Science.gov

Sample records for recycling promotes endosomal

  1. Recycling endosomes

    PubMed Central

    Goldenring, James R

    2015-01-01

    The endosomal membrane recycling system represents a dynamic conduit for sorting and re-exporting internalized membrane constituents. The recycling system is composed of multiple tubulovesicular recycling pathways that likely confer distinct trafficking pathways for individual cargoes. In addition, elements of the recycling system are responsible for assembly and maintenance of apical membrane specializations including primary cilia and apical microvilli. The existence of multiple intersecting and diverging recycling tracks likely accounts for specificity in plasma membrane recycling trafficking. PMID:26022676

  2. An ESCRT–spastin interaction promotes fission of recycling tubules from the endosome

    PubMed Central

    Allison, Rachel; Lumb, Jennifer H.; Fassier, Coralie; Connell, James W.; Ten Martin, Daniel; Seaman, Matthew N.J.; Hazan, Jamilé

    2013-01-01

    Mechanisms coordinating endosomal degradation and recycling are poorly understood, as are the cellular roles of microtubule (MT) severing. We show that cells lacking the MT-severing protein spastin had increased tubulation of and defective receptor sorting through endosomal tubular recycling compartments. Spastin required the ability to sever MTs and to interact with ESCRT-III (a complex controlling cargo degradation) proteins to regulate endosomal tubulation. Cells lacking IST1 (increased sodium tolerance 1), an endosomal sorting complex required for transport (ESCRT) component to which spastin binds, also had increased endosomal tubulation. Our results suggest that inclusion of IST1 into the ESCRT complex allows recruitment of spastin to promote fission of recycling tubules from the endosome. Thus, we reveal a novel cellular role for MT severing and identify a mechanism by which endosomal recycling can be coordinated with the degradative machinery. Spastin is mutated in the axonopathy hereditary spastic paraplegia. Zebrafish spinal motor axons depleted of spastin or IST1 also had abnormal endosomal tubulation, so we propose this phenotype is important for axonal degeneration. PMID:23897888

  3. RAB-10 Promotes EHBP-1 Bridging of Filamentous Actin and Tubular Recycling Endosomes

    PubMed Central

    Wang, Yu; Liu, Ou; Zhang, Jing; Gleason, Adenrele; Yang, Zhenrong; Wang, Hui; Shi, Anbing; Grant, Barth D.

    2016-01-01

    EHBP-1 (Ehbp1) is a conserved regulator of endocytic recycling, acting as an effector of small GTPases including RAB-10 (Rab10). Here we present evidence that EHBP-1 associates with tubular endosomal phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] enriched membranes through an N-terminal C2-like (NT-C2) domain, and define residues within the NT-C2 domain that mediate membrane interaction. Furthermore, our results indicate that the EHBP-1 central calponin homology (CH) domain binds to actin microfilaments in a reaction that is stimulated by RAB-10(GTP). Loss of any aspect of this RAB-10/EHBP-1 system in the C. elegans intestinal epithelium leads to retention of basolateral recycling cargo in endosomes that have lost their normal tubular endosomal network (TEN) organization. We propose a mechanism whereby RAB-10 promotes the ability of endosome-bound EHBP-1 to also bind to the actin cytoskeleton, thereby promoting endosomal tubulation. PMID:27272733

  4. Recycling Endosomes Supply AMPA Receptors for LTP

    NASA Astrophysics Data System (ADS)

    Park, Mikyoung; Penick, Esther C.; Edwards, Jeffrey G.; Kauer, Julie A.; Ehlers, Michael D.

    2004-09-01

    Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LTP promoted not only AMPA receptor insertion but also generalized recycling of cargo and membrane from endocytic compartments. Thus, recycling endosomes supply AMPA receptors for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.

  5. Rho1 regulates adherens junction remodeling by promoting recycling endosome formation through activation of myosin II

    PubMed Central

    Yashiro, Hanako; Loza, Andrew J.; Skeath, James B.; Longmore, Gregory D.

    2014-01-01

    Once adherens junctions (AJs) are formed between polarized epithelial cells they must be maintained because AJs are constantly remodeled in dynamic epithelia. AJ maintenance involves endocytosis and subsequent recycling of E-cadherin to a precise location along the basolateral membrane. In the Drosophila pupal eye epithelium, Rho1 GTPase regulates AJ remodeling through Drosophila E-cadherin (DE-cadherin) endocytosis by limiting Cdc42/Par6/aPKC complex activity. We demonstrate that Rho1 also influences AJ remodeling by regulating the formation of DE-cadherin–containing, Rab11-positive recycling endosomes in Drosophila postmitotic pupal eye epithelia. This effect of Rho1 is mediated through Rok-dependent, but not MLCK-dependent, stimulation of myosin II activity yet independent of its effects upon actin remodeling. Both Rho1 and pMLC localize on endosomal vesicles, suggesting that Rho1 might regulate the formation of recycling endosomes through localized myosin II activation. This work identifies spatially distinct functions for Rho1 in the regulation of DE-cadherin–containing vesicular trafficking during AJ remodeling in live epithelia. PMID:25079692

  6. Rab25 and CLIC3 Collaborate to Promote Integrin Recycling from Late Endosomes/Lysosomes and Drive Cancer Progression

    PubMed Central

    Dozynkiewicz, Marta A.; Jamieson, Nigel B.; MacPherson, Iain; Grindlay, Joan; van den Berghe, Peter V.E.; von Thun, Anne; Morton, Jennifer P.; Gourley, Charlie; Timpson, Paul; Nixon, Colin; McKay, Colin J.; Carter, Ross; Strachan, David; Anderson, Kurt; Sansom, Owen J.; Caswell, Patrick T.; Norman, Jim C.

    2012-01-01

    Summary Here we show that Rab25 permits the sorting of ligand-occupied, active-conformation α5β1 integrin to late endosomes/lysosomes. Photoactivation and biochemical approaches show that lysosomally targeted integrins are not degraded but are retrogradely transported and recycled to the plasma membrane at the back of invading cells. This requires CLIC3, a protein upregulated in Rab25-expressing cells and tumors, which colocalizes with active α5β1 in late endosomes/lysosomes. CLIC3 is necessary for release of the cell rear during migration on 3D matrices and is required for invasion and maintenance of active Src signaling in organotypic microenvironments. CLIC3 expression predicts lymph node metastasis and poor prognosis in operable cases of pancreatic ductal adenocarcinoma (PDAC). The identification of CLIC3 as a regulator of a recycling pathway and as an independent prognostic indicator in PDAC highlights the importance of active integrin trafficking as a potential drive to cancer progression in vivo. PMID:22197222

  7. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes

    PubMed Central

    Qu, Fangfei; Lorenzo, Damaris N; King, Samantha J; Brooks, Rebecca; Bear, James E; Bennett, Vann

    2016-01-01

    Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos. DOI: http://dx.doi.org/10.7554/eLife.20417.001 PMID:27718357

  8. Recycling Endosomes and Viral Infection

    PubMed Central

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-01-01

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition. PMID:27005655

  9. USP7 Acts as a Molecular Rheostat to Promote WASH-Dependent Endosomal Protein Recycling and Is Mutated in a Human Neurodevelopmental Disorder.

    PubMed

    Hao, Yi-Heng; Fountain, Michael D; Fon Tacer, Klementina; Xia, Fan; Bi, Weimin; Kang, Sung-Hae L; Patel, Ankita; Rosenfeld, Jill A; Le Caignec, Cédric; Isidor, Bertrand; Krantz, Ian D; Noon, Sarah E; Pfotenhauer, Jean P; Morgan, Thomas M; Moran, Rocio; Pedersen, Robert C; Saenz, Margarita S; Schaaf, Christian P; Potts, Patrick Ryan

    2015-09-17

    Endosomal protein recycling is a fundamental cellular process important for cellular homeostasis, signaling, and fate determination that is implicated in several diseases. WASH is an actin-nucleating protein essential for this process, and its activity is controlled through K63-linked ubiquitination by the MAGE-L2-TRIM27 ubiquitin ligase. Here, we show that the USP7 deubiquitinating enzyme is an integral component of the MAGE-L2-TRIM27 ligase and is essential for WASH-mediated endosomal actin assembly and protein recycling. Mechanistically, USP7 acts as a molecular rheostat to precisely fine-tune endosomal F-actin levels by counteracting TRIM27 auto-ubiquitination/degradation and preventing overactivation of WASH through directly deubiquitinating it. Importantly, we identify de novo heterozygous loss-of-function mutations of USP7 in individuals with a neurodevelopmental disorder, featuring intellectual disability and autism spectrum disorder. These results provide unanticipated insights into endosomal trafficking, illuminate the cooperativity between an ubiquitin ligase and a deubiquitinating enzyme, and establish a role for USP7 in human neurodevelopmental disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder

    PubMed Central

    Hao, Yi-Heng; Fountain, Michael D.; Tacer, Klementina Fon; Xia, Fan; Bi, Weimin; Kang, Sung-Hae L.; Patel, Ankita; Rosenfeld, Jill A.; Caignec, Cédric Le; Isidor, Bertrand; Krantz, Ian D.; Noon, Sarah E.; Pfotenhauer, Jean P.; Morgan, Thomas M.; Moran, Rocio; Pedersen, Robert C.; Saenz, Margarita S.; Schaaf, Christian P.; Potts, Patrick Ryan

    2015-01-01

    SUMMARY Endosomal protein recycling is a fundamental cellular process important for cellular homeostasis, signaling, and fate determination that is implicated in several diseases. WASH is an actin nucleating protein essential for this process and its activity is controlled through K63-linked ubiquitination by the MAGE-L2-TRIM27 ubiquitin ligase. Here, we show that the USP7 deubiquitinating enzyme is an integral component of the MAGE-L2-TRIM27 ligase and is essential for WASH-mediated endosomal actin assembly and protein recycling. Mechanistically, USP7 acts as a molecular rheostat to precisely fine-tune endosomal F-actin levels by counteracting TRIM27 auto-ubiquitination/degradation and preventing overactivation of WASH through directly deubiquitinating it. Importantly, we identify de novo heterozygous loss-of-function mutations of USP7 in individuals with a neurodevelopmental disorder, featuring intellectual disability and autism spectrum disorder. These results provide unanticipated insights into endosomal trafficking, illuminate the cooperativity between a ubiquitin ligase and a deubiquitinating enzyme, and establish a role for USP7 in human neurodevelopmental disease. PMID:26365382

  11. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    PubMed Central

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  12. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the C. elegans intestine.

    PubMed

    Gleason, Adenrele M; Nguyen, Ken C Q; Hall, David H; Grant, Barth D

    2016-09-14

    Syndapin/Pascin family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports have also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of syndapin effects on the earlier step of endocytic uptake, and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only C. elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact, and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together our results provide strong evidence for an in vivo function of syndapin in endocytic recycling, and suggest that syndapin promotes transport via endosomal fission. © 2016 by The American Society for Cell Biology.

  13. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    PubMed Central

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  14. Fusion of Endosomes Involved in Synaptic Vesicle Recycling

    PubMed Central

    Holroyd, Claudia; Kistner, Ute; Annaert, Wim; Jahn, Reinhard

    1999-01-01

    Recycling of vesicles of the regulated secretory pathway presumably involves passage through an early endosomal compartment as an intermediate step. To learn more about the involvement of endosomes in the recycling of synaptic and secretory vesicles we studied in vitro fusion of early endosomes derived from pheochromocytoma (PC12) cells. Fusion was not affected by cleavage of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin and syntaxin 1 that operate at the exocytotic limb of the pathway. Furthermore, fusion was inhibited by the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid but not by the slow Ca2+ chelator EGTA. Endosome fusion was restored by the addition of Ca2+ with an optimum at a free Ca2+ concentration of 0.3 × 10−6 M. Other divalent cations did not substitute for Ca2+. A membrane-permeant EGTA derivative caused inhibition of fusion, which was reversed by addition of Ca2+. We conclude that the fusion of early endosomes participating in the recycling of synaptic and neurosecretory vesicles is mediated by a set of SNAREs distinct from those involved in exocytosis and requires the local release of Ca2+ from the endosomal interior. PMID:10473644

  15. Diverse Autophagosome Membrane Sources Coalesce in Recycling Endosomes

    PubMed Central

    Puri, Claudia; Renna, Maurizio; Bento, Carla F.; Moreau, Kevin; Rubinsztein, David C.

    2013-01-01

    Summary Autophagic protein degradation is mediated by autophagosomes that fuse with lysosomes, where their contents are degraded. The membrane origins of autophagosomes may involve multiple sources. However, it is unclear if and where distinct membrane sources fuse during autophagosome biogenesis. Vesicles containing mATG9, the only transmembrane autophagy protein, are seen in many sites, and fusions with other autophagic compartments have not been visualized in mammalian cells. We observed that mATG9 traffics from the plasma membrane to recycling endosomes in carriers that appear to be routed differently from ATG16L1-containing vesicles, another source of autophagosome membrane. mATG9- and ATG16L1-containing vesicles traffic to recycling endosomes, where VAMP3-dependent heterotypic fusions occur. These fusions correlate with autophagosome formation, and both processes are enhanced by perturbing membrane egress from recycling endosomes. Starvation, a primordial autophagy activator, reduces membrane recycling from recycling endosomes and enhances mATG9-ATG16L1 vesicle fusion. Thus, this mechanism may fine-tune physiological autophagic responses. PMID:24034251

  16. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery.

    PubMed

    Dennis, Megan K; Mantegazza, Adriana R; Snir, Olivia L; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V; Bennett, Dorothy C; Raposo, Graça; Marks, Michael S; Setty, Subba Rao Gangi

    2015-05-25

    Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.

  17. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery

    PubMed Central

    Dennis, Megan K.; Mantegazza, Adriana R.; Snir, Olivia L.; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Setty, Subba Rao Gangi

    2015-01-01

    Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation. PMID:26008744

  18. ARF1 and ARF4 regulate recycling endosomal morphology and retrograde transport from endosomes to the Golgi apparatus.

    PubMed

    Nakai, Waka; Kondo, Yumika; Saitoh, Akina; Naito, Tomoki; Nakayama, Kazuhisa; Shin, Hye-Won

    2013-08-01

    Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.

  19. Dynamic imaging of the recycling endosomal network in macrophages.

    PubMed

    Wall, Adam A; Condon, Nicholas D; Yeo, Jeremy C; Hamilton, Nicholas A; Stow, Jennifer L

    2015-01-01

    Recycling endosomes (REs) form an extensive and complex network of subcompartmentalized vesicular and tubular elements that connect with the cell surface and other endosomes in macrophages. As surveillance and defense cells of the innate immune system, macrophages are highly dependent on REs for their active and voluminous cell surface turnover and endocytic, exocytic, and recycling of membrane and cargo. Here we set out three approaches for imaging and analyzing REs in macrophages, based on the expression of fluorescently labeled RE-associated proteins and the uptake of fluorescent cargo. Subcompartments of the REs are identified by co-expression and co-localization analysis of RE associated Rab GTPases. Transferrin is a well-known cargo marker as it recycles through REs and it is compared here to other cargo, revealing how different endocytic routes intersect with REs. We show how the movement of transferrin through REs can be modeled and quantified in live cells. Finally, since phagosomes are a signature organelle for macrophages, and REs fuse with the maturing phagosome, we show imaging of REs with phagosomes using a genetically encoded pH-sensitive SNARE-based probe. Together these approaches provide multiple ways to comprehensively analyze REs and the important roles they play in these immune cells and more broadly in other cell types.

  20. EHD1 Functions in Endosomal Recycling and Confers Salt Tolerance

    PubMed Central

    Bar, Maya; Leibman, Meirav; Schuster, Silvia; Pitzhadza, Hilla; Avni, Adi

    2013-01-01

    Endocytosis is a crucial process in all eukaryotic organisms including plants. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. Knock-down of EHD1 was shown to have a delayed recycling phenotype in mammalians. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD1 that are required for its activity have not been characterized. In this work we demonstrate that knock-down of EHD1 causes a delayed recycling phenotype and reduces Brefeldin A sensitivity in Arabidopsis seedlings. The EH domain of EHD1 was found to be crucial for the localization of EHD1 to endosomal structures. Mutant EHD1 lacking the EH domain did not localize to endosomal structures and showed a phenotype similar to that of EHD1 knock-down seedlings. Mutants lacking the coiled-coil domain, however, showed a phenotype similar to wild-type or EHD1 overexpression seedlings. Salinity stress is a major problem in current agriculture. Microarray data demonstrated that salinity stress enhances the expression of EHD1, and this was confirmed by semi quantitative RT-PCR. We demonstrate herein that transgenic plants over expressing EHD1 possess enhanced tolerance to salt stress, a property which also requires an intact EH domain. PMID:23342166

  1. Endosomal recycling controls plasma membrane area during mitosis.

    PubMed

    Boucrot, Emmanuel; Kirchhausen, Tomas

    2007-05-08

    The shape and total surface of a cell and its daughters change during mitosis. Many cells round up during prophase and metaphase and reacquire their extended and flattened shape during cytokinesis. How does the total area of plasma membrane change to accommodate these morphological changes and by what mechanism is control of total membrane area achieved? Using single-cell imaging methods, we have found that the amount of plasma membrane in attached cells in culture decreases at the beginning of mitosis and recovers rapidly by the end. Clathrin-based endocytosis is normal throughout all phases of cell division, whereas recycling of internalized membranes back to the cell surface slows considerably during the rounding up period and resumes at the time at which recovery of cell membrane begins. Interference with either one of these processes by genetic or chemical means impairs cell division. The total cell-membrane area recovers even in the absence of a functional Golgi apparatus, which would be needed for export of newly synthesized membrane lipids and proteins. We propose a mechanism by which modulation of endosomal recycling controls cell area and surface expression of membrane-bound proteins during cell division.

  2. Goliath family E3 ligases regulate the recycling endosome pathway via VAMP3 ubiquitylation.

    PubMed

    Yamazaki, Yasuo; Schönherr, Christina; Varshney, Gaurav K; Dogru, Murat; Hallberg, Bengt; Palmer, Ruth H

    2013-02-20

    Diverse cellular processes depend on endocytosis, intracellular vesicle trafficking, sorting and exocytosis, processes regulated post-transcriptionally by modifications such as phosphorylation and ubiquitylation. In addition to sorting to the lysosome, cargo is recycled to the plasma membrane via recycling endosomes. Here, we describe a role of the goliath gene family of protease-associated (PA) domain E3 ligases in regulating recycling endosome trafficking. The two Drosophila members of this family--Goliath and Godzilla(CG10277)--are located on endosomes, and both ectopic expression and loss-of-function lead to the accumulation of Rab5-positive giant endosomes. Furthermore, the human homologue RNF167 exhibits similar behaviour. We show that the soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) protein VAMP3 is a target of these ubiquitin ligases, and that recycling endosome trafficking is abrogated in response to their activity. Furthermore, mutation of the Godzilla ubiquitylation target lysines on VAMP3 abrogates the formation of enlarged endosomes induced by either Godzilla or RNF167. Thus, Goliath ubiquitin ligases play a novel role in regulating recycling endosome trafficking via ubiquitylation of the VAMP3 SNARE protein.

  3. Effects of Endosomal Photodamage on Membrane Recycling and Endocytosis

    PubMed Central

    Kessel, David; Santiago, Ann Marie; Andrzejak, Michelle

    2011-01-01

    The flux of receptor-independent endocytosis can be estimated by addition of wortmannin to cell cultures. Membrane influx is unaffected but traffic out of late endosomes is impaired, resulting in a substantial enlargement of these organelles. Using the 1c1c7 murine hepatoma, we investigated the effect of endosomal photodamage on this endocytic pathway. We previously reported that photodamage catalyzed by the lysosomal photosensitizer NPe6 prevented wortmannin-induced endosomal swelling, indicating an earlier block in the process. In this study, we show that endosomal photodamage, initiated by photodamage from an asymmetrically-substituted porphine or a phthalocyanine, also prevents wortmannin-induced endosomal swelling, even when the PDT dose is insufficient to cause endosomal disruption. As the PDT dose is increased, endosomal breakage occurs, as does apoptosis and cell death. Very high PDT doses result in necrosis. We propose that photodamage to endosomes results in alterations in the endosomal structure such that influx of new material is inhibited and receptor-independent endocytosis is prevented. In an additional series of studies, we found that the swollen late endosomes induced by wortmannin are unable to retain previously accumulated fluorescent probes or photosensitizers. PMID:21208213

  4. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome.

    PubMed

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-07-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE.

  5. The retromer complex - endosomal protein recycling and beyond.

    PubMed

    Seaman, Matthew N J

    2012-10-15

    The retromer complex is a vital element of the endosomal protein sorting machinery that is conserved across all eukaryotes. Retromer is most closely associated with the endosome-to-Golgi retrieval pathway and is necessary to maintain an active pool of hydrolase receptors in the trans-Golgi network. Recent progress in studies of retromer have identified new retromer-interacting proteins, including the WASH complex and cargo such as the Wntless/MIG-14 protein, which now extends the role of retromer beyond the endosome-to-Golgi pathway and has revealed that retromer is required for aspects of endosome-to-plasma membrane sorting and regulation of signalling events. The interactions between the retromer complex and other macromolecular protein complexes now show how endosomal protein sorting is coordinated with actin assembly and movement along microtubules, and place retromer squarely at the centre of a complex set of protein machinery that governs endosomal protein sorting. Dysregulation of retromer-mediated endosomal protein sorting leads to various pathologies, including neurodegenerative diseases such as Alzheimer disease and spastic paraplegia and the mechanisms underlying these pathologies are starting to be understood. In this Commentary, I will highlight recent advances in the understanding of retromer-mediated endosomal protein sorting and discuss how retromer contributes to a diverse set of physiological processes.

  6. RACK-1 Directs Dynactin-dependent RAB-11 Endosomal Recycling during Mitosis in Caenorhabditis elegans

    PubMed Central

    Ai, Erkang; Poole, Daniel S.

    2009-01-01

    Membrane trafficking pathways are necessary for the addition and removal of membrane during cytokinesis. In animal cells, recycling endosomes act as a major source of the additional membranes during furrow progression and abscission. However, the mechanisms and factors that regulate recycling endosomes during the cell cycle remain poorly understood. Here, we show that the Caenorhabditis elegans Receptor of Activated C Kinase 1 (RACK-1) is required for cytokinesis, germline membrane organization, and the recruitment of RAB-11–labeled recycling endosomes to the pericentrosomal region and spindle. RACK-1 is also required for proper chromosome separation and astral microtubule length. RACK-1 localizes to the centrosomes, kinetochores, the midbody, and nuclear envelopes during the cell cycle. We found that RACK-1 directly binds to DNC-2, the C. elegans p50/dynamitin subunit of the dynactin complex. Last, RACK-1 may facilitate the sequestration of recycling endosomes by targeting DNC-2 to centrosomes and the spindle. Our findings suggest a mechanism by which RACK-1 directs the dynactin-dependent redistribution of recycling endosomes during the cell cycle, thus ensuring proper membrane trafficking events during cytokinesis. PMID:19158384

  7. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans

    PubMed Central

    Grussendorf, Kelly A.; Trezza, Christopher J.; Salem, Alexander T.; Al-Hashimi, Hikmat; Mattingly, Brendan C.; Kampmeyer, Drew E.; Khan, Liakot A.; Hall, David H.; Göbel, Verena; Ackley, Brian D.; Buechner, Matthew

    2016-01-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans. In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn’s disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  8. Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling

    PubMed Central

    Shi, Anbing; Grant, Barth D.

    2013-01-01

    After endocytosis, a selective endocytic recycling process returns many endocytosed molecules back to the plasma membrane. The RAB-10/Rab10 GTPase is known to be a key recycling regulator for specific cargo molecules. New evidence, focused on C. elegans RAB-10 in polarized epithelia, points to a key role of RAB-10 in the regulation of endosomal phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) levels. In turn, PI(4,5)P2 levels strongly influence the recruitment of many peripheral membrane proteins, including those important for vesicle budding through their membrane bending activities. Part of the effect of RAB-10 on endosomal PI(4,5)P2 is through its newly identified effector CNT-1, a predicted GTPase activating protein (GAP) of the small GTPase ARF-6/Arf6. In mammals PI(4,5)P2 generating enzymes are known Arf6 effectors. In C. elegans we found that RAB-10, CNT-1 and ARF-6 are present on the same endosomes, that RAB-10 recruits CNT-1 to endosomes, and that loss of CNT-1 or RAB-10 leads to overaccumulation of endosomal PI(4,5)P2, presumably via hyperactivation of endosomal ARF-6. In turn this leads to over-recruitment of PI(4,5)P2-dependent membrane-bending proteins RME-1/Ehd and SDPN-1/Syndapin/PACSIN. Conversely, in arf-6 mutants, endosomal PI(4,5)P2 levels were reduced and endosomal recruitment of RME-1 and SDPN-1 failed. This work makes an unexpected link between distinct classes of small GTPases that control endocytic recycling, and provides insight into how this interaction affects endosome function at the level of lipid phosphorylation. PMID:23392104

  9. Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling.

    PubMed

    Shi, Anbing; Grant, Barth D

    2013-01-01

    After endocytosis, a selective endocytic recycling process returns many endocytosed molecules back to the plasma membrane. The RAB-10/Rab10 GTPase is known to be a key recycling regulator for specific cargo molecules. New evidence, focused on C. elegans RAB-10 in polarized epithelia, points to a key role of RAB-10 in the regulation of endosomal phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) levels. In turn, PI(4,5)P2 levels strongly influence the recruitment of many peripheral membrane proteins, including those important for vesicle budding through their membrane bending activities. Part of the effect of RAB-10 on endosomal PI(4,5)P2 is through its newly identified effector CNT-1, a predicted GTPase activating protein (GAP) of the small GTPase ARF-6/Arf6. In mammals PI(4,5)P2 generating enzymes are known Arf6 effectors. In C. elegans we found that RAB-10, CNT-1 and ARF-6 are present on the same endosomes, that RAB-10 recruits CNT-1 to endosomes, and that loss of CNT-1 or RAB-10 leads to overaccumulation of endosomal PI(4,5)P2, presumably via hyperactivation of endosomal ARF-6. In turn this leads to over-recruitment of PI(4,5)P2-dependent membrane-bending proteins RME-1/Ehd and SDPN-1/Syndapin/PACSIN. Conversely, in arf-6 mutants, endosomal PI(4,5)P2 levels were reduced and endosomal recruitment of RME-1 and SDPN-1 failed. This work makes an unexpected link between distinct classes of small GTPases that control endocytic recycling, and provides insight into how this interaction affects endosome function at the level of lipid phosphorylation.

  10. Diacylglycerol kinase α regulates tubular recycling endosome biogenesis and major histocompatibility complex class I recycling.

    PubMed

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-11-14

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling.

  11. Diacylglycerol Kinase α Regulates Tubular Recycling Endosome Biogenesis and Major Histocompatibility Complex Class I Recycling*

    PubMed Central

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-01-01

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling. PMID:25248744

  12. Calcium-dependent antigen binding as a novel modality for antibody recycling by endosomal antigen dissociation.

    PubMed

    Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K

    2016-01-01

    The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody.

  13. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity

    PubMed Central

    Marshall, Misty R.; Pattu, Varsha; Halimani, Mahantappa; Maier-Peuschel, Monika; Müller, Martha-Lena; Becherer, Ute; Hong, Wanjin; Hoth, Markus; Tschernig, Thomas

    2015-01-01

    Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated. PMID:26124288

  14. Low density lipoprotein receptor-related protein 1 dependent endosomal trapping and recycling of apolipoprotein E.

    PubMed

    Laatsch, Alexander; Panteli, Malamatenia; Sornsakrin, Marijke; Hoffzimmer, Britta; Grewal, Thomas; Heeren, Joerg

    2012-01-01

    Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles.

  15. Low Density Lipoprotein Receptor-Related Protein 1 Dependent Endosomal Trapping and Recycling of Apolipoprotein E

    PubMed Central

    Laatsch, Alexander; Panteli, Malamatenia; Sornsakrin, Marijke; Hoffzimmer, Britta; Grewal, Thomas; Heeren, Joerg

    2012-01-01

    Background Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. Principal Findings Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. Conclusion We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles. PMID:22238606

  16. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome

    PubMed Central

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-01-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in EEA1-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized MDCK cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. PMID:23593972

  17. Vps1, a recycling factor for the traffic from early endosome to the late Golgi.

    PubMed

    Lukehart, Joshua; Highfill, Chad; Kim, Kyoungtae

    2013-12-01

    Recycling of cellular membranes and their constituents plays a role for cell survival and growth. In the budding yeast, there are recycling traffics from early and late endosomal compartments to the late Golgi. Here, we examined a possible role for Vps1, a large GTPase, in the recycling traffic of GFP-Snc1 from early endosomes to the late Golgi. In the absence of Vps1 we observed an aberrant accumulation of GFP-Snc1 puncta in the cytoplasm that we identified as early endosomes. The N-terminal GTPase and the C-terminal GED domains of Vps1 are essential for Vps1's function in Snc1 recycling. Our finding of genetic interactions of VPS1 with genes involved in early endosome-to-Golgi traffic further suggests Vps1 functions as a recycling factor in the membrane traffic. Finally, we provide evidence that the severe accumulation of GFP-Snc1 cytoplasmic puncta in vps1Δ cells is attributed to a mild defect in the retention of the GARP component Vps51 at the late Golgi, as well as a severe disruption of actin cables.

  18. The novel endosomal membrane protein Ema interacts with the class C Vps-HOPS complex to promote endosomal maturation.

    PubMed

    Kim, Sungsu; Wairkar, Yogesh P; Daniels, Richard W; DiAntonio, Aaron

    2010-03-08

    Endosomal maturation is critical for accurate and efficient cargo transport through endosomal compartments. Here we identify a mutation of the novel Drosophila gene, ema (endosomal maturation defective) in a screen for abnormal synaptic overgrowth and defective protein trafficking. Ema is an endosomal membrane protein required for trafficking of fluid-phase and receptor-mediated endocytic cargos. In the ema mutant, enlarged endosomal compartments accumulate as endosomal maturation fails, with early and late endosomes unable to progress into mature degradative late endosomes and lysosomes. Defective endosomal down-regulation of BMP signaling is responsible for the abnormal synaptic overgrowth. Ema binds to and genetically interacts with Vps16A, a component of the class C Vps-HOPS complex that promotes endosomal maturation. The human orthologue of ema, Clec16A, is a candidate susceptibility locus for autoimmune disorders, and its expression rescues the Drosophila mutant demonstrating conserved function. Characterizing this novel gene family identifies a new component of the endosomal pathway and provides insights into class C Vps-HOPS complex function.

  19. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes

    PubMed Central

    Bamidele, Adebowale O.; Kremer, Kimberly N.; Hirsova, Petra; Clift, Ian C.; Gores, Gregory J.; Billadeau, Daniel D.

    2015-01-01

    IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types. PMID:26195666

  20. AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory

    PubMed Central

    Glyvuk, Nataliya; Tsytsyura, Yaroslav; Geumann, Constanze; D'Hooge, Rudi; Hüve, Jana; Kratzke, Manuel; Baltes, Jennifer; Böning, Daniel; Klingauf, Jürgen; Schu, Peter

    2010-01-01

    Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1–σ1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation. PMID:20203623

  1. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane

    PubMed Central

    Tanaka, Yoshiki; Ono, Natsuki; Shima, Takahiro; Tanaka, Gaku; Katoh, Yohei; Nakayama, Kazuhisa; Takatsu, Hiroyuki; Shin, Hye-Won

    2016-01-01

    Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane. PMID:27733620

  2. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration

    PubMed Central

    Fan, Steven Hung-Yi; Numata, Yuka; Numata, Masayuki

    2016-01-01

    Increased recycling and elevated cell surface expression of receptors serve as a mechanism for persistent receptor-mediated signaling. We show that the neuron-enriched Na+/H+ exchanger NHE5 is abundantly expressed in C6 glioma cells and plays an important part in regulating cell surface expression of the receptor tyrosine kinases MET and EGF receptor. NHE5 is associated with transferrin receptor (TfR)- and Rab11-positive recycling endosomal membranes, and NHE5 knockdown by short hairpin RNA significantly elevates pH of TfR-positive recycling endosomes. We present evidence that NHE5 facilitates MET recycling to the plasma membrane, protects MET from degradation, and modulates HGF-induced phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling. Moreover, NHE5 depletion abrogates Rac1 and Cdc42 signaling and actin cytoskeletal remodeling. We further show that NHE5 knockdown impairs directed cell migration and causes loss of cell polarity. Our study highlights a possible role of recycling endosomal pH in regulating receptor-mediated signaling through vesicular trafficking. PMID:26700318

  3. GRASP1 Regulates Synaptic Plasticity and Learning through Endosomal Recycling of AMPA Receptors.

    PubMed

    Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E; Wang, Tao; Huganir, Richard L

    2017-03-22

    Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity, and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescued spine loss in hippocampal CA1 neurons in Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders.

  4. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFalpha.

    PubMed

    Manderson, Anthony P; Kay, Jason G; Hammond, Luke A; Brown, Darren L; Stow, Jennifer L

    2007-07-02

    Activated macrophages secrete an array of proinflammatory cytokines, including tumor necrosis factor-alpha (TNFalpha) and interleukin 6 (IL-6), that are temporally secreted for sequential roles in inflammation. We have previously characterized aspects of the intracellular trafficking of membrane-bound TNFalpha and its delivery to the cell surface at the site of phagocytic cups for secretion (Murray, R.Z., J.G. Kay, D.G. Sangermani, and J.L. Stow. 2005. Science. 310:1492-1495). The trafficking pathway and surface delivery of IL-6, a soluble cytokine, were studied here using approaches such as live cell imaging of fluorescently tagged IL-6 and immunoelectron microscopy. Newly synthesized IL-6 accumulates in the Golgi complex and exits in tubulovesicular carriers either as the sole labeled cargo or together with TNFalpha, utilizing specific soluble NSF attachment protein receptor (SNARE) proteins to fuse with the recycling endosome. Within recycling endosomes, we demonstrate the compartmentalization of cargo proteins, wherein IL-6 is dynamically segregated from TNFalpha and from surface recycling transferrin. Thereafter, these cytokines are independently secreted, with TNFalpha delivered to phagocytic cups but not IL-6. Therefore, the recycling endosome has a central role in orchestrating the differential secretion of cytokines during inflammation.

  5. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome

    PubMed Central

    Xie, Shuwei; Bahl, Kriti; Reinecke, James B.; Hammond, Gerald R. V.; Naslavsky, Naava; Caplan, Steve

    2016-01-01

    The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous “membrane bridges.” Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC. PMID:26510502

  6. Numb regulates the balance between Notch recycling and late-endosome targeting in Drosophila neural progenitor cells

    PubMed Central

    Johnson, Seth A.; Zitserman, Diana; Roegiers, Fabrice

    2016-01-01

    The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors. PMID:27466320

  7. STX13 regulates cargo delivery from recycling endosomes during melanosome biogenesis.

    PubMed

    Jani, Riddhi Atul; Purushothaman, Latha Kallur; Rani, Shikha; Bergam, Ptissam; Setty, Subba Rao Gangi

    2015-09-01

    Melanosomes are a class of lysosome-related organelles produced by melanocytes. Biogenesis of melanosomes requires the transport of melanin-synthesizing enzymes from tubular recycling endosomes to maturing melanosomes. The SNARE proteins involved in these transport or fusion steps have been poorly studied. We found that depletion of syntaxin 13 (STX13, also known as STX12), a recycling endosomal Qa-SNARE, inhibits pigment granule maturation in melanocytes by rerouting the melanosomal proteins such as TYR and TYRP1 to lysosomes. Furthermore, live-cell imaging and electron microscopy studies showed that STX13 co-distributed with melanosomal cargo in the tubular-vesicular endosomes that are closely associated with the maturing melanosomes. STX family proteins contain an N-terminal regulatory domain, and deletion of this domain in STX13 increases both the SNARE activity in vivo and melanosome cargo transport and pigmentation, suggesting that STX13 acts as a fusion SNARE in melanosomal trafficking pathways. In addition, STX13-dependent cargo transport requires the melanosomal R-SNARE VAMP7, and its silencing blocks the melanosome maturation, reflecting a defect in endosome-melanosome fusion. Moreover, we show mutual dependency between STX13 and VAMP7 in regulating their localization for efficient cargo delivery to melanosomes. © 2015. Published by The Company of Biologists Ltd.

  8. Birbeck Granules Are Subdomains of Endosomal Recycling Compartment in Human Epidermal Langerhans Cells, Which Form Where Langerin Accumulates

    PubMed Central

    Mc Dermott, Ray; Ziylan, Umit; Spehner, Danièle; Bausinger, Huguette; Lipsker, Dan; Mommaas, Mieke; Cazenave, Jean-Pierre; Raposo, Graça; Goud, Bruno; de la Salle, Henri; Salamero, Jean; Hanau, Daniel

    2002-01-01

    Birbeck granules are unusual rod-shaped structures specific to epidermal Langerhans cells, whose origin and function remain undetermined. We investigated the intracellular location and fate of Langerin, a protein implicated in Birbeck granule biogenesis, in human epidermal Langerhans cells. In the steady state, Langerin is predominantly found in the endosomal recycling compartment and in Birbeck granules. Langerin internalizes by classical receptor-mediated endocytosis and the first Birbeck granules accessible to endocytosed Langerin are those connected to recycling endosomes in the pericentriolar area, where Langerin accumulates. Drug-induced inhibition of endocytosis results in the appearance of abundant open-ended Birbeck granule-like structures appended to the plasma membrane, whereas inhibition of recycling induces Birbeck granules to merge with a tubular endosomal network. In mature Langerhans cells, Langerin traffic is abolished and the loss of internal Langerin is associated with a concomitant depletion of Birbeck granules. Our results demonstrate an exchange of Langerin between early endosomal compartments and the plasma membrane, with dynamic retention in the endosomal recycling compartment. They show that Birbeck granules are not endocytotic structures, rather they are subdomains of the endosomal recycling compartment that form where Langerin accumulates. Finally, our results implicate ADP-ribosylation factor proteins in Langerin trafficking and the exchange between Birbeck granules and other endosomal membranes. PMID:11809842

  9. Rab9A is required for delivery of cargo from recycling endosomes to melanosomes

    PubMed Central

    Mahanty, Sarmistha; Ravichandran, Keerthana; Chitirala, Praneeth; Prabha, Jyothi; Jani, Riddhi Atul; Setty, Subba Rao gangi

    2016-01-01

    Melanosomes are a type of lysosome-related organelle that is commonly defective in Hermansky–Pudlak syndrome. Biogenesis of melanosomes is regulated by BLOC-1, -2, -3, or AP-1, -3 complexes, which mediate cargo transport from recycling endosomes to melanosomes. Although several Rab GTPases have been shown to regulate these trafficking steps, the precise role of Rab9A remains unknown. Here, we found that a cohort of Rab9A associates with the melanosomes and its knockdown in melanocytes results in hypopigmented melanosomes due to mistargeting of melanosomal proteins to lysosomes. In addition, the Rab9A-depletion phenotype resembles Rab38/32-inactivated or BLOC-3-deficient melanocytes, suggesting that Rab9A works in line with BLOC-3 and Rab38/32 during melanosome cargo transport. Furthermore, silencing of Rab9A, Rab38/32 or its effector VARP, or BLOC-3-deficiency in melanocytes decreased the length of STX13-positive recycling endosomal tubules and targeted the SNARE to lysosomes. This result indicates a defect in directing recycling endosomal tubules to melanosomes. Thus, Rab9A and its co-regulatory GTPases control STX13-mediated cargo delivery to maturing melanosomes. PMID:26527546

  10. Endosomal recycling regulates Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8-dependent cell spreading.

    PubMed

    Gu, Jingsheng; Faundez, Victor; Werner, Erica

    2010-07-15

    Mechanisms for receptor-mediated anthrax toxin internalization and delivery to the cytosol are well understood. However, far less is known about the fate followed by anthrax toxin receptors prior and after cell exposure to the toxin. We report that Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8 (TEM8) localized at steady state in Rab11a-positive and transferrin receptor-containing recycling endosomes. TEM8 followed a slow constitutive recycling route of approximately 30min as determined by pulsed surface biotinylation and chase experiments. A Rab11a dominant negative mutant and Myosin Vb tail expression impaired TEM8 recycling by sequestering TEM8 in intracellular compartments. Sequestration of TEM8 in intracellular compartments with monensin coincided with increased TEM8 association with a multi-protein complex isolated with antibodies against transferrin receptor. Addition of the cell-binding component of anthrax toxin, Protective Antigen, reduced TEM8 half-life from 7 to 3 hours, without preventing receptor recycling. Pharmacological and molecular perturbation of recycling endosome function using monensin, dominant negative Rab11a, or myosin Vb tail, reduced PA binding efficiency and TEM8-dependent cell spreading on PA-coated surfaces without affecting toxin delivery to the cytosol. These results indicate that the intracellular fate of TEM8 differentially affect its cell adhesion and cell intoxication functions.

  11. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis

    PubMed Central

    Giridharan, Sai Srinivas Panapakkam; Cai, Bishuang; Vitale, Nicolas; Naslavsky, Naava; Caplan, Steve

    2013-01-01

    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated. PMID:23596323

  12. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    PubMed Central

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  13. Elevated Endosomal Cholesterol Levels in Niemann-Pick Cells Inhibit Rab4 and Perturb Membrane RecyclingD⃞

    PubMed Central

    Choudhury, Amit; Sharma, Deepak K.; Marks, David L.; Pagano, Richard E.

    2004-01-01

    In normal human skin fibroblasts (HSFs), fluorescent glycosphingolipid analogues are endocytosed and sorted into two pools, one that is recycled to the plasma membrane and one that is transported to the Golgi complex. Here, we investigated glycosphingolipid recycling in Niemann-Pick type A and C lipid storage disease fibroblasts (NPFs). Cells were incubated with a fluorescent analogue of lactosylceramide (LacCer) at 16°C to label early endosomes (EEs), shifted to 37°C, and lipid recycling was quantified. Using dominant negative rabs, we showed that, in normal HSFs, LacCer recycling was rapid (t1/2 ∼8 min) and mainly rab4-dependent. In NPFs, LacCer recycling was delayed (t1/2 ∼30–40 min), and rab4-dependent recycling was absent, whereas rab11-dependent recycling predominated. Transferrin recycling via the rab4 pathway was similarly perturbed in NPFs. Compared with normal HSFs, EEs in NPFs showed high cholesterol levels and an altered organization of rab4. In vitro extraction of rab4 (but not rab11) with GDP dissociation inhibitor was severely attenuated in NPF endosomal fractions. This impairment was reversed with cholesterol depletion of isolated endosomes or with high-salt treatment of endosomes. These data suggest that abnormal membrane recycling in NPFs results from specific inhibition of rab4 function by excess cholesterol in EEs. PMID:15292453

  14. Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility.

    PubMed

    Lindsay, Andrew J; McCaffrey, Mary W

    2016-07-09

    Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.

  15. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane.

    PubMed

    Tanaka, Yoshiki; Ono, Natsuki; Shima, Takahiro; Tanaka, Gaku; Katoh, Yohei; Nakayama, Kazuhisa; Takatsu, Hiroyuki; Shin, Hye-Won

    2016-12-01

    Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane. © 2016 Tanaka, Ono, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration.

    PubMed

    García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Meneses-Salas, Elsa; Koese, Meryem; Conway, James R W; Johnsen, Camilla H; Alvarez-Guaita, Anna; Morales-Paytuvi, Frederic; Elmaghrabi, Yasmin A; Pol, Albert; Tebar, Francesc; Murray, Rachael Z; Timpson, Paul; Enrich, Carlos; Grewal, Thomas; Rentero, Carles

    2016-01-15

    Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.

