inclusion of temporal information. Simulation studies are carried out on both spherical and realistic head models. The algorithm achieves very good localization ability on noise-free data. It is capable of recovering complex source configurations with arbitrary shapes and can produce high quality images of extended source distributions. We also characterized the performance with noisy data in a realistic head model. An important feature of this algorithm is that the temporal waveforms are clearly reconstructed, even for closely spaced sources. This provides a convenient way to estimate neural dynamics directly from the cortical sources.
NASA Technical Reports Server (NTRS)
Nikravesh, Parviz E.; Gim, Gwanghum; Arabyan, Ara; Rein, Udo
1989-01-01
The formulation of a method known as the joint coordinate method for automatic generation of the equations of motion for multibody systems is summarized. For systems containing open or closed kinematic loops, the equations of motion can be reduced systematically to a minimum number of second order differential equations. The application of recursive and nonrecursive algorithms to this formulation, computational considerations and the feasibility of implementing this formulation on multiprocessor computers are discussed.
A low-complexity Reed-Solomon decoder using new key equation solver
NASA Astrophysics Data System (ADS)
Xie, Jun; Yuan, Songxin; Tu, Xiaodong; Zhang, Chongfu
2006-09-01
This paper presents a low-complexity parallel Reed-Solomon (RS) (255,239) decoder architecture using a novel pipelined variable stages recursive Modified Euclidean (ME) algorithm for optical communication. The pipelined four-parallel syndrome generator is proposed. The time multiplexing and resource sharing schemes are used in the novel recursive ME algorithm to reduce the logic gate count. The new key equation solver can be shared by two decoder macro. A new Chien search cell which doesn't need initialization is proposed in the paper. The proposed decoder can be used for 2.5Gb/s data rates device. The decoder is implemented in Altera' Stratixll device. The resource utilization is reduced about 40% comparing to the conventional method.
Algorithms for System Identification and Source Location.
NASA Astrophysics Data System (ADS)
Nehorai, Arye
This thesis deals with several topics in least squares estimation and applications to source location. It begins with a derivation of a mapping between Wiener theory and Kalman filtering for nonstationary autoregressive moving average (ARMO) processes. Applying time domain analysis, connections are found between time-varying state space realizations and input-output impulse response by matrix fraction description (MFD). Using these connections, the whitening filters are derived by the two approaches, and the Kalman gain is expressed in terms of Wiener theory. Next, fast estimation algorithms are derived in a unified way as special cases of the Conjugate Direction Method. The fast algorithms included are the block Levinson, fast recursive least squares, ladder (or lattice) and fast Cholesky algorithms. The results give a novel derivation and interpretation for all these methods, which are efficient alternatives to available recursive system identification algorithms. Multivariable identification algorithms are usually designed only for left MFD models. In this work, recursive multivariable identification algorithms are derived for right MFD models with diagonal denominator matrices. The algorithms are of prediction error and model reference type. Convergence analysis results obtained by the Ordinary Differential Equation (ODE) method are presented along with simulations. Sources of energy can be located by estimating time differences of arrival (TDOA's) of waves between the receivers. A new method for TDOA estimation is proposed for multiple unknown ARMA sources and additive correlated receiver noise. The method is based on a formula that uses only the receiver cross-spectra and the source poles. Two algorithms are suggested that allow tradeoffs between computational complexity and accuracy. A new time delay model is derived and used to show the applicability of the methods for non -integer TDOA's. Results from simulations illustrate the performance of the algorithms. The last chapter analyzes the response of exact least squares predictors for enhancement of sinusoids with additive colored noise. Using the matrix inversion lemma and the Christoffel-Darboux formula, the frequency response and amplitude gain of the sinusoids are expressed as functions of the signal and noise characteristics. The results generalize the available white noise case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Dejun, E-mail: dejun.lin@gmail.com
2015-09-21
Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A software library based on this algorithm has been implemented in C++11 and has been released.« less
NASA Technical Reports Server (NTRS)
Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)
2001-01-01
Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.
An iterative network partition algorithm for accurate identification of dense network modules
Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong
2012-01-01
A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225
Automatic partitioning of head CTA for enabling segmentation
NASA Astrophysics Data System (ADS)
Suryanarayanan, Srikanth; Mullick, Rakesh; Mallya, Yogish; Kamath, Vidya; Nagaraj, Nithin
2004-05-01
Radiologists perform a CT Angiography procedure to examine vascular structures and associated pathologies such as aneurysms. Volume rendering is used to exploit volumetric capabilities of CT that provides complete interactive 3-D visualization. However, bone forms an occluding structure and must be segmented out. The anatomical complexity of the head creates a major challenge in the segmentation of bone and vessel. An analysis of the head volume reveals varying spatial relationships between vessel and bone that can be separated into three sub-volumes: "proximal", "middle", and "distal". The "proximal" and "distal" sub-volumes contain good spatial separation between bone and vessel (carotid referenced here). Bone and vessel appear contiguous in the "middle" partition that remains the most challenging region for segmentation. The partition algorithm is used to automatically identify these partition locations so that different segmentation methods can be developed for each sub-volume. The partition locations are computed using bone, image entropy, and sinus profiles along with a rule-based method. The algorithm is validated on 21 cases (varying volume sizes, resolution, clinical sites, pathologies) using ground truth identified visually. The algorithm is also computationally efficient, processing a 500+ slice volume in 6 seconds (an impressive 0.01 seconds / slice) that makes it an attractive algorithm for pre-processing large volumes. The partition algorithm is integrated into the segmentation workflow. Fast and simple algorithms are implemented for processing the "proximal" and "distal" partitions. Complex methods are restricted to only the "middle" partition. The partitionenabled segmentation has been successfully tested and results are shown from multiple cases.
Task-specific image partitioning.
Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D
2013-02-01
Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.
A mesh partitioning algorithm for preserving spatial locality in arbitrary geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nivarti, Girish V., E-mail: g.nivarti@alumni.ubc.ca; Salehi, M. Mahdi; Bushe, W. Kendal
2015-01-15
Highlights: •An algorithm for partitioning computational meshes is proposed. •The Morton order space-filling curve is modified to achieve improved locality. •A spatial locality metric is defined to compare results with existing approaches. •Results indicate improved performance of the algorithm in complex geometries. -- Abstract: A space-filling curve (SFC) is a proximity preserving linear mapping of any multi-dimensional space and is widely used as a clustering tool. Equi-sized partitioning of an SFC ignores the loss in clustering quality that occurs due to inaccuracies in the mapping. Often, this results in poor locality within partitions, especially for the conceptually simple, Morton ordermore » curves. We present a heuristic that improves partition locality in arbitrary geometries by slicing a Morton order curve at points where spatial locality is sacrificed. In addition, we develop algorithms that evenly distribute points to the extent possible while maintaining spatial locality. A metric is defined to estimate relative inter-partition contact as an indicator of communication in parallel computing architectures. Domain partitioning tests have been conducted on geometries relevant to turbulent reactive flow simulations. The results obtained highlight the performance of our method as an unsupervised and computationally inexpensive domain partitioning tool.« less
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cattafesta, L. N.; Ha, C.
2002-01-01
Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.
Accuracy and speed in computing the Chebyshev collocation derivative
NASA Technical Reports Server (NTRS)
Don, Wai-Sun; Solomonoff, Alex
1991-01-01
We studied several algorithms for computing the Chebyshev spectral derivative and compare their roundoff error. For a large number of collocation points, the elements of the Chebyshev differentiation matrix, if constructed in the usual way, are not computed accurately. A subtle cause is is found to account for the poor accuracy when computing the derivative by the matrix-vector multiplication method. Methods for accurately computing the elements of the matrix are presented, and we find that if the entities of the matrix are computed accurately, the roundoff error of the matrix-vector multiplication is as small as that of the transform-recursion algorithm. Results of CPU time usage are shown for several different algorithms for computing the derivative by the Chebyshev collocation method for a wide variety of two-dimensional grid sizes on both an IBM and a Cray 2 computer. We found that which algorithm is fastest on a particular machine depends not only on the grid size, but also on small details of the computer hardware as well. For most practical grid sizes used in computation, the even-odd decomposition algorithm is found to be faster than the transform-recursion method.
Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging
NASA Astrophysics Data System (ADS)
Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas
In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.
Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models
NASA Technical Reports Server (NTRS)
Mjoisness, Eric; Castano, Rebecca; Gray, Alexander
1999-01-01
We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.
Marginal Consistency: Upper-Bounding Partition Functions over Commutative Semirings.
Werner, Tomás
2015-07-01
Many inference tasks in pattern recognition and artificial intelligence lead to partition functions in which addition and multiplication are abstract binary operations forming a commutative semiring. By generalizing max-sum diffusion (one of convergent message passing algorithms for approximate MAP inference in graphical models), we propose an iterative algorithm to upper bound such partition functions over commutative semirings. The iteration of the algorithm is remarkably simple: change any two factors of the partition function such that their product remains the same and their overlapping marginals become equal. In many commutative semirings, repeating this iteration for different pairs of factors converges to a fixed point when the overlapping marginals of every pair of factors coincide. We call this state marginal consistency. During that, an upper bound on the partition function monotonically decreases. This abstract algorithm unifies several existing algorithms, including max-sum diffusion and basic constraint propagation (or local consistency) algorithms in constraint programming. We further construct a hierarchy of marginal consistencies of increasingly higher levels and show than any such level can be enforced by adding identity factors of higher arity (order). Finally, we discuss instances of the framework for several semirings, including the distributive lattice and the max-sum and sum-product semirings.
Chang, M; Raimondi, S C; Ravindranath, Y; Carroll, A J; Camitta, B; Gresik, M V; Steuber, C P; Weinstein, H
2000-07-01
The purpose of the paper was to define clinical or biological features associated with the risk for treatment failure for children with acute myeloid leukemia. Data from 560 children and adolescents with newly diagnosed acute myeloid leukemia who entered the Pediatric Oncology Group Study 8821 from June 1988 to March 1993 were analyzed by univariate and recursive partitioning methods. Children with Down syndrome or acute promyelocytic leukemia were excluded from the study. Factors examined included age, number of leukocytes, sex, FAB morphologic subtype, cytogenetic findings, and extramedullary disease at the time of diagnosis. The overall event-free survival (EFS) rate at 4 years was 32.7% (s.e. = 2.2%). Age > or =2 years, fewer than 50 x 10(9)/I leukocytes, and t(8;21) or inv(16), and normal chromosomes were associated with higher rates of EFS (P value = 0.003, 0.049, 0.0003, 0.031, respectively), whereas the M5 subtype of AML (P value = 0.0003) and chromosome abnormalities other than t(8;21) and inv(16) were associated with lower rates of EFS (P value = 0.0001). Recursive partitioning analysis defined three groups of patients with widely varied prognoses: female patients with t(8;21), inv(16), or a normal karyotype (n = 89) had the best prognosis (4-year EFS = 55.1%, s.e. = 5.7%); male patients with t(8;21), inv(16) or normal chromosomes (n = 106) had an intermediate prognosis (4-year EFS = 38.1%, s.e. = 5.3%); patients with chromosome abnormalities other than t(8;21) and inv(16) (n = 233) had the worst prognosis (4-year EFS = 27.0%, s.e. = 3.2%). One hundred and thirty-two patients (24%) could not be grouped because of missing cytogenetic data, mainly due to inadequate marrow samples. The results suggest that pediatric patients with acute myeloid leukemia can be categorized into three potential risk groups for prognosis and that differences in sex and chromosomal abnormalities are associated with differences in estimates of EFS. These results are tentative and must be confirmed by a large prospective clinical trial.
Klein, M D; Rabbani, A B; Rood, K D; Durham, T; Rosenberg, N M; Bahr, M J; Thomas, R L; Langenburg, S E; Kuhns, L R
2001-09-01
The authors compared 3 quantitative methods for assisting clinicians in the differential diagnosis of abdominal pain in children, where the most common important endpoint is whether the patient has appendicitis. Pretest probability in different age and sex groups were determined to perform Bayesian analysis, binary logistic regression was used to determine which variables were statistically significantly likely to contribute to a diagnosis, and recursive partitioning was used to build decision trees with quantitative endpoints. The records of all children (1,208) seen at a large urban emergency department (ED) with a chief complaint of abdominal pain were immediately reviewed retrospectively (24 to 72 hours after the encounter). Attempts were made to contact all the patients' families to determine an accurate final diagnosis. A total of 1,008 (83%) families were contacted. Data were analyzed by calculation of the posttest probability, recursive partitioning, and binary logistic regression. In all groups the most common diagnosis was abdominal pain (ICD-9 Code 789). After this, however, the order of the most common final diagnoses for abdominal pain varied significantly. The entire group had a pretest probability of appendicitis of 0.06. This varied with age and sex from 0.02 in boys 2 to 5 years old to 0.16 in boys older than 12 years. In boys age 5 to 12, recursive partitioning and binary logistic regression agreed on guarding and anorexia as important variables. Guarding and tenderness were important in girls age 5 to 12. In boys age greater than 12, both agreed on guarding and anorexia. Using sensitivities and specificities from the literature, computed tomography improved the posttest probability for the group from.06 to.33; ultrasound improved it from.06 to.48; and barium enema improved it from.06 to.58. Knowing the pretest probabilities in a specific population allows the physician to evaluate the likely diagnoses first. Other quantitative methods can help judge how much importance a certain criterion should have in the decision making and how much a particular test is likely to influence the probability of a correct diagnosis. It now should be possible to make these sophisticated quantitative methods readily available to clinicians via the computer. Copyright 2001 by W.B. Saunders Company.
Nam, Haewon
2017-01-01
We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects. PMID:28604794
Computer Aided Synthesis or Measurement Schemes for Telemetry applications
1997-09-02
5.2.5. Frame structure generation The algorithm generating the frame structure should take as inputs the sampling frequency requirements of the channels...these channels into the frame structure. Generally there can be a lot of ways to divide channels among groups. The algorithm implemented in...groups) first. The algorithm uses the function "try_permutation" recursively to distribute channels among the groups, and the function "try_subtable
Adaptive Two Dimensional RLS (Recursive Least Squares) Algorithms
1989-03-01
in Monterey wonderful. IX I. INTRODUCTION Adaptive algorithms have been used successfully for many years in a wide range of digital signal...SIMULATION RESULTS The 2-D FRLS algorithm was tested both on computer-generated data and on digitized images. For a baseline reference the 2-D L:rv1S...Alexander, S. T. Adaptivt Signal Processing: Theory and Applications. Springer- Verlag, New York. 1986. 7. Bellanger, Maurice G. Adaptive Digital
Impact of triple-negative phenotype on prognosis of patients with breast cancer brain metastases.
Xu, Zhiyuan; Schlesinger, David; Toulmin, Sushila; Rich, Tyvin; Sheehan, Jason
2012-11-01
To elucidate survival times and identify potential prognostic factors in patients with triple-negative (TN) phenotype who harbored brain metastases arising from breast cancer and who underwent stereotactic radiosurgery (SRS). A total of 103 breast cancer patients with brain metastases were treated with SRS and then studied retrospectively. Twenty-four patients (23.3%) were TN. Survival times were estimated using the Kaplan-Meier method, with a log-rank test computing the survival time difference between groups. Univariate and multivariate analyses to predict potential prognostic factors were performed using a Cox proportional hazard regression model. The presence of TN phenotype was associated with worse survival times, including overall survival after the diagnosis of primary breast cancer (43 months vs. 82 months), neurologic survival after the diagnosis of intracranial metastases, and radiosurgical survival after SRS, with median survival times being 13 months vs. 25 months and 6 months vs. 16 months, respectively (p < 0.002 in all three comparisons). On multivariate analysis, radiosurgical survival benefit was associated with non-TN status and lower recursive partitioning analysis class at the initial SRS. The TN phenotype represents a significant adverse prognostic factor with respect to overall survival, neurologic survival, and radiosurgical survival in breast cancer patients with intracranial metastasis. Recursive partitioning analysis class also served as an important and independent prognostic factor. Copyright © 2012 Elsevier Inc. All rights reserved.
Gülbaş, Hülya; Erkal, Haldun Sükrü; Serin, Meltem
2006-04-01
This study evaluates the use of recursive partitioning analysis (RPA) grouping in an attempt to predict the survival probabilities in patients with brain metastases from non-small-cell lung cancer (NSCLC). Seventy-two patients with brain metastases from NSCLC treated with radiation therapy were included in the study. Sixty-three patients were male and nine patients were female. Their median age was 57 years and their median Karnofsky performance status was 70. At the time of brain metastases, there was no evidence of the intrathoracic disease in 27 patients and the extrathoracic disease was limited to the intracranial disease in 42 patients. In accordance with RPA grouping, 12 patients were in Group 1, 24 patients were in Group 2, and 36 patients were in Group 3. Radiation therapy was delivered to the whole brain at a dose of 30 Gy in 10 fractions in most of the patients. The median survival time was 7 months for Group 1, 5 months for Group 2 and 3 months for Group 3. The survival probability at 1 year was 50% for Group 1, 26% for Group 2 and 14% for Group 3. This study presents evidence supporting the use of RPA grouping in an attempt to predict the survival probabilities in patients with brain metastases from NSCLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Motoo, E-mail: excell@hkg.odn.ne.jp; Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya; Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya
2012-11-01
Background: The 7th edition of the American Joint Committee on Cancer staging system does not include lymph node size in the guidelines for staging patients with esophageal cancer. The objectives of this study were to determine the prognostic impact of the maximum metastatic lymph node diameter (ND) on survival and to develop and validate a new staging system for patients with esophageal squamous cell cancer who were treated with definitive chemoradiotherapy (CRT). Methods: Information on 402 patients with esophageal cancer undergoing CRT at two institutions was reviewed. Univariate and multivariate analyses of data from one institution were used to assessmore » the impact of clinical factors on survival, and recursive partitioning analysis was performed to develop the new staging classification. To assess its clinical utility, the new classification was validated using data from the second institution. Results: By multivariate analysis, gender, T, N, and ND stages were independently and significantly associated with survival (p < 0.05). The resulting new staging classification was based on the T and ND. The four new stages led to good separation of survival curves in both the developmental and validation datasets (p < 0.05). Conclusions: Our results showed that lymph node size is a strong independent prognostic factor and that the new staging system, which incorporated lymph node size, provided good prognostic power, and discriminated effectively for patients with esophageal cancer undergoing CRT.« less
Binary tree eigen solver in finite element analysis
NASA Technical Reports Server (NTRS)
Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.
1993-01-01
This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.
Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B
2008-08-01
We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.
An iterative approach to region growing using associative memories
NASA Technical Reports Server (NTRS)
Snyder, W. E.; Cowart, A.
1983-01-01
Region growing, often given as a classical example of the recursive control structures used in image processing which are often awkward to implement in hardware where the intent is the segmentation of an image at raster scan rates, is addressed in light of the postulate that any computation which can be performed recursively can be performed easily and efficiently by iteration coupled with association. Attention is given to an algorithm and hardware structure able to perform region labeling iteratively at scan rates. Every pixel is individually labeled with an identifier which signifies the region to which it belongs. Difficulties otherwise requiring recursion are handled by maintaining an equivalence table in hardware transparent to the computer, which reads the labeled pixels. A simulation of the associative memory has demonstrated its effectiveness.
Adaptive model reduction for continuous systems via recursive rational interpolation
NASA Technical Reports Server (NTRS)
Lilly, John H.
1994-01-01
A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.
Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis
Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert
2016-01-01
Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.
2018-02-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving experiments performed on a cantilever beam subjected to earthquake excitation; a two-storey benchscale model with a TMD and, data from recorded responses of UCLA factor building demonstrate the efficacy of the proposed methodology as an ideal candidate for real time, reference free structural health monitoring.
Suboptimal Scheduling in Switched Systems With Continuous-Time Dynamics: A Least Squares Approach.
Sardarmehni, Tohid; Heydari, Ali
2018-06-01
Two approximate solutions for optimal control of switched systems with autonomous subsystems and continuous-time dynamics are presented. The first solution formulates a policy iteration (PI) algorithm for the switched systems with recursive least squares. To reduce the computational burden imposed by the PI algorithm, a second solution, called single loop PI, is presented. Online and concurrent training algorithms are discussed for implementing each solution. At last, effectiveness of the presented algorithms is evaluated through numerical simulations.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. © 2017 Yufei Gao et al.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning.
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Zhou, Yanjie; Zhou, Bing; Shi, Lei
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. PMID:29065568
Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani
2015-03-01
In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Sharifahmadian, Ershad
2006-01-01
The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.
HARP: A Dynamic Inertial Spectral Partitioner
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Sohn, Andrew; Biswas, Rupak
1997-01-01
Partitioning unstructured graphs is central to the parallel solution of computational science and engineering problems. Spectral partitioners, such recursive spectral bisection (RSB), have proven effecfive in generating high-quality partitions of realistically-sized meshes. The major problem which hindered their wide-spread use was their long execution times. This paper presents a new inertial spectral partitioner, called HARP. The main objective of the proposed approach is to quickly partition the meshes at runtime in a manner that works efficiently for real applications in the context of distributed-memory machines. The underlying principle of HARP is to find the eigenvectors of the unpartitioned vertices and then project them onto the eigerivectors of the original mesh. Results for various meshes ranging in size from 1000 to 100,000 vertices indicate that HARP can indeed partition meshes rapidly at runtime. Experimental results show that our largest mesh can be partitioned sequentially in only a few seconds on an SP2 which is several times faster than other spectral partitioners while maintaining the solution quality of the proven RSB method. A parallel WI version of HARP has also been implemented on IBM SP2 and Cray T3E. Parallel HARP, running on 64 processors SP2 and T3E, can partition a mesh containing more than 100,000 vertices into 64 subgrids in about half a second. These results indicate that graph partitioning can now be truly embedded in dynamically-changing real-world applications.
FRPA: A Framework for Recursive Parallel Algorithms
2015-05-01
a t o i ( argv [ 1 ] ) ; s td : : s t r i n g i n t e r l e a v i n g = ( argc > 2) ? argv [ 2 ] : " " ; double ∗ A = randomArray ( l e n g t h...actually determines how deep the recursion is. For example, a configuration with schedule ‘BBDB’ and depth 3 represents the in- terleaving ‘ BBD ’. This means...depth 3 represents the same interleaving as the configuration with schedule ‘BBDD’ and depth 3, namely ‘ BBD ’. In our experiments, this redundancy did
An agglomerative hierarchical clustering approach to visualisation in Bayesian clustering problems
Dawson, Kevin J.; Belkhir, Khalid
2009-01-01
Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals, - the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. Since the number of possible partitions grows very rapidly with the sample size, we can not visualise this probability distribution in its entirety, unless the sample is very small. As a solution to this visualisation problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package Partition View. The exact linkage algorithm takes the posterior co-assignment probabilities as input, and yields as output a rooted binary tree, - or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306
Improved parallel data partitioning by nested dissection with applications to information retrieval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Michael M.; Chevalier, Cedric; Boman, Erik Gunnar
The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it ismore » a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.« less
Efficient algorithms for a class of partitioning problems
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf; Bokhari, Shahid H.
1990-01-01
The problem of optimally partitioning the modules of chain- or tree-like tasks over chain-structured or host-satellite multiple computer systems is addressed. This important class of problems includes many signal processing and industrial control applications. Prior research has resulted in a succession of faster exact and approximate algorithms for these problems. Polynomial exact and approximate algorithms are described for this class that are better than any of the previously reported algorithms. The approach is based on a preprocessing step that condenses the given chain or tree structured task into a monotonic chain or tree. The partitioning of this monotonic take can then be carried out using fast search techniques.
Introduction in IND and recursive partitioning
NASA Technical Reports Server (NTRS)
Buntine, Wray; Caruana, Rich
1991-01-01
This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, and lists the manual pages for the routines and instructions on installation.
A mean field neural network for hierarchical module placement
NASA Technical Reports Server (NTRS)
Unaltuna, M. Kemal; Pitchumani, Vijay
1992-01-01
This paper proposes a mean field neural network for the two-dimensional module placement problem. An efficient coding scheme with only O(N log N) neurons is employed where N is the number of modules. The neurons are evolved in groups of N in log N iteration steps such that the circuit is recursively partitioned in alternating vertical and horizontal directions. In our simulations, the network was able to find optimal solutions to all test problems with up to 128 modules.
Community detection in complex networks by using membrane algorithm
NASA Astrophysics Data System (ADS)
Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren
Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.
NASA Technical Reports Server (NTRS)
Mcclain, W. D.
