Sample records for recursive state estimation

  1. Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.

    PubMed

    Hu, Liang; Wang, Zidong; Liu, Xiaohui

    2016-08-01

    In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

  2. Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking

    NASA Astrophysics Data System (ADS)

    Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.

    2009-08-01

    The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.

  3. Recursive least squares method of regression coefficients estimation as a special case of Kalman filter

    NASA Astrophysics Data System (ADS)

    Borodachev, S. M.

    2016-06-01

    The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.

  4. Attitude estimation of earth orbiting satellites by decomposed linear recursive filters

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1975-01-01

    Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.

  5. Toward quantitative estimation of material properties with dynamic mode atomic force microscopy: a comparative study.

    PubMed

    Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti

    2017-08-11

    In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.

  6. A recursive solution for a fading memory filter derived from Kalman filter theory

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1986-01-01

    A simple recursive solution for a class of fading memory tracking filters is presented. A fading memory filter provides estimates of filter states based on past measurements, similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying weight is applied to older measurements, discounting their effect on present state estimates. It is shown that Kalman filters and fading memory filters are closely related solutions to a general least squares estimator problem. Closed form filter transfer functions are derived for a time invariant, steady state, fading memory filter. These can be applied in loop filter implementation of the Deep Space Network (DSN) Advanced Receiver carrier phase locked loop (PLL).

  7. Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders

    NASA Astrophysics Data System (ADS)

    Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2017-08-01

    We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.

  8. Modeling, Control, and Estimation of Flexible, Aerodynamic Structures

    NASA Astrophysics Data System (ADS)

    Ray, Cody W.

    Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.

  9. Complex sample survey estimation in static state-space

    Treesearch

    Raymond L. Czaplewski

    2010-01-01

    Increased use of remotely sensed data is a key strategy adopted by the Forest Inventory and Analysis Program. However, multiple sensor technologies require complex sampling units and sampling designs. The Recursive Restriction Estimator (RRE) accommodates this complexity. It is a design-consistent Empirical Best Linear Unbiased Prediction for the state-vector, which...

  10. The recursive combination filter approach of pre-processing for the estimation of standard deviation of RR series.

    PubMed

    Mishra, Alok; Swati, D

    2015-09-01

    Variation in the interval between the R-R peaks of the electrocardiogram represents the modulation of the cardiac oscillations by the autonomic nervous system. This variation is contaminated by anomalous signals called ectopic beats, artefacts or noise which mask the true behaviour of heart rate variability. In this paper, we have proposed a combination filter of recursive impulse rejection filter and recursive 20% filter, with recursive application and preference of replacement over removal of abnormal beats to improve the pre-processing of the inter-beat intervals. We have tested this novel recursive combinational method with median method replacement to estimate the standard deviation of normal to normal (SDNN) beat intervals of congestive heart failure (CHF) and normal sinus rhythm subjects. This work discusses the improvement in pre-processing over single use of impulse rejection filter and removal of abnormal beats for heart rate variability for the estimation of SDNN and Poncaré plot descriptors (SD1, SD2, and SD1/SD2) in detail. We have found the 22 ms value of SDNN and 36 ms value of SD2 descriptor of Poincaré plot as clinical indicators in discriminating the normal cases from CHF cases. The pre-processing is also useful in calculation of Lyapunov exponent which is a nonlinear index as Lyapunov exponents calculated after proposed pre-processing modified in a way that it start following the notion of less complex behaviour of diseased states.

  11. Stability of recursive out-of-sequence measurement filters: an open problem

    NASA Astrophysics Data System (ADS)

    Chen, Lingji; Moshtagh, Nima; Mehra, Raman K.

    2011-06-01

    In many applications where communication delays are present, measurements with earlier time stamps can arrive out-of-sequence, i.e., after state estimates have been obtained for the current time instant. To incorporate such an Out-Of-Sequence Measurement (OOSM), many algorithms have been proposed in the literature to obtain or approximate the optimal estimate that would have been obtained if the OOSM had arrived in-sequence. When OOSM occurs repeatedly, approximate estimations as a result of incorporating one OOSM have to serve as the basis for incorporating yet another OOSM. The question of whether the "approximation of approximation" is well behaved, i.e., whether approximation errors accumulate in a recursive setting, has not been adequately addressed in the literature. This paper draws attention to the stability question of recursive OOSM processing filters, formulates the problem in a specific setting, and presents some simulation results that suggest that such filters are indeed well-behaved. Our hope is that more research will be conducted in the future to rigorously establish stability properties of these filters.

  12. Application of recursive approaches to differential orbit correction of near Earth asteroids

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria

    2016-10-01

    Comparison of three approaches to the differential orbit correction of celestial bodies was performed: batch least squares fitting, Kalman filter, and recursive least squares filter. The first two techniques are well known and widely used (Montenbruck, O. & Gill, E., 2000). The most attention is paid to the algorithm and details of program realization of recursive least squares filter. The filter's algorithm was derived based on recursive least squares technique that are widely used in data processing applications (Simon, D, 2006). Usage recursive least squares filter, makes possible to process a new set of observational data, without reprocessing data, which has been processed before. Specific feature of such approach is that number of observation in data set may be variable. This feature makes recursive least squares filter more flexible approach compare to batch least squares (process complete set of observations in each iteration) and Kalman filtering (suppose updating state vector on each epoch with measurements).Advantages of proposed approach are demonstrated by processing of real astrometric observations of near Earth asteroids. The case of 2008 TC3 was studied. 2008 TC3 was discovered just before its impact with Earth. There are a many closely spaced observations of 2008 TC3 on the interval between discovering and impact, which creates favorable conditions for usage of recursive approaches. Each of approaches has very similar precision in case of 2008 TC3. At the same time, recursive least squares approaches have much higher performance. Thus, this approach more favorable for orbit fitting of a celestial body, which was detected shortly before the collision or close approach to the Earth.This work was carried out at MIIGAiK and supported by the Russian Science Foundation, Project no. 14-22-00197.References:O. Montenbruck and E. Gill, "Satellite Orbits, Models, Methods and Applications," Springer-Verlag, 2000, pp. 1-369.D. Simon, "Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches",1 edition. Hoboken, N.J.: Wiley-Interscience, 2006.

  13. Kalman-variant estimators for state of charge in lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav

    2017-03-01

    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.

  14. Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2016-01-01

    A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.

  15. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  16. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-09-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.

  17. Online damage detection using recursive principal component analysis and recursive condition indicators

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bhowmik, B.; Tiwari, A. K.; Hazra, B.

    2017-08-01

    In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using recursive principal component analysis (RPCA) in conjunction with online damage indicators is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal modes in online using the rank-one perturbation method, and subsequently utilized to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/nonlinear-states that indicate damage. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. An online condition indicator (CI) based on the L2 norm of the error between actual response and the response projected using recursive eigenvector matrix updates over successive iterations is proposed. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data. The proposed CI, named recursive residual error, is also adopted for simultaneous spatio-temporal damage detection. Numerical simulations performed on five-degree of freedom nonlinear system under white noise and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate the robustness of the proposed algorithm. Successful results obtained from practical case studies involving experiments performed on a cantilever beam subjected to earthquake excitation, for full sensors and underdetermined cases; and data from recorded responses of the UCLA Factor building (full data and its subset) demonstrate the efficacy of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.

  18. Chandrasekhar-type algorithms for fast recursive estimation in linear systems with constant parameters

    NASA Technical Reports Server (NTRS)

    Choudhury, A. K.; Djalali, M.

    1975-01-01

    In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.

  19. Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.

    PubMed

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil

    2014-08-01

    We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.

  20. Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922

  1. A biased filter for linear discrete dynamic systems.

    NASA Technical Reports Server (NTRS)

    Chang, J. W.; Hoerl, A. E.; Leathrum, J. F.

    1972-01-01

    A recursive estimator, the ridge filter, was developed for the linear discrete dynamic estimation problem. Theorems were established to show that the ridge filter can be, on the average, closer to the expected value of the system state than the Kalman filter. On the other hand, Kalman filter, on the average, is closer to the instantaneous system state than the ridge filter. The ridge filter has been formulated in such a way that the computational features of the Kalman filter are preserved.

  2. Event-Based $H_\\infty $ State Estimation for Time-Varying Stochastic Dynamical Networks With State- and Disturbance-Dependent Noises.

    PubMed

    Sheng, Li; Wang, Zidong; Zou, Lei; Alsaadi, Fuad E

    2017-10-01

    In this paper, the event-based finite-horizon H ∞ state estimation problem is investigated for a class of discrete time-varying stochastic dynamical networks with state- and disturbance-dependent noises [also called (x,v) -dependent noises]. An event-triggered scheme is proposed to decrease the frequency of the data transmission between the sensors and the estimator, where the signal is transmitted only when certain conditions are satisfied. The purpose of the problem addressed is to design a time-varying state estimator in order to estimate the network states through available output measurements. By employing the completing-the-square technique and the stochastic analysis approach, sufficient conditions are established to ensure that the error dynamics of the state estimation satisfies a prescribed H ∞ performance constraint over a finite horizon. The desired estimator parameters can be designed via solving coupled backward recursive Riccati difference equations. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed state estimation scheme.

  3. The recursive maximum likelihood proportion estimator: User's guide and test results

    NASA Technical Reports Server (NTRS)

    Vanrooy, D. L.

    1976-01-01

    Implementation of the recursive maximum likelihood proportion estimator is described. A user's guide to programs as they currently exist on the IBM 360/67 at LARS, Purdue is included, and test results on LANDSAT data are described. On Hill County data, the algorithm yields results comparable to the standard maximum likelihood proportion estimator.

  4. Vehicle Sprung Mass Estimation for Rough Terrain

    DTIC Science & Technology

    2011-03-01

    distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended

  5. Recursive restriction estimation: an alternative to post-stratification in surveys of land and forest cover

    Treesearch

    Raymond L. Czaplewski

    2010-01-01

    Numerous government surveys of natural resources use Post-Stratification to improve statistical efficiency, where strata are defined by full-coverage, remotely sensed data and geopolitical boundaries. Recursive Restriction Estimation, which may be considered a special case of the static Kalman filter, is an attractive alternative. It decomposes a complex estimation...

  6. Stable and verifiable state estimation methods and systems with spacecraft applications

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor)

    2001-01-01

    The stability of a recursive estimator process (e.g., a Kalman filter is assured for long time periods by periodically resetting an error covariance P(t.sub.n) of the system to a predetermined reset value P.sub.r. The recursive process is thus repetitively forced to start from a selected covariance and continue for a time period that is short compared to the system's total operational time period. The time period in which the process must maintain its numerical stability is significantly reduced as is the demand on the system's numerical stability. The process stability for an extended operational time period T.sub.o is verified by performing the resetting step at the end of at least one reset time period T.sub.r whose duration is less than the operational time period T.sub.o and then confirming stability of the process over the reset time period T.sub.r. Because the recursive process starts from a selected covariance at the beginning of each reset time period T.sub.r, confirming stability of the process over at least one reset time period substantially confirms stability over the longer operational time period T.sub.o.

  7. Adaptive model reduction for continuous systems via recursive rational interpolation

    NASA Technical Reports Server (NTRS)

    Lilly, John H.

    1994-01-01

    A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.

  8. The epoch state navigation filter. [for maximum likelihood estimates of position and velocity vectors

    NASA Technical Reports Server (NTRS)

    Battin, R. H.; Croopnick, S. R.; Edwards, J. A.

    1977-01-01

    The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.

  9. On-Line, Gyro-Based, Mass-Property Identification for Thruster-Controlled Spacecraft Using Recursive Least Squares

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Spacecraft control, state estimation, and fault-detection-and-isolation systems are affected by unknown v aerations in the vehicle mass properties. It is often difficult to accurately measure inertia terms on the ground, and mass properties can change on-orbit as fuel is expended, the configuration changes, or payloads are added or removed. Recursive least squares -based algorithms that use gyro signals to identify the center of mass and inverse inertia matrix are presented. They are applied in simulation to 3 thruster-controlled vehicles: the X-38 and Mini-AERCam under development at NASA-JSC, and the SAM, an air-bearing spacecraft simulator at the NASA-Ames Smart Systems Research Lab (SSRL).

  10. Probabilistic Multi-Person Tracking Using Dynamic Bayes Networks

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2015-08-01

    Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.

  11. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    ERIC Educational Resources Information Center

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  12. An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs.

    PubMed

    Ibáñez-Escriche, N; López de Maturana, E; Noguera, J L; Varona, L

    2010-11-01

    We developed and implemented change-point recursive models and compared them with a linear recursive model and a standard mixed model (SMM), in the scope of the relationship between litter size (LS) and number of stillborns (NSB) in pigs. The proposed approach allows us to estimate the point of change in multiple-segment modeling of a nonlinear relationship between phenotypes. We applied the procedure to a data set provided by a commercial Large White selection nucleus. The data file consisted of LS and NSB records of 4,462 parities. The results of the analysis clearly identified the location of the change points between different structural regression coefficients. The magnitude of these coefficients increased with LS, indicating an increasing incidence of LS on the NSB ratio. However, posterior distributions of correlations were similar across subpopulations (defined by the change points on LS), except for those between residuals. The heritability estimates of NSB did not present differences between recursive models. Nevertheless, these heritabilities were greater than those obtained for SMM (0.05) with a posterior probability of 85%. These results suggest a nonlinear relationship between LS and NSB, which supports the adequacy of a change-point recursive model for its analysis. Furthermore, the results from model comparisons support the use of recursive models. However, the adequacy of the different recursive models depended on the criteria used: the linear recursive model was preferred on account of its smallest deviance value, whereas nonlinear recursive models provided a better fit and predictive ability based on the cross-validation approach.

  13. Estimation in Linear Systems Featuring Correlated Uncertain Observations Coming from Multiple Sensors

    NASA Astrophysics Data System (ADS)

    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.

    2009-08-01

    In this paper, the state least-squares linear estimation problem from correlated uncertain observations coming from multiple sensors is addressed. It is assumed that, at each sensor, the state is measured in the presence of additive white noise and that the uncertainty in the observations is characterized by a set of Bernoulli random variables which are only correlated at consecutive time instants. Assuming that the statistical properties of such variables are not necessarily the same for all the sensors, a recursive filtering algorithm is proposed, and the performance of the estimators is illustrated by a numerical simulation example wherein a signal is estimated from correlated uncertain observations coming from two sensors with different uncertainty characteristics.

  14. Simulated quantum computation of molecular energies.

    PubMed

    Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin

    2005-09-09

    The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

  15. Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey

    2015-12-01

    The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.

  16. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  17. Recursive Fact-finding: A Streaming Approach to Truth Estimation in Crowdsourcing Applications

    DTIC Science & Technology

    2013-07-01

    are reported over the course of the campaign, lending themselves better to the abstraction of a data stream arriving from the community of sources. In...EM Recursive EM Figure 4. Recursive EM Algorithm Convergence V. RELATED WORK Social sensing which is also referred to as human- centric sensing [4...systems, where different sources offer reviews on products (or brands, companies) they have experienced [16]. Customers are affected by those reviews

  18. Geomagnetic modeling by optimal recursive filtering

    NASA Technical Reports Server (NTRS)

    Gibbs, B. P.; Estes, R. H.

    1981-01-01

    The results of a preliminary study to determine the feasibility of using Kalman filter techniques for geomagnetic field modeling are given. Specifically, five separate field models were computed using observatory annual means, satellite, survey and airborne data for the years 1950 to 1976. Each of the individual field models used approximately five years of data. These five models were combined using a recursive information filter (a Kalman filter written in terms of information matrices rather than covariance matrices.) The resulting estimate of the geomagnetic field and its secular variation was propogated four years past the data to the time of the MAGSAT data. The accuracy with which this field model matched the MAGSAT data was evaluated by comparisons with predictions from other pre-MAGSAT field models. The field estimate obtained by recursive estimation was found to be superior to all other models.

  19. Roll Angle Estimation Using Thermopiles for a Flight Controlled Mortar

    DTIC Science & Technology

    2012-06-01

    Using Xilinx’s System generator, the entire design was implemented at a relatively high level within Malab’s Simulink. This allowed VHDL code to...thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA). These results demonstrate the...accurately estimated by processing the thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA

  20. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  1. A transition matrix approach to the Davenport gryo calibration scheme

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1998-01-01

    The in-flight gyro calibration scheme commonly used by NASA Goddard Space Flight Center (GSFC) attitude ground support teams closely follows an original version of the Davenport algorithm developed in the late seventies. Its basic idea is to minimize the least-squares differences between attitudes gyro- propagated over the course of a maneuver and those determined using post- maneuver sensor measurements. The paper represents the scheme in a recursive form by combining necessary partials into a rectangular matrix, which is propagated in exactly the same way as a Kalman filters square transition matrix. The nontrivial structure of the propagation matrix arises from the fact that attitude errors are not included in the state vector, and therefore their derivatives with respect to estimated a parameters do not appear in the transition matrix gyro defined in the conventional way. In cases when the required accuracy can be achieved by a single iteration, representation of the Davenport gyro calibration scheme in a recursive form allows one to discard each gyro measurement immediately after it was used to propagate the attitude and state transition matrix. Another advantage of the new approach is that it utilizes the same expression for the error sensitivity matrix as that used by the Kalman filter. As a result the suggested modification of the Davenport algorithm made it possible to reuse software modules implemented in the Kalman filter estimator, where both attitude errors and gyro calibration parameters are included in the state vector. The new approach has been implemented in the ground calibration utilities used to support the Tropical Rainfall Measuring Mission (TRMM). The paper analyzes some preliminary results of gyro calibration performed by the TRMM ground attitude support team. It is demonstrated that an effect of the second iteration on estimated values of calibration parameters is negligibly small, and therefore there is no need to store processed gyro data. This opens a promising opportunity for onboard implementation of the suggested recursive procedure by combining, it with the Kalman filter used to obtain necessary attitude solutions at the beginning and end of each maneuver.

  2. Vehicle States Observer Using Adaptive Tire-Road Friction Estimator

    NASA Astrophysics Data System (ADS)

    Kwak, Byunghak; Park, Youngjin

    Vehicle stability control system is a new idea which can enhance the vehicle stability and handling in the emergency situation. This system requires the information of the yaw rate, sideslip angle and road friction in order to control the traction and braking forces at the individual wheels. This paper proposes an observer for the vehicle stability control system. This observer consisted of the state observer for vehicle motion estimation and the road condition estimator for the identification of the coefficient of the road friction. The state observer uses 2 degrees-of-freedom bicycle model and estimates the system variables based on the Kalman filter. The road condition estimator uses the same vehicle model and identifies the coefficient of the tire-road friction based on the recursive least square method. Both estimators make use of each other information. We show the effectiveness and feasibility of the proposed scheme under various road conditions through computer simulations of a fifteen degree-of-freedom non-linear vehicle model.

  3. On-line estimation of nonlinear physical systems

    USGS Publications Warehouse

    Christakos, G.

    1988-01-01

    Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.

  4. Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind.

    PubMed

    Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika

    2016-01-01

    The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures ("What may X be thinking/asking Y to do?"). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies "situative statements." Where the question concerned the mental state of the character but did not require an answer with sentence embedding ("What does X hate?"), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem.

  5. Recursive Subsystems in Aphasia and Alzheimer's Disease: Case Studies in Syntax and Theory of Mind

    PubMed Central

    Bánréti, Zoltán; Hoffmann, Ildikó; Vincze, Veronika

    2016-01-01

    The relationship between recursive sentence embedding and theory-of-mind (ToM) inference is investigated in three persons with Broca's aphasia, two persons with Wernicke's aphasia, and six persons with mild and moderate Alzheimer's disease (AD). We asked questions of four types about photographs of various real-life situations. Type 4 questions asked participants about intentions, thoughts, or utterances of the characters in the pictures (“What may X be thinking/asking Y to do?”). The expected answers typically involved subordinate clauses introduced by conjunctions or direct quotations of the characters' utterances. Broca's aphasics did not produce answers with recursive sentence embedding. Rather, they projected themselves into the characters' mental states and gave direct answers in the first person singular, with relevant ToM content. We call such replies “situative statements.” Where the question concerned the mental state of the character but did not require an answer with sentence embedding (“What does X hate?”), aphasics gave descriptive answers rather than situative statements. Most replies given by persons with AD to Type 4 questions were grammatical instances of recursive sentence embedding. They also gave a few situative statements but the ToM content of these was irrelevant. In more than one third of their well-formed sentence embeddings, too, they conveyed irrelevant ToM contents. Persons with moderate AD were unable to pass secondary false belief tests. The results reveal double dissociation: Broca's aphasics are unable to access recursive sentence embedding but they can make appropriate ToM inferences; moderate AD persons make the wrong ToM inferences but they are able to access recursive sentence embedding. The double dissociation may be relevant for the nature of the relationship between the two recursive capacities. Broca's aphasics compensated for the lack of recursive sentence embedding by recursive ToM reasoning represented in very simple syntactic forms: they used one recursive subsystem to stand in for another recursive subsystem. PMID:27064887

  6. Theory of Mind Development in Adolescence and Early Adulthood: The Growing Complexity of Recursive Thinking Ability

    PubMed Central

    Valle, Annalisa; Massaro, Davide; Castelli, Ilaria; Marchetti, Antonella

    2015-01-01

    This study explores the development of theory of mind, operationalized as recursive thinking ability, from adolescence to early adulthood (N = 110; young adolescents = 47; adolescents = 43; young adults = 20). The construct of theory of mind has been operationalized in two different ways: as the ability to recognize the correct mental state of a character, and as the ability to attribute the correct mental state in order to predict the character’s behaviour. The Imposing Memory Task, with five recursive thinking levels, and a third-order false-belief task with three recursive thinking levels (devised for this study) have been used. The relationship among working memory, executive functions, and linguistic skills are also analysed. Results show that subjects exhibit less understanding of elevated recursive thinking levels (third, fourth, and fifth) compared to the first and second levels. Working memory is correlated with total recursive thinking, whereas performance on the linguistic comprehension task is related to third level recursive thinking in both theory of mind tasks. An effect of age on third-order false-belief task performance was also found. A key finding of the present study is that the third-order false-belief task shows significant age differences in the application of recursive thinking that involves the prediction of others’ behaviour. In contrast, such an age effect is not observed in the Imposing Memory Task. These results may support the extension of the investigation of the third order false belief after childhood. PMID:27247645

  7. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  8. Estimation of correlation functions by stochastic approximation.

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Wintz, P. A.

    1972-01-01

    Consideration of the autocorrelation function of a zero-mean stationary random process. The techniques are applicable to processes with nonzero mean provided the mean is estimated first and subtracted. Two recursive techniques are proposed, both of which are based on the method of stochastic approximation and assume a functional form for the correlation function that depends on a number of parameters that are recursively estimated from successive records. One technique uses a standard point estimator of the correlation function to provide estimates of the parameters that minimize the mean-square error between the point estimates and the parametric function. The other technique provides estimates of the parameters that maximize a likelihood function relating the parameters of the function to the random process. Examples are presented.

  9. Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Xu, Zheyao; Qi, Naiming; Chen, Yukun

    2015-12-01

    Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.

  10. User's Guide for the Precision Recursive Estimator for Ephemeris Refinement (PREFER)

    NASA Technical Reports Server (NTRS)

    Gibbs, B. P.

    1982-01-01

    PREFER is a recursive orbit determination program which is used to refine the ephemerides produced by a batch least squares program (e.g., GTDS). It is intended to be used primarily with GTDS and, thus, is compatible with some of the GTDS input/output files.

  11. Adaptive particle filter for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai

    2009-10-01

    Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.

  12. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  13. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    DOE PAGES

    Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; ...

    2013-01-01

    Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less

  14. Control of linear uncertain systems utilizing mismatched state observers

    NASA Technical Reports Server (NTRS)

    Goldstein, B.

    1972-01-01

    The control of linear continuous dynamical systems is investigated as a problem of limited state feedback control. The equations which describe the structure of an observer are developed constrained to time-invarient systems. The optimal control problem is formulated, accounting for the uncertainty in the design parameters. Expressions for bounds on closed loop stability are also developed. The results indicate that very little uncertainty may be tolerated before divergence occurs in the recursive computation algorithms, and the derived stability bound yields extremely conservative estimates of regions of allowable parameter variations.

  15. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1986-01-01

    An approach to the design of digital phase locked loops (DPLLs), using estimation theory concepts in the selection of a loop filter, is presented. The key concept is that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor. The estimator provides recursive estimates of phase, frequency, and higher order derivatives, while the predictor compensates for the transport lag inherent in the loop. This decomposition results in a straightforward loop filter design procedure, enabling use of techniques from optimal and sub-optimal estimation theory. A design example for a particular choice of estimator is presented, followed by analysis of the associated bandwidth, gain margin, and steady state errors caused by unmodeled dynamics. This approach is under consideration for the design of the Deep Space Network (DSN) Advanced Receiver Carrier DPLL.

  16. Inferring relationships between clinical mastitis, productivity and fertility: a recursive model application including genetics, farm associated herd management, and cow-specific antibiotic treatments.

    PubMed

    Rehbein, Pia; Brügemann, Kerstin; Yin, Tong; V Borstel, U König; Wu, Xiao-Lin; König, Sven

    2013-10-01

    A dataset of test-day records, fertility traits, and one health trait including 1275 Brown Swiss cows kept in 46 small-scale organic farms was used to infer relationships among these traits based on recursive Gaussian-threshold models. Test-day records included milk yield (MY), protein percentage (PROT-%), fat percentage (FAT-%), somatic cell score (SCS), the ratio of FAT-% to PROT-% (FPR), lactose percentage (LAC-%), and milk urea nitrogen (MUN). Female fertility traits were defined as the interval from calving to first insemination (CTFS) and success of a first insemination (SFI), and the health trait was clinical mastitis (CM). First, a tri-trait model was used which postulated the recursive effect of a test-day observation in the early period of lactation on liability to CM (LCM), and further the recursive effect of LCM on the following test-day observation. For CM and female fertility traits, a bi-trait recursive Gaussian-threshold model was employed to estimate the effects from CM to CTFS and from CM on SFI. The recursive effects from CTFS and SFI onto CM were not relevant, because CM was recorded prior to the measurements for CTFS and SFI. Results show that the posterior heritability for LCM was 0.05, and for all other traits, heritability estimates were in reasonable ranges, each with a small posterior SD. Lowest heritability estimates were obtained for female reproduction traits, i.e. h(2)=0.02 for SFI, and h(2)≈0 for CTFS. Posterior estimates of genetic correlations between LCM and production traits (MY and MUN), and between LCM and somatic cell score (SCS), were large and positive (0.56-0.68). Results confirm the genetic antagonism between MY and LCM, and the suitability of SCS as an indicator trait for CM. Structural equation coefficients describe the impact of one trait on a second trait on the phenotypic pathway. Higher values for FAT-% and FPR were associated with a higher LCM. The rate of change in FAT-% and in FPR in the ongoing lactation with respect to the previous LCM was close to zero. Estimated recursive effects between SCS and CM were positive, implying strong phenotypic impacts between both traits. Structural equation coefficients explained a detrimental impact of CM on female fertility traits CTFS and SFI. The cow-specific CM treatment had no significant impact on performance traits in the ongoing lactation. For most treatments, beta-lactam-antibiotics were used, but test-day SCS and production traits after the beta-lactam-treatment were comparable to those after other antibiotic as well as homeopathic treatments. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. On the Dynamics of an Incursion Describing the Interactions between Functionally Differentiated Subsystems of a Discrete-time Anticipatory System

    NASA Astrophysics Data System (ADS)

    Burke, Mark E.

    2010-11-01

    Dubois coined the term incursion, for an inclusive or implicit recursion, to describe a discrete-time anticipatory system which computes its future states by reference to its future states as well as its current and past states. In this paper, we look at a model which has been proposed in the context of a social system which has functionally differentiated subsystems. The model is derived from a discrete-time compartmental SIS epidemic model. We analyse a low order instance of the model both in its form as a recursion with no anticipatory capacity, and also as an incursion with associated anticipatory capacity. The properties of the incursion are compared and contrasted with those of the underlying recursion.

  18. A new Bayesian recursive technique for parameter estimation

    NASA Astrophysics Data System (ADS)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  19. Motion adaptive Kalman filter for super-resolution

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Nasse, Fabian; Schröder, Hartmut

    2011-01-01

    Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.

  20. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  1. A simple approach to nonlinear estimation of physical systems

    USGS Publications Warehouse

    Christakos, G.

    1988-01-01

    Recursive algorithms for estimating the states of nonlinear physical systems are developed. This requires some key hypotheses regarding the structure of the underlying processes. Members of this class of random processes have several desirable properties for the nonlinear estimation of random signals. An assumption is made about the form of the estimator, which may then take account of a wide range of applications. Under the above assumption, the estimation algorithm is mathematically suboptimal but effective and computationally attractive. It may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. To link theory with practice, some numerical results for a simulated system are presented, in which the responses from the proposed and the extended Kalman algorithms are compared. ?? 1988.

  2. A particle filter for multi-target tracking in track before detect context

    NASA Astrophysics Data System (ADS)

    Amrouche, Naima; Khenchaf, Ali; Berkani, Daoud

    2016-10-01

    The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). This paper proposes the recursive PF-TBD approach to detect multiple targets in low-signal-to noise ratios (SNR). The algorithm's successful performance is demonstrated using a simulated two target example.

  3. A numerical identifiability test for state-space models--application to optimal experimental design.

    PubMed

    Hidalgo, M E; Ayesa, E

    2001-01-01

    This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.

  4. Kalman filters for fractional discrete-time stochastic systems along with time-delay in the observation signal

    NASA Astrophysics Data System (ADS)

    Torabi, H.; Pariz, N.; Karimpour, A.

    2016-02-01

    This paper investigates fractional Kalman filters when time-delay is entered in the observation signal in the discrete-time stochastic fractional order state-space representation. After investigating the common fractional Kalman filter, we try to derive a fractional Kalman filter for time-delay fractional systems. A detailed derivation is given. Fractional Kalman filters will be used to estimate recursively the states of fractional order state-space systems based on minimizing the cost function when there is a constant time delay (d) in the observation signal. The problem will be solved by converting the filtering problem to a usual d-step prediction problem for delay-free fractional systems.

  5. A decoupled recursive approach for constrained flexible multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung

    1989-01-01

    A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.

  6. Estimation of object motion parameters from noisy images.

    PubMed

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  7. Improved Accuracy Using Recursive Bayesian Estimation Based Language Model Fusion in ERP-Based BCI Typing Systems

    PubMed Central

    Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.