  17. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration*

    PubMed Central

    García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Meneses-Salas, Elsa; Koese, Meryem; Conway, James R. W.; Johnsen, Camilla H.; Alvarez-Guaita, Anna; Morales-Paytuvi, Frederic; Elmaghrabi, Yasmin A.; Pol, Albert; Tebar, Francesc; Murray, Rachael Z.; Timpson, Paul; Enrich, Carlos; Grewal, Thomas; Rentero, Carles

    2016-01-01

    Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration. PMID:26578516

  18. Endosomal pathways for water channel and proton pump recycling in kidney epithelial cells.

    PubMed

    Brown, D; Sabolić, I

    1993-01-01

    The plasma membrane composition of virtually all eukaryotic cells is maintained and continually modified by the recycling of specific protein and lipid components. In the kidney collecting duct, urinary acidification and urinary concentration are physiologically regulated at the cellular level by the shuttling of proton pumps and water channels between intracellular vesicles and the plasma membrane of highly specialized cell types. In the intercalated cell, hydrogen ion secretion into the urine is modulated by the recycling of vesicles carrying a proton pumping ATPase to and from the plasma membrane. In the principal cell, the antidiuretic hormone, vasopressin, induces the insertion of vesicles that contain proteinaceous water channels into the apical cell membrane, thus increasing the permeability to water of the epithelial layer. In both cell types, 'coated' carrier vesicles are involved in this process, but whereas clathrin-coated vesicles are involved in the endocytotic phase of water channel recycling, the transporting vesicles in intercalated cells are coated with the cytoplasmic domains of the proton pumping ATPase. By a combination of morphological and functional techniques using FITC-dextran as an endosomal marker, we have shown that recycling endosomes from intercalated cells are acidifying vesicles but that they do not contain water channels. In contrast, principal cell vesicles that recycle water channels do not acidify their lumens in response to ATP. These non-acidic vesicles lack functionally important subunits of the vacuolar proton ATPase, including the 16 kDa proteolipid that forms the transmembrane proton pore. Because these endosomes are directly derived via clathrin-mediated endocytosis, our results indicate that endocytotic clathrin-coated vesicles are non-acidic compartments in principal cells. In contrast, recycling vesicles in intercalated cells contain large numbers of proton pumps, arranged in hexagonally packed arrays on the vesicle

  19. Characterization of Heparan Sulfate Proteoglycan-positive Recycling Endosomes Isolated from Glioma Cells

    PubMed Central

    A. PODYMA-INOUE, KATARZYNA; MORIWAKI, TAKUYA; R. RAJAPAKSHE, ANUPAMA; TERASAWA, KAZUE; HARA-YOKOYAMA, MIKI

    2016-01-01

    Background: Heparan sulfate proteoglycans (HSPGs)-dependent endocytic events have been involved in glioma progression. Thus, comprehensive understanding of the intracellular trafficking complexes formed in presence of HSPGs would be important for development of glioma treatments. Materials and Methods: Subcellular fractionation was used to separate vesicles containing HSPGs from the rat C6 glioma cell line. Isolated HSPG-positive vesicles were further characterized with liquid chromatography-mass spectrometry. Results: The HSPG-positive vesicular fractions, distinct from plasma membrane-derived material, were enriched in endocytic marker, Rab11. Proteomic analysis identified more than two hundred proteins to be associated with vesicular membrane, among them, over eighty were related to endosomal uptake, recycling or vesicular transport. Conclusion: Part of HSPGs in glioma cells is internalized through clathrin-dependent endocytosis and undergo recycling. The development of compounds regulating HSPG-mediated trafficking will likely enable design of effective glioma treatment. PMID:27807067

  20. SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans.

    PubMed

    Chen, Sanyou; Li, Lei; Li, Jiangli; Liu, Bei; Zhu, Xinyu; Zheng, Li; Zhang, Rongying; Xu, Tao

    2014-10-28

    Despite the increasing number of regulatory proteins identified in clathrin-independent endocytic (CIE) pathways, our understanding of the exact functions of these proteins and the sequential manner in which they function remains limited. In this study, using the Caenorhabditis elegans intestine as a model, we observed a unique structure of interconnected endosomal tubules, which is required for the basolateral recycling of several CIE cargoes including hTAC, GLUT1, and DAF-4. SEC-10 is a subunit of the octameric protein complex exocyst. Depleting SEC-10 and several other exocyst components disrupted the endosomal tubules into various ring-like structures. An epistasis analysis further suggested that SEC-10 operates at the intermediate step between early endosomes and recycling endosomes. The endosomal tubules were also sensitive to inactivation of the Rab GTPase RAB-10 and disruption of microtubules. Taken together, our data suggest that SEC-10 coordinates with RAB-10 and microtubules to form the endosomal tubular network for efficient recycling of particular CIE cargoes.

  1. Ferlins Show Tissue-Specific Expression and Segregate as Plasma Membrane/Late Endosomal or Trans-Golgi/Recycling Ferlins.

    PubMed

    Redpath, Gregory M I; Sophocleous, Reece A; Turnbull, Lynne; Whitchurch, Cynthia B; Cooper, Sandra T

    2016-03-01

    Ferlins are a family of transmembrane-anchored vesicle fusion proteins uniquely characterized by 5-7 tandem cytoplasmic C2 domains, Ca(2+)-regulated phospholipid-binding domains that regulate vesicle fusion in the synaptotagmin family. In humans, dysferlin mutations cause limb-girdle muscular dystrophy type 2B (LGMD2B) due to defective Ca(2+)-dependent, vesicle-mediated membrane repair and otoferlin mutations cause non-syndromic deafness due to defective Ca(2+)-triggered auditory neurotransmission. In this study, we describe the tissue-specific expression, subcellular localization and endocytic trafficking of the ferlin family. Studies of endosomal transit together with 3D-structured illumination microscopy reveals dysferlin and myoferlin are abundantly expressed at the PM and cycle to Rab7-positive late endosomes, supporting potential roles in the late-endosomal pathway. In contrast, Fer1L6 shows concentrated localization to a specific compartment of the trans-Golgi/recycling endosome, cycling rapidly between this compartment and the PM via Rab11 recycling endosomes. Otoferlin also shows trans-Golgi to PM cycling, with very low levels of PM otoferlin suggesting either brief PM residence, or rare incorporation of otoferlin molecules into the PM. Thus, type-I and type-II ferlins segregate as PM/late-endosomal or trans-Golgi/recycling ferlins, consistent with different ferlins mediating vesicle fusion events in specific subcellular locations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans

    PubMed Central

    Chen, Sanyou; Li, Lei; Li, Jiangli; Liu, Bei; Zhu, Xinyu; Zheng, Li; Zhang, Rongying; Xu, Tao

    2014-01-01

    Despite the increasing number of regulatory proteins identified in clathrin-independent endocytic (CIE) pathways, our understanding of the exact functions of these proteins and the sequential manner in which they function remains limited. In this study, using the Caenorhabditis elegans intestine as a model, we observed a unique structure of interconnected endosomal tubules, which is required for the basolateral recycling of several CIE cargoes including hTAC, GLUT1, and DAF-4. SEC-10 is a subunit of the octameric protein complex exocyst. Depleting SEC-10 and several other exocyst components disrupted the endosomal tubules into various ring-like structures. An epistasis analysis further suggested that SEC-10 operates at the intermediate step between early endosomes and recycling endosomes. The endosomal tubules were also sensitive to inactivation of the Rab GTPase RAB-10 and disruption of microtubules. Taken together, our data suggest that SEC-10 coordinates with RAB-10 and microtubules to form the endosomal tubular network for efficient recycling of particular CIE cargoes. PMID:25301900

  3. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin.

    PubMed

    Lesteberg, Kelsey; Orange, Jordan; Makedonas, George

    2017-08-18

    Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein, we aimed to determine how new perforin transits to the synapse if not via lytic granules. We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response.

  4. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform

    PubMed Central

    Mallard, Frédéric; Tang, Bor Luen; Galli, Thierry; Tenza, Danièle; Saint-Pol, Agnès; Yue, Xu; Antony, Claude; Hong, Wanjin; Goud, Bruno; Johannes, Ludger

    2002-01-01

    The molecular mechanisms underlying early/recycling endosomes-to-TGN transport are still not understood. We identified interactions between the TGN-localized putative t-SNAREs syntaxin 6, syntaxin 16, and Vti1a, and two early/recycling endosomal v-SNAREs, VAMP3/cellubrevin, and VAMP4. Using a novel permeabilized cell system, these proteins were functionally implicated in the post-Golgi retrograde transport step. The function of Rab6a' was also required, whereas its closely related isoform, Rab6a, has previously been implicated in Golgi-to-endoplasmic reticulum transport. Thus, our study shows that membrane exchange between the early endocytic and the biosynthetic/secretory pathways involves specific components of the Rab and SNARE machinery, and suggests that retrograde transport between early/recycling endosomes and the endoplasmic reticulum is critically dependent on the sequential action of two members of the Rab6 subfamily. PMID:11839770

  5. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform.

    PubMed

    Mallard, Frédéric; Tang, Bor Luen; Galli, Thierry; Tenza, Danièle; Saint-Pol, Agnès; Yue, Xu; Antony, Claude; Hong, Wanjin; Goud, Bruno; Johannes, Ludger

    2002-02-18

    The molecular mechanisms underlying early/recycling endosomes-to-TGN transport are still not understood. We identified interactions between the TGN-localized putative t-SNAREs syntaxin 6, syntaxin 16, and Vti1a, and two early/recycling endosomal v-SNAREs, VAMP3/cellubrevin, and VAMP4. Using a novel permeabilized cell system, these proteins were functionally implicated in the post-Golgi retrograde transport step. The function of Rab6a' was also required, whereas its closely related isoform, Rab6a, has previously been implicated in Golgi-to-endoplasmic reticulum transport. Thus, our study shows that membrane exchange between the early endocytic and the biosynthetic/secretory pathways involves specific components of the Rab and SNARE machinery, and suggests that retrograde transport between early/recycling endosomes and the endoplasmic reticulum is critically dependent on the sequential action of two members of the Rab6 subfamily.

  6. Role of Recycling Endosomes and Lysosomes in Dynein-Dependent Entry of Canine Parvovirus

    PubMed Central

    Suikkanen, Sanna; Sääjärvi, Katja; Hirsimäki, Jonna; Välilehto, Outi; Reunanen, Hilkka; Vihinen-Ranta, Maija; Vuento, Matti

    2002-01-01

    Canine parvovirus (CPV) is a nonenveloped virus with a 5-kb single-stranded DNA genome. Lysosomotropic agents and low temperature are known to prevent CPV infection, indicating that the virus enters its host cells by endocytosis and requires an acidic intracellular compartment for penetration into the cytoplasm. After escape from the endocytotic vesicles, CPV is transported to the nucleus for replication. In the present study the intracellular entry pathway of the canine parvovirus in NLFK (Nordisk Laboratory feline kidney) cells was studied. After clustering in clathrin-coated pits and being taken up in coated vesicles, CPV colocalized with coendocytosed transferrin in endosomes resembling recycling endosomes. Later, CPV was found to enter, via late endosomes, a perinuclear vesicular compartment, where it colocalized with lysosomal markers. There was no indication of CPV entry into the trans-Golgi or the endoplasmic reticulum. Similar results were obtained both with full and with empty capsids. The data thus suggest that CPV or its DNA was released from the lysosomal compartment to the cytoplasm to be then transported to the nucleus. Electron microscopy analysis revealed endosomal vesicles containing CPV to be associated with microtubules. In the presence of nocodazole, a microtubule-disrupting drug, CPV entry was blocked and the virus was found in peripheral vesicles. Thus, some step(s) of the entry process were dependent on microtubules. Microinjection of antibodies to dynein caused CPV to remain in pericellular vesicles. This suggests an important role for the motor protein dynein in transporting vesicles containing CPV along the microtubule network. PMID:11932407

  7. Role of recycling endosomes and lysosomes in dynein-dependent entry of canine parvovirus.

    PubMed

    Suikkanen, Sanna; Sääjärvi, Katja; Hirsimäki, Jonna; Välilehto, Outi; Reunanen, Hilkka; Vihinen-Ranta, Maija; Vuento, Matti

    2002-05-01

    Canine parvovirus (CPV) is a nonenveloped virus with a 5-kb single-stranded DNA genome. Lysosomotropic agents and low temperature are known to prevent CPV infection, indicating that the virus enters its host cells by endocytosis and requires an acidic intracellular compartment for penetration into the cytoplasm. After escape from the endocytotic vesicles, CPV is transported to the nucleus for replication. In the present study the intracellular entry pathway of the canine parvovirus in NLFK (Nordisk Laboratory feline kidney) cells was studied. After clustering in clathrin-coated pits and being taken up in coated vesicles, CPV colocalized with coendocytosed transferrin in endosomes resembling recycling endosomes. Later, CPV was found to enter, via late endosomes, a perinuclear vesicular compartment, where it colocalized with lysosomal markers. There was no indication of CPV entry into the trans-Golgi or the endoplasmic reticulum. Similar results were obtained both with full and with empty capsids. The data thus suggest that CPV or its DNA was released from the lysosomal compartment to the cytoplasm to be then transported to the nucleus. Electron microscopy analysis revealed endosomal vesicles containing CPV to be associated with microtubules. In the presence of nocodazole, a microtubule-disrupting drug, CPV entry was blocked and the virus was found in peripheral vesicles. Thus, some step(s) of the entry process were dependent on microtubules. Microinjection of antibodies to dynein caused CPV to remain in pericellular vesicles. This suggests an important role for the motor protein dynein in transporting vesicles containing CPV along the microtubule network.

  8. Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes.

    PubMed

    Kobayashi, Shintaro; Suzuki, Tadaki; Kawaguchi, Akira; Phongphaew, Wallaya; Yoshii, Kentaro; Iwano, Tomohiko; Harada, Akihiro; Kariwa, Hiroaki; Orba, Yasuko; Sawa, Hirofumi

    2016-03-18

    West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes*

    PubMed Central

    Kobayashi, Shintaro; Suzuki, Tadaki; Kawaguchi, Akira; Phongphaew, Wallaya; Yoshii, Kentaro; Iwano, Tomohiko; Harada, Akihiro; Kariwa, Hiroaki; Orba, Yasuko; Sawa, Hirofumi

    2016-01-01

    West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane. PMID:26817838

  10. Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation.

    PubMed

    Jopling, Helen M; Odell, Adam F; Pellet-Many, Caroline; Latham, Antony M; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H; Zachary, Ian C; Ponnambalam, Sreenivasan

    2014-04-29

    Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis.

  11. The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria.

    PubMed

    Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Fréderique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon

    2007-08-01

    Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A).

  12. Rab11-FIP1A regulates early trafficking into the recycling endosomes

    PubMed Central

    Schafer, Jenny C.; McRae, Rebecca E.; Manning, Elizabeth H.; Lapierre, Lynne A.; Goldenring, James R.

    2016-01-01

    The Rab11 family of small GTPases, along with the Rab11-family interacting proteins (Rab11-FIPs), are critical regulators of intracellular vesicle trafficking and recycling. We have identified a point mutation of Threonine-197 site to an Alanine in Rab11-FIP1A, which causes a dramatic dominant negative phenotype when expressed in HeLa cells. The normally perinuclear distribution of GFP-Rab11-FIP1A was condensed into a membranous cisternum with almost no GFP-Rab11-FIP1A(T197A) remaining outside of this central locus. Also, this condensed GFP-FIP1A(T197A) altered the distribution of proteins in the Rab11a recycling pathway including endogenous Rab11a, Rab11-FIP1C, and transferrin receptor (CD71). Furthermore, this condensed GFP-FIP1A(T197A)-containing structure exhibited little movement in live HeLa cells. Expression of GFP-FIP1A(T197A) caused a strong blockade of transferrin recycling. Treatment of cells expressing GFP-FIP1A(T197A) with nocodazole did not disperse the Rab11a-containing recycling system. We also found that Rab5 and EEA1 were accumulated in membranes by GFP-Rab11-FIP1A but Rab4 was unaffected, suggesting that a direct pathway may exist from early endosomes into the Rab11a-containing recycling system. Our study of a potent inhibitory trafficking mutation in Rab11-FIP1A shows that Rab11-FIP1A associates with and regulates trafficking at an early step in the process of membrane recycling. PMID:26790954

  13. Rab11-FIP1A regulates early trafficking into the recycling endosomes.

    PubMed

    Schafer, Jenny C; McRae, Rebecca E; Manning, Elizabeth H; Lapierre, Lynne A; Goldenring, James R

    2016-01-15

    The Rab11 family of small GTPases, along with the Rab11-family interacting proteins (Rab11-FIPs), are critical regulators of intracellular vesicle trafficking and recycling. We have identified a point mutation of Threonine-197 site to an Alanine in Rab11-FIP1A, which causes a dramatic dominant negative phenotype when expressed in HeLa cells. The normally perinuclear distribution of GFP-Rab11-FIP1A was condensed into a membranous cisternum with almost no GFP-Rab11-FIP1A(T197A) remaining outside of this central locus. Also, this condensed GFP-FIP1A(T197A) altered the distribution of proteins in the Rab11a recycling pathway including endogenous Rab11a, Rab11-FIP1C, and transferrin receptor (CD71). Furthermore, this condensed GFP-FIP1A(T197A)-containing structure exhibited little movement in live HeLa cells. Expression of GFP-FIP1A(T197A) caused a strong blockade of transferrin recycling. Treatment of cells expressing GFP-FIP1A(T197A) with nocodazole did not disperse the Rab11a-containing recycling system. We also found that Rab5 and EEA1 were accumulated in membranes by GFP-Rab11-FIP1A but Rab4 was unaffected, suggesting that a direct pathway may exist from early endosomes into the Rab11a-containing recycling system. Our study of a potent inhibitory trafficking mutation in Rab11-FIP1A shows that Rab11-FIP1A associates with and regulates trafficking at an early step in the process of membrane recycling. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation.

    PubMed

    Pietiäinen, Vilja; Vassilev, Boris; Blom, Tomas; Wang, Wei; Nelson, Jessica; Bittman, Robert; Bäck, Nils; Zelcer, Noam; Ikonen, Elina

    2013-09-01

    N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.

  15. Protein Kinase Cδ and Calmodulin Regulate Epidermal Growth Factor Receptor Recycling from Early Endosomes through Arp2/3 Complex and Cortactin

    PubMed Central

    Lladó, Anna; Timpson, Paul; Vilà de Muga, Sandra; Moretó, Jemina; Pol, Albert; Grewal, Thomas; Daly, Roger J.

    2008-01-01

    The intracellular trafficking of the epidermal growth factor receptor (EGFR) is regulated by a cross-talk between calmodulin (CaM) and protein kinase Cδ (PKCδ). On inhibition of CaM, PKCδ promotes the formation of enlarged early endosomes and blocks EGFR recycling and degradation. Here, we show that PKCδ impairs EGFR trafficking due to the formation of an F-actin coat surrounding early endosomes. The PKCδ-induced polymerization of actin is orchestrated by the Arp2/3 complex and requires the interaction of cortactin with PKCδ. Accordingly, inhibition of actin polymerization by using cytochalasin D or by overexpression of active cofilin, restored the normal morphology of the organelle and the recycling of EGFR. Similar results were obtained after down-regulation of cortactin and the sequestration of the Arp2/3 complex. Furthermore we demonstrate an interaction of cortactin with CaM and PKCδ, the latter being dependent on CaM inhibition. In summary, this study provides the first evidence that CaM and PKCδ organize actin dynamics in the early endosomal compartment, thereby regulating the intracellular trafficking of EGFR. PMID:17959830

  16. Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines

    PubMed Central

    Bowen, Aaron B; Bourke, Ashley M; Hiester, Brian G; Hanus, Cyril

    2017-01-01

    Neurons face the challenge of regulating the abundance, distribution and repertoire of integral membrane proteins within their immense, architecturally complex dendritic arbors. While the endoplasmic reticulum (ER) supports dendritic translation, most dendrites lack the Golgi apparatus (GA), an essential organelle for conventional secretory trafficking. Thus, whether secretory cargo is locally trafficked in dendrites through a non-canonical pathway remains a fundamental question. Here we define the dendritic trafficking itinerary for key synaptic molecules in rat cortical neurons. Following ER exit, the AMPA-type glutamate receptor GluA1 and neuroligin 1 undergo spatially restricted entry into the dendritic secretory pathway and accumulate in recycling endosomes (REs) located in dendrites and spines before reaching the plasma membrane. Surprisingly, GluA1 surface delivery occurred even when GA function was disrupted. Thus, in addition to their canonical role in protein recycling, REs also mediate forward secretory trafficking in neuronal dendrites and spines through a specialized GA-independent trafficking network. PMID:28875935

  17. AP-1/σ1B-Dependent SV Protein Recycling Is Regulated in Early Endosomes and Is Coupled to AP-2 Endocytosis.

    PubMed

    Kratzke, Manuel; Candiello, Ermes; Schmidt, Bernhard; Jahn, Olaf; Schu, Peter

    2015-08-01

    Adaptor protein (AP)-1/σ1B(-/-) mice have reduced synaptic-vesicle (SV) recycling and increased endosomes. Mutant mice have impaired spatial memory, and σ1B-deficient humans have a severe mental retardation. In order to define these σ1B(-/-) 'bulk' endosomes and to determine their functions in SV recycling, we developed a protocol to separate them from the majority of the neuronal endosomes. The σ1B(-/-) 'bulk' endosomes proved to be classic early endosomes with an increase in the phospholipid phosphatidylinositol 3-phosphate (PI-3-P), which recruits proteins mediating protein sorting out of early endosomes into different routes. σ1B deficiency induced alterations in the endosomal proteome reveals two major functions: SV protein storage and sorting into endolysosomes. Alternative endosomal recycling pathways are not up-regulated, but certain SV proteins are misrouted. Tetraspanins are enriched in σ1B(-/-) synaptosomes, but not in their endosomes or in their clathrin-coated-vesicles (CCVs), indicating AP-1/σ1B-dependent sorting. Synapses contain also more AP-2 CCV, although it is expected that they contain less due to reduced SV recycling. Coat composition of these AP-2 CCVs is altered, and thus, they represent a subpopulation of AP-2 CCVs. Association of calmodulin-dependent protein kinase (CaMK)-IIα, -δ and casein kinase (CK)-IIα with the endosome/SV pool is altered, as well as 14-3-3η, indicating changes in specific signalling pathways regulating synaptic plasticity. The accumulation of early endosomes and endocytotic AP-2 CCV indicates the regulation of SV recycling via early endosomes by the interdependent regulation of AP-2-mediated endocytosis and AP-1/σ1B-mediated SV reformation.

  18. FIP1/RCP Binding to Golgin-97 Regulates Retrograde Transport from Recycling Endosomes to the trans-Golgi Network

    PubMed Central

    Jing, Jian; Junutula, Jagath R.; Wu, Christine; Burden, Jemima; Matern, Hugo; Peden, Andrew A.

    2010-01-01

    Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN. PMID:20610657

  19. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network.

    PubMed

    Jing, Jian; Junutula, Jagath R; Wu, Christine; Burden, Jemima; Matern, Hugo; Peden, Andrew A; Prekeris, Rytis

    2010-09-01

    Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN.

  20. Apical and basolateral transferrin receptors in polarized BeWo cells recycle through separate endosomes

    PubMed Central

    1991-01-01

    Contrary to most other epithelia, trophoblasts in the human placenta, which form the physical barrier between the fetal and the maternal blood circulation, express high numbers of transferrin receptors on their apical cell surface. This study describes the establishment of a polarized trophoblast-like cell line BeWo, which exhibit a high expression of transferrin receptors on the apex of the cells. Cultured on permeable filter supports, BeWo cells formed a polarized monolayer with microvilli on their apical cell surface. Across the monolayer a transepithelial resistance developed of approximately 600 omega.cm2 within 4 d. Depletion of Ca2+ from the medium decreased the resistance to background levels, showing its dependence on the integrity of tight junctions. Within the same period of time the secretion of proteins became polarized. In addition, the compositions of integral membrane proteins at the apical and basolateral plasma membrane domains were distinct as determined by domain-selective iodination. Similar to placental trophoblasts, binding of 125I-labeled transferrin to BeWo monolayers revealed that the transferrin receptor was expressed at both plasma membrane domains. Apical and basolateral transferrin receptors were found in a 1:2 surface ratio and exhibited identical dissociation constants and molecular weights. After uptake, transferrin recycled predominantly to the domain of administration, indicating separate recycling pathways from the apical and basolateral domain. This was confirmed by using diaminobenzidine cytochemistry, a technique by which colocalization of endocytosed 125I-labeled and HRP-conjugated transferrin can be monitored. No mixing of the two types of ligands was observed, when both ligands were simultaneously internalized for 10 or 60 min from opposite domains, demonstrating that BeWo cells possess separate populations of apical and basolateral early endosomes. In conclusion, the trophoblast-like BeWo cell line can serve as a unique

  1. Mistargeting of SH3TC2 away from the recycling endosome causes Charcot-Marie-Tooth disease type 4C.

    PubMed

    Roberts, Rhys C; Peden, Andrew A; Buss, Folma; Bright, Nicholas A; Latouche, Morwena; Reilly, Mary M; Kendrick-Jones, John; Luzio, J Paul

    2010-03-15

    Mutations in the functionally uncharacterized protein SH3TC2 are associated with the severe hereditary peripheral neuropathy, Charcot-Marie-Tooth disease type 4C (CMT4C). Similarly, to other proteins mutated in CMT, a role for SH3TC2 in endocytic membrane traffic has been previously proposed. However, recent descriptions of the intracellular localization of SH3TC2 are conflicting. Furthermore, no clear functional pathogenic mechanisms have so far been proposed to explain why both nonsense and missense mutations in SH3TC2 lead to similar clinical phenotypes. Here, we describe our intracellular localization studies, supported by biochemical and functional data, using wild-type and mutant SH3TC2. We show that wild-type SH3TC2 targets to the intracellular recycling endosome by associating with the small GTPase, Rab11, which is known to regulate the recycling of internalized membrane and receptors back to the plasma membrane. Furthermore, we demonstrate that SH3TC2 interacts preferentially with the GTP-bound form of Rab11, identifying SH3TC2 as a novel Rab11 effector. Of clinical pathological relevance, all SH3TC2 constructs harbouring disease-causing mutations are shown to be unable to associate with Rab11 with consequent loss of recycling endosome localization. Moreover, we show that wild-type SH3TC2, but not mutant SH3TC2, influences transferrin receptor dynamics, consistent with a functional role on the endocytic recycling pathway. Our data therefore implicate mistargeting of SH3TC2 away from the recycling endosome as the fundamental molecular defect that leads to CMT4C.

  2. Internalization of adhesion junction proteins and their association with recycling endosome marker proteins in rat seminiferous epithelium.

    PubMed

    Young, J'Nelle S; Takai, Yoshimi; Kojic, Katarina L; Vogl, A Wayne

    2012-03-01

    Tubulobulbar complexes (TBCs) are elaborate cytoskeleton-related structures that are formed in association with intercellular junctions in the seminiferous epithelium. They consist of a cylindrical double-membrane core composed of the plasma membranes of the two attached cells, cuffed by a dendritic network of actin filaments. TBCs are proposed to be subcellular machines that internalize intercellular junctions during the extensive junction remodeling that occurs during spermatogenesis. At the apical sites of attachment between Sertoli cells and spermatids, junction disassembly is part of the sperm release mechanism. In this study, we used immunological probes to explore junction internalization and recycling at apical TBCs in the rat seminiferous epithelium. We demonstrate that β1-integrin and nectin 2 were concentrated at the ends of TBCs and for the first time show that the early endosome marker RAB5A was also distinctly localized at the ends of TBCs that appear to be the 'bulbar' regions of the complexes. Significantly, we also demonstrate that the 'long-loop' recycling endosome marker RAB11A was co-distributed with nectin 2 at junctions with early spermatids deeper in the epithelium. Our results are consistent with the hypothesis that TBCs associated with late spermatids internalize adhesion junctions and also indicate that some of the internalized junction proteins may be recycled to form junctions with the next generation of spermatids.

  3. The Myopic-Ubpy-Hrs nexus enables endosomal recycling of Frizzled

    PubMed Central

    Pradhan-Sundd, Tirthadipa; Verheyen, Esther M.

    2015-01-01

    Endosomal trafficking of signaling proteins plays an essential role in cellular homeostasis. The seven-pass transmembrane protein Frizzled (Fz) is a critical component of Wnt signaling. Although Wnt signaling is proposed to be regulated by endosomal trafficking of Fz, the molecular events that enable this regulation are not completely understood. Here we show that the endosomal protein Myopic (Mop) regulates Fz trafficking in the Drosophila wing disk by inhibiting the ubiquitination and degradation of Hrs. Deletion of Mop or Hrs results in endosomal accumulation of Fz and therefore reduced Wnt signaling. The in situ proximity ligation assay revealed a strong association between Mop and Hrs in the Drosophila wing disk. Overexpression of Hrs rescues the trafficking defect caused by mop knockdown. Mop aids in the maintenance of Ubpy, which deubiquitinates (and thus stabilizes) Hrs. In the absence of the ubiquitin ligase Cbl, Mop is dispensable. These findings support a previously unknown role for Mop in endosomal trafficking of Fz in Wnt-receiving cells. PMID:26224310

  4. Regulation of cell death by recycling endosomes and golgi membrane dynamics via a pathway involving Src-family kinases, Cdc42 and Rab11a.

    PubMed

    Landry, Marie-Claude; Sicotte, Andréane; Champagne, Claudia; Lavoie, Josée N

    2009-09-01

    Actin dynamics and membrane trafficking influence cell commitment to programmed cell death through largely undefined mechanisms. To investigate how actin and recycling endosome (RE) trafficking can engage death signaling, we studied the death program induced by the adenovirus early region 4 open reading frame 4 (E4orf4) protein as a model. We found that in the early stages of E4orf4 expression, Src-family kinases (SFKs), Cdc42, and actin perturbed the organization of the endocytic recycling compartment and promoted the transport of REs to the Golgi apparatus, while inhibiting recycling of protein cargos to the plasma membrane. The resulting changes in Golgi membrane dynamics that relied on actin-regulated Rab11a membrane trafficking triggered scattering of Golgi membranes and contributed to the progression of cell death. A similar mobilization of RE traffic mediated by SFKs, Cdc42 and Rab11a also contributed to Golgi fragmentation and to cell death progression in response to staurosporine, in a caspase-independent manner. Collectively, these novel findings suggest that diversion of RE trafficking to the Golgi complex through a pathway involving SFKs, Cdc42, and Rab11a plays a general role in death signaling by mediating regulated changes in Golgi dynamics.

  5. Differential roles of C-terminal Eps15 homology domain proteins as vesiculators and tubulators of recycling endosomes.

    PubMed

    Cai, Bishuang; Giridharan, Sai Srinivas Panapakkam; Zhang, Jing; Saxena, Sugandha; Bahl, Kriti; Schmidt, John A; Sorgen, Paul L; Guo, Wei; Naslavsky, Naava; Caplan, Steve

    2013-10-18

    Endocytic recycling involves the return of membranes and receptors to the plasma membrane following their internalization into the cell. Recycling generally occurs from a series of vesicular and tubular membranes localized to the perinuclear region, collectively known as the endocytic recycling compartment. Within this compartment, receptors are sorted into tubular extensions that later undergo vesiculation, allowing transport vesicles to move along microtubules and return to the cell surface where they ultimately undergo fusion with the plasma membrane. Recent studies have led to the hypothesis that the C-terminal Eps15 homology domain (EHD) ATPase proteins are involved in the vesiculation process. Here, we address the functional roles of the four EHD proteins. We developed a novel semipermeabilized cell system in which addition of purified EHD proteins to reconstitute vesiculation allows us to assess the ability of each protein to vesiculate MICAL-L1-decorated tubular recycling endosomes (TREs). Using this assay, we show that EHD1 vesiculates membranes, consistent with enhanced TRE generation observed upon EHD1 depletion. EHD4 serves a role similar to that of EHD1 in TRE vesiculation, whereas EHD2, despite being capable of vesiculating TREs in the semipermeabilized cells, fails to do so in vivo. Surprisingly, the addition of EHD3 causes tubulation of endocytic membranes in our semipermeabilized cell system, consistent with the lack of tubulation observed upon EHD3 depletion. Our novel vesiculation assay and in vitro electron microscopy analysis, combined with in vivo data, provide evidence that the functions of both EHD1 and EHD4 are primarily in TRE membrane vesiculation, whereas EHD3 is a membrane-tubulating protein.

  6. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src.

    PubMed

    Chung, Byung Min; Raja, Srikumar M; Clubb, Robert J; Tu, Chun; George, Manju; Band, Vimla; Band, Hamid

    2009-11-30

    Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and altered EGFR signaling contributes to human cancer. EGFR kinase domain mutants found in non-small cell lung cancer (NSCLC) are constitutively active, a trait critical for cell transformation through activation of downstream pathways. Endocytic trafficking of EGFR is a major regulatory mechanism as ligand-induced lysosomal degradation results in termination of signaling. While numerous studies have examined mutant EGFR signaling, the endocytic traffic of mutant EGFR within the NSCLC milieu remains less clear. This study shows that mutant EGFRs in NSCLC cell lines are constitutively endocytosed as shown by their colocalization with the early/recycling endosomal marker transferrin and the late endosomal/lysosomal marker LAMP1. Notably, mutant EGFRs, but not the wild-type EGFR, show a perinuclear accumulation and colocalization with recycling endosomal markers such as Rab11 and EHD1 upon treatment of cells with endocytic recycling inhibitor monensin, suggesting that mutant EGFRs preferentially traffic through the endocytic recycling compartments. Importantly, monensin treatment enhanced the mutant EGFR association and colocalization with Src, indicating that aberrant transit through the endocytic recycling compartment promotes mutant EGFR-Src association. The findings presented in this study show that mutant EGFRs undergo aberrant traffic into the endocytic recycling compartment which allows mutant EGFRs to engage in a preferential interaction with Src, a critical partner for EGFR-mediated oncogenesis.

  7. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src@

    PubMed Central

    2009-01-01

    Background Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and altered EGFR signaling contributes to human cancer. EGFR kinase domain mutants found in non-small cell lung cancer (NSCLC) are constitutively active, a trait critical for cell transformation through activation of downstream pathways. Endocytic trafficking of EGFR is a major regulatory mechanism as ligand-induced lysosomal degradation results in termination of signaling. While numerous studies have examined mutant EGFR signaling, the endocytic traffic of mutant EGFR within the NSCLC milieu remains less clear. Results This study shows that mutant EGFRs in NSCLC cell lines are constitutively endocytosed as shown by their colocalization with the early/recycling endosomal marker transferrin and the late endosomal/lysosomal marker LAMP1. Notably, mutant EGFRs, but not the wild-type EGFR, show a perinuclear accumulation and colocalization with recycling endosomal markers such as Rab11 and EHD1 upon treatment of cells with endocytic recycling inhibitor monensin, suggesting that mutant EGFRs preferentially traffic through the endocytic recycling compartments. Importantly, monensin treatment enhanced the mutant EGFR association and colocalization with Src, indicating that aberrant transit through the endocytic recycling compartment promotes mutant EGFR-Src association. Conclusion The findings presented in this study show that mutant EGFRs undergo aberrant traffic into the endocytic recycling compartment which allows mutant EGFRs to engage in a preferential interaction with Src, a critical partner for EGFR-mediated oncogenesis. PMID:19948031

  8. Increased Expression of Rififylin in A < 330 Kb Congenic Strain is Linked to Impaired Endosomal Recycling in Proximal Tubules

    PubMed Central

    Gopalakrishnan, Kathirvel; Kumarasamy, Sivarajan; Yan, Yanling; Liu, Jiang; Kalinoski, Andrea; Kothandapani, Anbarasi; Farms, Phyllis; Joe, Bina

    2012-01-01

    Cell surface proteins are internalized into the cell through endocytosis and either degraded within lysosomes or recycled back to the plasma membrane. While perturbations in endosomal internalization are known to modulate renal function, it is not known whether similar alterations in recycling affect renal function. Rififylin is a known regulator of endocytic recycling with E3 ubiquitin protein ligase activity. In this study, using two genetically similar strains, the Dahl Salt-sensitive rat and an S.LEW congenic strain, which had allelic variants within a < 330 kb segment containing rififylin, we tested the hypothesis that alterations in endosomal recycling affect renal function. The congenic strain had 1.59-fold higher renal expression of rififylin. Transcriptome analysis indicated that components of both endocytosis and recycling were upregulated in the congenic strain. Transcription of Atp1a1 and cell surface content of the protein product of Atp1a1, the alpha subunit of Na+K+ATPase were increased in the proximal tubules from the congenic strain. Because rififylin does not directly regulate endocytosis and it is also a differentially expressed gene within the congenic segment, we reasoned that the observed alterations in the transcriptome of the congenic strain constitute a feedback response to the primary functional alteration of recycling caused by rififylin. To test this, recycling of transferrin was studied in isolated proximal tubules. Recycling was significantly delayed within isolated proximal tubules of the congenic strain, which also had a higher level of polyubiquitinated proteins and proteinuria compared with S. These data provide evidence to suggest that delayed endosomal recycling caused by excess of rififylin indirectly affects endocytosis, enhances intracellular protein polyubiquitination and contributes to proteinuria. PMID:22891072

  9. Fission of SNX-BAR–coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1

    PubMed Central

    Chi, Richard J.; Liu, Jingxuan; West, Matthew; Wang, Jing; Odorizzi, Greg

    2014-01-01

    Retromer is an endosomal sorting device that orchestrates capture and packaging of cargo into transport carriers coated with sorting nexin BAR domain proteins (SNX-BARs). We report that fission of retromer SNX-BAR–coated tubules from yeast endosomes is promoted by Vps1, a dynamin-related protein that localizes to endosomes decorated by retromer SNX-BARs and Mvp1, a SNX-BAR that is homologous to human SNX8. Mvp1 exhibits potent membrane remodeling activity in vitro, and it promotes association of Vps1 with the endosome in vivo. Retrograde transport carriers bud from the endosome coated by retromer and Mvp1, and cargo export is deficient in mvp1- and vps1-null cells, but with distinct endpoints; cargo export is delayed in mvp1-null cells, but cargo export completely fails in vps1-null cells. The results indicate that Mvp1 promotes Vps1-mediated fission of retromer- and Mvp1-coated tubules that bud from the endosome, revealing a functional link between the endosomal sorting and fission machineries to produce retrograde transport carriers. PMID:24567361

  10. Fission of SNX-BAR-coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1.

    PubMed

    Chi, Richard J; Liu, Jingxuan; West, Matthew; Wang, Jing; Odorizzi, Greg; Burd, Christopher G

    2014-03-03

    Retromer is an endosomal sorting device that orchestrates capture and packaging of cargo into transport carriers coated with sorting nexin BAR domain proteins (SNX-BARs). We report that fission of retromer SNX-BAR-coated tubules from yeast endosomes is promoted by Vps1, a dynamin-related protein that localizes to endosomes decorated by retromer SNX-BARs and Mvp1, a SNX-BAR that is homologous to human SNX8. Mvp1 exhibits potent membrane remodeling activity in vitro, and it promotes association of Vps1 with the endosome in vivo. Retrograde transport carriers bud from the endosome coated by retromer and Mvp1, and cargo export is deficient in mvp1- and vps1-null cells, but with distinct endpoints; cargo export is delayed in mvp1-null cells, but cargo export completely fails in vps1-null cells. The results indicate that Mvp1 promotes Vps1-mediated fission of retromer- and Mvp1-coated tubules that bud from the endosome, revealing a functional link between the endosomal sorting and fission machineries to produce retrograde transport carriers.

  11. Endocytic and Recycling Endosomes Modulate Cell Shape Changes and Tissue Behaviour during Morphogenesis in Drosophila

    PubMed Central

    Mateus, Ana Margarida; Gorfinkiel, Nicole; Schamberg, Sabine; Martinez Arias, Alfonso

    2011-01-01

    During development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo. During this process the AS contracts and the epidermis elongates in a coordinated fashion, leading to the closure of a discontinuity in the dorsal epidermis of the Drosophila embryo. We used dominant negative forms of Rab5 and Rab11 to monitor the impact on tissue morphogenesis of altering endocytosis and recycling at the level of single cells. We found different requirements for endocytosis (Rab5) and recycling (Rab11) in dorsal closure, furthermore we found that the two processes are differentially used in the two tissues. Endocytosis is required in the AS to remove membrane during apical constriction, but is not essential in the epidermis. Recycling is required in the AS at early stages and in the epidermis for cell elongation, suggesting a role in membrane addition during these processes. We propose that the modulation of the balance between endocytosis and recycling can regulate cellular morphology and tissue deformations during morphogenesis. PMID:21533196

  12. Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway

    PubMed Central

    Shi, Yufeng; Stefan, Christopher J.; Rue, Sarah M.; Teis, David; Emr, Scott D.

    2011-01-01

    Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway. PMID:21880895

  13. Direct Pathway from Early/Recycling Endosomes to the Golgi Apparatus Revealed through the Study of Shiga Toxin B-fragment Transport

    PubMed Central

    Mallard, Frédéric; Antony, Claude; Tenza, Danièle; Salamero, Jean; Goud, Bruno; Johannes, Ludger

    1998-01-01

    Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37°C, ultrastructural studies on cryosections failed to detect B-fragment–specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor–containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN. PMID:9817755

  14. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport.

    PubMed

    Mallard, F; Antony, C; Tenza, D; Salamero, J; Goud, B; Johannes, L

    1998-11-16

    Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37 degreesC, ultrastructural studies on cryosections failed to detect B-fragment-specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor-containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN.

  15. P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency.

    PubMed

    Shapira, Iuliana; Lee, Annette; Vora, Reena; Budman, Daniel R

    2013-11-01

    There is no available targeted therapy for triple-negative or its more aggressive subtype, basal-like breast cancer. Multiple therapeutic strategies based on translational knowledge have not improved the treatment options for triple negative patients. As understanding of molecular pathways that drive tumor development is rapidly increasing, it is imperative to adapt our treatment strategies to perturbations in molecular pathways driving the malignant process. Basal-like breast cancers over-express EGFR (without mutations or EGFR gene amplifications) and have p53 mutations. While EGFR drives the malignant behavior in triple negative breast cancer (TNBC), anti-EGFR therapies have fallen short of the expected results in clinical trials. Here we bring evidence that the less than optimal results of the anti-EGFR therapies may be explained in part by the increased potency of the EGFR signaling due to increased endosomal recycling. The functional connection between EGFR and endosomal trafficking in TNBC is mutant p53 found in the most aggressive forms of TNBC. Mutant p53 acquires oncogenic functions and binds p63 protein, a member of p53 family with tumor suppressor activities. In the absence of functional p63 there is an upregulation of endosomal recycling EGFR and integrin to the membrane with increased proinvasive abilities of cancer cells. Blocking endosomal trafficking combined with anti-EGFR treatments may result in better clinical outcomes in TNBC.

  16. TLR Signals Induce Phagosomal MHC-I Delivery from the Endosomal Recycling Compartment to Allow Cross-Presentation

    PubMed Central

    Nair-Gupta, Priyanka; Baccarini, Alessia; Tung, Navpreet; Seyffer, Fabian; Florey, Oliver; Huang, Yunjie; Huang, Meenakshi; Overholtzer, Michael; Roche, Paul A.; Tampé, Robert; Brown, Brian D.; Amsen, Derk; Whiteheart, Sidney W.; Blander, J. Magarian

    2014-01-01

    SUMMARY Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection. PMID:25083866

  17. WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia

    PubMed Central

    Patel, Falshruti B.; Soto, Martha C.

    2013-01-01

    Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in C. elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans. PMID:23510716

  18. A hydrophobic amino acid cluster inserted into the C-terminus of a recycling cell surface receptor functions as an endosomal sorting signal.

    PubMed

    Amano, Yuji; Yoshino, Kazuhisa; Kojima, Katsuhiko; Takeshita, Toshikazu

    2013-11-08

    Cell surface receptors ubiquitylated after ligand stimulation are internalized and delivered to the lysosomal pathway for degradation. Ubiquitylated receptors are captured by ESCRT protein complexes that sort them to the lysosomal pathway. Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a component of endosomal sorting complexes required for transport (ESCRT)-0 that recognizes ubiquitin attached to receptors, indicating that it functions as a key molecule for ubiquitin-dependent endosomal sorting. In a previous study on interleukin (IL)-2 receptor β (IL-2Rβ) and IL-4 receptor α (IL-4Rα), which are constitutively internalized without ligand stimulation, we revealed that Hrs bound to IL-2Rβ and IL-4Rα in a ubiquitin-independent manner, and identified a hydrophobic amino acid cluster in the cytoplasmic region of IL-2Rβ and IL-4Rα as the Hrs-interacting domain. However, a chimeric receptor containing the hydrophobic amino acid cluster inserted into the C-terminal of IL-2Rα was not delivered to late endosomes, but recycled back to the plasma membrane. In the present study, we explored the functional domain related to endosomal sorting in IL-2Rβ together with the hydrophobic amino acid cluster, and discovered the importance of an approximately 30-amino acid stretch following the C-terminus of the hydrophobic amino acid cluster in IL-2Rβ. Even though the amino acid stretch following the hydrophobic amino acid cluster was composed of arbitrary amino acids, such a stretch was also permissive for the sorting ability, suggesting that the hydrophobic amino acid cluster functions as an endosomal sorting signal. These findings clarify part of the molecular mechanism underlying the ubiquitin-independent endosomal sorting of cytokine receptors that are constitutively internalized without ligand stimulation.

  19. The functional interplay of Rab11, FIP3 and Rho proteins on the endosomal recycling pathway controls cell shape and symmetry.

    PubMed

    Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés

    2016-08-17

    Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.

  20. ER contact sites direct late endosome transport.

    PubMed

    Wijdeven, Ruud H; Jongsma, Marlieke L M; Neefjes, Jacques; Berlin, Ilana

    2015-12-01

    Endosomes shuttle select cargoes between cellular compartments and, in doing so, maintain intracellular homeostasis and enable interactions with the extracellular space. Directionality of endosomal transport critically impinges on cargo fate, as retrograde (microtubule minus-end directed) traffic delivers vesicle contents to the lysosome for proteolysis, while the opposing anterograde (plus-end directed) movement promotes recycling and secretion. Intriguingly, the endoplasmic reticulum (ER) is emerging as a key player in spatiotemporal control of late endosome and lysosome transport, through the establishment of physical contacts with these organelles. Earlier studies have described how minus-end-directed motor proteins become discharged from vesicles engaged at such contact sites. Now, Raiborg et al. implicate ER-mediated interactions, induced by protrudin, in loading plus-end-directed motor kinesin-1 onto endosomes, thereby stimulating their transport toward the cell's periphery. In this review, we recast the prevailing concepts on bidirectional late endosome transport and discuss the emerging paradigm of inter-compartmental regulation from the ER-endosome interface viewpoint. © 2015 WILEY Periodicals, Inc.

  1. Sustained Receptor Stimulation Leads to Sequestration of Recycling Endosomes in a Classical Protein Kinase C- and Phospholipase D-dependent Manner*

    PubMed Central

    Idkowiak-Baldys, Jolanta; Baldys, Aleksander; Raymond, John R.; Hannun, Yusuf A.