1977-01-01
A recursively formulated, first-order, semianalytic artificial satellite theory, based on the generalized method of averaging is presented in two volumes. Volume I comprehensively discusses the theory of the generalized method of averaging applied to the artificial satellite problem. Volume II presents the explicit development in the nonsingular equinoctial elements of the first-order average equations of motion. The recursive algorithms used to evaluate the first-order averaged equations of motion are also presented in Volume II. This semianalytic theory is, in principle, valid for a term of arbitrary degree in the expansion of the third-body disturbing function (nonresonant cases only) and for a term of arbitrary degree and order in the expansion of the nonspherical gravitational potential function.
An adaptable binary entropy coder
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.
Enhancing data locality by using terminal propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, B.; Leland, R.; Van Driessche, R.
1995-12-31
Terminal propagation is a method developed in the circuit placement community for adding constraints to graph partitioning problems. This paper adapts and expands this idea, and applies it to the problem of partitioning data structures among the processors of a parallel computer. We show how the constraints in terminal propagation can be used to encourage partitions in which messages are communicated only between architecturally near processors. We then show how these constraints can be handled in two important partitioning algorithms, spectral bisection and multilevel-KL. We compare the quality of partitions generated by these algorithms to each other and to Partitionsmore » generated by more familiar techniques.« less
The simultaneous evolution of author and paper networks
Börner, Katy; Maru, Jeegar T.; Goldstone, Robert L.
2004-01-01
There has been a long history of research into the structure and evolution of mankind's scientific endeavor. However, recent progress in applying the tools of science to understand science itself has been unprecedented because only recently has there been access to high-volume and high-quality data sets of scientific output (e.g., publications, patents, grants) and computers and algorithms capable of handling this enormous stream of data. This article reviews major work on models that aim to capture and recreate the structure and dynamics of scientific evolution. We then introduce a general process model that simultaneously grows coauthor and paper citation networks. The statistical and dynamic properties of the networks generated by this model are validated against a 20-year data set of articles published in PNAS. Systematic deviations from a power law distribution of citations to papers are well fit by a model that incorporates a partitioning of authors and papers into topics, a bias for authors to cite recent papers, and a tendency for authors to cite papers cited by papers that they have read. In this TARL model (for topics, aging, and recursive linking), the number of topics is linearly related to the clustering coefficient of the simulated paper citation network. PMID:14976254
Improving Design Efficiency for Large-Scale Heterogeneous Circuits
NASA Astrophysics Data System (ADS)
Gregerson, Anthony
Despite increases in logic density, many Big Data applications must still be partitioned across multiple computing devices in order to meet their strict performance requirements. Among the most demanding of these applications is high-energy physics (HEP), which uses complex computing systems consisting of thousands of FPGAs and ASICs to process the sensor data created by experiments at particles accelerators such as the Large Hadron Collider (LHC). Designing such computing systems is challenging due to the scale of the systems, the exceptionally high-throughput and low-latency performance constraints that necessitate application-specific hardware implementations, the requirement that algorithms are efficiently partitioned across many devices, and the possible need to update the implemented algorithms during the lifetime of the system. In this work, we describe our research to develop flexible architectures for implementing such large-scale circuits on FPGAs. In particular, this work is motivated by (but not limited in scope to) high-energy physics algorithms for the Compact Muon Solenoid (CMS) experiment at the LHC. To make efficient use of logic resources in multi-FPGA systems, we introduce Multi-Personality Partitioning, a novel form of the graph partitioning problem, and present partitioning algorithms that can significantly improve resource utilization on heterogeneous devices while also reducing inter-chip connections. To reduce the high communication costs of Big Data applications, we also introduce Information-Aware Partitioning, a partitioning method that analyzes the data content of application-specific circuits, characterizes their entropy, and selects circuit partitions that enable efficient compression of data between chips. We employ our information-aware partitioning method to improve the performance of the hardware validation platform for evaluating new algorithms for the CMS experiment. Together, these research efforts help to improve the efficiency and decrease the cost of the developing large-scale, heterogeneous circuits needed to enable large-scale application in high-energy physics and other important areas.
New syndrome decoder for (n, 1) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.
NASA Technical Reports Server (NTRS)
Liu, Kuojuey Ray
1990-01-01
Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.
A Partitioning and Bounded Variable Algorithm for Linear Programming
ERIC Educational Resources Information Center
Sheskin, Theodore J.
2006-01-01
An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
NASA Astrophysics Data System (ADS)
Bichler, Andrea; Neumaier, Arnold; Hofmann, Thilo
2014-11-01
Microbial contamination of groundwater used for drinking water can affect public health and is of major concern to local water authorities and water suppliers. Potential hazards need to be identified in order to protect raw water resources. We propose a non-parametric data mining technique for exploring the presence of total coliforms (TC) in a groundwater abstraction well and its relationship to readily available, continuous time series of hydrometric monitoring parameters (seven year records of precipitation, river water levels, and groundwater heads). The original monitoring parameters were used to create an extensive generic dataset of explanatory variables by considering different accumulation or averaging periods, as well as temporal offsets of the explanatory variables. A classification tree based on the Chi-Squared Automatic Interaction Detection (CHAID) recursive partitioning algorithm revealed statistically significant relationships between precipitation and the presence of TC in both a production well and a nearby monitoring well. Different secondary explanatory variables were identified for the two wells. Elevated water levels and short-term water table fluctuations in the nearby river were found to be associated with TC in the observation well. The presence of TC in the production well was found to relate to elevated groundwater heads and fluctuations in groundwater levels. The generic variables created proved useful for increasing significance levels. The tree-based model was used to predict the occurrence of TC on the basis of hydrometric variables.
New Syndrome Decoding Techniques for the (n, K) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
This paper presents a new syndrome decoding algorithm for the (n,k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3,1)CC.
Simplified Syndrome Decoding of (n, 1) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.
ERIC Educational Resources Information Center
Aieta, Joseph F.
1987-01-01
This article illustrates how questions from elementary finance can serve as motivation for studying high order powers, roots, and exponential functions using Logo procedures. A second discussion addresses a relatively unknown algorithm for the trigonometric exponential and hyperbolic functions. (PK)
The Power Plant Operating Data Based on Real-time Digital Filtration Technology
NASA Astrophysics Data System (ADS)
Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie
2018-03-01
Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.
Identification and stochastic control of helicopter dynamic modes
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Bar-Shalom, Y.
1983-01-01
A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.
Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.
ERIC Educational Resources Information Center
Clymer, S. J.
Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…
Screening for prenatal substance use: development of the Substance Use Risk Profile-Pregnancy scale.
Yonkers, Kimberly A; Gotman, Nathan; Kershaw, Trace; Forray, Ariadna; Howell, Heather B; Rounsaville, Bruce J
2010-10-01
To report on the development of a questionnaire to screen for hazardous substance use in pregnant women and to compare the performance of the questionnaire with other drug and alcohol measures. Pregnant women were administered a modified TWEAK (Tolerance, Worried, Eye-openers, Amnesia, K[C] Cut Down) questionnaire, the 4Ps Plus questionnaire, items from the Addiction Severity Index, and two questions about domestic violence (N=2,684). The sample was divided into "training" (n=1,610) and "validation" (n=1,074) subsamples. We applied recursive partitioning class analysis to the responses from individuals in the training subsample that resulted in a three-item Substance Use Risk Profile-Pregnancy scale. We examined sensitivity, specificity, and the fit of logistic regression models in the validation subsample to compare the performance of the Substance Use Risk Profile-Pregnancy scale with the modified TWEAK and various scoring algorithms of the 4Ps. The Substance Use Risk Profile-Pregnancy scale is comprised of three informative questions that can be scored for high- or low-risk populations. The Substance Use Risk Profile-Pregnancy scale algorithm for low-risk populations was mostly highly predictive of substance use in the validation subsample (Akaike's Information Criterion=579.75, Nagelkerke R=0.27) with high sensitivity (91%) and adequate specificity (67%). The high-risk algorithm had lower sensitivity (57%) but higher specificity (88%). The Substance Use Risk Profile-Pregnancy scale is simple and flexible with good sensitivity and specificity. The Substance Use Risk Profile-Pregnancy scale can potentially detect a range of substances that may be abused. Clinicians need to further assess women with a positive screen to identify those who require treatment for alcohol or illicit substance use in pregnancy. III.
Primary hip and knee replacement surgery: Ontario criteria for case selection and surgical priority.
Naylor, C D; Williams, J I
1996-01-01
OBJECTIVES--To develop, from simple clinical factors, criteria to identify appropriate patients for referral to a surgeon for consideration for arthroplasty, and to rank them in the queue once surgery is agreed. DESIGN--Delphi process, with a panel including orthopaedic surgeons, rheumatologists, general practitioners, epidemiologists, and physiotherapists, who rated 120 case scenarios for appropriateness and 42 for waiting list priority. Scenarios incorporated combinations of relevant clinical factors. It was assumed that queues should be organised not simply by chronology but by clinical and social impact of delayed surgery. The panel focused on information obtained from clinical histories, to ensure the utility of the guidelines in practice. Relevant high quality research evidence was limited. SETTING--Ontario, Canada. MAIN MEASURES--Appropriateness ratings on a 7-point scale, and urgency rankings on a 4-point scale keyed to specific waiting times. RESULTS--Despite incomplete evidence panellists agreed on ratings in 92.5% of appropriateness and 73.8% of urgency scenarios versus 15% and 18% agreement expected by chance, respectively. Statistically validated algorithms in decision tree form, which should permit rapid estimation of urgency or appropriateness in practice, were compiled by recursive partitioning. Rating patterns and algorithms were also used to make brief written guidelines on how clinical factors affect appropriateness and urgency of surgery. A summary score was provided for each case scenario; scenarios could then be matched to chart audit results, with scoring for quality management. CONCLUSIONS--These algorithms and criteria can be used by managers or practitioners to assess appropriateness of referral for hip or knee replacement and relative rankings of patients in the queue for surgery. PMID:10157268
Screening for Prenatal Substance Use
Yonkers, Kimberly A.; Gotman, Nathan; Kershaw, Trace; Forray, Ariadna; Howell, Heather B.; Rounsaville, Bruce J.
2011-01-01
OBJECTIVE To report on the development of a questionnaire to screen for hazardous substance use in pregnant women and to compare the performance of the questionnaire with other drug and alcohol measures. METHODS Pregnant women were administered a modified TWEAK (Tolerance, Worried, Eye-openers, Amnesia, K[C] Cut Down) questionnaire, the 4Ps Plus questionnaire, items from the Addiction Severity Index, and two questions about domestic violence (N=2,684). The sample was divided into “training” (n=1,610) and “validation” (n=1,074) subsamples. We applied recursive partitioning class analysis to the responses from individuals in the training subsample that resulted in a three-item Substance Use Risk Profile-Pregnancy scale. We examined sensitivity, specificity, and the fit of logistic regression models in the validation subsample to compare the performance of the Substance Use Risk Profile-Pregnancy scale with the modified TWEAK and various scoring algorithms of the 4Ps. RESULTS The Substance Use Risk Profile-Pregnancy scale is comprised of three informative questions that can be scored for high- or low-risk populations. The Substance Use Risk Profile-Pregnancy scale algorithm for low-risk populations was mostly highly predictive of substance use in the validation subsample (Akaike’s Information Criterion=579.75, Nagelkerke R2=0.27) with high sensitivity (91%) and adequate specificity (67%). The high-risk algorithm had lower sensitivity (57%) but higher specificity (88%). CONCLUSION The Substance Use Risk Profile-Pregnancy scale is simple and flexible with good sensitivity and specificity. The Substance Use Risk Profile-Pregnancy scale can potentially detect a range of substances that may be abused. Clinicians need to further assess women with a positive screen to identify those who require treatment for alcohol or illicit substance use in pregnancy. PMID:20859145
Race and acute abdominal pain in a pediatric emergency department.
Caperell, Kerry; Pitetti, Raymond; Cross, Keith P
2013-06-01
To investigate the demographic and clinical factors of children who present to the pediatric emergency department (ED) with abdominal pain and their outcomes. A review of the electronic medical record of patients 1 to 18 years old, who presented to the Children's Hospital of Pittsburgh ED with a complaint of abdominal pain over the course of 2 years, was conducted. Demographic and clinical characteristics, as well as visit outcomes, were reviewed. Subjects were grouped by age, race, and gender. Results of evaluation, treatment, and clinical outcomes were compared between groups by using multivariate analysis and recursive partitioning. There were 9424 patient visits during the study period that met inclusion and exclusion criteria. Female gender comprised 61% of African American children compared with 52% of white children. Insurance was characterized as private for 75% of white and 37% of African American children. A diagnosis of appendicitis was present in 1.9% of African American children and 5.1% of white children. Older children were more likely to be admitted and have an operation associated with their ED visit. Appendicitis was uncommon in younger children. Constipation was commonly diagnosed. Multivariate analysis by diagnosis as well as recursive partitioning analysis did not reflect any racial differences in evaluation, treatment, or outcome. Constipation is the most common diagnosis in children presenting with abdominal pain. Our data demonstrate that no racial differences exist in the evaluation, treatment, and disposition of children with abdominal pain.
Chang, Jee Suk; Kim, Kyung Hwan; Keum, Ki Chang; Noh, Sung Hoon; Lim, Joon Seok; Kim, Hyo Song; Rha, Sun Young; Lee, Yong Chan; Hyung, Woo Jin; Koom, Woong Sub
2016-12-01
To classify patients with nonmetastatic advanced gastric cancer who underwent D2-gastrectomy into prognostic groups based on peritoneal and systemic recurrence risks. Between 2004 and 2007, 1,090 patients with T3-4 or N+ gastric cancer were identified from our registry. Recurrence rates were estimated using a competing-risk analysis. Different prognostic groups were defined using recursive partitioning analysis (RPA). Median follow-up was 7 years. In the RPA-model for peritoneal recurrence risk, the initial node was split by T stage, indicating that differences between patients with T1-3 and T4 cancer were the greatest. The 5-year peritoneal recurrence rates for patients with T4 (n = 627) and T1-3 (n = 463) disease were 34.3% and 9.1%, respectively. N stage and neural invasion had an additive impact on high-risk patients. The RPA model for systemic relapse incorporated N stage alone and gave two terminal nodes: N0-2 (n = 721) and N3 (n = 369). The 5-year cumulative incidences were 7.7% and 24.5%, respectively. We proposed risk stratification models of peritoneal and systemic recurrence in patients undergoing D2-gastrectomy. This classification could be used for stratification protocols in future studies evaluating adjuvant therapies such as preoperative chemoradiotherapy. J. Surg. Oncol. 2016;114:859-864. © 2016 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Venous tree separation in the liver: graph partitioning using a non-ising model.
O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til
2011-01-01
Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.
System Simulation by Recursive Feedback: Coupling A Set of Stand-Alone Subsystem Simulations
NASA Technical Reports Server (NTRS)
Nixon, Douglas D.; Hanson, John M. (Technical Monitor)
2002-01-01
Recursive feedback is defined and discussed as a framework for development of specific algorithms and procedures that propagate the time-domain solution for a dynamical system simulation consisting of multiple numerically coupled self-contained stand-alone subsystem simulations. A satellite motion example containing three subsystems (other dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Centralized and distributed versions of coupling structure have been addressed. Numerical results are evaluated by direct comparison with a standard total-system simultaneous-solution approach.
Recent developments in learning control and system identification for robots and structures
NASA Technical Reports Server (NTRS)
Phan, M.; Juang, J.-N.; Longman, R. W.
1990-01-01
This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.
NASA Technical Reports Server (NTRS)
Choudhury, A. K.; Djalali, M.
1975-01-01
In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.
A similarity based agglomerative clustering algorithm in networks
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong
2018-04-01
The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
Multi-particle phase space integration with arbitrary set of singularities in CompHEP
NASA Astrophysics Data System (ADS)
Kovalenko, D. N.; Pukhov, A. E.
1997-02-01
We describe an algorithm of multi-particle phase space integration for collision and decay processes realized in CompHEP package version 3.2. In the framework of this algorithm it is possible to regularize an arbitrary set of singularities caused by virtual particle propagators. The algorithm is based on the method of the recursive representation of kinematics and on the multichannel Monte Carlo approach. CompHEP package is available by WWW: http://theory.npi.msu.su/pukhov/comphep.html
Toward faster and more accurate star sensors using recursive centroiding and star identification
NASA Astrophysics Data System (ADS)
Samaan, Malak Anees
The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.
The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations
Mitchell, William F.
1998-01-01
Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given. PMID:28009355
The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations.
Mitchell, William F
1998-01-01
Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given.
Abe, Toshikazu; Tokuda, Yasuharu; Cook, E Francis
2011-01-01
Optimal acceptable time intervals from collapse to bystander cardiopulmonary resuscitation (CPR) for neurologically favorable outcome among adults with witnessed out-of-hospital cardiopulmonary arrest (CPA) have been unclear. Our aim was to assess the optimal acceptable thresholds of the time intervals of CPR for neurologically favorable outcome and survival using a recursive partitioning model. From January 1, 2005 through December 31, 2009, we conducted a prospective population-based observational study across Japan involving consecutive out-of-hospital CPA patients (N = 69,648) who received a witnessed bystander CPR. Of 69,648 patients, 34,605 were assigned to the derivation data set and 35,043 to the validation data set. Time factors associated with better outcomes: the better outcomes were survival and neurologically favorable outcome at one month, defined as category one (good cerebral performance) or two (moderate cerebral disability) of the cerebral performance categories. Based on the recursive partitioning model from the derivation dataset (n = 34,605) to predict the neurologically favorable outcome at one month, 5 min threshold was the acceptable time interval from collapse to CPR initiation; 11 min from collapse to ambulance arrival; 18 min from collapse to return of spontaneous circulation (ROSC); and 19 min from collapse to hospital arrival. Among the validation dataset (n = 35,043), 209/2,292 (9.1%) in all patients with the acceptable time intervals and 1,388/2,706 (52.1%) in the subgroup with the acceptable time intervals and pre-hospital ROSC showed neurologically favorable outcome. Initiation of CPR should be within 5 min for obtaining neurologically favorable outcome among adults with witnessed out-of-hospital CPA. Patients with the acceptable time intervals of bystander CPR and pre-hospital ROSC within 18 min could have 50% chance of neurologically favorable outcome.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Lesoinne, Michel
1993-01-01
Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.
Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software
NASA Technical Reports Server (NTRS)
Tilton, James C.
2003-01-01
A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic region growing.
NETRA: A parallel architecture for integrated vision systems. 1: Architecture and organization
NASA Technical Reports Server (NTRS)
Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing for a high level application (such as object recognition). A model of computation is presented for parallel processing for an IVS. Using the model, desired features and capabilities of a parallel architecture suitable for IVSs are derived. Then a multiprocessor architecture (called NETRA) is presented. This architecture is highly flexible without the use of complex interconnection schemes. The topology of NETRA is recursively defined and hence is easily scalable from small to large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. It is a recursively defined tree-type hierarchical architecture where each of the leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then general schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their communication requirements for parallel processing. An extensive analysis of inter-cluster communication strategies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.
Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case.
Adesso, Gerardo; Illuminati, Fabrizio
2007-10-12
We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.
Introduction to IND and recursive partitioning, version 1.0
NASA Technical Reports Server (NTRS)
Buntine, Wray; Caruana, Rich
1991-01-01
This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, lists the manual pages for the routines, and instructions on installation.
Managing Network Partitions in Structured P2P Networks
NASA Astrophysics Data System (ADS)
Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif
Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.
NASA Astrophysics Data System (ADS)
Luke, Denneko; McLaren, Kurt
2018-05-01
In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.
Bi-Partition of Shared Binary Decision Diagrams
2002-12-01
independently. Such BDDs are considered as a special case of partitioned BDDs [6], [12], [13] and free BDDs ( FBDDs ) [7], [8]. Note that BDD nomenclature...shi, 214-8571 Japan. a)E-mail: sasao@cse.kyutech.ac.jp Applications of partitioned SBDDs are similar to that of partitioned BDDs and FBDDs . When...partitioned SBDD is more canonical than partitioned BDDs and free BDDs ( FBDDs ). We developed a heuristic bi-partition algorithm for SBDDs, and showed cases
NASA Astrophysics Data System (ADS)
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir
2017-10-01
In this article, we describe an innovative non-invasive method of Fetal Phonocardiography (fPCG) using fiber-optic sensors and adaptive algorithm for the measurement of fetal heart rate (fHR). Conventional PCG is based on a noninvasive scanning of acoustic signals by means of a microphone placed on the thorax. As for fPCG, the microphone is placed on the maternal abdomen. Our solution is based on patent pending non-invasive scanning of acoustic signals by means of a fiber-optic interferometer. Fiber-optic sensors are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use conventional EFM methods, e.g. during Magnetic Resonance Imaging (MRI) examination or in case of delivery in water. The adaptive evaluation system is based on Recursive least squares (RLS) algorithm. Based on real measurements provided on five volunteers with their written consent, we created a simplified dynamic signal model of a distribution of heartbeat sounds (HS) through the human body. Our created model allows us to verification of the proposed adaptive system RLS algorithm. The functionality of the proposed non-invasive adaptive system was verified by objective parameters such as Sensitivity (S+) and Signal to Noise Ratio (SNR).
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
New syndrome decoding techniques for the (n, k) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964
Real-time algorithm for acoustic imaging with a microphone array.
Huang, Xun
2009-05-01
Acoustic phased array has become an important testing tool in aeroacoustic research, where the conventional beamforming algorithm has been adopted as a classical processing technique. The computation however has to be performed off-line due to the expensive cost. An innovative algorithm with real-time capability is proposed in this work. The algorithm is similar to a classical observer in the time domain while extended for the array processing to the frequency domain. The observer-based algorithm is beneficial mainly for its capability of operating over sampling blocks recursively. The expensive experimental time can therefore be reduced extensively since any defect in a testing can be corrected instantaneously.
Implementation of a partitioned algorithm for simulation of large CSI problems
NASA Technical Reports Server (NTRS)
Alvin, Kenneth F.; Park, K. C.
1991-01-01
The implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems is reviewed. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. A general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Also presented are: example problems; a user's guide to the software; the procedures and algorithm scripts; a stability analysis for the algorithm; and the source code for the parallel implementation.
Cooperative combinatorial optimization: evolutionary computation case study.
Burgin, Mark; Eberbach, Eugene
2008-01-01
This paper presents a formalization of the notion of cooperation and competition of multiple systems that work toward a common optimization goal of the population using evolutionary computation techniques. It is proved that evolutionary algorithms are more expressive than conventional recursive algorithms, such as Turing machines. Three classes of evolutionary computations are introduced and studied: bounded finite, unbounded finite, and infinite computations. Universal evolutionary algorithms are constructed. Such properties of evolutionary algorithms as completeness, optimality, and search decidability are examined. A natural extension of evolutionary Turing machine (ETM) model is proposed to properly reflect phenomena of cooperation and competition in the whole population.
An efficient parallel algorithm for the solution of a tridiagonal linear system of equations
NASA Technical Reports Server (NTRS)
Stone, H. S.
1971-01-01
Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm
NASA Astrophysics Data System (ADS)
Frisca, Bustamam, Alhadi; Siswantining, Titin
2017-03-01
Clustering is one of data analysis methods that aims to classify data which have similar characteristics in the same group. Spectral clustering is one of the most popular modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c-means, and k-means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k-means algorithm provide better accuracy than PAM algorithm. So in this paper we use k-means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset. Microarray data is a small-sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The purpose of this research is to classify the data that have high similarity in the same group and the data that have low similarity in the others. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k-means algorithm is two clusters.
Multiphase complete exchange: A theoretical analysis
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1993-01-01
Complete Exchange requires each of N processors to send a unique message to each of the remaining N-1 processors. For a circuit switched hypercube with N = 2(sub d) processors, the Direct and Standard algorithms for Complete Exchange are optimal for very large and very small message sizes, respectively. For intermediate sizes, a hybrid Multiphase algorithm is better. This carries out Direct exchanges on a set of subcubes whose dimensions are a partition of the integer d. The best such algorithm for a given message size m could hitherto only be found by enumerating all partitions of d. The Multiphase algorithm is analyzed assuming a high performance communication network. It is proved that only algorithms corresponding to equipartitions of d (partitions in which the maximum and minimum elements differ by at most 1) can possibly be optimal. The run times of these algorithms plotted against m form a hull of optimality. It is proved that, although there is an exponential number of partitions, (1) the number of faces on this hull is Theta(square root of d), (2) the hull can be found in theta(square root of d) time, and (3) once it has been found, the optimal algorithm for any given m can be found in Theta(log d) time. These results provide a very fast technique for minimizing communication overhead in many important applications, such as matrix transpose, Fast Fourier transform, and ADI.