    2013-01-01

    RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432

  8. Recursive solution of number of reachable states of a simple subclass of FMS

    NASA Astrophysics Data System (ADS)

    Chao, Daniel Yuh

    2014-03-01

    This paper aims to compute the number of reachable (forbidden, live and deadlock) states for flexible manufacturing systems (FMS) without the construction of reachability graph. The problem is nontrivial and takes, in general, an exponential amount of time to solve. Hence, this paper focusses on a simple version of Systems of Simple Sequential Processes with Resources (S3PR), called kth-order system, where each resource place holds one token to be shared between two processes. The exact number of reachable (forbidden, live and deadlock) states can be computed recursively.

  9. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    NASA Astrophysics Data System (ADS)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  10. Algorithms for System Identification and Source Location.

    NASA Astrophysics Data System (ADS)

    Nehorai, Arye

    This thesis deals with several topics in least squares estimation and applications to source location. It begins with a derivation of a mapping between Wiener theory and Kalman filtering for nonstationary autoregressive moving average (ARMO) processes. Applying time domain analysis, connections are found between time-varying state space realizations and input-output impulse response by matrix fraction description (MFD). Using these connections, the whitening filters are derived by the two approaches, and the Kalman gain is expressed in terms of Wiener theory. Next, fast estimation algorithms are derived in a unified way as special cases of the Conjugate Direction Method. The fast algorithms included are the block Levinson, fast recursive least squares, ladder (or lattice) and fast Cholesky algorithms. The results give a novel derivation and interpretation for all these methods, which are efficient alternatives to available recursive system identification algorithms. Multivariable identification algorithms are usually designed only for left MFD models. In this work, recursive multivariable identification algorithms are derived for right MFD models with diagonal denominator matrices. The algorithms are of prediction error and model reference type. Convergence analysis results obtained by the Ordinary Differential Equation (ODE) method are presented along with simulations. Sources of energy can be located by estimating time differences of arrival (TDOA's) of waves between the receivers. A new method for TDOA estimation is proposed for multiple unknown ARMA sources and additive correlated receiver noise. The method is based on a formula that uses only the receiver cross-spectra and the source poles. Two algorithms are suggested that allow tradeoffs between computational complexity and accuracy. A new time delay model is derived and used to show the applicability of the methods for non -integer TDOA's. Results from simulations illustrate the performance of the algorithms. The last chapter analyzes the response of exact least squares predictors for enhancement of sinusoids with additive colored noise. Using the matrix inversion lemma and the Christoffel-Darboux formula, the frequency response and amplitude gain of the sinusoids are expressed as functions of the signal and noise characteristics. The results generalize the available white noise case.

  11. Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging

    NASA Astrophysics Data System (ADS)

    Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas

    In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.

  12. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai

    2018-02-01

    An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.

  13. Exact analytical solution of irreversible binary dynamics on networks.

    PubMed

    Laurence, Edward; Young, Jean-Gabriel; Melnik, Sergey; Dubé, Louis J

    2018-03-01

    In binary cascade dynamics, the nodes of a graph are in one of two possible states (inactive, active), and nodes in the inactive state make an irreversible transition to the active state, as soon as their precursors satisfy a predetermined condition. We introduce a set of recursive equations to compute the probability of reaching any final state, given an initial state, and a specification of the transition probability function of each node. Because the naive recursive approach for solving these equations takes factorial time in the number of nodes, we also introduce an accelerated algorithm, built around a breath-first search procedure. This algorithm solves the equations as efficiently as possible in exponential time.

  14. Exact analytical solution of irreversible binary dynamics on networks

    NASA Astrophysics Data System (ADS)

    Laurence, Edward; Young, Jean-Gabriel; Melnik, Sergey; Dubé, Louis J.

    2018-03-01

    In binary cascade dynamics, the nodes of a graph are in one of two possible states (inactive, active), and nodes in the inactive state make an irreversible transition to the active state, as soon as their precursors satisfy a predetermined condition. We introduce a set of recursive equations to compute the probability of reaching any final state, given an initial state, and a specification of the transition probability function of each node. Because the naive recursive approach for solving these equations takes factorial time in the number of nodes, we also introduce an accelerated algorithm, built around a breath-first search procedure. This algorithm solves the equations as efficiently as possible in exponential time.

  15. Real time damage detection using recursive principal components and time varying auto-regressive modeling

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.

    2018-02-01

    In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving experiments performed on a cantilever beam subjected to earthquake excitation; a two-storey benchscale model with a TMD and, data from recorded responses of UCLA factor building demonstrate the efficacy of the proposed methodology as an ideal candidate for real time, reference free structural health monitoring.

  16. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph.

    PubMed

    Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo

    2015-11-05

    Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.

  17. Self-tuning control of attitude and momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.

    1992-01-01

    This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.

  18. Adaptive Control and Parameter Identification of a Doubly-Fed Induction Generator for Wind Power

    DTIC Science & Technology

    2011-09-01

    Computer Controlled Systems, Theory and Design, Third Edition, Prentice Hall, New Jersey, 1997. [27] R. G. Brown and P. Y.C. Hwang , Introduction to...V n y iT iT , (0.0) with Ts as the sampling interval. From [26], the recursive estimate can be interpreted as a Kalman Filter for the process...by substituting t with n. The recursive equations for the RLS can then be derived from the Kalman filter equations used in [27]: 29 $ $ $ 1 1

  19. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.

    PubMed

    Alonso, Roberto; Monroy, Raúl; Trejo, Luis A

    2016-08-17

    The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  20. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers

    PubMed Central

    Alonso, Roberto; Monroy, Raúl; Trejo, Luis A.

    2016-01-01

    The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers. PMID:27548169

  1. [Formula: see text]-regularized recursive total least squares based sparse system identification for the error-in-variables.

    PubMed

    Lim, Jun-Seok; Pang, Hee-Suk

    2016-01-01

    In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.

  2. A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation.

    PubMed

    Holland, Alexander; Aboy, Mateo

    2009-07-01

    We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.

  3. An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking

    NASA Astrophysics Data System (ADS)

    Raihan A. V, Dilshad; Chakravorty, Suman

    2018-03-01

    Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.

  4. Cache Locality Optimization for Recursive Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifflander, Jonathan; Krishnamoorthy, Sriram

    We present an approach to optimize the cache locality for recursive programs by dynamically splicing--recursively interleaving--the execution of distinct function invocations. By utilizing data effect annotations, we identify concurrency and data reuse opportunities across function invocations and interleave them to reduce reuse distance. We present algorithms that efficiently track effects in recursive programs, detect interference and dependencies, and interleave execution of function invocations using user-level (non-kernel) lightweight threads. To enable multi-core execution, a program is parallelized using a nested fork/join programming model. Our cache optimization strategy is designed to work in the context of a random work stealing scheduler. Wemore » present an implementation using the MIT Cilk framework that demonstrates significant improvements in sequential and parallel performance, competitive with a state-of-the-art compile-time optimizer for loop programs and a domain- specific optimizer for stencil programs.« less

  5. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2014-01-01

    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low-salinity water from the transient stores as discharge falls. The joint use of complementary techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  6. Estimation Filter for Alignment of the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Bayard, David

    2007-01-01

    A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.

  7. Ridge Regression Signal Processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  8. Renormalization group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George

    1993-01-01

    The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.

  9. Designing Estimator/Predictor Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1988-01-01

    Signal delays in equipment compensated automatically. New approach to design of digital phase-locked loop (DPLL) incorporates concepts from estimation theory and involves decomposition of closed-loop transfer function into estimator and predictor. Estimator provides recursive estimates of phase, frequency, and higher order derivatives of phase with respect to time, while predictor compensates for delay, called "transport lag," caused by PLL equipment and by DPLL computations.

  10. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, Joseph I.; Hurd, William J.

    1990-01-01

    The design of digital phase locked loops (DPLL) using estimation theory concepts in the selection of a loop filter is presented. The key concept, that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor, is discussed. The estimator provides recursive estimates of phase, frequency, and higher-order derivatives, and the predictor compensates for the transport lag inherent in the loop.

  11. Non-recursive augmented Lagrangian algorithms for the forward and inverse dynamics of constrained flexible multibodies

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Ledesma, Ragnar

    1993-01-01

    A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.

  12. Kalman filter for statistical monitoring of forest cover across sub-continental regions

    Treesearch

    Raymond L. Czaplewski

    1991-01-01

    The Kalman filter is a multivariate generalization of the composite estimator which recursively combines a current direct estimate with a past estimate that is updated for expected change over time with a prediction model. The Kalman filter can estimate proportions of different cover types for sub-continental regions each year. A random sample of high-resolution...

  13. The Least-Squares Estimation of Latent Trait Variables.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi

    This paper presents a new method for estimating a given latent trait variable by the least-squares approach. The beta weights are obtained recursively with the help of Fourier series and expressed as functions of item parameters of response curves. The values of the latent trait variable estimated by this method and by maximum likelihood method…

  14. Accuracy assessment with complex sampling designs

    Treesearch

    Raymond L. Czaplewski

    2010-01-01

    A reliable accuracy assessment of remotely sensed geospatial data requires a sufficiently large probability sample of expensive reference data. Complex sampling designs reduce cost or increase precision, especially with regional, continental and global projects. The General Restriction (GR) Estimator and the Recursive Restriction (RR) Estimator separate a complex...

  15. Neural Net Gains Estimation Based on an Equivalent Model

    PubMed Central

    Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory

    2016-01-01

    A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system. PMID:27366146

  16. Neural Net Gains Estimation Based on an Equivalent Model.

    PubMed

    Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory

    2016-01-01

    A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system.

  17. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization

    PubMed Central

    Zhu, Qingxin; Niu, Xinzheng

    2016-01-01

    By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996

  18. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization.

    PubMed

    Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng

    2016-01-01

    By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.

  19. Multiple concurrent recursive least squares identification with application to on-line spacecraft mass-property identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2006-01-01

    The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.

  20. EEG and MEG source localization using recursively applied (RAP) MUSIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, J.C.; Leahy, R.M.

    1996-12-31

    The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which usesmore » the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.« less

  1. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  2. A Scalable Distributed Syntactic, Semantic, and Lexical Language Model

    DTIC Science & Technology

    2012-09-01

    Here pa(τ) denotes the set of parent states of τ. If the recursive factorization refers to a graph , then we have a Bayesian network (Lauritzen 1996...Broadly speaking, however, the recursive factorization can refer to a representation more complicated than a graph with a fixed set of nodes and edges...factored language (FL) model (Bilmes and Kirchhoff 2003) is close to the smoothing technique we propose here, the major difference is that FL

  3. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  4. A Note on Local Stability Conditions for Two Types of Monetary Models with Recursive Utility

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenji; Utsunomiya, Hitoshi

    2009-09-01

    This note explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility. Although Chen et al. [Chen, B.-L., M. Hsu, and C.-H. Lin, 2008, Inflation and growth: impatience and a qualitative equivalent, Journal of Money, Credit, and Banking, Vol. 40, No. 6, 1310-1323] investigated the relationship between inflation and growth in MIUF and TC models with recursive utility, they conducted only a comparative static analysis in a steady state. By establishing sufficient conditions for local stability, this note proves that impatience should be increasing in consumption and real balances. Increasing impatience, although less plausible from an empirical point of view, receives more support from a theoretical viewpoint.

  5. Recent developments in learning control and system identification for robots and structures

    NASA Technical Reports Server (NTRS)

    Phan, M.; Juang, J.-N.; Longman, R. W.

    1990-01-01

    This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.

  6. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states

    NASA Astrophysics Data System (ADS)

    Nejad, S.; Gladwin, D. T.; Stone, D. A.

    2016-06-01

    This paper presents a systematic review for the most commonly used lumped-parameter equivalent circuit model structures in lithium-ion battery energy storage applications. These models include the Combined model, Rint model, two hysteresis models, Randles' model, a modified Randles' model and two resistor-capacitor (RC) network models with and without hysteresis included. Two variations of the lithium-ion cell chemistry, namely the lithium-ion iron phosphate (LiFePO4) and lithium nickel-manganese-cobalt oxide (LiNMC) are used for testing purposes. The model parameters and states are recursively estimated using a nonlinear system identification technique based on the dual Extended Kalman Filter (dual-EKF) algorithm. The dynamic performance of the model structures are verified using the results obtained from a self-designed pulsed-current test and an electric vehicle (EV) drive cycle based on the New European Drive Cycle (NEDC) profile over a range of operating temperatures. Analysis on the ten model structures are conducted with respect to state-of-charge (SOC) and state-of-power (SOP) estimation with erroneous initial conditions. Comparatively, both RC model structures provide the best dynamic performance, with an outstanding SOC estimation accuracy. For those cell chemistries with large inherent hysteresis levels (e.g. LiFePO4), the RC model with only one time constant is combined with a dynamic hysteresis model to further enhance the performance of the SOC estimator.

  7. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  8. Variable forgetting factor mechanisms for diffusion recursive least squares algorithm in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.

    2017-12-01

    In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.

  9. An offline approach for output-only Bayesian identification of stochastic nonlinear systems using unscented Kalman filtering

    NASA Astrophysics Data System (ADS)

    Erazo, Kalil; Nagarajaiah, Satish

    2017-06-01

    In this paper an offline approach for output-only Bayesian identification of stochastic nonlinear systems is presented. The approach is based on a re-parameterization of the joint posterior distribution of the parameters that define a postulated state-space stochastic model class. In the re-parameterization the state predictive distribution is included, marginalized, and estimated recursively in a state estimation step using an unscented Kalman filter, bypassing state augmentation as required by existing online methods. In applications expectations of functions of the parameters are of interest, which requires the evaluation of potentially high-dimensional integrals; Markov chain Monte Carlo is adopted to sample the posterior distribution and estimate the expectations. The proposed approach is suitable for nonlinear systems subjected to non-stationary inputs whose realization is unknown, and that are modeled as stochastic processes. Numerical verification and experimental validation examples illustrate the effectiveness and advantages of the approach, including: (i) an increased numerical stability with respect to augmented-state unscented Kalman filtering, avoiding divergence of the estimates when the forcing input is unmeasured; (ii) the ability to handle arbitrary prior and posterior distributions. The experimental validation of the approach is conducted using data from a large-scale structure tested on a shake table. It is shown that the approach is robust to inherent modeling errors in the description of the system and forcing input, providing accurate prediction of the dynamic response when the excitation history is unknown.

  10. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  11. Performance of signal-to-noise ratio estimation for scanning electron microscope using autocorrelation Levinson-Durbin recursion model.

    PubMed

    Sim, K S; Lim, M S; Yeap, Z X

    2016-07-01

    A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1996-01-01

    In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.

  13. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    NASA Astrophysics Data System (ADS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  14. Efficient method for computing the electronic transport properties of a multiterminal system

    NASA Astrophysics Data System (ADS)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  15. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  16. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models. Part 1. Requirements, critical review of methods and modeling

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-08-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored, these include: battery state of charge (SoC), battery state of health (capcity fade determination, SoH), and state of function (power fade determination, SoF). In a series of two papers, we propose a system of algorithms based on a weighted recursive least quadratic squares parameter estimator, that is able to determine the battery impedance and diffusion parameters for accurate state estimation. The functionality was proven on different battery chemistries with different aging conditions. The first paper investigates the general requirements on BMS for HEV/EV applications. In parallel, the commonly used methods for battery monitoring are reviewed to elaborate their strength and weaknesses in terms of the identified requirements for on-line applications. Special emphasis will be placed on real-time capability and memory optimized code for cost-sensitive industrial or automotive applications in which low-cost microcontrollers must be used. Therefore, a battery model is presented which includes the influence of the Butler-Volmer kinetics on the charge-transfer process. Lastly, the mass transport process inside the battery is modeled in a novel state-space representation.

  17. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.

    PubMed

    Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li

    2018-06-01

    State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

  18. A recursive algorithm for the three-dimensional imaging of brain electric activity: Shrinking LORETA-FOCUSS.

    PubMed

    Liu, Hesheng; Gao, Xiaorong; Schimpf, Paul H; Yang, Fusheng; Gao, Shangkai

    2004-10-01

    Estimation of intracranial electric activity from the scalp electroencephalogram (EEG) requires a solution to the EEG inverse problem, which is known as an ill-conditioned problem. In order to yield a unique solution, weighted minimum norm least square (MNLS) inverse methods are generally used. This paper proposes a recursive algorithm, termed Shrinking LORETA-FOCUSS, which combines and expands upon the central features of two well-known weighted MNLS methods: LORETA and FOCUSS. This recursive algorithm makes iterative adjustments to the solution space as well as the weighting matrix, thereby dramatically reducing the computation load, and increasing local source resolution. Simulations are conducted on a 3-shell spherical head model registered to the Talairach human brain atlas. A comparative study of four different inverse methods, standard Weighted Minimum Norm, L1-norm, LORETA-FOCUSS and Shrinking LORETA-FOCUSS are presented. The results demonstrate that Shrinking LORETA-FOCUSS is able to reconstruct a three-dimensional source distribution with smaller localization and energy errors compared to the other methods.

  19. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

    PubMed

    Kazemi, Mahdi; Arefi, Mohammad Mehdi

    2017-03-01

    In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Control of AUVs using differential flatness theory and the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Raffo, Guilerme

    2015-12-01

    The paper proposes nonlinear control and filtering for Autonomous Underwater Vessels (AUVs) based on differential flatness theory and on the use of the Derivative-free nonlinear Kalman Filter. First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat one. This enables its transformation into the linear canonical (Brunovsky) form and facilitates the design of a state feedback controller. A problem that has to be dealt with is the uncertainty about the parameters of the AUV's dynamic model, as well the external perturbations which affect its motion. To cope with this, it is proposed to use a disturbance observer which is based on the Derivative-free nonlinear Kalman Filter. The considered filtering method consists of the standard Kalman Filter recursion applied on the linearized model of the vessel and of an inverse transformation based on differential flatness theory, which enables to obtain estimates of the state variables of the initial nonlinear model of the vessel. The Kalman Filter-based disturbance observer performs simultaneous estimation of the non-measurable state variables of the AUV and of the perturbation terms that affect its dynamics. By estimating such disturbances, their compensation is also succeeded through suitable modification of the feedback control input. The efficiency of the proposed AUV control and estimation scheme is confirmed through simulation experiments.

  1. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  2. Is the difference between chemical and numerical estimates of baseflow meaningful?

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Gilfedder, Ben; Hofmann, Harald

    2014-05-01

    Both chemical and numerical techniques are commonly used to calculate baseflow inputs to gaining rivers. In general the chemical methods yield lower estimates of baseflow than the numerical techniques. In part, this may be due to the techniques assuming two components (event water and baseflow) whereas there may also be multiple transient stores of water. Bank return waters, interflow, or waters stored on floodplains are delayed components that may be geochemically similar to the surface water from which they are derived; numerical techniques may record these components as baseflow whereas chemical mass balance studies are likely to aggregate them with the surface water component. This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. While more sophisticated techniques exist, these methods of estimating baseflow are readily applied with the available data and have been used widely elsewhere. During the early stages of high-discharge events, chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those from chemical mass balance using Cl calculated from continuous electrical conductivity. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of annual discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of annual discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge). These differences most probably reflect how the different techniques characterise the transient water sources in this catchment. The local minimum and recursive digital filters aggregate much of the water from delayed sources as baseflow. However, as many of these delayed transient water stores (such as bank return flow, floodplain storage, or interflow) have Cl concentrations that are similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low-salinity water from the transient stores as discharge falls. The use of complementary techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  3. Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    We introduce a framework to build a survival/risk bump hunting model with a censored time-to-event response. Our Survival Bump Hunting (SBH) method is based on a recursive peeling procedure that uses a specific survival peeling criterion derived from non/semi-parametric statistics such as the hazards-ratio, the log-rank test or the Nelson--Aalen estimator. To optimize the tuning parameter of the model and validate it, we introduce an objective function based on survival or prediction-error statistics, such as the log-rank test and the concordance error rate. We also describe two alternative cross-validation techniques adapted to the joint task of decision-rule making by recursive peeling and survival estimation. Numerical analyses show the importance of replicated cross-validation and the differences between criteria and techniques in both low and high-dimensional settings. Although several non-parametric survival models exist, none addresses the problem of directly identifying local extrema. We show how SBH efficiently estimates extreme survival/risk subgroups unlike other models. This provides an insight into the behavior of commonly used models and suggests alternatives to be adopted in practice. Finally, our SBH framework was applied to a clinical dataset. In it, we identified subsets of patients characterized by clinical and demographic covariates with a distinct extreme survival outcome, for which tailored medical interventions could be made. An R package PRIMsrc (Patient Rule Induction Method in Survival, Regression and Classification settings) is available on CRAN (Comprehensive R Archive Network) and GitHub. PMID:27034730

  4. Method for implementation of recursive hierarchical segmentation on parallel computers

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Inventor)

    2005-01-01

    A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.

  5. Is recursion language-specific? Evidence of recursive mechanisms in the structure of intentional action.

    PubMed

    Vicari, Giuseppe; Adenzato, Mauro

    2014-05-01

    In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Recursive least squares estimation and its application to shallow trench isolation

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Qin, S. Joe; Bode, Christopher A.; Purdy, Matthew A.

    2003-06-01

    In recent years, run-to-run (R2R) control technology has received tremendous interest in semiconductor manufacturing. One class of widely used run-to-run controllers is based on the exponentially weighted moving average (EWMA) statistics to estimate process deviations. Using an EWMA filter to smooth the control action on a linear process has been shown to provide good results in a number of applications. However, for a process with severe drifts, the EWMA controller is insufficient even when large weights are used. This problem becomes more severe when there is measurement delay, which is almost inevitable in semiconductor industry. In order to control drifting processes, a predictor-corrector controller (PCC) and a double EWMA controller have been developed. Chen and Guo (2001) show that both PCC and double-EWMA controller are in effect Integral-double-Integral (I-II) controllers, which are able to control drifting processes. However, since offset is often within the noise of the process, the second integrator can actually cause jittering. Besides, tuning the second filter is not as intuitive as a single EWMA filter. In this work, we look at an alternative way Recursive Least Squares (RLS), to estimate and control the drifting process. EWMA and double-EWMA are shown to be the least squares estimate for locally constant mean model and locally constant linear trend model. Then the recursive least squares with exponential factor is applied to shallow trench isolation etch process to predict the future etch rate. The etch process, which is a critical process in the flash memory manufacturing, is known to suffer from significant etch rate drift due to chamber seasoning. In order to handle the metrology delay, we propose a new time update scheme. RLS with the new time update method gives very good result. The estimate error variance is smaller than that from EWMA, and mean square error decrease more than 10% compared to that from EWMA.

  7. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder.

  8. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    USGS Publications Warehouse

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased slightly high and some biased slightly low compared to the recursive digital filter. There were notable differences between the days at base flow estimated by the different methods, with the recursive digital filter having a smaller range of values. This was attributed to how the different methods determine cessation of quickflow (the part of streamflow which is not base flow).For 109 Chesapeake Bay watershed sites with available specific conductance data, the parameters of the filter were optimized using a chemical-mass-balance constraint and two different models for the time-dependence of base-flow specific conductance. Sixty-seven models were deemed acceptable and the results compared well with non-optimized results. There are a number of limitations to the optimal hydrograph-separation approach resulting from the assumptions implicit in the conceptual model, the mathematical model, and the approach taken to impose chemical mass balance (including tracer choice). These limitations may be evidenced by poor model results; conversely, poor model fit may provide an indication that two-component separation does not adequately describe the hydrologic system’s runoff response.The results of this study may be used to address a number of questions regarding the role of groundwater in understanding past changes in stream-water quality and forecasting possible future changes, such as the timing and magnitude of land-use and management practice effects on stream and groundwater quality. Ongoing and future modeling efforts may benefit from the estimates of base flow as calibration targets or as a means to filter chemical data to model base-flow loads and trends. Ultimately, base-flow estimation might provide the basis for future work aimed at improving the ability to quantify groundwater discharge, not only at the scale of a gaged watershed, but at the scale of individual reaches as well.

  9. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    NASA Astrophysics Data System (ADS)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  10. Multiple-camera/motion stereoscopy for range estimation in helicopter flight

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.

    1993-01-01

    Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.

  11. Practical recursive solution of degenerate Rayleigh-Schroedinger perturbation theory and application to high-order calculations of the Zeeman effect in hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstone, H.J.; Moats, R.K.

    1981-04-01

    With the aim of high-order calculations, a new recursive solution for the degenerate Rayleigh-Schroedinger perturbation-theory wave function and energy has been derived. The final formulas, chi/sup (N/)/sub sigma/ = R/sup () -sigma/summation/sup N/-1/sub k/ = 0 H/sup (sigma+1+k/)/sub sigma+1/chi/sup (N/-1-k), E/sup (N/+sigma) = <0Vertical BarH/sup (N/+sigma)/sub sigma+1/Vertical Bar0> + < 0Vertical Barsummation/sup N/-2/sub k/ = 0H/sup (sigma+1+k/)/sub sigma+1/ Vertical Barchi/sup (N/-1-k)>,which involve new Hamiltonian-related operators H/sup (sigma+k/)/sub sigma/ and H/sup( sigma+k/)/sub sigma/, strongly resemble the standard nondegenerate recursive formulas. As an illustration, the perturbed energy coefficients for the 3s-3d/sub 0/ states of hydrogen in the Zeeman effect have been calculatedmore » recursively through 87th order in the square of the magnetic field. Our treatment is compared with that of Hirschfelder and Certain (J. Chem. Phys. 60, 1118 (1974)), and some relative advantages of each are pointed out.« less

  12. Statistically extracted fundamental watershed variables for estimating the loads of total nitrogen in small streams

    USGS Publications Warehouse

    Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia

    2016-01-01

    Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.

  13. Experimental evaluation of a recursive model identification technique for type 1 diabetes.

    PubMed

    Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E

    2009-09-01

    A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.

  14. Multitarget mixture reduction algorithm with incorporated target existence recursions

    NASA Astrophysics Data System (ADS)

    Ristic, Branko; Arulampalam, Sanjeev

    2000-07-01

    The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.

  15. A recursive Bayesian approach for fatigue damage prognosis: An experimental validation at the reliability component level

    NASA Astrophysics Data System (ADS)

    Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.

    2014-04-01

    Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.

  16. Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai; Sun, Han; Yu, Xiaowei

    2017-10-01

    To overcome the range anxiety, one of the important strategies is to accurately predict the range or dischargeable time of the battery system. To accurately predict the remaining dischargeable time (RDT) of a battery, a RDT prediction framework based on accurate battery modeling and state estimation is presented in this paper. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery. Then, an online recursive least-square-algorithm method and unscented-Kalman-filter are employed to estimate the system matrices and SOC at every prediction point. Besides, a discrete wavelet transform technique is employed to capture the statistical information of past dynamics of input currents, which are utilized to predict the future battery currents. Finally, the RDT can be predicted based on the battery model, SOC estimation results and predicted future battery currents. The performance of the proposed methodology has been verified by a lithium-ion battery cell. Experimental results indicate that the proposed method can provide an accurate SOC and parameter estimation and the predicted RDT can solve the range anxiety issues.

  17. Nonparametric estimation of the multivariate survivor function: the multivariate Kaplan-Meier estimator.

    PubMed

    Prentice, Ross L; Zhao, Shanshan

    2018-01-01

    The Dabrowska (Ann Stat 16:1475-1489, 1988) product integral representation of the multivariate survivor function is extended, leading to a nonparametric survivor function estimator for an arbitrary number of failure time variates that has a simple recursive formula for its calculation. Empirical process methods are used to sketch proofs for this estimator's strong consistency and weak convergence properties. Summary measures of pairwise and higher-order dependencies are also defined and nonparametrically estimated. Simulation evaluation is given for the special case of three failure time variates.

  18. Online Denoising Based on the Second-Order Adaptive Statistics Model.

    PubMed

    Yi, Sheng-Lun; Jin, Xue-Bo; Su, Ting-Li; Tang, Zhen-Yun; Wang, Fa-Fa; Xiang, Na; Kong, Jian-Lei

    2017-07-20

    Online denoising is motivated by real-time applications in the industrial process, where the data must be utilizable soon after it is collected. Since the noise in practical process is usually colored, it is quite a challenge for denoising techniques. In this paper, a novel online denoising method was proposed to achieve the processing of the practical measurement data with colored noise, and the characteristics of the colored noise were considered in the dynamic model via an adaptive parameter. The proposed method consists of two parts within a closed loop: the first one is to estimate the system state based on the second-order adaptive statistics model and the other is to update the adaptive parameter in the model using the Yule-Walker algorithm. Specifically, the state estimation process was implemented via the Kalman filter in a recursive way, and the online purpose was therefore attained. Experimental data in a reinforced concrete structure test was used to verify the effectiveness of the proposed method. Results show the proposed method not only dealt with the signals with colored noise, but also achieved a tradeoff between efficiency and accuracy.

  19. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    PubMed

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  20. Correction of Doppler Rada Data for Aircraft Motion Using Surface Measurements and Recursive Least-Squares Estimation

    NASA Technical Reports Server (NTRS)

    Durden, S.; Haddad, Z.

    1998-01-01

    Observations of Doppler velocity of hydrometeors form airborne Doppler weather radars normally contains a component due to the aircraft motion. Accurate hydrometeor velocity measurements thus require correction by subtracting this velocity from the observed velocity.

  1. Teaching and learning recursive programming: a review of the research literature

    NASA Astrophysics Data System (ADS)

    McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie

    2015-01-01

    Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion, and best practices in introducing recursion. Effective strategies for introducing the topic include using different contexts such as recurrence relations, programming examples, fractal images, and a description of how recursive methods are processed using a call stack. Several studies compared the efficacy of introducing iteration before recursion and vice versa. The paper concludes with suggestions for future research into how students learn and understand recursion, including a look at the possible impact of instructor attitude and newer pedagogies.

  2. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach.

    PubMed

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-03-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. © 2014 Diabetes Technology Society.

  3. Harnessing molecular excited states with Lanczos chains.

    PubMed

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-24

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  4. Harnessing molecular excited states with Lanczos chains

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-01

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  5. Chaos control in delayed phase space constructed by the Takens embedding theory

    NASA Astrophysics Data System (ADS)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  6. Differential sampling for fast frequency acquisition via adaptive extended least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1987-01-01

    This paper presents a differential signal model along with appropriate sampling techinques for least squares estimation of the frequency and frequency derivatives and possibly the phase and amplitude of a sinusoid received in the presence of noise. The proposed algorithm is recursive in mesurements and thus the computational requirement increases only linearly with the number of measurements. The dimension of the state vector in the proposed algorithm does not depend upon the number of measurements and is quite small, typically around four. This is an advantage when compared to previous algorithms wherein the dimension of the state vector increases monotonically with the product of the frequency uncertainty and the observation period. Such a computational simplification may possibly result in some loss of optimality. However, by applying the sampling techniques of the paper such a possible loss in optimality can made small.