    2009-01-01

    Considerable insight has been garnered on initial mechanisms of endocytosis of plasma membrane proteins and their subsequent trafficking through the endosomal compartment. It is also well established that ligand stimulation of many plasma membrane receptors leads to their internalization. However, stimulus-induced regulation of endosomal trafficking has not received much attention. In previous studies, we showed that sustained stimulation of protein kinase C (PKC) with phorbol esters led to sequestration of recycling endosomes in a juxtanuclear region. In this study, we investigated whether G-protein-coupled receptors that activate PKC exerted effects on endosomal trafficking. Stimulation of cells with serotonin (5-hydroxytryptamine (5-HT)) led to sequestration of the 5-HT receptor (5-HT2AR) into a Rab11-positive juxtanuclear compartment. This sequestration coincided with translocation of PKC as shown by confocal microscopy. Mechanistically the observed sequestration of 5-HT2AR was shown to require continuous PKC activity because it was inhibited by pretreatment with classical PKC inhibitor Gö6976 and could be reversed by posttreatment with this inhibitor. In addition, classical PKC autophosphorylation was necessary for receptor sequestration. Moreover inhibition of phospholipase D (PLD) activity and inhibition of PLD1 and PLD2 using dominant negative constructs also prevented this process. Functionally this sequestration did not affect receptor desensitization or resensitization as measured by intracellular calcium increase. However, the PKC- and PLD-dependent sequestration of receptors resulted in co-sequestration of other plasma membrane proteins and receptors as shown for epidermal growth factor receptor and protease activated receptor-1. This led to heterologous desensitization of those receptors and diverted their cellular fate by protecting them from agonist-induced degradation. Taken together, these results demonstrate a novel role for sustained receptor

  2. Identification of molecular heterogeneity in SNX27–retromer-mediated endosome-to-plasma-membrane recycling

    PubMed Central

    McGough, Ian J.; Steinberg, Florian; Gallon, Matthew; Yatsu, Ayaka; Ohbayashi, Norihiko; Heesom, Kate J.; Fukuda, Mitsunori; Cullen, Peter J.

    2014-01-01

    ABSTRACT Retromer is a protein assembly that orchestrates the sorting of transmembrane cargo proteins into endosome-to-Golgi and endosome-to-plasma-membrane transport pathways. Here, we have employed quantitative proteomics to define the interactome of human VPS35, the core retromer component. This has identified a number of new interacting proteins, including ankyrin-repeat domain 50 (ANKRD50), seriologically defined colon cancer antigen 3 (SDCCAG3) and VPS9-ankyrin-repeat protein (VARP, also known as ANKRD27). Depletion of these proteins resulted in trafficking defects of retromer-dependent cargo, but differential and cargo-specific effects suggested a surprising degree of functional heterogeneity in retromer-mediated endosome-to-plasma-membrane sorting. Extending this, suppression of the retromer-associated WASH complex did not uniformly affect retromer cargo, thereby confirming cargo-specific functions for retromer-interacting proteins. Further analysis of the retromer–VARP interaction identified a role for retromer in endosome-to-melanosome transport. Suppression of VPS35 led to mistrafficking of the melanogenic enzymes, tyrosinase and tryrosine-related protein 1 (Tyrp1), establishing that retromer acts in concert with VARP in this trafficking pathway. Overall, these data reveal hidden complexities in retromer-mediated sorting and open up new directions in our molecular understanding of this essential sorting complex. PMID:25278552

  3. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    PubMed

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  4. Live Salmonella Recruits N-Ethylmaleimide–Sensitive Fusion Protein on Phagosomal Membrane and Promotes Fusion with Early Endosome

    PubMed Central

    Mukherjee, Konark; Siddiqi, Shadab A.; Hashim, Shehla; Raje, Manoj; Basu, Sandip K.; Mukhopadhyay, Amitabha

    2000-01-01

    To understand intracellular trafficking modulations by live Salmonella, we investigated the characteristics of in vitro fusion between endosomes and phagosomes containing live (LSP) or dead Salmonella (DSP). We observed that fusion of both DSP and LSP were time, temperature and cytosol dependent. GTPγS and treatment of the phagosomes with Rab-GDI inhibited fusion, indicating involvement of Rab-GTPases. LSP were rich in rab5, α-SNAP, and NSF, while DSP mainly contained rab7. Fusion of endosomes with DSP was inhibited by ATP depletion, N-ethylmaleimide (NEM) treatment, and in NEM-sensitive factor (NSF)–depleted cytosol. In contrast, fusion of endosomes with LSP was not inhibited by ATP depletion or NEM treatment, and occurred in NSF-depleted cytosol. However, ATPγS inhibited both fusion events. Fusion of NEM-treated LSP with endosomes was abrogated in NSF- depleted cytosol and was restored by adding purified NSF, whereas no fusion occurred with NEM-treated DSP, indicating that NSF recruitment is dependent on continuous signals from live Salmonella. Binding of NSF with LSP required prior presence of rab5 on the phagosome. We have also shown that rab5 specifically binds with Sop E, a protein from Salmonella. Our results indicate that live Salmonella help binding of rab5 on the phagosomes, possibly activate the SNARE which leads to further recruitment of α-SNAP for subsequent binding with NSF to promote fusion of the LSP with early endosomes and inhibition of their transport to lysosomes. PMID:10684255

  5. Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent.

    PubMed

    Bertuccio, Claudia A; Lee, Shih-Liang; Wu, Guangyu; Butterworth, Michael B; Hamilton, Kirk L; Devor, Daniel C

    2014-01-01

    The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized

  6. Anterograde Trafficking of KCa3.1 in Polarized Epithelia Is Rab1- and Rab8-Dependent and Recycling Endosome-Independent

    PubMed Central

    Bertuccio, Claudia A.; Lee, Shih-Liang; Wu, Guangyu; Butterworth, Michael B.; Hamilton, Kirk L.; Devor, Daniel C.

    2014-01-01

    The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized

  7. Reduce--recycle--reuse: guidelines for promoting perioperative waste management.

    PubMed

    Laustsen, Gary

    2007-04-01

    The perioperative environment generates large amounts of waste, which negatively affects local and global ecosystems. To manage this waste health care facility leaders must focus on identifying correctable issues, work with relevant stakeholders to promote solutions, and adopt systematic procedural changes. Nurses and managers can moderate negative environmental effects by promoting reduction, recycling, and reuse of materials in the perioperative setting.

  8. The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome.

    PubMed

    Berlin, Ilana; Higginbotham, Katherine M; Dise, Rebecca S; Sierra, Maria I; Nash, Piers D

    2010-11-26

    Reversible ubiquitination orchestrated by the opposition of ubiquitin ligases and deubiquitinating enzymes mediates endocytic trafficking of cell surface receptors for lysosomal degradation. Ubiquitin-specific protease 8 (USP8) has previously been implicated in endocytosis of several receptors by virtue of their deubiquitination. The present study explores an indirect role for USP8 in cargo trafficking through its regulation of the chemokine receptor 4 (CXCR4). Contrary to the effects of USP8 loss on enhanced green fluorescent protein, we find that USP8 depletion stabilizes CXCR4 on the cell surface and attenuates receptor degradation without affecting its ubiquitination status. In the presence of ligand, diminished CXCR4 turnover is accompanied by receptor accumulation on enlarged early endosomes and leads to enhancement of phospho-ERK signaling. Perturbation in CXCR4 trafficking, resulting from USP8 inactivation, occurs at the ESCRT-0 checkpoint, and catalytic mutation of USP8 specifically targeted to the ESCRT-0 complex impairs the spatial and temporal organization of the sorting endosome. USP8 functionally opposes the ubiquitin ligase AIP4 with respect to ESCRT-0 ubiquitination, thereby promoting trafficking of CXCR4. Collectively, our findings demonstrate a functional cooperation between USP8, AIP4, and the ESCRT-0 machinery at the early sorting phase of CXCR4 and underscore the versatility of USP8 in shaping trafficking events at the early-to-late endosome transition.

  9. Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins*

    PubMed Central

    Grimsey, Neil J.; Coronel, Luisa J.; Cordova, Isabel Canto; Trejo, JoAnn

    2016-01-01

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that undergoes proteolytic irreversible activation by coagulant and anti-coagulant proteases. Given the irreversible activation of PAR1, signaling by the receptor is tightly regulated through desensitization and intracellular trafficking. PAR1 displays both constitutive and agonist-induced internalization. Constitutive internalization of PAR1 is important for generating an internal pool of naïve receptors that replenish the cell surface and facilitate resensitization, whereas agonist-induced internalization of PAR1 is critical for terminating G protein signaling. We showed that PAR1 constitutive internalization is mediated by the adaptor protein complex-2 (AP-2), whereas AP-2 and epsin control agonist-induced PAR1 internalization. However, the mechanisms that regulate PAR1 recycling are not known. In the present study we screened a siRNA library of 140 different membrane trafficking proteins to identify key regulators of PAR1 intracellular trafficking. In addition to known mediators of PAR1 endocytosis, we identified Rab11B as a critical regulator of PAR1 trafficking. We found that siRNA-mediated depletion of Rab11B and not Rab11A blocks PAR1 recycling, which enhanced receptor lysosomal degradation. Although Rab11A is not required for PAR1 recycling, depletion of Rab11A resulted in intracellular accumulation of PAR1 through disruption of basal lysosomal degradation of the receptor. Moreover, enhanced degradation of PAR1 observed in Rab11B-deficient cells is blocked by depletion of Rab11A and the autophagy related-5 protein, suggesting that PAR1 is shuttled to an autophagic degradation pathway in the absence of Rab11B recycling. Together these findings suggest that Rab11A and Rab11B differentially regulate intracellular trafficking of PAR1 through distinct endosomal sorting mechanisms. PMID:26635365

  10. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network

    PubMed Central

    1994-01-01

    Newly synthesized lysosomal enzymes bind to mannose 6-phosphate receptors (MPRs) in the TGN, and are carried to prelysosomes, where they are released. MPRs then return to the TGN for another round of transport. Rab9 is a ras-like GTPase which facilitates MPR recycling to the TGN in vitro. We show here that a dominant negative form of rab9, rab9 S21N, strongly inhibited MPR recycling in living cells. The block was specific in that the rates of biosynthetic protein transport, fluid phase endocytosis and receptor-mediated endocytosis were unchanged. Expression of rab9 S21N was accompanied by a decrease in the efficiency of lysosomal enzyme sorting. Cells compensated for the presence of the mutant protein by inducing the synthesis of both soluble and membrane- associated lysosomal enzymes, and by internalizing lysosomal enzymes that were secreted by default. These data show that MPRs are limiting in the secretory pathway of cells expressing rab9 S21N and document the importance of MPR recycling and the rab9 GTPase for efficient lysosomal enzyme delivery. PMID:7909812

  11. Staphylococcus aureus recruits Cdc42GAP through recycling endosomes and the exocyst to invade human endothelial cells.

    PubMed

    Rauch, Liane; Hennings, Kirsten; Trasak, Claudia; Röder, Anja; Schröder, Barbara; Koch-Nolte, Friedrich; Rivera-Molina, Felix; Toomre, Derek; Aepfelbacher, Martin

    2016-08-01

    Activation and invasion of the vascular endothelium by Staphylococcus aureus is a major cause of sepsis and endocarditis. For endothelial cell invasion, S. aureus triggers actin polymerization through Cdc42, N-WASp (also known as WASL) and the Arp2/3 complex to assemble a phagocytic cup-like structure. Here, we show that after stimulating actin polymerization staphylococci recruit Cdc42GAP (also known as ARHGAP1) which deactivates Cdc42 and terminates actin polymerization in the phagocytic cups. Cdc42GAP is delivered to the invading bacteria on recycling endocytic vesicles in concert with the exocyst complex. When Cdc42GAP recruitment by staphylococci was prevented by blocking recycling endocytic vesicles or the exocyst complex, or when Cdc42 was constitutively activated, phagocytic cup closure was impaired and endothelial cell invasion was inhibited. Thus, to complete invasion of the endothelium, staphylococci reorient recycling endocytic vesicles to recruit Cdc42GAP, which terminates Cdc42-induced actin polymerization in phagocytic cups. Analogous mechanisms might govern other Cdc42-dependent cell functions.

  12. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses*♦

    PubMed Central

    Rhee, Hong Jun; Subramanian, Devaraj; Paraskevopoulou, Foteini; Mueller, Rainer; Schultz, Carsten; Brose, Nils; Rhee, Jeong-Seop; Betz, Heinrich

    2017-01-01

    The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations. PMID:27941024

  13. Biogenesis of endosome-derived transport carriers.

    PubMed

    Chi, Richard J; Harrison, Megan S; Burd, Christopher G

    2015-09-01

    Sorting of macromolecules within the endosomal system is vital for physiological control of nutrient homeostasis, cell motility, and proteostasis. Trafficking routes that export macromolecules from the endosome via vesicle and tubule transport carriers constitute plasma membrane recycling and retrograde endosome-to-Golgi pathways. Proteins of the sorting nexin family have been discovered to function at nearly every step of endosomal transport carrier biogenesis and it is becoming increasingly clear that they form the core machineries of cargo-specific transport pathways that are closely integrated with cellular physiology. Here, we summarize recent progress in elucidating the pathways that mediate the biogenesis of endosome-derived transport carriers.

  14. p75 neurotrophin receptor interacts with BACE1 and promotes its localization in endosomes aggravating amyloidogenesis.

    PubMed

    Saadipour, Khalil; Mañucat-Tan, Noralyn B; Lim, Yoon; Keating, Damien J; Smith, Kevin S; Zhong, Jin-Hua; Liao, Hong; Bobrovskaya, Larisa; Wang, Yan-Jiang; Chao, Moses V; Zhou, Xin-Fu

    2017-09-04

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deposition of amyloid-beta (Aβ) and dysregulation of neurotrophic signaling, causing synaptic dysfunction, loss of memory, and cell death. The expression of p75 neurotrophin receptor is elevated in the brain of AD patients, suggesting its involvement in this disease. However, the exact mechanism of its action is not yet clear. Here, we show that p75 interacts with beta-site amyloid precursor protein cleaving enzyme-1 (BACE1), and this interaction is enhanced in the presence of Aβ. Our results suggest that the colocalization of BACE1 and amyloid precursor protein (APP) is increased in the presence of both Aβ and p75 in cortical neurons. In addition, the localization of APP and BACE1 in early endosomes is increased in the presence of Aβ and p75. An increased phosphorylation of APP-Thr668 and BACE1-Ser498 by c-Jun N-terminal kinase (JNK) in the presence of Aβ and p75 could be responsible for this localization. In conclusion, our study proposes a potential involvement in amyloidogenesis for p75, which may represent a future therapeutic target for AD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Recycling.

    ERIC Educational Resources Information Center

    Sinker, Barbara

    1986-01-01

    Discusses the range of benefits resulting from recycling efforts and projects. Presents information and data related to the recycling of metals, cans, paper, fans, and plastics. Suggestions for motivating and involving youth in recycling programs are also offered. (ML)

  16. Recycling.

    ERIC Educational Resources Information Center

    Sinker, Barbara

    1986-01-01

    Discusses the range of benefits resulting from recycling efforts and projects. Presents information and data related to the recycling of metals, cans, paper, fans, and plastics. Suggestions for motivating and involving youth in recycling programs are also offered. (ML)

  17. Recycle

    SciTech Connect

    1988-10-01

    ;Contents: The Problem; What`s In Our Trash; Where Does Trash Go; Where Does Our Trash Go; The Solution; What Is Recycling; Why Should We Recycle; A National Goal of 25%; What Can We Recycle; What Do We Do With Our Recyclables.

  18. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis

    PubMed Central

    Gui, Jinghua

    2016-01-01

    Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV) formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp), a conserved bone morphogenetic protein (BMP)-type ligand, is directionally trafficked from longitudinal veins (LVs) into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib) is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv) localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis. PMID:27814354

  19. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis.

    PubMed

    Gui, Jinghua; Huang, Yunxian; Shimmi, Osamu

    2016-11-01

    Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV) formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp), a conserved bone morphogenetic protein (BMP)-type ligand, is directionally trafficked from longitudinal veins (LVs) into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib) is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv) localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis.

  20. Harnessing the power of the endosome to regulate neural development

    PubMed Central

    Yap, Chan Choo; Winckler, Bettina

    2012-01-01

    Endocytosis and endosomal trafficking play a multitude of roles in cellular function beyond regulating entry of essential nutrients. In this review, we discuss the cell biological principles of endosomal trafficking, the neuronal adaptations to endosomal organization, and the role of endosomal trafficking in neural development. In particular, we consider how cell fate decisions, polarity, migration, and axon outgrowth and guidance are influenced by five endosomal tricks: dynamic modulation of receptor levels by endocytosis and recycling, cargo-specific responses via cargo-specific endocytic regulators, cell type-specific endocytic regulation, ligand-specific endocytic regulation, and endosomal regulation of ligand processing and trafficking. PMID:22578496

  1. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones

    PubMed Central

    Pelayo, Juan-Carlos; Poole, Daniel P; Steinhoff, Martin; Cottrell, Graeme S; Bunnett, Nigel W

    2011-01-01

    Abstract Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK1R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nm, 10 min) induced interaction of NK1R and β-arrestin at the plasma membrane, and the SP–NK1R–β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK1R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H+ATPase inhibitor bafilomycin A1, which prevent endosomal SP degradation, suppressed NK1R recycling by >50%. Preincubation of neurones with SP (10 nm, 5 min) desensitized Ca2+ transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK1R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP–NK1R–β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK1R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling. PMID:21878523

  2. Rab family proteins regulate the endosomal trafficking and function of RGS4.

    PubMed

    Bastin, Guillaume; Heximer, Scott P

    2013-07-26

    RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.

  3. Rab Family Proteins Regulate the Endosomal Trafficking and Function of RGS4*

    PubMed Central

    Bastin, Guillaume; Heximer, Scott P.

    2013-01-01

    RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function. PMID:23733193

  4. Membrane Tethering Complexes in the Endosomal System

    PubMed Central

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic. PMID:27243003

  5. Integrin endosomal signalling suppresses anoikis

    PubMed Central

    Alanko, Jonna; Mai, Anja; Jacquemet, Guillaume; Schauer, Kristine; Kaukonen, Riina; Saari, Markku; Goud, Bruno; Ivaska, Johanna

    2016-01-01

    Integrin containing focal adhesions (FAs) transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localises with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 (EEA1) and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage-independence and metastasis. Integrins are heterodimeric cell surface adhesion receptors functioning as integrators of the extra-cellular matrix (ECM) driven cues, the cellular cytoskeleton and the cellular signalling apparatus 1.Upon adhesion, integrins trigger the formation of plasma-membrane proximal large mechanosensing and signal-transmitting protein clusters depicted as “adhesomes” 2, 3. In addition, integrins undergo constant endocytic traffic to facilitate focal adhesion turnover, cell migration, invasion and cytokinesis 4. For other receptor systems it is well established that endocytic membrane traffic regulates bioavailability of cell-surface molecules and therefore the intensity and/or specificity of receptor-initiated signals 5, 6. Although active integrins and their ligands have been detected in endosomes 7–9 and increased integrin recycling to the plasma membrane contributes

  6. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling.

    PubMed

    Pant, Saumya; Sharma, Mahak; Patel, Kruti; Caplan, Steve; Carr, Chavela M; Grant, Barth D

    2009-12-01

    RME-1/EHD1 (receptor mediated endocytosis/Eps15 homology-domain containing 1) family proteins are key residents of the recycling endosome, which are required for endosome-to-plasma membrane transport in Caenorhabditis elegans and mammals. Recent studies suggest similarities between the RME-1/EHD proteins and the Dynamin GTPase superfamily of mechanochemical pinchases, which promote membrane fission. Here we show that endogenous C. elegans AMPH-1, the only C. elegans member of the Amphiphysin/BIN1 family of BAR (Bin1-Amphiphysin-Rvs161p/167p)-domain-containing proteins, colocalizes with RME-1 on recycling endosomes in vivo, that amph-1-deletion mutants are defective in recycling endosome morphology and function, and that binding of AMPH-1 Asn-Pro-Phe(Asp/Glu) sequences to the RME-1 EH-domain promotes the recycling of transmembrane cargo. We also show a requirement for human BIN1 (also known as Amphiphysin 2) in EHD1-regulated endocytic recycling. In vitro, we find that purified recombinant AMPH-1-RME-1 complexes produce short, coated membrane tubules that are qualitatively distinct from those produced by either protein alone. Our results indicate that AMPH-1 and RME-1 cooperatively regulate endocytic recycling, probably through functions required for the production of cargo carriers that exit the recycling endosome for the cell surface.

  7. Novel Method for Genomic Promoter Shuffling by Using Recyclable Cassettes

    PubMed Central

    Tian, Xuelei; Xu, Xin

    2013-01-01

    Genetic elements of interest can be introduced into the Saccharomyces cerevisiae genome via homologous recombination. The current method is to link such an element to a selectable marker gene to be integrated into the target locus. However, the marker gene in this method cannot be reused, which limits repeated manipulation of the yeast genome. An alternative method is to utilize a counterselectable gene, such as URA3, with flanking tandem repeats. After integration, URA3 along with one copy of the repeat can be popped out via internal recombination, leaving behind one copy of the unwanted repeat. Here we describe a novel concept of genetic element shuffling in which the tandem repeats are made of the desired genetic element, so that after integration and popping out, only one copy of the element remains at the desired locus to function. As a proof of principle, we constructed three recyclable cassettes (PPGK1-URA3-PPGK1, PGAL1-URA3-PGAL1, and PtetO7-URA3-PtetO7) and integrated them upstream of an engineered chromosomal PHIS3-mCherry-Myc locus. After promoter shuffling, the mCherry-Myc gene was regulated precisely as anticipated. PMID:24014535

  8. Providing information promotes greater public support for potable recycled water.

    PubMed

    Fielding, Kelly S; Roiko, Anne H

    2014-09-15

    In spite of the clear need to address water security through sourcing new and alternative water supplies, there has been marked resistance from some communities to the introduction of recycled water for potable use. The present studies tested the effectiveness of providing relatively brief information about the recycled water process and the safety of recycled water on cognitive, emotional and behavioral responses. Three information conditions (basic information or basic information plus information about pollutants in the water, or information that puts the risk of chemicals in the water in perspective) were compared to a no information control condition. Across three experiments there was general support for the hypothesis that providing information would result in more positive cognitive, emotional, and behavioral responses to recycled water. Information increased comfort with potable recycled water and, in general, participants in the information conditions expressed more positive emotions (Experiment 1 & 3), less negative emotions (Experiment 3), more support (Experiment 1 & 3), and lower risk perceptions (Experiment 1 & 3) than those in the no information control condition. Participants who received information also drank more recycled water than control participants (Experiment 1 & 2, although the differences between conditions was not statistically significant) and were significantly more likely to vote in favor of the introduction of a recycled water scheme (Experiment 3). There was evidence, however, that providing information about the level of pollutants in recycled water may lead to ambivalent responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A review of environmental and economic regulations for promoting industrial waste recycling in Taiwan.

    PubMed

    Tsai, W T; Chou, Y H

    2004-01-01

    The objective of this paper is to present a compilation of recent Taiwan government laws/regulations to promote industrial waste recycling. The description is thus centered on legislation/regulations concerning general industrial wastes recycling in the policies of environmental protection, economic incentives and engineering technologies (3E) that have become effective since 2001. The regulatory system, including Waste Disposal Act, Resource Recycling/Reuse Act, Environmental Basis Law, and Statute for Upgrading Industries, not only gives financial incentives, but also provides technical assistance and information transfer on promoting industrial waste recycling. In order to further utilize the recyclable resources and upgrade the environmental technology, Taiwan's Environmental Protection Administration (EPA), in cooperation with the Ministry of Economic Affairs (MOEA), has jointly ventured some promotion programs, which highlight an Industrial Waste Exchange Information Center and Environmental Technology Park Development Program, also described in the paper.

  10. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex.

    PubMed

    Derivery, Emmanuel; Sousa, Carla; Gautier, Jérémie J; Lombard, Bérangère; Loew, Damarys; Gautreau, Alexis

    2009-11-01

    The Arp2/3 complex generates branched actin networks when activated by Nucleation Promoting Factors (NPFs). Recently, the WASH family of NPFs has been identified, but its cellular role is unclear. Here, we show that WASH generates an actin network on a restricted domain of sorting and recycling endosomes. We found that WASH belongs to a multiprotein complex containing seven subunits, including the heterodimer of capping protein (CP). In vitro, the purified WASH complex activates Arp2/3-mediated actin nucleation and binds directly to liposomes. WASH also interacts with dynamin. WASH depletion gives rise to long membrane tubules pulled out from endosomes along microtubules, as does dynamin inhibition. Accordingly, WASH is required for efficient transferrin recycling. Together, these data suggest that the WASH molecular machine, integrating CP with a NPF, controls the fission of endosomes through an interplay between the forces generated by microtubule motors and actin polymerization.

  11. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  12. The structure and function of presynaptic endosomes

    SciTech Connect

    Jähne, Sebastian; Rizzoli, Silvio O.; Helm, Martin S.

    2015-07-15

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.

  13. EB-promoted recycling of waste tire rubber with polyolefins

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Bárány, Tamás; Czvikovszky, Tibor

    2012-09-01

    Despite the fact that more and more methods and solutions are used in the recycling of polymers, there are still some problems, especially in the recycling of cross-linked materials such as rubber. Usually the biggest problem is the lack of compatibility between the cross-linked rubber and the thermoplastic matrix. In this study we applied ground tire rubber (GTR) as recycled material. The GTR was embedded into polyethylene (PE) and polyethylene/ethylene-vinyl acetate copolymer (PE/EVA) matrices. In order to increase the compatibility of the components electron beam (EB) irradiation was applied. The results showed that the irradiation has a beneficial effect on the polymer-GTR interfacial connection. The EB treatment increased not only the tensile strength but also the elongation at break. The irradiation had also positive effect on the impact strength properties.

  14. Maintaining protein homeostasis: early and late endosomal dual recycling for the maintenance of intracellular pools of the plasma membrane protein Chs3

    PubMed Central

    Arcones, Irene; Sacristán, Carlos; Roncero, Cesar

    2016-01-01

    The major chitin synthase activity in yeast cells, Chs3, has become a paradigm in the study of the intracellular traffic of transmembrane proteins due to its tightly regulated trafficking. This includes an efficient mechanism for the maintenance of an extensive reservoir of Chs3 at the trans-Golgi network/EE, which allows for the timely delivery of the protein to the plasma membrane. Here we show that this intracellular reservoir of Chs3 is maintained not only by its efficient AP-1–mediated recycling, but also by recycling through the retromer complex, which interacts with Chs3 at a defined region in its N-terminal cytosolic domain. Moreover, the N-terminal ubiquitination of Chs3 at the plasma membrane by Rsp5/Art4 distinctly labels the protein and regulates its retromer-mediated recycling by enabling Chs3 to be recognized by the ESCRT machinery and degraded in the vacuole. Therefore the combined action of two independent but redundant endocytic recycling mechanisms, together with distinct labels for vacuolar degradation, determines the final fate of the intracellular traffic of the Chs3 protein, allowing yeast cells to regulate morphogenesis, depending on environmental constraints. PMID:27798229

  15. A Novel Type III Endosome Transmembrane Protein, TEMP

    PubMed Central

    Aturaliya, Rajith N.; Kerr, Markus C.; Teasdale, Rohan D.

    2012-01-01

    As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP’s plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport. PMID:24710541

  16. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis.

    PubMed

    Delevoye, Cédric; Hurbain, Ilse; Tenza, Danièle; Sibarita, Jean-Baptiste; Uzan-Gafsou, Stéphanie; Ohno, Hiroshi; Geerts, Willie J C; Verkleij, Arie J; Salamero, Jean; Marks, Michael S; Raposo, Graça

    2009-10-19

    Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type-specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1- and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type-specific positioning of endosomes that facilitate endosome-LRO contacts and are required for organelle maturation.

  17. An Automated Image Analysis System to Quantify Endosomal Tubulation

    PubMed Central

    Newton, Timothy M.

    2016-01-01

    Recycling of cargos from early endosomes requires regulation of endosomal tubule formation and fission. This regulation is disrupted in cells depleted of the microtubule severing enzyme spastin, causing elongation of endosomal tubules and mis-trafficking of recycling endosomal cargos such as the transferrin receptor. Spastin is encoded by SPAST, mutations in which are the most frequent cause of autosomal dominant hereditary spastic paraplegia, a condition characterised by a progressive loss of lower limb function resulting from upper motor neuron axonopathy. Investigation of molecular factors involved in endosomal tubule regulation is hindered by the need for manual counting of endosomal tubules. We report here the development of an open source automated system for the quantification of endosomal tubules, using ImageJ and R. We validate the method in cells depleted of spastin and its binding partner IST1. The additional speed and reproducibility of this system compared with manual counting makes feasible screens of candidates to further understand the mechanisms of endosomal tubule formation and fission. PMID:28006827

  18. Moesin and cortactin control actin-dependent multivesicular endosome biogenesis

    PubMed Central

    Muriel, Olivia; Tomas, Alejandra; Scott, Cameron C.; Gruenberg, Jean

    2016-01-01

    We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively. PMID:27605702

  19. CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2

    PubMed Central

    Sun, Lin; Liu, Ou; Desai, Jigar; Karbassi, Farhad; Sylvain, Marc-André; Shi, Anbing; Zhou, Zheng; Rocheleau, Christian E.; Grant, Barth D.

    2012-01-01

    Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane. PMID:22807685

  20. CED-10/Rac1 regulates endocytic recycling through the RAB-5 GAP TBC-2.

    PubMed

    Sun, Lin; Liu, Ou; Desai, Jigar; Karbassi, Farhad; Sylvain, Marc-André; Shi, Anbing; Zhou, Zheng; Rocheleau, Christian E; Grant, Barth D

    2012-01-01

    Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane.

  1. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis

    PubMed Central

    Delevoye, Cédric; Hurbain, Ilse; Tenza, Danièle; Sibarita, Jean-Baptiste; Uzan-Gafsou, Stéphanie; Ohno, Hiroshi; Geerts, Willie J.C.; Verkleij, Arie J.; Salamero, Jean; Marks, Michael S.

    2009-01-01

    Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type–specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1– and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type–specific positioning of endosomes that facilitate endosome–LRO contacts and are required for organelle maturation. PMID:19841138

  2. JAM-A promotes neutrophil chemotaxis by controlling integrin internalization and recycling.

    PubMed

    Cera, Maria Rosaria; Fabbri, Monica; Molendini, Cinzia; Corada, Monica; Orsenigo, Fabrizio; Rehberg, Markus; Reichel, Christoph A; Krombach, Fritz; Pardi, Ruggero; Dejana, Elisabetta

    2009-01-15

    The membrane-associated adhesion molecule JAM-A is required for neutrophil infiltration in inflammatory or ischemic tissues. JAM-A expressed in both endothelial cells and neutrophils has such a role, but the mechanism of action remains elusive. Here we show that JAM-A has a cell-autonomous role in neutrophil chemotaxis both in vivo and in vitro, which is independent of the interaction of neutrophils with endothelial cells. On activated neutrophils, JAM-A concentrates in a polarized fashion at the leading edge and uropod. Surprisingly, a significant amount of this protein is internalized in intracellular endosomal-like vesicles where it codistributes with integrin beta1. Clustering of beta1 integrin leads to JAM-A co-clustering, whereas clustering of JAM-A does not induce integrin association. Neutrophils derived from JAM-A-null mice are unable to correctly internalize beta1 integrins upon chemotactic stimuli and this causes impaired uropod retraction and cell motility. Consistently, inhibition of integrin internalization upon treatment with BAPTA-AM induces a comparable phenotype. These data indicate that JAM-A is required for the correct internalization and recycling of integrins during cell migration and might explain why, in its absence, the directional migration of neutrophils towards an inflammatory stimulus is markedly impaired.

  3. SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes.

    PubMed

    Norris, Anne; Tammineni, Prasad; Wang, Simon; Gerdes, Julianne; Murr, Alexandra; Kwan, Kelvin Y; Cai, Qian; Grant, Barth D

    2017-01-17

    After endocytosis, transmembrane cargo reaches endosomes, where it encounters complexes dedicated to opposing functions: recycling and degradation. Microdomains containing endosomal sorting complexes required for transport (ESCRT)-0 component Hrs [hepatocyte growth factor-regulated tyrosine kinase substrate (HGRS-1) in Caenorhabditis elegans] mediate cargo degradation, concentrating ubiquitinated cargo and organizing the activities of ESCRT. At the same time, retromer associated sorting nexin one (SNX-1) and its binding partner, J-domain protein RME-8, sort cargo away from degradation, promoting cargo recycling to the Golgi. Thus, we hypothesized that there could be important regulatory interactions between retromer and ESCRT that balance degradative and recycling functions. Taking advantage of the naturally large endosomes of the C. elegans coelomocyte, we visualized complementary ESCRT-0 and RME-8/SNX-1 microdomains in vivo and assayed the ability of retromer and ESCRT microdomains to regulate one another. We found in snx-1(0) and rme-8(ts) mutants increased endosomal coverage and intensity of HGRS-1-labeled microdomains, as well as increased total levels of HGRS-1 bound to membranes. These effects are specific to SNX-1 and RME-8, as loss of other retromer components SNX-3 and vacuolar protein sorting-associated protein 35 (VPS-35) did not affect HGRS-1 microdomains. Additionally, knockdown of hgrs-1 had little to no effect on SNX-1 and RME-8 microdomains, suggesting directionality to the interaction. Separation of the functionally distinct ESCRT-0 and SNX-1/RME-8 microdomains was also compromised in the absence of RME-8 and SNX-1, a phenomenon we observed to be conserved, as depletion of Snx1 and Snx2 in HeLa cells also led to greater overlap of Rme-8 and Hrs on endosomes.

  4. Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration.

    PubMed

    Majeed, Sophia R; Vasudevan, Lavanya; Chen, Chih-Ying; Luo, Yi; Torres, Jorge A; Evans, Timothy M; Sharkey, Andrew; Foraker, Amy B; Wong, Nicole M L; Esk, Christopher; Freeman, Theresa A; Moffett, Ashley; Keen, James H; Brodsky, Frances M

    2014-05-23

    The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin-actin interactions needed for recycling by G-clathrin during migration.

  5. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease.

    PubMed

    Prasad, Hari; Rao, Rajini

    2015-02-27

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na(+)/H(+) exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na(+)/H(+) ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na(+)/H(+) exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology.

  6. The Na+/H+ Exchanger NHE6 Modulates Endosomal pH to Control Processing of Amyloid Precursor Protein in a Cell Culture Model of Alzheimer Disease*

    PubMed Central

    Prasad, Hari; Rao, Rajini

    2015-01-01

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na+/H+ exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na+/H+ ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na+/H+ exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology. PMID:25561733

  7. TSSC1 is novel component of the endosomal retrieval machinery

    PubMed Central

    Gershlick, David C.; Schindler, Christina; Chen, Yu; Bonifacino, Juan S.

    2016-01-01

    Endosomes function as a hub for multiple protein-sorting events, including retrograde transport to the trans-Golgi network (TGN) and recycling to the plasma membrane. These processes are mediated by tubular-vesicular carriers that bud from early endosomes and fuse with a corresponding acceptor compartment. Two tethering complexes named GARP (composed of ANG2, VPS52, VPS53, and VPS54 subunits) and EARP (composed of ANG2, VPS52, VPS53, and Syndetin subunits) were previously shown to participate in SNARE-dependent fusion of endosome-derived carriers with the TGN and recycling endosomes, respectively. Little is known, however, about other proteins that function with GARP and EARP in these processes. Here we identify a protein named TSSC1 as a specific interactor of both GARP and EARP and as a novel component of the endosomal retrieval machinery. TSSC1 is a predicted WD40/β-propeller protein that coisolates with both GARP and EARP in affinity purification, immunoprecipitation, and gel filtration analyses. Confocal fluorescence microscopy shows colocalization of TSSC1 with both GARP and EARP. Silencing of TSSC1 impairs transport of internalized Shiga toxin B subunit to the TGN, as well as recycling of internalized transferrin to the plasma membrane. Fluorescence recovery after photobleaching shows that TSSC1 is required for efficient recruitment of GARP to the TGN. These studies thus demonstrate that TSSC1 plays a critical role in endosomal retrieval pathways as a regulator of both GARP and EARP function. PMID:27440922

  8. Transport to Late Endosomes Is Required for Efficient Reovirus Infection

    PubMed Central

    Mainou, Bernardo A.

    2012-01-01

    Rab GTPases play an essential role in vesicular transport by coordinating the movement of various types of cargo from one cellular compartment to another. Individual Rab GTPases are distributed to specific organelles and thus serve as markers for discrete types of endocytic vesicles. Mammalian reovirus binds to cell surface glycans and junctional adhesion molecule-A (JAM-A) and enters cells by receptor-mediated endocytosis in a process dependent on β1 integrin. Within organelles of the endocytic compartment, reovirus undergoes stepwise disassembly catalyzed by cathepsin proteases, which allows the disassembly intermediate to penetrate endosomal membranes and release the transcriptionally active viral core into the cytoplasm. The pathway used by reovirus to traverse the endocytic compartment is largely unknown. In this study, we found that reovirus particles traffic through early, late, and recycling endosomes during cell entry. After attachment to the cell surface, reovirus particles and JAM-A codistribute into each of these compartments. Transfection of cells with constitutively active and dominant-negative Rab GTPases that affect early and late endosome biogenesis and maturation influenced reovirus infectivity. In contrast, reovirus infectivity was not altered in cells expressing mutant Rab GTPases that affect recycling endosomes. Thus, reovirus virions localize to early, late, and recycling endosomes during entry into host cells, but only those that traverse early and late endosomes yield a productive infection. PMID:22674975

  9. Neuronal early endosomes require EHD1 for L1/NgCAM trafficking

    PubMed Central

    Lasiecka, Z. M.; Yap, C. C.; Caplan, S.; Winckler, B.

    2010-01-01

    In neurons, the endosomal system is essential for membrane receptor trafficking to dendrites and axons, and thereby participates in various neuronal functions, such as neurite outgrowth and synaptic plasticity. A multitude of regulators coordinates trafficking through endosomes, but most of them have not been studied in detail in neurons. In non-neuronal cells, EHD1 (Eps15 homology-domain containing protein 1) functions in the recycling endosome and is required for endosome-to-plasma membrane transport of multiple cargos. In this study, we analyze the role of EHD1 in neurons. In particular, we investigate whether EHD1 is required for polarized trafficking of the dendritically-targeted transferrin and the axonal adhesion molecule L1/NgCAM, and if so, in what compartment it is required. We find that endosomal recycling of both L1/NgCAM and transferrin is impaired when EHD1 is downregulated. We show that EHD1 co-localizes with L1/NgCAM and transferrin mostly in EEA1 (early endosome antigen 1)-positive early endosomes and less extensively with recycling endosomes. Using live imaging, we observe that EHD1 is stably associated with endosomal membranes during their maturation into EEA1-positive compartments and often persists on them longer than EEA1. Finally we show that downregulation of EHD1 causes a delay of L1/NgCAM in exiting EEA1-positive endosomes, resulting in impaired targeting of L1/NgCAM to the axonal membrane. We conclude that in neurons EHD1 functions in early endosomes rather than (or possibly in addition to) recycling endosomes. These findings point to the existence of neuronal adaptations of the endosomal system. PMID:21147988

  10. Major histocompatibility complex class-II molecules promote targeting of human immunodeficiency virus type 1 virions in late endosomes by enhancing internalization of nascent particles from the plasma membrane

    PubMed Central

    Finzi, Andrés; Perlman, Mira; Bourgeois-Daigneault, Marie-Claude; Thibodeau, Jacques; Cohen, Éric A.

    2014-01-01

    Summary Productive assembly of human immunodeficiency virus type 1 (HIV-1) takes place, primarily, at the plasma membrane. However, depending on the cell types, a significant proportion of nascent virus particles are internalized and routed to late endosomes. We previously reported that expression of human leucocyte antigen (HLA)-DR promoted a redistribution of Gag in late endosomes and an increased detection of mature virions in these compartments in HeLa and human embryonic kidney 293T model cell lines. Although this redistribution of Gag resulted in a marked decrease of HIV-1 release, the underlying mechanism remained undefined. Here, we provide evidence that expression of HLA-DR at the cell surface induces a redistribution of mature Gag products into late endosomes by enhancing nascent HIV-1 particle internalization from the plasma membrane through a process that relies on the presence of intact HLA-DR α and β-chain cytosolic tails. These findings raise the possibility that major histocompatibility complex class-II molecules might influence endocytic events at the plasma membrane and as a result promote endocytosis of progeny HIV-1 particles. PMID:23170932

  11. The BLOC-1 Subunit Pallidin Facilitates Activity-Dependent Synaptic Vesicle Recycling

    PubMed Central

    Ma, Wenpei; Zhang, Shixing; Paluch, Jeremy; Guo, Wanlin

    2017-01-01

    Abstract Membrane trafficking pathways must be exquisitely coordinated at synaptic terminals to maintain functionality, particularly during conditions of high activity. We have generated null mutations in the Drosophila homolog of pallidin, a central subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), to determine its role in synaptic development and physiology. We find that Pallidin localizes to presynaptic microtubules and cytoskeletal structures, and that the stability of Pallidin protein is highly dependent on the BLOC-1 components Dysbindin and Blos1. We demonstrate that the rapidly recycling vesicle pool is not sustained during high synaptic activity in pallidin mutants, leading to accelerated rundown and slowed recovery. Following intense activity, we observe a loss of early endosomes and a concomitant increase in tubular endosomal structures in synapses without Pallidin. Together, our data reveal that Pallidin subserves a key role in promoting efficient synaptic vesicle recycling and re-formation through early endosomes during sustained activity. PMID:28317021

  12. Molecular assemblies and membrane domains in multivesicular endosome dynamics

    SciTech Connect

    Falguieres, Thomas; Luyet, Pierre-Philippe; Gruenberg, Jean

    2009-05-15

    Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo 'back-fusion' with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.

  13. Recycling of the Epidermal Growth Factor Receptor Is Mediated by a Novel Form of the Clathrin Adaptor Protein Eps15*

    PubMed Central

    Chi, Susan; Cao, Hong; Wang, Yu; McNiven, Mark A.

    2011-01-01

    Levels of the epidermal growth factor receptor (EGFR) at the cell surface are tightly regulated by a complex endocytic machinery. Following internalization, EGFR is either recycled back to the cell surface or transported to the late endosome/lysosome for degradation. Currently, the molecular machinery that regulates this sorting pathway is only partially defined. Eps15 (EGFR pathway substrate 15) is an endocytic adaptor protein that is well known to support clathrin-mediated internalization of EGFR at the plasma membrane. Using RT-PCR, we have identified a novel short form of Eps15 (Eps15S) from rat liver that lacks the 111 C-terminal amino acids present in the traditional Eps15 form. The goal of this study was to define the functional role of the novel Eps15S form in EGFR trafficking. Overexpression of a mutant form of Eps15S (Eps15S ΔEH2/EH3) did not block EGFR internalization but reduced its recycling to the cell surface. After knockdown of all Eps15 forms, re-expression of Eps15S significantly reduced EGFR degradation while promoting recycling back to the cell surface. In contrast, re-expression of Eps15 did not potentiate receptor recycling. Furthermore, overexpression of the mutant Eps15S substantially reduced cell proliferation, linking EGFR recycling to downstream mitogenic effects. Finally, we found that Eps15S is localized to the Rab11-positive recycling endosome that is disrupted in cells expressing the Eps15S mutant, leading to an accumulation of the EGFR in early endosomes. These findings suggest that distinct forms of Eps15 direct EGFR to either the late endosome/lysosome for degradation (Eps15) or to the recycling endosome for transit back to the cell surface (Eps15S). PMID:21832070

  14. IL4/PGE{sub 2} induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent

    SciTech Connect

    Wainszelbaum, Marisa J.; Proctor, Brandon M.; Pontow, Suzanne E.; Stahl, Philip D. . E-mail: pstahl@cellbiology.wustl.edu; Barbieri, M. Alejandro

    2006-07-15

    The endosomal compartment and the plasma membrane form a complex partnership that controls signal transduction and trafficking of different molecules. The specificity and functionality of the early endocytic pathway are regulated by a growing number of Rab GTPases, particularly Rab5. In this study, we demonstrate that IL4 (a Th-2 cytokine) and prostaglandin E{sub 2} (PGE{sub 2}) synergistically induce Rab5 and several Rab effector proteins, including Rin1 and EEA1, and promote the formation of an enlarged early endocytic (EEE) compartment. Endosome enlargement is linked to a substantial induction of the mannose receptor (MR), a well-characterized macrophage endocytic receptor. Both MR levels and MR-mediated endocytosis are enhanced approximately 7-fold. Fluid-phase endocytosis is also elevated in treated cells. Light microscopy and fractionation studies reveal that MR colocalizes predominantly with Rab5a and partially with Rab11, an endosomal recycling pathway marker. Using retroviral expression of Rab5a:S34N, a dominant negative mutant, and siRNA Rab5a silencing, we demonstrate that Rab5a is essential for the large endosome phenotype and for localization of MR in these structures. We speculate that the EEE is maintained by activated Rab5, and that the EEE phenotype is part of some macrophage developmental program such as cell fusion, a characteristic of IL4-stimulated cells.