Fast ℓ1-regularized space-time adaptive processing using alternating direction method of multipliers
NASA Astrophysics Data System (ADS)
Qin, Lilong; Wu, Manqing; Wang, Xuan; Dong, Zhen
2017-04-01
Motivated by the sparsity of filter coefficients in full-dimension space-time adaptive processing (STAP) algorithms, this paper proposes a fast ℓ1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is addressed with an augmented Lagrangian method. Using the alternating recursive algorithm, the method can rapidly result in a low minimum mean-square error without a large number of calculations. Through theoretical analysis and experimental verification, we demonstrate that the proposed algorithm provides a better output signal-to-clutter-noise ratio performance than other algorithms.
Communication-Avoiding Parallel Recursive Algorithms for Matrix Multiplication
2013-05-17
cost recurrence is FUM(n, P ) = 15 ( n2 4P ) + FUM ( n 2 , P 7 ) with base case FUM(n, 1) = csn ω0 − 5n2, where cs is the constant of Strassen-Winograd...message varies according to the recursion depth, and is the number of words a processor owns of any Si, Ti, or Qi, namely n2 4P words. 1If one does not...recurrence for the entire UM scheme: WUM(n, P ) = 36 n2 4P +WUM ( n 2 , P 7 ) SUM(n, P ) = 36 + SUM ( n 2 , P 7 ) with base case SUM(n, 1) = WUM(n, 1
Computer code for controller partitioning with IFPC application: A user's manual
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Yarkhan, Asim
1994-01-01
A user's manual for the computer code for partitioning a centralized controller into decentralized subcontrollers with applicability to Integrated Flight/Propulsion Control (IFPC) is presented. Partitioning of a centralized controller into two subcontrollers is described and the algorithm on which the code is based is discussed. The algorithm uses parameter optimization of a cost function which is described. The major data structures and functions are described. Specific instructions are given. The user is led through an example of an IFCP application.
Accurate numerical solution of the Helmholtz equation by iterative Lanczos reduction.
Ratowsky, R P; Fleck, J A
1991-06-01
The Lanczos recursion algorithm is used to determine forward-propagating solutions for both the paraxial and Helmholtz wave equations for longitudinally invariant refractive indices. By eigenvalue analysis it is demonstrated that the method gives extremely accurate solutions to both equations.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-02-03
For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.
Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range
Feng, Zuren; Ren, Zhigang
2018-01-01
For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham’s Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm. PMID:29401649
Progressive sample processing of band selection for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Liu, Keng-Hao; Chien, Hung-Chang; Chen, Shih-Yu
2017-10-01
Band selection (BS) is one of the most important topics in hyperspectral image (HSI) processing. The objective of BS is to find a set of representative bands that can represent the whole image with lower inter-band redundancy. Many types of BS algorithms were proposed in the past. However, most of them can be carried on in an off-line manner. It means that they can only be implemented on the pre-collected data. Those off-line based methods are sometime useless for those applications that are timeliness, particular in disaster prevention and target detection. To tackle this issue, a new concept, called progressive sample processing (PSP), was proposed recently. The PSP is an "on-line" framework where the specific type of algorithm can process the currently collected data during the data transmission under band-interleavedby-sample/pixel (BIS/BIP) protocol. This paper proposes an online BS method that integrates a sparse-based BS into PSP framework, called PSP-BS. In PSP-BS, the BS can be carried out by updating BS result recursively pixel by pixel in the same way that a Kalman filter does for updating data information in a recursive fashion. The sparse regression is solved by orthogonal matching pursuit (OMP) algorithm, and the recursive equations of PSP-BS are derived by using matrix decomposition. The experiments conducted on a real hyperspectral image show that the PSP-BS can progressively output the BS status with very low computing time. The convergence of BS results during the transmission can be quickly achieved by using a rearranged pixel transmission sequence. This significant advantage allows BS to be implemented in a real time manner when the HSI data is transmitted pixel by pixel.
Hypoglycemia early alarm systems based on recursive autoregressive partial least squares models.
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. © 2012 Diabetes Technology Society.
Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models
Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick
2013-01-01
Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179
Doulamis, A D; Doulamis, N D; Kollias, S D
2003-01-01
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
Recursive least squares background prediction of univariate syndromic surveillance data
2009-01-01
Background Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Methods Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. Results We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. Conclusion The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems. PMID:19149886
Recursive least squares background prediction of univariate syndromic surveillance data.
Najmi, Amir-Homayoon; Burkom, Howard
2009-01-16
Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems.
Early symptom burden predicts recovery after sport-related concussion
Mannix, Rebekah; Monuteaux, Michael C.; Stein, Cynthia J.; Bachur, Richard G.
2014-01-01
Objective: To identify independent predictors of and use recursive partitioning to develop a multivariate regression tree predicting symptom duration greater than 28 days after a sport-related concussion. Methods: We conducted a prospective cohort study of patients in a sports concussion clinic. Participants completed questionnaires that included the Post-Concussion Symptom Scale (PCSS). Participants were asked to record the date on which they last experienced symptoms. Potential predictor variables included age, sex, score on symptom inventories, history of prior concussions, performance on computerized neurocognitive assessments, loss of consciousness and amnesia at the time of injury, history of prior medical treatment for headaches, history of migraines, and family history of concussion. We used recursive partitioning analysis to develop a multivariate prediction model for identifying athletes at risk for a prolonged recovery from concussion. Results: A total of 531 patients ranged in age from 7 to 26 years (mean 14.6 ± 2.9 years). The mean PCSS score at the initial visit was 26 ± 26; mean time to presentation was 12 ± 5 days. Only total score on symptom inventory was independently associated with symptoms lasting longer than 28 days (adjusted odds ratio 1.044; 95% confidence interval [CI] 1.034, 1.054 for PCSS). No other potential predictor variables were independently associated with symptom duration or useful in developing the optimal regression decision tree. Most participants (86%; 95% CI 80%, 90%) with an initial PCSS score of <13 had resolution of their symptoms within 28 days of injury. Conclusions: The only independent predictor of prolonged symptoms after sport-related concussion is overall symptom burden. PMID:25381296
Major depressive disorder subtypes to predict long-term course
van Loo, Hanna M.; Cai, Tianxi; Gruber, Michael J.; Li, Junlong; de Jonge, Peter; Petukhova, Maria; Rose, Sherri; Sampson, Nancy A.; Schoevers, Robert A.; Wardenaar, Klaas J.; Wilcox, Marsha A.; Al-Hamzawi, Ali Obaid; Andrade, Laura Helena; Bromet, Evelyn J.; Bunting, Brendan; Fayyad, John; Florescu, Silvia E.; Gureje, Oye; Hu, Chiyi; Huang, Yueqin; Levinson, Daphna; Medina-Mora, Maria Elena; Nakane, Yoshibumi; Posada-Villa, Jose; Scott, Kate M.; Xavier, Miguel; Zarkov, Zahari; Kessler, Ronald C.
2016-01-01
Background Variation in course of major depressive disorder (MDD) is not strongly predicted by existing subtype distinctions. A new subtyping approach is considered here. Methods Two data mining techniques, ensemble recursive partitioning and Lasso generalized linear models (GLMs) followed by k-means cluster analysis, are used to search for subtypes based on index episode symptoms predicting subsequent MDD course in the World Mental Health (WMH) Surveys. The WMH surveys are community surveys in 16 countries. Lifetime DSM-IV MDD was reported by 8,261 respondents. Retrospectively reported outcomes included measures of persistence (number of years with an episode; number of with an episode lasting most of the year) and severity (hospitalization for MDD; disability due to MDD). Results Recursive partitioning found significant clusters defined by the conjunctions of early onset, suicidality, and anxiety (irritability, panic, nervousness-worry-anxiety) during the index episode. GLMs found additional associations involving a number of individual symptoms. Predicted values of the four outcomes were strongly correlated. Cluster analysis of these predicted values found three clusters having consistently high, intermediate, or low predicted scores across all outcomes. The high-risk cluster (30.0% of respondents) accounted for 52.9-69.7% of high persistence and severity and was most strongly predicted by index episode severe dysphoria, suicidality, anxiety, and early onset. A total symptom count, in comparison, was not a significant predictor. Conclusions Despite being based on retrospective reports, results suggest that useful MDD subtyping distinctions can be made using data mining methods. Further studies are needed to test and expand these results with prospective data. PMID:24425049
Viani, Gustavo Arruda; Godoi da Silva, Lucas Bernardes; Viana, Bruno Silveira; Rossi, Bruno Tiago; Suguikawa, Elton; Zuliani, Gisele
2016-01-01
The intention of this study is to compare whole brain radiotherapy and stereotactic radiosurgery (WBRT + SRS) with WBRT in patients with 1-4 brain metastases to find a subgroup of patients that have a great benefit with aggressive treatment. Between December 2002 and December 2013, 60 patients with 1-4 brain metastases were treated by WBRT + SRS. In this period, 60 patients treated with WBRT were matched with patients treated with WBRT + SRS. The median survival for the entire cohort was 8.3 months. In the univariate analysis, WBRT + SRS (0.031), the presence of extracranial disease (P = 0.02), Karnofsky performance score <70 (P = 0.0001), and age >65 (P = 0.001) years were significant factors for survival. In the entire cohort, the median survival for recursive partitioning analysis (RPA) classes I, II, and III was 11, 7, and 3 months, respectively (P = 0.0001). In a stratified analysis, only RPA class I achieved statistical significance for 1-year survival between the groups (WBRT + SRS = 51% and WBRT = 23%, P = 0.03). Cox regression analysis revealed WBRT + SRS, age >65 years, and extracranial disease as independent prognostic factors. In the univariate analysis, lesion volume ≤5 cm 3 (P = 0.002) and WBRT + SRS (P = 0.003) were the significant factors associated with better brain control. WBRT plus SRS was an independent prognostic factor for survival. However, the combined treatment appears to be justified only in patients with RPA I and lesion volume ≤5 cm 3, independently of the number of lesions.
Relationship between financial impact and coverage of drugs in Australia.
Mauskopf, Josephine; Chirila, Costel; Masaquel, Catherine; Boye, Kristina S; Bowman, Lee; Birt, Julie; Grainger, David
2013-01-01
The aim of this study was to estimate the relationship between the financial impact of a new drug and the recommendation for reimbursement by the Australian Pharmaceutical Benefits Advisory Committee (PBAC). Data in the PBAC summary database were abstracted for decisions made between July 2005 and November 2009. Financial impact-the upper bound of the values presented in the PBAC summary database-was categorized as ≤A$0, >A$0 up to A$10 million, A$10 million up to A$30 million, and >A$30 million per year. Descriptive, logistic, survival, and recursive partitioning decision analyses were used to estimate the relationship between the financial impact of a new drug indication and the recommendation for reimbursement. Multivariable analyses controlled for other clinical and economic variables, including cost per quality-adjusted life-year gained. Financial impact was a significant predictor of the recommendation for reimbursement. In the logistic analysis, the odds ratios of reimbursement for drug submissions with financial impacts ≥A$10 million to ≥A$30 million or >A$0 to
Carnes, Bruce A.; Chen, Randi; Donlon, Timothy A.; He, Qimei; Grove, John S.; Masaki, Kamal H.; Elliott, Ayako; Willcox, Donald C.; Allsopp, Richard; Willcox, Bradley J.
2015-01-01
BACKGROUND The mechanistic target of rapamycin (mTOR) pathway is pivotal for cell growth. Regulatory associated protein of mTOR complex I (Raptor) is a unique component of this pro-growth complex. The present study tested whether variation across the raptor gene (RPTOR) is associated with overweight and hypertension. METHODS We tested 61 common (allele frequency ≥ 0.1) tagging single nucleotide polymorphisms (SNPs) that captured most of the genetic variation across RPTOR in 374 subjects of normal lifespan and 439 subjects with a lifespan exceeding 95 years for association with overweight/obesity, essential hypertension, and isolated systolic hypertension. Subjects were drawn from the Honolulu Heart Program, a homogeneous population of American men of Japanese ancestry, well characterized for phenotypes relevant to conditions of aging. Hypertension status was ascertained when subjects were 45–68 years old. Statistical evaluation involved contingency table analysis, logistic regression, and the powerful method of recursive partitioning. RESULTS After analysis of RPTOR genotypes by each statistical approach, we found no significant association between genetic variation in RPTOR and either essential hypertension or isolated systolic hypertension. Models generated by recursive partitioning analysis showed that RPTOR SNPs significantly enhanced the ability of the model to accurately assign individuals to either the overweight/obese or the non-overweight/obese groups (P = 0.008 by 1-tailed Z test). CONCLUSION Common genetic variation in RPTOR is associated with overweight/obesity but does not discernibly contribute to either essential hypertension or isolated systolic hypertension in the population studied. PMID:25249372
Early symptom burden predicts recovery after sport-related concussion.
Meehan, William P; Mannix, Rebekah; Monuteaux, Michael C; Stein, Cynthia J; Bachur, Richard G
2014-12-09
To identify independent predictors of and use recursive partitioning to develop a multivariate regression tree predicting symptom duration greater than 28 days after a sport-related concussion. We conducted a prospective cohort study of patients in a sports concussion clinic. Participants completed questionnaires that included the Post-Concussion Symptom Scale (PCSS). Participants were asked to record the date on which they last experienced symptoms. Potential predictor variables included age, sex, score on symptom inventories, history of prior concussions, performance on computerized neurocognitive assessments, loss of consciousness and amnesia at the time of injury, history of prior medical treatment for headaches, history of migraines, and family history of concussion. We used recursive partitioning analysis to develop a multivariate prediction model for identifying athletes at risk for a prolonged recovery from concussion. A total of 531 patients ranged in age from 7 to 26 years (mean 14.6 ± 2.9 years). The mean PCSS score at the initial visit was 26 ± 26; mean time to presentation was 12 ± 5 days. Only total score on symptom inventory was independently associated with symptoms lasting longer than 28 days (adjusted odds ratio 1.044; 95% confidence interval [CI] 1.034, 1.054 for PCSS). No other potential predictor variables were independently associated with symptom duration or useful in developing the optimal regression decision tree. Most participants (86%; 95% CI 80%, 90%) with an initial PCSS score of <13 had resolution of their symptoms within 28 days of injury. The only independent predictor of prolonged symptoms after sport-related concussion is overall symptom burden. © 2014 American Academy of Neurology.
Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao
2018-06-01
To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.
Design of recursive digital filters having specified phase and magnitude characteristics
NASA Technical Reports Server (NTRS)
King, R. E.; Condon, G. W.
1972-01-01
A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2015-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboredo, Fernando A.
The self-healing diffusion Monte Carlo algorithm (SHDMC) [Reboredo, Hood and Kent, Phys. Rev. B {\\bf 79}, 195117 (2009), Reboredo, {\\it ibid.} {\\bf 80}, 125110 (2009)] is extended to study the ground and excited states of magnetic and periodic systems. A recursive optimization algorithm is derived from the time evolution of the mixed probability density. The mixed probability density is given by an ensemble of electronic configurations (walkers) with complex weight. This complex weigh allows the amplitude of the fix-node wave function to move away from the trial wave function phase. This novel approach is both a generalization of SHDMC andmore » the fixed-phase approximation [Ortiz, Ceperley and Martin Phys Rev. Lett. {\\bf 71}, 2777 (1993)]. When used recursively it improves simultaneously the node and phase. The algorithm is demonstrated to converge to the nearly exact solutions of model systems with periodic boundary conditions or applied magnetic fields. The method is also applied to obtain low energy excitations with magnetic field or periodic boundary conditions. The potential applications of this new method to study periodic, magnetic, and complex Hamiltonians are discussed.« less
Motion adaptive Kalman filter for super-resolution
NASA Astrophysics Data System (ADS)
Richter, Martin; Nasse, Fabian; Schröder, Hartmut
2011-01-01
Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian
1992-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.
1993-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
The Distribution of the Sum of Signed Ranks
ERIC Educational Resources Information Center
Albright, Brian
2012-01-01
We describe the calculation of the distribution of the sum of signed ranks and develop an exact recursive algorithm for the distribution as well as an approximation of the distribution using the normal. The results have applications to the non-parametric Wilcoxon signed-rank test.
NASA Astrophysics Data System (ADS)
Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol
2015-08-01
The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.
A fast new algorithm for a robot neurocontroller using inverse QR decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, A.S.; Khemaissia, S.
2000-01-01
A new adaptive neural network controller for robots is presented. The controller is based on direct adaptive techniques. Unlike many neural network controllers in the literature, inverse dynamical model evaluation is not required. A numerically robust, computationally efficient processing scheme for neutral network weight estimation is described, namely, the inverse QR decomposition (INVQR). The inverse QR decomposition and a weighted recursive least-squares (WRLS) method for neural network weight estimation is derived using Cholesky factorization of the data matrix. The algorithm that performs the efficient INVQR of the underlying space-time data matrix may be implemented in parallel on a triangular array.more » Furthermore, its systolic architecture is well suited for VLSI implementation. Another important benefit is well suited for VLSI implementation. Another important benefit of the INVQR decomposition is that it solves directly for the time-recursive least-squares filter vector, while avoiding the sequential back-substitution step required by the QR decomposition approaches.« less
Electrocardiographic consequences of cardiac iron overload in thalassemia major
Detterich, Jon; Noetzli, Leila; Dorey, Fred; Bar-Cohen, Yaniv; Harmatz, Paul; Coates, Thomas; Wood, John
2011-01-01
Background Iron cardiomyopathy is a leading cause of death in transfusion dependent thalassemia major (TM) patients and MRI (T2*) can recognize preclinical cardiac iron overload, but, is unavailable to many centers. Design and Methods We evaluated the ability of 12-lead electrocardiography to predict cardiac iron loading in TM. 12-lead electrocardiogram and cardiac T2* measurements were performed prospectively, with a detectable cardiac iron cutoff of T2*less than 20 ms. Patients with and without cardiac iron were compared using two-sample statistics and against population norms using age and gender-matched Z-scores. Results 45/78 patients had detectable cardiac iron. Patients having cardiac iron were older and more likely female but had comparable liver iron burdens and serum ferritin. Increased heart rate (HR) and prolonged corrected QT interval (QTc) were present, regardless of cardiac iron status. Repolarization abnormalities were the strongest predictors of cardiac iron, including QT/QTc prolongation, left shift of T-wave axis, and interpretation of ST/T-wave morphology. Recursive partitioning of the data for females using T-axis and HR and for males using QT, HR and T-axis produced algorithms with AUROC’s of 88.3 and 87.1 respectively. Conclusions Bradycardia and repolarization abnormalities on 12-lead electrocardiography were the most specific markers for cardiac iron in thalassemia major. Changes in these variables may be helpful to stratify cardiac risk when cardiac MRI is unavailable. However, diagnostic algorithms need to be vetted on larger and more diverse patient populations and longitudinal studies are necessary to determine reversibility of the observed abnormalities. PMID:22052662
NASA Astrophysics Data System (ADS)
Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald
2017-07-01
The radio sources within the most recent celestial reference frame (CRF) catalog ICRF2 are represented by a single, time-invariant coordinate pair. The datum sources were chosen mainly according to certain statistical properties of their position time series. Yet, such statistics are not applicable unconditionally, and also ambiguous. However, ignoring systematics in the source positions of the datum sources inevitably leads to a degradation of the quality of the frame and, therefore, also of the derived quantities such as the Earth orientation parameters. One possible approach to overcome these deficiencies is to extend the parametrization of the source positions, similarly to what is done for the station positions. We decided to use the multivariate adaptive regression splines algorithm to parametrize the source coordinates. It allows a great deal of automation, by combining recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and, thus, the best number of polynomial pieces to fit the data autonomously. With that we can correct the ICRF2 a priori coordinates for our analysis and eliminate the systematics in the position estimates. This allows us to introduce also special handling sources into the datum definition, leading to on average 30 % more sources in the datum. We find that not only the CPO can be improved by more than 10 % due to the improved geometry, but also the station positions, especially in the early years of VLBI, can benefit greatly.
[An object-oriented remote sensing image segmentation approach based on edge detection].
Tan, Yu-Min; Huai, Jian-Zhu; Tang, Zhong-Shi
2010-06-01
Satellite sensor technology endorsed better discrimination of various landscape objects. Image segmentation approaches to extracting conceptual objects and patterns hence have been explored and a wide variety of such algorithms abound. To this end, in order to effectively utilize edge and topological information in high resolution remote sensing imagery, an object-oriented algorithm combining edge detection and region merging is proposed. Susan edge filter is firstly applied to the panchromatic band of Quickbird imagery with spatial resolution of 0.61 m to obtain the edge map. Thanks to the resulting edge map, a two-phrase region-based segmentation method operates on the fusion image from panchromatic and multispectral Quickbird images to get the final partition result. In the first phase, a quad tree grid consisting of squares with sides parallel to the image left and top borders agglomerates the square subsets recursively where the uniform measure is satisfied to derive image object primitives. Before the merger of the second phrase, the contextual and spatial information, (e. g., neighbor relationship, boundary coding) of the resulting squares are retrieved efficiently by means of the quad tree structure. Then a region merging operation is performed with those primitives, during which the criterion for region merging integrates edge map and region-based features. This approach has been tested on the QuickBird images of some site in Sanxia area and the result is compared with those of ENVI Zoom Definiens. In addition, quantitative evaluation of the quality of segmentation results is also presented. Experiment results demonstrate stable convergence and efficiency.
An improved NAS-RIF algorithm for image restoration
NASA Astrophysics Data System (ADS)
Gao, Weizhe; Zou, Jianhua; Xu, Rong; Liu, Changhai; Li, Hengnian
2016-10-01
Space optical images are inevitably degraded by atmospheric turbulence, error of the optical system and motion. In order to get the true image, a novel nonnegativity and support constants recursive inverse filtering (NAS-RIF) algorithm is proposed to restore the degraded image. Firstly the image noise is weaken by Contourlet denoising algorithm. Secondly, the reliable object support region estimation is used to accelerate the algorithm convergence. We introduce the optimal threshold segmentation technology to improve the object support region. Finally, an object construction limit and the logarithm function are added to enhance algorithm stability. Experimental results demonstrate that, the proposed algorithm can increase the PSNR, and improve the quality of the restored images. The convergence speed of the proposed algorithm is faster than that of the original NAS-RIF algorithm.
NASA Astrophysics Data System (ADS)
Arimbi, Mentari Dian; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Data clustering can be executed through partition or hierarchical method for many types of data including DNA sequences. Both clustering methods can be combined by processing partition algorithm in the first level and hierarchical in the second level, called hybrid clustering. In the partition phase some popular methods such as PAM, K-means, or Fuzzy c-means methods could be applied. In this study we selected partitioning around medoids (PAM) in our partition stage. Furthermore, following the partition algorithm, in hierarchical stage we applied divisive analysis algorithm (DIANA) in order to have more specific clusters and sub clusters structures. The number of main clusters is determined using Davies Bouldin Index (DBI) value. We choose the optimal number of clusters if the results minimize the DBI value. In this work, we conduct the clustering on 1252 HPV DNA sequences data from GenBank. The characteristic extraction is initially performed, followed by normalizing and genetic distance calculation using Euclidean distance. In our implementation, we used the hybrid PAM and DIANA using the R open source programming tool. In our results, we obtained 3 main clusters with average DBI value is 0.979, using PAM in the first stage. After executing DIANA in the second stage, we obtained 4 sub clusters for Cluster-1, 9 sub clusters for Cluster-2 and 2 sub clusters in Cluster-3, with the BDI value 0.972, 0.771, and 0.768 for each main cluster respectively. Since the second stage produce lower DBI value compare to the DBI value in the first stage, we conclude that this hybrid approach can improve the accuracy of our clustering results.
Parsing recursive sentences with a connectionist model including a neural stack and synaptic gating.