  7. Recursion Removal as an Instructional Method to Enhance the Understanding of Recursion Tracing

    ERIC Educational Resources Information Center

    Velázquez-Iturbide, J. Ángel; Castellanos, M. Eugenia; Hijón-Neira, Raquel

    2016-01-01

    Recursion is one of the most difficult programming topics for students. In this paper, an instructional method is proposed to enhance students' understanding of recursion tracing. The proposal is based on the use of rules to translate linear recursion algorithms into equivalent, iterative ones. The paper has two main contributions: the…

  8. Implications of Middle School Behavior Problems for High School Graduation and Employment Outcomes of Young Adults: Estimation of a Recursive Model.

    PubMed

    Karakus, Mustafa C; Salkever, David S; Slade, Eric P; Ialongo, Nicholas; Stuart, Elizabeth

    2012-01-01

    The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear As an initial step in exploring this issue, we specify and estimate a recursive bivariate probit model that 1) relates middle school behavior problems to high school graduation and 2) models later employment in young adulthood as a function of these behavior problems and of high school graduation. Our model thus allows for both a direct effect of behavior problems on later employment as well as an indirect effect that operates via graduation from high school. Our empirical results, based on analysis of data from the NELS, suggest that the direct effects of externalizing behavior problems on later employment are not significant but that these problems have important indirect effects operating through high school graduation.

  9. A recursive Bayesian updating model of haptic stiffness perception.

    PubMed

    Wu, Bing; Klatzky, Roberta L

    2018-06-01

    Stiffness of many materials follows Hooke's Law, but the mechanism underlying the haptic perception of stiffness is not as simple as it seems in the physical definition. The present experiments support a model by which stiffness perception is adaptively updated during dynamic interaction. Participants actively explored virtual springs and estimated their stiffness relative to a reference. The stimuli were simulations of linear springs or nonlinear springs created by modulating a linear counterpart with low-amplitude, half-cycle (Experiment 1) or full-cycle (Experiment 2) sinusoidal force. Experiment 1 showed that subjective stiffness increased (decreased) as a linear spring was positively (negatively) modulated by a half-sinewave force. In Experiment 2, an opposite pattern was observed for full-sinewave modulations. Modeling showed that the results were best described by an adaptive process that sequentially and recursively updated an estimate of stiffness using the force and displacement information sampled over trajectory and time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.

    PubMed

    Kostoglou, Kyriaki; Debert, Chantel T; Poulin, Marc J; Mitsis, Georgios D

    2014-05-01

    We examined the time-varying characteristics of cerebral autoregulation and hemodynamics during a step hypercapnic stimulus by using recursively estimated multivariate (two-input) models which quantify the dynamic effects of mean arterial blood pressure (ABP) and end-tidal CO2 tension (PETCO2) on middle cerebral artery blood flow velocity (CBFV). Beat-to-beat values of ABP and CBFV, as well as breath-to-breath values of PETCO2 during baseline and sustained euoxic hypercapnia were obtained in 8 female subjects. The multiple-input, single-output models used were based on the Laguerre expansion technique, and their parameters were updated using recursive least squares with multiple forgetting factors. The results reveal the presence of nonstationarities that confirm previously reported effects of hypercapnia on autoregulation, i.e. a decrease in the MABP phase lead, and suggest that the incorporation of PETCO2 as an additional model input yields less time-varying estimates of dynamic pressure autoregulation obtained from single-input (ABP-CBFV) models. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. A fast new algorithm for a robot neurocontroller using inverse QR decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, A.S.; Khemaissia, S.

    2000-01-01

    A new adaptive neural network controller for robots is presented. The controller is based on direct adaptive techniques. Unlike many neural network controllers in the literature, inverse dynamical model evaluation is not required. A numerically robust, computationally efficient processing scheme for neutral network weight estimation is described, namely, the inverse QR decomposition (INVQR). The inverse QR decomposition and a weighted recursive least-squares (WRLS) method for neural network weight estimation is derived using Cholesky factorization of the data matrix. The algorithm that performs the efficient INVQR of the underlying space-time data matrix may be implemented in parallel on a triangular array.more » Furthermore, its systolic architecture is well suited for VLSI implementation. Another important benefit is well suited for VLSI implementation. Another important benefit of the INVQR decomposition is that it solves directly for the time-recursive least-squares filter vector, while avoiding the sequential back-substitution step required by the QR decomposition approaches.« less

  12. A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.

    PubMed

    Le Rolle, Virginie; Ojeda, David; Beuchée, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernández, Alfredo I

    2013-01-01

    This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions.

  13. Education, Occupation, Hierarchy and Earnings.

    ERIC Educational Resources Information Center

    Tachibanaki, Toshiaki

    1988-01-01

    Attempts to estimate a recursive model of earnings distribution with education, occupation, and hierarchy, using individual data for Japanese males. Proves that hierarchical position is very significant in determining earnings level. Compares the influence of education and earnings distribution in Japan and France. Includes 3 tables and 20…

  14. Estimation and classification by sigmoids based on mutual information

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1994-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.

  15. Recursive regularization for inferring gene networks from time-course gene expression profiles

    PubMed Central

    Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru

    2009-01-01

    Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091

  16. Standardized shrinking LORETA-FOCUSS (SSLOFO): a new algorithm for spatio-temporal EEG source reconstruction.

    PubMed

    Liu, Hesheng; Schimpf, Paul H; Dong, Guoya; Gao, Xiaorong; Yang, Fusheng; Gao, Shangkai

    2005-10-01

    This paper presents a new algorithm called Standardized Shrinking LORETA-FOCUSS (SSLOFO) for solving the electroencephalogram (EEG) inverse problem. Multiple techniques are combined in a single procedure to robustly reconstruct the underlying source distribution with high spatial resolution. This algorithm uses a recursive process which takes the smooth estimate of sLORETA as initialization and then employs the re-weighted minimum norm introduced by FOCUSS. An important technique called standardization is involved in the recursive process to enhance the localization ability. The algorithm is further improved by automatically adjusting the source space according to the estimate of the previous step, and by the inclusion of temporal information. Simulation studies are carried out on both spherical and realistic head models. The algorithm achieves very good localization ability on noise-free data. It is capable of recovering complex source configurations with arbitrary shapes and can produce high quality images of extended source distributions. We also characterized the performance with noisy data in a realistic head model. An important feature of this algorithm is that the temporal waveforms are clearly reconstructed, even for closely spaced sources. This provides a convenient way to estimate neural dynamics directly from the cortical sources.

  17. Parsing recursive sentences with a connectionist model including a neural stack and synaptic gating.

    PubMed

    Fedor, Anna; Ittzés, Péter; Szathmáry, Eörs

    2011-02-21

    It is supposed that humans are genetically predisposed to be able to recognize sequences of context-free grammars with centre-embedded recursion while other primates are restricted to the recognition of finite state grammars with tail-recursion. Our aim was to construct a minimalist neural network that is able to parse artificial sentences of both grammars in an efficient way without using the biologically unrealistic backpropagation algorithm. The core of this network is a neural stack-like memory where the push and pop operations are regulated by synaptic gating on the connections between the layers of the stack. The network correctly categorizes novel sentences of both grammars after training. We suggest that the introduction of the neural stack memory will turn out to be substantial for any biological 'hierarchical processor' and the minimalist design of the model suggests a quest for similar, realistic neural architectures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Statistical learning and the challenge of syntax: Beyond finite state automata

    NASA Astrophysics Data System (ADS)

    Elman, Jeff

    2003-10-01

    Over the past decade, it has been clear that even very young infants are sensitive to the statistical structure of language input presented to them, and use the distributional regularities to induce simple grammars. But can such statistically-driven learning also explain the acquisition of more complex grammar, particularly when the grammar includes recursion? Recent claims (e.g., Hauser, Chomsky, and Fitch, 2002) have suggested that the answer is no, and that at least recursion must be an innate capacity of the human language acquisition device. In this talk evidence will be presented that indicates that, in fact, statistically-driven learning (embodied in recurrent neural networks) can indeed enable the learning of complex grammatical patterns, including those that involve recursion. When the results are generalized to idealized machines, it is found that the networks are at least equivalent to Push Down Automata. Perhaps more interestingly, with limited and finite resources (such as are presumed to exist in the human brain) these systems demonstrate patterns of performance that resemble those in humans.

  19. Categorial Compositionality III: F-(co)algebras and the Systematicity of Recursive Capacities in Human Cognition

    PubMed Central

    Phillips, Steven; Wilson, William H.

    2012-01-01

    Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language. PMID:22514704

  20. What's special about human language? The contents of the "narrow language faculty" revisited.

    PubMed

    Traxler, Matthew J; Boudewyn, Megan; Loudermilk, Jessica

    2012-10-01

    In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language.

  1. Influences of High School Curriculum on Determinants of Labor Market Experiences.

    ERIC Educational Resources Information Center

    Gardner, John A.; And Others

    This study extends previous research on labor market effects of vocational education by explicitly modeling the intervening factors in the relationship between secondary vocational education and labor market outcomes. The strategy is to propose and estimate a simplified, recursive model that can contribute to understanding why positive earnings…

  2. Thermal bioaerosol cloud tracking with Bayesian classification

    NASA Astrophysics Data System (ADS)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  3. A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter.

    PubMed

    Hoffmann, Stefan A; Wohltat, Christian; Müller, Kristian M; Arndt, Katja M

    2017-01-01

    For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.

  4. Passive tracking scheme for a single stationary observer

    NASA Astrophysics Data System (ADS)

    Chan, Y. T.; Rea, Terry

    2001-08-01

    While there are many techniques for Bearings-Only Tracking (BOT) in the ocean environment, they do not apply directly to the land situation. Generally, for tactical reasons, the land observer platform is stationary; but, it has two sensors, visual and infrared, for measuring bearings and a laser range finder (LRF) for measuring range. There is a requirement to develop a new BOT data fusion scheme that fuses the two sets of bearing readings, and together with a single LRF measurement, produces a unique track. This paper first develops a parameterized solution for the target speeds, prior to the occurrence of the LRF measurement, when the problem is unobservable. At, and after, the LRF measurement, a BOT formulated as a least squares (LS) estimator then produces a unique LS estimate of the target states. Bearing readings from the other sensor serve as instrumental variables in a data fusion setting to eliminate the bias in the BOT estimator. The result is recursive, unbiased and decentralized data fusion scheme. Results from two simulation experiments have corroborated the theoretical development and show that the scheme is optimal.

  5. Recursive Gradient Estimation Using Splines for Navigation of Autonomous Vehicles.

    DTIC Science & Technology

    1985-07-01

    AUTONOMOUS VEHICLES C. N. SHEN DTIC " JULY 1985 SEP 1 219 85 V US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER LARGE CALIBER WEAPON SYSTEMS LABORATORY I...GRADIENT ESTIMATION USING SPLINES FOR NAVIGATION OF AUTONOMOUS VEHICLES Final S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(q) 8. CONTRACT OR GRANT NUMBER...which require autonomous vehicles . Essential to these robotic vehicles is an adequate and efficient computer vision system. A potentially more

  6. [What is impaired consciousness? Revisiting impaired consciousness as psychiatric concept].

    PubMed

    Kanemoto, Kousuke

    2004-01-01

    For decades, psychiatrists have considered that concepts of impaired consciousness in the study of psychiatry were inconsistent with those applied in the field of neurology, in which the usefulness of the concept of consciousness has long been seriously doubted. Gloor concluded that the concept of consciousness does not further the understanding of seizure mechanisms or brain function, which is the current representative opinion of most epileptologists. Loss of consciousness tends to be reduced to aggregates of individual impairments of higher cognitive functions, and the concept of consciousness is preferably avoided by neurologists by assigning various behavioral disturbances during disturbed consciousness to particular neuropsychological centers. In contrast, psychiatrists, especially those in Europe, are more likely to include phenomena involving problems related to phenomenological intentionality in impaired consciousness. For the present study, we first divided consciousness into vigilance and recursive consciousness, and then attempted to determine what kind of impaired consciousness would be an ideal candidate to represent pure disturbance of recursive consciousness. Then, 4 patients, 1 each with pure amnestic states followed immediately by complex partial seizures, an akinetic mutistic state caused by absence status, and mental diplopia as a manifestation of postictal psychosis, as well as a patient with Alzheimer's disease who gracefully performed Japanese tea ceremony, were studied. Based on our findings, we concluded that impaired consciousness as a generic term in general medicine does not indicate any unitary entity corresponding to some well-demarcated physiological function or constitute a base from which recursive consciousness emerges as a superstructure. From that, we stressed that a pure form of impairment of recursive consciousness could occur without the impaired consciousness named generically in general medicine. Second, following observation of an additional 3 cases, descriptions of naissance of the first word (taken from the autobiography of Helen Keller), visual object agnosia, and chronic schizophrenia with schizophasia were discussed to examine the relationship between impairments of recursive consciousness and semantic generation dysfunction. Attempts to bridge semantic generation and recursive consciousness, performed by psychopathologists such as Bin Kimura and Hiroyuki Koide, were also briefly discussed. In light of these case presentations and related discussions, we re-examined traditional theories of impaired consciousness, including Mayer-Gross's Gestalt theory, later replaced by Conrad and Henri Ey's theory related to intentionality. Furthermore, we attempted to link Denett's theory of consciousness to those traditional theories as well as to our own postulations, and neuropsychological data such as those of implicit memory and blindsight. Finally, the significance of Freud's unconsciousness in the framework of neuroscience was discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özdemir, Semra Bayat; Demiralp, Metin

    The determination of the energy states is highly studied issue in the quantum mechanics. Based on expectation values dynamics, energy states can be observed. But conditions and calculations vary depending on the created system. In this work, a symmetric exponential anharmonic oscillator is considered and development of a recursive approximation method is studied to find its ground energy state. The use of majorant values facilitates the approximate calculation of expectation values.

  8. What's special about human language? The contents of the "narrow language faculty" revisited

    PubMed Central

    Traxler, Matthew J.; Boudewyn, Megan; Loudermilk, Jessica

    2012-01-01

    In this review we re-evaluate the recursion-only hypothesis, advocated by Fitch, Hauser and Chomsky (Hauser, Chomsky & Fitch, 2002; Fitch, Hauser & Chomsky, 2005). According to the recursion-only hypothesis, the property that distinguishes human language from animal communication systems is recursion, which refers to the potentially infinite embedding of one linguistic representation within another of the same type. This hypothesis predicts (1) that non-human primates and other animals lack the ability to learn recursive grammar, and (2) that recursive grammar is the sole cognitive mechanism that is unique to human language. We first review animal studies of recursive grammar, before turning to the claim that recursion is a property of all human languages. Finally, we discuss other views on what abilities may be unique to human language. PMID:23105948

  9. A Survey on Teaching and Learning Recursive Programming

    ERIC Educational Resources Information Center

    Rinderknecht, Christian

    2014-01-01

    We survey the literature about the teaching and learning of recursive programming. After a short history of the advent of recursion in programming languages and its adoption by programmers, we present curricular approaches to recursion, including a review of textbooks and some programming methodology, as well as the functional and imperative…

  10. An adaptive model for vanadium redox flow battery and its application for online peak power estimation

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria

    2017-03-01

    An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.

  11. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.

    PubMed

    Yang, Qinmin; Jagannathan, Sarangapani

    2012-04-01

    In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.

  12. Recursion in aphasia.

    PubMed

    Bánréti, Zoltán

    2010-11-01

    This study investigates how aphasic impairment impinges on syntactic and/or semantic recursivity of human language. A series of tests has been conducted with the participation of five Hungarian speaking aphasic subjects and 10 control subjects. Photographs representing simple situations were presented to subjects and questions were asked about them. The responses are supposed to involve formal structural recursion, but they contain semantic-pragmatic operations instead, with 'theory of mind' type embeddings. Aphasic individuals tend to exploit the parallel between 'theory of mind' embeddings and syntactic-structural embeddings in order to avoid formal structural recursion. Formal structural recursion may be more impaired in Broca's aphasia and semantic recursivity may remain selectively unimpaired in this type of aphasia.

  13. Development and experimental validation of downlink multiuser MIMO-OFDM in gigabit wireless LAN systems

    NASA Astrophysics Data System (ADS)

    Ishihara, Koichi; Asai, Yusuke; Kudo, Riichi; Ichikawa, Takeo; Takatori, Yasushi; Mizoguchi, Masato

    2013-12-01

    Multiuser multiple-input multiple-output (MU-MIMO) has been proposed as a means to improve spectrum efficiency for various future wireless communication systems. This paper reports indoor experimental results obtained for a newly developed and implemented downlink (DL) MU-MIMO orthogonal frequency division multiplexing (OFDM) transceiver for gigabit wireless local area network systems in the microwave band. In the transceiver, the channel state information (CSI) is estimated at each user and fed back to an access point (AP) on a real-time basis. At the AP, the estimated CSI is used to calculate the transmit beamforming weight for DL MU-MIMO transmission. This paper also proposes a recursive inverse matrix computation scheme for computing the transmit weight in real time. Experiments with the developed transceiver demonstrate its feasibility in a number of indoor scenarios. The experimental results clarify that DL MU-MIMO-OFDM transmission can achieve a 972-Mbit/s transmission data rate with simple digital signal processing of single-antenna users in an indoor environment.

  14. Teaching and Learning Recursive Programming: A Review of the Research Literature

    ERIC Educational Resources Information Center

    McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie

    2015-01-01

    Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion,…

  15. How Learning Logic Programming Affects Recursion Comprehension

    ERIC Educational Resources Information Center

    Haberman, Bruria

    2004-01-01

    Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…

  16. Recursive Objects--An Object Oriented Presentation of Recursion

    ERIC Educational Resources Information Center

    Sher, David B.

    2004-01-01

    Generally, when recursion is introduced to students the concept is illustrated with a toy (Towers of Hanoi) and some abstract mathematical functions (factorial, power, Fibonacci). These illustrate recursion in the same sense that counting to 10 can be used to illustrate a for loop. These are all good illustrations, but do not represent serious…

  17. How children perceive fractals: Hierarchical self-similarity and cognitive development

    PubMed Central

    Martins, Maurício Dias; Laaha, Sabine; Freiberger, Eva Maria; Choi, Soonja; Fitch, W. Tecumseh

    2014-01-01

    The ability to understand and generate hierarchical structures is a crucial component of human cognition, available in language, music, mathematics and problem solving. Recursion is a particularly useful mechanism for generating complex hierarchies by means of self-embedding rules. In the visual domain, fractals are recursive structures in which simple transformation rules generate hierarchies of infinite depth. Research on how children acquire these rules can provide valuable insight into the cognitive requirements and learning constraints of recursion. Here, we used fractals to investigate the acquisition of recursion in the visual domain, and probed for correlations with grammar comprehension and general intelligence. We compared second (n = 26) and fourth graders (n = 26) in their ability to represent two types of rules for generating hierarchical structures: Recursive rules, on the one hand, which generate new hierarchical levels; and iterative rules, on the other hand, which merely insert items within hierarchies without generating new levels. We found that the majority of fourth graders, but not second graders, were able to represent both recursive and iterative rules. This difference was partially accounted by second graders’ impairment in detecting hierarchical mistakes, and correlated with between-grade differences in grammar comprehension tasks. Empirically, recursion and iteration also differed in at least one crucial aspect: While the ability to learn recursive rules seemed to depend on the previous acquisition of simple iterative representations, the opposite was not true, i.e., children were able to acquire iterative rules before they acquired recursive representations. These results suggest that the acquisition of recursion in vision follows learning constraints similar to the acquisition of recursion in language, and that both domains share cognitive resources involved in hierarchical processing. PMID:24955884

  18. Implications of Middle School Behavior Problems for High School Graduation and Employment Outcomes of Young Adults: Estimation of a Recursive Model

    PubMed Central

    Karakus, Mustafa C.; Salkever, David S.; Slade, Eric P.; Ialongo, Nicholas; Stuart, Elizabeth

    2013-01-01

    The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear As an initial step in exploring this issue, we specify and estimate a recursive bivariate probit model that 1) relates middle school behavior problems to high school graduation and 2) models later employment in young adulthood as a function of these behavior problems and of high school graduation. Our model thus allows for both a direct effect of behavior problems on later employment as well as an indirect effect that operates via graduation from high school. Our empirical results, based on analysis of data from the NELS, suggest that the direct effects of externalizing behavior problems on later employment are not significant but that these problems have important indirect effects operating through high school graduation. PMID:23576834

  19. Rotorcraft Blade Mode Damping Identification from Random Responses Using a Recursive Maximum Likelihood Algorithm

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.

    1982-01-01

    An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. The data length required for acceptable parameter accuracy is shown to depend upon the amplitude of random response and the modal damping level. Random response amplitudes of 1.25 degrees to .05 degrees are investigated. The RML technique is applied to hingeless rotor test data. The inplane lag regressing mode is identified at different rotor speeds. The identification from the test data is compared with the simulation results and with other available estimates of frequency and damping.

  20. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Wang, Shoubin; Gao, Wei

    2013-01-01

    As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.

  1. Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model

    PubMed Central

    Wang, Shoubin; Gao, Wei

    2013-01-01

    As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator. PMID:23737730

  2. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui

    2015-08-01

    To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.

  3. Generalized recursive solutions to Ornstein-Zernike integral equations

    NASA Astrophysics Data System (ADS)

    Rossky, Peter J.; Dale, William D. T.

    1980-09-01

    Recursive procedures for the solution of a class of integral equations based on the Ornstein-Zernike equation are developed; the hypernetted chain and Percus-Yevick equations are two special cases of the class considered. It is shown that certain variants of the new procedures developed here are formally equivalent to those recently developed by Dale and Friedman, if the new recursive expressions are initialized in the same way as theirs. However, the computational solution of the new equations is significantly more efficient. Further, the present analysis leads to the identification of various graphical quantities arising in the earlier study with more familiar quantities related to pair correlation functions. The analysis is greatly facilitated by the use of several identities relating simple chain sums whose graphical elements can be written as a sum of two or more parts. In particular, the use of these identities permits renormalization of the equivalent series solution to the integral equation to be directly incorporated into the recursive solution in a straightforward manner. Formulas appropriate to renormalization with respect to long and short range parts of the pair potential, as well as more general components of the direct correlation function, are obtained. To further illustrate the utility of this approach, we show that a simple generalization of the hypernetted chain closure relation for the direct correlation function leads directly to the reference hypernetted chain (RHNC) equation due to Lado. The form of the correlation function used in the exponential approximation of Andersen and Chandler is then seen to be equivalent to the first estimate obtained from a renormalized RHNC equation.

  4. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    technique which used unobserved ”intermediate” variables to break a high-dimensional estimation problem such as least- squares (LS) optimization of a large...Least Squares (GEM-LS). The estimator is iterative and the work in this time period focused on characterizing the convergence properties of this...ap- proach by relaxing the statistical assumptions which is termed the Relaxed Approximate Graph-Structured Recursive Least Squares (RAGS-RLS). This

  5. Wavefront correction with Kalman filtering for the WFIRST-AFTA coronagraph instrument

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler D.

    2015-09-01

    The only way to characterize most exoplanets spectrally is via direct imaging. For example, the Coronagraph Instrument (CGI) on the proposed Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission plans to image and characterize several cool gas giants around nearby stars. The integration time on these faint exoplanets will be many hours to days. A crucial assumption for mission planning is that the time required to dig a dark hole (a region of high star-to-planet contrast) with deformable mirrors is small compared to science integration time. The science camera must be used as the wavefront sensor to avoid non-common path aberrations, but this approach can be quite time intensive. Several estimation images are required to build an estimate of the starlight electric field before it can be partially corrected, and this process is repeated iteratively until high contrast is reached. Here we present simulated results of batch process and recursive wavefront estimation schemes. In particular, we test a Kalman filter and an iterative extended Kalman filter (IEKF) to reduce the total exposure time and improve the robustness of wavefront correction for the WFIRST-AFTA CGI. An IEKF or other nonlinear filter also allows recursive, real-time estimation of sources incoherent with the star, such as exoplanets and disks, and may therefore reduce detection uncertainty.

  6. An improved state-parameter analysis of ecosystem models using data assimilation

    USGS Publications Warehouse

    Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.

    2008-01-01

    Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the simultaneous parameter estimation procedure significantly improves model predictions. Results also show that the SEnKF can dramatically reduce the variance in state variables stemming from the uncertainty of parameters and driving variables. The SEnKF is a robust and effective algorithm in evaluating and developing ecosystem models and in improving the understanding and quantification of carbon cycle parameters and processes. ?? 2008 Elsevier B.V.

  7. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.

    PubMed

    Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M

    2017-05-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).

  8. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks

    PubMed Central

    Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.

    2017-01-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513

  9. Angular-Rate Estimation Using Delayed Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.

  10. Recursive algorithms for bias and gain nonuniformity correction in infrared videos.

    PubMed

    Pipa, Daniel R; da Silva, Eduardo A B; Pagliari, Carla L; Diniz, Paulo S R

    2012-12-01

    Infrared focal-plane array (IRFPA) detectors suffer from fixed-pattern noise (FPN) that degrades image quality, which is also known as spatial nonuniformity. FPN is still a serious problem, despite recent advances in IRFPA technology. This paper proposes new scene-based correction algorithms for continuous compensation of bias and gain nonuniformity in FPA sensors. The proposed schemes use recursive least-square and affine projection techniques that jointly compensate for both the bias and gain of each image pixel, presenting rapid convergence and robustness to noise. The synthetic and real IRFPA videos experimentally show that the proposed solutions are competitive with the state-of-the-art in FPN reduction, by presenting recovered images with higher fidelity.

  11. Random number generators tested on quantum Monte Carlo simulations.

    PubMed

    Hongo, Kenta; Maezono, Ryo; Miura, Kenichi

    2010-08-01

    We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.

  12. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    PubMed

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  13. Cognitive representation of "musical fractals": Processing hierarchy and recursion in the auditory domain.

    PubMed

    Martins, Mauricio Dias; Gingras, Bruno; Puig-Waldmueller, Estela; Fitch, W Tecumseh

    2017-04-01

    The human ability to process hierarchical structures has been a longstanding research topic. However, the nature of the cognitive machinery underlying this faculty remains controversial. Recursion, the ability to embed structures within structures of the same kind, has been proposed as a key component of our ability to parse and generate complex hierarchies. Here, we investigated the cognitive representation of both recursive and iterative processes in the auditory domain. The experiment used a two-alternative forced-choice paradigm: participants were exposed to three-step processes in which pure-tone sequences were built either through recursive or iterative processes, and had to choose the correct completion. Foils were constructed according to generative processes that did not match the previous steps. Both musicians and non-musicians were able to represent recursion in the auditory domain, although musicians performed better. We also observed that general 'musical' aptitudes played a role in both recursion and iteration, although the influence of musical training was somehow independent from melodic memory. Moreover, unlike iteration, recursion in audition was well correlated with its non-auditory (recursive) analogues in the visual and action sequencing domains. These results suggest that the cognitive machinery involved in establishing recursive representations is domain-general, even though this machinery requires access to information resulting from domain-specific processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; A Recursive Maximum Likelihood Decoding

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.

  15. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks

    PubMed Central

    van Dyk, Ewald; Hoogstraat, Marlous; ten Hoeve, Jelle; Reinders, Marcel J. T.; Wessels, Lodewyk F. A.

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects recurrent copy number breaks, rather than recurrently amplified or deleted regions. This change of perspective allows for a simplified approach as recursive peak splitting procedures and repeated re-estimation of the background model are avoided. Furthermore, we control the false discovery rate on the level of called regions, rather than at the probe level, as in competing algorithms. We benchmark RUBIC against GISTIC2 (a state-of-the-art approach) and RAIG (a recently proposed approach) on simulated copy number data and on three SNP6 and NGS copy number data sets from TCGA. We show that RUBIC calls more focal recurrent regions and identifies a much larger fraction of known cancer genes. PMID:27396759

  16. Dynamic Estimation of Rigid Motion from Perspective Views via Recursive Identification of Exterior Differential Systems with Parameters on a Topological Manifold

    DTIC Science & Technology

    1994-02-15

    0. Faugeras. Three dimensional vision, a geometric viewpoint. MIT Press, 1993. [19] 0 . D. Faugeras and S. Maybank . Motion from point mathces...multiplicity of solutions. Int. J. of Computer Vision, 1990. 1201 0.D. Faugeras, Q.T. Luong, and S.J. Maybank . Camera self-calibration: theory and...Kalrnan filter-based algorithms for estimating depth from image sequences. Int. J. of computer vision, 1989. [41] S. Maybank . Theory of

  17. Concurrent MR-NIR Imaging for Breast Cancer Diagnosis

    DTIC Science & Technology

    2008-06-01

    the extended Kalman filtering (EKF) framework. Note that both the fluorophore concentrations in different compartments, C(rj , k), and the system...r1 − r2)δ(k1 − k2)Z1. 10) Estimation of Pharmacokinetic-Rate Images by Extended Kalman Filtering: Our objective is to estimate the fluorophore...covariance update at time k. Hk is the recursive Kalman gain matrix at time k and I is the identity matrix. Jk−1 is the Jacobian matrix due to iterative

  18. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    The method proposed for estimating sensitivity derivatives is based on the Recursive Quadratic Programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This method is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RQP algorithm. Initial testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity.

  19. Real-Time Frequency Response Estimation Using Joined-Wing SensorCraft Aeroelastic Wind-Tunnel Data

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A; Heeg, Jennifer; Morelli, Eugene A

    2012-01-01

    A new method is presented for estimating frequency responses and their uncertainties from wind-tunnel data in real time. The method uses orthogonal phase-optimized multi- sine excitation inputs and a recursive Fourier transform with a least-squares estimator. The method was first demonstrated with an F-16 nonlinear flight simulation and results showed that accurate short period frequency responses were obtained within 10 seconds. The method was then applied to wind-tunnel data from a previous aeroelastic test of the Joined- Wing SensorCraft. Frequency responses describing bending strains from simultaneous control surface excitations were estimated in a time-efficient manner.

  20. Evaluation of funnel traps for estimating tree mortality and associated population phase of spruce beetle in Utah

    Treesearch

    E. Matthew Hansen; Barbara J. Bentz; A. Steven Munson; James C. Vandygriff; David L. Turner

    2006-01-01

    Although funnel traps are routinely used to manage bark beetles, little is known regarding the relationship between trap captures of spruce beetle (Dendroctonus rufipennis Kirby) and mortality of Engelmann spruce (Picea engelmannii Parry ex Engelm.) within a 10 ha block of the trap. Using recursive partitioning tree analyses, rules...