  15. Endosomal Signaling of Epidermal Growth Factor Receptor Stimulates Signal Transduction Pathways Leading to Cell Survival

    PubMed Central

    Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2002-01-01

    In spite of intensified efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways and no evidence to demonstrate that endosomal signaling is able to produce a biological outcome. The lack of breakthrough is due in part to the lack of means to generate endosomal signals without plasma membrane signaling. In this paper, we report the establishment of a system to specifically activate epidermal growth factor (EGF) receptor (EGFR) when it endocytoses into endosomes. We treated cells with EGF in the presence of AG-1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks the recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complexes into endosomes. The endosome-associated EGFR was then activated by removing AG-1478 and monensin. During this procedure we did not observe any surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. By using this system, we provided original evidence demonstrating that (i) the endosome can serve as a nucleation site for the formation of signaling complexes, (ii) endosomal EGFR signaling is sufficient to activate the major signaling pathways leading to cell proliferation and survival, and (iii) endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum withdrawal. PMID:12242303

  16. Identification of a Rab GTPase-activating protein cascade that controls recycling of the Rab5 GTPase Vps21 from the vacuole

    PubMed Central

    Rana, Meenakshi; Lachmann, Jens; Ungermann, Christian

    2015-01-01

    Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions. PMID:25971802

  17. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    PubMed Central

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  18. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling.

    PubMed

    McGarvey, Jennifer C; Xiao, Kunhong; Bowman, Shanna L; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W Bruce; Ardura, Juan A; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A; Friedman, Peter A

    2016-05-20

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.

  19. Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1.

    PubMed

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-12-09

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling.

  20. Endocytic Sorting and Recycling Require Membrane Phosphatidylserine Asymmetry Maintained by TAT-1/CHAT-1

    PubMed Central

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-01-01

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling. PMID:21170358

  1. Rab11-endosomes contribute to mitotic spindle orientation

    PubMed Central

    Hehnly, Heidi; Doxsey, Stephen

    2014-01-01

    During interphase, Rab11-GTPase-containing endosomes recycle endocytic cargo. However, little is known about Rab11 and endosomes in mitosis. Here we show that Rab11 localizes to the mitotic spindle and regulates dynein-dependent endosome localization at poles. We found that mitotic recycling endosomes bind γ-TuRC components and associate with tubulin in vitro. Rab11-depletion or dominant-negative Rab11 expression disrupts astral microtubules, delays mitosis, and redistributes spindle pole proteins. Reciprocally, constitutively-active Rab11 increases astral microtubules, restores γ-tubulin spindle pole localization and generates robust spindles. This suggests a fundamental role for Rab11 activity in spindle pole maturation during mitosis. Rab11 depletion causes misorientation of the mitotic spindle and the plane of cell division. These findings suggest a molecular mechanism for the organization of astral microtubules and the mitotic spindle through Rab11-dependent control of spindle pole assembly and function. We propose that Rab11 and its associated endosomes co-contribute to these processes through retrograde transport to poles by dynein. PMID:24561039

  2. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    PubMed Central

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  3. Protein Kinase C Activation Promotes α1B-Adrenoceptor Internalization and Late Endosome Trafficking through Rab9 Interaction. Role in Heterologous Desensitization.

    PubMed

    Alfonzo-Méndez, Marco A; Hernández-Espinosa, David A; Carmona-Rosas, Gabriel; Romero-Ávila, M Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J Adolfo

    2017-04-01

    Upon agonist stimulation, α1B-adrenergic receptors couple to Gq proteins, calcium signaling and protein kinase C activation; subsequently, the receptors are phosphorylated, desensitized, and internalized. Internalization seems to involve scaffolding proteins, such as β-arrestin and clathrin. However, the fine mechanisms that participate remain unsolved. The roles of protein kinase C and the small GTPase, Rab9, in α1B-AR vesicular traffic were investigated by studying α1B-adrenergic receptor-Rab protein interactions, using Förster resonance energy transfer (FRET), confocal microscopy, and intracellular calcium quantitation. In human embryonic kidney 293 cells overexpressing Discosoma spp. red fluorescent protein (DsRed)-tagged α1B-ARs and enhanced green fluorescent protein--tagged Rab proteins, pharmacological protein kinase C activation mimicked α1B-AR traffic elicited by nonrelated agents, such as sphingosine 1-phosphate (i.e., transient α1B-AR-Rab5 FRET signal followed by a sustained α1B-AR-Rab9 interaction), suggesting brief receptor localization in early endosomes and transfer to late endosomes. This latter interaction was abrogated by blocking protein kinase C activity, resulting in receptor retention at the plasma membrane. Similar effects were observed when a dominant-negative Rab9 mutant (Rab9-GDP) was employed. When α1B-adrenergic receptors that had been mutated at protein kinase C phosphorylation sites (S396A, S402A) were used, phorbol ester-induced desensitization of the calcium response was markedly decreased; however, interaction with Rab9 was only partially decreased and internalization was observed in response to phorbol esters and sphingosine 1-phosphate. Finally, Rab9-GDP expression did not affect adrenergic-mediated calcium response but abolished receptor traffic and altered desensitization. Data suggest that protein kinase C modulates α1B-adrenergic receptor transfer to late endosomes and that Rab9 regulates this process and

  4. Proximity Labeling Reveals Molecular Determinants of FGFR4 Endosomal Transport.

    PubMed

    Haugsten, Ellen Margrethe; Sørensen, Vigdis; Kunova Bosakova, Michaela; de Souza, Gustavo Antonio; Krejci, Pavel; Wiedlocha, Antoni; Wesche, Jørgen

    2016-10-07

    The fibroblast growth factor receptors (FGFRs) are important oncogenes promoting tumor progression in many types of cancer, such as breast, bladder, and lung cancer as well as multiple myeloma and rhabdomyosarcoma. However, little is known about how these receptors are internalized and down-regulated in cells. We have here applied proximity biotin labeling to identify proteins involved in FGFR4 signaling and trafficking. For this purpose we fused a mutated biotin ligase, BirA*, to the C-terminal tail of FGFR4 (FGFR4-BirA*) and the fusion protein was stably expressed in U2OS cells. Upon addition of biotin to these cells, proteins in proximity to the FGFR4-BirA* fusion protein became biotinylated and could be isolated and identified by quantitative mass spectrometry. We identified in total 291 proteins, including 80 proteins that were enriched in samples where the receptor was activated by the ligand (FGF1), among them several proteins previously found to be involved in FGFR signaling (e.g., FRS2, PLCγ, RSK2 and NCK2). Interestingly, many of the identified proteins were implicated in endosomal transport, and by precise annotation we were able to trace the intracellular pathways of activated FGFR4. Validating the data by confocal and three-dimensional structured illumination microscopy analysis, we concluded that FGFR4 uses clathrin-mediated endocytosis for internalization and is further sorted from early endosomes to the recycling compartment and the trans-Golgi network. Depletion of cells for clathrin heavy chain led to accumulation of FGFR4 at the cell surface and increased levels of active FGFR4 and PLCγ, while AKT and ERK signaling was diminished, demonstrating that functional clathrin-mediated endocytosis is required for proper FGFR4 signaling. Thus, this study reveals proteins and pathways involved in FGFR4 transport and signaling that provide possible targets and opportunities for therapeutic intervention in FGFR4 aberrant cancer.

  5. The retromer complex and clathrin define an early endosomal retrograde exit site.

    PubMed

    Popoff, Vincent; Mardones, Gonzalo A; Tenza, Danièle; Rojas, Raúl; Lamaze, Christophe; Bonifacino, Juan S; Raposo, Graça; Johannes, Ludger

    2007-06-15

    Previous studies have indicated a role for clathrin, the clathrin adaptors AP1 and epsinR, and the retromer complex in retrograde sorting from early/recycling endosomes to the trans Golgi network (TGN). However, it has remained unclear whether these protein machineries function on the same or parallel pathways. We show here that clathrin and the retromer subunit Vps26 colocalize at the ultrastructural level on early/recycling endosomes containing Shiga toxin B-subunit, a well-studied retrograde transport cargo. As previously described for clathrin, we find that interfering with Vps26 expression inhibits retrograde transport of the Shiga toxin B-subunit to the TGN. Under these conditions, endosomal tubules that take the Shiga toxin B-subunit out of transferrin-containing early/recycling endosomes appear to be stabilized. This situation differs from that previously described for low-temperature incubation and clathrin-depletion conditions under which Shiga toxin B-subunit labeling was found to overlap with that of the transferrin receptor. In addition, we find that the Shiga toxin B-subunit and the transferrin receptor accumulate close to multivesicular endosomes in clathrin-depleted cells, suggesting that clathrin initiates retrograde sorting on vacuolar early endosomes, and that retromer is then required to process retrograde tubules. Our findings thus establish a role for the retromer complex in retrograde transport of the B-subunit of Shiga toxin, and strongly suggest that clathrin and retromer function in consecutive retrograde sorting steps on early endosomes.

  6. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17

    PubMed Central

    Dombernowsky, Sarah Louise; Samsøe-Petersen, Jacob; Petersen, Camilla Hansson; Instrell, Rachael; Hedegaard, Anne-Mette Bornhardt; Thomas, Laurel; Atkins, Katelyn Mae; Auclair, Sylvain; Albrechtsen, Reidar; Mygind, Kasper Johansen; Fröhlich, Camilla; Howell, Michael; Parker, Peter; Thomas, Gary; Kveiborg, Marie

    2015-01-01

    The metalloproteinase ADAM17 activates ErbB signalling by releasing ligands from the cell surface, a key step underlying epithelial development, growth, and tumour progression. However, mechanisms acutely controlling ADAM17 cell-surface availability to modulate the extent of ErbB ligand release are poorly understood. Here, through a functional genome-wide siRNA screen, we identify the sorting protein PACS-2 as a regulator of ADAM17 trafficking and ErbB signalling. PACS-2 loss reduces ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localizes with ADAM17 on early endosomes and PACS-2 knockdown decreases the recycling and stability of internalized ADAM17. Hence, PACS-2 sustains ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways. Interestingly, Pacs2-deficient mice display significantly reduced levels of phosphorylated EGFR and intestinal proliferation. We suggest that this mechanism controlling ADAM17 cell-surface availability and EGFR signalling may play a role in intestinal homeostasis, with potential implications for cancer biology. PMID:26108729

  7. Role of TSPAN9 in Alphavirus Entry and Early Endosomes

    PubMed Central

    Stiles, Katie M.

    2016-01-01

    ABSTRACT Alphaviruses are small enveloped RNA viruses that infect cells via clathrin-mediated endocytosis and low-pH-triggered fusion in the early endosome. Using a small interfering RNA (siRNA) screen in human cells, we previously identified TSPAN9 as a host factor that promotes infection by the alphaviruses Sindbis virus (SINV), Semliki Forest virus (SFV), and chikungunya virus (CHIKV). Depletion of TSPAN9 specifically decreases SFV membrane fusion in endosomes. TSPAN9 is a member of the tetraspanin family of multipass membrane proteins, but its cellular function is currently unknown. Here we used U-2 OS cells stably overexpressing TSPAN9 to show that TSPAN9 is localized at the plasma membrane and in early and late endosomes. Internalized SFV particles colocalized with TSPAN9 in vesicles early during infection. Depletion of TSPAN9 led to reductions in the amounts of the late endosomal proteins LAMP1 and CD63 and an increase in the amount of LAMP2. However, TSPAN9 depletion did not alter the delivery of SFV to early endosomes or change their pH or protease activity. Comparative studies showed that TSPAN9 depletion strongly inhibited infection by several viruses that fuse in early endosomes (SFV, SINV, CHIKV, and vesicular stomatitis virus [VSV]), while viruses that fuse in the late endosome (recombinant VSV-Lassa and VSV-Junin), including an SFV point mutant with a lower pH threshold for fusion (SFV E2 T12I), were relatively resistant. Our data suggest that TSPAN9 modulates the early endosome compartment to make it more permissive for membrane fusion of early-penetrating viruses. IMPORTANCE Alphaviruses are spread by mosquitoes and can cause serious human diseases such as arthritis and encephalitis. Recent outbreaks of CHIKV infection are responsible for millions of cases of acute illness and long-term complications. There are no vaccines or antiviral treatments for these important human pathogens. Alphaviruses infect host cells by utilizing the endocytic

  8. Developing environmental legislation to promote recycling of industrial by-products - an endless story?

    PubMed

    Sorvari, Jaana

    2008-01-01

    In Finland during the last few decades, mineral industrial residues (by-products) have been used in earthworks, but only to a limited extent relative to their total volume. The most important barrier to efficient recycling of by-products has been the need for a site-specific environmental permit, since the permit process tends to be time-consuming and laborious. In 2000 a working group was set up to prepare national legislation, i.e., a Government decree, in order to promote the use of by-products in earth construction. The aim was to exempt certain residues from the environmental permit obligation. At the first stage, the working group determined specific decision criteria for the selection of the by-products to be included. For the selected residues, the acceptable construction applications and material-specific environmental standards were defined. Various difficulties were encountered during the preparation of the decree. These were mainly caused by the lack of data and by some ongoing changes in environmental regulations. Furthermore, the draft decree received several critical and partly contradictory comments and proposals for amendments. This resulted in considerable delay in implementation.

  9. Residues in the Hendra Virus Fusion Protein Transmembrane Domain Are Critical for Endocytic Recycling

    PubMed Central

    Popa, Andreea; Carter, James R.; Smith, Stacy E.; Hellman, Lance; Fried, Michael G.

    2012-01-01

    Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking. PMID:22238299

  10. Intra-endosomal membrane traffic.

    PubMed

    van der Goot, F Gisou; Gruenberg, Jean

    2006-10-01

    Following endocytosis, ubiquitinated signaling receptors are incorporated within intraluminal vesicles of forming multivesicular endosomes. These vesicles then follow the pathway from early to late endosomes, remaining within the endosomal lumen, and are eventually delivered to lysosomes, where they are degraded together with their protein cargo. However, intraluminal vesicles do not always end up in lysosomes for degradation; they can also fuse back with the limiting membrane of late endosomes. This route, which might be regulated by lyso-bisphosphatidic acid and its putative effector Alix, can be hijacked by the anthrax toxin and vesicular stomatitis virus and is presumably exploited by proteins and lipids that transit through intraluminal vesicles. Alternatively, these vesicles can be released extracellularly, like HIV in macrophages, upon fusion of endosomes or lysosomes with the plasma membrane.

  11. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin

    PubMed Central

    Chia, Pei Zhi Cheryl; Gasnereau, Isabelle; Lieu, Zi Zhao; Gleeson, Paul A.

    2011-01-01

    The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin–TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail. PMID:21693586

  12. Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling.

    PubMed

    Uchida, Yasunori; Rutaganira, Florentine U; Jullié, Damien; Shokat, Kevan M; von Zastrow, Mark

    2017-01-01

    G protein-coupled receptors (GPCRs), the largest family of signaling receptors, are critically regulated by endosomal trafficking, suggesting that endosomes might provide new strategies for manipulating GPCR signaling. Here we test this hypothesis by focusing on class III phosphatidylinositol 3-kinase (Vps34), which is an essential regulator of endosomal trafficking. We verify that Vps34 is required for recycling of the β2-adrenoceptor (β2AR), a prototypical GPCR, and then investigate the effects of Vps34 inhibition on the canonical cAMP response elicited by β2AR activation. Vps34 inhibition impairs the ability of cells to recover this response after prolonged activation, which is in accord with the established role of recycling in GPCR resensitization. In addition, Vps34 inhibition also attenuates the short-term cAMP response, and its effect begins several minutes after initial agonist application. These results establish Vps34 as an essential determinant of both short-term and long-term canonical GPCR signaling, and support the potential utility of the endosomal system as a druggable target for signaling.

  13. Retromer-mediated endosomal protein sorting: The role of unstructured domains.

    PubMed

    Mukadam, Aamir S; Seaman, Matthew N J

    2015-09-14

    The retromer complex is a key element of the endosomal protein sorting machinery that is conserved through evolution and has been shown to play a role in diseases such as Alzheimer's disease and Parkinson's disease. Through sorting various membrane proteins (cargo), the function of retromer complex has been linked to physiological processes such as lysosome biogenesis, autophagy, down regulation of signalling receptors and cell spreading. The cargo-selective trimer of retromer recognises membrane proteins and sorts them into two distinct pathways; endosome-to-Golgi retrieval and endosome-to-cell surface recycling and additionally the cargo-selective trimer functions as a hub to recruit accessory proteins to endosomes where they may regulate and/or facilitate retromer-mediated endosomal proteins sorting. Unstructured domains present in cargo proteins or accessory factors play key roles in both these aspects of retromer function and will be discussed in this review.

  14. Coronin-1 is a neurotrophin endosomal effector required for developmental competition for survival

    PubMed Central

    Suo, Dong; Park, Juyeon; Harrington, Anthony W.; Zweifel, Larry S.; Mihalas, Stefan; Deppmann, Christopher D.

    2014-01-01

    Retrograde communication from axonal targets to neuronal cell bodies is critical for both development and function of the nervous system. Much progress has been made in recent years linking long-distance, retrograde signaling to a signaling endosome, yet the mechanisms governing the trafficking and signaling of these endosomes remain mainly uncharacterized. Here we report that in mouse sympathetic neurons the target-derived NGF-TrkA signaling endosome, upon arrival at the cell body, induces the expression and recruitment of a novel effector protein known as Coronin-1. In the absence of Coronin-1, the NGF-TrkA signaling endosome fuses to lysosomes 6–10 fold faster than when Coronin-1 is intact. We also define a novel Coronin-1-dependent trafficking event where signaling endosomes recycle and re-internalize upon arrival at the cell body. Beyond influencing endosomal trafficking, Coronin-1 is also required for several NGF-TrkA dependent-signaling events including calcium release, calcineurin activation, and CREB phosphorylation. These results establish Coronin-1 as an essential component of a novel feedback loop mediating NGF-TrkA endosome stability, recycling, and signaling as a critical mechanism governing developmental competition for survival. PMID:24270184

  15. Conformational biosensors reveal GPCR signalling from endosomes.

    PubMed

    Irannejad, Roshanak; Tomshine, Jin C; Tomshine, Jon R; Chevalier, Michael; Mahoney, Jacob P; Steyaert, Jan; Rasmussen, Søren G F; Sunahara, Roger K; El-Samad, Hana; Huang, Bo; von Zastrow, Mark

    2013-03-28

    A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute to the acute G-protein-mediated response. Evidence supporting these various latter hypotheses is indirect or subject to alternative interpretation, and it remains unknown if endosome-localized GPCRs are even present in an active form. Here we describe the application of conformation-specific single-domain antibodies (nanobodies) to directly probe activation of the β2-adrenoceptor, a prototypical GPCR, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane, and suggest a versatile strategy for probing dynamic conformational change in vivo.

  16. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network.

    PubMed

    Hierro, Aitor; Gershlick, David C; Rojas, Adriana L; Bonifacino, Juan S

    2015-01-01

    Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.

  17. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion

    PubMed Central

    Liu, Kai; Jian, Youli; Sun, Xiaojuan; Yang, Chengkui; Gao, Zhiyang; Zhang, Zhili; Liu, Xuezhao; Li, Yang; Xu, Jing; Jing, Yudong; Mitani, Shohei; He, Sudan

    2016-01-01

    Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion. PMID:26783301

  18. Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump

    PubMed Central

    1995-01-01

    Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR

  19. The small GTP-binding protein rab4 is associated with early endosomes

    SciTech Connect

    van der Sluijs, P.; Hull, M.; Mellman, I. ); Zahraoui, A.; Tavitian, A. ); Goud, B. )

    1991-07-15

    Small GTP-binding proteins of the rab family have been implicated as playing important roles in controlling membrane traffic on the biosynthetic and endocytic pathways. The authors demonstrate that a distinct rab protein, rab4p, is associated with the population of early endosomes involved in transferrin-receptor recycling. An antibody to human rab4p was found to detect a doublet of {approx} 24-kDa proteins on immunoblots from various cell types. Seventy-five percent of these proteins were tightly membrane bound and could be released only by detergent treatment. Upon isolation of early endosomes, late endosomes, and lysosomes, by free-flow electrophoresis and Percoll density-gradient centrifugation, most (70%) of the rab4p was found to cofractionate with early endosomes and endocytic vesicles containing {sup 125}-labeled transferrin. The rab proteins previously localized to the endoplasmic reticulum and/or Golgi apparatus were not found in these fractions. They also localized rab4p to tansferrin-receptor-containing early endosomes by immunofluorescence after expression of rab4p cDNA. The association of rab4p with early endosomes and other vesicles involved in the intracellular tansport of transferrin receptor suggests that rab4p may play a role in regulating the pathway of receptor recycling.

  20. Engineered protein connectivity to actin mimics PDZ-dependent recycling of G protein-coupled receptors but not its regulation by Hrs.

    PubMed

    Lauffer, Benjamin E L; Chen, Stanford; Melero, Cristina; Kortemme, Tanja; von Zastrow, Mark; Vargas, Gabriel A

    2009-01-23

    Many G protein-coupled receptors (GPCRs) recycle after agonist-induced endocytosis by a sequence-dependent mechanism, which is distinct from default membrane flow and remains poorly understood. Efficient recycling of the beta2-adrenergic receptor (beta2AR) requires a C-terminal PDZ (PSD-95/Discs Large/ZO-1) protein-binding determinant (PDZbd), an intact actin cytoskeleton, and is regulated by the endosomal protein Hrs (hepatocyte growth factor-regulated substrate). The PDZbd is thought to link receptors to actin through a series of protein interaction modules present in NHERF/EBP50 (Na+/H+ exchanger 3 regulatory factor/ezrin-binding phosphoprotein of 50 kDa) family and ERM (ezrin/radixin/moesin) family proteins. It is not known, however, if such actin connectivity is sufficient to recapitulate the natural features of sequence-dependent recycling. We addressed this question using a receptor fusion approach based on the sufficiency of the PDZbd to promote recycling when fused to a distinct GPCR, the delta-opioid receptor, which normally recycles inefficiently in HEK293 cells. Modular domains mediating actin connectivity promoted receptor recycling with similarly high efficiency as the PDZbd itself, and recycling promoted by all of the domains was actin-dependent. Regulation of receptor recycling by Hrs, however, was conferred only by the PDZbd and not by downstream interaction modules. These results suggest that actin connectivity is sufficient to mimic the core recycling activity of a GPCR-linked PDZbd but not its cellular regulation.

  1. The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling

    PubMed Central

    Rüegger, Stefan; Miki, Takashi S.; Hess, Daniel; Großhans, Helge

    2015-01-01

    The spliceosome is a large molecular machine that serves to remove the intervening sequences that are present in most eukaryotic pre-mRNAs. At its core are five small nuclear ribonucleoprotein complexes, the U1, U2, U4, U5 and U6 snRNPs, which undergo dynamic rearrangements during splicing. Their reutilization for subsequent rounds of splicing requires reversion to their original configurations, but little is known about this process. Here, we show that ZK863.4/USIP-1 (U Six snRNA-Interacting Protein-1) is a ribonucleotidyl transferase that promotes accumulation of the Caenorhabditis elegans U6 snRNA. Endogenous USIP-1–U6 snRNA complexes lack the Lsm proteins that constitute the protein core of the U6 snRNP, but contain the U6 snRNP recycling factor SART3/B0035.12. Furthermore, co-immunoprecipitation experiments suggest that SART3 but not USIP-1 occurs also in a separate complex containing both the U4 and U6 snRNPs. Based on this evidence, genetic interaction between usip-1 and sart-3, and the apparent dissociation of Lsm proteins from the U6 snRNA during spliceosome activation, we propose that USIP-1 functions upstream of SART3 to promote U6 snRNA recycling. PMID:25753661

  2. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics

    PubMed Central

    Lönn, Peter; Kacsinta, Apollo D.; Cui, Xian-Shu; Hamil, Alexander S.; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F.

    2016-01-01

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells. PMID:27604151

  3. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    PubMed

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-09-08

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.

  4. Rubicon controls endosome maturation as a Rab7 effector.

    PubMed

    Sun, Qiming; Westphal, Wiebke; Wong, Kwun Ngok; Tan, Irena; Zhong, Qing

    2010-11-09

    The activation and recruitment of the small GTPase Rab7 to early endosome is a critical step for early to late endosome maturation, a process that requires the class III phosphatidylinositol 3-kinase (PI3KC3) and GTPase regulators. However, the molecular mechanism underlying Rab7 activation and endosome maturation is still poorly defined. Here we report that Rubicon, a component of the PI3KC3 complex, prevents endosome maturation through differential interactions with Rab7 and UVRAG. UVRAG activates PI3KC3 and C-VPS/HOPS, a guanine nucleotide exchange factor that catalyzes the exchange of GDP for GTP on Rab7. We demonstrate that Rubicon sequesters UVRAG from C-VPS/HOPS. Active GTP-bound Rab7 competes for Rubicon binding and releases UVRAG to associate with C-VPS/HOPS, which in turn promotes further loading of Rab7 with GTP. This feed-forward loop ensures rapid amplification of GTP-bound Rab7 and consequent stimulation of endosome maturation. Hence, Rubicon serves as a previously unknown Rab7 effector to ensure the proper progression of the endocytic pathway.

  5. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  6. Membrane binding sites for plasma lipoproteins on endosomes from rat liver.

    PubMed Central

    Jaeckle, S; Brady, S E; Havel, R J

    1989-01-01

    Highly purified endosomal membranes from rat liver, enriched in receptors for a number of macromolecules taken up into hepatocytes via the coated pit/endosome/lysosome pathway [including the receptor for low density lipoproteins (LDL)], were used to characterize binding sites for lipoproteins containing apolipoprotein E. In endosomal membranes from livers of estradiol-treated rats, in which LDL receptors are induced manyfold, two high-affinity binding sites were found for two apolipoprotein E-rich lipoproteins: very low density beta-lipoproteins (beta-VLDL) from cholesterol-fed rabbits and rat chylomicron remnants. One of these sites, binding to which is inhibited by 30 mM EDTA, appears identical to the LDL receptor by ligand and immunoblotting and other characteristics. The other site, highly resistant to EDTA, does not bind LDL. Binding to the EDTA-resistant site, however, is readily inhibited by heparin (as is the LDL receptor) and also by antisera prepared against rat or bovine LDL receptor. The distribution of the EDTA-resistant site among early endosomes, late endosomes, and endosome-derived receptor-recycling membranes is similar to that of the LDL receptor and other recycling receptors. The LDL receptor was present in endosomal membranes from livers of untreated rats at about 10% of the level found in membranes from estradiol-treated rats, but the EDTA-resistant site was barely detectable. No saturable binding of beta-VLDL that could not be inhibited by antisera to the LDL receptor could be detected in endosomal membranes from livers of either untreated or estradiol-treated rats. The EDTA-resistant site may be a modified form of the LDL receptor that recognizes apolipoprotein E but not the B apolipoprotein of LDL. Alternatively, it may be a distinct receptor sharing immunological determinants with the LDL receptor, specialized for the endocytosis of certain lipoproteins containing apolipoprotein E, including chylomicron remnants. Images PMID:2538819

  7. Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase.

    PubMed

    Sabolić, I; Wuarin, F; Shi, L B; Verkman, A S; Ausiello, D A; Gluck, S; Brown, D

    1992-10-01

    Endocytic vesicles that are involved in the vasopressin-stimulated recycling of water channels to and from the apical membrane of kidney collecting duct principal cells were isolated from rat renal papilla by differential and Percoll density gradient centrifugation. Fluorescence quenching measurements showed that the isolated vesicles maintained a high, HgCl2-sensitive water permeability, consistent with the presence of vasopressin-sensitive water channels. They did not, however, exhibit ATP-dependent luminal acidification, nor any N-ethylmaleimide-sensitive ATPase activity, properties that are characteristic of most acidic endosomal compartments. Western blotting with specific antibodies showed that the 31- and 70-kD cytoplasmically oriented subunits of the vacuolar proton pump were not detectable in these apical endosomes from the papilla, whereas they were present in endosomes prepared in parallel from the cortex. In contrast, the 56-kD subunit of the proton pump was abundant in papillary endosomes, and was localized at the apical pole of principal cells by immunocytochemistry. Finally, an antibody that recognizes the 16-kD transmembrane subunit of oat tonoplast ATPase cross-reacted with a distinct 16-kD band in cortical endosomes, but no 16-kD band was detectable in endosomes from the papilla. This antibody also recognized a 16-kD band in affinity-purified H+ ATPase preparations from bovine kidney medulla. Therefore, early endosomes derived from the apical plasma membrane of collecting duct principal cells fail to acidify because they lack functionally important subunits of a vacuolar-type proton pumping ATPase, including the 16-kD transmembrane domain that serves as the proton-conducting channel, and the 70-kD cytoplasmic subunit that contains the ATPase catalytic site. This specialized, non-acidic early endosomal compartment appears to be involved primarily in the hormonally induced recycling of water channels to and from the apical plasma membrane of

  8. Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase

    PubMed Central

    1992-01-01

    Endocytic vesicles that are involved in the vasopressin-stimulated recycling of water channels to and from the apical membrane of kidney collecting duct principal cells were isolated from rat renal papilla by differential and Percoll density gradient centrifugation. Fluorescence quenching measurements showed that the isolated vesicles maintained a high, HgCl2-sensitive water permeability, consistent with the presence of vasopressin-sensitive water channels. They did not, however, exhibit ATP-dependent luminal acidification, nor any N-ethylmaleimide-sensitive ATPase activity, properties that are characteristic of most acidic endosomal compartments. Western blotting with specific antibodies showed that the 31- and 70-kD cytoplasmically oriented subunits of the vacuolar proton pump were not detectable in these apical endosomes from the papilla, whereas they were present in endosomes prepared in parallel from the cortex. In contrast, the 56-kD subunit of the proton pump was abundant in papillary endosomes, and was localized at the apical pole of principal cells by immunocytochemistry. Finally, an antibody that recognizes the 16-kD transmembrane subunit of oat tonoplast ATPase cross-reacted with a distinct 16-kD band in cortical endosomes, but no 16-kD band was detectable in endosomes from the papilla. This antibody also recognized a 16-kD band in affinity- purified H+ ATPase preparations from bovine kidney medulla. Therefore, early endosomes derived from the apical plasma membrane of collecting duct principal cells fail to acidify because they lack functionally important subunits of a vacuolar-type proton pumping ATPase, including the 16-kD transmembrane domain that serves as the proton-conducting channel, and the 70-kD cytoplasmic subunit that contains the ATPase catalytic site. This specialized, non-acidic early endosomal compartment appears to be involved primarily in the hormonally induced recycling of water channels to and from the apical plasma membrane of

  9. Mis-trafficking of endosomal urokinase proteins triggers drug-induced glioma nonapoptotic cell death.

    PubMed

    Pasupuleti, Nagarekha; Grodzki, Ana Cristina; Gorin, Fredric

    2015-04-01

    5-Benzylglycinyl-amiloride (UCD38B) is the parent molecule of a class of anticancer small molecules that kill proliferative and nonproliferative high-grade glioma cells by programmed necrosis. UCD38B intracellularly triggers endocytosis, causing 40-50% of endosomes containing proteins of the urokinase plasminogen activator system (uPAS) to relocate to perinuclear mitochondrial regions. Endosomal "mis-trafficking" caused by UCD38B in human glioma cells corresponds to mitochondrial depolarization with the release and nuclear translocation of apoptotis-inducing factor (AIF) followed by irreversible caspase-independent cell demise. High-content quantification of immunocytochemical colocalization studies identified that UCD38B treatment increased endocytosis of the urokinase plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitor-1 (PAI-1) into the early and late endosomes by 4- to 5-fold prior to AIF nuclear translocation and subsequent glioma demise. PAI-1 was found to comparably relocate with a subset of early and late endosomes in four different human glioma cell lines after UCD38B treatment, followed by caspase-independent, nonapoptotic cell death. Following UCD38B treatment, the receptor guidance protein LRP-1, which is required for endosomal recycling of the uPA receptor to the plasmalemma, remained abnormally associated with PAI-1 in early and late endosomes. The resultant aberrant endosomal recycling increased the total cellular content of the uPA-PAI-1 protein complex. Reversible inhibition of cellular endocytosis demonstrated that UCD38B bypasses the plasmalemmal uPAS complex and directly acts intracellularly to alter uPAS endocytotic trafficking. UCD38B represents a class of small molecules whose anticancer cytotoxicity is a consequence of causing the mis-trafficking of early and late endosomes containing uPAS cargo and leading to AIF-mediated necrotic cell death. Copyright © 2015 by The American Society for Pharmacology and

  10. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane

    PubMed Central

    Lauffer, Benjamin E.L.; Melero, Cristina; Temkin, Paul; Lei, Cai; Hong, Wanjin; Kortemme, Tanja

    2010-01-01

    Postsynaptic density 95/discs large/zonus occludens-1 (PDZ) domain–interacting motifs, in addition to their well-established roles in protein scaffolding at the cell surface, are proposed to act as cis-acting determinants directing the molecular sorting of transmembrane cargo from endosomes to the plasma membrane. This hypothesis requires the existence of a specific trans-acting PDZ protein that mediates the proposed sorting operation in the endosome membrane. Here, we show that sorting nexin 27 (SNX27) is required for efficient PDZ-directed recycling of the β2-adrenoreceptor (β2AR) from early endosomes. SNX27 mediates this sorting function when expressed at endogenous levels, and its recycling activity requires both PDZ domain–dependent recognition of the β2AR cytoplasmic tail and Phox homology (PX) domain–dependent association with the endosome membrane. These results identify a discrete role of SNX27 in PDZ-directed recycling of a physiologically important signaling receptor, and extend the concept of cargo-specific molecular sorting in the recycling pathway. PMID:20733053

  11. The phosphatase of regenerating liver 3 (PRL-3) promotes cell migration through Arf-activity-dependent stimulation of integrin α5 recycling.

    PubMed

    Krndija, Denis; Münzberg, Christin; Maass, Ulrike; Hafner, Margit; Adler, Guido; Kestler, Hans A; Seufferlein, Thomas; Oswald, Franz; von Wichert, Götz

    2012-08-15

    The formation of metastasis is one of the most critical problems in oncology. The phosphatase of regenerating liver 3 (PRL-3) is a new target in colorectal cancer, mediating metastatic behavior through a promigratory function. However, detailed explanations for this effect have remained elusive. Here we show that PRL-3 interacts with the ADP-ribosylation factor 1 (Arf1). PRL-3 colocalizes with Arf1 in an endosomal compartment and associates with transmembrane proteins such as the transferrin receptor and α5 integrins. PRL-3 interacts with Arf1 through a distinct motif and regulates activation of Arf1. PRL-3-mediated migration depends on expression and activation of Arf1 and is sensitive to treatment with Brefeldin A. We also demonstrate that PRL-3 modulates recycling of α5 integrins and that its phosphatase activity as well as Arf activation and compartmentalization with Arf1 are required for this effect. In summary our data identify a new function for PRL-3 and show that Arf1 is a new PRL-3-dependent mediator of enhanced migration of cancer cells through enhanced recycling of matrix receptors.

  12. Development of the consumption behavior that promotes sustainable society: Focusing on recycling of small waste home appliances

    NASA Astrophysics Data System (ADS)

    Ichinose, Takae

    2015-04-01

    Hiroshima University High School (HUHS) became the first UNESCO Associated School in Japan in 1953, and since then it has practiced ESD in various educational activities in all ranges of education. As a teacher of home economics, I have focused on consumer affairs and encouraged my students to consider what each of them can do as an individual consumer in order to create a sustainable society. In Japan, several acts related to consumer affairs have been enforced in recent years. "Act on Promotion of Consumer Education" was enforced in December 2012, and construction of the "Consumer Citizen Society" was proposed. It places emphasis not only on environmental concerns but also on the initiative of consumers and its influence on social and economic trends. In addition, "Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment" was enforced in April, 2013. It aims at protecting living environment and healthy development of the national economy by appropriate treatment of waste materials and effective use of resources. For my lessons on "food, clothing and shelter in relation to consumption behavior and environmental problems", I took up "the recycling of small waste home appliances" as the teaching materials to raise awareness on resources recycling. The purpose of the lessons is three-fold: (1) to make students aware of environmental load; (2) to deepen the understanding of the influence which excessive consumption has on developing countries; (3) to encourage the students to think positively toward the solution of the problems. I am currently practicing the lessons, and I have shown below the summary of the instruction. Lesson 1: Give a quiz based on the database on environmental label from Ministry of the Environment website. Then show a film on whereabouts of the hi-tech industrial waste (e-waste). After the film, show some everyday products for which mineral resources are used in order to impress the idea of "urban mine". Lesson 2: Show a

  13. Rab11a and its binding partners regulate the recycling of the β1-adrenergic receptor

    PubMed Central

    Gardner, Lidia A.; Hajjhussein, Hassan; Frederick, Katherine C.; Bahouth, Suleiman W.

    2010-01-01

    β1-adrenergic receptors (β1-AR) are internalized in response to agonists and then recycle back for another round of signaling. The serine 312 to alanine mutant of the β1-AR (S312A) is internalized but does not recycle. We determined that WT β1-AR and S312A were internalized initially to an early sorting compartment because they colocalized by >70% with the early endosomal markers rab5a and early endosomal antigen-1 (EEA1). Subsequently, the WT β1-AR trafficked via rab4a-expressing sorting endosomes to recycling endosomes. In recycling endosomes WT β1-AR were colocalized by >70% with the rab11 GTPase. S312A did not colocalize with either rab4a or rab11, instead they exited from early endosomes to late endosomes/lysosomes in which they were degraded. Rab11a played a prominent role in recycling of the WT β1-AR because dominant negative rab11a inhibited, while constitutively active rab11a accelerated the recycling of the β1-AR. Next, we determined the effect of each of the rab11-intercating proteins on trafficking of the WT β1-AR. The recycling of the β1-AR was markedly inhibited when myosin Vb, FIP2, FIP3 and rabphillin were knocked down. These data indicate that rab11a and a select group of its binding partners play a prominent role recycling of the human β1-AR. PMID:20727405

  14. The Arf6 GTPase-activating Proteins ARAP2 and ACAP1 Define Distinct Endosomal Compartments That Regulate Integrin α5β1 Traffic*

    PubMed Central

    Chen, Pei-Wen; Luo, Ruibai; Jian, Xiaoying; Randazzo, Paul A.

    2014-01-01

    Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs. PMID:25225293

  15. Rab Proteins and the Compartmentalization of the Endosomal System

    PubMed Central

    Wandinger-Ness, Angela; Zerial, Marino

    2014-01-01

    Of the approximately 70 human Rab GTPases, nearly three-quarters are involved in endocytic trafficking. Significant plasticity in endosomal membrane transport pathways is closely coupled to receptor signaling and Rab GTPase-regulated scaffolds. Here we review current literature pertaining to endocytic Rab GTPase localizations, functions, and coordination with regulatory proteins and effectors. The roles of Rab GTPases in (1) compartmentalization of the endocytic pathway into early, recycling, late, and lysosomal routes; (2) coordination of individual transport steps from vesicle budding to fusion; (3) effector interactomes; and (4) integration of GTPase and signaling cascades are discussed. PMID:25341920

  16. Hook1, microtubules, and Rab22: mediators of selective sorting of clathrin-independent endocytic cargo proteins on endosomes.

    PubMed

    Maldonado-Báez, Lymarie; Donaldson, Julie G

    2013-01-01

    Clathrin-independent endocytosis (CIE) mediates the internalization of many plasma membrane (PM) proteins involved in homeostasis, immune response, and signaling. CIE cargo molecules are internalized independent of clathrin, and dynamin, and modulated by the small G protein Arf6. After internalization the CIE cargo proteins either follow a default pathway of trafficking to lysosomes for degradation or follow a pathway where they are routed directly to the recycling endosomes for return to the PM. The selective endosomal sorting of molecules like CD44, CD98, and CD147, which are involved in cell-cell and cell-extracellular interactions, indicates that sorting mechanisms dictate the post-endocytic fate of CIE cargo proteins. In a recent study, we identified sorting signals that specify the endosomal trafficking of CIE cargo proteins and uncover a role for Hook1 as an endosomal cargo adaptor that routes CIE cargo to the recycling endosomes. Furthermore, we found that Hook1, microtubules, and Rab22a work in coordination to directly recycle the cargo and facilitate cell spreading. Here, we discuss our current view on the endosomal sorting of CIE cargo proteins and their molecular regulators.

  17. A proteomic approach to identify endosomal cargoes controlling cancer invasiveness

    PubMed Central

    Diaz-Vera, Jesica; Palmer, Sarah; Hernandez-Fernaud, Juan Ramon; Dornier, Emmanuel; Mitchell, Louise E.; Macpherson, Iain; Edwards, Joanne; Zanivan, Sara

    2017-01-01

    ABSTRACT We have previously shown that Rab17, a small GTPase associated with epithelial polarity, is specifically suppressed by ERK2 (also known as MAPK1) signalling to promote an invasive phenotype. However, the mechanisms through which Rab17 loss permits invasiveness, and the endosomal cargoes that are responsible for mediating this, are unknown. Using quantitative mass spectrometry-based proteomics, we have found that knockdown of Rab17 leads to a highly selective reduction in the cellular levels of a v-SNARE (Vamp8). Moreover, proteomics and immunofluorescence indicate that Vamp8 is associated with Rab17 at late endosomes. Reduced levels of Vamp8 promote transition between ductal carcinoma in situ (DCIS) and a more invasive phenotype. We developed an unbiased proteomic approach to elucidate the complement of receptors that redistributes between endosomes and the plasma membrane, and have pin-pointed neuropilin-2 (NRP2) as a key pro-invasive cargo of Rab17- and Vamp8-regulated trafficking. Indeed, reduced Rab17 or Vamp8 levels lead to increased mobilisation of NRP2-containing late endosomes and upregulated cell surface expression of NRP2. Finally, we show that NRP2 is required for the basement membrane disruption that accompanies the transition between DCIS and a more invasive phenotype. PMID:28062852

  18. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    PubMed Central

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  19. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 modulates endosomal pH and protein trafficking in astrocytes: Relevance to MLC disease pathogenesis

    PubMed Central

    Brignone, Maria S.; Lanciotti, Angela; Visentin, Sergio; De Nuccio, Chiara; Molinari, Paola; Camerini, Serena; Diociaiuti, Marco; Petrini, Stefania; Minnone, Gaetana; Crescenzi, Marco; Laudiero, Luisa Bracci; Bertini, Enrico; Petrucci, Tamara C.; Ambrosini, Elena

    2014-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1+, Rab5+) and recycling (Rab11+) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis. PMID:24561067

  20. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 modulates endosomal pH and protein trafficking in astrocytes: relevance to MLC disease pathogenesis.

    PubMed

    Brignone, Maria S; Lanciotti, Angela; Visentin, Sergio; De Nuccio, Chiara; Molinari, Paola; Camerini, Serena; Diociaiuti, Marco; Petrini, Stefania; Minnone, Gaetana; Crescenzi, Marco; Laudiero, Luisa Bracci; Bertini, Enrico; Petrucci, Tamara C; Ambrosini, Elena

    2014-06-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis. Copyright © 2014. Published by Elsevier Inc.

  1. Bicaudal-D binds clathrin heavy chain to promote its transport and augments synaptic vesicle recycling

    PubMed Central

    Li, Xuan; Kuromi, Hiroshi; Briggs, Laura; Green, David B; Rocha, João J; Sweeney, Sean T; Bullock, Simon L

    2010-01-01

    Cargo transport by microtubule-based motors is essential for cell organisation and function. The Bicaudal-D (BicD) protein participates in the transport of a subset of cargoes by the minus-end-directed motor dynein, although the full extent of its functions is unclear. In this study, we report that in Drosophila zygotic BicD function is only obligatory in the nervous system. Clathrin heavy chain (Chc), a major constituent of coated pits and vesicles, is the most abundant protein co-precipitated with BicD from head extracts. BicD binds Chc directly and interacts genetically with components of the pathway for clathrin-mediated membrane trafficking. Directed transport and subcellular localisation of Chc is strongly perturbed in BicD mutant presynaptic boutons. Functional assays show that BicD and dynein are essential for the maintenance of normal levels of neurotransmission specifically during high-frequency electrical stimulation and that this is associated with a reduced rate of recycling of internalised synaptic membrane. Our results implicate BicD as a new player in clathrin-associated trafficking processes and show a novel requirement for microtubule-based motor transport in the synaptic vesicle cycle. PMID:20111007

  2. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages

    PubMed Central

    Haldar, Malay; Kohyama, Masako; So, Alex Yick-Lun; Wumesh, KC; Wu, Xiaodi; Briseno, Carlos G.; Satpathy, Ansuman T.; Kretzer, Nicole M.; Rajasekaran, Namakkal Soorappan; Wang, Li; Egawa, Takeshi; Igarashi, Kazuhiko; Baltimore, David; Murphy, Theresa L.; Murphy, Kenneth M.

    2014-01-01

    Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor Spic is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80+VCAM1+ bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor Bach1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Furthermore, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insights into iron homeostasis. PMID:24630724

  3. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  4. A WASp-binding type II phosphatidylinositol 4-kinase required for actin polymerization-driven endosome motility

    PubMed Central

    Chang, Fanny S.; Han, Gil-Soo; Carman, George M.; Blumer, Kendall J.