Fedor, Anna; Ittzés, Péter; Szathmáry, Eörs
2011-02-21
It is supposed that humans are genetically predisposed to be able to recognize sequences of context-free grammars with centre-embedded recursion while other primates are restricted to the recognition of finite state grammars with tail-recursion. Our aim was to construct a minimalist neural network that is able to parse artificial sentences of both grammars in an efficient way without using the biologically unrealistic backpropagation algorithm. The core of this network is a neural stack-like memory where the push and pop operations are regulated by synaptic gating on the connections between the layers of the stack. The network correctly categorizes novel sentences of both grammars after training. We suggest that the introduction of the neural stack memory will turn out to be substantial for any biological 'hierarchical processor' and the minimalist design of the model suggests a quest for similar, realistic neural architectures. Copyright © 2010 Elsevier Ltd. All rights reserved.
Testing the Stability of 2-D Recursive QP, NSHP and General Digital Filters of Second Order
NASA Astrophysics Data System (ADS)
Rathinam, Ananthanarayanan; Ramesh, Rengaswamy; Reddy, P. Subbarami; Ramaswami, Ramaswamy
Several methods for testing stability of first quadrant quarter-plane two dimensional (2-D) recursive digital filters have been suggested in 1970's and 80's. Though Jury's row and column algorithms, row and column concatenation stability tests have been considered as highly efficient mapping methods. They still fall short of accuracy as they need infinite number of steps to conclude about the exact stability of the filters and also the computational time required is enormous. In this paper, we present procedurally very simple algebraic method requiring only two steps when applied to the second order 2-D quarter - plane filter. We extend the same method to the second order Non-Symmetric Half-plane (NSHP) filters. Enough examples are given for both these types of filters as well as some lower order general recursive 2-D digital filters. We applied our method to barely stable or barely unstable filter examples available in the literature and got the same decisions thus showing that our method is accurate enough.
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.
2017-04-01
To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.
Real-time minimal-bit-error probability decoding of convolutional codes
NASA Technical Reports Server (NTRS)
Lee, L.-N.
1974-01-01
A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.
Real-time minimal bit error probability decoding of convolutional codes
NASA Technical Reports Server (NTRS)
Lee, L. N.
1973-01-01
A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.
Parallel algorithms for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
Inter-method Performance Study of Tumor Volumetry Assessment on Computed Tomography Test-retest Data
Buckler, Andrew J.; Danagoulian, Jovanna; Johnson, Kjell; Peskin, Adele; Gavrielides, Marios A.; Petrick, Nicholas; Obuchowski, Nancy A.; Beaumont, Hubert; Hadjiiski, Lubomir; Jarecha, Rudresh; Kuhnigk, Jan-Martin; Mantri, Ninad; McNitt-Gray, Michael; Moltz, Jan Hendrik; Nyiri, Gergely; Peterson, Sam; Tervé, Pierre; Tietjen, Christian; von Lavante, Etienne; Ma, Xiaonan; Pierre, Samantha St.; Athelogou, Maria
2015-01-01
Rationale and objectives Tumor volume change has potential as a biomarker for diagnosis, therapy planning, and treatment response. Precision was evaluated and compared among semi-automated lung tumor volume measurement algorithms from clinical thoracic CT datasets. The results inform approaches and testing requirements for establishing conformance with the Quantitative Imaging Biomarker Alliance (QIBA) CT Volumetry Profile. Materials and Methods Industry and academic groups participated in a challenge study. Intra-algorithm repeatability and inter-algorithm reproducibility were estimated. Relative magnitudes of various sources of variability were estimated using a linear mixed effects model. Segmentation boundaries were compared to provide a basis on which to optimize algorithm performance for developers. Results Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least performing), with most algorithms demonstrating improved repeatability as the tumor size increased. Inter-algorithm reproducibility determined in three partitions and found to be 58% for the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 84% when all groups but the least performer were included. The best performing partition performed markedly better on tumors with equivalent diameters above 40 mm. Larger tumors benefitted by human editing but smaller tumors did not. One-fifth to one-half of the total variability came from sources independent of the algorithms. Segmentation boundaries differed substantially, not just in overall volume but in detail. Conclusions Nine of the twelve participating algorithms pass precision requirements similar to what is indicated in the QIBA Profile, with the caveat that the current study was not designed to explicitly evaluate algorithm Profile conformance. Change in tumor volume can be measured with confidence to within ±14% using any of these nine algorithms on tumor sizes above 10 mm. No partition of the algorithms were able to meet the QIBA requirements for interchangeability down to 10 mm, though the partition comprised of the best performing algorithms did meet this requirement above a tumor size of approximately 40 mm. PMID:26376841
Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao
2012-08-01
In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.
Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2009-12-01
Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.
An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents
ERIC Educational Resources Information Center
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2013-01-01
Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…
Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information.
Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing
2016-01-01
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft's algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms.
Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y
2011-01-01
To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
Spacecraft control, state estimation, and fault-detection-and-isolation systems are affected by unknown v aerations in the vehicle mass properties. It is often difficult to accurately measure inertia terms on the ground, and mass properties can change on-orbit as fuel is expended, the configuration changes, or payloads are added or removed. Recursive least squares -based algorithms that use gyro signals to identify the center of mass and inverse inertia matrix are presented. They are applied in simulation to 3 thruster-controlled vehicles: the X-38 and Mini-AERCam under development at NASA-JSC, and the SAM, an air-bearing spacecraft simulator at the NASA-Ames Smart Systems Research Lab (SSRL).
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.
2015-01-01
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211
Reduced kernel recursive least squares algorithm for aero-engine degradation prediction
NASA Astrophysics Data System (ADS)
Zhou, Haowen; Huang, Jinquan; Lu, Feng
2017-10-01
Kernel adaptive filters (KAFs) generate a linear growing radial basis function (RBF) network with the number of training samples, thereby lacking sparseness. To deal with this drawback, traditional sparsification techniques select a subset of original training data based on a certain criterion to train the network and discard the redundant data directly. Although these methods curb the growth of the network effectively, it should be noted that information conveyed by these redundant samples is omitted, which may lead to accuracy degradation. In this paper, we present a novel online sparsification method which requires much less training time without sacrificing the accuracy performance. Specifically, a reduced kernel recursive least squares (RKRLS) algorithm is developed based on the reduced technique and the linear independency. Unlike conventional methods, our novel methodology employs these redundant data to update the coefficients of the existing network. Due to the effective utilization of the redundant data, the novel algorithm achieves a better accuracy performance, although the network size is significantly reduced. Experiments on time series prediction and online regression demonstrate that RKRLS algorithm requires much less computational consumption and maintains the satisfactory accuracy performance. Finally, we propose an enhanced multi-sensor prognostic model based on RKRLS and Hidden Markov Model (HMM) for remaining useful life (RUL) estimation. A case study in a turbofan degradation dataset is performed to evaluate the performance of the novel prognostic approach.
A fast 3D region growing approach for CT angiography applications
NASA Astrophysics Data System (ADS)
Ye, Zhen; Lin, Zhongmin; Lu, Cheng-chang
2004-05-01
Region growing is one of the most popular methods for low-level image segmentation. Many researches on region growing have focused on the definition of the homogeneity criterion or growing and merging criterion. However, one disadvantage of conventional region growing is redundancy. It requires a large memory usage, and the computation-efficiency is very low especially for 3D images. To overcome this problem, a non-recursive single-pass 3D region growing algorithm named SymRG is implemented and successfully applied to 3D CT angiography (CTA) applications for vessel segmentation and bone removal. The method consists of three steps: segmenting one-dimensional regions of each row; doing region merging to adjacent rows to obtain the region segmentation of each slice; and doing region merging to adjacent slices to obtain the final region segmentation of 3D images. To improve the segmentation speed for very large volume 3D CTA images, this algorithm is applied repeatedly to newly updated local cubes. The next new cube can be estimated by checking isolated segmented regions on all 6 faces of the current local cube. This local non-recursive 3D region-growing algorithm is memory-efficient and computation-efficient. Clinical testings of this algorithm on Brain CTA show this technique could effectively remove whole skull, most of the bones on the skull base, and reveal the cerebral vascular structures clearly.
Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D
2015-07-10
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.
Fast matrix multiplication and its algebraic neighbourhood
NASA Astrophysics Data System (ADS)
Pan, V. Ya.
2017-11-01
Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was not so. Worldwide interest in matrix multiplication instantly exploded in 1969, when Strassen decreased the exponent 3 of cubic time to 2.807. Then everyone expected to see matrix multiplication performed in quadratic or nearly quadratic time very soon. Further progress, however, turned out to be capricious. It was at stalemate for almost a decade, then a combination of surprising techniques (completely independent of Strassen's original ones and much more advanced) enabled a new decrease of the exponent in 1978-1981 and then again in 1986, to 2.376. By 2017 the exponent has still not passed through the barrier of 2.373, but most disturbing was the curse of recursion — even the decrease of exponents below 2.7733 required numerous recursive steps, and each of them squared the problem size. As a result, all algorithms supporting such exponents supersede the classical algorithm only for inputs of immense sizes, far beyond any potential interest for the user. We survey the long study of fast matrix multiplication, focusing on neglected algorithms for feasible matrix multiplication. We comment on their design, the techniques involved, implementation issues, the impact of their study on the modern theory and practice of Algebraic Computations, and perspectives for fast matrix multiplication. Bibliography: 163 titles.
NASA Astrophysics Data System (ADS)
Morozov, A.
2012-08-01
Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.
Toward using games to teach fundamental computer science concepts
NASA Astrophysics Data System (ADS)
Edgington, Jeffrey Michael
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.
Recursive linearization of multibody dynamics equations of motion
NASA Technical Reports Server (NTRS)
Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.
A Stochastic Total Least Squares Solution of Adaptive Filtering Problem
Ahmad, Noor Atinah
2014-01-01
An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function. Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS) algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system identification under noisy inputs. PMID:24688412
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.
2018-03-01
With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.
An Application of Discrete Mathematics to Coding Theory.
ERIC Educational Resources Information Center
Donohoe, L. Joyce
1992-01-01
Presents a public-key cryptosystem application to introduce students to several topics in discrete mathematics. A computer algorithms using recursive methods is presented to solve a problem in which one person wants to send a coded message to a second person while keeping the message secret from a third person. (MDH)
NASA Astrophysics Data System (ADS)
Badia, Santiago; Martín, Alberto F.; Planas, Ramon
2014-10-01
The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.
Minimum nonuniform graph partitioning with unrelated weights
NASA Astrophysics Data System (ADS)
Makarychev, K. S.; Makarychev, Yu S.
2017-12-01
We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yunlong; Wang, Aiping; Guo, Lei
This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Hitomi, K.
2012-05-01
The energy resolution of thallium bromide (TlBr) detectors is significantly limited by charge-trapping effect and pulse ballistic deficit, caused by the slow charge collection time. A digital pulse processing algorithm has been developed aiming to compensate for charge-trapping effect, while minimizing pulse ballistic deficit. The algorithm is examined using a 1 mm thick TlBr detector and an excellent energy resolution of 3.37% at 662 keV is achieved at room temperature. The pulse processing algorithms are presented in recursive form, suitable for real-time implementations.
A class of least-squares filtering and identification algorithms with systolic array architectures
NASA Technical Reports Server (NTRS)
Kalson, Seth Z.; Yao, Kung
1991-01-01
A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.
Constant-Time Pattern Matching For Real-Time Production Systems
NASA Astrophysics Data System (ADS)
Parson, Dale E.; Blank, Glenn D.
1989-03-01
Many intelligent systems must respond to sensory data or critical environmental conditions in fixed, predictable time. Rule-based systems, including those based on the efficient Rete matching algorithm, cannot guarantee this result. Improvement in execution-time efficiency is not all that is needed here; it is important to ensure constant, 0(1) time limits for portions of the matching process. Our approach is inspired by two observations about human performance. First, cognitive psychologists distinguish between automatic and controlled processing. Analogously, we partition the matching process across two networks. The first is the automatic partition; it is characterized by predictable 0(1) time and space complexity, lack of persistent memory, and is reactive in nature. The second is the controlled partition; it includes the search-based goal-driven and data-driven processing typical of most production system programming. The former is responsible for recognition and response to critical environmental conditions. The latter is responsible for the more flexible problem-solving behaviors consistent with the notion of intelligence. Support for learning and refining the automatic partition can be placed in the controlled partition. Our second observation is that people are able to attend to more critical stimuli or requirements selectively. Our match algorithm uses priorities to focus matching. It compares priority of information during matching, rather than deferring this comparison until conflict resolution. Messages from the automatic partition are able to interrupt the controlled partition, enhancing system responsiveness. Our algorithm has numerous applications for systems that must exhibit time-constrained behavior.
Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning
NASA Astrophysics Data System (ADS)
Schumacher, André; Haanpää, Harri
We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with
IND - THE IND DECISION TREE PACKAGE
NASA Technical Reports Server (NTRS)
Buntine, W.
1994-01-01
A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The generation routines are used to build classifiers. The test routines are used to evaluate classifiers and to classify data using a classifier. And the display routines are used to display classifiers in various formats. IND is written in C-language for Sun4 series computers. It consists of several programs with controlling shell scripts. Extensive UNIX man entries are included. IND is designed to be used on any UNIX system, although it has only been thoroughly tested on SUN platforms. The standard distribution medium for IND is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in PostScript format is included on the distribution medium. IND was developed in 1992.
Development and Evaluation of an Order-N Formulation for Multi-Flexible Body Space Systems
NASA Technical Reports Server (NTRS)
Ghosh, Tushar K.; Quiocho, Leslie J.
2013-01-01
This paper presents development of a generic recursive Order-N algorithm for systems with rigid and flexible bodies, in tree or closed-loop topology, with N being the number of bodies of the system. Simulation results are presented for several test cases to verify and evaluate the performance of the code compared to an existing efficient dense mass matrix-based code. The comparison brought out situations where Order-N or mass matrix-based algorithms could be useful.
Spatial operator approach to flexible multibody system dynamics and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1991-01-01
The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.
DecisionMaker software and extracting fuzzy rules under uncertainty
NASA Technical Reports Server (NTRS)
Walker, Kevin B.
1992-01-01
Knowledge acquisition under uncertainty is examined. Theories proposed in deKorvin's paper 'Extracting Fuzzy Rules Under Uncertainty and Measuring Definability Using Rough Sets' are discussed as they relate to rule calculation algorithms. A data structure for holding an arbitrary number of data fields is described. Limitations of Pascal for loops in the generation of combinations are also discussed. Finally, recursive algorithms for generating all possible combination of attributes and for calculating the intersection of an arbitrary number of fuzzy sets are presented.
Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel Kus; Pavel Solin; David Andrs
2014-11-01
In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.
Ronald, Lisa A; Campbell, Jonathon R; Balshaw, Robert F; Romanowski, Kamila; Roth, David Z; Marra, Fawziah; Cook, Victoria J; Johnston, James C
2018-02-26
Canadian tuberculosis (TB) guidelines recommend targeting postlanding screening for and treatment of latent tuberculosis infection (LTBI) in people migrating to Canada who are at increased risk for TB reactivation. Our objectives were to calculate robust longitudinal estimates of TB incidence in a cohort of people migrating to British Columbia, Canada, over a 29-year period, and to identify groups at highest risk of developing TB based on demographic characteristics at time of landing. We included all individuals ( n = 1 080 908) who became permanent residents of Canada between Jan. 1, 1985, and Dec. 31, 2012, and were resident in BC at any time between 1985 and 2013. Multiple administrative databases were linked to the provincial TB registry. We used recursive partitioning models to identify populations with high TB yield. Active TB was diagnosed in 2814 individuals (incidence rate 24.2/100 000 person-years). Demographic factors (live-in caregiver, family, refugee immigration classes; higher TB incidence in country of birth; and older age) were strong predictors of TB incidence in BC, with elevated rates continuing many years after entry into the cohort. Recursive partitioning identified refugees 18-64 years of age from countries with a TB incidence greater than 224/100 000 population as a high-yield group, with 1% developing TB within the first 10 years. These findings support recommendations in Canadian guidelines to target postlanding screening for and treatment of LTBI in adult refugees from high-incidence countries. Because high-yield populations can be identified at entry via demographic data, screening at this point may be practical and high-impact, particularly if the LTBI care cascade can be optimized. © 2018 Joule Inc. or its licensors.
Ronald, Lisa A.; Campbell, Jonathon R.; Balshaw, Robert F.; Romanowski, Kamila; Roth, David Z.; Marra, Fawziah; Cook, Victoria J.; Johnston, James C.
2018-01-01
BACKGROUND: Canadian tuberculosis (TB) guidelines recommend targeting postlanding screening for and treatment of latent tuberculosis infection (LTBI) in people migrating to Canada who are at increased risk for TB reactivation. Our objectives were to calculate robust longitudinal estimates of TB incidence in a cohort of people migrating to British Columbia, Canada, over a 29-year period, and to identify groups at highest risk of developing TB based on demographic characteristics at time of landing. METHODS: We included all individuals (n = 1 080 908) who became permanent residents of Canada between Jan. 1, 1985, and Dec. 31, 2012, and were resident in BC at any time between 1985 and 2013. Multiple administrative databases were linked to the provincial TB registry. We used recursive partitioning models to identify populations with high TB yield. RESULTS: Active TB was diagnosed in 2814 individuals (incidence rate 24.2/100 000 person-years). Demographic factors (live-in caregiver, family, refugee immigration classes; higher TB incidence in country of birth; and older age) were strong predictors of TB incidence in BC, with elevated rates continuing many years after entry into the cohort. Recursive partitioning identified refugees 18–64 years of age from countries with a TB incidence greater than 224/100 000 population as a high-yield group, with 1% developing TB within the first 10 years. INTERPRETATION: These findings support recommendations in Canadian guidelines to target postlanding screening for and treatment of LTBI in adult refugees from high-incidence countries. Because high-yield populations can be identified at entry via demographic data, screening at this point may be practical and high-impact, particularly if the LTBI care cascade can be optimized. PMID:29483329
Exact partition functions for deformed N=2 theories with N_f=4 flavours
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi
2016-12-01
We consider the Ω-deformed N=2 SU(2) gauge theory in four dimensions with N f = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ɛ 1 , ɛ 2, the scalar field expectation value a, and the hypermultiplet masses m = ( m 1 , m 2 , m 3 , m 4). Motivated by recent findings in the N={2}^{*} theory, we explore the theories that are characterized by special fixed ratios ɛ 2 /ɛ 1 and m /ɛ 1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N={2}^{*} gauge theory, the full prepotential of the Π N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov's recursion for the Π N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.
Subbiah, Ishwaria M; Lei, Xiudong; Weinberg, Jeffrey S; Sulman, Erik P; Chavez-MacGregor, Mariana; Tripathy, Debu; Gupta, Rohan; Varma, Ankur; Chouhan, Jay; Guevarra, Richard P; Valero, Vicente; Gilbert, Mark R; Gonzalez-Angulo, Ana M
2015-07-10
Several indices have been developed to predict overall survival (OS) in patients with breast cancer with brain metastases, including the breast graded prognostic assessment (breast-GPA), comprising age, tumor subtype, and Karnofsky performance score. However, number of brain metastases-a highly relevant clinical variable-is less often incorporated into the final model. We sought to validate the existing breast-GPA in an independent larger cohort and refine it integrating number of brain metastases. Data were retrospectively gathered from a prospectively maintained institutional database. Patients with newly diagnosed brain metastases from 1996 to 2013 were identified. After validating the breast-GPA, multivariable Cox regression and recursive partitioning analysis led to the development of the modified breast-GPA. The performances of the breast-GPA and modified breast-GPA were compared using the concordance index. In our cohort of 1,552 patients, the breast-GPA was validated as a prognostic tool for OS (P < .001). In multivariable analysis of the breast-GPA and number of brain metastases (> three v ≤ three), both were independent predictors of OS. We therefore developed the modified breast-GPA integrating a fourth clinical parameter. Recursive partitioning analysis reinforced the prognostic significance of these four factors. Concordance indices were 0.78 (95% CI, 0.77 to 0.80) and 0.84 (95% CI, 0.83 to 0.85) for the breast-GPA and modified breast-GPA, respectively (P < .001). The modified breast-GPA incorporates four simple clinical parameters of high prognostic significance. This index has an immediate role in the clinic as a formative part of the clinician's discussion of prognosis and direction of care and as a potential patient selection tool for clinical trials. © 2015 by American Society of Clinical Oncology.
Gabrielian, Sonya; Bromley, Elizabeth; Hellemann, Gerhard S.; Kern, Robert S.; Goldenson, Nicholas I.; Danley, Megan E.; Young, Alexander S.
2015-01-01
Objective We sought to understand the housing trajectories of homeless consumers with serious mental illness (SMI) and co-occurring substance use disorders (SUD) and to identify factors that best-predicted achievement of independent housing. Methods Using administrative data, we identified homeless persons with SMI and SUD admitted to a residential rehabilitation program from 12/2008-11/2011. On a random sample (n=36), we assessed a range of potential predictors of housing outcomes, including symptoms, cognition, and social/community supports. We used the Residential Time-Line Follow-Back (TLFB) Inventory to gather housing histories since exiting rehabilitation and identify housing outcomes. We used recursive partitioning to identify variables that best-differentiated participants by these outcomes. Results We identified three housing trajectories: stable housing (n=14); unstable housing (n=15); and continuously engaged in housing services (n=7). Using recursive partitioning, two variables (symbol digit modalities test (SDMT), a neurocognitive speed of processing measure and Behavior and Symptom Identification Scale (BASIS)-relationships subscale, which quantifies symptoms affecting relationships) were sufficient to capture information provided by 26 predictors to classify participants by housing outcome. Participants predicted to continuously engage in services had impaired processing speeds (SDMT score<32.5). Among consumers with SDMT score≥32.5, those predicted to achieve stable housing had fewer interpersonal symptoms (BASIS-relationships score<0.81) than those predicted to have unstable housing. This model explains 57% of this sample's variability and 14% of this population's variability in housing outcomes. Conclusion As cognition and symptoms influencing relationships predicted housing outcomes for homeless adults with SMI and SUD, cognitive and social skills trainings may be useful for this population. PMID:25919839
NASA Technical Reports Server (NTRS)
Kattan, Michael W.; Hess, Kenneth R.; Kattan, Michael W.
1998-01-01
New computationally intensive tools for medical survival analyses include recursive partitioning (also called CART) and artificial neural networks. A challenge that remains is to better understand the behavior of these techniques in effort to know when they will be effective tools. Theoretically they may overcome limitations of the traditional multivariable survival technique, the Cox proportional hazards regression model. Experiments were designed to test whether the new tools would, in practice, overcome these limitations. Two datasets in which theory suggests CART and the neural network should outperform the Cox model were selected. The first was a published leukemia dataset manipulated to have a strong interaction that CART should detect. The second was a published cirrhosis dataset with pronounced nonlinear effects that a neural network should fit. Repeated sampling of 50 training and testing subsets was applied to each technique. The concordance index C was calculated as a measure of predictive accuracy by each technique on the testing dataset. In the interaction dataset, CART outperformed Cox (P less than 0.05) with a C improvement of 0.1 (95% Cl, 0.08 to 0.12). In the nonlinear dataset, the neural network outperformed the Cox model (P less than 0.05), but by a very slight amount (0.015). As predicted by theory, CART and the neural network were able to overcome limitations of the Cox model. Experiments like these are important to increase our understanding of when one of these new techniques will outperform the standard Cox model. Further research is necessary to predict which technique will do best a priori and to assess the magnitude of superiority.
Bosi, Emanuele; Boulware, David C; Becker, Dorothy J; Buckner, Jane H; Geyer, Susan; Gottlieb, Peter A; Henderson, Courtney; Kinderman, Amanda; Sosenko, Jay M; Steck, Andrea K; Bingley, Polly J
2017-08-01
Islet autoantibodies are markers of type 1 diabetes, and an increase in number of autoantibodies detected during the preclinical phase predicts progression to overt disease. To refine the effect of age in relation to islet antibody type on progression from single to multiple autoantibodies in relatives of people with type 1 diabetes. We examined 994 relatives with normal glucose tolerance who were positive for a single autoantibody, followed prospectively in the TrialNet Pathway to Prevention. Antibodies to glutamic acid decarboxylase (GADA), insulin (IAA), insulinoma-associated antigen 2, and zinc transporter 8 and islet cell antibodies were tested every 6 to 12 months. The primary outcome was confirmed development of multiple autoantibodies. Age was categorized as <8 years, 8 to 11 years, 12 to 17 years, and ≥18 years, and optimal age breakpoints were identified by recursive partitioning analysis. After median follow-up of 2 years, 141 relatives had developed at least one additional autoantibodies. Five-year risk was inversely related to age, but the pattern differed by antibody type: Relatives with GADA showed a gradual decrease in risk over the four age groups, whereas relatives with IAA showed a sharp decrease above age 8 years. Recursive partitioning analysis identified age breakpoints at 14 years in relatives with GADA and at 4 years in relatives with IAA. In relatives with IAA, spread of islet autoimmunity is largely limited to early childhood, whereas immune responses initially directed at glutamic acid decarboxylase can mature over a longer period. These differences have important implications for monitoring these patients and for designing prevention trials. Copyright © 2017 Endocrine Society
Krischer, Jeffrey P.