  1. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources.

    PubMed

    Doulamis, A D; Doulamis, N D; Kollias, S D

    2003-01-01

    Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.

  2. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  3. On the role of dimensionality and sample size for unstructured and structured covariance matrix estimation

    NASA Technical Reports Server (NTRS)

    Morgera, S. D.; Cooper, D. B.

    1976-01-01

    The experimental observation that a surprisingly small sample size vis-a-vis dimension is needed to achieve good signal-to-interference ratio (SIR) performance with an adaptive predetection filter is explained. The adaptive filter requires estimates as obtained by a recursive stochastic algorithm of the inverse of the filter input data covariance matrix. The SIR performance with sample size is compared for the situations where the covariance matrix estimates are of unstructured (generalized) form and of structured (finite Toeplitz) form; the latter case is consistent with weak stationarity of the input data stochastic process.

  4. Ground-state magnetization of the Ising spin glass: A recursive numerical method and Chen-Ma scaling

    NASA Astrophysics Data System (ADS)

    Sepehrinia, Reza; Chalangari, Fartash

    2018-03-01

    The ground-state properties of quasi-one-dimensional (Q1D) Ising spin glass are investigated using an exact numerical approach and analytical arguments. A set of coupled recursive equations for the ground-state energy are introduced and solved numerically. For various types of coupling distribution, we obtain accurate results for magnetization, particularly in the presence of a weak external magnetic field. We show that in the weak magnetic field limit, similar to the 1D model, magnetization exhibits a singular power-law behavior with divergent susceptibility. Remarkably, the spectrum of magnetic exponents is markedly different from that of the 1D system even in the case of two coupled chains. The magnetic exponent makes a crossover from being dependent on a distribution function to a constant value independent of distribution. We provide an analytic theory for these observations by extending the Chen-Ma argument to the Q1D case. We derive an analytical formula for the exponent which is in perfect agreement with the numerical results.

  5. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  6. AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation

    PubMed Central

    Yuan, Xin; Martínez-Ortega, José-Fernán; Fernández, José Antonio Sánchez; Eckert, Martina

    2017-01-01

    In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM) applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs. Therefore, we present a new method called AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector, while estimating the state parameters via a recursive and iterative estimation-update process. Hereby, the prediction and update state (which exist as well in the conventional EKF) are complemented by a newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop mapping and line mapping experiments, it shows much better performances in map management with respect to landmark addition and removal, which avoid the long-term accumulation of errors and clutters in the created map. Additionally, the underwater robot achieves more precise and efficient self-localization and a mapping of the surrounding landmarks with much lower processing times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent map upgrading on loop closure. PMID:28531135

  7. A Recursive Method for Calculating Certain Partition Functions.

    ERIC Educational Resources Information Center

    Woodrum, Luther; And Others

    1978-01-01

    Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)

  8. Recursive inverse factorization.

    PubMed

    Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N

    2008-03-14

    A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.

  9. An MRI denoising method using image data redundancy and local SNR estimation.

    PubMed

    Golshan, Hosein M; Hasanzadeh, Reza P R; Yousefzadeh, Shahrokh C

    2013-09-01

    This paper presents an LMMSE-based method for the three-dimensional (3D) denoising of MR images assuming a Rician noise model. Conventionally, the LMMSE method estimates the noise-less signal values using the observed MR data samples within local neighborhoods. This is not an efficient procedure to deal with this issue while the 3D MR data intrinsically includes many similar samples that can be used to improve the estimation results. To overcome this problem, we model MR data as random fields and establish a principled way which is capable of choosing the samples not only from a local neighborhood but also from a large portion of the given data. To follow the similar samples within the MR data, an effective similarity measure based on the local statistical moments of images is presented. The parameters of the proposed filter are automatically chosen from the estimated local signal-to-noise ratio. To further enhance the denoising performance, a recursive version of the introduced approach is also addressed. The proposed filter is compared with related state-of-the-art filters using both synthetic and real MR datasets. The experimental results demonstrate the superior performance of our proposal in removing the noise and preserving the anatomical structures of MR images. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Online Reinforcement Learning Using a Probability Density Estimation.

    PubMed

    Agostini, Alejandro; Celaya, Enric

    2017-01-01

    Function approximation in online, incremental, reinforcement learning needs to deal with two fundamental problems: biased sampling and nonstationarity. In this kind of task, biased sampling occurs because samples are obtained from specific trajectories dictated by the dynamics of the environment and are usually concentrated in particular convergence regions, which in the long term tend to dominate the approximation in the less sampled regions. The nonstationarity comes from the recursive nature of the estimations typical of temporal difference methods. This nonstationarity has a local profile, varying not only along the learning process but also along different regions of the state space. We propose to deal with these problems using an estimation of the probability density of samples represented with a gaussian mixture model. To deal with the nonstationarity problem, we use the common approach of introducing a forgetting factor in the updating formula. However, instead of using the same forgetting factor for the whole domain, we make it dependent on the local density of samples, which we use to estimate the nonstationarity of the function at any given input point. To address the biased sampling problem, the forgetting factor applied to each mixture component is modulated according to the new information provided in the updating, rather than forgetting depending only on time, thus avoiding undesired distortions of the approximation in less sampled regions.

  11. Scoring and staging systems using cox linear regression modeling and recursive partitioning.

    PubMed

    Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H

    2006-01-01

    Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.

  12. Recursion to food plants by free-ranging Bornean elephant

    PubMed Central

    Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne

    2015-01-01

    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant’s preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed. PMID:26290779

  13. Recursion to food plants by free-ranging Bornean elephant.

    PubMed

    English, Megan; Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne

    2015-01-01

    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed.

  14. Active impulsive noise control using maximum correntropy with adaptive kernel size

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2017-03-01

    The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

  15. MEG (Magnetoencephalography) multipolar modeling of distributed sources using RAP-MUSIC (Recursively Applied and Projected Multiple Signal Characterization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, J. C.; Baillet, S.; Jerbi, K.

    2001-01-01

    We describe the use of truncated multipolar expansions for producing dynamic images of cortical neural activation from measurements of the magnetoencephalogram. We use a signal-subspace method to find the locations of a set of multipolar sources, each of which represents a region of activity in the cerebral cortex. Our method builds up an estimate of the sources in a recursive manner, i.e. we first search for point current dipoles, then magnetic dipoles, and finally first order multipoles. The dynamic behavior of these sources is then computed using a linear fit to the spatiotemporal data. The final step in the proceduremore » is to map each of the multipolar sources into an equivalent distributed source on the cortical surface. The method is illustrated through an application to epileptic interictal MEG data.« less

  16. The determination of third order linear models from a seventh order nonlinear jet engine model

    NASA Technical Reports Server (NTRS)

    Lalonde, Rick J.; Hartley, Tom T.; De Abreu-Garcia, J. Alex

    1989-01-01

    Results are presented that demonstrate how good reduced-order models can be obtained directly by recursive parameter identification using input/output (I/O) data of high-order nonlinear systems. Three different methods of obtaining a third-order linear model from a seventh-order nonlinear turbojet engine model are compared. The first method is to obtain a linear model from the original model and then reduce the linear model by standard reduction techniques such as residualization and balancing. The second method is to identify directly a third-order linear model by recursive least-squares parameter estimation using I/O data of the original model. The third method is to obtain a reduced-order model from the original model and then linearize the reduced model. Frequency responses are used as the performance measure to evaluate the reduced models. The reduced-order models along with their Bode plots are presented for comparison purposes.

  17. Implications of Middle School Behavior Problems for High School Graduation and Employment Outcomes of Young Adults: Estimation of a Recursive Model

    ERIC Educational Resources Information Center

    Karakus, Mustafa C.; Salkever, David S.; Slade, Eric P.; Ialongo, Nicholas; Stuart, Elizabeth

    2012-01-01

    The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear. As an…

  18. Optimal quantum operations at zero energy cost

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Yang, Yuxiang

    2017-08-01

    Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.

  19. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    PubMed

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  20. Distinctive signatures of recursion.

    PubMed

    Martins, Maurício Dias

    2012-07-19

    Although recursion has been hypothesized to be a necessary capacity for the evolution of language, the multiplicity of definitions being used has undermined the broader interpretation of empirical results. I propose that only a definition focused on representational abilities allows the prediction of specific behavioural traits that enable us to distinguish recursion from non-recursive iteration and from hierarchical embedding: only subjects able to represent recursion, i.e. to represent different hierarchical dependencies (related by parenthood) with the same set of rules, are able to generalize and produce new levels of embedding beyond those specified a priori (in the algorithm or in the input). The ability to use such representations may be advantageous in several domains: action sequencing, problem-solving, spatial navigation, social navigation and for the emergence of conventionalized communication systems. The ability to represent contiguous hierarchical levels with the same rules may lead subjects to expect unknown levels and constituents to behave similarly, and this prior knowledge may bias learning positively. Finally, a new paradigm to test for recursion is presented. Preliminary results suggest that the ability to represent recursion in the spatial domain recruits both visual and verbal resources. Implications regarding language evolution are discussed.

  1. The Recursive Paradigm: Suppose We Already Knew.

    ERIC Educational Resources Information Center

    Maurer, Stephen B.

    1995-01-01

    Explains the recursive model in discrete mathematics through five examples and problems. Discusses the relationship between the recursive model, mathematical induction, and inductive reasoning and the relevance of these concepts in the school curriculum. Provides ideas for approaching this material with students. (Author/DDD)

  2. Probabilistic multi-person localisation and tracking in image sequences

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The localisation and tracking of persons in image sequences in commonly guided by recursive filters. Especially in a multi-object tracking environment, where mutual occlusions are inherent, the predictive model is prone to drift away from the actual target position when not taking context into account. Further, if the image-based observations are imprecise, the trajectory is prone to be updated towards a wrong position. In this work we address both these problems by using a new predictive model on the basis of Gaussian Process Regression, and by using generic object detection, as well as instance-specific classification, for refined localisation. The predictive model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of neighbouring persons. In contrast to existing methods our approach uses a Dynamic Bayesian Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image, are modelled as unknowns. This allows the detection to be corrected before it is incorporated into the recursive filter. Our method is evaluated on a publicly available benchmark dataset and outperforms related methods in terms of geometric precision and tracking accuracy.

  3. Drug drug interaction extraction from the literature using a recursive neural network

    PubMed Central

    Lim, Sangrak; Lee, Kyubum

    2018-01-01

    Detecting drug-drug interactions (DDI) is important because information on DDIs can help prevent adverse effects from drug combinations. Since there are many new DDI-related papers published in the biomedical domain, manually extracting DDI information from the literature is a laborious task. However, text mining can be used to find DDIs in the biomedical literature. Among the recently developed neural networks, we use a Recursive Neural Network to improve the performance of DDI extraction. Our recursive neural network model uses a position feature, a subtree containment feature, and an ensemble method to improve the performance of DDI extraction. Compared with the state-of-the-art models, the DDI detection and type classifiers of our model performed 4.4% and 2.8% better, respectively, on the DDIExtraction Challenge’13 test data. We also validated our model on the PK DDI corpus that consists of two types of DDIs data: in vivo DDI and in vitro DDI. Compared with the existing model, our detection classifier performed 2.3% and 6.7% better on in vivo and in vitro data respectively. The results of our validation demonstrate that our model can automatically extract DDIs better than existing models. PMID:29373599

  4. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  5. Towards rigorous analysis of the Levitov-Mirlin-Evers recursion

    NASA Astrophysics Data System (ADS)

    Fyodorov, Y. V.; Kupiainen, A.; Webb, C.

    2016-12-01

    This paper aims to develop a rigorous asymptotic analysis of an approximate renormalization group recursion for inverse participation ratios P q of critical powerlaw random band matrices. The recursion goes back to the work by Mirlin and Evers (2000 Phys. Rev. B 62 7920) and earlier works by Levitov (1990 Phys. Rev. Lett. 64 547, 1999 Ann. Phys. 8 697-706) and is aimed to describe the ensuing multifractality of the eigenvectors of such matrices. We point out both similarities and dissimilarities between the LME recursion and those appearing in the theory of multiplicative cascades and branching random walks and show that the methods developed in those fields can be adapted to the present case. In particular the LME recursion is shown to exhibit a phase transition, which we expect is a freezing transition, where the role of temperature is played by the exponent q. However, the LME recursion has features that make its rigorous analysis considerably harder and we point out several open problems for further study.

  6. The language faculty that wasn't: a usage-based account of natural language recursion

    PubMed Central

    Christiansen, Morten H.; Chater, Nick

    2015-01-01

    In the generative tradition, the language faculty has been shrinking—perhaps to include only the mechanism of recursion. This paper argues that even this view of the language faculty is too expansive. We first argue that a language faculty is difficult to reconcile with evolutionary considerations. We then focus on recursion as a detailed case study, arguing that our ability to process recursive structure does not rely on recursion as a property of the grammar, but instead emerges gradually by piggybacking on domain-general sequence learning abilities. Evidence from genetics, comparative work on non-human primates, and cognitive neuroscience suggests that humans have evolved complex sequence learning skills, which were subsequently pressed into service to accommodate language. Constraints on sequence learning therefore have played an important role in shaping the cultural evolution of linguistic structure, including our limited abilities for processing recursive structure. Finally, we re-evaluate some of the key considerations that have often been taken to require the postulation of a language faculty. PMID:26379567

  7. The language faculty that wasn't: a usage-based account of natural language recursion.

    PubMed

    Christiansen, Morten H; Chater, Nick

    2015-01-01

    In the generative tradition, the language faculty has been shrinking-perhaps to include only the mechanism of recursion. This paper argues that even this view of the language faculty is too expansive. We first argue that a language faculty is difficult to reconcile with evolutionary considerations. We then focus on recursion as a detailed case study, arguing that our ability to process recursive structure does not rely on recursion as a property of the grammar, but instead emerges gradually by piggybacking on domain-general sequence learning abilities. Evidence from genetics, comparative work on non-human primates, and cognitive neuroscience suggests that humans have evolved complex sequence learning skills, which were subsequently pressed into service to accommodate language. Constraints on sequence learning therefore have played an important role in shaping the cultural evolution of linguistic structure, including our limited abilities for processing recursive structure. Finally, we re-evaluate some of the key considerations that have often been taken to require the postulation of a language faculty.

  8. Using Visualization to Generalize on Quadratic Patterning Tasks

    ERIC Educational Resources Information Center

    Kirwan, J. Vince

    2017-01-01

    Patterning tasks engage students in a core aspect of algebraic thinking-generalization (Kaput 2008). The National Council of Teachers of Mathematics (NCTM) Algebra Standard states that students in grades 9-12 should "generalize patterns using explicitly defined and recursively defined functions" (NCTM 2000, p. 296). Although educators…

  9. Revising.

    ERIC Educational Resources Information Center

    Wyman, Linda, Ed.

    1983-01-01

    In focusing on recursive writing, the nine articles in this journal issue suggest that student writing should be taken seriously. The first article states that revision should occur throughout the writing process while the second discusses how to invite writers to become active readers of their own texts. The third article presents methods of…

  10. The Devil and Daniel's Spreadsheet

    ERIC Educational Resources Information Center

    Burke, Maurice J.

    2012-01-01

    "When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data," notes the Common Core State Standards Initiative (2010, p. 72). This exploration of the recursive process in the Devil and Daniel Webster problem reveals that the symbolic spreadsheet fits this bill.…

  11. A self-cognizant dynamic system approach for prognostics and health management

    NASA Astrophysics Data System (ADS)

    Bai, Guangxing; Wang, Pingfeng; Hu, Chao

    2015-03-01

    Prognostics and health management (PHM) is an emerging engineering discipline that diagnoses and predicts how and when a system will degrade its performance and lose its partial or whole functionality. Due to the complexity and invisibility of rules and states of most dynamic systems, developing an effective approach to track evolving system states becomes a major challenge. This paper presents a new self-cognizant dynamic system (SCDS) approach that incorporates artificial intelligence into dynamic system modeling for PHM. A feed-forward neural network (FFNN) is selected to approximate a complex system response which is challenging task in general due to inaccessible system physics. The trained FFNN model is then embedded into a dual extended Kalman filter algorithm to track down system dynamics. A recursive computation technique used to update the FFNN model using online measurements is also derived. To validate the proposed SCDS approach, a battery dynamic system is considered as an experimental application. After modeling the battery system by a FFNN model and a state-space model, the state-of-charge (SoC) and state-of-health (SoH) are estimated by updating the FFNN model using the proposed approach. Experimental results suggest that the proposed approach improves the efficiency and accuracy for battery health management.

  12. Recursive sequences in first-year calculus

    NASA Astrophysics Data System (ADS)

    Krainer, Thomas

    2016-02-01

    This article provides ready-to-use supplementary material on recursive sequences for a second-semester calculus class. It equips first-year calculus students with a basic methodical procedure based on which they can conduct a rigorous convergence or divergence analysis of many simple recursive sequences on their own without the need to invoke inductive arguments as is typically required in calculus textbooks. The sequences that are accessible to this kind of analysis are predominantly (eventually) monotonic, but also certain recursive sequences that alternate around their limit point as they converge can be considered.

  13. On Fusing Recursive Traversals of K-d Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram

    Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less

  14. Game Theory of Mind

    PubMed Central

    Yoshida, Wako; Dolan, Ray J.; Friston, Karl J.

    2008-01-01

    This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution. PMID:19112488

  15. Implications of Middle School Behavior Problems for High School Graduation and Employment Outcomes of Young Adults: Estimation of a Recursive Model. NBER Working Paper No. 16383

    ERIC Educational Resources Information Center

    Karakus, Mustafa C.; Salkever, David S.; Slade, Eric P.; Ialongo, Nicholas; Stuart, Elizabeth

    2010-01-01

    The potentially serious adverse impacts of behavior problems during adolescence on employment outcomes in adulthood provide a key economic rationale for early intervention programs. However, the extent to which lower educational attainment accounts for the total impact of adolescent behavior problems on later employment remains unclear. As an…

  16. Constructivist Approach to Teacher Education: An Integrative Model for Reflective Teaching

    ERIC Educational Resources Information Center

    Vijaya Kumari, S. N.

    2014-01-01

    The theory of constructivism states that learning is non-linear, recursive, continuous, complex and relational--Despite the difficulty of deducing constructivist pedagogy from constructivist theories, there are models and common elements to consider in planning new program. Reflective activities are a common feature of all the programs of…

  17. Investigation of optical current transformer signal processing method based on an improved Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan

    2018-01-01

    This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.

  18. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles.

    PubMed

    Nam, Kanghyun

    2015-11-11

    This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.

  19. Low-mobility channel tracking for MIMO-OFDM communication systems

    NASA Astrophysics Data System (ADS)

    Pagadarai, Srikanth; Wyglinski, Alexander M.; Anderson, Christopher R.

    2013-12-01

    It is now well understood that by exploiting the available additional spatial dimensions, multiple-input multiple-output (MIMO) communication systems provide capacity gains, compared to a single-input single-output systems without increasing the overall transmit power or requiring additional bandwidth. However, these large capacity gains are feasible only when the perfect knowledge of the channel is available to the receiver. Consequently, when the channel knowledge is imperfect, as is common in practical settings, the impact of the achievable capacity needs to be evaluated. In this study, we begin with a general MIMO framework at the outset and specialize it to the case of orthogonal frequency division multiplexing (OFDM) systems by decoupling channel estimation from data detection. Cyclic-prefixed OFDM systems have attracted widespread interest due to several appealing characteristics not least of which is the fact that a single-tap frequency-domain equalizer per subcarrier is sufficient due to the circulant structure of the resulting channel matrix. We consider a low-mobility wireless channel which exhibits inter-block channel variations and apply Kalman tracking when MIMO-OFDM communication is performed. Furthermore, we consider the signal transmission to contain a stream of training and information symbols followed by information symbols alone. By relying on predicted channel states when training symbols are absent, we aim to understand how the improvements in channel capacity are affected by imperfect channel knowledge. We show that the Kalman recursion procedure can be simplified by the optimal minimum mean square error training design. Using the simplified recursion, we derive capacity upper and lower bounds to evaluate the performance of the system.

  20. Recursive Feature Extraction in Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-14

    ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.

  1. Recursion, Language, and Starlings

    ERIC Educational Resources Information Center

    Corballis, Michael C.

    2007-01-01

    It has been claimed that recursion is one of the properties that distinguishes human language from any other form of animal communication. Contrary to this claim, a recent study purports to demonstrate center-embedded recursion in starlings. I show that the performance of the birds in this study can be explained by a counting strategy, without any…

  2. Parametric output-only identification of time-varying structures using a kernel recursive extended least squares TARMA approach

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim

    2018-01-01

    The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.

  3. Inner and Outer Recursive Neural Networks for Chemoinformatics Applications.

    PubMed

    Urban, Gregor; Subrahmanya, Niranjan; Baldi, Pierre

    2018-02-26

    Deep learning methods applied to problems in chemoinformatics often require the use of recursive neural networks to handle data with graphical structure and variable size. We present a useful classification of recursive neural network approaches into two classes, the inner and outer approach. The inner approach uses recursion inside the underlying graph, to essentially "crawl" the edges of the graph, while the outer approach uses recursion outside the underlying graph, to aggregate information over progressively longer distances in an orthogonal direction. We illustrate the inner and outer approaches on several examples. More importantly, we provide open-source implementations [available at www.github.com/Chemoinformatics/InnerOuterRNN and cdb.ics.uci.edu ] for both approaches in Tensorflow which can be used in combination with training data to produce efficient models for predicting the physical, chemical, and biological properties of small molecules.

  4. Recursive Deadbeat Controller Design

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1997-01-01

    This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.

  5. A basic recursion concept inventory

    NASA Astrophysics Data System (ADS)

    Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.

    2017-04-01

    Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.

  6. The Paradigm Recursion: Is It More Accessible When Introduced in Middle School?

    ERIC Educational Resources Information Center

    Gunion, Katherine; Milford, Todd; Stege, Ulrike

    2009-01-01

    Recursion is a programming paradigm as well as a problem solving strategy thought to be very challenging to grasp for university students. This article outlines a pilot study, which expands the age range of students exposed to the concept of recursion in computer science through instruction in a series of interesting and engaging activities. In…

  7. A Preliminary Instrument for Measuring Students' Subjective Perceptions of Difficulties in Learning Recursion

    ERIC Educational Resources Information Center

    Lacave, Carmen; Molina, Ana I.; Redondo, Miguel A.

    2018-01-01

    Contribution: Findings are provided from an initial survey to evaluate the magnitude of the recursion problem from the student point of view. Background: A major difficulty that programming students must overcome--the learning of recursion--has been addressed by many authors, using various approaches, but none have considered how students perceive…

  8. Using Spreadsheets to Help Students Think Recursively

    ERIC Educational Resources Information Center

    Webber, Robert P.

    2012-01-01

    Spreadsheets lend themselves naturally to recursive computations, since a formula can be defined as a function of one of more preceding cells. A hypothesized closed form for the "n"th term of a recursive sequence can be tested easily by using a spreadsheet to compute a large number of the terms. Similarly, a conjecture about the limit of a series…

  9. Bell-correlated activable bound entanglement in multiqubit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, Somshubhro; Chattopadhyay, Indrani; Roychowdhury, Vwani

    2005-06-15

    We show that the Hilbert space of even number ({>=}4) of qubits can always be decomposed as a direct sum of four orthogonal subspaces such that the normalized projectors onto the subspaces are activable bound entangled (ABE) states. These states also show a surprising recursive relation in the sense that the states belonging to 2N+2 qubits are Bell correlated to the states of 2N qubits; hence, we refer to these states as Bell-correlated ABE (BCABE) states. We also study the properties of noisy BCABE states and show that they are very similar to that of two qubit Bell-diagonal states.

  10. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1977-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  11. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1978-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  12. CREATIVE COMPUTATION.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS

  13. On recursion.

    PubMed

    Watumull, Jeffrey; Hauser, Marc D; Roberts, Ian G; Hornstein, Norbert

    2014-01-08

    It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However, the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauseretal's. (2002) articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language-the faculty of language in the narrow sense (FLN)-is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded-existent or non-existent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension); definition by induction (i.e., rules strongly generative of structure); and mathematical induction (i.e., rules for the principled-and potentially unbounded-expansion of strongly generated structure). By these necessary and sufficient criteria, the grammars of all natural languages are recursive.

  14. On recursion

    PubMed Central

    Watumull, Jeffrey; Hauser, Marc D.; Roberts, Ian G.; Hornstein, Norbert

    2014-01-01

    It is a truism that conceptual understanding of a hypothesis is required for its empirical investigation. However, the concept of recursion as articulated in the context of linguistic analysis has been perennially confused. Nowhere has this been more evident than in attempts to critique and extend Hauseretal's. (2002) articulation. These authors put forward the hypothesis that what is uniquely human and unique to the faculty of language—the faculty of language in the narrow sense (FLN)—is a recursive system that generates and maps syntactic objects to conceptual-intentional and sensory-motor systems. This thesis was based on the standard mathematical definition of recursion as understood by Gödel and Turing, and yet has commonly been interpreted in other ways, most notably and incorrectly as a thesis about the capacity for syntactic embedding. As we explain, the recursiveness of a function is defined independent of such output, whether infinite or finite, embedded or unembedded—existent or non-existent. And to the extent that embedding is a sufficient, though not necessary, diagnostic of recursion, it has not been established that the apparent restriction on embedding in some languages is of any theoretical import. Misunderstanding of these facts has generated research that is often irrelevant to the FLN thesis as well as to other theories of language competence that focus on its generative power of expression. This essay is an attempt to bring conceptual clarity to such discussions as well as to future empirical investigations by explaining three criterial properties of recursion: computability (i.e., rules in intension rather than lists in extension); definition by induction (i.e., rules strongly generative of structure); and mathematical induction (i.e., rules for the principled—and potentially unbounded—expansion of strongly generated structure). By these necessary and sufficient criteria, the grammars of all natural languages are recursive. PMID:24409164

  15. Moving Horizon Estimation on a Chip

    DTIC Science & Technology

    2014-06-26

    description, e.g. VHDL or Verilog, for FPGA implementation . Especially for those whose main expertise is in control system design, writing algorithms in C...ditional Kalman Filter(KF) where recursive solution is available. We devel- oped various MHE designs and implemented them on the Xilinx Zynq ZC702 FPGA...practical deployment of the MHE technology. 2.2 Implementation of MHE on FPGA The next paper demonstrated the feasibility of implementing MHE algo

  16. Reply to comment by Rannik on "A simple method for estimating frequency response corrections for eddy covariance systems"

    Treesearch

    W. J. Massman

    2001-01-01

    First, my thanks to Dr. Ullar Rannik for his interest and insights in my recent study of spectral corrections and associated eddy covariance flux loss (Massman, 2000, henceforth denoted by M2000). His comments are important and germane to the attenuation of low frequencies of the turbulent cospectra due to recursive filtering and block averaging. Dr. Rannik addresses...

  17. Hardware accelerator of convolution with exponential function for image processing applications

    NASA Astrophysics Data System (ADS)

    Panchenko, Ivan; Bucha, Victor

    2015-12-01

    In this paper we describe a Hardware Accelerator (HWA) for fast recursive approximation of separable convolution with exponential function. This filter can be used in many Image Processing (IP) applications, e.g. depth-dependent image blur, image enhancement and disparity estimation. We have adopted this filter RTL implementation to provide maximum throughput in constrains of required memory bandwidth and hardware resources to provide a power-efficient VLSI implementation.

  18. Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.

    PubMed

    Huang, Hong; Zhang, Baifa; Lu, Jun

    2014-01-01

    We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.

  19. Serial turbo trellis coded modulation using a serially concatenated coder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Pollara, Fabrizio (Inventor)

    2010-01-01

    Serial concatenated trellis coded modulation (SCTCM) includes an outer coder, an interleaver, a recursive inner coder and a mapping element. The outer coder receives data to be coded and produces outer coded data. The interleaver permutes the outer coded data to produce interleaved data. The recursive inner coder codes the interleaved data to produce inner coded data. The mapping element maps the inner coded data to a symbol. The recursive inner coder has a structure which facilitates iterative decoding of the symbols at a decoder system. The recursive inner coder and the mapping element are selected to maximize the effective free Euclidean distance of a trellis coded modulator formed from the recursive inner coder and the mapping element. The decoder system includes a demodulation unit, an inner SISO (soft-input soft-output) decoder, a deinterleaver, an outer SISO decoder, and an interleaver.

  20. Application of dynamic recurrent neural networks in nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  1. Beating the Odds: Trees to Success in Different Countries

    ERIC Educational Resources Information Center

    Finch, W. Holmes; Marchant, Gregory J.

    2017-01-01

    A recursive partitioning model approach in the form of classification and regression trees (CART) was used with 2012 PISA data for five countries (Canada, Finland, Germany, Singapore-China, and the Unites States). The objective of the study was to determine demographic and educational variables that differentiated between low SES student that were…

  2. Elements of Information Inquiry, Evolution of Models & Measured Reflection

    ERIC Educational Resources Information Center

    Callison, Daniel; Baker, Katie

    2014-01-01

    In 2003 Paula Montgomery, founding editor of School Library Media Activities Monthly and former branch chief of school media services for the Maryland State Department of Education, published a guide to teaching information inquiry. Her staff also illustrated the elements of information inquiry as a recursive cycle with interaction among the…

  3. Probing compressed mass spectra in electroweak supersymmetry with Recursive Jigsaw Reconstruction

    NASA Astrophysics Data System (ADS)

    Santoni, M.

    2018-05-01

    The lack of evidence for the production of colored supersymmetric particles at the LHC has increased interest in searches for superpartners of the electroweak SM gauge bosons, namely the neutralinos and charginos. These are challenging due to the weak nature of the production process, and the existing discovery reach has significant gaps in due to the difficulty of separating the supersymmetric signal from SM diboson events that produce similar final states and kinematics. We apply the Recursive Jigsaw Reconstruction technique to study final states enriched in charged leptons and missing transverse momentum, focusing on compressed topologies with direct production of charginos and neutralinos decaying to the lightest neutral supersymmetric particle through the emission of W and Z bosons. After presenting prototype analysis designs for future LHC runs, we demonstrate that its detectors have the potential to probe a significant amount of unexplored parameter space for chargino-neutralino associated production within the next few years, and show that the very challenging successful search for chargino pair production with compressed spectra might be possible by the end of the LHC lifetime.

  4. Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor

    NASA Astrophysics Data System (ADS)

    Tsushima, H.