    2005-01-01

    Endosomes in yeast have been hypothesized to move through the cytoplasm by the momentum gained after actin polymerization has driven endosome abscision from the plasma membrane. Alternatively, after abscission, ongoing actin polymerization on endosomes could power transport. Here, we tested these hypotheses by showing that the Arp2/3 complex activation domain (WCA) of Las17 (Wiskott-Aldrich syndrome protein [WASp] homologue) fused to an endocytic cargo protein (Ste2) rescued endosome motility in las17ΔWCA mutants, and that capping actin filament barbed ends inhibited endosome motility but not endocytic internalization. Motility therefore requires continual actin polymerization on endosomes. We also explored how Las17 is regulated. Endosome motility required the Las17-binding protein Lsb6, a type II phosphatidylinositol 4-kinase. Catalytically inactive Lsb6 interacted with Las17 and promoted endosome motility. Lsb6 therefore is a novel regulator of Las17 that mediates endosome motility independent of phosphatidylinositol 4-phosphate synthesis. Mammalian type II phosphatidylinositol 4-kinases may regulate WASp proteins and endosome motility. PMID:16216926

  5. A WASp-binding type II phosphatidylinositol 4-kinase required for actin polymerization-driven endosome motility.

    PubMed

    Chang, Fanny S; Han, Gil-Soo; Carman, George M; Blumer, Kendall J

    2005-10-10

    Endosomes in yeast have been hypothesized to move through the cytoplasm by the momentum gained after actin polymerization has driven endosome abscision from the plasma membrane. Alternatively, after abscission, ongoing actin polymerization on endosomes could power transport. Here, we tested these hypotheses by showing that the Arp2/3 complex activation domain (WCA) of Las17 (Wiskott-Aldrich syndrome protein [WASp] homologue) fused to an endocytic cargo protein (Ste2) rescued endosome motility in las17DeltaWCA mutants, and that capping actin filament barbed ends inhibited endosome motility but not endocytic internalization. Motility therefore requires continual actin polymerization on endosomes. We also explored how Las17 is regulated. Endosome motility required the Las17-binding protein Lsb6, a type II phosphatidylinositol 4-kinase. Catalytically inactive Lsb6 interacted with Las17 and promoted endosome motility. Lsb6 therefore is a novel regulator of Las17 that mediates endosome motility independent of phosphatidylinositol 4-phosphate synthesis. Mammalian type II phosphatidylinositol 4-kinases may regulate WASp proteins and endosome motility.

  6. Modulation of RAB5A early endosome trafficking in response to KRas mediated macropinocytic fluxes in pancreatic cancer cells.

    PubMed

    Teske, Christian; Schweitzer, Christine; Palamidessi, Andrea; Aust, Daniela E; Scita, Giorgio; Weitz, Jürgen; Welsch, Thilo

    2017-09-01

    KRAS is the key mutated gene in pancreatic ductal adenocarcinoma (PDAC). Emerging evidence indicates that KRas modulates endocytic uptake. The present study aimed to explore the fate of early endosomal trafficking under the control of KRas expression in PDAC. Surprisingly, PANC-1 cells lacking KRas exhibited significantly enlarged early and late endosomes containing internalized dextran and epidermal growth factor. Endosome enlargement was accompanied by reduced endosomal degradation. Both KRas silencing and lysosomal blockade caused an upregulation of the master regulator of early endosome biogenesis, RAB5A, which is likely responsible for the expansion of the early endosomal compartment, because simultaneous KRAS/RAB5A knockdown abolished endosome enlargement. In contrast, early endosome shrinkage was seen in MIA PaCa-2 cells despite RAB5A upregulation, indicating that distinct KRas-modulated responses operate in different metabolic subtypes of PDAC. In conclusion, mutant KRAS promotes endosomal degradation in PDAC cell lines, which is impaired by KRAS silencing. Moreover, KRAS silencing activates RAB5A upregulation and drives PDAC subtype-dependent modulation of endosome trafficking. Copyright © 2017. Published by Elsevier Inc.

  7. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport.

    PubMed

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-09-01

    The importance of endosome-to-trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51-VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport.

  8. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    PubMed Central

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  9. Arf6-dependent intracellular trafficking of Pasteurella multocida toxin and pH-dependent translocation from late endosomes.

    PubMed

    Repella, Tana L; Ho, Mengfei; Chong, Tracy P M; Bannai, Yuka; Wilson, Brenda A

    2011-03-01

    The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH(4)Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.

  10. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    PubMed Central

    Repella, Tana L.; Ho, Mengfei; Chong, Tracy P. M.; Bannai, Yuka; Wilson, Brenda A.

    2011-01-01

    The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity. PMID:22053287

  11. OCRL controls trafficking through early endosomes via PtdIns4,5P2-dependent regulation of endosomal actin

    PubMed Central

    Vicinanza, Mariella; Di Campli, Antonella; Polishchuk, Elena; Santoro, Michele; Di Tullio, Giuseppe; Godi, Anna; Levtchenko, Elena; De Leo, Maria Giovanna; Polishchuk, Roman; Sandoval, Lisette; Marzolo, Maria-Paz; De Matteis, Maria Antonietta

    2011-01-01

    Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P2 in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P2 and F-actin at the EEs is essential for exporting cargoes that transit this compartment. PMID:21971085

  12. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells

    PubMed Central

    Perez Bay, Andres E.; Schreiner, Ryan; Benedicto, Ignacio; Paz Marzolo, Maria; Banfelder, Jason; Weinstein, Alan M.; Rodriguez-Boulan, Enrique J.

    2016-01-01

    The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station. PMID:27180806

  13. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B.

    PubMed

    Niazy, Naima; Temme, Sebastian; Bocuk, Derya; Giesen, Carmen; König, Angelika; Temme, Nadine; Ziegfeld, Angelique; Gregers, Tone F; Bakke, Oddmund; Lang, Thorsten; Eis-Hübinger, Anna M; Koch, Norbert

    2017-04-01

    Herpes simplex virus (HSV)-encoded glycoprotein B (gB) is the most abundant protein in the viral envelope and promotes fusion of the virus with the cellular membrane. In the present study, we found that gB impacts on the major histocompatibility complex (MHC)-II pathway of antigen presentation by fostering homotypic fusion of early endosomes and trapping MHC-II molecules in these altered endosomes. By using an overexpression approach, we demonstrated that transient expression of gB induces giant vesicles of early endosomal origin, which contained Rab5, early endosomal antigen 1 (EEA1), and large amounts of MHC-II molecules [human leukocyte antigen (HLA)-DR, and HLA-DM], but no CD63. In HSV-1-infected and stably transfected cell lines that expressed lower amounts of gB, giant endosomes were not observed, but strongly increased amounts of HLA-DR and HLA-DM were found in EEA1(+) early endosomes. We used these giant vesicles as a model system and revealed that gB interacts with Rab5 and EEA1, and that gB-induced homotypic fusion of early endosomes to giant endosomes requires phosphatidylinositol 3-phosphate, the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and the cytosolic gB sequence (889)YTQVPN(894) We conclude that gB expression alters trafficking of molecules of the HLA-II processing pathway, which leads to increased retention of MHC-II molecules in early endosomal compartments, thereby intercepting antigen presentation.-Niazy, N., Temme, S., Bocuk, D., Giesen, C., König, A., Temme, N., Ziegfeld, A., Gregers, T. F., Bakke, O., Lang, T., Eis-Hübinger, A. M., Koch, N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B. © FASEB.

  14. Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids

    PubMed Central

    Melikov, Kamran; Pourmal, Sergei; Chernomordik, Leonid V.

    2010-01-01

    Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. PMID:20949067

  15. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination

    PubMed Central

    Frittoli, Emanuela; Palamidessi, Andrea; Marighetti, Paola; Confalonieri, Stefano; Bianchi, Fabrizio; Malinverno, Chiara; Mazzarol, Giovanni; Viale, Giuseppe; Martin-Padura, Ines; Garré, Massimilliano; Parazzoli, Dario; Mattei, Valentina; Cortellino, Salvatore; Bertalot, Giovanni

    2014-01-01

    The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5–dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and β3 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program. PMID:25049275

  16. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  17. GPCR sorting at multivesicular endosomes.

    PubMed

    Dores, Michael Robert; Trejo, JoAnn

    2015-01-01

    The lysosomal degradation of G protein-coupled receptors (GPCRs) is essential for receptor signaling and down regulation. Once internalized, GPCRs are sorted within the endocytic pathway and packaged into intraluminal vesicles (ILVs) that bud inward to form the multivesicular endosome (MVE). The mechanisms that control GPCR sorting and ILV formation are poorly understood. Quantitative strategies are important for evaluating the function of adaptor and scaffold proteins that regulate sorting of GPCRs at MVEs. In this chapter, we outline two strategies for the quantification and visualization of GPCR sorting into the lumen of MVEs. The first protocol utilizes a biochemical approach to assay the sorting of GPCRs in a population of cells, whereas the second strategy examines GPCR sorting in individual cells using immunofluorescence confocal microscopy. Combined, these assays can be used to establish the kinetics of activated GPCR lysosomal trafficking in response to specific ligands, as well as evaluate the contribution of endosomal adaptors to GPCR sorting at MVEs. The protocols presented in this chapter can be adapted to analyze GPCR sorting in a myriad of cell types and tissues, and expanded to analyze the mechanisms that regulate MVE sorting of other cargoes.

  18. They're plastic, but they recycle.

    PubMed

    Halpain, Shelley

    2006-12-07

    Dendritic spines form and grow during hippocampal long-term potentiation (LTP). In this issue of Neuron, a new study by Park et al. uses both serial reconstruction electron microscopy and time-lapse imaging to show that plasma membrane for such spine expansion is trafficked from recycling endosomes that reside locally at the spines themselves.

  19. α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3

    PubMed Central

    Paul, Nikki R.; Allen, Jennifer L.; Chapman, Anna; Morlan-Mairal, Maria; Zindy, Egor; Jacquemet, Guillaume; Fernandez del Ama, Laura; Ferizovic, Nermina; Green, David M.; Howe, Jonathan D.; Ehler, Elisabeth; Hurlstone, Adam

    2015-01-01

    Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5β1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5β1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo. PMID:26370503

  20. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida shred a disposed hard drive in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  1. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida accept items donated by employees in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  2. Fusion of Enveloped Viruses in Endosomes.

    PubMed

    White, Judith M; Whittaker, Gary R

    2016-06-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion-triggering mechanisms. A key take-home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Fusion of Enveloped Viruses in Endosomes

    PubMed Central

    White, Judith M.; Whittaker, Gary R.

    2016-01-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  4. Endosomal Trafficking of Nanoformulated Antiretroviral Therapy Facilitates Drug Particle Carriage and HIV Clearance

    PubMed Central

    Guo, Dongwei; Zhang, Gang; Wysocki, Tadeusz A.; Wysocki, Beata J.; Gelbard, Harris A.; Liu, Xin-Ming; McMillan, JoEllyn M.

    2014-01-01

    ABSTRACT Limitations of antiretroviral therapy (ART) include poor patient adherence, drug toxicities, viral resistance, and failure to penetrate viral reservoirs. Recent developments in nanoformulated ART (nanoART) could overcome such limitations. To this end, we now report a novel effect of nanoART that facilitates drug depots within intracellular compartments at or adjacent to the sites of the viral replication cycle. Poloxamer 407-coated nanocrystals containing the protease inhibitor atazanavir (ATV) were prepared by high-pressure homogenization. These drug particles readily accumulated in human monocyte-derived macrophages (MDM). NanoATV concentrations were ∼1,000 times higher in cells than those that could be achieved by the native drug. ATV particles in late and recycling endosome compartments were seen following pulldown by immunoaffinity chromatography with Rab-specific antibodies conjugated to magnetic beads. Confocal microscopy provided cross validation by immunofluorescent staining of the compartments. Mathematical modeling validated drug-endosomal interactions. Measures of reverse transcriptase activity and HIV-1 p24 levels in culture media and cells showed that such endosomal drug concentrations enhanced antiviral responses up to 1,000-fold. We conclude that late and recycling endosomes can serve as depots for nanoATV. The colocalization of nanoATV at endosomal sites of viral assembly and its slow release sped antiretroviral activities. Long-acting nanoART can serve as a drug carrier in both cells and subcellular compartments and, as such, can facilitate viral clearance. IMPORTANCE The need for long-acting ART is significant and highlighted by limitations in drug access, toxicity, adherence, and reservoir penetrance. We propose that targeting nanoformulated drugs to infected tissues, cells, and subcellular sites of viral replication may improve clinical outcomes. Endosomes are sites for human immunodeficiency virus assembly, and increasing ART

  5. Class III phosphoinositide 3-kinase/VPS34 and dynamin are critical for apical endocytic recycling.

    PubMed

    Carpentier, Sarah; N'Kuli, Francisca; Grieco, Giuseppina; Van Der Smissen, Patrick; Janssens, Virginie; Emonard, Hervé; Bilanges, Benoît; Vanhaesebroeck, Bart; Gaide Chevronnay, Héloïse P; Pierreux, Christophe E; Tyteca, Donatienne; Courtoy, Pierre J

    2013-08-01

    Recycling is a limiting step for receptor-mediated endocytosis. We first report three in vitro or in vivo evidences that class III PI3K/VPS34 is the key PI3K isoform regulating apical recycling. A substractive approach, comparing in Opossum Kidney (OK) cells a pan-class I/II/III PI3K inhibitor (LY294002) with a class I/II PI3K inhibitor (ZSTK474), suggested that class III PI3K/VPS34 inhibition induced selective apical endosome swelling and sequestration of the endocytic receptor, megalin/LRP-2, causing surface down-regulation. GFP-(FYVE)x2 overexpression to sequester PI(3)P caused undistinguishable apical endosome swelling. In mouse kidney proximal tubular cells, conditional Vps34 inactivation also led to vacuolation and intracellular megalin redistribution. We next report that removal of LY294002 from LY294002-treated OK cells induced a spectacular burst of recycling tubules and restoration of megalin surface pool. Acute triggering of recycling tubules revealed recruitment of dynamin-GFP and dependence of dynamin-GTPase, guidance directionality by microtubules, and suggested that a microfilamentous net constrained endosomal swelling. We conclude that (i) besides its role in endosome fusion, PI3K-III is essential for endosome fission/recycling; and (ii) besides its role in endocytic entry, dynamin also supports tubulation of recycling endosomes. The unleashing of recycling upon acute reversal of PI3K inhibition may help study its dynamics and associated machineries.

  6. Rab11 and Lysotracker Markers Reveal Correlation between Endosomal Pathways and Transfection Efficiency of Surface-Functionalized Cationic Liposome-DNA Nanoparticles.

    PubMed

    Majzoub, Ramsey N; Wonder, Emily; Ewert, Kai K; Kotamraju, Venkata Ramana; Teesalu, Tambet; Safinya, Cyrus R

    2016-07-07

    Cationic liposomes (CLs) are widely studied as carriers of DNA and short-interfering RNA for gene delivery and silencing, and related clinical trials are ongoing. Optimization of transfection efficiency (TE) requires understanding of CL-nucleic acid nanoparticle (NP) interactions with cells, NP endosomal pathways, endosomal escape, and events leading to release of active nucleic acid from the lipid carrier. Here, we studied endosomal pathways and TE of surface-functionalized CL-DNA NPs in PC-3 prostate cancer cells displaying overexpressed integrin and neuropilin-1 receptors. The NPs contained RGD-PEG-lipid or RPARPAR-PEG-lipid, targeting integrin, and neuropilin-1 receptors, respectively, or control PEG-lipid. Fluorescence colocalization using Rab11-GFP and Lysotracker enabled simultaneous colocalization of NPs with recycling endosome (Rab11) and late endosome/lysosome (Rab7/Lysotracker) pathways at increasing mole fractions of pentavalent MVL5 (+5 e) at low (10 mol %), high (50 mol %), and very high (70 mol %) membrane charge density (σM). For these cationic NPs (lipid/DNA molar charge ratio, ρchg = 5), the influence of membrane charge density on pathway selection and transfection efficiency is similar for both peptide-PEG NPs, although, quantitatively, the effect is larger for RGD-PEG compared to RPARPAR-PEG NPs. At low σM, peptide-PEG NPs show preference for the recycling endosome over the late endosome/lysosome pathway. Increases in σM, from low to high, lead to decreases in colocalization with recycling endosomes and simultaneous increases in colocalization with the late endosome/lysosome pathway. Combining colocalization and functional TE data at low and high σM shows that higher TE correlates with a larger fraction of NPs colocalized with the late endosome/lysosome pathway while lower TE correlates with a larger fraction of NPs colocalized with the Rab11 recycling pathway. The findings lead to a hypothesis that increases in σM, leading to enhanced

  7. A novel choline cotransporter sequestration compartment in cholinergic neurons revealed by selective endosomal ablation.

    PubMed

    Ivy, Michael T; Newkirk, Robert F; Wang, Yilun; Townsel, James G

    2010-03-01

    The sodium-dependent, high affinity choline transporter - choline cotransporter - (ChCoT, aka: cho-1, CHT1, CHT) undergoes constitutive and regulated trafficking between the plasma membrane and cytoplasmic compartments. The pathways and regulatory mechanisms of this trafficking are not well understood. We report herein studies involving selective endosomal ablation to further our understanding of the trafficking of the ChCoT. Selective ablation of early sorting and recycling endosomes resulted in a decrease of approximately 75% of [3H]choline uptake and approximately 70% of [3H]hemicholinium-3 binding. Western blot analysis showed that ablation produced a similar decrease in ChCoTs in the plasma membrane subcellular fraction. The time frame for this loss was approximately 2 h which has been shown to be the constitutive cycling time for ChCoTs in this tissue. Ablation appears to be dependent on the intracellular cycling of transferrin-conjugated horseradish peroxidase and the selective deposition of transferrin-conjugated horseradish peroxidase in early endosomes, both sorting and recycling. Ablated brain slices retained their capacity to recruit via regulated trafficking ChCoTs to the plasma membrane. This recruitment of ChCoTs suggests that the recruitable compartment is distinct from the early endosomes. It will be necessary to do further studies to identify the novel sequestration compartment supportive of the ChCoT regulated trafficking.

  8. Endosome-based protein trafficking and Ca2+ homeostasis in the heart

    PubMed Central

    Curran, Jerry; Makara, Michael A.; Mohler, Peter J.

    2015-01-01

    The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart. In the cardiomyocyte, these pathways are essential for the regulation of Ca2+, both at the level of the plasma membrane, but also in local cellular domains. One intracellular pathway often overlooked in relation to cardiovascular Ca2+ regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. As the endosomal system acts to regulate the expression and localization of membrane proteins central for cardiac Ca2+ regulation, understanding the in vivo function of this system in the heart is critical. This review will focus on endosome-based protein trafficking in the heart in both health and disease with special emphasis for the role of endocytic regulatory proteins, C-terminal Eps15 homology domain-containing proteins (EHDs). PMID:25709583

  9. Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments

    PubMed Central

    Caswell, Patrick T.; Chan, May; Lindsay, Andrew J.; McCaffrey, Mary W.; Boettiger, David; Norman, Jim C.

    2008-01-01

    Here we show that blocking the adhesive function of αvβ3 integrin with soluble RGD ligands, such as osteopontin or cilengitide, promoted association of Rab-coupling protein (RCP) with α5β1 integrin and drove RCP-dependent recycling of α5β1 to the plasma membrane and its mobilization to dynamic ruffling protrusions at the cell front. These RCP-driven changes in α5β1 trafficking led to acquisition of rapid/random movement on two-dimensional substrates and to a marked increase in fibronectin-dependent migration of tumor cells into three-dimensional matrices. Recycling of α5β1 integrin did not affect its regulation or ability to form adhesive bonds with substrate fibronectin. Instead, α5β1 controlled the association of EGFR1 with RCP to promote the coordinate recycling of these two receptors. This modified signaling downstream of EGFR1 to increase its autophosphorylation and activation of the proinvasive kinase PKB/Akt. We conclude that RCP provides a scaffold that promotes the physical association and coordinate trafficking of α5β1 and EGFR1 and that this drives migration of tumor cells into three-dimensional matrices. PMID:18838556

  10. Endosome-lysosomes and neurodegeneration.

    PubMed

    Mayer, R J; Tipler, C; Laszlo, L; Arnold, J; Lowe, J; Landon, M

    1994-01-01

    A number of the major human and animal neurodegenerative diseases, such as Alzheimer's disease and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins. Although our knowledge concerning these diseases is increasing, they remain largely untreatable. Recently, attention has focussed on the mechanisms of production of different types of amyloid and the likely involvement within cells of acid compartments called endosome-lysosomes. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials. These subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Common features of the disease processes give new direction to therapeutic intervention.

  11. In vitro fusion of endocytic vesicles: effects of reagents that alter endosomal pH.

    PubMed

    Pless, D D; Wellner, R B

    1996-07-01

    Ricin, a plant toxin that binds to galactose-terminated glycoproteins and glycolipids on the cell surface, is internalized into endosomes before reaching the cytosol where it exerts its toxic activity. Fusion of early endosomes containing ricin or transferrin was demonstrated by using postnuclear supernatant fractions from K-562 cells. For both ligands, fusion depended on time, temperature, and ATP and was blocked by preincubation with N-ethylmaleimide. Some reagents that increase endosomal pH, the ionophores monensin and nigericin and the weak base chloroquine, stimulated the rate of fusion. However, bafilomycin A1, a specific inhibitor of vacuolar H(+)-ATPases, did not alter the rate of fusion. Moreover, it reduced or eliminated stimulation caused by monensin, nigericin, or chloroquine. Thus, the increased rate of fusion did not correlate with the higher lumenal pH of the endosome. The results suggest instead that fusion was stimulated by reagents that promoted accumulation of cations within the vesicles.

  12. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida look over appliances donated for reuse or recycling in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  13. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    A sign tells NASA Kennedy Space Center employees they have come to the right place to donate items for reuse or recycling in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more. The two-day event was sponsored by Kennedy's Sustainability team.

  14. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida set up giveaway items and sort through donations for reuse or recycling in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more. The two-day event was sponsored by Kennedy's Sustainability team.

  15. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida sort through items donated for reuse or recycling in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  16. Endoplasmic reticulum–endosome contact increases as endosomes traffic and mature

    PubMed Central

    Friedman, Jonathan R.; DiBenedetto, Jared R.; West, Matthew; Rowland, Ashley A.; Voeltz, Gia K.

    2013-01-01

    The endosomal pathway is responsible for plasma membrane cargo uptake, sorting, and, in many cases, lysosome targeting. Endosome maturation is complex, requiring proper spatiotemporal recruitment of factors that regulate the size, maturity, and positioning of endosomal compartments. In animal cells, it also requires trafficking of endosomes on microtubules. Recent work has revealed the presence of contact sites between some endosomes and the endoplasmic reticulum (ER). Although these contact sites are believed to have multiple functions, the frequency, dynamics, and physical attributes of these contacts are poorly understood. Here we use high-resolution three-dimensional electron microscopy to reveal that ER tubules wrap around endosomes and find that both organelles contact microtubules at or near membrane contact sites. As endosomes traffic, they remain bound to the ER, which causes the tubular ER to rearrange its structure around dynamic endosomes at contact sites. Finally, as endosomes transition through steps of maturation, they become more tightly associated with the ER. The major implication of these results is that endosomes mature and traffic while coupled to the ER membrane rather than in isolation. PMID:23389631

  17. Cytoplasmic dynein and early endosome transport

    PubMed Central

    Xiang, Xin; Qiu, Rongde; Yao, Xuanli; Arst, Herbert N.; Peñalva, Miguel A.; Zhang, Jun

    2015-01-01

    Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction depends on FHIP and FTS. PMID:26001903

  18. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells

    PubMed Central

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A.

    2015-01-01

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide–MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells. PMID:26240324

  19. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells.

    PubMed

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A

    2015-08-18

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.

  20. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway

    PubMed Central

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-01-01

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation. PMID:27411398

  1. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway.

    PubMed

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-07-14

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5(GTP)-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation.

  2. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling

    PubMed Central

    Bai, Zhiyong; Grant, Barth D.

    2015-01-01

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling. PMID:25775511

  3. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling.

    PubMed

    Bai, Zhiyong; Grant, Barth D

    2015-03-24

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.

  4. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus

    SciTech Connect

    Mesa, Rosana; Magadan, Javier; Barbieri, Alejandro; Lopez, Cecilia; Stahl, Philip D.; Mayorga, Luis S. . E-mail: lmayorga@fcm.uncu.edu.ar

    2005-04-01

    The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN)

  5. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    PubMed

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  6. S. 2408: A Bill to establish a system for labeling of plastic resin products, and to promote recycling of plastics and use of degradable plastics. Introduced in the Senate of the United States, One Hundredth First Congress, Second Session, April 3, 1990

    SciTech Connect

    Not Available

    1990-01-01

    S. 2408 is a bill to establish a system for labeling of plastic resin products, and to promote recycling of plastics and use of degradable plastics. The objective is reduction of solid wastes through recycling and use of biodegradable plastics.

  7. Density-Dependent Recycling Promotes the Long-Term Survival of Bacterial Populations during Periods of Starvation

    PubMed Central

    Takano, Sotaro; Pawlowska, Bogna J.; Gudelj, Ivana

    2017-01-01

    ABSTRACT The amount of natural resources in the Earth’s environment is in flux, which can trigger catastrophic collapses of ecosystems. How populations survive under nutrient-poor conditions is a central question in ecology. Curiously, some bacteria persist for a long time in nutrient-poor environments. Although this survival may be accomplished through cell death and the recycling of dead cells, the importance of these processes and the mechanisms underlying the survival of the populations have not been quantitated. Here, we use microbial laboratory experiments and mathematical models to demonstrate that death and recycling are essential activities for the maintenance of cell survival. We also show that the behavior of the survivors is governed by population density feedback, wherein growth is limited not only by the available resources but also by the population density. The numerical simulations suggest that population density-dependent recycling could be an advantageous behavior under starvation conditions. PMID:28174316

  8. Factors influencing households' participation in recycling.

    PubMed

    Vicente, Paula; Reis, Elizabeth

    2008-04-01

    The success of a recycling programme depends on the active and sustained participation of citizens in the correct separation and collection of recyclable waste. An effective study of strategies aimed at augmenting people's involvement in recycling involves understanding which factors influence the decision to co-operate with a recycling programme. This research investigates the influence of attitudes, incentives, presence of children in household and information through direct media, on households' participation in recycling. The results suggest that positive attitudes toward recycling and information are important factors in explaining recycling participation. Some guidelines that may be considered in future communication and intervention strategies designed to promote recycling participation are discussed.

  9. Opposing Activities of the Snx3-Retromer Complex and ESCRT Proteins Mediate Regulated Cargo Sorting at a Common Endosome

    PubMed Central

    Strochlic, Todd I.; Schmiedekamp, Briana C.; Lee, Jacqueline; Katzmann, David J.

    2008-01-01

    Endocytosed proteins are either delivered to the lysosome to be degraded or are exported from the endosomal system and delivered to other organelles. Sorting of the Saccharomyces cerevisiae reductive iron transporter, composed of the Fet3 and Ftr1 proteins, in the endosomal system is regulated by available iron; in iron-starved cells, Fet3-Ftr1 is sorted by Snx3/Grd19 and retromer into a recycling pathway that delivers it back to the plasma membrane, but when starved cells are exposed to iron, Fet3-Ftr1 is targeted to the lysosome-like vacuole and is degraded. We report that iron-induced endocytosis of Fet3-Ftr1 is independent of Fet3-Ftr1 ubiquitylation, and after endocytosis, degradation of Fet3-Ftr1 is mediated by the multivesicular body (MVB) sorting pathway. In mutant cells lacking any component of the ESCRT protein-dependent MVB sorting machinery, the Rsp5 ubiquitin ligase, or in wild-type cells expressing Fet3-Ftr1 lacking cytosolic lysyl ubiquitin acceptor sites, Fet3-Ftr1 is constitutively sorted into the recycling pathway independent of iron status. In the presence and absence of iron, Fet3-Ftr1 transits an endosomal compartment where a subunit of the MVB sorting receptor (Vps27), Snx3/Grd19, and retromer proteins colocalize. We propose that this endosome is where Rsp5 ubiquitylates Fet3-Ftr1 and where the recycling and degradative pathways diverge. PMID:18768754

  10. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons.

    PubMed

    Schwenk, Benjamin M; Hartmann, Hannelore; Serdaroglu, Alperen; Schludi, Martin H; Hornburg, Daniel; Meissner, Felix; Orozco, Denise; Colombo, Alessio; Tahirovic, Sabina; Michaelsen, Meike; Schreiber, Franziska; Haupt, Simone; Peitz, Michael; Brüstle, Oliver; Küpper, Clemens; Klopstock, Thomas; Otto, Markus; Ludolph, Albert C; Arzberger, Thomas; Kuhn, Peer-Hendrik; Edbauer, Dieter

    2016-11-02

    Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased β2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  11. Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking

    PubMed Central

    Sobo, Komla; Le Blanc, Isabelle; Luyet, Pierre-Philippe; Fivaz, Marc; Ferguson, Charles; Parton, Robert G.; Gruenberg, Jean; van der Goot, F. Gisou

    2007-01-01

    Background Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. Methodology/Principal Findings Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2–3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. Conclusions/Significance These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation. PMID:17786222

  12. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking.

    PubMed

    Sobo, Komla; Le Blanc, Isabelle; Luyet, Pierre-Philippe; Fivaz, Marc; Ferguson, Charles; Parton, Robert G; Gruenberg, Jean; van der Goot, F Gisou

    2007-09-05

    Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2-3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation.

  13. Neuropilin-2 Regulates Endosome Maturation and EGFR trafficking to Support Cancer Cell Pathobiology

    PubMed Central

    Dutta, Samikshan; Roy, Sohini; Polavaram, Navatha Shree; Stanton, Marissa J.; Zhang, Heyu; Bhola, Tanvi; Hönscheid, Pia; Donohue, Terrence M.; Band, Hamid; Batra, Surinder K.; Muders, Michael H.; Datta, Kaustubh

    2015-01-01

    Neuropilin-2 (NRP2) is a non-tyrosine kinase receptor frequently overexpressed in various malignancies where it has been implicated in promoting many protumorigenic behaviors, such as imparting therapeutic resistance to metastatic cancer cells. Here, we report a novel function of NRP2 as a regulator of endocytosis, which is enhanced in cancer cells and is often associated with increased metastatic potential and drug resistance. We found that NRP2 depletion in human prostate and pancreatic cancer cells resulted in the accumulation of EEA1/Rab5-positive early endosomes concomitant with a decrease in Rab7-positive late endosomes, suggesting a delay in early-to-late endosome maturation. NRP2 depletion also impaired the endocytic transport of cell surface epidermal growth factor receptor (EGFR), arresting functionally active EGFR in endocytic vesicles that consequently led to aberrant ERK activation and cell death. Mechanistic investigations revealed that WD-repeat and FYVE-domain-containing protein 1 (WDFY1) functioned downstream of NRP2 to promote endosome maturation, thereby influencing the endosomal trafficking of EGFR and the formation of autolysosomes responsible for the degradation of internalized cargo. Overall, our results indicate that the NRP2/WDFY1 axis is required for maintaining endocytic activity in cancer cells, which supports their oncogenic activities and confers drug resistance. Therefore, therapeutically targeting endocytosis may represent an attractive strategy to selectively target cancer cells in multiple malignancies. PMID:26560516

  14. Neuropilin-2 Regulates Endosome Maturation and EGFR Trafficking to Support Cancer Cell Pathobiology.

    PubMed

    Dutta, Samikshan; Roy, Sohini; Polavaram, Navatha S; Stanton, Marissa J; Zhang, Heyu; Bhola, Tanvi; Hönscheid, Pia; Donohue, Terrence M; Band, Hamid; Batra, Surinder K; Muders, Michael H; Datta, Kaustubh

    2016-01-15

    Neuropilin-2 (NRP2) is a non-tyrosine kinase receptor frequently overexpressed in various malignancies, where it has been implicated in promoting many protumorigenic behaviors, such as imparting therapeutic resistance to metastatic cancer cells. Here, we report a novel function of NRP2 as a regulator of endocytosis, which is enhanced in cancer cells and is often associated with increased metastatic potential and drug resistance. We found that NRP2 depletion in human prostate and pancreatic cancer cells resulted in the accumulation of EEA1/Rab5-positive early endosomes concomitant with a decrease in Rab7-positive late endosomes, suggesting a delay in early-to-late endosome maturation. NRP2 depletion also impaired the endocytic transport of cell surface EGFR, arresting functionally active EGFR in endocytic vesicles that consequently led to aberrant ERK activation and cell death. Mechanistic investigations revealed that WD-repeat- and FYVE-domain-containing protein 1 (WDFY1) functioned downstream of NRP2 to promote endosome maturation, thereby influencing the endosomal trafficking of EGFR and the formation of autolysosomes responsible for the degradation of internalized cargo. Overall, our results indicate that the NRP2/WDFY1 axis is required for maintaining endocytic activity in cancer cells, which supports their oncogenic activities and confers drug resistance. Therefore, therapeutically targeting endocytosis may represent an attractive strategy to selectively target cancer cells in multiple malignancies. ©2015 American Association for Cancer Research.

  15. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.

    PubMed

    Wang, Chensu; Zhao, Tian; Li, Yang; Huang, Gang; White, Michael A; Gao, Jinming

    2016-09-06

    Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH4Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes.

  16. Localization and functional requirement of yeast Na+/H+ exchanger, Nhx1p, in the endocytic and protein recycling pathway.

    PubMed

    Kojima, Ai; Toshima, Junko Y; Kanno, Chisa; Kawata, Chie; Toshima, Jiro

    2012-02-01

    Acidification of the lumen of intracellular organelles is important for post-transcriptional processing, endosomal maturation, receptor recycling, and vesicle trafficking, being regulated by an intricate balance between H+ influx through vacuolar-type H+-ATPase and efflux through ion channels and transporters, such as the Na+/H+ exchanger (NHE). The eukaryotic NHE family comprises two major subgroups, one residing in the plasma membrane and the other in intracellular organelles. While mammalian intracellular NHE isoforms are localized to various organelles, including the mid-trans-Golgi compartments, early and late endosomes, and recycling endosomes, Nhx1p, the sole NHE in yeast, has been reported to be localized predominantly to the late endosomal/prevacuolar compartment. Here, using live cell imaging, we demonstrated that Nhx1p is localized to the trans-Golgi network compartments, late endosomes, and recycling endosomes, similar to mammalian intracellular NHE isoforms. Loss of Nhx1p led to accumulation of components of the retromer and endosomal sorting complex required for transport complexes, but not trans-Golgi compartments, in aberrant prevacuolar compartments. Importantly, Nhx1p was also required for recycling of the plasma membrane vesicle SNAP receptor Snc1p. These observations suggest that Nhx1p plays an important role in regulation of the luminal pH of various intracellular organelles, and that this regulation is critical for the protein recycling pathway as well as the endocytic pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex.

    PubMed

    Jacquemet, Guillaume; Green, David M; Bridgewater, Rebecca E; von Kriegsheim, Alexander; Humphries, Martin J; Norman, Jim C; Caswell, Patrick T

    2013-09-16

    Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.

  18. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1–IQGAP1 complex

    PubMed Central

    Jacquemet, Guillaume; Green, David M.; Bridgewater, Rebecca E.; von Kriegsheim, Alexander; Humphries, Martin J.; Norman, Jim C.

    2013-01-01

    Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)–dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM. PMID:24019536

  19. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes.

    PubMed

    Saint-Pol, Agnès; Yélamos, Belén; Amessou, Mohamed; Mills, Ian G; Dugast, Marc; Tenza, Danièle; Schu, Peter; Antony, Claude; McMahon, Harvey T; Lamaze, Christophe; Johannes, Ludger

    2004-04-01

    Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.

  20. Measuring interactions of FERM domain-containing sorting Nexin proteins with endosomal lipids and cargo molecules.

    PubMed

    Ghai, Rajesh; Mobli, Mehdi; Collins, Brett M

    2014-01-01

    Endosomal recycling pathways regulate cellular homeostasis via the transport of internalized material back to the plasma membrane. Phox homology (PX) and band 4.1/ezrin/radixin/moesin (FERM) domain-containing proteins are a recently identified subfamily of PX proteins that are critical for the recycling of numerous transmembrane cargo molecules. The PX-FERM subfamily includes three endosome-associated proteins called sorting nexin (SNX) 17, SNX27, and SNX31. These are modular peripheral membrane proteins that act as central scaffolds mediating protein-lipid interactions, cargo binding, and regulatory protein recruitment. This chapter outlines the methodology employed to classify the PX-FERM family using combined bioinformatics and structure prediction tools. It further details the application of isothermal titration calorimetry and nuclear magnetic resonance spectroscopy to understand the mechanisms that underpin their endosomal membrane recruitment and subsequent recognition of NPxY/NxxY peptide sorting motifs, present in many cargo receptors and required for their trafficking. It is now increasingly recognized that the formation of a stable trafficking complex is dictated by a multitude of coordinated protein-protein and protein-lipid interactions, and the approaches highlighted here will be useful for future studies aimed at understanding these biomolecular interactions in greater detail.

  1. Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1

    PubMed Central

    Maldonado-Báez, Lymarie; Cole, Nelson B.; Krämer, Helmut

    2013-01-01

    Many plasma membrane (PM) proteins enter cells nonselectively through clathrin-independent endocytosis (CIE). Here, we present evidence that cytoplasmic sequences in three CIE cargo proteins—CD44, CD98, and CD147—were responsible for the rapid sorting of these proteins into endosomal tubules away from endosomes associated with early endosomal antigen 1 (EEA1). We found that Hook1, a microtubule- and cargo-tethering protein, recognized the cytoplasmic tail of CD147 to help sort it and CD98 into Rab22a-dependent tubules associated with recycling. Depletion of Hook1 from cells altered trafficking of CD44, CD98, and CD147 toward EEA1 compartments and impaired the recycling of CD98 back to the PM. In contrast, another CIE cargo protein, major histocompatibility complex class I, which normally traffics to EEA1 compartments, was not affected by depletion of Hook1. Loss of Hook1 also led to an inhibition of cell spreading, implicating a role for Hook1 sorting of specific CIE cargo proteins away from bulk membrane and back to the PM. PMID:23589492

  2. Hanford recycling

    SciTech Connect

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  3. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Computers, monitors, vacuum cleaners and other electronics have been donated by employees at NASA's Kennedy Space Center in Florida in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more. The two-day event was sponsored by Kennedy's Sustainability team.

  4. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    A sign points the way to the electronic waste collection site, where NASA Kennedy Space Center employees donated computers, monitors, vacuum cleaners and other electronics in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more. The two-day event was sponsored by Kennedy's Sustainability team.

  5. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida take a bin of disposed hard drives to be shredded in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  6. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Computers, monitors, vacuum cleaners and other electronics have been donated by employees at NASA's Kennedy Space Center in Florida in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  7. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    PubMed

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  8. Clathrin regenerates synaptic vesicles from endosomes

    PubMed Central

    Watanabe, Shigeki; Trimbuch, Thorsten; Camacho-Pérez, Marcial; Rost, Benjamin R.; Brokowski, Bettina; Söhl-Kielczynski, Berit; Felies, Annegret; Davis, M. Wayne; Rosenmund, Christian; Jorgensen, Erik M.

    2014-01-01

    Summary Ultrafast endocytosis can retrieve a single large endocytic vesicle as fast as 50-100 ms after synaptic vesicle fusion. However, the fate of the large endocytic vesicles is not known. Here we demonstrate that these vesicles transition to a synaptic endosome about one second after stimulation. The endosome is resolved into coated vesicles after 3 seconds, which in turn become small-diameter synaptic vesicles 5-6 seconds after stimulation. We disrupted clathrin function using RNAi and found that clathrin is not required for ultrafast endocytosis but is required to generate synaptic vesicles from the endosome. Ultrafast endocytosis fails when actin polymerization is disrupted, or when neurons are stimulated at room temperature instead of physiological temperature. In the absence of ultrafast endocytosis, synaptic vesicles are retrieved directly from the plasma membrane by clathrin-mediated endocytosis. These results explain in large part discrepancies among published experiments concerning the role of clathrin in synaptic vesicle endocytosis. PMID:25296249

  9. Clathrin and AP1B: Key roles in basolateral trafficking through trans-endosomal routes

    PubMed Central

    Gonzalez, Alfonso; Rodriguez-Boulan, Enrique

    2013-01-01

    Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered. PMID:19854182

  10. dAcsl, the Drosophila ortholog of acyl-CoA synthetase long-chain family member 3 and 4, inhibits synapse growth by attenuating bone morphogenetic protein signaling via endocytic recycling.

    PubMed

    Liu, Zhihua; Huang, Yan; Hu, Wen; Huang, Sheng; Wang, Qifu; Han, Junhai; Zhang, Yong Q

    2014-02-19

    Fatty acid metabolism plays an important role in brain development and function. Mutations in acyl-CoA synthetase long-chain family member 4 (ACSL4), which converts long-chain fatty acids to acyl-CoAs, result in nonsyndromic X-linked mental retardation. ACSL4 is highly expressed in the hippocampus, a structure critical for learning and memory. However, the underlying mechanism by which mutations of ACSL4 lead to mental retardation remains poorly understood. We report here that dAcsl, the Drosophila ortholog of ACSL4 and ACSL3, inhibits synaptic growth by attenuating BMP signaling, a major growth-promoting pathway at neuromuscular junction (NMJ) synapses. Specifically, dAcsl mutants exhibited NMJ overgrowth that was suppressed by reducing the doses of the BMP pathway components, accompanied by increased levels of activated BMP receptor Thickveins (Tkv) and phosphorylated mothers against decapentaplegic (Mad), the effector of the BMP signaling at NMJ terminals. In addition, Rab11, a small GTPase involved in endosomal recycling, was mislocalized in dAcsl mutant NMJs, and the membrane association of Rab11 was reduced in dAcsl mutant brains. Consistently, the BMP receptor Tkv accumulated in early endosomes but reduced in recycling endosomes in dAcsl mutant NMJs. dAcsl was also required for the recycling of photoreceptor rhodopsin in the eyes, implying a general role for dAcsl in regulating endocytic recycling of membrane receptors. Importantly, expression of human ACSL4 rescued the endocytic trafficking and NMJ phenotypes of dAcsl mutants. Together, our results reveal a novel mechanism whereby dAcsl facilitates Rab11-dependent receptor recycling and provide insights into the pathogenesis of ACSL4-related mental retardation.

  11. Refractory recycling

    SciTech Connect

    Oxnard, R.T. )

    1994-10-01

    Businesses are run by profit and opportunity. Businesses will not recycle or reduce waste unless it is profitable, mandatory or perceived to be either in the future. Pressure from investors, government, consumers and accountants will increase the importance of recycling of refractories. The history and trends of refractory recycling and a method for auditing waste is discussed in this article.

  12. Coming or going? Un-BLOC-ing delivery and recycling pathways during melanosome maturation

    PubMed Central

    Cutler, Daniel F.

    2016-01-01

    Melanosome biogenesis requires successive waves of cargo delivery from endosomes to immature melanosomes, coupled with recycling of the trafficking machinery. Dennis et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201605090) report differential roles for BLOC-1 and BLOC-3 complexes in delivery and recycling of melanosomal biogenetic components, supplying directionality to melanosome maturation. PMID:27482050

  13. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  14. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  15. Retrogradely trafficked TrkA endosomes signal locally within dendrites to maintain sympathetic neuron synapses

    PubMed Central

    Lehigh, Kathryn M.; West, Katherine M.; Ginty, David D.

    2017-01-01

    Summary Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies also translocate into dendrites, where they are signaling-competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially-confined inhibition of TrkA kinase activity, we found that distal axon-derived TrkA signaling endosomes are necessary specifically within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes. PMID:28380365

  16. Association of myosin I alpha with endosomes and lysosomes in mammalian cells.

    PubMed

    Raposo, G; Cordonnier, M N; Tenza, D; Menichi, B; Dürrbach, A; Louvard, D; Coudrier, E

    1999-05-01

    Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIalpha) is associated with endosomes and lysosomes. We show that the overproduction of MMIalpha or the production of nonfunctional truncated MMIalpha affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIalpha, promote the dissociation of MMIalpha from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIalpha might therefore be involved in membrane trafficking occurring between endosomes and lysosomes.

  17. Association of Myosin I Alpha with Endosomes and Lysosomes in Mammalian Cells

    PubMed Central

    Raposo, Graça; Cordonnier, Marie-Neige; Tenza, Danièle; Menichi, Bernadette; Dürrbach, Antoine; Louvard, Daniel; Coudrier, Evelyne

    1999-01-01

    Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIα) is associated with endosomes and lysosomes. We show that the overproduction of MMIα or the production of nonfunctional truncated MMIα affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIα, promote the dissociation of MMIα from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIα might therefore be involved in membrane trafficking occurring between endosomes and lysosomes. PMID:10233157

  18. PKD Controls αvβ3 Integrin Recycling and Tumor Cell Invasive Migration Through its Substrate Rabaptin-5

    PubMed Central

    Christoforides, Claudine; Rainero, Elena; Brown, Kristin K.; Norman, Jim C.; Toker, Alex

    2012-01-01

    Summary Integrin recycling is critical for cell migration. Protein Kinase D (PKD) mediates signals from the platelet-derived growth factor-receptor (PDGF-R) to control αvβ3 integrin recycling. We now show that Rabaptin-5, a Rab5 effector in endosomal membrane fusion, is a PKD substrate. PKD phosphorylates Rabaptin-5 at Ser407 and this is both necessary and sufficient for PDGF-dependent short-loop recycling of αvβ3, which in turn inhibits α5β1 integrin recycling. Rab4, but not Rab5, interacts with phosphorylated Rabaptin-5 toward the front of migrating cells to promote delivery of αvβ3 to the leading edge, thereby driving persistent cell motility and invasion that is dependent on this integrin. Consistently, disruption of Rabaptin-5 Ser407 phosphorylation reduces persistent cell migration in 2D and αvβ3-dependent invasion. Conversely, invasive migration that is dependent on α5β1 integrin is promoted by disrupting Rabaptin phosphorylation. These findings demonstrate that the PKD pathway couples receptor tyrosine kinase signaling to an integrin switch, via Rabaptin-5 phosphorylation. PMID:22975325

  19. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection.