2016-01-01
OBJECTIVE To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. RESULTS Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. CONCLUSIONS The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages. PMID:27208341
Klein, Lauren R; Money, Joel; Maharaj, Kaveesh; Robinson, Aaron; Lai, Tarissa; Driver, Brian E
2017-11-01
Assessing the likelihood of a variceal versus nonvariceal source of upper gastrointestinal bleeding (UGIB) guides therapy, but can be difficult to determine on clinical grounds. The objective of this study was to determine if there are easily ascertainable clinical and laboratory findings that can identify a patient as low risk for a variceal source of hemorrhage. This was a retrospective cohort study of adult ED patients with UGIB between January 2008 and December 2014 who had upper endoscopy performed during hospitalization. Clinical and laboratory data were abstracted from the medical record. The source of the UGIB was defined as variceal or nonvariceal based on endoscopic reports. Binary recursive partitioning was utilized to create a clinical decision rule. The rule was internally validated and test characteristics were calculated with 1,000 bootstrap replications. A total of 719 patients were identified; mean age was 55 years and 61% were male. There were 71 (10%) patients with a variceal UGIB identified on endoscopy. Binary recursive partitioning yielded a two-step decision rule (platelet count > 200 × 10 9 /L and an international normalized ratio [INR] < 1.3), which identified patients who were low risk for a variceal source of hemorrhage. For the bootstrapped samples, the rule performed with 97% sensitivity (95% confidence interval [CI] = 91%-100%) and 49% specificity (95% CI = 44%-53%). Although this derivation study must be externally validated before widespread use, patients presenting to the ED with an acute UGIB with platelet count of >200 × 10 9 /L and an INR of <1.3 may be at very low risk for a variceal source of their upper gastrointestinal hemorrhage. © 2017 by the Society for Academic Emergency Medicine.
Wang, Xin; Jin, Jing; Yang, Yong; Liu, Wen-Yang; Ren, Hua; Feng, Yan-Ru; Xiao, Qin; Li, Ning; Deng, Lei; Fang, Hui; Jing, Hao; Lu, Ning-Ning; Tang, Yu; Wang, Jian-Yang; Wang, Shu-Lian; Wang, Wei-Hu; Song, Yong-Wen; Liu, Yue-Ping; Li, Ye-Xiong
2016-10-04
The role of adjuvant chemoradiotherapy (ACRT) or adjuvant chemotherapy (ACT) in treating patients with locally advanced upper rectal cancer (URC) after total mesorectal excision (TME) surgery remains unclear. We developed a clinical nomogram and a recursive partitioning analysis (RPA)-based risk stratification system for predicting 5-year cancer-specific survival (CSS) to determine whether these individuals require ACRT or ACT. This retrospective analysis included 547 patients with primary URC. A nomogram was developed based on the Cox regression model. The performance of the model was assessed by concordance index (C-index) and calibration curve in internal validation with bootstrapping. RPA stratified patients into risk groups based on their tumor characteristics. Five independent prognostic factors (age, preoperative increased carcinoembryonic antigen and carcinoma antigen 19-9, positive lymph node [PLN] number, tumor deposit [TD], pathological T classification) were identified and entered into the predictive nomogram. The bootstrap-corrected C-index was 0.757. RPA stratification of the three prognostic groups showed obviously different prognosis. Only the high-risk group (patients with PLN ≤ 6 and TD, or PLN > 6) benefited from ACRT plus ACT when compared with surgery followed by ACRT or ACT, and surgery alone (5-year CSS: 70.8% vs. 57.8% vs. 15.6%, P < 0.001). Our nomogram predicts 5-year CSS after TME surgery for locally advanced rectal cancer and RPA-based stratification indicates that ACRT plus ACT post-surgery may be an important treatment plan with potentially ignificant survival advantages in high-risk URC. This may help to select candidates of adjuvant treatment in prospective studies.
Zhang, Qian; Chen, Jian; Yu, Xiaoli; Ma, Jinli; Cai, Gang; Yang, Zhaozhi; Cao, Lu; Chen, Xingxing; Guo, Xiaomao; Chen, Jiayi
2013-09-01
Whole brain radiotherapy (WBRT) is the most widely used treatment for brain metastasis (BM), especially for patients with multiple intracranial lesions. The purpose of this study was to examine the efficacy of systemic treatments following WBRT in breast cancer patients with BM who had different clinical characteristics, based on the classification of the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) and the breast cancer-specific Graded Prognostic Assessment (Breast-GPA). One hundred and one breast cancer patients with BM treated between 2006 and 2010 were analyzed. The median interval between breast cancer diagnosis and identification of BM in the triple-negative patients was shorter than in the luminal A subtype (26 vs. 36 months, respectively; P = 0.021). Univariate analysis indicated that age at BM diagnosis, Karnofsky performance status/recursive partitioning analysis (KPS/RPA) classes, number of BMs, primary tumor control, extracranial metastases and systemic treatment following WBRT were significant prognostic factors for overall survival (OS) (P < 0.05). Multivariate analysis revealed that KPS/RPA classes and systemic treatments following WBRT remained the significant prognostic factors for OS. For RPA class I, the median survival with and without systemic treatments following WBRT was 25 and 22 months, respectively (P = 0.819), while for RPA class II/III systemic treatments significantly improved OS from 7 and 2 months to 11 and 5 months, respectively (P < 0.05). Our results suggested that triple-negative patients had a shorter interval between initial diagnosis and the development of BM than luminal A patients. Systemic treatments following WBRT improved the survival of RPA class II/III patients.
Morris, Brian J; Carnes, Bruce A; Chen, Randi; Donlon, Timothy A; He, Qimei; Grove, John S; Masaki, Kamal H; Elliott, Ayako; Willcox, Donald C; Allsopp, Richard; Willcox, Bradley J
2015-04-01
The mechanistic target of rapamycin (mTOR) pathway is pivotal for cell growth. Regulatory associated protein of mTOR complex I (Raptor) is a unique component of this pro-growth complex. The present study tested whether variation across the raptor gene (RPTOR) is associated with overweight and hypertension. We tested 61 common (allele frequency ≥ 0.1) tagging single nucleotide polymorphisms (SNPs) that captured most of the genetic variation across RPTOR in 374 subjects of normal lifespan and 439 subjects with a lifespan exceeding 95 years for association with overweight/obesity, essential hypertension, and isolated systolic hypertension. Subjects were drawn from the Honolulu Heart Program, a homogeneous population of American men of Japanese ancestry, well characterized for phenotypes relevant to conditions of aging. Hypertension status was ascertained when subjects were 45-68 years old. Statistical evaluation involved contingency table analysis, logistic regression, and the powerful method of recursive partitioning. After analysis of RPTOR genotypes by each statistical approach, we found no significant association between genetic variation in RPTOR and either essential hypertension or isolated systolic hypertension. Models generated by recursive partitioning analysis showed that RPTOR SNPs significantly enhanced the ability of the model to accurately assign individuals to either the overweight/obese or the non-overweight/obese groups (P = 0.008 by 1-tailed Z test). Common genetic variation in RPTOR is associated with overweight/obesity but does not discernibly contribute to either essential hypertension or isolated systolic hypertension in the population studied. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fogelman, David R; Morris, J; Xiao, L; Hassan, M; Vadhan, S; Overman, M; Javle, S; Shroff, R; Varadhachary, G; Wolff, R; Vence, L; Maitra, A; Cleeland, C; Wang, X S
2017-06-01
Cachexia is a frequent manifestation of pancreatic cancer, can limit a patient's ability to take chemotherapy, and is associated with shortened survival. We developed a model to predict the early onset of cachexia in advanced pancreatic cancer patients. Patients with newly diagnosed, untreated metastatic or locally advanced pancreatic cancer were included. Serum cytokines were drawn prior to therapy. Patient symptoms were recorded using the M.D. Anderson Symptom Inventory (MDASI). Our primary endpoint was either 10% weight loss or death within 60 days of the start of therapy. Twenty-seven of 89 patients met the primary endpoint (either having lost 10% of body weight or having died within 60 days of the start of treatment). In a univariate analysis, smoking, history symptoms of pain and difficulty swallowing, high levels of MK, CXCL-16, IL-6, TNF-a, and low IL-1b all correlated with this endpoint. We used recursive partition to fit a regression tree model, selecting four of 26 variables (CXCL-16, IL-1b, pain, swallowing difficulty) as important in predicting cachexia. From these, a model of two cytokines (CXCL-16 > 5.135 ng/ml and IL-1b < 0.08 ng/ml) demonstrated a better sensitivity and specificity for this outcome (0.70 and 0.86, respectively) than any individual cytokine or tumor marker. Cachexia is frequent in pancreatic cancer; one in three patients met our endpoint of 10% weight loss or death within 60 days. Inflammatory cytokines are better than conventional tumor markers at predicting this outcome. Recursive partitioning analysis suggests that a model of CXCL-16 and IL-1B may offer a better ability than individual cytokines to predict this outcome.
Grossman, Rachel; Ram, Zvi
2014-12-01
Sarcoma rarely metastasizes to the brain, and there are no specific treatment guidelines for these tumors. The recursive partitioning analysis (RPA) classification is a well-established prognostic scale used in many malignancies. In this study we assessed the clinical characteristics of metastatic sarcoma to the brain and the validity of the RPA classification system in a subset of 21 patients who underwent surgical resection of metastatic sarcoma to the brain We retrospectively analyzed the medical, radiological, surgical, pathological, and follow-up clinical records of 21 patients who were operated for metastatic sarcoma to the brain between 1996 and 2012. Gliosarcomas, sarcomas of the head and neck with local extension into the brain, and metastatic sarcomas to the spine were excluded from this reported series. The patients' mean age was 49.6 ± 14.2 years (range, 25-75 years) at the time of diagnosis. Sixteen patients had a known history of systemic sarcoma, mostly in the extremities, and had previously received systemic chemotherapy and radiation therapy for their primary tumor. The mean maximal tumor diameter in the brain was 4.9 ± 1.7 cm (range 1.7-7.2 cm). The group's median preoperative Karnofsky Performance Scale was 80, with 14 patients presenting with Karnofsky Performance Scale of 70 or greater. The median overall survival was 7 months (range 0.2-204 months). The median survival time stratified by the Radiation Therapy Oncology Group RPA classes were 31, 7, and 2 months for RPA class I, II, and III, respectively (P = 0.0001). This analysis is the first to support the prognostic utility of the Radiation Therapy Oncology Group RPA classification for sarcoma brain metastases and may be used as a treatment guideline tool in this rare disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Recursive recovery of Markov transition probabilities from boundary value data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patch, Sarah Kathyrn
1994-04-01
In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requiresmore » finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.« less
Lung partitioning for x-ray CAD applications
NASA Astrophysics Data System (ADS)
Annangi, Pavan; Raja, Anand
2011-03-01
Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information
Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing
2016-01-01
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft’s algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms. PMID:27806102
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
ICER-3D Hyperspectral Image Compression Software
NASA Technical Reports Server (NTRS)
Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh
2010-01-01
Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received prior to the loss can be used to reconstruct that partition at lower fidelity. By virtue of the compression improvement it achieves relative to previous means of onboard data compression, this software enables (1) increased return of hyperspectral scientific data in the presence of limits on the rates of transmission of data from spacecraft to Earth via radio communication links and/or (2) reduction in spacecraft radio-communication power and/or cost through reduction in the amounts of data required to be downlinked and stored onboard prior to downlink. The software is also suitable for compressing hyperspectral images for ground storage or archival purposes.
NASA Astrophysics Data System (ADS)
Patil, Riya Raghuvir
Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for selfpartitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the LegoRTM Mindstorms' NXT on a graphical programming platform using National Instruments' LabVIEW(TM) forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented.
Quantum speedup of Monte Carlo methods.
Montanaro, Ashley
2015-09-08
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Quantum speedup of Monte Carlo methods
Montanaro, Ashley
2015-01-01
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079
NASA Astrophysics Data System (ADS)
Falocchi, Marco; Giovannini, Lorenzo; Franceschi, Massimiliano de; Zardi, Dino
2018-05-01
We present a refinement of the recursive digital filter proposed by McMillen (Boundary-Layer Meteorol 43:231-245, 1988), for separating surface-layer turbulence from low-frequency fluctuations affecting the mean flow, especially over complex terrain. In fact, a straightforward application of the filter causes both an amplitude attenuation and a forward phase shift in the filtered signal. As a consequence turbulence fluctuations, evaluated as the difference between the original series and the filtered one, as well as higher-order moments calculated from them, may be affected by serious inaccuracies. The new algorithm (i) produces a rigorous zero-phase filter, (ii) restores the amplitude of the low-frequency signal, and (iii) corrects all filter-induced signal distortions.
Nodal domains of a non-separable problem—the right-angled isosceles triangle
NASA Astrophysics Data System (ADS)
Aronovitch, Amit; Band, Ram; Fajman, David; Gnutzmann, Sven
2012-03-01
We study the nodal set of eigenfunctions of the Laplace operator on the right-angled isosceles triangle. A local analysis of the nodal pattern provides an algorithm for computing the number νn of nodal domains for any eigenfunction. In addition, an exact recursive formula for the number of nodal domains is found to reproduce all existing data. Eventually, we use the recursion formula to analyse a large sequence of nodal counts statistically. Our analysis shows that the distribution of nodal counts for this triangular shape has a much richer structure than the known cases of regular separable shapes or completely irregular shapes. Furthermore, we demonstrate that the nodal count sequence contains information about the periodic orbits of the corresponding classical ray dynamics.
Topological string, supersymmetric gauge theory and bps counting
NASA Astrophysics Data System (ADS)
Pan, Guang
In this thesis we study the Donaldson-Thomas theory on the local curve geometry, which arises in the context of geometric engineering of supersymmetric gauge theory from type IIA string compactification. The topological A-model amplitude gives the F-term interaction of the compactified theory. In particular, it is related to the instanton partition function via Nekrasov conjecture. We will introduce ADHM sheaves on curve, as an alternative description of local Donaldson-Thomas theory. We derive the wallcrossing of ADHM invariants and their refinements. We show that it is equivalent to the semi-primitive wallcrossing from supergravity, and the Kontsevich-Soibelman wallcrossing formula. As an application, we discuss the connection between ADHM moduli space with Hitchin system. In particular we give a recursive formula for the Poincare polynomial of Hitchin system in terms of instanton partition function, from refined wallcrossing. We also introduce higher rank generalization of Donaldson-Thomas invariant in the context of ADHM sheaves. We study their wallcrossing and discuss their physical interpretation via string duality.
Elmetwaly, Shereef; Schlick, Tamar
2014-01-01
Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578
USDA-ARS?s Scientific Manuscript database
The temptation to include model parameters and high resolution input data together with the availability of powerful optimization and uncertainty analysis algorithms has significantly enhanced the complexity of hydrologic and water quality modeling. However, the ability to take advantage of sophist...
Absolute Points for Multiple Assignment Problems
ERIC Educational Resources Information Center
Adlakha, V.; Kowalski, K.
2006-01-01
An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…
Forecasting COPD hospitalization in the clinic: optimizing the chronic respiratory questionnaire
Abascal-Bolado, Beatriz; Novotny, Paul J; Sloan, Jeff A; Karpman, Craig; Dulohery, Megan M; Benzo, Roberto P
2015-01-01
Purpose Forecasting hospitalization in patients with COPD has gained significant interest in the field of COPD care. There is a need to find simple tools that can help clinicians to stratify the risk of hospitalization in these patients at the time of care. The perception of quality of life has been reported to be independently associated with hospitalizations, but questionnaires are impractical for daily clinical use. Individual questions from valid questionnaires can have robust predictive abilities, as has been suggested in previous reports, as a way to use patient-reported outcomes to forecast important events like hospitalizations in COPD. Our primary aim was to assess the predictive value of individual questions from the Chronic Respiratory Questionnaire Self-Assessment Survey (CRQ-SAS) on the risk of hospitalization and to develop a clinically relevant and simple algorithm that clinicians can use in routine practice to identify patients with an increased risk of hospitalization. Patients and methods A total of 493 patients with COPD prospectively recruited from an outpatient pulmonary clinic completed the CRQ-SAS, demographic information, pulmonary function testing, and clinical outcomes. The cohort had a mean age of 70 years, was 54% male, with forced expiratory volume in 1 second percentage predicted 42.8±16.7, and modified Medical Research Council dyspnea scale score of 2±1.13. Results Our analysis validated the original CRQ-SAS domains. Importantly, recursive partitioning analysis identified three CRQ-SAS items regarding fear or panic of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms that were highly predictive of hospitalization. We propose a robust (area under the curve =0.70) but short and easy algorithm for daily clinical care to forecast hospitalizations in patients with COPD. Conclusion We identified three themes – fear of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms – as important patient-reported outcomes to predict hospitalizations, and propose a short and easy algorithm to forecast hospitalizations in patients with COPD. PMID:26543362
Forecasting COPD hospitalization in the clinic: optimizing the chronic respiratory questionnaire.
Abascal-Bolado, Beatriz; Novotny, Paul J; Sloan, Jeff A; Karpman, Craig; Dulohery, Megan M; Benzo, Roberto P
2015-01-01
Forecasting hospitalization in patients with COPD has gained significant interest in the field of COPD care. There is a need to find simple tools that can help clinicians to stratify the risk of hospitalization in these patients at the time of care. The perception of quality of life has been reported to be independently associated with hospitalizations, but questionnaires are impractical for daily clinical use. Individual questions from valid questionnaires can have robust predictive abilities, as has been suggested in previous reports, as a way to use patient-reported outcomes to forecast important events like hospitalizations in COPD. Our primary aim was to assess the predictive value of individual questions from the Chronic Respiratory Questionnaire Self-Assessment Survey (CRQ-SAS) on the risk of hospitalization and to develop a clinically relevant and simple algorithm that clinicians can use in routine practice to identify patients with an increased risk of hospitalization. A total of 493 patients with COPD prospectively recruited from an outpatient pulmonary clinic completed the CRQ-SAS, demographic information, pulmonary function testing, and clinical outcomes. The cohort had a mean age of 70 years, was 54% male, with forced expiratory volume in 1 second percentage predicted 42.8±16.7, and modified Medical Research Council dyspnea scale score of 2±1.13. Our analysis validated the original CRQ-SAS domains. Importantly, recursive partitioning analysis identified three CRQ-SAS items regarding fear or panic of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms that were highly predictive of hospitalization. We propose a robust (area under the curve =0.70) but short and easy algorithm for daily clinical care to forecast hospitalizations in patients with COPD. We identified three themes - fear of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms - as important patient-reported outcomes to predict hospitalizations, and propose a short and easy algorithm to forecast hospitalizations in patients with COPD.
Komatsu, Takayuki; Takahashi, Erika; Mishima, Kentaro; Toyoda, Takeo; Saitoh, Fumihiro; Yasuda, Akari; Matsuoka, Joe; Sugita, Manabu; Branch, Joel; Aoki, Makoto; Tierney, Lawrence; Inoue, Kenji
2017-07-01
Predicting the presence of true bacteremia based on clinical examination is unreliable. We aimed to construct a simple algorithm for predicting true bacteremia by using food consumption and shaking chills. A prospective multicenter observational study. Three hospital centers in a large Japanese city. In total, 1,943 hospitalized patients aged 14 to 96 years who underwent blood culture acquisitions between April 2013 and August 2014 were enrolled. Patients with anorexia-inducing conditions were excluded. We assessed the patients' oral food intake based on the meal immediately prior to the blood culture with definition as "normal food consumption" when >80% of a meal was consumed and "poor food consumption" when <80% was consumed. We also concurrently evaluated for a history of shaking chills. We calculated the statistical characteristics of food consumption and shaking chills for the presence of true bacteremia, and subsequently built the algorithm by using recursive partitioning analysis. Among 1,943 patients, 223 cases were true bacteremia. Among patients with normal food consumption, without shaking chills, the incidence of true bacteremia was 2.4% (13/552). Among patients with poor food consumption and shaking chills, the incidence of true bacteremia was 47.7% (51/107). The presence of poor food consumption had a sensitivity of 93.7% (95% confidence interval [CI], 89.4%-97.9%) for true bacteremia, and the absence of poor food consumption (ie, normal food consumption) had a negative likelihood ratio (LR) of 0.18 (95% CI, 0.17-0.19) for excluding true bacteremia, respectively. Conversely, the presence of the shaking chills had a specificity of 95.1% (95% CI, 90.7%-99.4%) and a positive LR of 4.78 (95% CI, 4.56-5.00) for true bacteremia. A 2-item screening checklist for food consumption and shaking chills had excellent statistical properties as a brief screening instrument for predicting true bacteremia. © 2017 Society of Hospital Medicine
NASA Technical Reports Server (NTRS)
Molusis, J. A.
1982-01-01
An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. The data length required for acceptable parameter accuracy is shown to depend upon the amplitude of random response and the modal damping level. Random response amplitudes of 1.25 degrees to .05 degrees are investigated. The RML technique is applied to hingeless rotor test data. The inplane lag regressing mode is identified at different rotor speeds. The identification from the test data is compared with the simulation results and with other available estimates of frequency and damping.
NASA Astrophysics Data System (ADS)
Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui
2015-08-01
To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.
Stability of recursive out-of-sequence measurement filters: an open problem
NASA Astrophysics Data System (ADS)
Chen, Lingji; Moshtagh, Nima; Mehra, Raman K.
2011-06-01
In many applications where communication delays are present, measurements with earlier time stamps can arrive out-of-sequence, i.e., after state estimates have been obtained for the current time instant. To incorporate such an Out-Of-Sequence Measurement (OOSM), many algorithms have been proposed in the literature to obtain or approximate the optimal estimate that would have been obtained if the OOSM had arrived in-sequence. When OOSM occurs repeatedly, approximate estimations as a result of incorporating one OOSM have to serve as the basis for incorporating yet another OOSM. The question of whether the "approximation of approximation" is well behaved, i.e., whether approximation errors accumulate in a recursive setting, has not been adequately addressed in the literature. This paper draws attention to the stability question of recursive OOSM processing filters, formulates the problem in a specific setting, and presents some simulation results that suggest that such filters are indeed well-behaved. Our hope is that more research will be conducted in the future to rigorously establish stability properties of these filters.
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.
1988-01-01
This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.
A physics-motivated Centroidal Voronoi Particle domain decomposition method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Lin, E-mail: lin.fu@tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de
2017-04-15
In this paper, we propose a novel domain decomposition method for large-scale simulations in continuum mechanics by merging the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics (VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains by the Lloyd algorithm which monotonically decreases the CVT energy. The number of computational elements between neighboring partitioning subdomains, which scales the communication effort for parallel simulations, is optimized implicitly as the generated partitioning subdomains are convex and simply connected with small aspect-ratios. Moreover, Voronoi Particle dynamics employing physical analogy with a tailored equation of state ismore » developed, which relaxes the particle system towards the target partition with good load balance. Since the equilibrium is computed by an iterative approach, the partitioning subdomains exhibit locality and the incremental property. Numerical experiments reveal that the proposed Centroidal Voronoi Particle (CVP) based algorithm produces high-quality partitioning with high efficiency, independently of computational-element types. Thus it can be used for a wide range of applications in computational science and engineering.« less
Spatial partitioning algorithms for data visualization
NASA Astrophysics Data System (ADS)
Devulapalli, Raghuveer; Quist, Mikael; Carlsson, John Gunnar
2013-12-01
Spatial partitions of an information space are frequently used for data visualization. Weighted Voronoi diagrams are among the most popular ways of dividing a space into partitions. However, the problem of computing such a partition efficiently can be challenging. For example, a natural objective is to select the weights so as to force each Voronoi region to take on a pre-defined area, which might represent the relevance or market share of an informational object. In this paper, we present an easy and fast algorithm to compute these weights of the Voronoi diagrams. Unlike previous approaches whose convergence properties are not well-understood, we give a formulation to the problem based on convex optimization with excellent performance guarantees in theory and practice. We also show how our technique can be used to control the shape of these partitions. More specifically we show how to convert undesirable skinny and long regions into fat regions while maintaining the areas of the partitions. As an application, we use these to visualize the amount of website traffic for the top 101 websites.