    2017-12-01

    For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.

  5. Active-passive data fusion algorithms for seafloor imaging and classification from CZMIL data

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Ramnath, Vinod; Feygels, Viktor; Kim, Minsu; Mathur, Abhinav; Aitken, Jennifer; Tuell, Grady

    2010-04-01

    CZMIL will simultaneously acquire lidar and passive spectral data. These data will be fused to produce enhanced seafloor reflectance images from each sensor, and combined at a higher level to achieve seafloor classification. In the DPS software, the lidar data will first be processed to solve for depth, attenuation, and reflectance. The depth measurements will then be used to constrain the spectral optimization of the passive spectral data, and the resulting water column estimates will be used recursively to improve the estimates of seafloor reflectance from the lidar. Finally, the resulting seafloor reflectance cube will be combined with texture metrics estimated from the seafloor topography to produce classifications of the seafloor.

  6. Language, Mind, Practice: Families of Recursive Thinking in Human Reasoning

    ERIC Educational Resources Information Center

    Josephson, Marika

    2011-01-01

    In 2002, Chomsky, Hauser, and Fitch asserted that recursion may be the one aspect of the human language faculty that makes human language unique in the narrow sense--unique to language and unique to human beings. They also argue somewhat more quietly (as do Pinker and Jackendoff 2005) that recursion may be possible outside of language: navigation,…

  7. Lord-Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing. CRESST Report 830

    ERIC Educational Resources Information Center

    Cai, Li

    2013-01-01

    Lord and Wingersky's (1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined…

  8. Guided wave tomography in anisotropic media using recursive extrapolation operators

    NASA Astrophysics Data System (ADS)

    Volker, Arno

    2018-04-01

    Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.

  9. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles

    PubMed Central

    Nam, Kanghyun

    2015-01-01

    This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle’s cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data. PMID:26569246

  10. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    PubMed

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  11. Finite-time stabilisation of a class of switched nonlinear systems with state constraints

    NASA Astrophysics Data System (ADS)

    Huang, Shipei; Xiang, Zhengrong

    2018-06-01

    This paper investigates the finite-time stabilisation for a class of switched nonlinear systems with state constraints. Some power orders of the system are allowed to be ratios of positive even integers over odd integers. A Barrier Lyapunov function is introduced to guarantee that the state constraint is not violated at any time. Using the convex combination method and a recursive design approach, a state-dependent switching law and state feedback controllers of individual subsystems are constructed such that the closed-loop system is finite-time stable without violation of the state constraint. Two examples are provided to show the effectiveness of the proposed method.

  12. Multidimensional density shaping by sigmoids.

    PubMed

    Roth, Z; Baram, Y

    1996-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.

  13. Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics

    PubMed Central

    Yang, Wan; Karspeck, Alicia; Shaman, Jeffrey

    2014-01-01

    A variety of filtering methods enable the recursive estimation of system state variables and inference of model parameters. These methods have found application in a range of disciplines and settings, including engineering design and forecasting, and, over the last two decades, have been applied to infectious disease epidemiology. For any system of interest, the ideal filter depends on the nonlinearity and complexity of the model to which it is applied, the quality and abundance of observations being entrained, and the ultimate application (e.g. forecast, parameter estimation, etc.). Here, we compare the performance of six state-of-the-art filter methods when used to model and forecast influenza activity. Three particle filters—a basic particle filter (PF) with resampling and regularization, maximum likelihood estimation via iterated filtering (MIF), and particle Markov chain Monte Carlo (pMCMC)—and three ensemble filters—the ensemble Kalman filter (EnKF), the ensemble adjustment Kalman filter (EAKF), and the rank histogram filter (RHF)—were used in conjunction with a humidity-forced susceptible-infectious-recovered-susceptible (SIRS) model and weekly estimates of influenza incidence. The modeling frameworks, first validated with synthetic influenza epidemic data, were then applied to fit and retrospectively forecast the historical incidence time series of seven influenza epidemics during 2003–2012, for 115 cities in the United States. Results suggest that when using the SIRS model the ensemble filters and the basic PF are more capable of faithfully recreating historical influenza incidence time series, while the MIF and pMCMC do not perform as well for multimodal outbreaks. For forecast of the week with the highest influenza activity, the accuracies of the six model-filter frameworks are comparable; the three particle filters perform slightly better predicting peaks 1–5 weeks in the future; the ensemble filters are more accurate predicting peaks in the past. PMID:24762780

  14. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  15. On Recursive Policy Envelopes and Exposure Management: The Mysterious Survival of a Governmental Guideline

    ERIC Educational Resources Information Center

    Markussen, Rolf Andreas; Wackers, Ger

    2015-01-01

    Guidelines play a vital role in the governance of professional practitioners in the frontline of the welfare state towards practices based on scientific knowledge. However the viability of guidelines as a genre of governing devices is by no means self-evident. This article interrogates the somewhat mysterious survival of one particular guideline.…

  16. Recursive heuristic classification

    NASA Technical Reports Server (NTRS)

    Wilkins, David C.

    1994-01-01

    The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.

  17. Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind

    PubMed Central

    Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke

    2017-01-01

    In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6–6;5 years) and one older (6;7–8;10 years). Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children’s second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck. PMID:28072823

  18. Target-type probability combining algorithms for multisensor tracking

    NASA Astrophysics Data System (ADS)

    Wigren, Torbjorn

    2001-08-01

    Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.

  19. Recursive formulas for determining perturbing accelerations in intermediate satellite motion

    NASA Astrophysics Data System (ADS)

    Stoianov, L.

    Recursive formulas for Legendre polynomials and associated Legendre functions are used to obtain recursive relationships for determining acceleration components which perturb intermediate satellite motion. The formulas are applicable in all cases when the perturbation force function is presented as a series in spherical functions (gravitational, tidal, thermal, geomagnetic, and other perturbations of intermediate motion). These formulas can be used to determine the order of perturbing accelerations.

  20. Pseudo-Linear Attitude Determination of Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2004-01-01

    This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.

  1. Identification of observer/Kalman filter Markov parameters: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh; Horta, Lucas G.; Longman, Richard W.

    1991-01-01

    An algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed. The Markov parameters can then be used for identification of a state space representation, with associated Kalman gain or observer gain, for the purpose of controller design. The algorithm is a non-recursive matrix version of two recursive algorithms developed in previous works for different purposes. The relationship between these other algorithms is developed. The new matrix formulation here gives insight into the existence and uniqueness of solutions of certain equations and gives bounds on the proper choice of observer order. It is shown that if one uses data containing noise, and seeks the fastest possible deterministic observer, the deadbeat observer, one instead obtains the Kalman filter, which is the fastest possible observer in the stochastic environment. Results are demonstrated in numerical studies and in experiments on an ten-bay truss structure.

  2. The Power Plant Operating Data Based on Real-time Digital Filtration Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie

    2018-03-01

    Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.

  3. Identification and stochastic control of helicopter dynamic modes

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  4. Statistical Inference in Hidden Markov Models Using k-Segment Constraints

    PubMed Central

    Titsias, Michalis K.; Holmes, Christopher C.; Yau, Christopher

    2016-01-01

    Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence of most probable marginals using the forward–backward algorithm. In this article, we expand the amount of information we could obtain from the posterior distribution of an HMM by introducing linear-time dynamic programming recursions that, conditional on a user-specified constraint in the number of segments, allow us to (i) find MAP sequences, (ii) compute posterior probabilities, and (iii) simulate sample paths. We collectively call these recursions k-segment algorithms and illustrate their utility using simulated and real examples. We also highlight the prospective and retrospective use of k-segment constraints for fitting HMMs or exploring existing model fits. Supplementary materials for this article are available online. PMID:27226674

  5. Benefit of Complete State Monitoring For GPS Realtime Applications With Geo++ Gnsmart

    NASA Astrophysics Data System (ADS)

    Wübbena, G.; Schmitz, M.; Bagge, A.

    Today, the demand for precise positioning at the cm-level in realtime is worldwide growing. An indication for this is the number of operational RTK network installa- tions, which use permanent reference station networks to derive corrections for dis- tance dependent GPS errors and to supply corrections to RTK users in realtime. Gen- erally, the inter-station distances in RTK networks are selected at several tens of km in range and operational installations cover areas of up to 50000 km x km. However, the separation of the permanent reference stations can be increased to sev- eral hundred km, while a correct modeling of all error components is applied. Such networks can be termed as sparse RTK networks, which cover larger areas with a reduced number of stations. The undifferenced GPS observable is best suited for this task estimating the complete state of a permanent GPS network in a dynamic recursive Kalman filter. A rigorous adjustment of all simultaneous reference station data is re- quired. The sparse network design essentially supports the state estimation through its large spatial extension. The benefit of the approach and its state modeling of all GPS error components is a successful ambiguity resolution in realtime over long distances. The above concepts are implemented in the operational GNSMART (GNSS State Monitoring and Representation Technique) software of Geo++. It performs a state monitoring of all error components at the mm-level, because for RTK networks this accuracy is required to sufficiently represent the distance dependent errors for kine- matic applications. One key issue of the modeling is the estimation of clocks and hard- ware delays in the undifferenced approach. This pre-requisite subsequently allows for the precise separation and modeling of all other error components. Generally most of the estimated parameters are considered as nuisance parameters with respect to pure positioning tasks. As the complete state vector of GPS errors is available in a GPS realtime network, additional information besides position can be derived e.g. regional precise satellite clocks, orbits, total ionospheric electron content, tropospheric water vapor distribution, and also dynamic reference station movements. The models of GNSMART are designed to work with regional, continental or even global data. Results from GNSMART realtime networks with inter-station distances of several hundred km are presented to demonstrate the benefits of the operational implemented concepts.

  6. Adaptive semi-supervised recursive tree partitioning: The ART towards large scale patient indexing in personalized healthcare.

    PubMed

    Wang, Fei

    2015-06-01

    With the rapid development of information technologies, tremendous amount of data became readily available in various application domains. This big data era presents challenges to many conventional data analytics research directions including data capture, storage, search, sharing, analysis, and visualization. It is no surprise to see that the success of next-generation healthcare systems heavily relies on the effective utilization of gigantic amounts of medical data. The ability of analyzing big data in modern healthcare systems plays a vital role in the improvement of the quality of care delivery. Specifically, patient similarity evaluation aims at estimating the clinical affinity and diagnostic proximity of patients. As one of the successful data driven techniques adopted in healthcare systems, patient similarity evaluation plays a fundamental role in many healthcare research areas such as prognosis, risk assessment, and comparative effectiveness analysis. However, existing algorithms for patient similarity evaluation are inefficient in handling massive patient data. In this paper, we propose an Adaptive Semi-Supervised Recursive Tree Partitioning (ART) framework for large scale patient indexing such that the patients with similar clinical or diagnostic patterns can be correctly and efficiently retrieved. The framework is designed for semi-supervised settings since it is crucial to leverage experts' supervision knowledge in medical scenario, which are fairly limited compared to the available data. Starting from the proposed ART framework, we will discuss several specific instantiations and validate them on both benchmark and real world healthcare data. Our results show that with the ART framework, the patients can be efficiently and effectively indexed in the sense that (1) similarity patients can be retrieved in a very short time; (2) the retrieval performance can beat the state-of-the art indexing methods. Copyright © 2015. Published by Elsevier Inc.

  7. Haptic control with environment force estimation for telesurgery.

    PubMed

    Bhattacharjee, Tapomayukh; Son, Hyoung Il; Lee, Doo Yong

    2008-01-01

    Success of telesurgical operations depends on better position tracking ability of the slave device. Improved position tracking of the slave device can lead to safer and less strenuous telesurgical operations. The two-channel force-position control architecture is widely used for better position tracking ability. This architecture requires force sensors for direct force feedback. Force sensors may not be a good choice in the telesurgical environment because of the inherent noise, and limitation in the deployable place and space. Hence, environment force estimation is developed using the concept of the robot function parameter matrix and a recursive least squares method. Simulation results show efficacy of the proposed method. The slave device successfully tracks the position of the master device, and the estimation error quickly becomes negligible.

  8. Recursive computation of mutual potential between two polyhedra

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Scheeres, Daniel J.

    2013-11-01

    Recursive computation of mutual potential, force, and torque between two polyhedra is studied. Based on formulations by Werner and Scheeres (Celest Mech Dyn Astron 91:337-349, 2005) and Fahnestock and Scheeres (Celest Mech Dyn Astron 96:317-339, 2006) who applied the Legendre polynomial expansion to gravity interactions and expressed each order term by a shape-dependent part and a shape-independent part, this paper generalizes the computation of each order term, giving recursive relations of the shape-dependent part. To consider the potential, force, and torque, we introduce three tensors. This method is applicable to any multi-body systems. Finally, we implement this recursive computation to simulate the dynamics of a two rigid-body system that consists of two equal-sized parallelepipeds.

  9. An Online Observer for Minimization of Pulsating Torque in SMPM Motors

    PubMed Central

    Roșca, Lucian

    2016-01-01

    A persistent problem of surface mounted permanent magnet (SMPM) motors is the non-uniformity of the developed torque. Either the motor design or the motor control needs to be improved in order to minimize the periodic disturbances. This paper proposes a new control technique for reducing periodic disturbances in permanent magnet (PM) electro-mechanical actuators, by advancing a new observer/estimator paradigm. A recursive estimation algorithm is implemented for online control. The compensating signal is identified and added as feedback to the control signal of the servo motor. Compensation is evaluated for different values of the input signal, to show robustness of the proposed method. PMID:27089182

  10. Relationship between financial impact and coverage of drugs in Australia.

    PubMed

    Mauskopf, Josephine; Chirila, Costel; Masaquel, Catherine; Boye, Kristina S; Bowman, Lee; Birt, Julie; Grainger, David

    2013-01-01

    The aim of this study was to estimate the relationship between the financial impact of a new drug and the recommendation for reimbursement by the Australian Pharmaceutical Benefits Advisory Committee (PBAC). Data in the PBAC summary database were abstracted for decisions made between July 2005 and November 2009. Financial impact-the upper bound of the values presented in the PBAC summary database-was categorized as ≤A$0, >A$0 up to A$10 million, A$10 million up to A$30 million, and >A$30 million per year. Descriptive, logistic, survival, and recursive partitioning decision analyses were used to estimate the relationship between the financial impact of a new drug indication and the recommendation for reimbursement. Multivariable analyses controlled for other clinical and economic variables, including cost per quality-adjusted life-year gained. Financial impact was a significant predictor of the recommendation for reimbursement. In the logistic analysis, the odds ratios of reimbursement for drug submissions with financial impacts ≥A$10 million to ≥A$30 million or >A$0 to

  11. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    NASA Astrophysics Data System (ADS)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  12. Reliable and Efficient Parallel Processing Algorithms and Architectures for Modern Signal Processing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Liu, Kuojuey Ray

    1990-01-01

    Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.

  13. Variants of the MTHFR gene and susceptibility to acute lymphoblastic leukemia in children: a synthesis of genetic association studies.

    PubMed

    Zintzaras, Elias; Doxani, Chrysoula; Rodopoulou, Paraskevi; Bakalos, Georgios; Ziogas, Dimitris C; Ziakas, Panayiotis; Voulgarelis, Michael

    2012-04-01

    Acute lymphoblastic leukemia (ALL) is a complex disease with genetic background. The genetic association studies (GAS) that investigated the association between ALL and the MTHFR C677T and A1298C gene variants have produced contradictory or inconclusive results. In order to decrease the uncertainty of estimated genetic risk effects, a meticulous meta-analysis of published GAS related the variants in the MTFHR gene with susceptibility to ALL was conducted. The risk effects were estimated based on the odds ratio (OR) of the allele contrast and the generalized odds ratio (OR(G)). Cumulative and recursive cumulative meta-analyses were also performed. The analysis showed marginal significant association for the C677T variant, overall [OR=0.91 (0.82-1.00) and OR(G)=0.89 (0.79-1.01)], and in Whites [OR=0.88 (0.77-0.99) and OR(G)=0.85 (0.73-0.99)]. The A1298C variant produced non-significant results. For both variants, the cumulative meta-analysis did not show a trend of association as evidence accumulates and the recursive cumulative meta-analysis indicated lack of sufficient evidence for denying or claiming an association. The current evidence is not sufficient to draw definite conclusions regarding the association of MTHFR variants and development of ALL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A combination of spatial and recursive temporal filtering for noise reduction when using region of interest (ROI) fluoroscopy for patient dose reduction in image guided vascular interventions with significant anatomical motion

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.

  15. Methods for assessing movement path recursion with application to African buffalo in South Africa

    USGS Publications Warehouse

    Bar-David, S.; Bar-David, I.; Cross, P.C.; Ryan, S.J.; Knechtel, C.U.; Getz, W.M.

    2009-01-01

    Recent developments of automated methods for monitoring animal movement, e.g., global positioning systems (GPS) technology, yield high-resolution spatiotemporal data. To gain insights into the processes creating movement patterns, we present two new techniques for extracting information from these data on repeated visits to a particular site or patch ("recursions"). Identification of such patches and quantification of recursion pathways, when combined with patch-related ecological data, should contribute to our understanding of the habitat requirements of large herbivores, of factors governing their space-use patterns, and their interactions with the ecosystem. We begin by presenting output from a simple spatial model that simulates movements of large-herbivore groups based on minimal parameters: resource availability and rates of resource recovery after a local depletion. We then present the details of our new techniques of analyses (recursion analysis and circle analysis) and apply them to data generated by our model, as well as two sets of empirical data on movements of African buffalo (Syncerus coffer): the first collected in Klaserie Private Nature Reserve and the second in Kruger National Park, South Africa. Our recursion analyses of model outputs provide us with a basis for inferring aspects of the processes governing the production of buffalo recursion patterns, particularly the potential influence of resource recovery rate. Although the focus of our simulations was a comparison of movement patterns produced by different resource recovery rates, we conclude our paper with a comprehensive discussion of how recursion analyses can be used when appropriate ecological data are available to elucidate various factors influencing movement. Inter alia, these include the various limiting and preferred resources, parasites, and topographical and landscape factors. ?? 2009 by the Ecological Society of America.

  16. Lord-Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing.

    PubMed

    Cai, Li

    2015-06-01

    Lord and Wingersky's (Appl Psychol Meas 8:453-461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.

  17. Simple recursion relations for general field theories

    DOE PAGES

    Cheung, Clifford; Shen, Chia -Hsien; Trnka, Jaroslav

    2015-06-17

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensionalmore » analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. In conclusion, our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.« less

  18. RLS Channel Estimation with Adaptive Forgetting Factor for DS-CDMA Frequency-Domain Equalization

    NASA Astrophysics Data System (ADS)

    Kojima, Yohei; Tomeba, Hiromichi; Takeda, Kazuaki; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can increase the downlink bit error rate (BER) performance of DS-CDMA beyond that possible with conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. Recently, we proposed a pilot-assisted channel estimation (CE) based on the MMSE criterion. Using MMSE-CE, the channel estimation accuracy is almost insensitive to the pilot chip sequence, and a good BER performance is achieved. In this paper, we propose a channel estimation scheme using one-tap recursive least square (RLS) algorithm, where the forgetting factor is adapted to the changing channel condition by the least mean square (LMS)algorithm, for DS-CDMA with FDE. We evaluate the BER performance using RLS-CE with adaptive forgetting factor in a frequency-selective fast Rayleigh fading channel by computer simulation.

  19. Triangular covariance factorizations for. Ph.D. Thesis. - Calif. Univ.

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.

    1976-01-01

    An improved computational form of the discrete Kalman filter is derived using an upper triangular factorization of the error covariance matrix. The covariance P is factored such that P = UDUT where U is unit upper triangular and D is diagonal. Recursions are developed for propagating the U-D covariance factors together with the corresponding state estimate. The resulting algorithm, referred to as the U-D filter, combines the superior numerical precision of square root filtering techniques with an efficiency comparable to that of Kalman's original formula. Moreover, this method is easily implemented and involves no more computer storage than the Kalman algorithm. These characteristics make the U-D method an attractive realtime filtering technique. A new covariance error analysis technique is obtained from an extension of the U-D filter equations. This evaluation method is flexible and efficient and may provide significantly improved numerical results. Cost comparisons show that for a large class of problems the U-D evaluation algorithm is noticeably less expensive than conventional error analysis methods.

  20. Toward faster and more accurate star sensors using recursive centroiding and star identification

    NASA Astrophysics Data System (ADS)

    Samaan, Malak Anees

    The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.

  1. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  2. Decentralized Adaptive Neural Output-Feedback DSC for Switched Large-Scale Nonlinear Systems.

    PubMed

    Lijun Long; Jun Zhao

    2017-04-01

    In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple "explosion of complexity." Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.

  3. Real-time monitoring of capacity loss for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2018-06-01

    The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.

  4. The D-dimensional non-relativistic particle in the Scarf Trigonometry plus Non-Central Rosen-Morse Potentials

    NASA Astrophysics Data System (ADS)

    Deta, U. A.; Lestari, N. A.; Yantidewi, M.; Suparmi, A.; Cari, C.

    2018-03-01

    The D-Dimensional Non-Relativistic Particle Properties in the Scarf Trigonometry plus Non-Central Rosen-Morse Potentials was investigated using an analytical method. The bound state energy is given approximately in the closed form. The approximate wave function for arbitrary l-state in D-dimensions are expressed in the form of generalised Jacobi Polynomials. The energy spectra of the particle are increased when the dimensions are higher. The relationship between the orbital number in each dimension is recursive. The special case in 3 dimensions is given to the ground state.

  5. Recursive Implementations of the Consider Filter

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; DSouza, Chris

    2012-01-01

    One method to account for parameters errors in the Kalman filter is to consider their effect in the so-called Schmidt-Kalman filter. This work addresses issues that arise when implementing a consider Kalman filter as a real-time, recursive algorithm. A favorite implementation of the Kalman filter as an onboard navigation subsystem is the UDU formulation. A new way to implement a UDU consider filter is proposed. The non-optimality of the recursive consider filter is also analyzed, and a modified algorithm is proposed to overcome this limitation.

  6. Recursive computer architecture for VLSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treleaven, P.C.; Hopkins, R.P.

    1982-01-01

    A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.

  7. Optimal design of minimum mean-square error noise reduction algorithms using the simulated annealing technique.

    PubMed

    Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan

    2009-02-01

    The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.

  8. Scene-based nonuniformity correction for airborne point target detection systems.

    PubMed

    Zhou, Dabiao; Wang, Dejiang; Huo, Lijun; Liu, Rang; Jia, Ping

    2017-06-26

    Images acquired by airborne infrared search and track (IRST) systems are often characterized by nonuniform noise. In this paper, a scene-based nonuniformity correction method for infrared focal-plane arrays (FPAs) is proposed based on the constant statistics of the received radiation ratios of adjacent pixels. The gain of each pixel is computed recursively based on the ratios between adjacent pixels, which are estimated through a median operation. Then, an elaborate mathematical model describing the error propagation, derived from random noise and the recursive calculation procedure, is established. The proposed method maintains the characteristics of traditional methods in calibrating the whole electro-optics chain, in compensating for temporal drifts, and in not preserving the radiometric accuracy of the system. Moreover, the proposed method is robust since the frame number is the only variant, and is suitable for real-time applications owing to its low computational complexity and simplicity of implementation. The experimental results, on different scenes from a proof-of-concept point target detection system with a long-wave Sofradir FPA, demonstrate the compelling performance of the proposed method.

  9. Perceived Organizational Support for Enhancing Welfare at Work: A Regression Tree Model

    PubMed Central

    Giorgi, Gabriele; Dubin, David; Perez, Javier Fiz

    2016-01-01

    When trying to examine outcomes such as welfare and well-being, research tends to focus on main effects and take into account limited numbers of variables at a time. There are a number of techniques that may help address this problem. For example, many statistical packages available in R provide easy-to-use methods of modeling complicated analysis such as classification and tree regression (i.e., recursive partitioning). The present research illustrates the value of recursive partitioning in the prediction of perceived organizational support in a sample of more than 6000 Italian bankers. Utilizing the tree function party package in R, we estimated a regression tree model predicting perceived organizational support from a multitude of job characteristics including job demand, lack of job control, lack of supervisor support, training, etc. The resulting model appears particularly helpful in pointing out several interactions in the prediction of perceived organizational support. In particular, training is the dominant factor. Another dimension that seems to influence organizational support is reporting (perceived communication about safety and stress concerns). Results are discussed from a theoretical and methodological point of view. PMID:28082924

  10. Signal Prediction With Input Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Chen, Ya-Chin

    1999-01-01

    A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.

  11. Scaling Property of Period-n-Tupling Sequences in One-Dimensional Mappings

    NASA Astrophysics Data System (ADS)

    Zeng, Wan-Zhen; Hao, Bai-Lin; Wang, Guang-Rui; Chen, Shi-Gang

    1984-05-01

    We calculated the universal scaling function g(x) and the scaling factor α as well as the convergence rate δ for periodtripling, -quadrapling and-quintupling sequences of RL, RL^2, RLR^2, RL2 R and RL^3 types. The superstable periods are closely connected to a set of polynomial P_n defined recursively by the original mapping. Some notable properties of these polynomials are studied. Several approaches to solving the renormalization group equation and estimating the scaling factors are suggested.

  12. Superresolution restoration of an image sequence: adaptive filtering approach.

    PubMed

    Elad, M; Feuer, A

    1999-01-01

    This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.

  13. A parameter estimation algorithm for spatial sine testing - Theory and evaluation

    NASA Technical Reports Server (NTRS)

    Rost, R. W.; Deblauwe, F.

    1992-01-01

    This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.

  14. Two-dimensional signal processing with application to image restoration

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1974-01-01

    A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.

  15. A Synthetic Recursive “+1” Pathway for Carbon Chain Elongation

    PubMed Central

    Marcheschi, Ryan J.; Li, Han; Zhang, Kechun; Noey, Elizabeth L.; Kim, Seonah; Chaubey, Asha; Houk, K. N.; Liao, James C.

    2013-01-01

    Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein–substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic “+1” recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The “+1” chemistry is a valuable metabolic tool in addition to the “+5” chemistry and “+2” chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides. PMID:22242720

  16. A recursive field-normalized bibliometric performance indicator: an application to the field of library and information science.

    PubMed

    Waltman, Ludo; Yan, Erjia; van Eck, Nees Jan

    2011-10-01

    Two commonly used ideas in the development of citation-based research performance indicators are the idea of normalizing citation counts based on a field classification scheme and the idea of recursive citation weighing (like in PageRank-inspired indicators). We combine these two ideas in a single indicator, referred to as the recursive mean normalized citation score indicator, and we study the validity of this indicator. Our empirical analysis shows that the proposed indicator is highly sensitive to the field classification scheme that is used. The indicator also has a strong tendency to reinforce biases caused by the classification scheme. Based on these observations, we advise against the use of indicators in which the idea of normalization based on a field classification scheme and the idea of recursive citation weighing are combined.

  17. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  18. Recursive least squares background prediction of univariate syndromic surveillance data

    PubMed Central

    2009-01-01

    Background Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Methods Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. Results We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. Conclusion The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems. PMID:19149886

  19. Recursive least squares background prediction of univariate syndromic surveillance data.

    PubMed

    Najmi, Amir-Homayoon; Burkom, Howard

    2009-01-16

    Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. Previous work by the first author has suggested that univariate recursive least squares analysis of syndromic data can be used to characterize the background upon which a prediction and detection component of a biosurvellance system may be built. An adaptive implementation is used to deal with data non-stationarity. In this paper we develop and implement the RLS method for background estimation of univariate data. The distinctly dissimilar distribution of data for different days of the week, however, can affect filter implementations adversely, and so a novel procedure based on linear transformations of the sorted values of the daily counts is introduced. Seven-days ahead daily predicted counts are used as background estimates. A signal injection procedure is used to examine the integrated algorithm's ability to detect synthetic anomalies in real syndromic time series. We compare the method to a baseline CDC forecasting algorithm known as the W2 method. We present detection results in the form of Receiver Operating Characteristic curve values for four different injected signal to noise ratios using 16 sets of syndromic data. We find improvements in the false alarm probabilities when compared to the baseline W2 background forecasts. The current paper introduces a prediction approach for city-level biosurveillance data streams such as time series of outpatient clinic visits and sales of over-the-counter remedies. This approach uses RLS filters modified by a correction for the weekly patterns often seen in these data series, and a threshold detection algorithm from the residuals of the RLS forecasts. We compare the detection performance of this algorithm to the W2 method recently implemented at CDC. The modified RLS method gives consistently better sensitivity at multiple background alert rates, and we recommend that it should be considered for routine application in bio-surveillance systems.

  20. Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1987-01-01

    This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.

  1. Recursion equations in predicting band width under gradient elution.

    PubMed

    Liang, Heng; Liu, Ying

    2004-06-18

    The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.

  2. Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.

    PubMed

    Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.

  3. Recursive multibody dynamics and discrete-time optimal control

    NASA Technical Reports Server (NTRS)

    Deleuterio, G. M. T.; Damaren, C. J.

    1989-01-01

    A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.

  4. Contribution of zonal harmonics to gravitational moment

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1991-01-01

    It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.

  5. Contribution of zonal harmonics to gravitational moment

    NASA Astrophysics Data System (ADS)

    Roithmayr, Carlos M.

    1991-02-01

    It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.

  6. Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks.

    PubMed

    Dinjaski, Nina; Huang, Wenwen; Kaplan, David L

    2018-01-01

    Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.

  7. Recursive Construction of Noiseless Subsystem for Qudits

    NASA Astrophysics Data System (ADS)

    Güngördü, Utkan; Li, Chi-Kwong; Nakahara, Mikio; Poon, Yiu-Tung; Sze, Nung-Sing

    2014-03-01

    When the environmental noise acting on the system has certain symmetries, a subsystem of the total system can avoid errors. Encoding information into such a subsystem is advantageous since it does not require any error syndrome measurements, which may introduce further errors to the system. However, utilizing such a subsystem for large systems gets impractical with the increasing number of qudits. A recursive scheme offers a solution to this problem. Here, we review the recursive construct introduced in, which can asymptotically protect 1/d of the qudits in system against collective errors.

  8. Parallel scheduling of recursively defined arrays

    NASA Technical Reports Server (NTRS)

    Myers, T. J.; Gokhale, M. B.

    1986-01-01

    A new method of automatic generation of concurrent programs which constructs arrays defined by sets of recursive equations is described. It is assumed that the time of computation of an array element is a linear combination of its indices, and integer programming is used to seek a succession of hyperplanes along which array elements can be computed concurrently. The method can be used to schedule equations involving variable length dependency vectors and mutually recursive arrays. Portions of the work reported here have been implemented in the PS automatic program generation system.