    PubMed

    Cervia, Lisa D; Chang, Chun-Chi; Wang, Liangli; Yuan, Fan

    2017-01-01

    A recent theory suggests that endocytosis is involved in uptake and intracellular transport of electrotransfected plasmid DNA (pDNA). The goal of the current study was to understand if approaches used previously to improve endocytosis of gene delivery vectors could be applied to enhancing electrotransfection efficiency (eTE). Results from the study showed that photochemically induced endosomal escape, which could increase poly-L-lysine (PLL)-mediated gene delivery, decreased eTE. The decrease could not be blocked by treatment of cells with endonuclease inhibitors (aurintricarboxylic acid and zinc ion) or antioxidants (L-glutamine and ascorbic acid). Chemical treatment of cells with an endosomal trafficking inhibitor that blocks endosome progression, bafilomycin A1, resulted in a significant decrease in eTE. However, treatment of cells with lysosomotropic agents (chloroquine and ammonium chloride) had little effects on eTE. These data suggested that endosomes played important roles in protecting and intracellular trafficking of electrotransfected pDNA.

  20. Dynamics of the vacuolar H(+)-ATPase in the contractile vacuole complex and the endosomal pathway of Dictyostelium cells.

    PubMed

    Clarke, Margaret; Köhler, Jana; Arana, Quyen; Liu, Tongyao; Heuser, John; Gerisch, Günther

    2002-07-15

    The vacuolar H(+)-ATPase (V-ATPase) is a multi-subunit enzyme that plays important roles in eukaryotic cells. In Dictyostelium, it is found primarily in membranes of the contractile vacuole complex, where it energizes fluid accumulation by this osmoregulatory organelle and also in membranes of endolysosomes, where it serves to acidify the endosomal lumen. In the present study, a fusion was created between vatM, the gene encoding the 100 kDa transmembrane subunit of the V-ATPase, and the gene encoding Green Fluorescent Protein (GFP). When expressed in Dictyostelium cells, this fusion protein, VatM-GFP, was correctly targeted to contractile vacuole and endolysosomal membranes and was competent to direct assembly of the V-ATPase enzyme complex. Protease treatment of isolated endosomes indicated that the GFP moiety, located on the C-terminus of VatM, was exposed to the cytoplasmic side of the endosomal membrane rather than to the lumenal side. VatM-GFP labeling of the contractile vacuole complex revealed clearly the dynamics of this pleiomorphic vesiculotubular organelle. VatM-GFP labeling of endosomes allowed direct visualization of the trafficking of vacuolar proton pumps in this pathway, which appeared to be entirely independent from the contractile vacuole membrane system. In cells whose endosomes were pre-labeled with TRITC-dextran and then fed yeast particles, VatM-GFP was delivered to newly formed yeast phagosomes with the same time course as TRITC-dextran, consistent with transfer via a direct fusion of endosomes with phagosomes. Several minutes were required before the intensity of the VatM-GFP labeling of new phagosomes reached the level observed in older phagosomes, suggesting that this fusion process was progressive and continuous. VatM-GFP was retrieved from the phagosome membrane prior to exocytosis of the indigestible remnants of the yeast particle. These data suggest that vacuolar proton pumps are recycled by fusion of advanced with newly formed

  1. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling

    PubMed Central

    Braza, Julie; Duong, Huetran; Stark, Myranda; Harrington, Elizabeth O.

    2015-01-01

    Neovascularization, the formation of new blood vessels, requires multiple processes including vascular leak, migration, and adhesion. Endosomal proteins, such as Rabs, regulate trafficking of key signaling proteins involved in neovascularization. The novel endosome protein, p18, enhances vascular endothelial (VE)-cadherin recycling from early endosome to cell junction to improve pulmonary endothelial barrier function. Since endothelial barrier integrity is vital in neovascularization, we sought to elucidate the role for endosome proteins p18 and Rab4, Rab7, and Rab9 in the process of vessel formation within the pulmonary vasculature. Overexpression of wild-type p18 (p18wt), but not the nonendosomal-binding mutant (p18N39), significantly increased lung microvascular endothelial cell migration, adhesion, and both in vitro and in vivo tube formation. Chemical inhibition of mTOR or p38 attenuated the proneovascularization role of p18wt. Similar to the effect of p18wt, overexpression of prorecycling wild-type (Rab4WT) and endosome-anchored (Rab4Q67L) Rab4 enhanced neovascularization processes, whereas molecular inhibition of Rab4, by using the nonendosomal-binding mutant (Rab4S22N) attenuated VEGF-induced neovascularization. Unlike p18, Rab4-induced neovascularization was independent of mTOR or p38 inhibition but was dependent on p18 expression. This study shows for the first time that neovascularization within the pulmonary vasculature is dependent on the prorecycling endocytic proteins Rab4 and p18. PMID:26254426

  2. Lipoprotein binding and endosomal itinerary of the low density lipoprotein receptor-related protein in rat liver

    SciTech Connect

    Lund, H.; Takahashi, K.; Hamilton, R.L.; Havel, R.J. )

    1989-12-01

    The high affinity of {sup 45}Ca binding to the low density lipoprotein receptor (LDL-R) and the LDL-R-related protein (LRP) was utilized to study the subcellar distribution of these two proteins in rat liver. Like the LDL-R, LRP was manyfold enriched in rat liver endosomal membranes with a relative distribution in early and late endosomal compartments consistent with recycling between endosomes and the cell surface. The high concentration of LRP in hepatic endosomal membranes greatly facilitated demonstration of Ca-dependent binding of apolipoprotein E- and B-containing lipoproteins in ligand blots. LRP was severalfold more abundant than the LDL-R in hepatic parenchymal cells, showed extensive degradation in hepatic endosomes, and was found in high concentrations in the Golgi apparatus and endoplasmic reticulum. These data suggest a high a rate of synthesis of LRP that appeared to be unaffected by treatment of rats with estradiol. The repeating cysteine-rich A-motif found in the ligand-binding domain of LRP appeared to be responsible for Ca binding by LRP, LDL-R, and complement factor C9 and accounted for immunological cross-reactivity among these proteins. The data suggest an extensive proteolytic processing of this protein and are consistent with a functional role of LRP in lipoprotein metabolism.

  3. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes.

    PubMed

    He, Kangmin; Yan, Xiaohua; Li, Nan; Dang, Song; Xu, Li; Zhao, Bing; Li, Zijian; Lv, Zhizhen; Fang, Xiaohong; Zhang, Youyi; Chen, Ye-Guang

    2015-06-01

    Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.

  4. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes

    PubMed Central

    He, Kangmin; Yan, Xiaohua; Li, Nan; Dang, Song; Xu, Li; Zhao, Bing; Li, Zijian; Lv, Zhizhen; Fang, Xiaohong; Zhang, Youyi; Chen, Ye-Guang

    2015-01-01

    Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors. PMID:25998683

  5. Control of Ste6 recycling by ubiquitination in the early endocytic pathway in yeast.

    PubMed

    Krsmanovic, Tamara; Pawelec, Agnes; Sydor, Tobias; Kölling, Ralf

    2005-06-01

    We present evidence that ubiquitination controls sorting of the ABC-transporter Ste6 in the early endocytic pathway. The intracellular distribution of Ste6 variants with reduced ubiquitination was examined. In contrast to wild-type Ste6, which was mainly localized to internal structures, these variants accumulated at the cell surface in a polar manner. When endocytic recycling was blocked by Ypt6 inactivation, the ubiquitination deficient variants were trapped inside the cell. This indicates that the polar distribution is maintained dynamically through endocytic recycling and localized exocytosis ("kinetic polarization"). Ste6 does not appear to recycle through late endosomes, because recycling was not blocked in class E vps (vacuolar protein sorting) mutants (Deltavps4, Deltavps27), which are affected in late endosome function and in the retromer mutant Deltavps35. Instead, recycling was partially affected in the sorting nexin mutant Deltasnx4, which serves as an indication that Ste6 recycles through early endosomes. Enhanced recycling of wild-type Ste6 was observed in class D vps mutants (Deltapep12, Deltavps8, and Deltavps21). The identification of putative recycling signals in Ste6 suggests that recycling is a signal-mediated process. Endocytic recycling and localized exocytosis could be important for Ste6 polarization during the mating process.

  6. The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway

    PubMed Central

    Imai, Yuzuru; Kobayashi, Yoshito; Inoshita, Tsuyoshi; Meng, Hongrui; Arano, Taku; Uemura, Kengo; Asano, Takeshi; Yoshimi, Kenji; Zhang, Chang-Liang; Matsumoto, Gen; Ohtsuka, Toshiyuki; Kageyama, Ryoichiro; Kiyonari, Hiroshi; Shioi, Go; Nukina, Nobuyuki; Hattori, Nobutaka; Takahashi, Ryosuke

    2015-01-01

    Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson’s disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2. PMID:26355680

  7. ESCRT-III on endosomes: new functions, new activation pathway.

    PubMed

    Woodman, Philip

    2016-01-15

    The multivesicular body (MVB) pathway sorts ubiquitinated membrane cargo to intraluminal vesicles (ILVs) within the endosome, en route to the lysosomal lumen. The pathway involves the sequential action of conserved protein complexes [endosomal sorting complexes required for transport (ESCRTs)], culminating in the activation by ESCRT-II of ESCRT-III, a membrane-sculpting complex. Although this linear pathway of ESCRT activation is widely accepted, a study by Luzio and colleagues in a recent issue of the Biochemical Journal suggests that there is greater complexity in ESCRT-III activation, at least for some MVB cargoes. They show that ubiquitin-dependent sorting of major histocompatibility complex (MHC) class I to the MVB requires the central ESCRT-III complex but does not involve either ESCRT-II or functional links between ESCRT-II and ESCRT-III. Instead, they propose that MHC class I utilizes histidine-domain protein tyrosine phosphatase (HD-PTP), a non-canonical ESCRT interactor, to promote ESCRT-III activation.

  8. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei.

    PubMed

    Engstler, Markus; Thilo, Lutz; Weise, Frank; Grünfelder, Christoph G; Schwarz, Heinz; Boshart, Michael; Overath, Peter

    2004-03-01

    The dense coat of glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) covering parasitic African trypanosomes is essential for survival in mammalian hosts. VSG is internalised and recycled exclusively via a specialised part of the plasma membrane, the flagellar pocket. Direct measurement of the kinetics of VSG endocytosis and recycling shows that the VSG cell-surface pool is turned over within 12 minutes. Correspondingly, the turnover of the intracellular pool (9+/-4% of total VSG) requires only 1 minute, and this is an exceptionally high rate considering that endocytosis and exocytosis are limited to only 5% of the cell surface area. Kinetic 3D co-localisation analysis using biotinylated VSG and a panel of compartmental markers provides consistent evidence for the itinerary of VSG through the cell: VSG is endocytosed in large clathrin-coated vesicles, which bud from the flagellar pocket membrane at a rate of 6-7 vesicles per second, and is then delivered to RAB5-positive early endosomes. From there, VSG is recycled to RAB11-positive recycling endosomes at two stages, either directly or via RAB7-positive, late endosomes. Small clathrin-coated vesicles carrying fluid-phase cargo and being depleted of VSG bud from early and recycling endosomes. These vesicles are postulated to deliver their content to late endosomes and/or the lysosome. The recycling endosomes give rise to RAB11-positive exocytic carriers that fuse with the flagellar pocket and thereby return VSG to the cell surface. VSG recycling provides an interesting model for studies on the cellular trafficking and sorting of GPI-anchored proteins.

  9. Securin and separase modulate membrane traffic by affecting endosomal acidification.

    PubMed

    Bacac, Marina; Fusco, Carlo; Planche, Anne; Santodomingo, Jaime; Demaurex, Nicolas; Leemann-Zakaryan, Ruzanna; Provero, Paolo; Stamenkovic, Ivan

    2011-05-01

    Securin and separase play a key role in sister chromatid separation during anaphase. However, a growing body of evidence suggests that in addition to regulating chromosome segregation, securin and separase display functions implicated in membrane traffic in Caenorhabditis elegans and Drosophila. Here we show that in mammalian cells both securin and separase associate with membranes and that depletion of either protein causes robust swelling of the trans-Golgi network (TGN) along with the appearance of large endocytic vesicles in the perinuclear region. These changes are accompanied by diminished constitutive protein secretion as well as impaired receptor recycling and degradation. Unexpectedly, cells depleted of securin or separase display defective acidification of early endosomes and increased membrane recruitment of vacuolar (V-) ATPase complexes, mimicking the effect of the specific V-ATPase inhibitor Bafilomycin A1. Taken together, our findings identify a new functional role of securin and separase in the modulation of membrane traffic and protein secretion that implicates regulation of V-ATPase assembly and function.

  10. Mechanisms of polarized membrane trafficking in neurons – focusing in on endosomes

    PubMed Central

    Lasiecka, Zofia M.; Winckler, Bettina

    2011-01-01

    Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells is necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER-Golgi via the trans-Golgi network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes. PMID:21762782

  11. Altered Endosome Biogenesis in Prostate Cancer has Biomarker Potential

    PubMed Central

    Johnson, Ian R D; Parkinson-Lawrence, Emma J; Shandala, Tetyana; Weigert, Roberto; Butler, Lisa M; Brooks, Doug A

    2016-01-01

    Prostate cancer is the second most common form of cancer in males, affecting one in eight men by the time they reach the age of 70. Current diagnostic tests for prostate cancer have significant problems with both false negatives and false positives, necessitating the search for new molecular markers. A recent investigation of endosomal and lysosomal proteins revealed that the critical process of endosomal biogenesis might be altered in prostate cancer. Here, a panel of endosomal markers was evaluated in prostate cancer and non-malignant cells and a significant increase in gene and protein expression was found for early, but not late endosomal proteins. There was also a differential distribution of early endosomes, and altered endosomal traffic and signalling of the transferrin receptors (TFRC and TFR2) in prostate cancer cells. These findings support the concept that endosome biogenesis and function is altered in prostate cancer. Microarray analysis of a clinical cohort confirmed the altered endosomal gene expression observed in cultured prostate cancer cells. Furthermore, in prostate cancer patient tissue specimens, the early endosomal marker and adaptor protein APPL1 showed consistently altered basement membrane histology in the vicinity of tumours and concentrated staining within tumour masses. These novel observations on altered early endosome biogenesis provide a new avenue for prostate cancer biomarker investigation and suggest new methods for the early diagnosis and accurate prognosis of prostate cancer. PMID:25080433

  12. Phosphorylation of filamin A regulates chemokine receptor CCR2 recycling.

    PubMed

    Pons, Mònica; Izquierdo, Ismael; Andreu-Carbó, Mireia; Garrido, Georgina; Planagumà, Jesús; Muriel, Olivia; Del Pozo, Miguel A; Geli, M Isabel; Aragay, Anna M

    2017-01-15

    Proper endosomal trafficking of ligand-activated G-protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B; one of two isoforms encoded by CCR2), endocytic recycling is important to sustain monocyte migration, whereas filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway. In FLNa-knockdown cells, activated CCR2B accumulated in enlarged EEA-1-positive endosomes, which exhibited slow movement and fast fluorescence recovery, suggesting an imbalance between receptor entry and exit rates. Utilizing super-resolution microscopy, we observed that FLNa-GFP, CCR2B and β2-adrenergic receptor (β2AR) were present in actin-enriched endosomal microdomains. Depletion of FLNa decreased CCR2B association with these microdomains and concomitantly delayed CCR2B endosomal traffic, without apparently affecting the number of microdomains. Interestingly, CCR2B and β2AR signaling induced phosphorylation of FLNa at residue S2152, and this phosphorylation event was contributes to sustain receptor recycling. Thus, our data strongly suggest that CCR2B and β2AR signals to FLNa to stimulate its endocytosis and recycling to the plasma membrane. © 2017. Published by The Company of Biologists Ltd.

  13. Role of endosomal trafficking dynamics on the regulation of hepatic insulin receptor activity: models for Fao cells.

    PubMed

    Hori, Sharon S; Kurland, Irwin J; DiStefano, Joseph J

    2006-05-01

    Evidence indicates that endosomal insulin receptor (IR) trafficking plays a role in regulating insulin signal transduction. To evaluate its importance, we developed a series of biokinetic models for quantifying activated surface and endosomal IR dynamics from published experimental data. Starting with a published two-compartment Fao hepatoma model, a four-pool model was formulated that depicts IR autophosphorylation after receptor binding, IR endosomal internalization/trafficking, insulin dissociation from and dephosphorylation of internalized IR, and recycling of unliganded, dephosphorylated IR to the plasma membrane. Quantification required three additional data sets, two measured, but unmodeled by the same group. A five-pool model created to include endosomal trafficking of the nonphosphorylated insulin-IR complex was fitted using the same data sets, augmented with another published data set. Creation of a six-pool model added the physiologically relevant dissociation of insulin ligand from the activated endosomal IR. More importantly, all three models, validated against additional data not used in model fitting, predict that, mechanistically, internalization of activated IR is a rate-limiting step, at least under the receptor saturating conditions of the fitting data. This rate includes the transit time to a site where insulin dissociation from and/or dephosphorylation of the IR occurs by docking with protein-tyrosine phosphatases (PTPases), or where a sufficient conformational change occurs in the IR, perhaps due to insulin-IR dissociation, where associated PTPases may complete IR dephosphorylation. Our new models indicate that key events in endosomal IR trafficking have significance in mediating IR activity, possibly serving to regulate insulin signal transduction.

  14. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane.

    PubMed

    Truschel, Steven T; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C; Tenza, Danièle; Thomas, Penelope C; Herman, Kathryn E; Sackett, Sara D; Cowan, David C; Theos, Alexander C; Raposo, Graça; Marks, Michael S

    2009-09-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.

  15. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

    PubMed Central

    Truschel, Steven T.; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C.; Tenza, Danièle; Thomas, Penelope C.; Herman, Kathryn E.; Sackett, Sara D.; Cowan, David C.; Theos, Alexander C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome (HPS) that lack BLOC-1, melanosomal proteins such as Tyrp1 accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverses early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle. PMID:19624486

  16. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    PubMed

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  17. Snx3 regulates recycling of the transferrin receptor and iron assimilation.

    PubMed

    Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H; Hildick-Smith, Gordon J; Shah, Dhvanit I; Cooney, Jeffrey D; Chen, Wen; King, Matthew J; Yien, Yvette Y; Schultz, Iman J; Anderson, Heidi; Dalton, Arthur J; Freedman, Matthew L; Kingsley, Paul D; Palis, James; Hattangadi, Shilpa M; Lodish, Harvey F; Ward, Diane M; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H

    2013-03-05

    Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc) and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism.

  18. Snx3 regulates recycling of the transferrin receptor and iron assimilation

    PubMed Central

    Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H.; Hildick-Smith, Gordon J.; Shah, Dhvanit I.; Cooney, Jeffrey D.; Chen, Wen; King, Matthew J.; Yien, Yvette Y.; Schultz, Iman J.; Anderson, Heidi; Dalton, Arthur J.; Freedman, Matthew L.; Kingsley, Paul D.; Palis, James; Hattangadi, Shilpa M.; Lodish, Harvey F.; Ward, Diane M.; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H.

    2013-01-01

    SUMMARY Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc), and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism. PMID:23416069

  19. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome

    PubMed Central

    1994-01-01

    We have used temperature and nocodazole blocks in an in vivo basolateral to apical transcytosis assay to dissociate the early transcytotic steps occurring during the formation of transcytotic vesicles and their microtubule-dependent translocation into the apical region, from the late steps when transcytotic cargo is delivered into the apical media. We found that polarized MDCK cells transfected with rabbit polymeric IgA receptor (pIgA-R) internalize basolaterally added pIgA-R ligand ([Fab]2 fragment of IgG against the receptor's ectodomain) at 17 degrees C but do not deliver it to the apical PM. Instead, the ligand accumulates in an apically localized transcytotic compartment, distal to the basolateral endosome and the microtubule- requiring translocation step. We have characterized this compartment and show that it is distinct from basolateral transferrin recycling endosomes, basolateral early endosomes or late endosomes or lysosomes. The apical transcytotic compartment colocalizes with the compartment containing apically recycling membrane markers (ricin and apically internalized pIgA-R ligand) but is distinct from the compartment receiving apically internalized fluid phase marker (BSA). This compartment is an intermediate station of the overall pathway since transcytotic ligand can exit the compartment and be released into the apical medium when cells preloaded at 17 degrees C are subsequently incubated at 37 degrees C. We have used this system to examine the effect of Brefeldin A (BFA) and the involvement of trimeric GTPases in the late (post apical transcytotic compartment) steps of the transcytotic pathway. We found that addition of BFA or cholera toxin, a known activator of Gs alpha, to cells preloaded with transcytotic ligand at 17 degrees C significantly inhibits the exit of ligand from the apical transcytotic compartment. General structure and function of the apical endosome are not affected since neither BFA nor cholera toxin inhibit the recycling of

  20. High-Content Imaging Reveals Expansion of the Endosomal Compartment during Coxiella burnetii Parasitophorous Vacuole Maturation

    PubMed Central

    Larson, Charles L.; Heinzen, Robert A.

    2017-01-01

    Coxiella burnetii is an obligate intracellular pathogen and the causative agent of human Q fever. Replication of the bacterium within a large parasitophorous vacuole (PV) resembling a host phagolysosome is required for pathogenesis. PV biogenesis is a pathogen driven process that requires engagement of several host cell vesicular trafficking pathways to acquire vacuole components. The goal of this study was to determine if infection by C. burnetii modulates endolysosomal flux to potentially benefit PV formation. HeLa cells, infected with C. burnetii or left uninfected, were incubated with fluorescent transferrin (Tf) for 0–30 min, and the amount of Tf internalized by cells quantitated by high-content imaging. At 3 and 5 days, but not 1 day post-infection, the maximal amounts of fluorescent Tf internalized by infected cells were significantly greater than uninfected cells. The rates of Tf uptake and recycling were the same for infected and uninfected cells; however, residual Tf persisted in EEA.1 positive compartments adjacent to large PV after 30 min of recycling in the absence of labeled Tf. On average, C. burnetii-infected cells contained significantly more CD63-positive endosomes than uninfected cells. In contrast, cells containing large vacuoles generated by Chlamydia trachomatis exhibited increased rates of Tf internalization without increased CD63 expression. Our results suggest that C. burnetii infection expands the endosomal system to increase capacity for endocytic material. Furthermore, this study demonstrates the power of high-content imaging for measurement of cellular responses to infection by intracellular pathogens. PMID:28293541

  1. Endosomal sorting of VAMP3 is regulated by PI4K2A.

    PubMed

    Jović, Marko; Kean, Michelle J; Dubankova, Anna; Boura, Evzen; Gingras, Anne-Claude; Brill, Julie A; Balla, Tamas

    2014-09-01

    Specificity of membrane fusion in vesicular trafficking is dependent on proper subcellular distribution of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNARE complexes are fairly promiscuous in vitro, substantial specificity is achieved in cells owing to the spatial segregation and shielding of SNARE motifs prior to association with cognate Q-SNAREs. In this study, we identified phosphatidylinositol 4-kinase IIα (PI4K2A) as a binding partner of vesicle-associated membrane protein 3 (VAMP3), a small R-SNARE involved in recycling and retrograde transport, and found that the two proteins co-reside on tubulo-vesicular endosomes. PI4K2A knockdown inhibited VAMP3 trafficking to perinuclear membranes and impaired the rate of VAMP3-mediated recycling of the transferrin receptor. Moreover, depletion of PI4K2A significantly decreased association of VAMP3 with its cognate Q-SNARE Vti1a. Although binding of VAMP3 to PI4K2A did not require kinase activity, acute depletion of phosphatidylinositol 4-phosphate (PtdIns4P) on endosomes significantly delayed VAMP3 trafficking. Modulation of SNARE function by phospholipids had previously been proposed based on in vitro studies, and our study provides mechanistic evidence in support of these claims by identifying PI4K2A and PtdIns4P as regulators of an R-SNARE in intact cells.

  2. Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae.

    PubMed

    Dieci, Giorgio; Giuliodori, Silvia; Catellani, Manuela; Percudani, Riccardo; Ottonello, Simone

    2002-03-01

    The SCR1 gene, coding for the 7SL RNA of the signal recognition particle, is the last known class III gene of Saccharomyces cerevisiae that remains to be characterized with respect to its mode of transcription and promoter organization. We show here that SCR1 represents a unique case of a non-tRNA class III gene in which intragenic promoter elements (the TFIIIC-binding A- and B-blocks), corresponding to the D and TpsiC arms of mature tRNAs, have been adapted to a structurally different small RNA without losing their transcriptional function. In fact, despite the presence of an upstream canonical TATA box, SCR1 transcription strictly depends on the presence of functional, albeit quite unusual, A- and B-blocks and requires all the basal components of the RNA polymerase III transcription apparatus, including TFIIIC. Accordingly, TFIIIC was found to protect from DNase I digestion an 80-bp region comprising the A- and B-blocks. B-block inactivation completely compromised TFIIIC binding and transcription capacity in vitro and in vivo. An inactivating mutation in the A-block selectively affected TFIIIC binding to this promoter element but resulted in much more dramatic impairment of in vivo than in vitro transcription. Transcriptional competition and nucleosome disruption experiments showed that this stronger in vivo defect is due to a reduced ability of A-block-mutated SCR1 to compete with other genes for TFIIIC binding and to counteract the assembly of repressive chromatin structures through TFIIIC recruitment. A kinetic analysis further revealed that facilitated RNA polymerase III recycling, far from being restricted to typical small sized class III templates, also takes place on the 522-bp-long SCR1 gene, the longest known class III transcriptional unit.

  3. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system.

    PubMed

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J; Baldari, Cosima T

    2014-05-01

    T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5(+) endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.

  4. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    PubMed Central

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  5. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes

    PubMed Central

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-ichi

    2014-01-01

    Neurons extend two types of neurites—axons and dendrites—that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. PMID:24672056

  6. Ideas: Recycling.

    ERIC Educational Resources Information Center

    Chessin, Debby A.; And Others

    1994-01-01

    Presents classroom ideas focusing on connections among mathematics, concern for the environment, and conservation of natural resources, including decomposition, water conservation, packaging materials, use of manufactured cans, and recycling. Includes reproducible student worksheets. (MKR)

  7. PIKfyve Regulation of Endosome-Linked Pathways

    PubMed Central

    de Lartigue, Jane; Polson, Hannah; Feldman, Morri; Shokat, Kevan; Tooze, Sharon A; Urbé, Sylvie; Clague, Michael J

    2009-01-01

    The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5)P2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5)P2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies. PMID:19582903

  8. Zn2+ depletion blocks endosome fusion.

    PubMed Central

    Aballay, A; Sarrouf, M N; Colombo, M I; Stahl, P D; Mayorga, L S

    1995-01-01

    Fusion among endosomes is an important step for transport and sorting of internalized macromolecules. Working in a cell-free system, we previously reported that endosome fusion requires cytosol and ATP, and is sensitive to N-ethylmaleimide. Fusion is regulated by monomeric and heterotrimeric GTP-binding proteins. We now report that fusion can proceed at very low Ca2+ concentrations, i.e. < 30 nM. Moreover, fusion is not affected when intravesicular Ca2+ is depleted by preincubation of vesicles with calcium ionophores (5 microM ionomycin or A23187) in the presence of calcium chelators (5 mM EGTA or 60 mM EDTA). The results indicate that fusion can proceed at extremely low concentrations of intravesicular and extravesicular Ca2+. However, BAPTA [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid], a relatively specific Ca2+ chelator, inhibits fusion. BAPTA binds other metals besides Ca2+. We present evidence that BAPTA inhibition is due not to Ca2+ chelation but to Zn2+ depletion. TPEN [N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylenediamine], another metal-ion chelator with low affinity for Ca2+, also inhibited fusion. TPEN- and BAPTA-inhibited fusions were restored by addition of Zn2+. Zn(2+)-dependent fusion presents the same characteristics as control fusion. In intact cells, TPEN inhibited transport along the endocytic pathway. The results indicate that Zn2+ depletion blocks endosome fusion, suggesting that this ion is necessary for the function of one or more factors involved in the fusion process. Images Figure 1 PMID:8554539

  9. Glass recycling

    SciTech Connect

    Dalmijn, W.L.; Houwelingen, J.A. van

    1995-12-31

    Glass recycling in the Netherlands has grown from 10,000 to 300,000 tonnes per annum. The various advantages and problems of the glass cycle with reference to the state of the art in the Netherlands is given. Special attention is given to new technologies for the automated sorting of cullet with detection systems. In Western Europe the recycling of glass has become a success story. Because of this, the percentage of glass cullet used in glass furnaces has increased. To meet the quality demands of the glass industry, automated sorting for the removal of stones, non-ferrous metals and other impurities had to be developed and incorporated in glass recycling plants. In Holland, Germany and other countries, the amount of glass collected has reached a level that color-sorting becomes necessary to avoid market saturation with mixed cullet. Recently, two systems for color-sorting have been developed and tested for the separation of bottles and cullet in the size range of 20--50 mm. With the increased capacity of the new glass recycling plants, 120,000--200,000 tpy, the quality systems have also to be improved and automated. These quality control systems are based on the automated sorting technology developed earlier for the glass recycling plants. The data obtained are automatically processed and printed. The sampling system and its relation to the theory of Gy will be described. Results of both developments in glass recycling plants will be described.

  10. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    PubMed Central

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; van de Sluis, Bart; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling. PMID:25355947

  11. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A.

    PubMed

    Phillips-Krawczak, Christine A; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G; Li, Haiying; Dick, Christopher J; Gomez, Timothy S; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F; Geng, Linda N; Kaufmann, Scott H; Hein, Marco Y; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; Sluis, Bart van de; Billadeau, Daniel D; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.

  12. Endosomal trafficking of the receptor tyrosine kinase MuSK proceeds via clathrin-dependent pathways, Arf6 and actin.

    PubMed

    Luiskandl, Susan; Woller, Barbara; Schlauf, Marlies; Schmid, Johannes A; Herbst, Ruth

    2013-07-01

    Muscle-specific kinase (MuSK), a receptor tyrosine kinase, is the key player during the formation of the neuromuscular junction. Signal transduction events downstream of MuSK activation induce both pre- and postsynaptic differentiation, which, most prominently, includes the clustering of acetylcholine receptors at synaptic sites. More recently, regulated MuSK endocytosis and degradation have been implicated as crucial events for MuSK signalling activity, implicating a cross-talk between signalling and endocytosis. In the present study, we use a live imaging approach to study MuSK endocytosis. We find that MuSK is internalized via a clathrin-, dynamin-dependent pathway. MuSK is transported to Rab7-positive endosomes for degradation and recycled via Rab4- and Rab11-positive vesicles. MuSK activation by Dok7 mildly affects the localization of MuSK on the cell surface but has no effect on the rate of MuSK internalization. Interestingly, MuSK colocalizes with actin and Arf6 at the cell surface and during endosomal trafficking. Disruption of the actin cytoskeleton or the proper function of Arf6 concentrates MuSK in cell protrusions. Moreover, inhibition of Arf6 or cytoskeletal rearrangements impairs acetylcholine receptor clustering and phosphorylation. These results suggest that MuSK uses both classical and nonclassical endosomal pathways that involve a variety of different components of the endosomal machinery. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  13. Spatio-Temporal Cellular Dynamics of the Arabidopsis Flagellin Receptor Reveal Activation Status-Dependent Endosomal Sorting[C][W

    PubMed Central

    Beck, Martina; Zhou, Ji; Faulkner, Christine; MacLean, Daniel; Robatzek, Silke

    2012-01-01

    The activity of surface receptors is location specific, dependent upon the dynamic membrane trafficking network and receptor-mediated endocytosis (RME). Therefore, the spatio-temporal dynamics of RME are critical to receptor function. The plasma membrane receptor FLAGELLIN SENSING2 (FLS2) confers immunity against bacterial infection through perception of flagellin (flg22). Following elicitation, FLS2 is internalized into vesicles. To resolve FLS2 trafficking, we exploited quantitative confocal imaging for colocalization studies and chemical interference. FLS2 localizes to bona fide endosomes via two distinct endocytic trafficking routes depending on its activation status. FLS2 receptors constitutively recycle in a Brefeldin A (BFA)–sensitive manner, while flg22-activated receptors traffic via ARA7/Rab F2b– and ARA6/Rab F1–positive endosomes insensitive to BFA. FLS2 endocytosis required a functional Rab5 GTPase pathway as revealed by dominant-negative ARA7/Rab F2b. Flg22-induced FLS2 endosomal numbers were increased by Concanamycin A treatment but reduced by Wortmannin, indicating that activated FLS2 receptors are targeted to late endosomes. RME inhibitors Tyrphostin A23 and Endosidin 1 altered but did not block induced FLS2 endocytosis. Additional inhibitor studies imply the involvement of the actin-myosin system in FLS2 internalization and trafficking. Altogether, we report a dynamic pattern of subcellular trafficking for FLS2 and reveal a defined framework for ligand-dependent endocytosis of this receptor. PMID:23085733

  14. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection

    PubMed Central

    Chang, Chun-Chi; Wang, Liangli; Yuan, Fan

    2017-01-01

    A recent theory suggests that endocytosis is involved in uptake and intracellular transport of electrotransfected plasmid DNA (pDNA). The goal of the current study was to understand if approaches used previously to improve endocytosis of gene delivery vectors could be applied to enhancing electrotransfection efficiency (eTE). Results from the study showed that photochemically induced endosomal escape, which could increase poly-L-lysine (PLL)-mediated gene delivery, decreased eTE. The decrease could not be blocked by treatment of cells with endonuclease inhibitors (aurintricarboxylic acid and zinc ion) or antioxidants (L-glutamine and ascorbic acid). Chemical treatment of cells with an endosomal trafficking inhibitor that blocks endosome progression, bafilomycin A1, resulted in a significant decrease in eTE. However, treatment of cells with lysosomotropic agents (chloroquine and ammonium chloride) had little effects on eTE. These data suggested that endosomes played important roles in protecting and intracellular trafficking of electrotransfected pDNA. PMID:28182739

  15. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse.

    PubMed

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J; Baldari, Cosima T

    2015-07-15

    IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.

  16. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse

    PubMed Central

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J.; Baldari, Cosima T.

    2015-01-01

    ABSTRACT IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11+ endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR+ endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis. PMID:26034069

  17. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    PubMed

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    1 has a tumor suppressor function, and the combined marker of Eps15 homology domain 1/phosphorylation of epithelial growth factor receptor expression was identified as a better prognostic marker in breast cancer diagnosis. Furthermore, RAB11FIP3 combines with Eps15 homology domain 1 to promote the endocytosis recycling of phosphorylation of epithelial growth factor receptor.

  18. Textile recycling

    SciTech Connect

    Jablonowski, E. ); Carlton, J.

    1995-01-01

    The most common household textiles include clothing, linens, draperies, carpets, shoes, handbags, and rugs. Old clothing, of course, is the most readily reused and/or recycled residentially generated textile category. State and/or local mandates to recycle a percentage of the waste stream are providing the impetus to add new materials to existing collection programs. Concurrently, the textile industry is aggressively trying to increase its throughput by seeking new sources of material to meet increased world demand for product. As experienced with drop-off programs for traditional materials, a majority of residents will not recycle materials unless the collection programs are convenient, i.e., curbside collection. The tonnage of marketable textiles currently being landfilled provide evidence of this. It is the authors' contention that if textile recycling is made convenient and accessible to every household in a municipality or region, then the waste stream disposed may be reduced in a similar fashion as when traditional recyclables are included in curbside programs.

  19. Microtubule motors mediate endosomal sorting by maintaining functional domain organization.

    PubMed

    Hunt, Sylvie D; Townley, Anna K; Danson, Chris M; Cullen, Peter J; Stephens, David J

    2013-06-01

    Many microtubule motors have been shown to couple to endosomal membranes. These motors include dynein in addition to many different kinesin family members. Sorting nexins (SNXs) are central to the organization and function of endosomes. These proteins can actively shape endosomal membranes and couple directly or indirectly to the minus-end microtubule motor dynein. Motor proteins acting on endosomes drive their motility, dictate their morphology and affect cargo segregation. We have used well-characterized members of the SNX family to elucidate motor coupling using high-resolution light microscopy coupled with depletion of specific microtubule motors. Endosomal domains labelled with SNX1, SNX4 and SNX8 couple to discrete combinations of dynein and kinesin motors. These specific combinations govern the structure and motility of each SNX-coated membrane in addition to the segregation of distinct functional endosomal subdomains. Taken together, our data show that these key features of endosome dynamics are governed by the same set of opposing microtubule motors. Thus, microtubule motors help to define the mosaic layout of endosomes that underpins cargo sorting.

  20. Tire Recycling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  1. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  2. Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling.

    PubMed

    Brown, P S; Wang, E; Aroeti, B; Chapin, S J; Mostov, K E; Dunn, K W

    2000-02-01

    Previous studies of fibroblasts have demonstrated that recycling of endocytic receptors occurs through a default mechanism of membrane-volume sorting. Epithelial cells require an additional level of polar membrane sorting, but there are conflicting models of polar sorting, some suggesting that it occurs in early endosomes, others suggesting it occurs in a specialized apical recycling endosome (ARE). The relationship between endocytic sorting to the lysosomal, recycling and transcytotic pathways in polarized cells was addressed by characterizing the endocytic itineraries of LDL, transferrin (Tf) and IgA, respectively, in polarized Madin-Darby canine kidney (MDCK) cells. Quantitative analyses of 3-dimensional images of living and fixed polarized cells demonstrate that endocytic sorting occurs sequentially. Initially internalized into lateral sorting endosomes, Tf and IgA are jointly sorted from LDL into apical and medical recycling endosomes, in a manner consistent with default sorting of membrane from volume. While Tf is recycled to the basolateral membrane from recycling endosomes, IgA is sorted to the ARE prior to apical delivery. Quantifications of the efficiency of sorting of IgA from Tf between the recycling endosomes and the ARE match biochemical measurements of transepithelial protein transport, indicating that all polar sorting occurs in this step. Unlike fibroblasts, rab11 is not associated with Tf recycling compartments in either polarized or glass-grown MDCK cells, rather it is associated with the compartments to which IgA is directed after sorting from Tf. These results complicate a suggested homology between the ARE and the fibroblast perinuclear recycling compartment and provide a framework that justifies previous conflicting models of polarized sorting.

  3. Flotillins bind to the dileucine sorting motif of β-site amyloid precursor protein-cleaving enzyme 1 and influence its endosomal sorting.

    PubMed

    John, Bincy A; Meister, Melanie; Banning, Antje; Tikkanen, Ritva

    2014-04-01

    The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a protease that participates in the amyloidogenic cleavage of the Alzheimer amyloid precursor protein. Trafficking of BACE1 has been shown to be largely mediated by an acidic cluster dileucine motif in its cytoplasmic tail. This sorting signal functions both in endocytosis and endosomal sorting/recycling of BACE1 by providing a binding site for various sorting factors, such as the Golgi-localizing γ-ear containing ADP ribosylation factor binding (GGA) proteins that mediate BACE1 sorting within endosomes. Because flotillin-1 has been suggested to bind to BACE1 cytoplasmic tail, we analyzed the role of flotillins in BACE1 sorting. We show that flotillin-1 directly binds to the dileucine motif in the cytoplasmic tail of BACE1, whereas flotillin-2 binding is mainly mediated by its interaction with flotillin-1. Depletion of flotillins results in altered subcellular localization of BACE1 in endosomes and stabilization of BACE1 protein. Furthermore, amyloidogenic processing of Alzheimer amyloid precursor protein is increased. Flotillins compete with GGA proteins for binding to the dileucine motif in the BACE1 tail, suggesting that they play an important role in endosomal sorting of BACE1. The present study shows for the first time that flotillins are involved in endosomal sorting of BACE1. Because the endosomal localization of BACE1 affects its function as the β-secretase by increasing amyloidogenic processing of the amyloid precursor protein, flotillins may play a novel role in Alzheimer's disease. The present study is the first to show that flotillins bind to a canonical sorting signal and influence the binding of endosomal sorting factors onto cargo tails.

  4. Recycling Philology.

    ERIC Educational Resources Information Center

    Knapp, Peggy A.

    1993-01-01

    Proposes that English teachers recycle philology as a field of study. Redefines the shape of philology in view of postmodern theories of signification. Considers concepts of hermeneutics in retheorizing the aims of philology. Shows how such philological investigation might be used in the classroom to study literary texts. (HB)

  5. Structure of the LDL Receptor Extracellular Domain at Endosomal pH

    NASA Astrophysics Data System (ADS)

    Rudenko, Gabby; Henry, Lisa; Henderson, Keith; Ichtchenko, Konstantin; Brown, Michael S.; Goldstein, Joseph L.; Deisenhofer, Johann

    2002-12-01

    The low-density lipoprotein receptor mediates cholesterol homeostasis through endocytosis of lipoproteins. It discharges its ligand in the endosome at pH < 6. In the crystal structure at pH = 5.3, the ligand-binding domain (modules R2 to R7) folds back as an arc over the epidermal growth factor precursor homology domain (the modules A, B, β propeller, and C). The modules R4 and R5, which are critical for lipoprotein binding, associate with the β propeller via their calcium-binding loop. We propose a mechanism for lipoprotein release in the endosome whereby the β propeller functions as an alternate substrate for the ligand-binding domain, binding in a calcium-dependent way and promoting lipoprotein release.

  6. The R-SNARE Endobrevin/VAMP-8 Mediates Homotypic Fusion of Early Endosomes and Late Endosomes

    PubMed Central

    Antonin, Wolfram; Holroyd, Claudia; Tikkanen, Ritva; Höning, Stefan; Jahn, Reinhard

    2000-01-01

    Endobrevin/VAMP-8 is an R-SNARE localized to endosomes, but it is unknown in which intracellular fusion step it operates. Using subcellular fractionation and quantitative immunogold electron microscopy, we found that endobrevin/VAMP-8 is present on all membranes known to communicate with early endosomes, including the plasma membrane, clathrin-coated pits, late endosomes, and membranes of the trans-Golgi network. Affinity-purified antibodies that block the ability of endobrevin/VAMP-8 to form SNARE core complexes potently inhibit homotypic fusion of both early and late endosomes in vitro. Fab fragments were as active as intact immunoglobulin Gs. Recombinant endobrevin/VAMP-8 inhibited both fusion reactions with similar potency. We conclude that endobrevin/VAMP-8 operates as an R-SNARE in the homotypic fusion of early and late endosomes. PMID:11029036

  7. Separation of endosomes by aqueous two-phase partition and free-flow electrophoresis.

    PubMed

    Morré, D J; Morré, D M; Van Alstine, J M

    1998-06-26

    We have developed two endosome models to evaluate the separation of endosome populations by aqueous two-phase partition. In the first model, bovine kidney endosomes were used. In the second model. HeLa endosomes were identified in homogenates by means of a latent drug-(capsaicin-)inhibited NADH oxidase (NOX). Endosomes were first isolated by aqueous two-phase partition. To separate early and late endosomes, the endosomes were incubated with ATP to acidify the endosome interiors by activating a proton-translocating ATPase. Thus far, we have been able to resolve the early and late endosomes from any source only by preparative free-flow electrophoresis and not by phase-partition. Previous studies have shown that gravitational forces may be important for separation of endosomes by phase partition. Low-speed centrifugation (< or =12.5 g) during phase resolution altered the activity of the latent NADH oxidase used as a marker for HeLa cell endosomes.

  8. Gα13 and Rho mediate endosomal trafficking of CXCR4 into Rab11+ vesicles upon SDF-1 stimulation1

    PubMed Central

    Kumar, Ashok; Kremer, Kimberly N.; Dominguez, Daniel; Tadi, Madhavi; Hedin, Karen E.