A physics-motivated Centroidal Voronoi Particle domain decomposition method
NASA Astrophysics Data System (ADS)
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-04-01
In this paper, we propose a novel domain decomposition method for large-scale simulations in continuum mechanics by merging the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics (VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains by the Lloyd algorithm which monotonically decreases the CVT energy. The number of computational elements between neighboring partitioning subdomains, which scales the communication effort for parallel simulations, is optimized implicitly as the generated partitioning subdomains are convex and simply connected with small aspect-ratios. Moreover, Voronoi Particle dynamics employing physical analogy with a tailored equation of state is developed, which relaxes the particle system towards the target partition with good load balance. Since the equilibrium is computed by an iterative approach, the partitioning subdomains exhibit locality and the incremental property. Numerical experiments reveal that the proposed Centroidal Voronoi Particle (CVP) based algorithm produces high-quality partitioning with high efficiency, independently of computational-element types. Thus it can be used for a wide range of applications in computational science and engineering.
Applying graph partitioning methods in measurement-based dynamic load balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav; Fourestier, Sebastien; Menon, Harshitha
Load imbalance leads to an increasing waste of resources as an application is scaled to more and more processors. Achieving the best parallel efficiency for a program requires optimal load balancing which is a NP-hard problem. However, finding near-optimal solutions to this problem for complex computational science and engineering applications is becoming increasingly important. Charm++, a migratable objects based programming model, provides a measurement-based dynamic load balancing framework. This framework instruments and then migrates over-decomposed objects to balance computational load and communication at runtime. This paper explores the use of graph partitioning algorithms, traditionally used for partitioning physical domains/meshes, formore » measurement-based dynamic load balancing of parallel applications. In particular, we present repartitioning methods developed in a graph partitioning toolbox called SCOTCH that consider the previous mapping to minimize migration costs. We also discuss a new imbalance reduction algorithm for graphs with irregular load distributions. We compare several load balancing algorithms using microbenchmarks on Intrepid and Ranger and evaluate the effect of communication, number of cores and number of objects on the benefit achieved from load balancing. New algorithms developed in SCOTCH lead to better performance compared to the METIS partitioners for several cases, both in terms of the application execution time and fewer number of objects migrated.« less
Some Algorithms for the Recursive Input-Output Modeling of 2-D Systems.
1979-12-01
is viewed as a 2-D prediction problem. This problem is solved recursvl by general ling the r nQ0 .-- UNCLASSIFIED SECURITY CLASSIVICATIOI; OF THr3... generalizing to the 2-D case an algorithm due to Levinson in the I-D case. The predictors obtained by this algorithm are then showed to converge to...ijzn-i M-j a(z,) = I a i m , a0 0 = 1 (6a) i=0 j=0 is monic, and n m b(z,w) = I b ij zn’ipm’j (6b) i=o j=0 There is no loss of generality in making
An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem
NASA Astrophysics Data System (ADS)
Afshar Nadjafi, Behrouz; Shadrokh, Shahram
This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.
Padilla, Jennifer E.; Liu, Wenyan; Seeman, Nadrian C.
2012-01-01
We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution. PMID:23226722
Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C
2012-06-01
We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.
A parameter estimation algorithm for spatial sine testing - Theory and evaluation
NASA Technical Reports Server (NTRS)
Rost, R. W.; Deblauwe, F.
1992-01-01
This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.
Formal verification of an oral messages algorithm for interactive consistency
NASA Technical Reports Server (NTRS)
Rushby, John
1992-01-01
The formal specification and verification of an algorithm for Interactive Consistency based on the Oral Messages algorithm for Byzantine Agreement is described. We compare our treatment with that of Bevier and Young, who presented a formal specification and verification for a very similar algorithm. Unlike Bevier and Young, who observed that 'the invariant maintained in the recursive subcases of the algorithm is significantly more complicated than is suggested by the published proof' and who found its formal verification 'a fairly difficult exercise in mechanical theorem proving,' our treatment is very close to the previously published analysis of the algorithm, and our formal specification and verification are straightforward. This example illustrates how delicate choices in the formulation of the problem can have significant impact on the readability of its formal specification and on the tractability of its formal verification.
An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems
NASA Astrophysics Data System (ADS)
Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu
2018-04-01
There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.
Optimum and Heuristic Algorithms for Finite State Machine Decomposition and Partitioning
1989-09-01
Heuristic Algorithms for Finite State Machine Decomposition and Partitioning Pravnav Ashar, Srinivas Devadas , and A. Richard Newton , T E’,’ .,jpf~s’!i3...94720. Devadas : Department of Electrical Engineering and Computer Science, Room 36-848, MIT, Cambridge, MA 02139. (617) 253-0454. Copyright* 1989 MIT...and reduction, A finite state miachinie is represenutedl by its State Transition Graphi itodlitied froini two-level B ~oolean imiinimizers. Ilist
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay
1991-01-01
A framework for a decentralized hierarchical controller partitioning structure is developed. This structure allows for the design of separate airframe and propulsion controllers which, when assembled, will meet the overall design criterion for the integrated airframe/propulsion system. An algorithm based on parameter optimization of the state-space representation for the subsystem controllers is described. The algorithm is currently being applied to an integrated flight propulsion control design example.
Chen, Wenbin; Hendrix, William; Samatova, Nagiza F
2017-12-01
The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.
High performance genetic algorithm for VLSI circuit partitioning
NASA Astrophysics Data System (ADS)
Dinu, Simona
2016-12-01
Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.
Document segmentation via oblique cuts
NASA Astrophysics Data System (ADS)
Svendsen, Jeremy; Branzan-Albu, Alexandra
2013-01-01
This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.
Two-Jet Rate in e+e- at Next-to-Next-to-Leading-Logarithmic Order
NASA Astrophysics Data System (ADS)
Banfi, Andrea; McAslan, Heather; Monni, Pier Francesco; Zanderighi, Giulia
2016-10-01
We present the first next-to-next-to-leading-logarithmic resummation for the two-jet rate in e+e- annihilation in the Durham and Cambridge algorithms. The results are obtained by extending the ares method to observables involving any global, recursively infrared and collinear safe jet algorithm in e+e- collisions. As opposed to other methods, this approach does not require a factorization theorem for the observables. We present predictions matched to next-to-next-to-leading order and a comparison to LEP data.
Compressed storage of arterial pressure waveforms by selection of significant points.
de Graaf, P M; van Goudoever, J; Wesseling, K H
1997-09-01
Continuous records of arterial blood pressure can be obtained non-invasively with Finapres, even for periods of 24 hours. Increasingly, storage of such records is done digitally, requiring large disc capacities. It is therefore necessary to find methods to store blood pressure waveforms in compressed form. The method of selection of significant points known from ECG data compression is adapted. Points are selected as significant wherever the first derivative of the pressure wave changes sign. As a second stage recursive partitioning is used to select additional points such that the difference between the selected points, linearly interpolated, and the original curve remains below a maximum. This method is tested on finger arterial pressure waveform epochs of 60 s duration taken from 32 patients with a wide range of blood pressures and heart rates. An average compression factor of 4.6 (SD 1.0) is obtained when accepting a maximum difference of 3 mmHg. The root mean squared error is 1 mmHg averaged over the group of patient waveforms. Clinically relevant parameters such as systolic, diastolic and mean pressure are reproduced with an offset error of less than 0.5 (0.3) mmHg and scatter less than 0.6 (0.1) mmHg. It is concluded that a substantial compression factor can be achieved with a simple and computationally fast algorithm and little deterioration in waveform quality and pressure level accuracy.
Holliday, Jason A; Wang, Tongli; Aitken, Sally
2012-09-01
Climate is the primary driver of the distribution of tree species worldwide, and the potential for adaptive evolution will be an important factor determining the response of forests to anthropogenic climate change. Although association mapping has the potential to improve our understanding of the genomic underpinnings of climatically relevant traits, the utility of adaptive polymorphisms uncovered by such studies would be greatly enhanced by the development of integrated models that account for the phenotypic effects of multiple single-nucleotide polymorphisms (SNPs) and their interactions simultaneously. We previously reported the results of association mapping in the widespread conifer Sitka spruce (Picea sitchensis). In the current study we used the recursive partitioning algorithm 'Random Forest' to identify optimized combinations of SNPs to predict adaptive phenotypes. After adjusting for population structure, we were able to explain 37% and 30% of the phenotypic variation, respectively, in two locally adaptive traits--autumn budset timing and cold hardiness. For each trait, the leading five SNPs captured much of the phenotypic variation. To determine the role of epistasis in shaping these phenotypes, we also used a novel approach to quantify the strength and direction of pairwise interactions between SNPs and found such interactions to be common. Our results demonstrate the power of Random Forest to identify subsets of markers that are most important to climatic adaptation, and suggest that interactions among these loci may be widespread.
Pieters, Thomas A; Conner, Christopher R; Tandon, Nitin
2013-05-01
Precise localization of subdural electrodes (SDEs) is essential for the interpretation of data from intracranial electrocorticography recordings. Blood and fluid accumulation underneath the craniotomy flap leads to a nonlinear deformation of the brain surface and of the SDE array on postoperative CT scans and adversely impacts the accurate localization of electrodes located underneath the craniotomy. Older methods that localize electrodes based on their identification on a postimplantation CT scan with coregistration to a preimplantation MR image can result in significant problems with accuracy of the electrode localization. The authors report 3 novel methods that rely on the creation of a set of 3D mesh models to depict the pial surface and a smoothed pial envelope. Two of these new methods are designed to localize electrodes, and they are compared with 6 methods currently in use to determine their relative accuracy and reliability. The first method involves manually localizing each electrode using digital photographs obtained at surgery. This is highly accurate, but requires time intensive, operator-dependent input. The second uses 4 electrodes localized manually in conjunction with an automated, recursive partitioning technique to localize the entire electrode array. The authors evaluated the accuracy of previously published methods by applying the methods to their data and comparing them against the photograph-based localization. Finally, the authors further enhanced the usability of these methods by using automatic parcellation techniques to assign anatomical labels to individual electrodes as well as by generating an inflated cortical surface model while still preserving electrode locations relative to the cortical anatomy. The recursive grid partitioning had the least error compared with older methods (672 electrodes, 6.4-mm maximum electrode error, 2.0-mm mean error, p < 10(-18)). The maximum errors derived using prior methods of localization ranged from 8.2 to 11.7 mm for an individual electrode, with mean errors ranging between 2.9 and 4.1 mm depending on the method used. The authors also noted a larger error in all methods that used CT scans alone to localize electrodes compared with those that used both postoperative CT and postoperative MRI. The large mean errors reported with these methods are liable to affect intermodal data comparisons (for example, with functional mapping techniques) and may impact surgical decision making. The authors have presented several aspects of using new techniques to visualize electrodes implanted for localizing epilepsy. The ability to use automated labeling schemas to denote which gyrus a particular electrode overlies is potentially of great utility in planning resections and in corroborating the results of extraoperative stimulation mapping. Dilation of the pial mesh model provides, for the first time, a sense of the cortical surface not sampled by the electrode, and the potential roles this "electrophysiologically hidden" cortex may play in both eloquent function and seizure onset.
Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples.
Viswanath, Shruthi; Kreuzer, Steven M; Cardenas, Alfredo E; Elber, Ron
2013-11-07
Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.
NASA Astrophysics Data System (ADS)
Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe
2014-09-01
Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.
Combinatorial approximation algorithms for MAXCUT using random walks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Kale, Satyen
We give the first combinatorial approximation algorithm for MaxCut that beats the trivial 0.5 factor by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially performs a number of random walks and aggregates the information to provide the partition. We can control the running time to get an approximation factor-running time tradeoff. We show that for any constant b > 1.5, there is an {tilde O}(n{sup b}) algorithm that outputs a (0.5 + {delta})-approximation for MaxCut, where {delta} = {delta}(b) is some positive constant. One of the components of our algorithm is a weakmore » local graph partitioning procedure that may be of independent interest. Given a starting vertex i and a conductance parameter {phi}, unless a random walk of length {ell} = O(log n) starting from i mixes rapidly (in terms of {phi} and {ell}), we can find a cut of conductance at most {phi} close to the vertex. The work done per vertex found in the cut is sublinear in n.« less
Semi-implicit time integration of atmospheric flows with characteristic-based flux partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Constantinescu, Emil M.
2016-06-23
Here, this paper presents a characteristic-based flux partitioning for the semi-implicit time integration of atmospheric flows. Nonhydrostatic models require the solution of the compressible Euler equations. The acoustic time scale is significantly faster than the advective scale, yet it is typically not relevant to atmospheric and weather phenomena. The acoustic and advective components of the hyperbolic flux are separated in the characteristic space. High-order, conservative additive Runge-Kutta methods are applied to the partitioned equations so that the acoustic component is integrated in time implicitly with an unconditionally stable method, while the advective component is integrated explicitly. The time step ofmore » the overall algorithm is thus determined by the advective scale. Benchmark flow problems are used to demonstrate the accuracy, stability, and convergence of the proposed algorithm. The computational cost of the partitioned semi-implicit approach is compared with that of explicit time integration.« less
Competitive learning with pairwise constraints.
Covões, Thiago F; Hruschka, Eduardo R; Ghosh, Joydeep
2013-01-01
Constrained clustering has been an active research topic since the last decade. Most studies focus on batch-mode algorithms. This brief introduces two algorithms for on-line constrained learning, named on-line linear constrained vector quantization error (O-LCVQE) and constrained rival penalized competitive learning (C-RPCL). The former is a variant of the LCVQE algorithm for on-line settings, whereas the latter is an adaptation of the (on-line) RPCL algorithm to deal with constrained clustering. The accuracy results--in terms of the normalized mutual information (NMI)--from experiments with nine datasets show that the partitions induced by O-LCVQE are competitive with those found by the (batch-mode) LCVQE. Compared with this formidable baseline algorithm, it is surprising that C-RPCL can provide better partitions (in terms of the NMI) for most of the datasets. Also, experiments on a large dataset show that on-line algorithms for constrained clustering can significantly reduce the computational time.
Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework
Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.
2016-01-01
Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of TOF scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (Direct Image Reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias vs. variance performance to iterative TOF reconstruction with a matched resolution model. PMID:27032968
Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework
NASA Astrophysics Data System (ADS)
Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.
2016-05-01
Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.
Multi-A Graph Patrolling and Partitioning
NASA Astrophysics Data System (ADS)
Elor, Y.; Bruckstein, A. M.
2012-12-01
We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.
NASA Astrophysics Data System (ADS)
Ramazani, Saba; Jackson, Delvin L.; Selmic, Rastko R.
2013-05-01
In search and surveillance operations, deploying a team of mobile agents provides a robust solution that has multiple advantages over using a single agent in efficiency and minimizing exploration time. This paper addresses the challenge of identifying a target in a given environment when using a team of mobile agents by proposing a novel method of mapping and movement of agent teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, mobile agents have an efficient travel path while performing searches due to this partitioning approach. Second, we use a team of mobile agents that move in a cooperative manner and utilize the Tabu Random algorithm to search for the target. Due to the ever-increasing use of robotics and Unmanned Aerial Vehicle (UAV) platforms, the field of cooperative multi-agent search has developed many applications recently that would benefit from the use of the approach presented in this work, including: search and rescue operations, surveillance, data collection, and border patrol. In this paper, the increased efficiency of the Tabu Random Search algorithm method in combination with hexagonal partitioning is simulated, analyzed, and advantages of this approach are presented and discussed.
A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure
NASA Astrophysics Data System (ADS)
Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong
2011-08-01
We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.
Reeder, Jens; Giegerich, Robert
2004-01-01
Background The general problem of RNA secondary structure prediction under the widely used thermodynamic model is known to be NP-complete when the structures considered include arbitrary pseudoknots. For restricted classes of pseudoknots, several polynomial time algorithms have been designed, where the O(n6)time and O(n4) space algorithm by Rivas and Eddy is currently the best available program. Results We introduce the class of canonical simple recursive pseudoknots and present an algorithm that requires O(n4) time and O(n2) space to predict the energetically optimal structure of an RNA sequence, possible containing such pseudoknots. Evaluation against a large collection of known pseudoknotted structures shows the adequacy of the canonization approach and our algorithm. Conclusions RNA pseudoknots of medium size can now be predicted reliably as well as efficiently by the new algorithm. PMID:15294028
Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning
Wohlfahrt, Georg; Galvagno, Marta
2017-01-01
So-called CO2 flux partitioning algorithms are widely used to partition the net ecosystem CO2 exchange into the two component fluxes, gross primary productivity and ecosystem respiration. Common CO2 flux partitioning algorithms conceptualize ecosystem respiration to originate from a single source, requiring the choice of a corresponding driving temperature. Using a conceptual dual-source respiration model, consisting of an above- and a below-ground respiration source each driven by a corresponding temperature, we demonstrate that the typical phase shift between air and soil temperature gives rise to a hysteresis relationship between ecosystem respiration and temperature. The hysteresis proceeds in a clockwise fashion if soil temperature is used to drive ecosystem respiration, while a counter-clockwise response is observed when ecosystem respiration is related to air temperature. As a consequence, nighttime ecosystem respiration is smaller than daytime ecosystem respiration when referenced to soil temperature, while the reverse is true for air temperature. We confirm these qualitative modelling results using measurements of day and night ecosystem respiration made with opaque chambers in a short-statured mountain grassland. Inferring daytime from nighttime ecosystem respiration or vice versa, as attempted by CO2 flux partitioning algorithms, using a single-source respiration model is thus an oversimplification resulting in biased estimates of ecosystem respiration. We discuss the likely magnitude of the bias, options for minimizing it and conclude by emphasizing that the systematic uncertainty of gross primary productivity and ecosystem respiration inferred through CO2 flux partitioning needs to be better quantified and reported. PMID:28439145
Recursive regularization for inferring gene networks from time-course gene expression profiles
Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru
2009-01-01
Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091
Fixed interval smoothing with discrete measurements.
NASA Technical Reports Server (NTRS)
Bierman, G. J.
1972-01-01
Smoothing equations for a linear continuous dynamic system with linear discrete measurements, derived from the discrete results of Rauch, Tung, and Striebel (1965), (R-T-S), are used to extend, through recursive updating, the previously published results of Bryson and Frazier (1963), (B-F), and yield a modified Bryson and Frazier, (M-B-F), algorithm. A comparison of the (M-B-F) and (R-T-S) algorithms leads to the conclusion that the former is to be preferred because it entails less computation, less storage, and less instability. It is felt that the presented (M-B-F) smoothing algorithm is a practical mechanization and should be of value in smoothing discretely observed dynamic linear systems.
Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.
Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo
2011-01-01
In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.
Self-tuning control of attitude and momentum management for the Space Station
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.
1992-01-01
This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.
Model Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster
On the Multilevel Solution Algorithm for Markov Chains
NASA Technical Reports Server (NTRS)
Horton, Graham
1997-01-01
We discuss the recently introduced multilevel algorithm for the steady-state solution of Markov chains. The method is based on an aggregation principle which is well established in the literature and features a multiplicative coarse-level correction. Recursive application of the aggregation principle, which uses an operator-dependent coarsening, yields a multi-level method which has been shown experimentally to give results significantly faster than the typical methods currently in use. When cast as a multigrid-like method, the algorithm is seen to be a Galerkin-Full Approximation Scheme with a solution-dependent prolongation operator. Special properties of this prolongation lead to the cancellation of the computationally intensive terms of the coarse-level equations.
Raster Data Partitioning for Supporting Distributed GIS Processing
NASA Astrophysics Data System (ADS)
Nguyen Thai, B.; Olasz, A.
2015-08-01
In the geospatial sector big data concept also has already impact. Several studies facing originally computer science techniques applied in GIS processing of huge amount of geospatial data. In other research studies geospatial data is considered as it were always been big data (Lee and Kang, 2015). Nevertheless, we can prove data acquisition methods have been improved substantially not only the amount, but the resolution of raw data in spectral, spatial and temporal aspects as well. A significant portion of big data is geospatial data, and the size of such data is growing rapidly at least by 20% every year (Dasgupta, 2013). The produced increasing volume of raw data, in different format, representation and purpose the wealth of information derived from this data sets represents only valuable results. However, the computing capability and processing speed rather tackle with limitations, even if semi-automatic or automatic procedures are aimed on complex geospatial data (Kristóf et al., 2014). In late times, distributed computing has reached many interdisciplinary areas of computer science inclusive of remote sensing and geographic information processing approaches. Cloud computing even more requires appropriate processing algorithms to be distributed and handle geospatial big data. Map-Reduce programming model and distributed file systems have proven their capabilities to process non GIS big data. But sometimes it's inconvenient or inefficient to rewrite existing algorithms to Map-Reduce programming model, also GIS data can not be partitioned as text-based data by line or by bytes. Hence, we would like to find an alternative solution for data partitioning, data distribution and execution of existing algorithms without rewriting or with only minor modifications. This paper focuses on technical overview of currently available distributed computing environments, as well as GIS data (raster data) partitioning, distribution and distributed processing of GIS algorithms. A proof of concept implementation have been made for raster data partitioning, distribution and processing. The first results on performance have been compared against commercial software ERDAS IMAGINE 2011 and 2014. Partitioning methods heavily depend on application areas, therefore we may consider data partitioning as a preprocessing step before applying processing services on data. As a proof of concept we have implemented a simple tile-based partitioning method splitting an image into smaller grids (NxM tiles) and comparing the processing time to existing methods by NDVI calculation. The concept is demonstrated using own development open source processing framework.
Improvement in Recursive Hierarchical Segmentation of Data
NASA Technical Reports Server (NTRS)
Tilton, James C.
2006-01-01
A further modification has been made in the algorithm and implementing software reported in Modified Recursive Hierarchical Segmentation of Data (GSC- 14681-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 51. That software performs recursive hierarchical segmentation of data having spatial characteristics (e.g., spectral-image data). The output of a prior version of the software contained artifacts, including spurious segmentation-image regions bounded by processing-window edges. The modification for suppressing the artifacts, mentioned in the cited article, was addition of a subroutine that analyzes data in the vicinities of seams to find pairs of regions that tend to lie adjacent to each other on opposite sides of the seams. Within each such pair, pixels in one region that are more similar to pixels in the other region are reassigned to the other region. The present modification provides for a parameter ranging from 0 to 1 for controlling the relative priority of merges between spatially adjacent and spatially non-adjacent regions. At 1, spatially-adjacent-/spatially- non-adjacent-region merges have equal priority. At 0, only spatially-adjacent-region merges (no spectral clustering) are allowed. Between 0 and 1, spatially-adjacent- region merges have priority over spatially- non-adjacent ones.
Recursive feature selection with significant variables of support vectors.
Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh
2012-01-01
The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.
The VLSI design of an error-trellis syndrome decoder for certain convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Jensen, J. M.; Hsu, I.-S.; Truong, T. K.
1986-01-01
A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.
The VLSI design of error-trellis syndrome decoding for convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Jensen, J. M.; Truong, T. K.; Hsu, I. S.
1985-01-01
A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.
Fast and simple high-capacity quantum cryptography with error detection
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.
2017-01-01
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth. PMID:28406240
Fast and simple high-capacity quantum cryptography with error detection.
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A
2017-04-13
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.
Fast and simple high-capacity quantum cryptography with error detection
NASA Astrophysics Data System (ADS)
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.
2017-04-01
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.
Multiple-camera/motion stereoscopy for range estimation in helicopter flight
NASA Technical Reports Server (NTRS)
Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.
1993-01-01
Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.
NASA Astrophysics Data System (ADS)
Korayem, M. H.; Shafei, A. M.
2013-02-01
The goal of this paper is to describe the application of Gibbs-Appell (G-A) formulation and the assumed modes method to the mathematical modeling of N-viscoelastic link manipulators. The paper's focus is on obtaining accurate and complete equations of motion which encompass the most related structural properties of lightweight elastic manipulators. In this study, two important damping mechanisms, namely, the structural viscoelasticity (Kelvin-Voigt) effect (as internal damping) and the viscous air effect (as external damping) have been considered. To include the effects of shear and rotational inertia, the assumption of Timoshenko beam (TB) theory (TBT) has been applied. Gravity, torsion, and longitudinal elongation effects have also been included in the formulations. To systematically derive the equations of motion and improve the computational efficiency, a recursive algorithm has been used in the modeling of the system. In this algorithm, all the mathematical operations are carried out by only 3×3 and 3×1 matrices. Finally, a computational simulation for a manipulator with two elastic links is performed in order to verify the proposed method.