  9. Observability under recurrent loss of data

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok; Halevi, Yoram

    1992-01-01

    An account is given of the concept of extended observability in finite-dimensional linear time-invariant systems under recurrent loss of data, where the state vector has to be reconstructed from an ensemble of sensor data at nonconsecutive samples. An at once necessary and sufficient condition for extended observability that can be expressed via a recursive relation is presented, together with such conditions for this as may be related to the characteristic polynomial of the state transition matrix in a discrete-time setting, or of the system matrix in a continuous-time setting.

  10. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

    NASA Astrophysics Data System (ADS)

    Badia, Santiago; Martín, Alberto F.; Planas, Ramon

    2014-10-01

    The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.

  11. Recursive estimators of mean-areal and local bias in precipitation products that account for conditional bias

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Seo, Dong-Jun

    2017-03-01

    This paper presents novel formulations of Mean field bias (MFB) and local bias (LB) correction schemes that incorporate conditional bias (CB) penalty. These schemes are based on the operational MFB and LB algorithms in the National Weather Service (NWS) Multisensor Precipitation Estimator (MPE). By incorporating CB penalty in the cost function of exponential smoothers, we are able to derive augmented versions of recursive estimators of MFB and LB. Two extended versions of MFB algorithms are presented, one incorporating spatial variation of gauge locations only (MFB-L), and the second integrating both gauge locations and CB penalty (MFB-X). These two MFB schemes and the extended LB scheme (LB-X) are assessed relative to the original MFB and LB algorithms (referred to as MFB-O and LB-O, respectively) through a retrospective experiment over a radar domain in north-central Texas, and through a synthetic experiment over the Mid-Atlantic region. The outcome of the former experiment indicates that introducing the CB penalty to the MFB formulation leads to small, but consistent improvements in bias and CB, while its impacts on hourly correlation and Root Mean Square Error (RMSE) are mixed. Incorporating CB penalty in LB formulation tends to improve the RMSE at high rainfall thresholds, but its impacts on bias are also mixed. The synthetic experiment suggests that beneficial impacts are more conspicuous at low gauge density (9 per 58,000 km2), and tend to diminish at higher gauge density. The improvement at high rainfall intensity is partly an outcome of the conservativeness of the extended LB scheme. This conservativeness arises in part from the more frequent presence of negative eigenvalues in the extended covariance matrix which leads to no, or smaller incremental changes to the smoothed rainfall amounts.

  12. Hierarchical Recursive Organization and the Free Energy Principle: From Biological Self-Organization to the Psychoanalytic Mind

    PubMed Central

    Connolly, Patrick; van Deventer, Vasi

    2017-01-01

    The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization) provides the critical theoretical context within which the significance of Friston's (2010a) Free Energy Principle (FEP) for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated) organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while “psychoanalytic” mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989) offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect), which is itself founded upon the tendency toward autopoiesis (self-making) within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a) theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis underscores the necessity of reengagement with the core concepts of psychoanalytic theory, and the usefulness that a systems theory epistemology—particularly hierarchical recursive description—can have for this goal. PMID:29038652

  13. Hierarchical Recursive Organization and the Free Energy Principle: From Biological Self-Organization to the Psychoanalytic Mind.

    PubMed

    Connolly, Patrick; van Deventer, Vasi

    2017-01-01

    The present paper argues that a systems theory epistemology (and particularly the notion of hierarchical recursive organization) provides the critical theoretical context within which the significance of Friston's (2010a) Free Energy Principle (FEP) for both evolution and psychoanalysis is best understood. Within this perspective, the FEP occupies a particular level of the hierarchical organization of the organism, which is the level of biological self-organization. This form of biological self-organization is in turn understood as foundational and pervasive to the higher levels of organization of the human organism that are of interest to both neuroscience as well as psychoanalysis. Consequently, central psychoanalytic claims should be restated, in order to be located in their proper place within a hierarchical recursive organization of the (situated) organism. In light of the FEP the realization of the psychoanalytic mind by the brain should be seen in terms of the evolution of different levels of systematic organization where the concepts of psychoanalysis describe a level of hierarchical recursive organization superordinate to that of biological self-organization and the FEP. The implication of this formulation is that while "psychoanalytic" mental processes are fundamentally subject to the FEP, they nonetheless also add their own principles of process over and above that of the FEP. A model found in Grobbelaar (1989) offers a recursive bottom-up description of the self-organization of the psychoanalytic ego as dependent on the organization of language (and affect), which is itself founded upon the tendency toward autopoiesis (self-making) within the organism, which is in turn described as formally similar to the FEP. Meaningful consilience between Grobbelaar's model and the hierarchical recursive description available in Friston's (2010a) theory is described. The paper concludes that the valuable contribution of the FEP to psychoanalysis underscores the necessity of reengagement with the core concepts of psychoanalytic theory, and the usefulness that a systems theory epistemology-particularly hierarchical recursive description-can have for this goal.

  14. Language and Recursion

    NASA Astrophysics Data System (ADS)

    Lowenthal, Francis

    2010-11-01

    This paper examines whether the recursive structure imbedded in some exercises used in the Non Verbal Communication Device (NVCD) approach is actually the factor that enables this approach to favor language acquisition and reacquisition in the case of children with cerebral lesions. For that a definition of the principle of recursion as it is used by logicians is presented. The two opposing approaches to the problem of language development are explained. For many authors such as Chomsky [1] the faculty of language is innate. This is known as the Standard Theory; the other researchers in this field, e.g. Bates and Elman [2], claim that language is entirely constructed by the young child: they thus speak of Language Acquisition. It is also shown that in both cases, a version of the principle of recursion is relevant for human language. The NVCD approach is defined and the results obtained in the domain of language while using this approach are presented: young subjects using this approach acquire a richer language structure or re-acquire such a structure in the case of cerebral lesions. Finally it is shown that exercises used in this framework imply the manipulation of recursive structures leading to regular grammars. It is thus hypothesized that language development could be favored using recursive structures with the young child. It could also be the case that the NVCD like exercises used with children lead to the elaboration of a regular language, as defined by Chomsky [3], which could be sufficient for language development but would not require full recursion. This double claim could reconcile Chomsky's approach with psychological observations made by adherents of the Language Acquisition approach, if it is confirmed by researches combining the use of NVCDs, psychometric methods and the use of Neural Networks. This paper thus suggests that a research group oriented towards this problematic should be organized.

  15. Image inpainting and super-resolution using non-local recursive deep convolutional network with skip connections

    NASA Astrophysics Data System (ADS)

    Liu, Miaofeng

    2017-07-01

    In recent years, deep convolutional neural networks come into use in image inpainting and super-resolution in many fields. Distinct to most of the former methods requiring to know beforehand the local information for corrupted pixels, we propose a 20-depth fully convolutional network to learn an end-to-end mapping a dataset of damaged/ground truth subimage pairs realizing non-local blind inpainting and super-resolution. As there often exist image with huge corruptions or inpainting on a low-resolution image that the existing approaches unable to perform well, we also share parameters in local area of layers to achieve spatial recursion and enlarge the receptive field. To avoid the difficulty of training this deep neural network, skip-connections between symmetric convolutional layers are designed. Experimental results shows that the proposed method outperforms state-of-the-art methods for diverse corrupting and low-resolution conditions, it works excellently when realizing super-resolution and image inpainting simultaneously

  16. Recursive flexible multibody system dynamics using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1992-01-01

    This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.

  17. Post-Movement Beta Activity in Sensorimotor Cortex Indexes Confidence in the Estimations from Internal Models.

    PubMed

    Tan, Huiling; Wade, Cian; Brown, Peter

    2016-02-03

    Beta oscillations are a dominant feature of the sensorimotor system. A transient and prominent increase in beta oscillations is consistently observed across the sensorimotor cortical-basal ganglia network after cessation of voluntary movement: the post-movement beta synchronization (PMBS). Current theories about the function of the PMBS have been focused on either the closure of motor response or the processing of sensory afferance. Computational models of sensorimotor control have emphasized the importance of the integration between feedforward estimation and sensory feedback, and therefore the putative motor and sensory functions of beta oscillations may reciprocally interact with each other and in fact be indissociable. Here we show that the amplitude of sensorimotor PMBS is modulated by the history of visual feedback of task-relevant errors, and negatively correlated with the trial-to-trial exploratory adjustment in a sensorimotor adaptation task in young healthy human subjects. The PMBS also negatively correlated with the uncertainty associated with the feedforward estimation, which was recursively updated in light of new sensory feedback, as identified by a Bayesian learning model. These results reconcile the two opposing motor and sensory views of the function of PMBS, and suggest a unifying theory in which PMBS indexes the confidence in internal feedforward estimation in Bayesian sensorimotor integration. Its amplitude simultaneously reflects cortical sensory processing and signals the need for maintenance or adaptation of the motor output, and if necessary, exploration to identify an altered sensorimotor transformation. For optimal sensorimotor control, sensory feedback and feedforward estimation of a movement's sensory consequences should be weighted by the inverse of their corresponding uncertainties, which require recursive updating in a dynamic environment. We show that post-movement beta activity (13-30 Hz) over sensorimotor cortex in young healthy subjects indexes the evaluation of uncertainty in feedforward estimation. Our work contributes to the understanding of the function of beta oscillations in sensorimotor control, and provides further insight into how aberrant beta activity can contribute to the pathophysiology of movement disorders. Copyright © 2016 Tan et al.

  18. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia

    PubMed Central

    Castro, Eduardo; Martínez-Ramón, Manel; Pearlson, Godfrey; Sui, Jing; Calhoun, Vince D.

    2011-01-01

    Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA. PMID:21723948

  19. A Parallel Implementation of Multilevel Recursive Spectral Bisection for Application to Adaptive Unstructured Meshes. Chapter 1

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.

  20. On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hsieh, Shih-Fu

    1990-01-01

    In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application.

  1. Learning to play Go using recursive neural networks.

    PubMed

    Wu, Lin; Baldi, Pierre

    2008-11-01

    Go is an ancient board game that poses unique opportunities and challenges for artificial intelligence. Currently, there are no computer Go programs that can play at the level of a good human player. However, the emergence of large repositories of games is opening the door for new machine learning approaches to address this challenge. Here we develop a machine learning approach to Go, and related board games, focusing primarily on the problem of learning a good evaluation function in a scalable way. Scalability is essential at multiple levels, from the library of local tactical patterns, to the integration of patterns across the board, to the size of the board itself. The system we propose is capable of automatically learning the propensity of local patterns from a library of games. Propensity and other local tactical information are fed into recursive neural networks, derived from a probabilistic Bayesian network architecture. The recursive neural networks in turn integrate local information across the board in all four cardinal directions and produce local outputs that represent local territory ownership probabilities. The aggregation of these probabilities provides an effective strategic evaluation function that is an estimate of the expected area at the end, or at various other stages, of the game. Local area targets for training can be derived from datasets of games played by human players. In this approach, while requiring a learning time proportional to N(4), skills learned on a board of size N(2) can easily be transferred to boards of other sizes. A system trained using only 9 x 9 amateur game data performs surprisingly well on a test set derived from 19 x 19 professional game data. Possible directions for further improvements are briefly discussed.

  2. Efficiency of International Classification of Diseases, Ninth Revision, Billing Code Searches to Identify Emergency Department Visits for Blood or Body Fluid Exposures through a Statewide Multicenter Database

    PubMed Central

    Rosen, Lisa M.; Liu, Tao; Merchant, Roland C.

    2016-01-01

    BACKGROUND Blood and body fluid exposures are frequently evaluated in emergency departments (EDs). However, efficient and effective methods for estimating their incidence are not yet established. OBJECTIVE Evaluate the efficiency and accuracy of estimating statewide ED visits for blood or body fluid exposures using International Classification of Diseases, Ninth Revision (ICD-9), code searches. DESIGN Secondary analysis of a database of ED visits for blood or body fluid exposure. SETTING EDs of 11 civilian hospitals throughout Rhode Island from January 1, 1995, through June 30, 2001. PATIENTS Patients presenting to the ED for possible blood or body fluid exposure were included, as determined by prespecified ICD-9 codes. METHODS Positive predictive values (PPVs) were estimated to determine the ability of 10 ICD-9 codes to distinguish ED visits for blood or body fluid exposure from ED visits that were not for blood or body fluid exposure. Recursive partitioning was used to identify an optimal subset of ICD-9 codes for this purpose. Random-effects logistic regression modeling was used to examine variations in ICD-9 coding practices and styles across hospitals. Cluster analysis was used to assess whether the choice of ICD-9 codes was similar across hospitals. RESULTS The PPV for the original 10 ICD-9 codes was 74.4% (95% confidence interval [CI], 73.2%–75.7%), whereas the recursive partitioning analysis identified a subset of 5 ICD-9 codes with a PPV of 89.9% (95% CI, 88.9%–90.8%) and a misclassification rate of 10.1%. The ability, efficiency, and use of the ICD-9 codes to distinguish types of ED visits varied across hospitals. CONCLUSIONS Although an accurate subset of ICD-9 codes could be identified, variations across hospitals related to hospital coding style, efficiency, and accuracy greatly affected estimates of the number of ED visits for blood or body fluid exposure. PMID:22561713

  3. Contrasts between chemical and physical estimates of baseflow help discern multiple sources of water contributing to rivers

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2013-05-01

    This study compares geochemical and physical methods of estimating baseflow in the upper reaches of the Barwon River, southeast Australia. Estimates of baseflow from physical techniques such as local minima and recursive digital filters are higher than those based on chemical mass balance using continuous electrical conductivity (EC). Between 2001 and 2011 the baseflow flux calculated using chemical mass balance is between 1.8 × 103 and 1.5 × 104 ML yr-1 (15 to 25% of the total discharge in any one year) whereas recursive digital filters yield baseflow fluxes of 3.6 × 103 to 3.8 × 104 ML yr-1 (19 to 52% of discharge) and the local minimum method yields baseflow fluxes of 3.2 × 103 to 2.5 × 104 ML yr-1 (13 to 44% of discharge). These differences most probably reflect how the different techniques characterise baseflow. Physical methods probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow or floodplain storage) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The mismatch between geochemical and physical estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months. Consistent with these interpretations, modelling of bank storage indicates that bank return flows provide water to the river for several weeks after flood events. EC vs. discharge variations during individual flow events also imply that an inflow of low EC water stored within the banks or on the floodplain occurs as discharge falls. The joint use of physical and geochemical techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  4. Sequential design of discrete linear quadratic regulators via optimal root-locus techniques

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar

    1989-01-01

    A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.

  5. Multiple-hypothesis multiple-model line tracking

    NASA Astrophysics Data System (ADS)

    Pace, Donald W.; Owen, Mark W.; Cox, Henry

    2000-07-01

    Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.

  6. The Social Bayesian Brain: Does Mentalizing Make a Difference When We Learn?

    PubMed Central

    Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean

    2014-01-01

    When it comes to interpreting others' behaviour, we almost irrepressibly engage in the attribution of mental states (beliefs, emotions…). Such "mentalizing" can become very sophisticated, eventually endowing us with highly adaptive skills such as convincing, teaching or deceiving. Here, sophistication can be captured in terms of the depth of our recursive beliefs, as in "I think that you think that I think…" In this work, we test whether such sophisticated recursive beliefs subtend learning in the context of social interaction. We asked participants to play repeated games against artificial (Bayesian) mentalizing agents, which differ in their sophistication. Critically, we made people believe either that they were playing against each other, or that they were gambling like in a casino. Although both framings are similarly deceiving, participants win against the artificial (sophisticated) mentalizing agents in the social framing of the task, and lose in the non-social framing. Moreover, we find that participants' choice sequences are best explained by sophisticated mentalizing Bayesian learning models only in the social framing. This study is the first demonstration of the added-value of mentalizing on learning in the context of repeated social interactions. Importantly, our results show that we would not be able to decipher intentional behaviour without a priori attributing mental states to others. PMID:25474637

  7. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.

    1996-01-01

    This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.

  8. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

    PubMed Central

    Huang, Jian; Zhang, Cun-Hui

    2013-01-01

    The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100

  9. On the Hosoya index of a family of deterministic recursive trees

    NASA Astrophysics Data System (ADS)

    Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang

    2017-01-01

    In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.

  10. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less

  11. Faulty node detection in wireless sensor networks using a recurrent neural network

    NASA Astrophysics Data System (ADS)

    Atiga, Jamila; Mbarki, Nour Elhouda; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    The wireless sensor networks (WSN) consist of a set of sensors that are more and more used in surveillance applications on a large scale in different areas: military, Environment, Health ... etc. Despite the minimization and the reduction of the manufacturing costs of the sensors, they can operate in places difficult to access without the possibility of reloading of battery, they generally have limited resources in terms of power of emission, of processing capacity, data storage and energy. These sensors can be used in a hostile environment, such as, for example, on a field of battle, in the presence of fires, floods, earthquakes. In these environments the sensors can fail, even in a normal operation. It is therefore necessary to develop algorithms tolerant and detection of defects of the nodes for the network of sensor without wires, therefore, the faults of the sensor can reduce the quality of the surveillance if they are not detected. The values that are measured by the sensors are used to estimate the state of the monitored area. We used the Non-linear Auto- Regressive with eXogeneous (NARX), the recursive architecture of the neural network, to predict the state of a node of a sensor from the previous values described by the functions of time series. The experimental results have verified that the prediction of the State is enhanced by our proposed model.

  12. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  13. Spacecraft attitude determination using a second-order nonlinear filter

    NASA Technical Reports Server (NTRS)

    Vathsal, S.

    1987-01-01

    The stringent attitude determination accuracy and faster slew maneuver requirements demanded by present-day spacecraft control systems motivate the development of recursive nonlinear filters for attitude estimation. This paper presents the second-order filter development for the estimation of attitude quaternion using three-axis gyro and star tracker measurement data. Performance comparisons have been made by computer simulation of system models and filter mechanization. It is shown that the second-order filter consistently performs better than the extended Kalman filter when the performance index of the root sum square estimation error of the quaternion vector is compared. The second-order filter identifies the gyro drift rates faster than the extended Kalman filter. The uniqueness of this algorithm is the online generation of the time-varying process and measurement noise covariance matrices, derived as a function or the process and measurement nonlinearity, respectively.

  14. Tire-road friction coefficient estimation based on the resonance frequency of in-wheel motor drive system

    NASA Astrophysics Data System (ADS)

    Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang

    2016-01-01

    In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.

  15. Recursive least-squares learning algorithms for neural networks

    NASA Astrophysics Data System (ADS)

    Lewis, Paul S.; Hwang, Jenq N.

    1990-11-01

    This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].

  16. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  17. New distributed fusion filtering algorithm based on covariances over sensor networks with random packet dropouts

    NASA Astrophysics Data System (ADS)

    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.

    2017-07-01

    This paper studies the distributed fusion estimation problem from multisensor measured outputs perturbed by correlated noises and uncertainties modelled by random parameter matrices. Each sensor transmits its outputs to a local processor over a packet-erasure channel and, consequently, random losses may occur during transmission. Different white sequences of Bernoulli variables are introduced to model the transmission losses. For the estimation, each lost output is replaced by its estimator based on the information received previously, and only the covariances of the processes involved are used, without requiring the signal evolution model. First, a recursive algorithm for the local least-squares filters is derived by using an innovation approach. Then, the cross-correlation matrices between any two local filters is obtained. Finally, the distributed fusion filter weighted by matrices is obtained from the local filters by applying the least-squares criterion. The performance of the estimators and the influence of both sensor uncertainties and transmission losses on the estimation accuracy are analysed in a numerical example.

  18. State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications

    NASA Astrophysics Data System (ADS)

    Phanomchoeng, Gridsada

    A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is presented. The developed theory is used to estimate vertical tire forces and predict tripped rollovers in situations involving road bumps, potholes, and lateral unknown force inputs. To estimate the tire-road friction coefficients at each individual tire of the vehicle, algorithms to estimate longitudinal forces and slip ratios at each tire are proposed. Subsequently, tire-road friction coefficients are obtained using recursive least squares parameter estimators that exploit the relationship between longitudinal force and slip ratio at each tire. The developed approaches are evaluated through simulations with industry standard software, CARSIM, with experimental tests on a Volvo XC90 sport utility vehicle and with experimental tests on a 1/8th scaled vehicle. The simulation and experimental results show that the developed approaches can reliably estimate the vehicle parameters and state variables needed for effective ESC and rollover prevention applications.

  19. Large-Capacity Three-Party Quantum Digital Secret Sharing Using Three Particular Matrices Coding

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Tao, Li; Liu, Zhi-Ming; Orgun, Mehmet A.

    2016-11-01

    In this paper, we develop a large-capacity quantum digital secret sharing (QDSS) scheme, combined the Fibonacci- and Lucas-valued orbital angular momentum (OAM) entanglement with the recursive Fibonacci and Lucas matrices. To be exact, Alice prepares pairs of photons in the Fibonacci- and Lucas-valued OAM entangled states, and then allocates them to two participants, say, Bob and Charlie, to establish the secret key. Moreover, the available Fibonacci and Lucas values from the matching entangled states are used as the seed for generating the Fibonacci and Lucas matrices. This is achieved because the entries of the Fibonacci and Lucas matrices are recursive. The secret key can only be obtained jointly by Bob and Charlie, who can further recover the secret. Its security is based on the facts that nonorthogonal states are indistinguishable, and Bob or Charlie detects a Fibonacci number, there is still a twofold uncertainty for Charlie' (Bob') detected value. Supported by the Fundamental Research Funds for the Central Universities under Grant No. XDJK2016C043 and the Doctoral Program of Higher Education under Grant No. SWU115091, the National Natural Science Foundation of China under Grant No. 61303039, the Fundamental Research Funds for the Central Universities under Grant No. XDJK2015C153 and the Doctoral Program of Higher Education under Grant No. SWU114112, and the Financial Support the 1000-Plan of Chongqing by Southwest University under Grant No. SWU116007

  20. Imbalance detection in a manufacturing system: An agent-based model usage

    NASA Astrophysics Data System (ADS)

    Shevchuk, G. K.; Zvereva, O. M.; Medvedev, M. A.

    2017-11-01

    This paper delivers the results of the research work targeted at communications in a manufacturing system. A computer agent-based model which simulates manufacturing system functioning has been engineered. The system lifecycle consists of two recursively repeated stages: a communication stage and a production stage. Model data sets were estimated with the static Leontief's equilibrium equation usage. In experiments relationships between the manufacturing system lifecycle time and conditions of equilibrium violations have been identified. The research results are to be used to propose violation negative influence compensation methods.

  1. Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation

    PubMed Central

    Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397

  2. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    PubMed

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  3. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  4. Joint Analysis of Binomial and Continuous Traits with a Recursive Model: A Case Study Using Mortality and Litter Size of Pigs

    PubMed Central

    Varona, Luis; Sorensen, Daniel

    2014-01-01

    This work presents a model for the joint analysis of a binomial and a Gaussian trait using a recursive parametrization that leads to a computationally efficient implementation. The model is illustrated in an analysis of mortality and litter size in two breeds of Danish pigs, Landrace and Yorkshire. Available evidence suggests that mortality of piglets increased partly as a result of successful selection for total number of piglets born. In recent years there has been a need to decrease the incidence of mortality in pig-breeding programs. We report estimates of genetic variation at the level of the logit of the probability of mortality and quantify how it is affected by the size of the litter. Several models for mortality are considered and the best fits are obtained by postulating linear and cubic relationships between the logit of the probability of mortality and litter size, for Landrace and Yorkshire, respectively. An interpretation of how the presence of genetic variation affects the probability of mortality in the population is provided and we discuss and quantify the prospects of selecting for reduced mortality, without affecting litter size. PMID:24414548

  5. Censored quantile regression with recursive partitioning-based weights

    PubMed Central

    Wey, Andrew; Wang, Lan; Rudser, Kyle

    2014-01-01

    Censored quantile regression provides a useful alternative to the Cox proportional hazards model for analyzing survival data. It directly models the conditional quantile of the survival time and hence is easy to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with the popular Cox model and is natural for modeling heterogeneity of the data. Recently, Wang and Wang (2009. Locally weighted censored quantile regression. Journal of the American Statistical Association 103, 1117–1128) proposed a locally weighted censored quantile regression approach that allows for covariate-dependent censoring and is less restrictive than other censored quantile regression methods. However, their kernel smoothing-based weighting scheme requires all covariates to be continuous and encounters practical difficulty with even a moderate number of covariates. We propose a new weighting approach that uses recursive partitioning, e.g. survival trees, that offers greater flexibility in handling covariate-dependent censoring in moderately high dimensions and can incorporate both continuous and discrete covariates. We prove that this new weighting scheme leads to consistent estimation of the quantile regression coefficients and demonstrate its effectiveness via Monte Carlo simulations. We also illustrate the new method using a widely recognized data set from a clinical trial on primary biliary cirrhosis. PMID:23975800

  6. Recursive Vocal Pattern Learning and Generalization in Starlings

    ERIC Educational Resources Information Center

    Bloomfield, Tiffany Corinna

    2012-01-01

    Among known communication systems, human language alone exhibits open-ended productivity of meaning. Interest in the psychological mechanisms supporting this ability, and their evolutionary origins, has resurged following the suggestion that the only uniquely human ability underlying language is a mechanism of recursion. This "Unique…

  7. Fibonacci Imposters

    ERIC Educational Resources Information Center

    Simons, C. S.; Wright, M.

    2007-01-01

    With Simson's 1753 paper as a starting point, the current paper reports investigations of Simson's identity (also known as Cassini's) for the Fibonacci sequence as a means to explore some fundamental ideas about recursion. Simple algebraic operations allow one to reduce the standard linear Fibonacci recursion to the nonlinear Simon's recursion…

  8. A Note on Discrete Mathematics and Calculus.

    ERIC Educational Resources Information Center

    O'Reilly, Thomas J.

    1987-01-01

    Much of the current literature on the topic of discrete mathematics and calculus during the first two years of an undergraduate mathematics curriculum is cited. A relationship between the recursive integration formulas and recursively defined polynomials is described. A Pascal program is included. (Author/RH)

  9. Algorithm for Training a Recurrent Multilayer Perceptron

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.

    2004-01-01

    An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.

  10. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2017-12-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  11. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2018-06-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  12. Discovery of a Recursive Principle: An Artificial Grammar Investigation of Human Learning of a Counting Recursion Language

    PubMed Central

    Cho, Pyeong Whan; Szkudlarek, Emily; Tabor, Whitney

    2016-01-01

    Learning is typically understood as a process in which the behavior of an organism is progressively shaped until it closely approximates a target form. It is easy to comprehend how a motor skill or a vocabulary can be progressively learned—in each case, one can conceptualize a series of intermediate steps which lead to the formation of a proficient behavior. With grammar, it is more difficult to think in these terms. For example, center embedding recursive structures seem to involve a complex interplay between multiple symbolic rules which have to be in place simultaneously for the system to work at all, so it is not obvious how the mechanism could gradually come into being. Here, we offer empirical evidence from a new artificial language (or “artificial grammar”) learning paradigm, Locus Prediction, that, despite the conceptual conundrum, recursion acquisition occurs gradually, at least for a simple formal language. In particular, we focus on a variant of the simplest recursive language, anbn, and find evidence that (i) participants trained on two levels of structure (essentially ab and aabb) generalize to the next higher level (aaabbb) more readily than participants trained on one level of structure (ab) combined with a filler sentence; nevertheless, they do not generalize immediately; (ii) participants trained up to three levels (ab, aabb, aaabbb) generalize more readily to four levels than participants trained on two levels generalize to three; (iii) when we present the levels in succession, starting with the lower levels and including more and more of the higher levels, participants show evidence of transitioning between the levels gradually, exhibiting intermediate patterns of behavior on which they were not trained; (iv) the intermediate patterns of behavior are associated with perturbations of an attractor in the sense of dynamical systems theory. We argue that all of these behaviors indicate a theory of mental representation in which recursive systems lie on a continuum of grammar systems which are organized so that grammars that produce similar behaviors are near one another, and that people learning a recursive system are navigating progressively through the space of these grammars. PMID:27375543

  13. Discovery of a Recursive Principle: An Artificial Grammar Investigation of Human Learning of a Counting Recursion Language.

    PubMed

    Cho, Pyeong Whan; Szkudlarek, Emily; Tabor, Whitney

    2016-01-01

    Learning is typically understood as a process in which the behavior of an organism is progressively shaped until it closely approximates a target form. It is easy to comprehend how a motor skill or a vocabulary can be progressively learned-in each case, one can conceptualize a series of intermediate steps which lead to the formation of a proficient behavior. With grammar, it is more difficult to think in these terms. For example, center embedding recursive structures seem to involve a complex interplay between multiple symbolic rules which have to be in place simultaneously for the system to work at all, so it is not obvious how the mechanism could gradually come into being. Here, we offer empirical evidence from a new artificial language (or "artificial grammar") learning paradigm, Locus Prediction, that, despite the conceptual conundrum, recursion acquisition occurs gradually, at least for a simple formal language. In particular, we focus on a variant of the simplest recursive language, a (n) b (n) , and find evidence that (i) participants trained on two levels of structure (essentially ab and aabb) generalize to the next higher level (aaabbb) more readily than participants trained on one level of structure (ab) combined with a filler sentence; nevertheless, they do not generalize immediately; (ii) participants trained up to three levels (ab, aabb, aaabbb) generalize more readily to four levels than participants trained on two levels generalize to three; (iii) when we present the levels in succession, starting with the lower levels and including more and more of the higher levels, participants show evidence of transitioning between the levels gradually, exhibiting intermediate patterns of behavior on which they were not trained; (iv) the intermediate patterns of behavior are associated with perturbations of an attractor in the sense of dynamical systems theory. We argue that all of these behaviors indicate a theory of mental representation in which recursive systems lie on a continuum of grammar systems which are organized so that grammars that produce similar behaviors are near one another, and that people learning a recursive system are navigating progressively through the space of these grammars.

  14. Rapid Discovery of Tribological Materials with Improved Performance Using Materials Informatics

    DTIC Science & Technology

    2014-03-10

    of New Solid State Lubricants The recursive portioning model illustrated in Fig. 3 has been applied to about 500 compounds from the FileMakerPro...neighboring cation. Based on this assumption, the large cationic charge of mineral compounds indicates the number of anions tends to be larger than the...The formation of bond types is highly dependent on the difference of electronegativity (EN) between the two elements in the compound . For instance

  15. Recursions for the exchangeable partition function of the seedbank coalescent.

    PubMed

    Kurt, Noemi; Rafler, Mathias

    2017-04-01

    For the seedbank coalescent with mutation under the infinite alleles assumption, which describes the gene genealogy of a population with a strong seedbank effect subject to mutations, we study the distribution of the final partition with mutation. This generalizes the coalescent with freeze by Dong et al. (2007) to coalescents where ancestral lineages are blocked from coalescing. We derive an implicit recursion which we show to have a unique solution and give an interpretation in terms of absorption problems of a random walk. Moreover, we derive recursions for the distribution of the number of blocks in the final partition. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Tree-manipulating systems and Church-Rosser theorems.