    2011-01-01

    CXCR4, like other G protein coupled receptors (GPCRs), signals via heterotrimeric guanine nucleotide binding proteins (G proteins) to regulate gene transcription, migration, development, growth and transformation. We describe here a formerly-uncharacterized function of a G protein: a role in receptor trafficking. We previously showed that CXCR4 and the TCR physically associate and form a heterodimer upon SDF-1 stimulation in human T cells in order to prolong ERK activation, and thereby lead to gene-upregulation and cytokine secretion. The CXCR4-TCR heterodimers occur both on the cell surface and in an intracellular compartment in response to SDF-1. Neither the intracellular compartment to which the CXCR4-TCR heterodimers localize nor the mechanism for localization has been elucidated. Here, we characterize molecular mechanisms required for post-endocytic trafficking of CXCR4. Upon SDF-1 stimulation, CXCR4 localizes to Rab11+ vesicles, a recycling compartment, near the MTOC and Golgi apparatus. This trafficking requires the CXCR4 carboxyl-terminal tail domain but not the CXCR4 ubiquitination sites. The TCR also constitutively localizes to this Rab11+ compartment. Trafficking of CXCR4 into the Rab11+, TCR-containing endosomes requires actin polymerization. Furthermore, either inhibiting Rho activation or depleting Gα13 prevented trafficking of CXCR4 into the Rab11+ endosomes without hindering the ability of CXCR4 to endocytose. These results indicate that, upon SDF-1 treatment, Gα13 and Rho mediate the actin polymerization necessary for trafficking CXCR4 into the Rab11+, recycling endosomal compartment which also contains constitutively recycling TCR and thus CXCR4-TCR heterodimers. This is the first time that Gα13 has been described to mediate receptor trafficking. PMID:21148034

  9. Selective degradation of insulin within rat liver endosomes

    SciTech Connect

    Doherty, J.J. II; Kay, D.G.; Lai, W.H.; Posner, B.I.; Bergeron, J.J. )

    1990-01-01

    To characterize the role of the endosome in the degradation of insulin in liver, we employed a cell-free system in which the degradation of internalized 125I-insulin within isolated intact endosomes was evaluated. Incubation of endosomes containing internalized 125I-insulin in the cell-free system resulted in a rapid generation of TCA soluble radiolabeled products (t1/2, 6 min). Sephadex G-50 chromatography of radioactivity extracted from endosomes during the incubation showed a time dependent increase in material eluting as radioiodotyrosine. The apparent Vmax of the insulin degrading activity was 4 ng insulin degraded.min-1.mg cell fraction protein-1 and the apparent Km was 60 ng insulin.mg cell fraction protein-1. The endosomal protease(s) was insulin-specific since neither internalized 125I-epidermal growth factor (EGF) nor 125I-prolactin was degraded within isolated endosomes as assessed by TCA precipitation and Sephadex G-50 chromatography. Significant inhibition of degradation was observed after inclusion of p-chloromercuribenzoic acid (PCMB), 1,10-phenanthroline, bacitracin, or 0.1% Triton X-100 into the system. Maximal insulin degradation required the addition of ATP to the cell-free system that resulted in acidification as measured by acridine orange accumulation. Endosomal insulin degradation was inhibited markedly in the presence of pH dissipating agents such as nigericin, monensin, and chloroquine or the proton translocase inhibitors N-ethylmaleimide (NEM) and dicyclohexylcarbodiimide (DCCD). Polyethylene glycol (PEG) precipitation of insulin-receptor complexes revealed that endosomal degradation augmented the dissociation of insulin from its receptor and that dissociated insulin was serving as substrate to the endosomal protease(s). The results suggest that as insulin is internalized it rapidly but incompletely dissociates from its receptor.

  10. Melanosomes – dark organelles enlighten endosomal membrane transport

    PubMed Central

    Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are tissue-specific “lysosome-related” organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light into the molecular machinery that controls specialized endosomal sorting events. PMID:17878918

  11. Qualitative and quantitative analysis of endocytic recycling.

    PubMed

    Reineke, James B; Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    Endocytosis, which encompasses the internalization and sorting of plasma membrane (PM) lipids and proteins to distinct membrane-bound intracellular compartments, is a highly regulated and fundamental cellular process by which eukaryotic cells dynamically regulate their PM composition. Indeed, endocytosis is implicated in crucial cellular processes that include proliferation, migration, and cell division as well as maintenance of tissue homeostasis such as apical-basal polarity. Once PM constituents have been taken up into the cell, either via clathrin-dependent endocytosis (CDE) or clathrin-independent endocytosis (CIE), they typically have two fates: degradation through the late-endosomal/lysosomal pathway or returning to the PM via endocytic recycling pathways. In this review, we will detail experimental procedures that allow for both qualitative and quantitative assessment of endocytic recycling of transmembrane proteins internalized by CDE and CIE, using the HeLa cervical cancer cell line as a model system.

  12. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  13. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  14. An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease.

    PubMed

    Kondapalli, Kalyan C; Prasad, Hari; Rao, Rajini

    2014-01-01

    Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na(+)/H(+) exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder (ADHD), intellectual disability, and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na(+), K(+)) content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo. Drawing upon insights from model organisms and mammalian cells we show how eNHE affect surface expression and function of membrane receptors and neurotransmitter transporters. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.

  15. [The ESCRT complex: from endosomal transport to the development of multicellular organisms].

    PubMed

    Juan, Thomas; Fürthauer, Maximilian

    2015-01-01

    Since its discovery more than 50 years ago, the endo-lysosomal system has emerged as a central integrator of different cellular activities. This vesicular trafficking apparatus governs processes as diverse as the transduction of stimuli by growth factor receptors, the recycling and secretion of signaling molecules and the regulation of cellular homeostasis through autophagy. Accordingly, dysfunctions of the vesicular transport machinery have been linked to a growing number of pathologies. In this review we take the "Endosomal Sorting Complex Required for Transport" (ESCRT) as an example to illustrate the multiple functions of an evolutionarily conserved endosomal transport machinery. We describe the major concepts that have emerged from the study of this machinery at the level of the development and the physiology of multi-cellular organisms. In particular, we highlight the essential contributions of ESCRT proteins on the regulation of three biological processes: the endocytic regulation of cell signaling, autophagy and its role in neuronal morphogenesis and finally the biogenesis and function of extracellular vesicles. © Société de Biologie, 2015.

  16. An inside job: how endosomal Na+/H+ exchangers link to autism and neurological disease

    PubMed Central

    Kondapalli, Kalyan C.; Prasad, Hari; Rao, Rajini

    2014-01-01

    Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na+/H+ exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder (ADHD), intellectual disability, and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na+, K+) content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo. Drawing upon insights from model organisms and mammalian cells we show how eNHE affect surface expression and function of membrane receptors and neurotransmitter transporters. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention. PMID:25002837

  17. A huntingtin-mediated fast stress response halting endosomal trafficking is defective in Huntington's disease

    PubMed Central

    Nath, Siddharth; Munsie, Lise N.; Truant, Ray

    2015-01-01

    Cellular stress is a normal part of the aging process and is especially relevant in neurodegenerative disease. Canonical stress responses, such as the heat shock response, activate following exposure to stress and restore proteostasis through the action of isomerases and chaperones within the cytosol. Through live-cell imaging, we demonstrate involvement of the Huntington's disease (HD) protein, huntingtin, in a rapid cell stress response that lies temporally upstream of canonical stress responses. This response is characterized by the formation of distinct cytosolic puncta and reversible localization of huntingtin to early endosomes. The formation of these puncta, which we have termed huntingtin stress bodies (HSBs), is associated with arrest of early-to-recycling and early-to-late endosomal trafficking. The critical domains for this response have been mapped to two regions of huntingtin flanking the polyglutamine tract, and we observe polyglutamine-expanded huntingtin-expressing cells to be defective in their ability to recover from this stress response. We propose that HSB formation rapidly diverts high ATP use from vesicular trafficking during stress, thus mobilizing canonical stress responses without relying on increased energy metabolism, and that restoration from this response is defective in HD. PMID:25205111

  18. Pavement recycling catching on

    SciTech Connect

    Dallaire, G.

    1980-11-01

    The soaring costs of asphalt, aggregates, energy, and labor have revived interest in the recycling of old pavements and road bases. Two types of techniqueshot mix recycling and cold mix recycling are described and compared. The experiences of Wisconsin and Texas with pavement recycling are reviewed. Wisconsin uses the hot mix recycling, while Texas refurbishes its roads with the cold mix recycling. One contractor's doubts about surface recycling of pavements are outlined. (13 photos)

  19. IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion

    PubMed Central

    Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.

    2014-01-01

    Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674

  20. Interferon-γ-inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages.

    PubMed

    Pei, Gang; Schnettger, Laura; Bronietzki, Marc; Repnik, Urska; Griffiths, Gareth; Gutierrez, Maximiliano Gabriel

    2015-09-01

    Little is known about the molecular players that regulate changes in the endocytic pathway during immune activation. Here we investigate the role of Rab20 in the endocytic pathway during activation of macrophages. Rab20 is associated with endocytic structures, but the function of this Rab GTPase in the endocytic pathway remains poorly characterized. We find that in macrophages, Rab20 expression and endosomal association significantly increase after interferon-γ (IFN-γ) treatment. Moreover, IFN-γ and Rab20 expression induce a dramatic enlargement of endosomes. These enlarged endosomes are the result of homotypic fusion promoted by Rab20 expression. The expression of Rab20 or the dominant-negative mutant Rab20T19N does not affect transferrin or dextran 70 kDa uptake. However, knockdown of Rab20 accelerates epidermal growth factor (EGF) trafficking to LAMP-2-positive compartments and EGF receptor degradation. Thus this work defines a function for Rab20 in the endocytic pathway during immune activation of macrophages.

  1. Live cell imaging of endosomal trafficking in fungi.

    PubMed

    Baumann, Sebastian; Takeshita, Norio; Grün, Nathalie; Fischer, Reinhard; Feldbrügge, Michael

    2015-01-01

    Endosomes are multipurpose membranous carriers important for endocytosis and secretion. During membrane trafficking, endosomes transport lipids, proteins, and even RNAs. In highly polarized cells such as fungal hyphae, they shuttle bidirectionally along microtubules mediated by molecular motors like kinesins and dynein. For in vivo studies of these highly dynamic protein/membrane complexes, advanced fluorescence microscopy is instrumental. In this chapter, we describe live cell imaging of endosomes in two distantly related fungal model systems, the basidiomycete Ustilago maydis and the ascomycete Aspergillus nidulans. We provide insights into live cell imaging of dynamic endosomal proteins and RNA, dual-color detection for colocalization studies, as well as fluorescence recovery after photobleaching (FRAP) for quantification and photo-activated localization microscopy (PALM) for super-resolution. These methods described in two well-studied fungal model systems are applicable to a broad range of other organisms.

  2. Diversity of raft-like domains in late endosomes.

    PubMed

    Sobo, Komla; Chevallier, Julien; Parton, Robert G; Gruenberg, Jean; van der Goot, F Gisou

    2007-04-25

    Late endosomes, the last sorting station in the endocytic pathway before lysosomes, are pleiomorphic organelles composed of tubular elements as well as vesicular regions with a characteristic multivesicular appearance, which play a crucial role in intracellular trafficking. Here, we have investigated whether, in addition to these morphologically distinguishable regions, late endosomal membranes are additionally sub-compartmentalized into membrane microdomains. Using sub-organellar fractionation techniques, both with and without detergents, combined with electron microscopy, we found that both the limiting membrane of the organel and the intraluminal vesicles contain raft-type membrane domains. Interestingly, these differentially localized domains vary in protein composition and physico-chemical properties. In addition to the multivesicular organization, we find that late endosomes contain cholesterol rich microdomains both on their limiting membrane and their intraluminal vesicles that differ in composition and properties. Implications of these findings for late endosomal functions are discussed.

  3. Diversity of Raft-Like Domains in Late Endosomes

    PubMed Central

    Sobo, Komla; Chevallier, Julien; Parton, Robert G.; Gruenberg, Jean; van der Goot, F. Gisou

    2007-01-01

    Background Late endosomes, the last sorting station in the endocytic pathway before lysosomes, are pleiomorphic organelles composed of tubular elements as well as vesicular regions with a characteristic multivesicular appearance, which play a crucial role in intracellular trafficking. Here, we have investigated whether, in addition to these morphologically distinguishable regions, late endosomal membranes are additionally sub-compartmentalized into membrane microdomains. Methodology/Principal Findings Using sub-organellar fractionation techniques, both with and without detergents, combined with electron microscopy, we found that both the limiting membrane of the organel and the intraluminal vesicles contain raft-type membrane domains. Interestingly, these differentially localized domains vary in protein composition and physico-chemical properties. Conclusions/Significance In addition to the multivesicular organization, we find that late endosomes contain cholesterol rich microdomains both on their limiting membrane and their intraluminal vesicles that differ in composition and properties. Implications of these findings for late endosomal functions are discussed. PMID:17460758

  4. Substance P dependence of endosomal fusion during bladder inflammation.

    PubMed

    Hammond, T G; Saban, R; Bost, K L; Harris, H W; Kaysen, J H; Goda, F O; Wang, X C; Lewis, F C; Navar, G L; Campbell, W C; Bjorling, D E; Saban, M; Zeidel, M L

    2000-03-01

    Urinary bladder instillation of ovalbumin into presensitized guinea pigs stimulates rapid development of local bladder inflammation. Substance P is an important mediator of this inflammatory response, as substance P antagonists largely reverse the process. Vacuolization of the subapical endosomal compartment of the transitional epithelial cells lining the bladder suggests that changes in endosomal trafficking and fusion are also part of the inflammatory response. To test directly for substance P mediation of changes in endosomal fusion, we reconstituted fusion of transitional cell endosomes in vitro using both cuvette-based and flow cytometry energy transfer assays. Bladders were loaded with fluorescent dyes by a hypotonic withdrawal protocol before endosomal isolation by gradient centrifugation. Endosomal fusion assayed by energy transfer during in vitro reconstitution was both cytosol and ATP dependent. Fusion was confirmed by the increase in vesicle size on electron micrographs of fused endosomal preparations compared with controls. In inflamed bladders, dye uptake was inhibited 20% and endosomal fusion was inhibited 50%. These changes are partly mediated by the neurokinin-1 (NK1) receptor (NK1R), as 4 mg/kg of CP-96,345, a highly selective NK1 antagonist, increased fusion in inflamed bladders but had no effect on control bladders. The receptor-mediated nature of this effect was demonstrated by the expression of substance P receptor mRNA in rat bladder lumen scrapings and by the detection of the NK1R message in guinea pig subapical endosomes by Western blot analysis. The NK1Rs were significantly upregulated following induction of an inflammatory response in the bladder. These results demonstrate that 1) in ovalbumin-induced inflammation in the guinea pig bladder, in vitro fusion of apical endosomes is inhibited, showing endocytotic processes are altered in inflammation; 2) pretreatment in vivo with an NK1R antagonist blocks this inhibition of in vitro fusion

  5. Endosome-lysosomes, ubiquitin and neurodegeneration.

    PubMed

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  6. Signaling Components of Redox Active Endosomes: The Redoxosomes

    PubMed Central

    Oakley, Fredrick D.; Abbott, Duane; Li, Qiang

    2009-01-01

    Abstract Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers. Antioxid. Redox Signal. 11, 1313–1333. PMID:19072143

  7. Vps1 in the late endosome-to-vacuole traffic.

    PubMed

    Hayden, Jacob; Williams, Michelle; Granich, Ann; Ahn, Hyoeun; Tenay, Brandon; Lukehart, Joshua; Highfill, Chad; Dobard, Sarah; Kim, Kyoungtae

    2013-03-01

    Vacuolar protein sorting 1 (Vps1), the yeast homolog to human dynamin, is a GTP hydrolyzing protein, which plays an important role in protein sorting and targeting between the Golgi and late endosomal compartments. In this study, we assessed the functional significance of Vps1 in the membrane traffic towards the vacuole. We show here that vps1 delta cells accumulated FM4-64 to a greater extent than wild-type (WT))cells, suggesting slower endocytic degradation traffic toward the vacuole. In addition, we observed that two endosome-to-vacuole traffic markers, DsRed-FYVE and Ste2-GFP, were highly accumulated in Vps1-deficient cells, further supporting Vps1's implication in efficient trafficking of endocytosed materials to the vacuole. Noteworthy, a simultaneous imaging analysis in conjunction with FM4-64 pulse-chase experiment further revealed that Vps1 plays a role in late endosome to the vacuole transport. Consistently, our subcellular localization analysis showed that Vps1 is present at the late endosome. The hyperaccumulation of endosomal intermediates in the vps1 mutant cells appears to be caused by the disruption of integrity of HOPS tethering complexes, manifested by mislocalization of Vps39 to the cytoplasm. Finally, we postulate that Vps1 functions together with the Endosomal Sorting Complex Required for Transport (ESCRT) complex at the late endosomal compartments, based on the observation that the double mutants, in which VPS1 along with singular ESCRT I, II and III genes have been disrupted, exhibited synthetic lethality. Together, we propose that Vps1 is required for correct and efficient trafficking from the late endosomal compartments to the vacuole.

  8. Preferential Association with ClC-3 Permits Sorting of ClC-4 into Endosomal Compartments.

    PubMed

    Guzman, Raul E; Bungert-Plümke, Stefanie; Franzen, Arne; Fahlke, Christoph

    2017-09-26

    ClC-4 is an intracellular Cl(-)-H(+) exchanger, which is highly expressed in the brain and whose dysfunction has been linked to intellectual disability and epilepsy. We here studied the subcellular localization of human ClC-4 in heterologous expression systems. ClC-4 is retained in the endoplasmic reticulum (ER) upon overexpression in HEK293T cells. Co-expression with distinct ClC-3 splice variants targets ClC-4 to late endosome/lysosomes (ClC-3a and ClC-3b), recycling endosome (ClC-3c) or to the Golgi (ClC-3e). When expressed in cultured astroctyes ClC-4 sorts to endocytic compartments in WT cells, but was retained in the ER in Clcn3-/- cells. To understand the virtual absence of ER localized ClC-4 in WT cells we performed association studies by high resolution clear native gel electrophoresis (hrCNE). Whereas other CLCm channels and transporters form stable dimers, ClC-4 was mostly observed as monomer, with ClC-3-ClC-4 heterodimers being more stable than ClC-4 homodimers. We conclude that unique oligomerization properties of ClC-4 permits regulated targeting of ClC-4 to various endosomal compartments system via expression of different ClC-3 splice variants. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  9. Spatiotemporal Dynamics of Adenovirus Membrane Rupture and Endosomal Escape

    PubMed Central

    Maier, Oana; Marvin, Shauna A.; Wodrich, Harald; Campbell, Edward M.

    2012-01-01

    A key step in adenovirus cell entry is viral penetration of cellular membranes to gain access to the cytoplasm and deliver the genome to the nucleus. Yet little is known about this important event in the adenoviral life cycle. Using the cytosolic protein galectin-3 (gal3) as a marker of membrane rupture with both live- and fixed-cell imaging, we demonstrate that in the majority of instances, exposure of pVI and recruitment of gal3 to ruptured membranes occur early at or near the cell surface and occur minimally in EEA-1-positive (EEA-1+) early endosomes or LAMP-1+ late endosomes/lysosomes. Live-cell imaging of Ad5 egress from gal3+ endosomes occurs most frequently from perinuclear locations. While the Ad5 capsid is observed escaping from gal3+ endosomes, pVI appears to remain associated with the gal3+ ruptured endosomes. Thus, Ad5 membrane rupture and endosomal escape appear to be both spatially and temporally distinct events. PMID:22855481

  10. Recycling Lesson Plan

    ERIC Educational Resources Information Center

    Okaz, Abeer Ali

    2013-01-01

    This lesson plan designed for grade 2 students has the goal of teaching students about the environmental practice of recycling. Children will learn language words related to recycling such as: "we can recycle"/"we can't recycle" and how to avoid littering with such words as: "recycle paper" and/or "don't throw…

  11. Role of ARF6, Rab11 and External Hsp90 in the Trafficking and Recycling of Recombinant-Soluble Neisseria meningitidis Adhesin A (rNadA) in Human Epithelial Cells

    PubMed Central

    Montanari, Paolo; Benucci, Barbara; Biancucci, Marco; Nardi-Dei, Vincenzo; Caproni, Elena; Barrile, Riccardo; Picciani, Benedetta; Savino, Silvana; Aricò, Beatrice; Rappuoli, Rino; Pizza, Mariagrazia; Luini, Alberto; Sallese, Michele; Merola, Marcello

    2014-01-01

    Neisseria meningitidis adhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells. PMID:25347845

  12. Two barcodes encoded by the type-1 PDZ and by phospho-Ser(312) regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.

    PubMed

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß1-AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß1-AR is inhibited when PKA or its substrate serine at position 312 (Ser(312)) are inactivated. We tested the hypothesis that phospho-Ser(312) provided a second barcode for ß1-AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß1-AR trafficking. Recycling of WT ß1-AR or WT ß2-AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21C). These maneuvers however, did not inhibit the recycling of a phospho-Ser(312) ß1-AR mimic ((S312D) ß1-AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß1-AR and WT ß2-AR, but had no effect on (S312D) ß1-AR∆PDZ or on phosphorylation of WT ß1-AR by PKA at Ser(312). However, depletion of FKBP15, a FAM21C-binding endosomal protein, selectively inhibited WT ß1-AR but not ß2-AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß1-AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser(312)" verification "barcode". This organization allows tight regulation of ß1-AR density to signaling intensity in conditions associated with aberrant ß1-AR signaling such as in hypertension and heart failure.

  13. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P.

    PubMed

    Dong, Rui; Saheki, Yasunori; Swarup, Sharan; Lucast, Louise; Harper, J Wade; De Camilli, Pietro

    2016-07-14

    VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.

  14. Endosomal trafficking of the receptor tyrosine kinase MuSK proceeds via clathrin-dependent pathways, Arf6 and actin

    PubMed Central

    Luiskandl, Susan; Woller, Barbara; Schlauf, Marlies; Schmid, Johannes A; Herbst, Ruth

    2013-01-01

    Muscle-specific kinase (MuSK), a receptor tyrosine kinase, is the key player during the formation of the neuromuscular junction. Signal transduction events downstream of MuSK activation induce both pre-and postsynaptic differentiation, which, most prominently, includes the clustering of acetylcholine receptors at synaptic sites. More recently, regulated MuSK endocytosis and degradation have been implicated as crucial events for MuSK signalling activity, implicating a cross-talk between signalling and endocytosis. In the present study, we use a live imaging approach to study MuSK endocytosis. We find that MuSK is internalized via a clathrin-, dynamin-dependent pathway. MuSK is transported to Rab7-positive endosomes for degradation and recycled via Rab4-and Rab11-positive vesicles. MuSK activation by Dok7 mildly affects the localization of MuSK on the cell surface but has no effect on the rate of MuSK internalization. Interestingly, MuSK colocalizes with actin and Arf6 at the cell surface and during endosomal trafficking. Disruption of the actin cytoskeleton or the proper function of Arf6 concentrates MuSK in cell protrusions. Moreover, inhibition of Arf6 or cytoskeletal rearrangements impairs acetylcholine receptor clustering and phosphorylation. These results suggest that MuSK uses both classical and nonclassical endosomal pathways that involve a variety of different components of the endosomal machinery. Structured digital abstract MuSK and Arf6 colocalize by fluorescence microscopy (View Interaction: 1, 2) MuSK and Rab4 colocalize by fluorescence microscopy (View interaction) MuSK and Rab11 colocalize by fluorescence microscopy (View interaction) MuSK and Rab7 colocalize by fluorescence microscopy (View interaction) PMID:23621612

  15. Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes

    PubMed Central

    Pinilla-Macua, Itziar; Watkins, Simon C.; Sorkin, Alexander

    2016-01-01

    Signaling from epidermal growth factor receptor (EGFR) to extracellular-stimuli–regulated protein kinase 1/2 (ERK1/2) is proposed to be transduced not only from the cell surface but also from endosomes, although the role of endocytosis in this signaling pathway is controversial. Ras is the only membrane-anchored component in the EGFR–ERK signaling axis, and therefore, its location determines intracellular sites of downstream signaling. Hence, we labeled endogenous H-Ras (HRas) with mVenus fluorescent protein using gene editing in HeLa cells. mVenus-HRas was primarily located at the plasma membrane, and in small amounts in tubular recycling endosomes and associated vesicles. EGF stimulation resulted in fast but transient activation of mVenus-HRas. Although EGF:EGFR complexes were rapidly accumulated in endosomes together with the Grb2 adaptor, very little, if any, mVenus-HRas was detected in these endosomes. Interestingly, the activities of MEK1/2 and ERK1/2 remained high beyond the point of the physical separation of HRas from EGF:EGFR complexes and down-regulation of Ras activity. Paradoxically, this sustained MEK1/2 and ERK1/2 activation was dependent on the active EGFR kinase. Cell surface biotinylation and selective inactivation of surface EGFRs suggested that a small fraction of active EGFRs remaining in the plasma membrane is responsible for continuous signaling to MEK1/2 and ERK1/2. We propose that, under physiological conditions of cell stimulation, EGFR endocytosis serves to spatially separate EGFR–Grb2 complexes and Ras, thus terminating Ras-mediated signaling. However, sustained minimal activation of Ras by a small pool of active EGFRs in the plasma membrane is sufficient for extending MEK1/2 and ERK1/2 activities. PMID:26858456

  16. An endosome-to-plasma membrane pathway involved in trafficking of a mutant plasma membrane ATPase in yeast.

    PubMed

    Luo, W j; Chang, A

    2000-02-01

    The plasma membrane ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway. Previously, we characterized a temperature-sensitive pma1 mutant in which newly synthesized Pma1-7 is not delivered to the plasma membrane but is mislocalized instead to the vacuole at 37 degrees C. Several vps mutants, which are defective in vacuolar protein sorting, suppress targeting-defective pma1 by allowing mutant Pma1 to move once again to the plasma membrane. In this study, we have analyzed trafficking in the endosomal system by monitoring the movement of Pma1-7 in vps36, vps1, and vps8 mutants. Upon induction of expression, mutant Pma1 accumulates in the prevacuolar compartment in vps36 cells. After chase, a fraction of newly synthesized Pma1-7 is delivered to the plasma membrane. In both vps1 and vps8 cells, newly synthesized mutant Pma1 appears in small punctate structures before arrival at the cell surface. Nevertheless, biosynthetic membrane traffic appears to follow different routes in vps8 and vps1: the vacuolar protein-sorting receptor Vps10p is stable in vps8 but not in vps1. Furthermore, a defect in endocytic delivery to the vacuole was revealed in vps8 (and vps36) but not vps1 by endocytosis of the bulk membrane marker FM 4-64. Moreover, in vps8 cells, there is defective down-regulation from the cell surface of the mating receptor Ste3, consistent with persistent receptor recycling from an endosomal compartment to the plasma membrane. These data support a model in which mutant Pma1 is diverted from the Golgi to the surface in vps1 cells. We hypothesize that in vps8 and vps36, in contrast to vps1, mutant Pma1 moves to the surface via endosomal intermediates, implicating an endosome-to-surface traffic pathway.

  17. β2-adrenergic receptor control of endosomal PTH receptor signaling via Gβγ

    PubMed Central

    Jean-Alphonse, Frédéric G; Wehbi, Vanessa L; Chen, Jingming; Noda, Masaki; Taboas, Juan M; Xiao, Kunhong; Vilardaga, Jean-Pierre

    2017-01-01

    Cells express several G-protein-coupled receptors (GPCRs) at their surfaces, transmitting simultaneous extracellular hormonal and chemical signals into cells. A comprehensive understanding of mechanisms underlying the integrated signaling response induced by distinct GPCRs is thus required. Here we found that the β2-adrenergic receptor, which induces a short cAMP response, prolongs nuclear cAMP and protein kinase A (PKA) activation by promoting endosomal cAMP production in parathyroid hormone (PTH) receptor signaling through the stimulatory action of G protein Gβγ subunits on adenylate cyclase type 2. PMID:28024151

  18. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction.

    PubMed

    Eden, Emily R; White, Ian J; Tsapara, Anna; Futter, Clare E

    2010-03-01

    The epidermal growth factor receptor (EGFR) is a critical determinator of cell fate. Signalling from this receptor tyrosine kinase is spatially regulated by progression through the endocytic pathway, governing receptor half-life and accessibility to signalling proteins and phosphatases. Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (ref. 1), which localizes to the cytoplasmic face of the endoplasmic reticulum (ER), raising the question of how PTP1B comes into contact with endosomal EGFR. We show that EGFR-PTP1B interaction occurs by means of direct membrane contacts between the perimeter membrane of multivesicular bodies (MVBs) and the ER. The population of EGFR interacting with PTP1B is the same population that undergo ESCRT-mediated (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B activity promotes the sequestration of EGFR on to MVB internal vesicles. Membrane contacts between endosomes and the ER form in both the presence and absence of stimulation by EGF. Thus membrane contacts between endosomes and the ER may represent a global mechanism for direct interaction between proteins on these two organelles.

  19. Analysis of TCR/CD3 Recycling at the Immune Synapse.

    PubMed

    Patrussi, Laura; Baldari, Cosima T

    2017-01-01

    Engagement of the T cell antigen receptor (TCR) by specific ligand bound to the major histocompatibility complex is the primary event that leads to the assembly of the immune synapse (IS). Central to this process is TCR clustering at the T cell-APC contact, which is achieved with the contribution of an endosomal pool that is delivered to the IS by polarized recycling. As the TCR recycling process has not been fully elucidated, we developed methods suitable to quantitate recycling to the plasma membrane of TCR/CD3 complexes that have been engaged at the cell surface and track their traffic through the intracellular vesicular compartments toward the IS.

  20. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site.

    PubMed

    Cuesta-Geijo, Miguel Ángel; Barrado-Gil, Lucía; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Alonso, Covadonga

    2017-06-01

    African swine fever virus (ASFV) infection causes endosomal reorganization. Here, we show that the virus causes endosomal congregation close to the nucleus as the infection progresses, which is necessary to build a compact viral replication organelle. ASFV enters the cell by the endosomal pathway and reaches multivesicular late endosomes. Upon uncoating and fusion, the virus should exit to the cytosol to start replication. ASFV remodels endosomal traffic and redistributes endosomal membranes to the viral replication site. Virus replication also depends on endosomal membrane phosphoinositides (PtdIns) synthesized by PIKfyve. Endosomes could act as platforms providing membranes and PtdIns, necessary for ASFV replication. Our study has revealed that ASFV reorganizes endosome dynamics, in order to ensure a productive infection.

  1. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site

    PubMed Central

    Cuesta-Geijo, Miguel Ángel; Barrado-Gil, Lucía; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Alonso, Covadonga

    2017-01-01

    African swine fever virus (ASFV) infection causes endosomal reorganization. Here, we show that the virus causes endosomal congregation close to the nucleus as the infection progresses, which is necessary to build a compact viral replication organelle. ASFV enters the cell by the endosomal pathway and reaches multivesicular late endosomes. Upon uncoating and fusion, the virus should exit to the cytosol to start replication. ASFV remodels endosomal traffic and redistributes endosomal membranes to the viral replication site. Virus replication also depends on endosomal membrane phosphoinositides (PtdIns) synthesized by PIKfyve. Endosomes could act as platforms providing membranes and PtdIns, necessary for ASFV replication. Our study has revealed that ASFV reorganizes endosome dynamics, in order to ensure a productive infection. PMID:28587154

  2. The PDZ Protein GIPC Regulates Trafficking of the LPA1 Receptor from APPL Signaling Endosomes and Attenuates the Cell’s Response to LPA

    PubMed Central

    Varsano, Tal; Taupin, Vanessa; Guo, Lixia; Baterina, Oscar Y.; Farquhar, Marilyn G.

    2012-01-01

    Lysophosphatidic acid (LPA) mediates diverse cellular responses through the activation of at least six LPA receptors – LPA1–6, but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA1 contains a PDZ binding motif (SVV) identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA1 but not that of other LPA receptors. LPA1 colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA1 to EEA1 early endosomes and promoted LPA1 mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA1 and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes. PMID:23145131

  3. The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell's response to LPA.

    PubMed

    Varsano, Tal; Taupin, Vanessa; Guo, Lixia; Baterina, Oscar Y; Farquhar, Marilyn G

    2012-01-01

    Lysophosphatidic acid (LPA) mediates diverse cellular responses through the activation of at least six LPA receptors--LPA(1-6,) but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA(1) contains a PDZ binding motif (SVV) identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA(1) but not that of other LPA receptors. LPA(1) colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA(1) to EEA1 early endosomes and promoted LPA(1) mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA(1) and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.

  4. A cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for endosomal degradation and counteracts interferon-induced restriction.

    PubMed

    Kueck, Tonya; Neil, Stuart J D

    2012-01-01

    The HIV-1 accessory protein Vpu counteracts tetherin (BST-2/CD317) by preventing its incorporation into virions, reducing its surface expression, and ultimately promoting its degradation. Here we characterize a putative trafficking motif, EXXXLV, in the second alpha helix of the subtype-B Vpu cytoplasmic tail as being required for efficient tetherin antagonism. Mutation of this motif prevents ESCRT-dependent degradation of tetherin/Vpu complexes, tetherin cell surface downregulation, but not its physical interaction with Vpu. Importantly, this motif is required for efficient cell-free virion release from CD4+ T cells, particularly after their exposure to type-1 interferon, indicating that the ability to reduce surface tetherin levels and promote its degradation is important to counteract restriction under conditions that the virus likely encounters in vivo. Vpu EXXXLV mutants accumulate with tetherin at the cell surface and in endosomal compartments, but retain the ability to bind both β-TrCP2 and HRS, indicating that this motif is required for a post-binding trafficking event that commits tetherin for ESCRT-dependent degradation and prevents its transit to the plasma membrane and viral budding zones. We further found that while Vpu function is dependent on clathrin, and the entire second alpha helix of the Vpu tail can be functionally complemented by a clathrin adaptor binding peptide derived from HIV-1 Nef, none of the canonical clathrin adaptors nor retromer are required for this process. Finally we show that residual activity of Vpu EXXXLV mutants requires an intact endocytic motif in tetherin, suggesting that physical association of Vpu with tetherin during its recycling may be sufficient to compromise tetherin activity to some degree.

  5. Analysis of Occludin Trafficking, Demonstrating Continuous Endocytosis, Degradation, Recycling and Biosynthetic Secretory Trafficking

    PubMed Central

    Fletcher, Sarah J.; Iqbal, Mudassar; Jabbari, Sara; Stekel, Dov; Rappoport, Joshua Z.

    2014-01-01

    Tight junctions (TJs) link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK) epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes). By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ∼20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes. PMID:25422932

  6. Analysis of occludin trafficking, demonstrating continuous endocytosis, degradation, recycling and biosynthetic secretory trafficking.

    PubMed

    Fletcher, Sarah J; Iqbal, Mudassar; Jabbari, Sara; Stekel, Dov; Rappoport, Joshua Z

    2014-01-01

    Tight junctions (TJs) link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK) epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes). By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ∼20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes.

  7. Phloem-Specific Methionine Recycling Fuels Polyamine Biosynthesis in a Sulfur-Dependent Manner and Promotes Flower and Seed Development1[OPEN

    PubMed Central

    Hajirezaei, Mohammad R.

    2016-01-01

    The Yang or Met Cycle is a series of reactions catalyzing the recycling of the sulfur (S) compound 5′-methylthioadenosine (MTA) to Met. MTA is produced as a by-product in ethylene, nicotianamine, and polyamine biosynthesis. Whether the Met Cycle preferentially fuels one of these pathways in a S-dependent manner remained unclear so far. We analyzed Arabidopsis (Arabidopsis thaliana) mutants with defects in the Met Cycle enzymes 5-METHYLTHIORIBOSE-1-PHOSPHATE-ISOMERASE1 (MTI1) and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (DEP1) under different S conditions and assayed the contribution of the Met Cycle to the regeneration of S for these pathways. Neither mti1 nor dep1 mutants could recycle MTA but showed S-dependent reproductive failure, which was accompanied by reduced levels of the polyamines putrescine, spermidine, and spermine in mutant inflorescences. Complementation experiments with external application of these three polyamines showed that only the triamine spermine could specifically rescue the S-dependent reproductive defects of the mutant plants. Furthermore, expressing gene-reporter fusions in Arabidopsis showed that MTI1 and DEP1 were mainly expressed in the vasculature of all plant parts. Phloem-specific reconstitution of Met Cycle activity in mti1 and dep1 mutant plants was sufficient to rescue their S-dependent mutant phenotypes. We conclude from these analyses that phloem-specific S recycling during periods of S starvation is essential for the biosynthesis of polyamines required for flowering and seed development. PMID:26662272

  8. Lipid peroxidation causes endosomal antigen release for cross-presentation

    PubMed Central

    Dingjan, Ilse; Verboogen, Daniëlle RJ; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie SV; Figdor, Carl G; ter Beest, Martin; van den Bogaart, Geert

    2016-01-01

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer. PMID:26907999

  9. Lipid peroxidation causes endosomal antigen release for cross-presentation.

    PubMed

    Dingjan, Ilse; Verboogen, Daniëlle Rj; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie Sv; Figdor, Carl G; Ter Beest, Martin; van den Bogaart, Geert

    2016-02-24

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer.

  10. Autophagy Induced by Calcium Phosphate Precipitates Targets Damaged Endosomes*

    PubMed Central

    Chen, Xi; Khambu, Bilon; Zhang, Hao; Gao, Wentao; Li, Min; Chen, Xiaoyun; Yoshimori, Tamotsu; Yin, Xiao-Ming

    2014-01-01

    Calcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62. PMID:24619419

  11. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  12. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  13. The Salih ataxia mutation impairs Rubicon endosomal localization.

    PubMed

    Assoum, M; Salih, M A; Drouot, N; Hnia, K; Martelli, A; Koenig, M

    2013-12-01

    We previously described a new form of recessive ataxia, Salih ataxia, in a large consanguineous Saudi Arabian family with three affected children carrying a new identified mutation in the KIAA0226 gene (c.2624delC; p.Ala875ValfsX146) coding for Rubicon. The pathogenicity of such mutation remains to be identified. Hence, we address the cellular impact of Rubicon p.Ala875ValfsX146 on endosomal/lysosomal machinery on cultured cells. We confirm that Rubicon colocalizes with the late endosome marker Rab7 and demonstrate that it also colocalizes with LampI at lysosomes. The Salih ataxia mutation leads to a diffuse cytosolic distribution and mislocalized protein from the late endosomes, indicating that deletion of the diacylglycerol binding-like motif in the mutant protein interferes with normal Rubicon subcellular localization and confirming the pathogenicity of the mutation.

  14. Sara endosomes and the asymmetric division of intestinal stem cells.

    PubMed

    Montagne, Chrystelle; Gonzalez-Gaitan, Marcos

    2014-05-01

    Tissue homeostasis is maintained by adult stem cells, which self-renew and give rise to differentiating cells. The generation of daughter cells with different fates is mediated by signalling molecules coming from an external niche or being asymmetrically dispatched between the two daughters upon stem cell mitosis. In the adult Drosophila midgut, the intestinal stem cell (ISC) divides to generate a new ISC and an enteroblast (EB) differentiating daughter. Notch signalling activity restricted to the EB regulates intestinal cell fate decision. Here, we show that ISCs divide asymmetrically, and Sara endosomes in ISCs are specifically dispatched to the presumptive EB. During ISC mitosis, Notch and Delta traffic through Sara endosomes, thereby contributing to Notch signalling bias, as revealed in Sara mutants: Sara itself contributes to the control of the ISC asymmetric division. Our data uncover an intrinsic endosomal mechanism during ISC mitosis, which participates in the maintenance of the adult intestinal lineage.

  15. The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans

    PubMed Central

    Zhao, Yani; Holmgren, Benjamin T.

    2017-01-01

    Small RNA pathways, including RNA interference (RNAi), play crucial roles in regulation of gene expression. Initially considered to be cytoplasmic, these processes have later been demonstrated to associate with membranes. For example, maturation of late endosomes/multivesicular bodies (MVBs) is required for efficient RNAi, whereas fusion of MVBs to lysosomes appears to reduce silencing efficiency. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane fusion and are thus at the core of membrane trafficking. In spite of this, no SNARE has previously been reported to affect RNAi. Here, we demonstrate that in Caenorhabditis elegans, loss of the conserved SNARE SEC-22 results in enhanced RNAi upon ingestion of double-stranded RNA. Furthermore, SEC-22 overexpression inhibits RNAi in wild-type animals. We find that overexpression of SEC-22 in the target tissue (body wall muscle) strongly suppresses the sec-22(−) enhanced RNAi phenotype, supporting a primary role for SEC-22 in import of RNAi silencing signals or cell autonomous RNAi. A functional mCherry::SEC-22 protein localizes primarily to late endosomes/MVBs and these compartments are enlarged in animals lacking sec-22. SEC-22 interacts with late endosome-associated RNA transport protein SID-5 in a yeast two-hybrid assay and functions in a sid-5-dependent manner. Taken together, our data indicate that SEC-22 reduces RNAi efficiency by affecting late endosome/MVB function, for example, by promoting fusion between late endosomes/MVBs and lysosomes. To our knowledge, this is the first report of a SNARE with a function in small RNA-mediated gene silencing. PMID:27974622

  16. The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans.

    PubMed

    Zhao, Yani; Holmgren, Benjamin T; Hinas, Andrea

    2017-03-01

    Small RNA pathways, including RNA interference (RNAi), play crucial roles in regulation of gene expression. Initially considered to be cytoplasmic, these processes have later been demonstrated to associate with membranes. For example, maturation of late endosomes/multivesicular bodies (MVBs) is required for efficient RNAi, whereas fusion of MVBs to lysosomes appears to reduce silencing efficiency. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane fusion and are thus at the core of membrane trafficking. In spite of this, no SNARE has previously been reported to affect RNAi. Here, we demonstrate that in Caenorhabditis elegans, loss of the conserved SNARE SEC-22 results in enhanced RNAi upon ingestion of double-stranded RNA. Furthermore, SEC-22 overexpression inhibits RNAi in wild-type animals. We find that overexpression of SEC-22 in the target tissue (body wall muscle) strongly suppresses the sec-22(-) enhanced RNAi phenotype, supporting a primary role for SEC-22 in import of RNAi silencing signals or cell autonomous RNAi. A functional mCherry::SEC-22 protein localizes primarily to late endosomes/MVBs and these compartments are enlarged in animals lacking sec-22 SEC-22 interacts with late endosome-associated RNA transport protein SID-5 in a yeast two-hybrid assay and functions in a sid-5-dependent manner. Taken together, our data indicate that SEC-22 reduces RNAi efficiency by affecting late endosome/MVB function, for example, by promoting fusion between late endosomes/MVBs and lysosomes. To our knowledge, this is the first report of a SNARE with a function in small RNA-mediated gene silencing.

  17. pH regulation in early endosomes and interferon-inducible transmembrane proteins control avian retrovirus fusion.

    PubMed

    Desai, Tanay M; Marin, Mariana; Mason, Caleb; Melikyan, Gregory B

    2017-05-12

    Enveloped viruses infect host cells by fusing their membranes with those of the host cell, a process mediated by viral glycoproteins upon binding to cognate host receptors or entering into acidic intracellular compartments. Whereas the effect of receptor density on viral infection has been well studied, the role of cell type-specific factors/processes, such as pH regulation, has not been characterized in sufficient detail. Here, we examined the effects of cell-extrinsic factors (buffer environment) and cell-intrinsic factors (interferon-inducible transmembrane proteins, IFITMs), on the pH regulation in early endosomes and on the efficiency of acid-dependent fusion of the avian sarcoma and leukosis virus (ASLV), with endosomes. First, we found that a modest elevation of external pH can raise the pH in early endosomes in a cell type-dependent manner and thereby delay the acid-induced fusion of endocytosed ASLV. Second, we observed a cell type-dependent delay between the low pH-dependent and temperature-dependent steps of viral fusion, consistent with the delayed enlargement of the fusion pore. Third, ectopic expression of IFITMs, known to potently block influenza virus fusion with late compartments, was found to only partially inhibit ASLV fusion with early endosomes. Interestingly, IFITM expression promoted virus uptake and the acidification of endosomal compartments, resulting in an accelerated fusion rate when driven by the glycosylphosphatidylinositol-anchored, but not by the transmembrane isoform of the ASLV receptor. Collectively, these results highlight the role of cell-extrinsic and cell-intrinsic factors in regulating the efficiency and kinetics of virus entry and fusion with target cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Recycling Lesson Plans.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Environmental Resources, Harrisburg.

    This document contains lesson plans about recycling for teachers in grades K-12. Titles include: (1) "Waste--Where Does It Come From? Where Does It Go?" (2) "Litter Detectives," (3) "Classroom Paper Recycling," (4) "Recycling Survey," (5) "Disposal and Recycling Costs," (6) "Composting…

  19. Green Science: Revisiting Recycling

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  20. Green Science: Revisiting Recycling

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  1. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  2. Physiology and pathology of endosome-to-Golgi retrograde sorting.

    PubMed

    Burd, Christopher G

    2011-08-01

    Bidirectional traffic between the Golgi apparatus and the endosomal system sustains the functions of the trans-Golgi network (TGN) in secretion and organelle biogenesis. Export of cargo from the TGN via anterograde trafficking pathways depletes the organelle of sorting receptors, processing proteases, SNARE molecules, and other factors, and these are subsequently retrieved from endosomes via the retrograde pathway. Recent studies indicate that retrograde trafficking is vital to early metazoan development, nutrient homeostasis, and for processes that protect against Alzheimer's and other neurological diseases.

  3. Visualizing and quantitating sequence-dependent GPCR recycling.

    PubMed

    Bowman, Shanna L; Soohoo, Amanda L; Puthenveedu, Manojkumar A

    2015-01-01

    Recent advances in direct imaging have given us a new appreciation of the spatial and temporal dynamics of membrane trafficking processes, and have allowed us to ask questions that were difficult to address with traditional methods. A relevant example of this is protein sorting in the endosome, which serves as the primary sorting station for proteins internalized from the cell surface. In this chapter, we discuss fluorescence imaging protocols to directly visualize and quantitate the recycling of G protein-coupled receptors (GPCRs)-a highly physiologically relevant family of signaling receptors-in real time in living cells. The protocols allow direct visualization and quantitation of both GPCR exit from the endosome and GPCR delivery to the cell surface. The methods may be extended to study the endolysosomal sorting of many proteins that undergoes endocytic cycling, and may be adapted to other organelles and systems where proteins are sorted. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The closed conformation of the LDL receptor is destabilized by the low Ca(++) concentration but favored by the high Mg(++) concentration in the endosome.