Mean field analysis of algorithms for scale-free networks in molecular biology
2017-01-01
The sampling of scale-free networks in Molecular Biology is usually achieved by growing networks from a seed using recursive algorithms with elementary moves which include the addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algorithm and the iSite algorithm, were inspired by biological processes underlying the evolution of protein networks, and the networks they produce differ essentially from networks grown by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is reconsidered, and extended to variant and modified implementations of the algorithms. The degree sequences of scale-free networks decay according to a powerlaw distribution, namely P(k) ∼ k−γ, where γ is a scaling exponent. We derive mean field expressions for γ, and test these by numerical simulations. Generally, good agreement is obtained. We also found that some algorithms do not produce scale-free networks (for example some variant Barabási-Albert and Solé networks). PMID:29272285
Mean field analysis of algorithms for scale-free networks in molecular biology.
Konini, S; Janse van Rensburg, E J
2017-01-01
The sampling of scale-free networks in Molecular Biology is usually achieved by growing networks from a seed using recursive algorithms with elementary moves which include the addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algorithm and the iSite algorithm, were inspired by biological processes underlying the evolution of protein networks, and the networks they produce differ essentially from networks grown by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is reconsidered, and extended to variant and modified implementations of the algorithms. The degree sequences of scale-free networks decay according to a powerlaw distribution, namely P(k) ∼ k-γ, where γ is a scaling exponent. We derive mean field expressions for γ, and test these by numerical simulations. Generally, good agreement is obtained. We also found that some algorithms do not produce scale-free networks (for example some variant Barabási-Albert and Solé networks).
Image Segmentation Analysis for NASA Earth Science Applications
NASA Technical Reports Server (NTRS)
Tilton, James C.
2010-01-01
NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.
Mesh Algorithms for PDE with Sieve I: Mesh Distribution
Knepley, Matthew G.; Karpeev, Dmitry A.
2009-01-01
We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havu, V.; Fritz Haber Institute of the Max Planck Society, Berlin; Blum, V.
2009-12-01
We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as themore » more rigorous bottom-up approaches.« less
Regier, Michael D; Moodie, Erica E M
2016-05-01
We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained. A simulation study is used to explore the finite sample properties of the proposed extension when there is missing data and measurement error. We observe that partitioning the EM algorithm into simpler steps may provide better bias reduction in the estimation of model parameters. The ability to breakdown a complicated problem in to a series of simpler, more accessible problems will permit a broader implementation of the EM algorithm, permit the use of software packages that now implement and/or automate the EM algorithm, and make the EM algorithm more accessible to a wider and more general audience.
Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing
2016-03-03
This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.
Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach
Wang, Chi; Liu, Xueqing; Song, Yanglei; Han, Jiawei
2015-01-01
Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies. PMID:26705505
Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach.
Wang, Chi; Liu, Xueqing; Song, Yanglei; Han, Jiawei
2015-08-01
Automatic construction of user-desired topical hierarchies over large volumes of text data is a highly desirable but challenging task. This study proposes to give users freedom to construct topical hierarchies via interactive operations such as expanding a branch and merging several branches. Existing hierarchical topic modeling techniques are inadequate for this purpose because (1) they cannot consistently preserve the topics when the hierarchy structure is modified; and (2) the slow inference prevents swift response to user requests. In this study, we propose a novel method, called STROD, that allows efficient and consistent modification of topic hierarchies, based on a recursive generative model and a scalable tensor decomposition inference algorithm with theoretical performance guarantee. Empirical evaluation shows that STROD reduces the runtime of construction by several orders of magnitude, while generating consistent and quality hierarchies.
Weights and topology: a study of the effects of graph construction on 3D image segmentation.
Grady, Leo; Jolly, Marie-Pierre
2008-01-01
Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.
Normalized Cut Algorithm for Automated Assignment of Protein Domains
NASA Technical Reports Server (NTRS)
Samanta, M. P.; Liang, S.; Zha, H.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present a novel computational method for automatic assignment of protein domains from structural data. At the core of our algorithm lies a recently proposed clustering technique that has been very successful for image-partitioning applications. This grap.,l-theory based clustering method uses the notion of a normalized cut to partition. an undirected graph into its strongly-connected components. Computer implementation of our method tested on the standard comparison set of proteins from the literature shows a high success rate (84%), better than most existing alternative In addition, several other features of our algorithm, such as reliance on few adjustable parameters, linear run-time with respect to the size of the protein and reduced complexity compared to other graph-theory based algorithms, would make it an attractive tool for structural biologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki
2007-02-01
We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontallymore » placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine.« less
Crashworthiness simulations with DYNA3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauer, D.A.; Hoover, C.G.; Kay, G.J.
1996-04-01
Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soilmore » has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.« less
Efficient Boundary Extraction of BSP Solids Based on Clipping Operations.
Wang, Charlie C L; Manocha, Dinesh
2013-01-01
We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.
Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin
2017-06-14
The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.
Prosperi, Mattia C F; De Luca, Andrea; Di Giambenedetto, Simona; Bracciale, Laura; Fabbiani, Massimiliano; Cauda, Roberto; Salemi, Marco
2010-10-25
Phylogenetic methods produce hierarchies of molecular species, inferring knowledge about taxonomy and evolution. However, there is not yet a consensus methodology that provides a crisp partition of taxa, desirable when considering the problem of intra/inter-patient quasispecies classification or infection transmission event identification. We introduce the threshold bootstrap clustering (TBC), a new methodology for partitioning molecular sequences, that does not require a phylogenetic tree estimation. The TBC is an incremental partition algorithm, inspired by the stochastic Chinese restaurant process, and takes advantage of resampling techniques and models of sequence evolution. TBC uses as input a multiple alignment of molecular sequences and its output is a crisp partition of the taxa into an automatically determined number of clusters. By varying initial conditions, the algorithm can produce different partitions. We describe a procedure that selects a prime partition among a set of candidate ones and calculates a measure of cluster reliability. TBC was successfully tested for the identification of type-1 human immunodeficiency and hepatitis C virus subtypes, and compared with previously established methodologies. It was also evaluated in the problem of HIV-1 intra-patient quasispecies clustering, and for transmission cluster identification, using a set of sequences from patients with known transmission event histories. TBC has been shown to be effective for the subtyping of HIV and HCV, and for identifying intra-patient quasispecies. To some extent, the algorithm was able also to infer clusters corresponding to events of infection transmission. The computational complexity of TBC is quadratic in the number of taxa, lower than other established methods; in addition, TBC has been enhanced with a measure of cluster reliability. The TBC can be useful to characterise molecular quasipecies in a broad context.
Ghalyan, Najah F; Miller, David J; Ray, Asok
2018-06-12
Estimation of a generating partition is critical for symbolization of measurements from discrete-time dynamical systems, where a sequence of symbols from a (finite-cardinality) alphabet may uniquely specify the underlying time series. Such symbolization is useful for computing measures (e.g., Kolmogorov-Sinai entropy) to identify or characterize the (possibly unknown) dynamical system. It is also useful for time series classification and anomaly detection. The seminal work of Hirata, Judd, and Kilminster (2004) derives a novel objective function, akin to a clustering objective, that measures the discrepancy between a set of reconstruction values and the points from the time series. They cast estimation of a generating partition via the minimization of their objective function. Unfortunately, their proposed algorithm is nonconvergent, with no guarantee of finding even locally optimal solutions with respect to their objective. The difficulty is a heuristic-nearest neighbor symbol assignment step. Alternatively, we develop a novel, locally optimal algorithm for their objective. We apply iterative nearest-neighbor symbol assignments with guaranteed discrepancy descent, by which joint, locally optimal symbolization of the entire time series is achieved. While most previous approaches frame generating partition estimation as a state-space partitioning problem, we recognize that minimizing the Hirata et al. (2004) objective function does not induce an explicit partitioning of the state space, but rather the space consisting of the entire time series (effectively, clustering in a (countably) infinite-dimensional space). Our approach also amounts to a novel type of sliding block lossy source coding. Improvement, with respect to several measures, is demonstrated over popular methods for symbolizing chaotic maps. We also apply our approach to time-series anomaly detection, considering both chaotic maps and failure application in a polycrystalline alloy material.
A Framework for an Automated Compilation System for Reconfigurable Architectures
1997-03-01
HDLs, Hardware C requires the designer to be thoroughly familiar with digital hardware design. 48 Vahid, Gong, and Gajski focus on the partitioning...of hardware used. Vahid, Gong, and Gajski suggest that the greedy approach used by Gupta and De Micheli is easily trapped in local minimums [46:216...iterative algorithm. To overcome this limitation, the Vahid, Gong, and Gajski suggest a binary constraint partitioning approach. The partitioning
Recursive optimal pruning with applications to tree structured vector quantizers
NASA Technical Reports Server (NTRS)
Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen
1992-01-01
A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Ndarts software provides algorithms for computing quantities associated with the dynamics of articulated, rigid-link, multibody systems. It is designed as a general-purpose dynamics library that can be used for the modeling of robotic platforms, space vehicles, molecular dynamics, and other such applications. The architecture and algorithms in Ndarts are based on the Spatial Operator Algebra (SOA) theory for computational multibody and robot dynamics developed at JPL. It uses minimal, internal coordinate models. The algorithms are low-order, recursive scatter/ gather algorithms. In comparison with the earlier Darts++ software, this version has a more general and cleaner design needed to support a larger class of computational dynamics needs. It includes a frames infrastructure, allows algorithms to operate on subgraphs of the system, and implements lazy and deferred computation for better efficiency. Dynamics modeling modules such as Ndarts are core building blocks of control and simulation software for space, robotic, mechanism, bio-molecular, and material systems modeling.
A Machine-Checked Proof of A State-Space Construction Algorithm
NASA Technical Reports Server (NTRS)
Catano, Nestor; Siminiceanu, Radu I.
2010-01-01
This paper presents the correctness proof of Saturation, an algorithm for generating state spaces of concurrent systems, implemented in the SMART tool. Unlike the Breadth First Search exploration algorithm, which is easy to understand and formalise, Saturation is a complex algorithm, employing a mutually-recursive pair of procedures that compute a series of non-trivial, nested local fixed points, corresponding to a chaotic fixed point strategy. A pencil-and-paper proof of Saturation exists, but a machine checked proof had never been attempted. The key element of the proof is the characterisation theorem of saturated nodes in decision diagrams, stating that a saturated node represents a set of states encoding a local fixed-point with respect to firing all events affecting only the node s level and levels below. For our purpose, we have employed the Prototype Verification System (PVS) for formalising the Saturation algorithm, its data structures, and for conducting the proofs.
"ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANTHI, NANDAKISHORE
We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relativemore » error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.« less
A Novel Coarsening Method for Scalable and Efficient Mesh Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, A; Hysom, D; Gunney, B
2010-12-02
In this paper, we propose a novel mesh coarsening method called brick coarsening method. The proposed method can be used in conjunction with any graph partitioners and scales to very large meshes. This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes called bricks, layered in a similar way to conventional brick laying, and then assigning each node of the original mesh to appropriate brick. Our experiments indicate that the proposed method scales to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. Our results further indicatemore » that the proposed brick-coarsening method allows more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with relatively good edge-cut metric. Graph partitioning is an important problem that has many scientific and engineering applications in such areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices of the graph (V) into k disjoint groups such that each group contains roughly equal number of vertices and the number of edges connecting vertices in different groups is minimized. Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations, as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across computing nodes. The impact of graph partitioning on the reduction of communication can be easily seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These brick are then laid in a way similar to conventional brick laying technique, which reduces the number of neighboring blocks each block needs to communicate. Contributions of this research are as follows: (1) We have developed a novel method that scales to a really large problem size while producing high quality mesh partitions; (2) We measured the performance and scalability of the proposed method on a machine of massive size using a set of actual large complex data sets, where we have scaled to a mesh with 110 million zones using our method. To the best of our knowledge, this is the largest complex mesh that a partitioning method is successfully applied to; and (3) We have shown that proposed method can reduce the number of edge cuts by as much as 65%.« less
Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, Michael; Iu, Herbert Ho-Ching; Small, Michael
2015-05-15
We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. First, we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation of the time series. We then apply this new transformation algorithm to time series generated by the Rössler system and find that periodic dynamics translate tomore » ring structures whereas chaotic time series translate to band or tube-like structures—thereby indicating that our algorithm generates networks whose structure is sensitive to system dynamics. Furthermore, we demonstrate that simple network measures including the mean out degree and variance of out degrees can track changes in the dynamical behaviour in a manner comparable to the largest Lyapunov exponent. We also apply the same analysis to experimental time series generated by a diode resonator circuit and show that the network size, mean shortest path length, and network diameter are highly sensitive to the interior crisis captured in this particular data set.« less
Moderate Deviations for Recursive Stochastic Algorithms
2014-08-02
to (2.14) 1 n n1X i=0 E[R(ni k Xni )] KE a2(n)n : Because of this the (random) Radon -Nikodym derivatives fni (y) = dni d Xni (y) are well de...ned and can be selected in a measurable way. We will control the magnitude of the noise when the Radon -Nikodym derivative is large by bounding 1 n n
Spatial operator algebra for flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1993-01-01
This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Videtic, Gregory M.M., E-mail: videtig@ccf.or; Reddy, Chandana A.; Chao, Samuel T.
Purpose: To explore whether gender and race influence survival in non-small-cell lung cancer (NSCLC) in patients with brain metastases, using our large single-institution brain tumor database and the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) brain metastases classification. Methods and materials: A retrospective review of a single-institution brain metastasis database for the interval January 1982 to September 2004 yielded 835 NSCLC patients with brain metastases for analysis. Patient subsets based on combinations of gender, race, and RPA class were then analyzed for survival differences. Results: Median follow-up was 5.4 months (range, 0-122.9 months). There were 485 male patients (M)more » (58.4%) and 346 female patients (F) (41.6%). Of the 828 evaluable patients (99%), 143 (17%) were black/African American (B) and 685 (83%) were white/Caucasian (W). Median survival time (MST) from time of brain metastasis diagnosis for all patients was 5.8 months. Median survival time by gender (F vs. M) and race (W vs. B) was 6.3 months vs. 5.5 months (p = 0.013) and 6.0 months vs. 5.2 months (p = 0.08), respectively. For patients stratified by RPA class, gender, and race, MST significantly favored BFs over BMs in Class II: 11.2 months vs. 4.6 months (p = 0.021). On multivariable analysis, significant variables were gender (p = 0.041, relative risk [RR] 0.83) and RPA class (p < 0.0001, RR 0.28 for I vs. III; p < 0.0001, RR 0.51 for II vs. III) but not race. Conclusions: Gender significantly influences NSCLC brain metastasis survival. Race trended to significance in overall survival but was not significant on multivariable analysis. Multivariable analysis identified gender and RPA classification as significant variables with respect to survival.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, David I.; Chambers, Mark S.; Fuller, Clifton D.
2008-11-01
Background: Intensity-modulated radiation therapy (IMRT) beams traverse nontarget normal structures not irradiated during three-dimensional conformal RT (3D-CRT) for head and neck cancer (HNC). This study estimates the doses and toxicities to nontarget structures during IMRT. Materials and Methods: Oropharyngeal cancer IMRT and 3D-CRT cases were reviewed. Dose-volume histograms (DVH) were used to evaluate radiation dose to the lip, cochlea, brainstem, occipital scalp, and segments of the mandible. Toxicity rates were compared for 3D-CRT, IMRT alone, or IMRT with concurrent cisplatin. Descriptive statistics and exploratory recursive partitioning analysis were used to estimate dose 'breakpoints' associated with observed toxicities. Results: A totalmore » of 160 patients were evaluated for toxicity; 60 had detailed DVH evaluation and 15 had 3D-CRT plan comparison. Comparing IMRT with 3D-CRT, there was significant (p {<=} 0.002) nonparametric differential dose to all clinically significant structures of interest. Thirty percent of IMRT patients had headaches and 40% had occipital scalp alopecia. A total of 76% and 38% of patients treated with IMRT alone had nausea and vomiting, compared with 99% and 68%, respectively, of those with concurrent cisplatin. IMRT had a markedly distinct toxicity profile than 3D-CRT. In recursive partitioning analysis, National Cancer Institute's Common Toxicity Criteria adverse effects 3.0 nausea and vomiting, scalp alopecia and anterior mucositis were associated with reconstructed mean brainstem dose >36 Gy, occipital scalp dose >30 Gy, and anterior mandible dose >34 Gy, respectively. Conclusions: Dose reduction to specified structures during IMRT implies an increased beam path dose to alternate nontarget structures that may result in clinical toxicities that were uncommon with previous, less conformal approaches. These findings have implications for IMRT treatment planning and research, toxicity assessment, and multidisciplinary patient management.« less
Marcotte, Thomas D.; Deutsch, Reena; Michael, Benedict Daniel; Franklin, Donald; Cookson, Debra Rosario; Bharti, Ajay R.; Grant, Igor; Letendre, Scott L.
2013-01-01
Background Neurocognitive (NC) impairment (NCI) occurs commonly in people living with HIV. Despite substantial effort, no biomarkers have been sufficiently validated for diagnosis and prognosis of NCI in the clinic. The goal of this project was to identify diagnostic or prognostic biomarkers for NCI in a comprehensively characterized HIV cohort. Methods Multidisciplinary case review selected 98 HIV-infected individuals and categorized them into four NC groups using normative data: stably normal (SN), stably impaired (SI), worsening (Wo), or improving (Im). All subjects underwent comprehensive NC testing, phlebotomy, and lumbar puncture at two timepoints separated by a median of 6.2 months. Eight biomarkers were measured in CSF and blood by immunoassay. Results were analyzed using mixed model linear regression and staged recursive partitioning. Results At the first visit, subjects were mostly middle-aged (median 45) white (58%) men (84%) who had AIDS (70%). Of the 73% who took antiretroviral therapy (ART), 54% had HIV RNA levels below 50 c/mL in plasma. Mixed model linear regression identified that only MCP-1 in CSF was associated with neurocognitive change group. Recursive partitioning models aimed at diagnosis (i.e., correctly classifying neurocognitive status at the first visit) were complex and required most biomarkers to achieve misclassification limits. In contrast, prognostic models were more efficient. A combination of three biomarkers (sCD14, MCP-1, SDF-1α) correctly classified 82% of Wo and SN subjects, including 88% of SN subjects. A combination of two biomarkers (MCP-1, TNF-α) correctly classified 81% of Im and SI subjects, including 100% of SI subjects. Conclusions This analysis of well-characterized individuals identified concise panels of biomarkers associated with NC change. Across all analyses, the two most frequently identified biomarkers were sCD14 and MCP-1, indicators of monocyte/macrophage activation. While the panels differed depending on the outcome and on the degree of misclassification, nearly all stable patients were correctly classified. PMID:24101401
Cassidy, Richard J; Patel, Pretesh R; Zhang, Xinyan; Press, Robert H; Switchenko, Jeffrey M; Pillai, Rathi N; Owonikoko, Taofeek K; Ramalingam, Suresh S; Fernandez, Felix G; Force, Seth D; Curran, Walter J; Higgins, Kristin A
2017-09-01
Stereotactic body radiotherapy (SBRT) is the standard of care for medically inoperable early-stage non-small-cell lung cancer. Despite the limited number of octogenarians and nonagenarians on trials of SBRT, its use is increasingly being offered in these patients, given the aging cancer population, medical fragility, or patient preference. Our purpose was to investigate the efficacy, safety, and survival of patients ≥ 80 years old treated with definitive lung SBRT. Patients who underwent SBRT were reviewed from 2009 to 2015 at 4 academic centers. Patients diagnosed at ≥ 80 years old were included. Kaplan-Meier and multivariate logistic regression and Cox proportional hazard regression analyses were performed. Recursive partitioning analysis was done to determine a subgroup of patients most likely to benefit from therapy. A total of 58 patients were included, with a median age of 84.9 years (range, 80.1-95.2 years), a median follow-up time of 19.9 months (range, 6.9-64.9 months), a median fraction size of 10.0 Gy (range, 7.0-20.0 Gy), and a median number of fractions of 5.0 (range, 3.0-8.0 fractions). On multivariate analysis, higher Karnofsky performance status (KPS) was associated with higher local recurrence-free survival (hazard ratio [HR], 0.92; P < .01), regional recurrence-free survival (HR, 0.94; P < .01), and overall survival (HR, 0.91; P < .01). On recursive partitioning analysis, patients with KPS ≥ 75 had improved 3-year cancer-specific and overall survival (99.4% and 91.9%, respectively) compared with patients with KPS < 75 (47.8% and 23.6%, respectively; P < .01). Definitive lung SBRT for early-stage non-small-cell lung cancer was efficacious and safe in patients ≥ 80 years old. Patients with a KPS of ≥ 75 derived the most benefit from therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rades, Dirk; Department of Radiation Oncology, University Medical Center, Hamburg; Kueter, Jan-Dirk
2009-03-15
Purpose: To compare the results of whole-brain radiotherapy plus stereotactic radiosurgery (WBRT+SRS) with those of surgery plus whole-brain radiotherapy and a boost to the metastatic site (OP+WBRT+boost) for patients with one or two brain metastases. Methods and Materials: Survival, intracerebral control, and local control of the treated metastases were retrospectively evaluated. To reduce the risk of selection bias, a matched-pair analysis was performed. The outcomes of 47 patients who received WBRT+SRS were compared with those of a second cohort of 47 patients who received OP+WBRT+boost. The two treatment groups were matched for the following potential prognostic factors: WBRT schedule, age,more » gender, performance status, tumor type, number of brain metastases, extracerebral metastases, recursive partitioning analysis class, and interval from tumor diagnosis to WBRT. Results: The 1-year survival rates were 65% after WBRT+SRS and 63% after OP+WBRT+boost (p = 0.19). The 1-year intracerebral control rates were 70% and 78% (p = 0.39), respectively. The 1-year local control rates were 84% and 83% (p = 0.87), respectively. On multivariate analyses, improved survival was significantly associated with better performance status (p = 0.009), no extracerebral metastases (p = 0.004), recursive partitioning analysis Class 1 (p = 0.004), and interval from tumor diagnosis to WBRT (p = 0.001). Intracerebral control was not significantly associated with any of the potential prognostic factors. Improved local control was significantly associated with no extracerebral metastases (p = 0.037). Conclusions: Treatment outcomes were not significantly different after WBRT+SRS compared with OP+WBRT+boost. However, WBRT+SRS is less invasive than OP+WBRT+boost and may be preferable for patients with one or two brain metastases. The results should be confirmed by randomized t0011ria.« less
Goodman, Katherine E; Lessler, Justin; Cosgrove, Sara E; Harris, Anthony D; Lautenbach, Ebbing; Han, Jennifer H; Milstone, Aaron M; Massey, Colin J; Tamma, Pranita D
2016-10-01
Timely identification of extended-spectrum β-lactamase (ESBL) bacteremia can improve clinical outcomes while minimizing unnecessary use of broad-spectrum antibiotics, including carbapenems. However, most clinical microbiology laboratories currently require at least 24 additional hours from the time of microbial genus and species identification to confirm ESBL production. Our objective was to develop a user-friendly decision tree to predict which organisms are ESBL producing, to guide appropriate antibiotic therapy. We included patients ≥18 years of age with bacteremia due to Escherichia coli or Klebsiella species from October 2008 to March 2015 at Johns Hopkins Hospital. Isolates with ceftriaxone minimum inhibitory concentrations ≥2 µg/mL underwent ESBL confirmatory testing. Recursive partitioning was used to generate a decision tree to determine the likelihood that a bacteremic patient was infected with an ESBL producer. Discrimination of the original and cross-validated models was evaluated using receiver operating characteristic curves and by calculation of C-statistics. A total of 1288 patients with bacteremia met eligibility criteria. For 194 patients (15%), bacteremia was due to a confirmed ESBL producer. The final classification tree for predicting ESBL-positive bacteremia included 5 predictors: history of ESBL colonization/infection, chronic indwelling vascular hardware, age ≥43 years, recent hospitalization in an ESBL high-burden region, and ≥6 days of antibiotic exposure in the prior 6 months. The decision tree's positive and negative predictive values were 90.8% and 91.9%, respectively. Our findings suggest that a clinical decision tree can be used to estimate a bacteremic patient's likelihood of infection with ESBL-producing bacteria. Recursive partitioning offers a practical, user-friendly approach for addressing important diagnostic questions. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Xu, Ping; Krischer, Jeffrey P
2016-06-01
To define prognostic classification factors associated with the progression from single to multiple autoantibodies, multiple autoantibodies to dysglycemia, and dysglycemia to type 1 diabetes onset in relatives of individuals with type 1 diabetes. Three distinct cohorts of subjects from the Type 1 Diabetes TrialNet Pathway to Prevention Study were investigated separately. A recursive partitioning analysis (RPA) was used to determine the risk classes. Clinical characteristics, including genotype, antibody titers, and metabolic markers were analyzed. Age and GAD65 autoantibody (GAD65Ab) titers defined three risk classes for progression from single to multiple autoantibodies. The 5-year risk was 11% for those subjects >16 years of age with low GAD65Ab titers, 29% for those ≤16 years of age with low GAD65Ab titers, and 45% for those subjects with high GAD65Ab titers regardless of age. Progression to dysglycemia was associated with islet antigen 2 Ab titers, and 2-h glucose and fasting C-peptide levels. The 5-year risk is 28%, 39%, and 51% for respective risk classes defined by the three predictors. Progression to type 1 diabetes was associated with the number of positive autoantibodies, peak C-peptide level, HbA1c level, and age. Four risk classes defined by RPA had a 5-year risk of 9%, 33%, 62%, and 80%, respectively. The use of RPA offered a new classification approach that could predict the timing of transitions from one preclinical stage to the next in the development of type 1 diabetes. Using these RPA classes, new prevention techniques can be tailored based on the individual prognostic risk characteristics at different preclinical stages. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Rosen, Lisa M.; Liu, Tao; Merchant, Roland C.