    NASA Technical Reports Server (NTRS)

    Rosen, B. K.

    1973-01-01

    Study of a broad class of tree-manipulating systems called subtree replacement systems. The use of this framework is illustrated by general theorems analogous to the Church-Rosser theorem and by applications of these theorems. Sufficient conditions are derived for the Church-Rosser property, and their applications to recursive definitions, the lambda calculus, and parallel programming are discussed. McCarthy's (1963) recursive calculus is extended by allowing a choice between call-by-value and call-by-name. It is shown that recursively defined functions are single-valued despite the nondeterminism of the evaluation algorithm. It is also shown that these functions solve their defining equations in a 'canonical' manner.

  17. Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.

    ERIC Educational Resources Information Center

    Magel, E. Terry

    1989-01-01

    Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…

  18. A Fractal Excursion.

    ERIC Educational Resources Information Center

    Camp, Dane R.

    1991-01-01

    After introducing the two-dimensional Koch curve, which is generated by simple recursions on an equilateral triangle, the process is extended to three dimensions with simple recursions on a regular tetrahedron. Included, for both fractal sequences, are iterative formulae, illustrations of the first several iterations, and a sample PASCAL program.…

  19. The Free Energy in the Derrida-Retaux Recursive Model

    NASA Astrophysics Data System (ADS)

    Hu, Yueyun; Shi, Zhan

    2018-05-01

    We are interested in a simple max-type recursive model studied by Derrida and Retaux (J Stat Phys 156:268-290, 2014) in the context of a physics problem, and find a wide range for the exponent in the free energy in the nearly supercritical regime.

  20. A fast ellipse extended target PHD filter using box-particle implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Yongquan; Ji, Hongbing; Hu, Qi

    2018-01-01

    This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.

  1. Distributed Event-Based Set-Membership Filtering for a Class of Nonlinear Systems With Sensor Saturations Over Sensor Networks.

    PubMed

    Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos

    2017-11-01

    In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.

  2. Split-remerge method for eliminating processing window artifacts in recursive hierarchical segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Inventor)

    2010-01-01

    A method, computer readable storage, and apparatus for implementing recursive segmentation of data with spatial characteristics into regions including splitting-remerging of pixels with contagious region designations and a user controlled parameter for providing a preference for merging adjacent regions to eliminate window artifacts.

  3. A Recursive Theory for the Mathematical Understanding--Some Elements and Implications.

    ERIC Educational Resources Information Center

    Pirie, Susan; Kieren, Thomas

    There has been considerable interest in mathematical understanding. Both those attempting to build, and those questioning the possibility of building intelligent artificial tutoring systems, struggle with the notions of mathematical understanding. The purpose of this essay is to show a transcendently recursive theory of mathematical understanding…

  4. Recursion, Computers and Art

    ERIC Educational Resources Information Center

    Kemp, Andy

    2007-01-01

    "Geomlab" is a functional programming language used to describe pictures that are made up of tiles. The beauty of "Geomlab" is that it introduces students to recursion, a very powerful mathematical concept, through a very simple and enticing graphical environment. Alongside the software is a series of eight worksheets which lead into producing…

  5. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, J.C.; Leahy, R.M.

    A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles,more » the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.« less

  7. Pixel-By Estimation of Scene Motion in Video

    NASA Astrophysics Data System (ADS)

    Tashlinskii, A. G.; Smirnov, P. V.; Tsaryov, M. G.

    2017-05-01

    The paper considers the effectiveness of motion estimation in video using pixel-by-pixel recurrent algorithms. The algorithms use stochastic gradient decent to find inter-frame shifts of all pixels of a frame. These vectors form shift vectors' field. As estimated parameters of the vectors the paper studies their projections and polar parameters. It considers two methods for estimating shift vectors' field. The first method uses stochastic gradient descent algorithm to sequentially process all nodes of the image row-by-row. It processes each row bidirectionally i.e. from the left to the right and from the right to the left. Subsequent joint processing of the results allows compensating inertia of the recursive estimation. The second method uses correlation between rows to increase processing efficiency. It processes rows one after the other with the change in direction after each row and uses obtained values to form resulting estimate. The paper studies two criteria of its formation: gradient estimation minimum and correlation coefficient maximum. The paper gives examples of experimental results of pixel-by-pixel estimation for a video with a moving object and estimation of a moving object trajectory using shift vectors' field.

  8. Implicit Learning of Recursive Context-Free Grammars

    PubMed Central

    Rohrmeier, Martin; Fu, Qiufang; Dienes, Zoltan

    2012-01-01

    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning. PMID:23094021

  9. Recursive processes in self-affirmation: intervening to close the minority achievement gap.

    PubMed

    Cohen, Geoffrey L; Garcia, Julio; Purdie-Vaughns, Valerie; Apfel, Nancy; Brzustoski, Patricia

    2009-04-17

    A 2-year follow-up of a randomized field experiment previously reported in Science is presented. A subtle intervention to lessen minority students' psychological threat related to being negatively stereotyped in school was tested in an experiment conducted three times with three independent cohorts (N = 133, 149, and 134). The intervention, a series of brief but structured writing assignments focusing students on a self-affirming value, reduced the racial achievement gap. Over 2 years, the grade point average (GPA) of African Americans was, on average, raised by 0.24 grade points. Low-achieving African Americans were particularly benefited. Their GPA improved, on average, 0.41 points, and their rate of remediation or grade repetition was less (5% versus 18%). Additionally, treated students' self-perceptions showed long-term benefits. Findings suggest that because initial psychological states and performance determine later outcomes by providing a baseline and initial trajectory for a recursive process, apparently small but early alterations in trajectory can have long-term effects. Implications for psychological theory and educational practice are discussed.

  10. Hierarchical image segmentation via recursive superpixel with adaptive regularity

    NASA Astrophysics Data System (ADS)

    Nakamura, Kensuke; Hong, Byung-Woo

    2017-11-01

    A fast and accurate segmentation algorithm in a hierarchical way based on a recursive superpixel technique is presented. We propose a superpixel energy formulation in which the trade-off between data fidelity and regularization is dynamically determined based on the local residual in the energy optimization procedure. We also present an energy optimization algorithm that allows a pixel to be shared by multiple regions to improve the accuracy and appropriate the number of segments. The qualitative and quantitative evaluations demonstrate that our algorithm, combining the proposed energy and optimization, outperforms the conventional k-means algorithm by up to 29.10% in F-measure. We also perform comparative analysis with state-of-the-art algorithms in the hierarchical segmentation. Our algorithm yields smooth regions throughout the hierarchy as opposed to the others that include insignificant details. Our algorithm overtakes the other algorithms in terms of balance between accuracy and computational time. Specifically, our method runs 36.48% faster than the region-merging approach, which is the fastest of the comparing algorithms, while achieving a comparable accuracy.

  11. Recursive analytical solution describing artificial satellite motion perturbed by an arbitrary number of zonal terms

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1977-01-01

    An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.

  12. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  13. Watershed Conservation, Groundwater Management, and Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Roumasset, J.; Burnett, K.; Wada, C.

    2009-12-01

    Sustainability science is transdisciplinary, organizing research to deliver meaningful and practical contributions to critical issues of resource management. As yet, however, sustainability science has not been integrated with the policy sciences. We provide a step towards integration by providing an integrated model of optimal groundwater management and investment in watershed conservation. The joint optimization problem is solved under alternative forecasts of the changing rainfall distribution for the Koolau Watershed in Oahu, Hawaii. Optimal groundwater management is solved using a simplified one-dimensional model of the groundwater aquifer for analytical tractability. For a constant aquifer recharge, the model solves for the optimal trajectories of water extraction up to the desalination steady state and an incentive compatible pricing scheme. The Koolau Watershed is currently being degraded, however, by invasive plants such as Miconia calvescens and feral animals, especially wild pigs. Runoff and erosion have increased and groundwater recharge is at risk. The Koolau Partnership, a coalition of private owners, the State Department of Land and Natural Resources have proposed a $5 million (present value) conservation plan that promises to halt further losses of recharge. We compare this to the enhanced present value of the aquifer, showing the benefits are an order of magnitude greater than the costs. If conservation is done in the absence of efficient groundwater management, however, more than 40% of the potential benefits would be wasted by under-pricing and overconsumption. We require an estimate of the rainfall-generating distribution and how that distribution is changing over time. We obtain these from statistical downsizing of IPCC climate models. Despite the finding that global warming will increase precipitation for most of the world, the opposite is forecast for Hawaii. A University of Hawaii study finds that the most likely precipitation scenario is a 5-10% reduction in wet season mean precipitation and a 5% increase during the dry season by the end of the 21st century. These trends will be used to condition the time series analysis through Bayesian updating. The resulting distributions, conditioned for seasonality and long-run climate change, will be used to recursively simulate daily rainfalls, thereby allowing for serial correlation and forming a basis for the watershed model to recursively determine components of the water balance equation. The methodology will allow us to generate different sequences of rainfall from the estimated distribution and the corresponding recharge functions. These in turn are used as the basis of optimizing groundwater management under both the watershed conservation program and no conservation. We calculate how much adaptation via joint optimization of watershed conservation and groundwater management decreases the damages from declining precipitation. Inasmuch as groundwater scarcity increases with the forecasted climate change, even under optimal groundwater management, the value of watershed conservation also increases.

  14. Recursion and the Competence/Performance Distinction in AGL Tasks

    ERIC Educational Resources Information Center

    Lobina, David J.

    2011-01-01

    The term "recursion" is used in at least four distinct theoretical senses within cognitive science. Some of these senses in turn relate to the different levels of analysis described by David Marr some 20 years ago; namely, the underlying competence capacity (the "computational" level), the performance operations used in real-time processing (the…

  15. Recursivity: A Working Paper on Rhetoric and "Mnesis"

    ERIC Educational Resources Information Center

    Stormer, Nathan

    2013-01-01

    This essay proposes the genealogical study of remembering and forgetting as recursive rhetorical capacities that enable discourse to place itself in an ever-changing present. "Mnesis" is a meta-concept for the arrangements of remembering and forgetting that enable rhetoric to function. Most of the essay defines the materiality of "mnesis", first…

  16. Recursive Optimization of Digital Circuits

    DTIC Science & Technology

    1990-12-14

    Obverse- Specification . . . A-23 A.14 Non-MDS Optimization of SAMPLE .. .. .. .. .. .. ..... A-24 Appendix B . BORIS Recursive Optimization System...Software ...... B -i B .1 DESIGN.S File . .... .. .. .. .. .. .. .. .. .. ... ... B -2 B .2 PARSE.S File. .. .. .. .. .. .. .. .. ... .. ... .... B -1i B .3...TABULAR.S File. .. .. .. .. .. .. ... .. ... .. ... B -22 B .4 MDS.S File. .. .. .. .. .. .. .. ... .. ... .. ...... B -28 B .5 COST.S File

  17. Testing the Relationship between Three-Component Organizational/Occupational Commitment and Organizational/Occupational Turnover Intention Using a Non-Recursive Model

    ERIC Educational Resources Information Center

    Chang, Huo-Tsan; Chi, Nai-Wen; Miao, Min-Chih

    2007-01-01

    This study explored the relationship between three-component organizational/occupational commitment and organizational/occupational turnover intention, and the reciprocal relationship between organizational and occupational turnover intention with a non-recursive model in collectivist cultural settings. We selected 177 nursing staffs out of 30…

  18. TORTIS (Toddler's Own Recursive Turtle Interpreter System).

    ERIC Educational Resources Information Center

    Perlman, Radia

    TORTIS (Toddler's Own Recursive Turtle Interpreter System) is a device which can be used to study or nurture the cognitive development of preschool children. The device consists of a "turtle" which the child can control by use of buttons on a control panel. The "turtle" can be made to move in prescribed directions, to take a…

  19. Recursive Inversion By Finite-Impulse-Response Filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1991-01-01

    Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.

  20. An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Sudip K

    2014-01-01

    Block tridiagonal systems of linear equations arise in a wide variety of scientific and engineering applications. Recursive doubling algorithm is a well-known prefix computation-based numerical algorithm that requires O(M^3(N/P + log P)) work to compute the solution of a block tridiagonal system with N block rows and block size M on P processors. In real-world applications, solutions of tridiagonal systems are most often sought with multiple, often hundreds and thousands, of different right hand sides but with the same tridiagonal matrix. Here, we show that a recursive doubling algorithm is sub-optimal when computing solutions of block tridiagonal systems with multiplemore » right hand sides and present a novel algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement when solving block tridiagonal systems with R distinct right hand sides. Since R is typically about 100 1000, this improvement translates to very significant speedups in practice. Detailed complexity analyses of the new algorithm with empirical confirmation of runtime improvements are presented. To the best of our knowledge, this algorithm has not been reported before in the literature.« less

  1. Do we represent intentional action as recursively embedded? The answer must be empirical. A comment on Vicari and Adenzato (2014).

    PubMed

    Martins, Mauricio D; Fitch, W Tecumseh

    2015-12-15

    The relationship between linguistic syntax and action planning is of considerable interest in cognitive science because many researchers suggest that "motor syntax" shares certain key traits with language. In a recent manuscript in this journal, Vicari and Adenzato (henceforth VA) critiqued Hauser, Chomsky and Fitch's 2002 (henceforth HCF's) hypothesis that recursion is language-specific, and that its usage in other domains is parasitic on language resources. VA's main argument is that HCF's hypothesis is falsified by the fact that recursion typifies the structure of intentional action, and recursion in the domain of action is independent of language. Here, we argue that VA's argument is incomplete, and that their formalism can be contrasted with alternative frameworks that are equally consistent with existing data. Therefore their conclusions are premature without further empirical testing and support. In particular, to accept VA's argument it would be necessary to demonstrate both that humans in fact represent self-embedding in the structure of intentional action, and that language is not used to construct these representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Multi-jagged: A scalable parallel spatial partitioning algorithm

    DOE PAGES

    Deveci, Mehmet; Rajamanickam, Sivasankaran; Devine, Karen D.; ...

    2015-03-18

    Geometric partitioning is fast and effective for load-balancing dynamic applications, particularly those requiring geometric locality of data (particle methods, crash simulations). We present, to our knowledge, the first parallel implementation of a multidimensional-jagged geometric partitioner. In contrast to the traditional recursive coordinate bisection algorithm (RCB), which recursively bisects subdomains perpendicular to their longest dimension until the desired number of parts is obtained, our algorithm does recursive multi-section with a given number of parts in each dimension. By computing multiple cut lines concurrently and intelligently deciding when to migrate data while computing the partition, we minimize data movement compared to efficientmore » implementations of recursive bisection. We demonstrate the algorithm's scalability and quality relative to the RCB implementation in Zoltan on both real and synthetic datasets. Our experiments show that the proposed algorithm performs and scales better than RCB in terms of run-time without degrading the load balance. Lastly, our implementation partitions 24 billion points into 65,536 parts within a few seconds and exhibits near perfect weak scaling up to 6K cores.« less

  3. Monitoring the fetal heart rate variability during labor.

    PubMed

    Moslem, B; Mohydeen, A; Bazzi, O

    2015-08-01

    In respect to the main goal of our ongoing work for estimating the heart rate variability (HRV) from fetal electrocardiogram (FECG) signals for monitoring the health of the fetus, we investigate in this paper the possibility of extracting the fetal heart rate variability (HRV) directly from the abdominal composite recordings. Our proposed approach is based on a combination of two techniques: Periodic Component Analysis (PiCA) and recursive least square (RLS) adaptive filtering. The Fetal HRV of the estimated FECG signal is compared to a reference value extracted from an FECG signal recorded by using a spiral electrode attached directly to the fetal scalp. The results obtained show that the fetal HRV can be directly evaluated from the abdominal composite recordings without the need of recording an external reference signal.

  4. Ultrasound thermography: A new temperature reconstruction model and in vivo results

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.

    2017-03-01

    The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.

  5. Optimal estimation for the satellite attitude using star tracker measurements

    NASA Technical Reports Server (NTRS)

    Lo, J. T.-H.

    1986-01-01

    An optimal estimation scheme is presented, which determines the satellite attitude using the gyro readings and the star tracker measurements of a commonly used satellite attitude measuring unit. The scheme is mainly based on the exponential Fourier densities that have the desirable closure property under conditioning. By updating a finite and fixed number of parameters, the conditional probability density, which is an exponential Fourier density, is recursively determined. Simulation results indicate that the scheme is more accurate and robust than extended Kalman filtering. It is believed that this approach is applicable to many other attitude measuring units. As no linearization and approximation are necessary in the approach, it is ideal for systems involving high levels of randomness and/or low levels of observability and systems for which accuracy is of overriding importance.

  6. Recursive mass matrix factorization and inversion: An operator approach to open- and closed-chain multibody dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.

    1988-01-01

    This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.

  7. Theoretical study of the density of states and magnetic properties of LaCoO3

    NASA Astrophysics Data System (ADS)

    Zhuang, Min; Zhang, Weiyi; Hu, Cheng; Ming, Naiben

    1998-05-01

    The density of states and magnetic properties of low-spin, high-spin, and mixing states of LaCoO3 have been studied within the unrestricted Hartree-Fock approximation. The real-space recursion method is adopted for computing the electronic structure of the disordered system. The paramagnetic high-spin state is dealt with using the usual binary alloy coherent potential approximation (CPA); an extended trinary alloy CPA approximation is developed to describe the mixing state. In agreement with experiments, our results show that the main features of the quasiparticle spectra in the mixing state are not a sensitive function of the high-spin component, but the spectrum does get broadened due to spin scattering. The increasing of the high-spin component also results in a pileup of the density of states at the Fermi energy which indicates an insulator to metal phase transition. Some limitations of the present approach are also discussed.

  8. Synthesis and evaluation of phase detectors for active bit synchronizers

    NASA Technical Reports Server (NTRS)

    Mcbride, A. L.

    1974-01-01

    Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.

  9. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Aiping; Guo, Lei

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  10. Recursive M-Estimators of Location and Scale for Dependent Sequences,

    DTIC Science & Technology

    1986-11-01

    assumptions: i-1) .Q]) Dkt (x.k) + O(k- ) a.s. for some positive sequence %1- -k1 (Dk!7 satisfying Klk I Dk k k - where K, and K2 are positive...such that Dkt (xk) + o(k1 ) < 0 for k > N1, and thus Q)+ < Q~) ad hence we get a contradiction. (The case (j.~ ~ i treated in the same way.) Nov assume...Z ( Dkt (xk) + o(k )) < D t(x) + o(U - ) and this quantity can be made arbitrarily small, which is a • contradiction. a Theorem 3.1 will now be

  11. Theory of Mind: Did Evolution Fool Us?

    PubMed Central

    Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean

    2014-01-01

    Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort “I think that you think that I think, etc.”. Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other’s beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the “social Bayesian brain” hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels. PMID:24505296

  12. Theory of mind: did evolution fool us?

    PubMed

    Devaine, Marie; Hollard, Guillaume; Daunizeau, Jean

    2014-01-01

    Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort "I think that you think that I think, etc.". Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other's beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the "social Bayesian brain" hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels.

  13. A multi-level solution algorithm for steady-state Markov chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham; Leutenegger, Scott T.

    1993-01-01

    A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.

  14. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests

    ERIC Educational Resources Information Center

    Strobl, Carolin; Malley, James; Tutz, Gerhard

    2009-01-01

    Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…

  15. Using Recursive Regression to Explore Nonlinear Relationships and Interactions: A Tutorial Applied to a Multicultural Education Study

    ERIC Educational Resources Information Center

    Strang, Kenneth David

    2009-01-01

    This paper discusses how a seldom-used statistical procedure, recursive regression (RR), can numerically and graphically illustrate data-driven nonlinear relationships and interaction of variables. This routine falls into the family of exploratory techniques, yet a few interesting features make it a valuable compliment to factor analysis and…

  16. N =4 supergravity next-to-maximally-helicity-violating six-point one-loop amplitude

    NASA Astrophysics Data System (ADS)

    Dunbar, David C.; Perkins, Warren B.

    2016-12-01

    We construct the six-point, next-to-maximally-helicity-violating one-loop amplitude in N =4 supergravity using unitarity and recursion. The use of recursion requires the introduction of rational descendants of the cut-constructible pieces of the amplitude and the computation of the nonstandard factorization terms arising from the loop integrals.

  17. On the design of recursive digital filters

    NASA Technical Reports Server (NTRS)

    Shenoi, K.; Narasimha, M. J.; Peterson, A. M.

    1976-01-01

    A change of variables is described which transforms the problem of designing a recursive digital filter to that of approximation by a ratio of polynomials on a finite interval. Some analytic techniques for the design of low-pass filters are presented, illustrating the use of the transformation. Also considered are methods for the design of phase equalizers.

  18. Refinement Types ML

    DTIC Science & Technology

    1994-03-16

    105 2.10 Decidability ........ ................................ 116 3 Declaring Refinements of Recursive Data Types 165 3.1...However, when we introduce polymorphic constructors in Chapter 5, tuples will become a polymorphic data type very similar to other polymorphic data types...terminate. 0 Chapter 3 Declaring Refinements of Recursive Data Types 3.1 Introduction The previous chapter defined refinement type inference in terms of

  19. Becoming with Data: Developing Self-Assessing Recursive Pedagogies in Schools and Using Second-Order Cybernetics as a Thinking Tool

    ERIC Educational Resources Information Center

    Reinertsen, Anne Beate

    2014-01-01

    This article is about developing school-based self-assessing recursive pedagogies and case/action research practices and/or approaches in schools, and teachers, teacher researchers and researchers simultaneously producing and theorising their own practices using second-order cybernetics as a thinking tool. It is a move towards pragmatic…

  20. "There and Back Again" in the Writing Classroom: A Graduate Student's Recursive Journey through Pedagogical Research and Theory Development

    ERIC Educational Resources Information Center

    Mori, Miki

    2013-01-01

    This article discusses my (recursive) process of theory building and the relationship between research, teaching, and theory development for graduate students. It shows how graduate students can reshape their conceptual frameworks not only through course work, but also through researching classes they teach. Specifically, while analyzing the…

  1. Semantics Boosts Syntax in Artificial Grammar Learning Tasks with Recursion

    ERIC Educational Resources Information Center

    Fedor, Anna; Varga, Mate; Szathmary, Eors

    2012-01-01

    Center-embedded recursion (CER) in natural language is exemplified by sentences such as "The malt that the rat ate lay in the house." Parsing center-embedded structures is in the focus of attention because this could be one of the cognitive capacities that make humans distinct from all other animals. The ability to parse CER is usually…

  2. A Cognitive Processing Account of Individual Differences in Novice Logo Programmers' Conceptualisation and Use of Recursion.

    ERIC Educational Resources Information Center

    Gibbons, Pamela

    1995-01-01

    Describes a study that investigated individual differences in the construction of mental models of recursion in LOGO programming. The learning process was investigated from the perspective of Norman's mental models theory and employed diSessa's ontology regarding distributed, functional, and surrogate mental models, and the Luria model of brain…

  3. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  4. Event-based recursive filtering for a class of nonlinear stochastic parameter systems over fading channels

    NASA Astrophysics Data System (ADS)

    Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2018-07-01

    In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.

  5. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  6. Deciding Termination for Ancestor Match- Bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2005-01-01

    Termination of a string rewriting system can be characterized by termination on suitable recursively defined languages. This kind of termination criteria has been criticized for its lack of automation. In an earlier paper we have shown how to construct an automated termination criterion if the recursion is aligned with the rewrite relation. We have demonstrated the technique with Dershowitz's forward closure criterion. In this paper we show that a different approach is suitable when the recursion is aligned with the inverse of the rewrite relation. We apply this idea to Kurth's ancestor graphs and obtain ancestor match-bounded string rewriting systems. Termination is shown to be decidable for this class. The resulting method improves upon those based on match-boundedness or inverse match-boundedness.

  7. A real-time recursive filter for the attitude determination of the Spacelab instrument pointing subsystem

    NASA Technical Reports Server (NTRS)

    West, M. E.

    1992-01-01

    A real-time estimation filter which reduces sensitivity to system variations and reduces the amount of preflight computation is developed for the instrument pointing subsystem (IPS). The IPS is a three-axis stabilized platform developed to point various astronomical observation instruments aboard the shuttle. Currently, the IPS utilizes a linearized Kalman filter (LKF), with premission defined gains, to compensate for system drifts and accumulated attitude errors. Since the a priori gains are generated for an expected system, variations result in a suboptimal estimation process. This report compares the performance of three real-time estimation filters with the current LKF implementation. An extended Kalman filter and a second-order Kalman filter are developed to account for the system nonlinearities, while a linear Kalman filter implementation assumes that the nonlinearities are negligible. The performance of each of the four estimation filters are compared with respect to accuracy, stability, settling time, robustness, and computational requirements. It is shown, that for the current IPS pointing requirements, the linear Kalman filter provides improved robustness over the LKF with less computational requirements than the two real-time nonlinear estimation filters.

  8. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  9. A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design

    PubMed Central

    Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130

  10. Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees.

    PubMed

    Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H

    2017-10-25

    Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.

  11. Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks.

    PubMed

    Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen

    2016-08-23

    In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for the indoor localization systems and serves as an indicator for practical system evaluation.

  12. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    NASA Astrophysics Data System (ADS)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is located in an artificial oasis in the semi-arid region of northwestern China. Land surface temperature (LST) and soil volumetric water content (SVW) at first layer measured at Daman station are taken as observations in the framework of data assimilation. The study demonstrates the feasibility of ESIL in improving the soil moisture and temperature profile under unknown irrigation. ESIL promotes the coefficient correlation with in-situ measurements for soil moisture and temperature at first layer from 0.3421 and 0.7027 (ensemble simulation) to 0.8767 and 0.8304 meanwhile all the RMSE of soil moisture and temperature in deeper layers dramatically decrease more than 40 percent in different degree. To verify the reliability of ESIL in practical application, thereby promoting the utilization of satellite data, we test ESIL with varying observation internal interval and standard deviation. As a consequence, ESIL shows stabilized and promising effectiveness in soil moisture and soil temperature estimation.

  13. Optimum random and age replacement policies for customer-demand multi-state system reliability under imperfect maintenance

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Luan; Chang, Chin-Chih; Sheu, Dwan-Fang

    2016-04-01

    This paper proposes the generalised random and age replacement policies for a multi-state system composed of multi-state elements. The degradation of the multi-state element is assumed to follow the non-homogeneous continuous time Markov process which is a continuous time and discrete state process. A recursive approach is presented to efficiently compute the time-dependent state probability distribution of the multi-state element. The state and performance distribution of the entire multi-state system is evaluated via the combination of the stochastic process and the Lz-transform method. The concept of customer-centred reliability measure is developed based on the system performance and the customer demand. We develop the random and age replacement policies for an aging multi-state system subject to imperfect maintenance in a failure (or unacceptable) state. For each policy, the optimum replacement schedule which minimises the mean cost rate is derived analytically and discussed numerically.

  14. Framework for Detection and Localization of Extreme Climate Event with Pixel Recursive Super Resolution

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.

    2017-12-01

    Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.

  15. A Model of Self-Explanation Strategies of Instructional Text and Examples in the Acquisition of Programming Skills.

    ERIC Educational Resources Information Center

    Recker, Margaret M.; Pirolli, Peter

    Students learning to program recursive LISP functions in a typical school-like lesson on recursion were observed. The typical lesson contains text and examples and involves solving a series of programming problems. The focus of this study is on students' learning strategies in new domains. In this light, a Soar computational model of…

  16. Closed-form recursive formula for an optimal tracker with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Turner, J. D.; Chun, H. M.

    1984-01-01

    Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.

  17. Relatively Recursive Rational Choice.

    DTIC Science & Technology

    1981-11-01

    for the decision procedure of recursively representable rational choice. Alternatively phrased, we wish to inquire into its degrees of unsolvability. We...may first make the observation that there are three classic notions of reducibility of decision procedures for subsets of the natural numbers... rational choice function defined as an effectively computable represent- ation of Richter’s [1971] concept of rational choice, attains by means of an

  18. Recursive inversion of externally defined linear systems

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1988-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.

  19. The Recursive Process in and of Critical Literacy: Action Research in an Urban Elementary School

    ERIC Educational Resources Information Center

    Cooper, Karyn; White, Robert E.

    2012-01-01

    This paper provides an overview of the recursive process of initiating an action research project on literacy for students-at-risk in a Canadian urban elementary school. As this paper demonstrates, this requires development of a school-wide framework, which frames the action research project and desired outcomes, and a shared ownership of this…

  20. Centre-Embedded Structures Are a By-Product of Associative Learning and Working Memory Constraints: Evidence from Baboons ("Papio Papio")

    ERIC Educational Resources Information Center

    Rey, Arnaud; Perruchet, Pierre; Fagot, Joel

    2012-01-01

    Influential theories have claimed that the ability for recursion forms the computational core of human language faculty distinguishing our communication system from that of other animals (Hauser, Chomsky, & Fitch, 2002). In the present study, we consider an alternative view on recursion by studying the contribution of associative and working…

  1. Tumor Volume and Patient Weight as Predictors of Outcome in Children with Intermediate Risk Rhabdomyosarcoma (RMS): A Report from the Children’s Oncology Group

    PubMed Central

    Rodeberg, David A.; Stoner, Julie A.; Garcia-Henriquez, Norbert; Randall, R. Lor; Spunt, Sheri L.; Arndt, Carola A.; Kao, Simon; Paidas, Charles N.; Million, Lynn; Hawkins, Douglas S.