2016-01-01
BACKGROUND Blood and body fluid exposures are frequently evaluated in emergency departments (EDs). However, efficient and effective methods for estimating their incidence are not yet established. OBJECTIVE Evaluate the efficiency and accuracy of estimating statewide ED visits for blood or body fluid exposures using International Classification of Diseases, Ninth Revision (ICD-9), code searches. DESIGN Secondary analysis of a database of ED visits for blood or body fluid exposure. SETTING EDs of 11 civilian hospitals throughout Rhode Island from January 1, 1995, through June 30, 2001. PATIENTS Patients presenting to the ED for possible blood or body fluid exposure were included, as determined by prespecified ICD-9 codes. METHODS Positive predictive values (PPVs) were estimated to determine the ability of 10 ICD-9 codes to distinguish ED visits for blood or body fluid exposure from ED visits that were not for blood or body fluid exposure. Recursive partitioning was used to identify an optimal subset of ICD-9 codes for this purpose. Random-effects logistic regression modeling was used to examine variations in ICD-9 coding practices and styles across hospitals. Cluster analysis was used to assess whether the choice of ICD-9 codes was similar across hospitals. RESULTS The PPV for the original 10 ICD-9 codes was 74.4% (95% confidence interval [CI], 73.2%–75.7%), whereas the recursive partitioning analysis identified a subset of 5 ICD-9 codes with a PPV of 89.9% (95% CI, 88.9%–90.8%) and a misclassification rate of 10.1%. The ability, efficiency, and use of the ICD-9 codes to distinguish types of ED visits varied across hospitals. CONCLUSIONS Although an accurate subset of ICD-9 codes could be identified, variations across hospitals related to hospital coding style, efficiency, and accuracy greatly affected estimates of the number of ED visits for blood or body fluid exposure. PMID:22561713
Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation
Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo
2011-01-01
In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397
Parameter Estimation for a Hybrid Adaptive Flight Controller
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje
2009-01-01
This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Xi, Yugeng; Li, Dewei; Xu, Yuli; Gan, Zhongxue
2018-01-01
A common objective of model predictive control (MPC) design is the large initial feasible region, low online computational burden as well as satisfactory control performance of the resulting algorithm. It is well known that interpolation-based MPC can achieve a favourable trade-off among these different aspects. However, the existing results are usually based on fixed prediction scenarios, which inevitably limits the performance of the obtained algorithms. So by replacing the fixed prediction scenarios with the time-varying multi-step prediction scenarios, this paper provides a new insight into improvement of the existing MPC designs. The adopted control law is a combination of predetermined multi-step feedback control laws, based on which two MPC algorithms with guaranteed recursive feasibility and asymptotic stability are presented. The efficacy of the proposed algorithms is illustrated by a numerical example.
An on-line modified least-mean-square algorithm for training neurofuzzy controllers.
Tan, Woei Wan
2007-04-01
The problem hindering the use of data-driven modelling methods for training controllers on-line is the lack of control over the amount by which the plant is excited. As the operating schedule determines the information available on-line, the knowledge of the process may degrade if the setpoint remains constant for an extended period. This paper proposes an identification algorithm that alleviates "learning interference" by incorporating fuzzy theory into the normalized least-mean-square update rule. The ability of the proposed methodology to achieve faster learning is examined by employing the algorithm to train a neurofuzzy feedforward controller for controlling a liquid level process. Since the proposed identification strategy has similarities with the normalized least-mean-square update rule and the recursive least-square estimator, the on-line learning rates of these algorithms are also compared.
National Variation in Costs and Mortality for Leukodystrophy Patients in U.S. Children’s Hospitals
Brimley, Cameron J; Lopez, Jonathan; van Haren, Keith; Wilkes, Jacob; Sheng, Xiaoming; Nelson, Clint; Korgenski, E. Kent; Srivastava, Rajendu; Bonkowsky, Joshua L.
2013-01-01
Background Inherited leukodystrophies are progressive, debilitating neurological disorders with few treatment options and high mortality rates. Our objective was to determine national variation in the costs for leukodystrophy patients, and to evaluate differences in their care. Methods We developed an algorithm to identify inherited leukodystrophy patients in de-identified data sets using a recursive tree model based on ICD-9 CM diagnosis and procedure charge codes. Validation of the algorithm was performed independently at two institutions, and with data from the Pediatric Health Information System (PHIS) of 43 U.S. children’s hospitals, for a seven year time period, 2004–2010. Results A recursive algorithm was developed and validated, based on six ICD-9 codes and one procedure code, that had a sensitivity up to 90% (range 61–90%) and a specificity up to 99% (range 53–99%) for identifying inherited leukodystrophy patients. Inherited leukodystrophy patients comprise 0.4% of admissions to children’s hospitals and 0.7% of costs. Over seven years these patients required $411 million of hospital care, or $131,000/patient. Hospital costs for leukodystrophy patients varied at different institutions, ranging from 2 to 15 times more than the average pediatric patient. There was a statistically significant correlation between higher volume and increased cost efficiency. Increased mortality rates had an inverse relationship with increased patient volume that was not statistically significant. Conclusions We developed and validated a code-based algorithm for identifying leukodystrophy patients in deidentified national datasets. Leukodystrophy patients account for $59 million of costs yearly at children’s hospitals. Our data highlight potential to reduce unwarranted variability and improve patient care. PMID:23953952
Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Hendrickson; T.G. Kolda
1998-09-01
A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.
A New Approach to Parallel Dynamic Partitioning for Adaptive Unstructured Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Gao, Guang R.
1999-01-01
Classical mesh partitioning algorithms were designed for rather static situations, and their straightforward application in a dynamical framework may lead to unsatisfactory results, e.g., excessive data migration among processors. Furthermore, special attention should be paid to their amenability to parallelization. In this paper, a novel parallel method for the dynamic partitioning of adaptive unstructured meshes is described. It is based on a linear representation of the mesh using self-avoiding walks.
The application of dynamic programming in production planning
NASA Astrophysics Data System (ADS)
Wu, Run
2017-05-01
Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.
Global synchronization algorithms for the Intel iPSC/860
NASA Technical Reports Server (NTRS)
Seidel, Steven R.; Davis, Mark A.
1992-01-01
In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
Comparison of methods for developing the dynamics of rigid-body systems
NASA Technical Reports Server (NTRS)
Ju, M. S.; Mansour, J. M.
1989-01-01
Several approaches for developing the equations of motion for a three-degree-of-freedom PUMA robot were compared on the basis of computational efficiency (i.e., the number of additions, subtractions, multiplications, and divisions). Of particular interest was the investigation of the use of computer algebra as a tool for developing the equations of motion. Three approaches were implemented algebraically: Lagrange's method, Kane's method, and Wittenburg's method. Each formulation was developed in absolute and relative coordinates. These six cases were compared to each other and to a recursive numerical formulation. The results showed that all of the formulations implemented algebraically required fewer calculations than the recursive numerical algorithm. The algebraic formulations required fewer calculations in absolute coordinates than in relative coordinates. Each of the algebraic formulations could be simplified, using patterns from Kane's method, to yield the same number of calculations in a given coordinate system.
Orthogonal polynomials for refinable linear functionals
NASA Astrophysics Data System (ADS)
Laurie, Dirk; de Villiers, Johan
2006-12-01
A refinable linear functional is one that can be expressed as a convex combination and defined by a finite number of mask coefficients of certain stretched and shifted replicas of itself. The notion generalizes an integral weighted by a refinable function. The key to calculating a Gaussian quadrature formula for such a functional is to find the three-term recursion coefficients for the polynomials orthogonal with respect to that functional. We show how to obtain the recursion coefficients by using only the mask coefficients, and without the aid of modified moments. Our result implies the existence of the corresponding refinable functional whenever the mask coefficients are nonnegative, even when the same mask does not define a refinable function. The algorithm requires O(n^2) rational operations and, thus, can in principle deliver exact results. Numerical evidence suggests that it is also effective in floating-point arithmetic.
Lobach, Ihar; Benediktovitch, Andrei; Ulyanenkov, Alexander
2017-06-01
Diffraction in multilayers in the presence of interfacial roughness is studied theoretically, the roughness being considered as a transition layer. Exact (within the framework of the two-beam dynamical diffraction theory) differential equations for field amplitudes in a crystalline structure with varying properties along its surface normal are obtained. An iterative scheme for approximate solution of the equations is developed. The presented approach to interfacial roughness is incorporated into the recursion matrix formalism in a way that obviates possible numerical problems. Fitting of the experimental rocking curve is performed in order to test the possibility of reconstructing the roughness value from a diffraction scan. The developed algorithm works substantially faster than the traditional approach to dealing with a transition layer (dividing it into a finite number of thin lamellae). Calculations by the proposed approach are only two to three times longer than calculations for corresponding structures with ideally sharp interfaces.
AlzhCPI: A knowledge base for predicting chemical-protein interactions towards Alzheimer's disease.
Fang, Jiansong; Wang, Ling; Li, Yecheng; Lian, Wenwen; Pang, Xiaocong; Wang, Hong; Yuan, Dongsheng; Wang, Qi; Liu, Ai-Lin; Du, Guan-Hua
2017-01-01
Alzheimer's disease (AD) is a complicated progressive neurodegeneration disorder. To confront AD, scientists are searching for multi-target-directed ligands (MTDLs) to delay disease progression. The in silico prediction of chemical-protein interactions (CPI) can accelerate target identification and drug discovery. Previously, we developed 100 binary classifiers to predict the CPI for 25 key targets against AD using the multi-target quantitative structure-activity relationship (mt-QSAR) method. In this investigation, we aimed to apply the mt-QSAR method to enlarge the model library to predict CPI towards AD. Another 104 binary classifiers were further constructed to predict the CPI for 26 preclinical AD targets based on the naive Bayesian (NB) and recursive partitioning (RP) algorithms. The internal 5-fold cross-validation and external test set validation were applied to evaluate the performance of the training sets and test set, respectively. The area under the receiver operating characteristic curve (ROC) for the test sets ranged from 0.629 to 1.0, with an average of 0.903. In addition, we developed a web server named AlzhCPI to integrate the comprehensive information of approximately 204 binary classifiers, which has potential applications in network pharmacology and drug repositioning. AlzhCPI is available online at http://rcidm.org/AlzhCPI/index.html. To illustrate the applicability of AlzhCPI, the developed system was employed for the systems pharmacology-based investigation of shichangpu against AD to enhance the understanding of the mechanisms of action of shichangpu from a holistic perspective.
Some practicable applications of quadtree data structures/representation in astronomy
NASA Technical Reports Server (NTRS)
Pasztor, L.
1992-01-01
Development of quadtree as hierarchical data structuring technique for representing spatial data (like points, regions, surfaces, lines, curves, volumes, etc.) has been motivated to a large extent by storage requirements of images, maps, and other multidimensional (spatially structured) data. For many spatial algorithms, time-efficiency of quadtrees in terms of execution may be as important as their space-efficiency concerning storage conditions. Briefly, the quadtree is a class of hierarchical data structures which is based on the recursive partition of a square region into quadrants and sub-quadrants until a predefined limit. Beyond the wide applicability of quadtrees in image processing, spatial information analysis, and building digital databases (processes becoming ordinary for the astronomical community), there may be numerous further applications in astronomy. Some of these practicable applications based on quadtree representation of astronomical data are presented and suggested for further considerations. Examples are shown for use of point as well as region quadtrees. Statistics of different leaf and non-leaf nodes (homogeneous and heterogeneous sub-quadrants respectively) at different levels may provide useful information on spatial structure of astronomical data in question. By altering the principle guiding the decomposition process, different types of spatial data may be focused on. Finally, a sampling method based on quadtree representation of an image is proposed which may prove to be efficient in the elaboration of sampling strategy in a region where observations were carried out previously either with different resolution or/and in different bands.
Ong, Eng Teo; Lee, Heow Pueh; Lim, Kian Meng
2004-09-01
This article presents a fast algorithm for the efficient solution of the Helmholtz equation. The method is based on the translation theory of the multipole expansions. Here, the speedup comes from the convolution nature of the translation operators, which can be evaluated rapidly using fast Fourier transform algorithms. Also, the computations of the translation operators are accelerated by using the recursive formulas developed recently by Gumerov and Duraiswami [SIAM J. Sci. Comput. 25, 1344-1381(2003)]. It is demonstrated that the algorithm can produce good accuracy with a relatively low order of expansion. Efficiency analyses of the algorithm reveal that it has computational complexities of O(Na), where a ranges from 1.05 to 1.24. However, this method requires substantially more memory to store the translation operators as compared to the fast multipole method. Hence, despite its simplicity in implementation, this memory requirement issue may limit the application of this algorithm to solving very large-scale problems.
Controlling under-actuated robot arms using a high speed dynamics process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)
1994-01-01
The invention controls an under-actuated manipulator by first obtaining predetermined active joint accelerations of the active joints and the passive joint friction forces of the passive joints, then computing articulated body qualities for each of the joints from the current positions of the links, and finally computing from the articulated body qualities and from the active joint accelerations and the passive joint forces, active joint forces of the active joints. Ultimately, the invention transmits servo commands to the active joint forces thus computed to the respective ones of the joint servos. The computation of the active joint forces is accomplished using a recursive dynamics algorithm. In this computation, an inward recursion is first carried out for each link, beginning with the outermost link in order to compute the residual link force of each link from the active joint acceleration if the corresponding joint is active, or from the known passive joint force if the corresponding joint is passive. Then, an outward recursion is carried out for each link in which the active joint force is computed from the residual link force if the corresponding joint is active or the passive joint acceleration is computed from the residual link force if the corresponding joint is passive.
NASA Astrophysics Data System (ADS)
Beretta, Elena; Micheletti, Stefano; Perotto, Simona; Santacesaria, Matteo
2018-01-01
In this paper, we develop a shape optimization-based algorithm for the electrical impedance tomography (EIT) problem of determining a piecewise constant conductivity on a polygonal partition from boundary measurements. The key tool is to use a distributed shape derivative of a suitable cost functional with respect to movements of the partition. Numerical simulations showing the robustness and accuracy of the method are presented for simulated test cases in two dimensions.
Site partitioning for distributed redundant disk arrays
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.
1992-01-01
Distributed redundant disk arrays can be used in a distributed computing system or database system to provide recovery in the presence of temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites into redundant arrays in such way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-complete and we propose two heuristic algorithms for finding approximate solutions.
Moving Horizon Estimation on a Chip
2014-06-26
description, e.g. VHDL or Verilog, for FPGA implementation . Especially for those whose main expertise is in control system design, writing algorithms in C...ditional Kalman Filter(KF) where recursive solution is available. We devel- oped various MHE designs and implemented them on the Xilinx Zynq ZC702 FPGA...practical deployment of the MHE technology. 2.2 Implementation of MHE on FPGA The next paper demonstrated the feasibility of implementing MHE algo
Multivariate Spline Algorithms for CAGD
NASA Technical Reports Server (NTRS)
Boehm, W.
1985-01-01
Two special polyhedra present themselves for the definition of B-splines: a simplex S and a box or parallelepiped B, where the edges of S project into an irregular grid, while the edges of B project into the edges of a regular grid. More general splines may be found by forming linear combinations of these B-splines, where the three-dimensional coefficients are called the spline control points. Univariate splines are simplex splines, where s = 1, whereas splines over a regular triangular grid are box splines, where s = 2. Two simple facts render the development of the construction of B-splines: (1) any face of a simplex or a box is again a simplex or box but of lower dimension; and (2) any simplex or box can be easily subdivided into smaller simplices or boxes. The first fact gives a geometric approach to Mansfield-like recursion formulas that express a B-spline in B-splines of lower order, where the coefficients depend on x. By repeated recursion, the B-spline will be expressed as B-splines of order 1; i.e., piecewise constants. In the case of a simplex spline, the second fact gives a so-called insertion algorithm that constructs the new control points if an additional knot is inserted.
Real-time flutter identification
NASA Technical Reports Server (NTRS)
Roy, R.; Walker, R.
1985-01-01
The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.
NASA Astrophysics Data System (ADS)
Xu, Ding; Li, Qun
2017-01-01
This paper addresses the power allocation problem for cognitive radio (CR) based on hybrid-automatic-repeat-request (HARQ) with chase combining (CC) in Nakagamimslow fading channels. We assume that, instead of the perfect instantaneous channel state information (CSI), only the statistical CSI is available at the secondary user (SU) transmitter. The aim is to minimize the SU outage probability under the primary user (PU) interference outage constraint. Using the Lagrange multiplier method, an iterative and recursive algorithm is derived to obtain the optimal power allocation for each transmission round. Extensive numerical results are presented to illustrate the performance of the proposed algorithm.
Quantum Clock Synchronization with a Single Qudit
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed
2015-01-01
Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system.
Hybrid Nested Partitions and Math Programming Framework for Large-scale Combinatorial Optimization
2010-03-31
optimization problems: 1) exact algorithms and 2) metaheuristic algorithms . This project will integrate concepts from these two technologies to develop...optimal solutions within an acceptable amount of computation time, and 2) metaheuristic algorithms such as genetic algorithms , tabu search, and the...integer programming decomposition approaches, such as Dantzig Wolfe decomposition and Lagrangian relaxation, and metaheuristics such as the Nested
Miranian, A; Abdollahzade, M
2013-02-01
Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.
a Voxel-Based Filtering Algorithm for Mobile LIDAR Data
NASA Astrophysics Data System (ADS)
Qin, H.; Guan, G.; Yu, Y.; Zhong, L.
2018-04-01
This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.
On global optimization using an estimate of Lipschitz constant and simplicial partition
NASA Astrophysics Data System (ADS)
Gimbutas, Albertas; Žilinskas, Antanas
2016-10-01
A new algorithm is proposed for finding the global minimum of a multi-variate black-box Lipschitz function with an unknown Lipschitz constant. The feasible region is initially partitioned into simplices; in the subsequent iteration, the most suitable simplices are selected and bisected via the middle point of the longest edge. The suitability of a simplex for bisection is evaluated by minimizing of a surrogate function which mimics the lower bound for the considered objective function over that simplex. The surrogate function is defined using an estimate of the Lipschitz constant and the objective function values at the vertices of a simplex. The novelty of the algorithm is the sophisticated method of estimating the Lipschitz constant, and the appropriate method to minimize the surrogate function. The proposed algorithm was tested using 600 random test problems of different complexity, showing competitive results with two popular advanced algorithms which are based on similar assumptions.
Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.
Griffith, Mark; Courtney, Tod; Peccoud, Jean; Sanders, William H
2006-11-15
The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. Software and benchmark models used for this publication can be made available upon request from the authors.
Overlapping clusters for distributed computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirrokni, Vahab; Andersen, Reid; Gleich, David F.
2010-11-01
Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initialmore » partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.« less
NASA Astrophysics Data System (ADS)
Milic, Vladimir; Kasac, Josip; Novakovic, Branko
2015-10-01
This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.
Self-tuning regulators for multicyclic control of helicopter vibration
NASA Technical Reports Server (NTRS)
Johnson, W.
1982-01-01
A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.
Parameter identification for structural dynamics based on interval analysis algorithm
NASA Astrophysics Data System (ADS)
Yang, Chen; Lu, Zixing; Yang, Zhenyu; Liang, Ke
2018-04-01
A parameter identification method using interval analysis algorithm for structural dynamics is presented in this paper. The proposed uncertain identification method is investigated by using central difference method and ARMA system. With the help of the fixed memory least square method and matrix inverse lemma, a set-membership identification technology is applied to obtain the best estimation of the identified parameters in a tight and accurate region. To overcome the lack of insufficient statistical description of the uncertain parameters, this paper treats uncertainties as non-probabilistic intervals. As long as we know the bounds of uncertainties, this algorithm can obtain not only the center estimations of parameters, but also the bounds of errors. To improve the efficiency of the proposed method, a time-saving algorithm is presented by recursive formula. At last, to verify the accuracy of the proposed method, two numerical examples are applied and evaluated by three identification criteria respectively.
Wang, Wei; Chen, Xiyuan
2018-02-23
In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm.
A new event detector designed for the Seismic Research Observatories
Murdock, James N.; Hutt, Charles R.
1983-01-01
A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.
Differential sampling for fast frequency acquisition via adaptive extended least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, Rajendra
1987-01-01
This paper presents a differential signal model along with appropriate sampling techinques for least squares estimation of the frequency and frequency derivatives and possibly the phase and amplitude of a sinusoid received in the presence of noise. The proposed algorithm is recursive in mesurements and thus the computational requirement increases only linearly with the number of measurements. The dimension of the state vector in the proposed algorithm does not depend upon the number of measurements and is quite small, typically around four. This is an advantage when compared to previous algorithms wherein the dimension of the state vector increases monotonically with the product of the frequency uncertainty and the observation period. Such a computational simplification may possibly result in some loss of optimality. However, by applying the sampling techniques of the paper such a possible loss in optimality can made small.
The Optimization of Automatically Generated Compilers.
1987-01-01
than their procedural counterparts, and are also easier to analyze for storage optimizations; (2) AGs can be algorithmically checked to be non-circular...Providing algorithms to move the storage for many attributes from the For structure tree into global stacks and variables. -Dd(2) Creating AEs which build and...54 3.5.2. Partitioning algorithm
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.
Zhu, Lin; Chung, Fu-Lai; Wang, Shitong
2009-06-01
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2013-01-01
Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014
Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng
2014-01-01
Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806
Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng
2014-01-01
Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.
A heuristic re-mapping algorithm reducing inter-level communication in SAMR applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steensland, Johan; Ray, Jaideep
2003-07-01
This paper aims at decreasing execution time for large-scale structured adaptive mesh refinement (SAMR) applications by proposing a new heuristic re-mapping algorithm and experimentally showing its effectiveness in reducing inter-level communication. Tests were done for five different SAMR applications. The overall goal is to engineer a dynamically adaptive meta-partitioner capable of selecting and configuring the most appropriate partitioning strategy at run-time based on current system and application state. Such a metapartitioner can significantly reduce execution times for general SAMR applications. Computer simulations of physical phenomena are becoming increasingly popular as they constitute an important complement to real-life testing. In manymore » cases, such simulations are based on solving partial differential equations by numerical methods. Adaptive methods are crucial to efficiently utilize computer resources such as memory and CPU. But even with adaption, the simulations are computationally demanding and yield huge data sets. Thus parallelization and the efficient partitioning of data become issues of utmost importance. Adaption causes the workload to change dynamically, calling for dynamic (re-) partitioning to maintain efficient resource utilization. The proposed heuristic algorithm reduced inter-level communication substantially. Since the complexity of the proposed algorithm is low, this decrease comes at a relatively low cost. As a consequence, we draw the conclusion that the proposed re-mapping algorithm would be useful to lower overall execution times for many large SAMR applications. Due to its usefulness and its parameterization, the proposed algorithm would constitute a natural and important component of the meta-partitioner.« less