    2010-01-01

    Background To compare tumor volume and patient weight vs. traditional factors of tumor diameter and patient age, to determine which parameters best discriminates outcome among intermediate risk RMS patients. Methods Complete patient information for non-metastatic RMS patients enrolled in the Children’s Oncology Group (COG) intermediate risk study D9803 (1999–2005) was available for 370 patients. The Kaplan-Meier method was used to estimate survival distributions. A recursive partitioning model was used to identify prognostic factors associated with event-free survival (EFS). Cox-proportional hazards regression models were used to estimate the association between patient characteristics and the risk of failure or death. Results For all intermediate risk patients with RMS, a recursive partitioning algorithm for EFS suggests that prognostic groups should optimally be defined by tumor volume (transition point 20 cm3), weight (transition point 50 kg), and embryonal histology. Tumor volume and patient weight added significant outcome information to the standard prognostic factors including tumor diameter and age (p=0.02). The ability to resect the tumor completely was not significantly associated with the size of the patient, and patient weight did not significantly modify the association between tumor volume and EFS after adjustment for standard risk factors (p=0.2). Conclusion The factors most strongly associated with EFS were tumor volume, patient weight, and histology. Based on regression modeling, volume and weight are superior predictors of outcome compared to tumor diameter and patient age in children with intermediate risk RMS. Prognostic performance of tumor volume and patient weight should be assessed in an independent prospective study. PMID:24048802

  2. Study on diagnosis of micro-biomechanical structure using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Saeki, Souichi; Hashimoto, Youhei; Saito, Takashi; Hiro, Takafumi; Matsuzaki, Masunori

    2007-02-01

    Acute coronary syndromes, e.g. myocardial infarctions, are caused by the rupture of unstable plaques on coronary arteries. The stability of plaque, which depends on biomechanical properties of fibrous cap, should be diagnosed crucially. Recently, Optical Coherence Tomography (OCT) has been developed as a cross-sectional imaging method of microstructural biological tissue with high resolution 1~10 μm. Multi-functional OCT system has been promising, e.g. an estimator of biomechanical characteristics. It has been, however, difficult to estimate biomechanical characteristics, because OCT images have just speckle patterns by back-scattering light from tissue. In this study, presented is Optical Coherence Straingraphy (OCS) on the basis of OCT system, which can diagnose tissue strain distribution. This is basically composed of Recursive Cross-correlation technique (RC), which can provide a displacement vector distribution with high resolution. Furthermore, Adjacent Cross-correlation Multiplication (ACM) is introduced as a speckle noise reduction method. Multiplying adjacent correlation maps can eliminate anomalies from speckle noise, and then can enhance S/N in the determination of maximum correlation coefficient. Error propagation also can be further prevented by introducing to the recursive algorithm (RC). In addition, the spatial vector interpolation by local least square method is introduced to remove erroneous vectors and smooth the vector distribution. This was numerically applied to compressed elastic heterogeneous tissue samples to carry out the accuracy verifications. Consequently, it was quantitatively confirmed that its accuracy of displacement vectors and strain matrix components could be enhanced, comparing with the conventional method. Therefore, the proposed method was validated by the identification of different elastic objects with having nearly high resolution for that defined by optical system.

  3. Gamma-aminobutyric acid A receptor, α-2 (GABRA2) variants as individual markers for alcoholism: a meta-analysis.

    PubMed

    Zintzaras, Elias

    2012-08-01

    The available evidence from the genetic association studies (GAS) published to date on the association between variants in the GABRA2 gene and alcoholism has produced inconclusive results. To interpret these results, a meticulous meta-analysis of all available studies was carried out. The PubMed database and the HuGE Navigator were searched for published GAS-related variants in the GABRA2 gene with susceptibility to alcoholism. Then, the GAS were synthesized to decrease the uncertainty of estimated genetic risk effects. The risk effects were estimated on the basis of the odds ratio (OR) of the allele contrast and the generalized odds ratio (OR(G)), a model-free approach. Cumulative and recursive cumulative meta-analyses (CMA) were also carried out to investigate the trend and stability of effect sizes as evidence accumulates. Fourteen variants investigated in eight studies were analyzed. Significant associations were derived for four variants either for the allele contrast or for the OR(G). In particular, the variants rs279858 and rs279845 showed marginal significance for OR(G): OR(G)=1.27 (1.01-1.60) and OR(G)=1.49 (1.02-2.19), respectively. Also, the variants rs567926 and rs279844 showed significance for the allele contrast: OR=1.24 (1.06-1.46) and OR=1.23 (1.08-1.43), respectively; the ORG produced similar results. The variant rs279858 produced a large heterogeneity between studies. CMA showed a trend of an association only for the variant rs567926. Recursive CMA indicated that more evidence is needed to conclude on the status of significance of all variants. There is evidence that variants in the GABRA2 gene are associated with alcoholism. However, the present findings should be interpreted with caution.

  4. Recursive Bayesian recurrent neural networks for time-series modeling.

    PubMed

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  5. Recursive utility in a Markov environment with stochastic growth

    PubMed Central

    Hansen, Lars Peter; Scheinkman, José A.

    2012-01-01

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility. PMID:22778428

  6. An iterative approach to region growing using associative memories

    NASA Technical Reports Server (NTRS)

    Snyder, W. E.; Cowart, A.

    1983-01-01

    Region growing, often given as a classical example of the recursive control structures used in image processing which are often awkward to implement in hardware where the intent is the segmentation of an image at raster scan rates, is addressed in light of the postulate that any computation which can be performed recursively can be performed easily and efficiently by iteration coupled with association. Attention is given to an algorithm and hardware structure able to perform region labeling iteratively at scan rates. Every pixel is individually labeled with an identifier which signifies the region to which it belongs. Difficulties otherwise requiring recursion are handled by maintaining an equivalence table in hardware transparent to the computer, which reads the labeled pixels. A simulation of the associative memory has demonstrated its effectiveness.

  7. Recursive utility in a Markov environment with stochastic growth.

    PubMed

    Hansen, Lars Peter; Scheinkman, José A

    2012-07-24

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.

  8. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Jain, A.

    1989-01-01

    A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.

  9. a Recursive Approach to Compute Normal Forms

    NASA Astrophysics Data System (ADS)

    HSU, L.; MIN, L. J.; FAVRETTO, L.

    2001-06-01

    Normal forms are instrumental in the analysis of dynamical systems described by ordinary differential equations, particularly when singularities close to a bifurcation are to be characterized. However, the computation of a normal form up to an arbitrary order is numerically hard. This paper focuses on the computer programming of some recursive formulas developed earlier to compute higher order normal forms. A computer program to reduce the system to its normal form on a center manifold is developed using the Maple symbolic language. However, it should be stressed that the program relies essentially on recursive numerical computations, while symbolic calculations are used only for minor tasks. Some strategies are proposed to save computation time. Examples are presented to illustrate the application of the program to obtain high order normalization or to handle systems with large dimension.

  10. Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor

    PubMed Central

    Cheong, Hejin; Chae, Eunjung; Lee, Eunsung; Jo, Gwanghyun; Paik, Joonki

    2015-01-01

    This paper presents a fast adaptive image restoration method for removing spatially varying out-of-focus blur of a general imaging sensor. After estimating the parameters of space-variant point-spread-function (PSF) using the derivative in each uniformly blurred region, the proposed method performs spatially adaptive image restoration by selecting the optimal restoration filter according to the estimated blur parameters. Each restoration filter is implemented in the form of a combination of multiple FIR filters, which guarantees the fast image restoration without the need of iterative or recursive processing. Experimental results show that the proposed method outperforms existing space-invariant restoration methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed to a wide area of image restoration applications, such as mobile imaging devices, robot vision, and satellite image processing. PMID:25569760

  11. 3D Indoor Positioning of UAVs with Spread Spectrum Ultrasound and Time-of-Flight Cameras

    PubMed Central

    Aguilera, Teodoro

    2017-01-01

    This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error. PMID:29301211

  12. n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation

    PubMed Central

    Palma Orozco, Rosaura

    2018-01-01

    Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. PMID:29568310

  13. Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes

    NASA Astrophysics Data System (ADS)

    Kandidayeni, M.; Macias, A.; Amamou, A. A.; Boulon, L.; Kelouwani, S.; Chaoui, H.

    2018-03-01

    Proton exchange membrane fuel cells (PEMFCs) have become the center of attention for energy conversion in many areas such as automotive industry, where they confront a high dynamic behavior resulting in their characteristics variation. In order to ensure appropriate modeling of PEMFCs, accurate parameters estimation is in demand. However, parameter estimation of PEMFC models is highly challenging due to their multivariate, nonlinear, and complex essence. This paper comprehensively reviews PEMFC models parameters estimation methods with a specific view to online identification algorithms, which are considered as the basis of global energy management strategy design, to estimate the linear and nonlinear parameters of a PEMFC model in real time. In this respect, different PEMFC models with different categories and purposes are discussed first. Subsequently, a thorough investigation of PEMFC parameter estimation methods in the literature is conducted in terms of applicability. Three potential algorithms for online applications, Recursive Least Square (RLS), Kalman filter, and extended Kalman filter (EKF), which has escaped the attention in previous works, have been then utilized to identify the parameters of two well-known semi-empirical models in the literature, Squadrito et al. and Amphlett et al. Ultimately, the achieved results and future challenges are discussed.

  14. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition

    PubMed Central

    Stutz, Aaron J.

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323

  15. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition.

    PubMed

    Stutz, Aaron J

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  16. Report to the High Order Language Working Group (HOLWG)

    DTIC Science & Technology

    1977-01-14

    as running, runnable, suspended or dormant, may be synchronized by semaphore variables, may be schedaled using clock and duration data types and mpy...Recursive and non-recursive routines G6. Parallel processes, synchronization , critical regions G7. User defined parameterized exception handling G8...typed and lacks extensibility, parallel processing, synchronization and real-time features. Overall Evaluation IBM strongly recommended PL/I as a

  17. Computation of transform domain covariance matrices

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.

  18. Recursive inversion of externally defined linear systems by FIR filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1989-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.

  19. Recursive search method for the image elements of functionally defined surfaces

    NASA Astrophysics Data System (ADS)

    Vyatkin, S. I.

    2017-05-01

    This paper touches upon the synthesis of high-quality images in real time and the technique for specifying three-dimensional objects on the basis of perturbation functions. The recursive search method for the image elements of functionally defined objects with the use of graphics processing units is proposed. The advantages of such an approach over the frame-buffer visualization method are shown.

  20. N/om, Change, and Social Work: A Recursive Frame Analysis of the Transformative Rituals of the Ju/'hoan Bushmen

    ERIC Educational Resources Information Center

    Keeney, Hillary; Keeney, Bradford

    2013-01-01

    The Ju/'hoan Bushman origin myth is depicted as a contextual frame for their healing and transformative ways. Using Recursive Frame Analysis, these performances are shown to be an enactment of the border crossing between First and Second Creation, that is, pre-linguistic and linguistic domains of experience. Here n/om, or the presumed creative…

  1. Aesthetic Responses to Exact Fractals Driven by Physical Complexity

    PubMed Central

    Bies, Alexander J.; Blanc-Goldhammer, Daryn R.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.

    2016-01-01

    Fractals are physically complex due to their repetition of patterns at multiple size scales. Whereas the statistical characteristics of the patterns repeat for fractals found in natural objects, computers can generate patterns that repeat exactly. Are these exact fractals processed differently, visually and aesthetically, than their statistical counterparts? We investigated the human aesthetic response to the complexity of exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the number of segments in the generator. Across two studies, a variety of fractal patterns were visually presented to human participants to determine the typical response to exact fractals. In the first study, we found that preference ratings for exact midpoint displacement fractals can be described by a linear trend with preference increasing as fractal dimension increases. For the majority of individuals, preference increased with dimension. We replicated these results for other exact fractal patterns in a second study. In the second study, we also tested the effects of symmetry and recursion by presenting asymmetric dragon fractals, symmetric dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial and mirror symmetry. We found a strong interaction among recursion, symmetry and fractal dimension. Specifically, at low levels of recursion, the presence of symmetry was enough to drive high preference ratings for patterns with moderate to high levels of fractal dimension. Most individuals required a much higher level of recursion to recover this level of preference in a pattern that lacked mirror or radial symmetry, while others were less discriminating. This suggests that exact fractals are processed differently than their statistical counterparts. We propose a set of four factors that influence complexity and preference judgments in fractals that may extend to other patterns: fractal dimension, recursion, symmetry and the number of segments in a pattern. Conceptualizations such as Berlyne’s and Redies’ theories of aesthetics also provide a suitable framework for interpretation of our data with respect to the individual differences that we detect. Future studies that incorporate physiological methods to measure the human aesthetic response to exact fractal patterns would further elucidate our responses to such timeless patterns. PMID:27242475

  2. Data-driven strategies for robust forecast of continuous glucose monitoring time-series.

    PubMed

    Fiorini, Samuele; Martini, Chiara; Malpassi, Davide; Cordera, Renzo; Maggi, Davide; Verri, Alessandro; Barla, Annalisa

    2017-07-01

    Over the past decade, continuous glucose monitoring (CGM) has proven to be a very resourceful tool for diabetes management. To date, CGM devices are employed for both retrospective and online applications. Their use allows to better describe the patients' pathology as well as to achieve a better control of patients' level of glycemia. The analysis of CGM sensor data makes possible to observe a wide range of metrics, such as the glycemic variability during the day or the amount of time spent below or above certain glycemic thresholds. However, due to the high variability of the glycemic signals among sensors and individuals, CGM data analysis is a non-trivial task. Standard signal filtering solutions fall short when an appropriate model personalization is not applied. State-of-the-art data-driven strategies for online CGM forecasting rely upon the use of recursive filters. Each time a new sample is collected, such models need to adjust their parameters in order to predict the next glycemic level. In this paper we aim at demonstrating that the problem of online CGM forecasting can be successfully tackled by personalized machine learning models, that do not need to recursively update their parameters.

  3. Many-body calculations of low energy eigenstates in magnetic and periodic systems with self healing diffusion Monte Carlo: steps beyond the fixed-phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboredo, Fernando A.

    The self-healing diffusion Monte Carlo algorithm (SHDMC) [Reboredo, Hood and Kent, Phys. Rev. B {\\bf 79}, 195117 (2009), Reboredo, {\\it ibid.} {\\bf 80}, 125110 (2009)] is extended to study the ground and excited states of magnetic and periodic systems. A recursive optimization algorithm is derived from the time evolution of the mixed probability density. The mixed probability density is given by an ensemble of electronic configurations (walkers) with complex weight. This complex weigh allows the amplitude of the fix-node wave function to move away from the trial wave function phase. This novel approach is both a generalization of SHDMC andmore » the fixed-phase approximation [Ortiz, Ceperley and Martin Phys Rev. Lett. {\\bf 71}, 2777 (1993)]. When used recursively it improves simultaneously the node and phase. The algorithm is demonstrated to converge to the nearly exact solutions of model systems with periodic boundary conditions or applied magnetic fields. The method is also applied to obtain low energy excitations with magnetic field or periodic boundary conditions. The potential applications of this new method to study periodic, magnetic, and complex Hamiltonians are discussed.« less

  4. Non-iterative determination of the stress-density relation from ramp wave data through a window

    NASA Astrophysics Data System (ADS)

    Dowling, Evan; Fratanduono, Dayne; Swift, Damian

    2017-06-01

    In the canonical ramp compression experiment, a smoothly-increasing load is applied the surface of the sample, and the particle velocity history is measured at interfaces two or more different distances into the sample. The velocity histories are used to deduce a stress-density relation by correcting for perturbations caused by reflected release waves, usually via the iterative Lagrangian analysis technique of Rothman and Maw. We previously described a non-iterative (recursive) method of analysis, which was more stable and orders of magnitude faster than iteration, but was subject to the limitation that the free surface velocity had to be sampled at uniform intervals. We have now developed more general recursive algorithms suitable for analyzing ramp data through a finite-impedance window. Free surfaces can be treated seamlessly, and the need for uniform velocity sampling has been removed. These calculations require interpolation of partially-released states using the partially-constructed isentrope, making them slower than the previous free-surface scheme, but they are still much faster than iterative analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Fast and simple high-capacity quantum cryptography with error detection

    PubMed Central

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-01-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth. PMID:28406240

  6. Fast and simple high-capacity quantum cryptography with error detection.

    PubMed

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A

    2017-04-13

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  7. Fast and simple high-capacity quantum cryptography with error detection

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-04-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  8. Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples.

    PubMed

    Viswanath, Shruthi; Kreuzer, Steven M; Cardenas, Alfredo E; Elber, Ron

    2013-11-07

    Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.

  9. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  10. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients †

    PubMed Central

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  11. Mutual Information between Discrete Variables with Many Categories using Recursive Adaptive Partitioning

    PubMed Central

    Seok, Junhee; Seon Kang, Yeong

    2015-01-01

    Mutual information, a general measure of the relatedness between two random variables, has been actively used in the analysis of biomedical data. The mutual information between two discrete variables is conventionally calculated by their joint probabilities estimated from the frequency of observed samples in each combination of variable categories. However, this conventional approach is no longer efficient for discrete variables with many categories, which can be easily found in large-scale biomedical data such as diagnosis codes, drug compounds, and genotypes. Here, we propose a method to provide stable estimations for the mutual information between discrete variables with many categories. Simulation studies showed that the proposed method reduced the estimation errors by 45 folds and improved the correlation coefficients with true values by 99 folds, compared with the conventional calculation of mutual information. The proposed method was also demonstrated through a case study for diagnostic data in electronic health records. This method is expected to be useful in the analysis of various biomedical data with discrete variables. PMID:26046461

  12. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  13. Just-in-time adaptive disturbance estimation for run-to-run control of photolithography overlay

    NASA Astrophysics Data System (ADS)

    Firth, Stacy K.; Campbell, W. J.; Edgar, Thomas F.

    2002-07-01

    One of the main challenges to implementations of traditional run-to-run control in the semiconductor industry is a high mix of products in a single factory. To address this challenge, Just-in-time Adaptive Disturbance Estimation (JADE) has been developed. JADE uses a recursive weighted least-squares parameters estimation technique to identify the contributions to variation that are dependent on product, as well as the tools on which the lot was processed. As applied to photolithography overlay, JADE assigns these sources of variation to contributions from the context items: tool, product, reference tool, and reference reticle. Simulations demonstrate that JADE effectively identifies disturbances in contributing context items when the variations are known to be additive. The superior performance of JADE over traditional EWMA is also shown in these simulations. The results of application of JADE to data from a high mix production facility show that JADE still performs better than EWMA, even with the challenges of a real manufacturing environment.

  14. In-flight wind identification and soft landing control for autonomous unmanned powered parafoils

    NASA Astrophysics Data System (ADS)

    Luo, Shuzhen; Tan, Panlong; Sun, Qinglin; Wu, Wannan; Luo, Haowen; Chen, Zengqiang

    2018-04-01

    For autonomous unmanned powered parafoil, the ability to perform a final flare manoeuvre against the wind direction can allow a considerable reduction of horizontal and vertical velocities at impact, enabling a soft landing for a safe delivery of sensible loads; the lack of knowledge about the surface-layer winds will result in messing up terminal flare manoeuvre. Moreover, unknown or erroneous winds can also prevent the parafoil system from reaching the target area. To realize accurate trajectory tracking and terminal soft landing in the unknown wind environment, an efficient in-flight wind identification method merely using Global Positioning System (GPS) data and recursive least square method is proposed to online identify the variable wind information. Furthermore, a novel linear extended state observation filter is proposed to filter the groundspeed of the powered parafoil system calculated by the GPS information to provide a best estimation of the present wind during flight. Simulation experiments and real airdrop tests demonstrate the great ability of this method to in-flight identify the variable wind field, and it can benefit the powered parafoil system to fulfil accurate tracking control and a soft landing in the unknown wind field with high landing accuracy and strong wind-resistance ability.

  15. Multilevel Mixture Kalman Filter

    NASA Astrophysics Data System (ADS)

    Guo, Dong; Wang, Xiaodong; Chen, Rong

    2004-12-01

    The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS) and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.

  16. A real-time insulation detection method for battery packs used in electric vehicles

    NASA Astrophysics Data System (ADS)

    Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2018-05-01

    Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.

  17. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries

    PubMed Central

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405

  18. Essential energy space random walks to accelerate molecular dynamics simulations: Convergence improvements via an adaptive-length self-healing strategy

    NASA Astrophysics Data System (ADS)

    Zheng, Lianqing; Yang, Wei

    2008-07-01

    Recently, accelerated molecular dynamics (AMD) technique was generalized to realize essential energy space random walks so that further sampling enhancement and effective localized enhanced sampling could be achieved. This method is especially meaningful when essential coordinates of the target events are not priori known; moreover, the energy space metadynamics method was also introduced so that biasing free energy functions can be robustly generated. Despite the promising features of this method, due to the nonequilibrium nature of the metadynamics recursion, it is challenging to rigorously use the data obtained at the recursion stage to perform equilibrium analysis, such as free energy surface mapping; therefore, a large amount of data ought to be wasted. To resolve such problem so as to further improve simulation convergence, as promised in our original paper, we are reporting an alternate approach: the adaptive-length self-healing (ALSH) strategy for AMD simulations; this development is based on a recent self-healing umbrella sampling method. Here, the unit simulation length for each self-healing recursion is increasingly updated based on the Wang-Landau flattening judgment. When the unit simulation length for each update is long enough, all the following unit simulations naturally run into the equilibrium regime. Thereafter, these unit simulations can serve for the dual purposes of recursion and equilibrium analysis. As demonstrated in our model studies, by applying ALSH, both fast recursion and short nonequilibrium data waste can be compromised. As a result, combining all the data obtained from all the unit simulations that are in the equilibrium regime via the weighted histogram analysis method, efficient convergence can be robustly ensured, especially for the purpose of free energy surface mapping.

  19. Construction of state-independent proofs for quantum contextuality

    NASA Astrophysics Data System (ADS)

    Tang, Weidong; Yu, Sixia

    2017-12-01

    Since the enlightening proofs of quantum contextuality first established by Kochen and Specker, and also by Bell, various simplified proofs have been constructed to exclude the noncontextual hidden variable theory of our nature at the microscopic scale. The conflict between the noncontextual hidden variable theory and quantum mechanics is commonly revealed by Kochen-Specker sets of yes-no tests, represented by projectors (or rays), via either logical contradictions or noncontextuality inequalities in a state-(in)dependent manner. Here we propose a systematic and programmable construction of a state-independent proof from a given set of nonspecific rays in C3 according to their Gram matrix. This approach brings us a greater convenience in the experimental arrangements. Besides, our proofs in C3 can also be generalized to any higher-dimensional systems by a recursive method.

  20. Neural Basis of Strategic Decision Making

    PubMed Central

    Lee, Daeyeol; Seo, Hyojung

    2015-01-01

    Human choice behaviors during social interactions often deviate from the predictions of game theory. This might arise partly from the limitations in cognitive abilities necessary for recursive reasoning about the behaviors of others. In addition, during iterative social interactions, choices might change dynamically, as knowledge about the intentions of others and estimates for choice outcomes are incrementally updated via reinforcement learning. Some of the brain circuits utilized during social decision making might be general-purpose and contribute to isomorphic individual and social decision making. By contrast, regions in the medial prefrontal cortex and temporal parietal junction might be recruited for cognitive processes unique to social decision making. PMID:26688301

  1. A sequential method for spline approximation with variable knots. [recursive piecewise polynomial signal processing

    NASA Technical Reports Server (NTRS)

    Mier Muth, A. M.; Willsky, A. S.

    1978-01-01

    In this paper we describe a method for approximating a waveform by a spline. The method is quite efficient, as the data are processed sequentially. The basis of the approach is to view the approximation problem as a question of estimation of a polynomial in noise, with the possibility of abrupt changes in the highest derivative. This allows us to bring several powerful statistical signal processing tools into play. We also present some initial results on the application of our technique to the processing of electrocardiograms, where the knot locations themselves may be some of the most important pieces of diagnostic information.

  2. Some estimation formulae for continuous time-invariant linear systems

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Sidhu, G. S.

    1975-01-01

    In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.

  3. WHAT PREDICTS A SUCCESSFUL LIFE? A LIFE-COURSE MODEL OF WELL-BEING*

    PubMed Central

    Layard, Richard; Clark, Andrew E.; Cornaglia, Francesca; Powdthavee, Nattavudh; Vernoit, James

    2014-01-01

    Policy-makers who care about well-being need a recursive model of how adult life-satisfaction is predicted by childhood influences, acting both directly and (indirectly) through adult circumstances. We estimate such a model using the British Cohort Study (1970). We show that the most powerful childhood predictor of adult life-satisfaction is the child’s emotional health, followed by the child’s conduct. The least powerful predictor is the child’s intellectual development. This may have implications for educational policy. Among adult circumstances, family income accounts for only 0.5% of the variance of life-satisfaction. Mental and physical health are much more important. PMID:25422527

  4. Expansion of all multitrace tree level EYM amplitudes

    NASA Astrophysics Data System (ADS)

    Du, Yi-Jian; Feng, Bo; Teng, Fei

    2017-12-01

    In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.

  5. Cooperating reduction machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, W.E.

    1983-11-01

    This paper presents a concept and a system architecture for the concurrent execution of program expressions of a concrete reduction language based on lamda-expressions. If formulated appropriately, these expressions are well-suited for concurrent execution, following a demand-driven model of computation. In particular, recursive program expressions with nonlinear expansion may, at run time, recursively be partitioned into a hierarchy of independent subexpressions which can be reduced by a corresponding hierarchy of virtual reduction machines. This hierarchy unfolds and collapses dynamically, with virtual machines recursively assuming the role of masters that create and eventually terminate, or synchronize with, slaves. The paper alsomore » proposes a nonhierarchically organized system of reduction machines, each featuring a stack architecture, that effectively supports the allocation of virtual machines to the real machines of the system in compliance with their hierarchical order of creation and termination. 25 references.« less

  6. Health monitoring system for transmission shafts based on adaptive parameter identification

    NASA Astrophysics Data System (ADS)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  7. A recursively formulated first-order semianalytic artificial satellite theory based on the generalized method of averaging. Volume 1: The generalized method of averaging applied to the artificial satellite problem

    NASA Technical Reports Server (NTRS)

    Mcclain, W. D.

    1977-01-01

    A recursively formulated, first-order, semianalytic artificial satellite theory, based on the generalized method of averaging is presented in two volumes. Volume I comprehensively discusses the theory of the generalized method of averaging applied to the artificial satellite problem. Volume II presents the explicit development in the nonsingular equinoctial elements of the first-order average equations of motion. The recursive algorithms used to evaluate the first-order averaged equations of motion are also presented in Volume II. This semianalytic theory is, in principle, valid for a term of arbitrary degree in the expansion of the third-body disturbing function (nonresonant cases only) and for a term of arbitrary degree and order in the expansion of the nonspherical gravitational potential function.

  8. A recursive linear predictive vocoder

    NASA Astrophysics Data System (ADS)

    Janssen, W. A.

    1983-12-01

    A non-real time 10 pole recursive autocorrelation linear predictive coding vocoder was created for use in studying effects of recursive autocorrelation on speech. The vocoder is composed of two interchangeable pitch detectors, a speech analyzer, and speech synthesizer. The time between updating filter coefficients is allowed to vary from .125 msec to 20 msec. The best quality was found using .125 msec between each update. The greatest change in quality was noted when changing from 20 msec/update to 10 msec/update. Pitch period plots for the center clipping autocorrelation pitch detector and simplified inverse filtering technique are provided. Plots of speech into and out of the vocoder are given. Formant versus time three dimensional plots are shown. Effects of noise on pitch detection and formants are shown. Noise effects the voiced/unvoiced decision process causing voiced speech to be re-constructed as unvoiced.

  9. Closed-form recursive formula for an optimal tracker with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Turner, J. D.; Chun, H. M.

    1986-01-01

    Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.

  10. Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2002-01-01

    This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.

  11. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  12. Recursive linearization of multibody dynamics equations of motion

    NASA Technical Reports Server (NTRS)

    Lin, Tsung-Chieh; Yae, K. Harold

    1989-01-01

    The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.

  13. Algebraic function operator expectation value based quantum eigenstate determination: A case of twisted or bent Hamiltonian, or, a spatially univariate quantum system on a curved space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baykara, N. A.

    Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraicmore » equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.« less

  14. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  15. Study on the spin-states of cobalt-based double-layer perovskite Sr2Y0.5Ca0.5Co2O7

    NASA Astrophysics Data System (ADS)

    He, H.; Zhang, W. Y.

    2008-02-01

    The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.

  16. A robust nonlinear skid-steering control design applied to the MULE (6x6) unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Kaloust, Joseph

    2006-05-01

    The paper presents a robust nonlinear skid-steering control design concept. The control concept is based on the recursive/backstepping control design technique and is capable of compensating for uncertainties associated with sensor noise measurements and/or system dynamic state uncertainties. The objective of this control design is to demonstrate the performance of the nonlinear controller under uncertainty associate with road traction (rough off-road and on-road terrain). The MULE vehicle is used in the simulation modeling and results.

  17. Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case.

    PubMed

    Adesso, Gerardo; Illuminati, Fabrizio

    2007-10-12

    We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.

  18. A convenient basis for the Izergin-Korepin model

    NASA Astrophysics Data System (ADS)

    Qiao, Yi; Zhang, Xin; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie

    2018-05-01

    We propose a convenient orthogonal basis of the Hilbert space for the quantum spin chain associated with the A2(2) algebra (or the Izergin-Korepin model). It is shown that compared with the original basis the monodromy-matrix elements acting on this basis take relatively simple forms, which is quite similar as that for the quantum spin chain associated with An algebra in the so-called F-basis. As an application of our general results, we present the explicit recursive expressions of the Bethe states in this basis for the Izergin-Korepin model.

  19. An alternative subspace approach to EEG dipole source localization

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Liang; Xu, Bobby; He, Bin

    2004-01-01

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

  20. Reduced kernel recursive least squares algorithm for aero-engine degradation prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Haowen; Huang, Jinquan; Lu, Feng

    2017-10-01

    Kernel adaptive filters (KAFs) generate a linear growing radial basis function (RBF) network with the number of training samples, thereby lacking sparseness. To deal with this drawback, traditional sparsification techniques select a subset of original training data based on a certain criterion to train the network and discard the redundant data directly. Although these methods curb the growth of the network effectively, it should be noted that information conveyed by these redundant samples is omitted, which may lead to accuracy degradation. In this paper, we present a novel online sparsification method which requires much less training time without sacrificing the accuracy performance. Specifically, a reduced kernel recursive least squares (RKRLS) algorithm is developed based on the reduced technique and the linear independency. Unlike conventional methods, our novel methodology employs these redundant data to update the coefficients of the existing network. Due to the effective utilization of the redundant data, the novel algorithm achieves a better accuracy performance, although the network size is significantly reduced. Experiments on time series prediction and online regression demonstrate that RKRLS algorithm requires much less computational consumption and maintains the satisfactory accuracy performance. Finally, we propose an enhanced multi-sensor prognostic model based on RKRLS and Hidden Markov Model (HMM) for remaining useful life (RUL) estimation. A case study in a turbofan degradation dataset is performed to evaluate the performance of the novel prognostic approach.

Top