    PubMed

    Martínez-Oliván, Juan; Arias-Moreno, Xabier; Hurtado-Guerrero, Ramón; Carrodeguas, José Alberto; Miguel-Romero, Laura; Marina, Alberto; Bruscolini, Pierpaolo; Sancho, Javier

    2015-11-30

    The LDL receptor (LDLR) internalizes LDL and VLDL particles. In the endosomes, it adopts a closed conformation important for recycling, by interaction of two modules of the ligand binding domain (LR4-5) and a β-propeller motif. Here, we investigate by SPR the interactions between those two modules and the β-propeller. Our results indicate that the two modules cooperate to bind the β-propeller. The binding is favored by low pH and by high [Ca(++)]. Our data show that Mg(++), at high concentration in the endosome, favors the formation of the closed conformation by replacing the structuring effect of Ca(++) in LR5. We propose a sequential model of LDL release where formation of the close conformation follows LDL release. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Influenza A virus ribonucleoproteins modulate host recycling by competing with Rab11 effectors.

    PubMed

    Vale-Costa, Sílvia; Alenquer, Marta; Sousa, Ana Laura; Kellen, Bárbara; Ramalho, José; Tranfield, Erin M; Amorim, Maria João

    2016-04-15

    Influenza A virus assembly is an unclear process, whereby individual virion components form an infectious particle. The segmented nature of the influenza A genome imposes a problem to assembly because it requires packaging of eight distinct RNA particles (vRNPs). It also allows genome mixing from distinct parental strains, events associated with influenza pandemic outbreaks. It is important to public health to understand how segmented genomes assemble, a process that is dependent on the transport of components to assembly sites. Previously, it has been shown that vRNPs are carried by recycling endosome vesicles, resulting in a change of Rab11 distribution. Here, we describe that vRNP binding to recycling endosomes impairs recycling endosome function, by competing for Rab11 binding with family-interacting proteins, and that there is a causal relationship between Rab11 ability to recruit family-interacting proteins and Rab11 redistribution. This competition reduces recycling sorting at an unclear step, resulting in clustering of single- and double-membraned vesicles. These morphological changes in Rab11 membranes are indicative of alterations in protein and lipid homeostasis during infection. Vesicular clustering creates hotspots of the vRNPs that need to interact to form an infectious particle. © 2016. Published by The Company of Biologists Ltd.

  6. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    PubMed Central

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  7. A new Rab7 effector controls phosphoinositide conversion in endosome maturation.

    PubMed

    Casanova, James E; Winckler, Bettina

    2017-10-02

    Endosome maturation requires a coordinated change in the Rab GTPase and phosphoinositide composition of the endosomal membrane. In this issue, Liu et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201705151) identify WDR91 as a ubiquitous Rab7 effector that inhibits phosphatidylinositol 3-kinase activity on endosomes and is critical for endosome maturation, viability, and dendrite growth of neurons in vivo. © 2017 Casanova and Winckler.

  8. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    SciTech Connect

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  9. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology

    PubMed Central

    Kirkbride, Kellye C.; Hong, Nan Hyung; French, Christi L.; Clark, Emily S.; Jerome, W. Gray; Weaver, Alissa M.

    2013-01-01

    Cortactin is a branched actin regulator and tumor-overexpressed protein that promotes vesicular trafficking at a variety of cellular sites, including endosomes and the trans-Golgi network. To better understand its role in secretory trafficking, we investigated its function in Golgi homeostasis. Here, we report that knockdown (KD) of cortactin leads to a dramatic change in Golgi morphology by light microscopy, dependent on binding the Arp2/3 actin-nucleating complex. Surprisingly, there was little effect of cortactin-KD on anterograde trafficking of the constitutive cargo VSV-G, Golgi assembly from ER membranes upon Brefeldin A washout, or Golgi ultrastructure. Instead, electron microscopy (EM) studies revealed that cortactin-KD cells contained a large number of immature-appearing late endosomal/lysosomal (LE/Lys) hybrid organelles, similar to those found in lysosomal storage diseases. Consistent with a defect in LE/Lys trafficking, cortactin-KD cells also exhibited accumulation of free cholesterol and retention of the retrograde Golgi cargo M6PR in LE. Inhibition of LE maturation by treatment of control cells with Rab7 siRNA or chloroquine led to a compact Golgi morphology similar to that observed in cortactin-KD cells. Furthermore, the Golgi morphology defects of cortactin-KD cells could be rescued by removal of cholesterol-containing lipids from the media, suggesting that buildup of cholesterol-rich membranes in immature LE/Lys induced disturbances in retrograde trafficking. Taken together, these data reveal that LE/Lys maturation and trafficking is highly sensitive to cortactin-regulated branched actin assembly and suggests that cytoskeletal-induced Golgi morphology changes can be a consequence of altered trafficking at late endosomes. PMID:22991200

  10. Endosomal system genetics and autism spectrum disorders: A literature review.

    PubMed

    Patak, Jameson; Zhang-James, Yanli; Faraone, Stephen V

    2016-06-01

    Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted.

  11. Structural Basis for Endosomal Targeting by the Bro1 Domain

    PubMed Central

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  12. Structural basis for endosomal targeting by the Bro1 domain.

    PubMed

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M; Odorizzi, Greg; Hurley, James H

    2005-06-01

    Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs.

  13. Isolation and characterization of endosomes from rat liver

    SciTech Connect

    Kennedy, G.C.

    1987-01-01

    Three fractions of rat liver endosomes, called 50 Kg Light, 50 Kg Heavy, and 150 Kg have been isolated on 16% Percoll gradients. The 50 Kg Heavy fraction accumulates ligand as a function of time after injection, using either /sup 125/I-asialoorosomucoid (/sup 125/I-ASOR) or /sup 125/I-immunoglobulin A (/sup 125/I-IgA) as ligands. A pulse-chase protocol was also used to study the kinetics of ligand entry into the endosomal compartments. A double-label, 3,3'-diaminobenzidine (DAB)-induced density shift protocol was used to study the internalization of two ligands with different destinations in the hepatocyte. Rats were injected intraportally with /sup 125/I-ASOR-HRP and /sup 131/I-IgA and the liver was fractionated at various times post-injection. The three ligand-containing endosomal fractions were isolated and each subjected to the DAB shift procedure. This treatment causes organelles containing /sup 125/I-ASOR-HRP and another ligand occupying the same compartment to shift to a higher density. Thus, information on whether the /sup 131/I-IgA is colocalized or segregated from the /sup 125/I-ASOR-HRP can be obtained. The authors have used an instantaneous pulse, temperature shift protocol to study the heterogeneity of these three endosomal fractions isolated from rat liver.

  14. Selective endosomal microautophagy is starvation-inducible in Drosophila

    PubMed Central

    Mukherjee, Anindita; Patel, Bindi; Koga, Hiroshi; Cuervo, Ana Maria; Jenny, Andreas

    2016-01-01

    ABSTRACT Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body. PMID:27487474

  15. Selective endosomal microautophagy is starvation-inducible in Drosophila.

    PubMed

    Mukherjee, Anindita; Patel, Bindi; Koga, Hiroshi; Cuervo, Ana Maria; Jenny, Andreas

    2016-11-01

    Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.

  16. Bacterial toxins and small molecules elucidate endosomal trafficking.

    PubMed

    Slater, Louise H; Clatworthy, Anne E; Hung, Deborah T

    2014-02-01

    Bacterial toxins and small molecules are useful tools for studying eukaryotic cell biology. In a recent issue of PNAS, Gillespie and colleagues describe a novel small molecule inhibitor of bacterial toxins and virus trafficking through the endocytic pathway, 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), that prevents transport from early to late endosomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Recycled Art: Create Puppets Using Recycled Objects.

    ERIC Educational Resources Information Center

    Clearing, 2003

    2003-01-01

    Presents an activity from "Healthy Foods from Healthy Soils" for making puppets using recycled food packaging materials. Includes background information, materials, instructions, literature links, resources, and benchmarks. (NB)

  18. Recycle Used Oil on America Recycles Day.

    ERIC Educational Resources Information Center

    White, Boyd W.

    2000-01-01

    Explains that motor oils can be reused and recycled. Educates students about environmental hazards and oil management and includes classroom activities. Addresses the National Science Education Standards. (YDS)

  19. Recycled Art: Create Puppets Using Recycled Objects.

    ERIC Educational Resources Information Center

    Clearing, 2003

    2003-01-01

    Presents an activity from "Healthy Foods from Healthy Soils" for making puppets using recycled food packaging materials. Includes background information, materials, instructions, literature links, resources, and benchmarks. (NB)

  20. Intracellular trafficking of recycling apolipoprotein E in Chinese hamster ovary cells.

    PubMed

    Braun, Nicole A; Mohler, Peter J; Weisgraber, Karl H; Hasty, Alyssa H; Linton, MacRae F; Yancey, Patricia G; Su, Yan Ru; Fazio, Sergio; Swift, Larry L

    2006-06-01

    We have investigated apolipoprotein E (apoE) recycling in Chinese hamster ovary (CHO) cells, a peripheral cell that does not produce lipoproteins or express apoE. Using a pulse-chase protocol in which cells were pulsed with 125I-apoE-VLDL and chased for different periods, approximately 30% of the apoE internalized during the pulse was resecreted within a 4 h chase in a relatively lipid-free state. The addition of lysosomotropic agents or brefeldin A had no effect on apoE recycling. Unlike previous results with hepatocytes and macrophages, neither apoA-I nor upregulation of ABCA1 stimulated apoE recycling. However, cyclodextrin, which extracts cholesterol from plasma membrane lipid rafts, increased recycling. Confocal studies revealed that apoE, internalized during a 1 h pulse, colocalizes with early endosomal antigen-1, Rab5, Rab11a, and lysobisphosphatidic acid but not with lysosomal-associated membrane protein-1. Colocalization of apoE and Rab11a persisted even after cells had been chased for 1 h, suggesting a pool of apoE within the endosomal recycling compartment (ERC). Our data suggest that apoE recycling in CHO cells is linked to cellular cholesterol removal via the ERC and phospholipid-containing acceptors in a pathway alternative to the ABCA1-apoA-I axis.

  1. Challenges in metal recycling.

    PubMed

    Reck, Barbara K; Graedel, T E

    2012-08-10

    Metals are infinitely recyclable in principle, but in practice, recycling is often inefficient or essentially nonexistent because of limits imposed by social behavior, product design, recycling technologies, and the thermodynamics of separation. We review these topics, distinguishing among common, specialty, and precious metals. The most beneficial actions that could improve recycling rates are increased collection rates of discarded products, improved design for recycling, and the enhanced deployment of modern recycling methodology. As a global society, we are currently far away from a closed-loop material system. Much improvement is possible, but limitations of many kinds--not all of them technological--will preclude complete closure of the materials cycle.

  2. Benchmarking in municipal solid waste recycling.

    PubMed

    Lavee, Doron; Khatib, Mahmood

    2010-11-01

    The paper presents an analysis of the factors influencing the recycling potential of municipalities in Israel, including population size and density, geographic location, current waste levels, and current waste management system. We employ a standard regression analysis in order to develop an econometric model to predict where potential for economically efficient recycling is highest. By applying this model to readily available data, it is possible to predict with close to 90% accuracy whether or not recycling will be economically efficient in any given municipality. Government agencies working to promote advanced waste management solutions have at their disposal only limited resources and budget, and so must concentrate their efforts where they will be most effective. The paper thus provides policy-makers with a powerful tool to help direct their efforts to promote recycling at those municipalities where it is indeed optimal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4.

    PubMed

    Zhang, Fan; Gaur, Naseem A; Hasek, Jiri; Kim, Soon-ja; Qiu, Hongfang; Swanson, Mark J; Hinnebusch, Alan G

    2008-11-01

    The late endosome (MVB) plays a key role in coordinating vesicular transport of proteins between the Golgi complex, vacuole/lysosome, and plasma membrane. We found that deleting multiple genes involved in vesicle fusion at the MVB (class C/D vps mutations) impairs transcriptional activation by Gcn4, a global regulator of amino acid biosynthetic genes, by decreasing the ability of chromatin-bound Gcn4 to stimulate preinitiation complex assembly at the promoter. The functions of hybrid activators with Gal4 or VP16 activation domains are diminished in class D mutants as well, suggesting a broader defect in activation. Class E vps mutations, which impair protein sorting at the MVB, also decrease activation by Gcn4, provided they elicit rapid proteolysis of MVB cargo proteins in the aberrant late endosome. By contrast, specifically impairing endocytic trafficking from the plasma membrane, or vesicular transport to the vacuole, has a smaller effect on Gcn4 function. Thus, it appears that decreasing cargo proteins in the MVB through impaired delivery or enhanced degradation, and not merely the failure to transport cargo properly to the vacuole or downregulate plasma membrane proteins by endocytosis, is required to attenuate substantially transcriptional activation by Gcn4.

  4. Unregulated ARF6 Activation in Epithelial Cysts Generates Hyperactive Signaling Endosomes and Disrupts Morphogenesis

    PubMed Central

    Tushir, Jogender S.; Clancy, James; Warren, Andrew; Wrobel, Carolyn; Brugge, Joan S.

    2010-01-01

    Tumor development in glandular tissues is associated with structural alterations in the hollow ducts and spherical structures that comprise such tissues. We describe a signaling axis involving sustained activation of the GTP-binding protein, ARF6, that provokes dramatic changes in the organization of epithelial cysts, reminiscent of tumorigenic glandular phenotypes. In reconstituted basement membrane cultures of renal epithelial cysts, enhanced ARF6 activation induces the formation of cell-filled glandular structures with multiple lumens and disassembled cadherin-based cell–cell contacts. All of these alterations are accompanied by growth factor receptor internalization into signaling endosomes and reversed by blocking ARF6 activation or receptor endocytosis. Receptor localization in signaling endosomes results in hyperactive extracellular signal-regulated kinase signaling leading to Bcl-2 stabilization and aberrant cysts. Similarly, formation of hyperproliferative and disorganized mammary acini induced by chronic stimulation of colony-stimulating factor 1 receptor is coupled to endogenous ARF6 activation and constitutive receptor internalization and is reversed by ARF6 inhibition. These findings identify a previously unrecognized link between ARF6-regulated receptor internalization and events that drive dramatic alterations in cyst morphogenesis providing new mechanistic insight into the molecular processes that can promote epithelial glandular disruption. PMID:20462959

  5. Certified Electronics Recyclers

    EPA Pesticide Factsheets

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  6. Reading, 'Riting, 'Rithmetic & Recycling.

    ERIC Educational Resources Information Center

    Hill, Jim, Ed.

    1995-01-01

    Discusses the growing environmental education movement and what constitutes good education about recycling and the environment. Lists characteristics of environmental education resources and examines criticism of environmental education and recycling education. Cites 19 references. (LZ)

  7. Recycling Research. Tracking Trash.

    ERIC Educational Resources Information Center

    DeLago, Louise Furia

    1991-01-01

    An activity in which students research the effectiveness of recycling is presented. Students compare the types and amount of litter both before and after recycling is implemented. Directions for the activity and a sample data sheet are included. (KR)

  8. Recycling overview in Sweden

    SciTech Connect

    Not Available

    1989-07-01

    This article discusses the recycling programs currently in use in Sweden. Recycling of newspapers, batteries, plastics are all mentioned in this report by the Swedish Association of Public Cleansing and Solid Waste Management.

  9. Frequent Questions on Recycling

    EPA Pesticide Factsheets

    This is a list of frequent questions on recycling, broken down into five categories. These are answers to common questions that EPA has received from press and web inquiries. This list is located on the Reduce, Reuse, Recycle website.

  10. Using multifocal plane microscopy to reveal novel trafficking processes in the recycling pathway

    PubMed Central

    Gan, Zhuo; Ram, Sripad; Ober, Raimund J.; Ward, E. Sally

    2013-01-01

    Summary A major outstanding issue in cell biology is the lack of understanding of the contribution of tubulovesicular transport carriers (TCs) to intracellular trafficking pathways within 3D cellular environments. This is primarily due to the challenges associated with the use of microscopy techniques to track these highly motile, small compartments. In the present study we have used multifocal plane microscopy with localized photoactivation to overcome these limitations. Using this approach, we have characterized individual components constituting the recycling pathway of the receptor FcRn. Specifically, several different pathways followed by TCs that intersect with larger, relatively static sorting endosomes have been defined. These pathways include a novel ‘looping’ process in which TCs leave and return to the same sorting endosome. Significantly, TCs with different itineraries can be identified by associations with distinct complements of Rab GTPases, APPL1 and SNX4. These studies provide a framework for further analyses of the recycling pathway. PMID:23345403

  11. The Sustainability of Recycling.

    ERIC Educational Resources Information Center

    Juniper, Christopher

    1993-01-01

    Describes the need for closing the business cycle in the recycling process. Discusses whether the government should mandate or the free market create uses for recycled products. Presents challenges associated with marketing recycled materials including what has been and what needs to be done to stimulate markets, encourage business, and balance…

  12. The Sustainability of Recycling.

    ERIC Educational Resources Information Center

    Juniper, Christopher

    1993-01-01

    Describes the need for closing the business cycle in the recycling process. Discusses whether the government should mandate or the free market create uses for recycled products. Presents challenges associated with marketing recycled materials including what has been and what needs to be done to stimulate markets, encourage business, and balance…

  13. European update on recycling

    SciTech Connect

    Birch, S.

    1993-10-01

    This article discusses the current status of recycling of automobiles in Europe based on a report compiled by Euromotor Reports and also discusses the move toward designing automobiles for disassembly to aid in the recycling process. Plastics and rubber are the emphasis of the report along with copper and aluminum. Problem areas in recycling or dismantling are also discussed.

  14. Buying recycled helps market

    SciTech Connect

    Watts, G.

    1996-08-01

    The waste reduction and recycling program of Thousand Oaks, California is summarized. Descriptions of the program, market development for recycled products, business development, and economic development are provided. The emphasis of the program is on market development for recycled products. Procurement guidelines used by the city are reprinted in the paper.

  15. Rethink, Rework, Recycle.

    ERIC Educational Resources Information Center

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  16. Rethink, Rework, Recycle.

    ERIC Educational Resources Information Center

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  17. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    PubMed

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. ER contact sites define the position and timing of endosome fission

    PubMed Central

    Rowland, Ashley A.; Chitwood, Patrick J.; Phillips, Melissa J.; Voeltz, Gia K.

    2014-01-01

    Summary Endocytic cargo and Rab GTPases are segregated to distinct domains of an endosome. These domains maintain their identity until they undergo fission to traffic cargo. It is not fully understood how segregation of cargo or Rab proteins is maintained along the continuous endosomal membrane, or what machinery is required for fission. Endosomes form contact sites with the ER that are maintained during trafficking. Here, we show that stable contacts form between the ER and endosome at constricted sorting domains and that free diffusion of cargo is limited at these positions. We demonstrate that the site of constriction and fission for early and late endosomes is spatially and temporally linked to contact sites with the ER. Lastly, we show that altering ER structure and dynamics reduces the efficiency of endosome fission. Together these data reveal a surprising role for ER contact in defining the timing and position of endosome fission. PMID:25416943

  19. Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation*

    PubMed Central

    Vistein, Rachel; Puthenveedu, Manojkumar A.

    2014-01-01

    The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains, and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways. PMID:25077552

  20. Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation.

    PubMed

    Vistein, Rachel; Puthenveedu, Manojkumar A

    2014-11-01

    The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here, we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways.

  1. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor

    PubMed Central

    Kortüm, Fanny; Harms, Frederike Leonie; Hennighausen, Natascha; Rosenberger, Georg

    2015-01-01

    Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR). We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow. PMID:26177020

  2. The arsenic-based cure of acute promyelocytic leukemia promotes cytoplasmic sequestration of PML and PML/RARA through inhibition of PML body recycling.

    PubMed

    Lång, Emma; Grudic, Amra; Pankiv, Serhiy; Bruserud, Oystein; Simonsen, Anne; Bjerkvig, Rolf; Bjørås, Magnar; Bøe, Stig Ove

    2012-07-26

    Arsenic in the form of arsenic trioxide (ATO) is used as a therapeutic drug for treatment of acute promyelocytic leukemia (APL). The mechanism by which this agent cures this disease was previously shown to involve direct interactions between ATO and the promyelocytic leukemia protein (PML), as well as accelerated degradation of the APL-associated fusion oncoprotein PML/retinoic acid receptor α (RARA). Here we investigated the fate of PML-generated nuclear structures called PML bodies in ATO-treated cells. We found that ATO inhibits formation of progeny PML bodies while it stabilizes cytoplasmic precursor compartments, referred to as cytoplasmic assemblies of PML and nucleoporins (CyPNs), after cell division. This block in PML body recycling is readily detected at pharmacologic relevant ATO concentrations (0.02-0.5μM) that do not cause detectable cell-cycle defects, and it does not require modification of PML by SUMOylation. In addition, PML and PML/RARA carrying mutations previously identified in ATO-resistant APL patients are impeded in their ability to become sequestered within CyPNs. Thus, ATO may inhibit nuclear activities of PML and PML/RARA in postmitotic cells through CyPN-dependent cytoplasmic sequestration.

  3. Endosomal Escape and Transfection Efficiency of PEGylated Cationic Lipid–DNA Complexes Prepared with an Acid-Labile PEG-Lipid

    PubMed Central

    Chan, Chia-Ling; Majzoub, Ramsey N.; Shirazi, Rahau S.; Ewert, Kai K.; Chen, Yen-Ju; Liang, Keng S.

    2012-01-01

    Cationic liposome–DNA (CL–DNA) complexes are being pursued as nonviral gene delivery systems for use in applications that include clinic trials. However, to compete with viral vectors for systemic delivery in vivo, their efficiencies and pharmacokinetics need to be improved. The addition of poly (ethylene glycol)-lipids (PEGylation) prolongs circulation lifetimes of liposomes, but inhibits cellular uptake and endosomal escape of CL–DNA complexes. We show that this limits their transfection efficiency (TE) in a manner dependent on the amount of PEG-lipid, the lipid/DNA charge ratio, and the lipid membrane charge density. To improve endosomal escape of PEGylated CL–DNA complexes, we prepared an acid-labile PEG-lipid (HPEG2K-lipid, PEG MW 2000) which is designed to lose its PEG chains at the pH of late endosomes. The HPEG2K-lipid and a similar but acid-stable PEG-lipid were used to prepare PEGylated CL–DNA complexes. TLC and dynamic light scattering showed that HPEG2K-CL–DNA complexes are stable at pH 7.4 for more than 24 hours, but the PEG chains are cleaved at pH 5 within one hour, leading to complex aggregation. The acid-labile HPEG2K-CL–DNA complexes showed enhanced TE over complexes stabilized with the acid-stable PEG-lipid. Live-cell imaging showed that both types of complexes were internalized to quantitatively similar particle distributions within the first 2 hours of incubation with cells. Thus, we attribute the increased TE of the HPEG2K-CL–DNA complexes to efficient endosomal escape, enabled by the acid-labile HPEG2K-lipid which sheds its PEG chains in the low-pH environment of late endosomes, effectively switching on the electrostatic interactions that promote fusion of the membranes of complex and endosome. PMID:22469293

  4. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function.

    PubMed

    Ejzykowicz, Daniele E; Locken, Kristopher M; Ruiz, Fiona J; Manandhar, Surya P; Olson, Daniel K; Gharakhanian, Editte

    2016-11-03

    Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.

  5. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    PubMed Central

    2012-01-01

    Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ). We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD)1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs. PMID:22974368

  6. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    PubMed

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  7. Rab32 subfamily small GTPases: pleiotropic Rabs in endosomal trafficking.

    PubMed

    Ohbayashi, Norihiko; Fukuda, Mitsunori; Kanaho, Yasunori

    2017-08-01

    Rab small GTPases, well-known regulators of membrane trafficking pathways in eukaryotic cells, comprise approximately 60 different members in mammals. During the past decade, our understanding of the functions of mammalian Rab32 subfamily members (Rab32 and Rab38) have deepened, especially on the biogenesis of lysosome-related organelles, such as melanosomes, and the protection mechanisms against several pathogenic microbial infections. Endosome-mediated membrane trafficking by Rab32 subfamily members plays pivotal roles in these events. In this review, we provide an overview of the regulatory mechanisms of mammalian Rab32-family members in endosomal trafficking, especially focusing on their GEF, GAP and effector molecules, and describe the latest findings on physiological and pathological functions regulated by these molecules. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. YEAST Dynamin interaction with ESCRT proteins at the endosome.

    PubMed

    Banh, Bryan T; McDermott, Hyoeun; Woodman, Sara; Gadila, Shiva Kumar Goud; Saimani, Uma; Short, John Cw; Kim, Kyoungtae

    2017-02-09

    The dynamin-like protein, Vps1, is a GTPase involved in cargo sorting and membrane remodeling in multiple cellular trafficking pathways. Recently, Vps1 has been shown to genetically interact with ESCRT subunits. We tested the hypothesis that the functional connection of Vps1 with some of these subunits of ESCRT complexes occurs via a physical interaction. By utilizing the yeast two-hybrid system, we revealed that Vps1 physically interacts with the ESCRT-II subunits, Vps22 and Vps36, and the ESCRT-III subunit Vps24. We found that Vps1 and ESCRT-II components colocalize with Pep12, an endosomal marker. Additionally, loss of Vps1 or depletion of the GTPase activity of Vps1 results in a moderate defect in Cps1 targeting to the vacuole. Here, we discussed the potential implications of Vps1 and ESCRT interaction and their roles in the endosome-to-vacuole traffic.

  9. Action in the axon: generation and transport of signaling endosomes.

    PubMed

    Cosker, Katharina E; Courchesne, Stephanie L; Segal, Rosalind A

    2008-06-01

    Neurons extend axonal processes over long distances, necessitating efficient transport mechanisms to convey target-derived neurotrophic survival signals from remote distal axons to cell bodies. Retrograde transport, powered by dynein motors, supplies cell bodies with survival signals in the form of 'signaling endosomes'. In this review, we will discuss new advances in our understanding of the motor proteins that bind to and move signaling components in a retrograde direction and discuss mechanisms that might specify distinct neuronal responses to spatially restricted neurotrophin signals. Disruption of retrograde transport leads to a variety of neurodegenerative diseases, highlighting the role of retrograde transport of signaling endosomes for axonal maintenance and the importance of efficient transport for neuronal survival and function.

  10. On-site waste ink recycling: Technology evaluation report

    SciTech Connect

    Gavaskar, A.R.; Olfenbuttel, R.F.; Jones, J.A.

    1993-01-01

    Recycling ink has good potential as a way to reduce waste and promote long-term cost savings. The evaluation summarized here addresses the product quality, waste reduction, and economic issues involved in recycling printing ink in a facility such as The Hartford Courant newspaper in Hartford, CT. The specific unit evaluated is based on the technology of distillation and filtration. Selected performance tests on the waste, recycled, and virgin inks determined product quality. The recycling unit achieved a good product quality of recycled ink, and the recycled ink fared well in such laboratory tests as viscosity, grind, residue, tack, tinting strength, water content, and water pickup. Qualified professionals, in comparisons with newspapers printed with virgin ink, favorably reviewed newspapers printed with recycled ink. Ink and solvent that would have gone to waste were recovered and reused. The resulting cost saving gave a payback period of about 10 years.

  11. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering.

  12. Cbl controls EGFR fate by regulating early endosome fusion.

    PubMed

    Visser Smit, Gina D; Place, Trenton L; Cole, Sara L; Clausen, Kathryn A; Vemuganti, Soumya; Zhang, Guojuan; Koland, John G; Lill, Nancy L

    2009-12-22

    Amino acid residues 1 to 434 of the E3 ubiquitin ligase Cbl control signaling of the epidermal growth factor receptor (EGFR) by enhancing its ubiquitination, down-regulation, and lysosomal degradation. This region of Cbl comprises a tyrosine kinase-binding domain, a linker region, a really interesting new gene finger (RF), and a subset of the residues of the RF tail. In experiments with full-length alanine substitution mutants, we demonstrated that the RF tail of Cbl regulated biochemically distinct checkpoints in the endocytosis of EGFR. The Cbl- and ubiquitin-dependent degradation of the regulator of internalization hSprouty2 was compromised by the Val(431)--> Ala mutation, whereas the Cbl- and EGFR-dependent dephosphorylation or degradation of the endosomal trafficking regulator Hrs was compromised by the Phe(434)--> Ala mutation. Deregulated phosphorylation of Hrs correlated with inhibition of the fusion of early endosomes and of the degradation of EGFR. This study provides the first evidence that Cbl regulates receptor fate by controlling the fusion of sorting endosomes. We postulate that it does so by modulating the abundance of tyrosine-phosphorylated Hrs.

  13. CBL CONTROLS EGF RECEPTOR FATE BY REGULATING EARLY ENDOSOME FUSION#

    PubMed Central

    Visser Smit, Gina D.; Place, Trenton L.; Cole, Sara L.; Clausen, Kathryn A.; Vemuganti, Soumya; Zhang, Guojuan; Koland, John G.; Lill, Nancy L.

    2010-01-01

    Residues 1-434 of the ubiquitin ligase Cbl control epidermal growth factor receptor (EGF-R) signaling by enhancing receptor ubiquitination, downregulation, and lysosomal degradation. Cbl 1-434 comprises a tyrosine kinase-binding domain, linker region, RING finger (RF), and a subset of the RF tail amino acids 420-436. Using full-length alanine substitution mutants, we demonstrate that the Cbl RF tail regulates biochemically distinct EGF-R endocytosis checkpoints: 1) Cbl- and ubiquitin-dependent degradation of hSprouty2 upstream of EGF-R ubiquitination (compromised by Cbl V431A); and 2) Cbl- and EGF-R-dependent dephosphorylation or degradation of the endosomal trafficking regulator Hrs (compromised by Cbl F434A). Deregulated Hrs phosphorylation correlates with the inhibition of both early endosome fusion and EGF-R degradation. This is the first evidence that Cbl can regulate receptor fate by controlling the fusion of sorting endosomes. We postulate that it does so by modulating the generation and loss of tyrosine phosphorylated Hrs. PMID:20029031

  14. Isolation and characterization of three endosomal fractions from the liver of estradiol-treated rats

    SciTech Connect

    Belcher, J.D.; Hamilton, R.L.; Brady, S.E.; Hornick, C.A.; Jaeckle, S.; Schneider, W.J.; Havel, R.J.

    1987-10-01

    Three distinct endosomal fractions were isolated in high purity from livers of estradiol-treated rats. Each fraction had characteristic physical and ultrastructural properties, but the lipid composition and major proteins of their membranes were similar and differed from those derived from the Golgi apparatus. Injected radioiodinated low density lipoproteins accumulated first in the fraction of intermediate density and later in the low density fraction. The latter was composed almost exclusively of lipoprotein-filled multivesicular bodies, most of which had a single membranous appendage. The fraction of intermediate density was composed of lipoprotein-filled vesicles that were smaller than multivesicular bodies and also had membranous appendages. The high density fraction was composed of membranes resembling the appendages of the two vesicular fractions. All three fractions were enriched in receptors for low density lipoproteins and asialoglycoproteins, but receptor concentrations were considerably reduced in multivesicular bodies. The fraction of intermediate density may represent the compartment of uncoupling of receptor and ligand (CURL) described by Geuze et al. CURL vesicles may lose some of their appendages as multivesicular bodies are formed. The high density fraction than may represent a receptor-recycling compartment.

  15. Complementary roles of the neuron-enriched endosomal proteins NEEP21 and calcyon in neuronal vesicle trafficking.

    PubMed

    Muthusamy, Nagendran; Chen, Yong-Jun; Yin, Dong-Min; Mei, Lin; Bergson, Clare

    2015-01-01

    Understanding mechanisms governing the trafficking of transmembrane (TM) cargoes to synapses and other specialized membranes in neurons represents a long-standing challenge in cell biology. Investigation of the neuron-enriched endosomal protein of 21 kDa (NEEP21, or NSG1or P21) and Calcyon (Caly, or NSG3) indicates that the emergence of the NEEP21/Caly/P19 gene family could play a vital role in the success of these mechanisms in vertebrates. The upshot of a sizeable body of work is that the NEEP21 and Caly perform distinct endocytic and recycling functions, which impact (i) α amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor trafficking at excitatory synapses; (ii) transport to/in neuronal axons; as well as (iii) proteolytic processing of amyloid precursor protein and neuregulin 1, suggesting roles in neuron development, synaptic function, and neurodegeneration. We argue that their distinct effects on cargo endocytosis and recycling depend on interactions with vesicle trafficking and synaptic scaffolding proteins. As they play complementary, but opposing roles in cargo endocytosis, recycling, and degradation, balancing NEEP21 and Caly expression levels or activity could be important for homeostasis in a variety of signaling pathways, and also lead to a novel therapeutic strategy for disorders like Alzheimer's disease and schizophrenia. This review focuses on two closely related, neuron-enriched endosomal proteins: NEEP21 and Calcyon which perform distinct roles in regulating receptor endocytosis, recycling, and degradation. Based on an in-depth examination of the literature, we argue that these two proteins carry out complementary yet sometimes opposing vesicle trafficking functions that impact excitatory transmission, transcytosis, axonal transport, and also proteolytic processing by beta-secretase I (BACE1). Finally, we propose that balancing NEEP21 and Calcyon expression and/or activity could be important for homeostasis in a variety

  16. Endocytosis and Recycling of Tight Junction Proteins in Inflammation

    PubMed Central

    Utech, Markus; Mennigen, Rudolf; Bruewer, Matthias

    2010-01-01

    A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC) consisting of tight junctions (TJs) and adherens junctions (AJs) and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-γ), induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells. PMID:20011071

  17. Fluorescent biosensors illuminate calcium levels within defined beta-cell endosome subpopulations.

    PubMed

    Albrecht, Tobias; Zhao, Yongxin; Nguyen, Trang Hai; Campbell, Robert E; Johnson, James D

    2015-04-01

    Live cell imaging has revealed that calcium ions (Ca(2+)) pass in and out of many cellular organelles. However, technical hurdles have limited measurements of Ca(2+) in acidic organelles, such as endosomes. Although evidence hints that endosomes play a role in Ca(2+) signaling, direct measurements within endosomal lumina represent one of the final frontiers in organelle imaging. To measure Ca(2+) in a TiVAMP-positive endosome sub-population, the pH-resistant ratiometric Ca(2+) biosensor GEM-GECO1 and the ratiometric pH biosensor mKeima were used. A positive correlation between acidic endosomal pH and higher Ca(2+) was observed within these Rab5a- and Rab7-positive compartments. Ca(2+) concentration in most endosomes was estimated to be below 2μM, lower than Ca(2+) levels in several other intracellular stores, indicating that endosomes may take up Ca(2+) during physiological stimulation. Indeed, endosomes accumulated Ca(2+) during glucose-stimulation, a condition where endosomal pH did not change. Our biosensors permitted the first measurements revealing a role for endosomes in cellular Ca(2+) homeostasis during physiological stimulation.

  18. Endosome-mitochondria interactions are modulated by iron release from transferrin.

    PubMed

    Das, Anupam; Nag, Sagarika; Mason, Anne B; Barroso, Margarida M

    2016-09-26

    Transient "kiss and run" interactions between endosomes containing iron-bound transferrin (Tf) and mitochondria have been shown to facilitate direct iron transfer in erythroid cells. In this study, we used superresolution three-dimensional (3D) direct stochastic optical reconstruction microscopy to show that Tf-containing endosomes directly interact with mitochondria in epithelial cells. We used live-cell time-lapse fluorescence microscopy, followed by 3D rendering, object tracking, and a distance transformation algorithm, to track Tf-endosomes and characterize the dynamics of their interactions with mitochondria. Quenching of iron sensor RDA-labeled mitochondria confirmed functional iron transfer by an interacting Tf-endosome. The motility of Tf-endosomes is significantly reduced upon interaction with mitochondria. To further assess the functional role of iron in the ability of Tf-endosomes to interact with mitochondria, we blocked endosomal iron release by using a Tf K206E/K534A mutant. Blocking intraendosomal iron release led to significantly increased motility of Tf-endosomes and increased duration of endosome-mitochondria interactions. Thus, intraendosomal iron regulates the kinetics of the interactions between Tf-containing endosomes and mitochondria in epithelial cells. © 2016 Das et al.

  19. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling.

    PubMed

    Cruse, Glenn; Beaven, Michael A; Music, Stephen C; Bradding, Peter; Gilfillan, Alasdair M; Metcalfe, Dean D

    2015-05-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1-enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. © 2015 Cruse et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB

    PubMed Central

    Ruhe, Frederike; Olling, Alexandra; Abromeit, Rasmus; Rataj, Dennis; Grieschat, Matthias; Zeug, Andre; Gerhard, Ralf; Alekov, Alexi

    2017-01-01

    Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities

  1. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB.

    PubMed

    Ruhe, Frederike; Olling, Alexandra; Abromeit, Rasmus; Rataj, Dennis; Grieschat, Matthias; Zeug, Andre; Gerhard, Ralf; Alekov, Alexi

    2017-01-01

    Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities

  2. X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal-lysosomal dysfunction.

    PubMed

    Strømme, Petter; Dobrenis, Kostantin; Sillitoe, Roy V; Gulinello, Maria; Ali, Nafeeza F; Davidson, Cristin; Micsenyi, Matthew C; Stephney, Gloria; Ellevog, Linda; Klungland, Arne; Walkley, Steven U

    2011-11-01

    Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium-hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium-hydrogen exchanger 6 deficiency would most likely disrupt the endosomal-lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium-hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for β-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium-hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal-lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert

  3. TVP23 interacts genetically with the yeast SNARE VTI1 and functions in retrograde transport from the early endosome to the late Golgi.

    PubMed

    Stein, Ivar S; Gottfried, Anna; Zimmermann, Jana; Fischer von Mollard, Gabriele

    2009-04-01

    SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins contribute to specific recognition between transport vesicles and target membranes and are required for fusion of membranes. The SNARE Vti1p is required for several transport steps between late Golgi, endosomes and the vacuole in the yeast Saccharomyces cerevisiae. Here, we identified the late Golgi membrane protein TVP23 as a multicopy suppressor of the growth defect in vti1-2 cells. By contrast, the growth defect in vti1-11 cells was not suppressed by TVP23 overexpression. Deletion of TVP23 aggravated the growth defect in vti1-2 cells. Genetic interactions between TVP23 and vti1-2 were not found in transport from the late Golgi via the late endosome to the vacuole or in transport from the Golgi directly to the vacuole. These results suggest that Tvp23p is not involved in forward transport from the late Golgi. Therefore retrograde traffic to the late Golgi was analysed. vti1-2 cells accumulated GFP (green fluorescent protein)-Snc1p within the cell, indicating that retrograde transport from the early endosome to the late Golgi was defective in these cells. Deletion of TVP23 in vti1-2 cells resulted in a synthetic defect in GFP-Snc1p recycling, whereas tvp23Delta cells had a slight defect. These results indicate that Tvp23p performs a partially redundant function in retrograde transport from the early endosome to the late Golgi. This transport step was unaffected in vti1-11 cells, providing an explanation for the allele-specific multicopy suppression by TVP23.

  4. Stop or Go? Endosome Positioning in the Establishment of Compartment Architecture, Dynamics, and Function.

    PubMed

    Neefjes, Jacques; Jongsma, Marlieke M L; Berlin, Ilana

    2017-03-28

    The endosomal system constitutes a key negotiator between the environment of a cell and its internal affairs. Comprised of a complex membranous network, wherein each vesicle can in principle move autonomously throughout the cell, the endosomal system operates as a coherent unit to optimally face external challenges and maintain homeostasis. Our appreciation of how individual endosomes are controlled in time and space to best serve their collective purpose has evolved dramatically in recent years. In light of these efforts, the endoplasmic reticulum (ER) - with its expanse of membranes permeating the cytoplasmic space - has emerged as a potent spatiotemporal organizer of endosome biology. We review the latest advances in our understanding of the mechanisms underpinning endosomal transport and positioning, with emphasis on the contributions from the ER, and offer a perspective on how the interplay between these aspects shapes the architecture and dynamics of the endosomal system and drives its myriad cellular functions.

  5. Ceramide Formation Mediated by Acid Sphingomyelinase Facilitates Endosomal Escape of Caliciviruses

    PubMed Central

    Shivanna, Vinay; Kim, Yunjeong; Chang, Kyeong-Ok

    2015-01-01

    Our recent results demonstrated that bile acids facilitate virus escape from the endosomes into the cytoplasm for successful replication of porcine enteric calicivirus (PEC). We report a novel finding that bile acids can be substituted by cold treatment for endosomal escape and virus replication. This endosomal escape by cold treatment or bile acids is associated with ceramide formation by acid sphingomyelinase (ASM). ASM catalyzes hydrolysis of sphingomyelin into ceramide, which is known to destabilize lipid bilayer. Treatment of LLC-PK cells with bile acids or cold led to ceramide formation, and small molecule antagonists or siRNA of ASM blocked ceramide formation in the endosomes and significantly reduced PEC replication. Inhibition of ASM resulted in the retention of PEC, feline calicivirus or murine norovirus in the endosomes in correlation with reduced viral replication. These results suggest the importance of viral escape from the endosomes for the replication of various caliciviruses. PMID:25985440

  6. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+NIK+ signalosome on Rab5+ endosomes

    PubMed Central

    Jane-wit, Dan; Surovtseva, Yulia V.; Qin, Lingfeng; Li, Guangxin; Liu, Rebecca; Clark, Pamela; Manes, Thomas D.; Wang, Chen; Kashgarian, Michael; Kirkiles-Smith, Nancy C.; Tellides, George; Pober, Jordan S.

    2015-01-01

    Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB–inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5+endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC+ endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt+NIK+ signalosome on Rab5+ endosomes. PMID:26195760

  7. Benchmarking survey for recycling.

    SciTech Connect

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  8. The E3 Ubiquitin Ligase SCFTIR1/AFB and Membrane Sterols Play Key Roles in Auxin Regulation of Endocytosis, Recycling, and Plasma Membrane Accumulation of the Auxin Efflux Transporter PIN2 in Arabidopsis thaliana[C][W][OA

    PubMed Central

    Pan, Jianwei; Fujioka, Shozo; Peng, Jianling; Chen, Jianghua; Li, Guangming; Chen, Rujin

    2009-01-01

    The PIN family of auxin efflux transporters exhibit polar plasma membrane (PM) localization and play a key role in auxin gradient-mediated developmental processes. Auxin inhibits PIN2 endocytosis and promotes its PM localization. However, the underlying mechanisms remain elusive. Here, we show that the inhibitory effect of auxin on PIN2 endocytosis was impaired in SCFTIR1/AFB auxin signaling mutants. Similarly, reducing membrane sterols impaired auxin inhibition of PIN2 endocytosis. Gas chromatography–mass spectrometry analyses indicate that membrane sterols were significantly reduced in SCFTIR1/AFB mutants, supporting a link between membrane sterols and auxin signaling in regulating PIN2 endocytosis. We show that auxin promoted PIN2 recycling from endosomes to the PM and increased PIN2 steady state levels in the PM fraction. Furthermore, we show that the positive effect of auxin on PIN2 levels in the PM was impaired by inhibiting membrane sterols or auxin signaling. Consistent with this, the sterol biosynthetic mutant fk-J79 exhibited pronounced defects in primary root elongation and gravitropic response. Our data collectively indicate that, although there are distinct processes involved in endocytic regulation of specific PM-resident proteins, the SCFTIR1/AFB-dependent processes are required for auxin regulation of endocytosis, recycling, and PM accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. PMID:19218398

  9. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses

    PubMed Central

    He, Jing; Johnson, Jennifer L.; Monfregola, Jlenia; Ramadass, Mahalakshmi; Pestonjamasp, Kersi; Napolitano, Gennaro; Zhang, Jinzhong; Catz, Sergio D.

    2016-01-01

    The molecular mechanisms that regulate late endosomal maturation and function are not completely elucidated, and direct evidence of a calcium sensor is lacking. Here we identify a novel mechanism of late endosomal maturation that involves a new molecular interaction between the tethering factor Munc13-4, syntaxin 7, and VAMP8. Munc13-4 binding to syntaxin 7 was significantly increased by calcium. Colocalization of Munc13-4 and syntaxin 7 at late endosomes was demonstrated by high-resolution and live-cell microscopy. Munc13-4–deficient cells show increased numbers of significantly enlarged late endosomes, a phenotype that was mimicked by the fusion inhibitor chloroquine in wild-type cells and rescued by expression of Munc13-4 but not by a syntaxin 7–binding–deficient mutant. Late endosomes from Munc13-4-KO neutrophils show decreased degradative capacity. Munc13-4–knockout neutrophils show impaired endosomal-initiated, TLR9-dependent signaling and deficient TLR9-specific CD11b up-regulation. Thus we present a novel mechanism of late endosomal maturation and propose that Munc13-4 regulates the late endocytic machinery and late endosomal–associated innate immune cellular functions. PMID:26680738

  10. MYO6 Regulates Spatial Organization of Signaling Endosomes Driving AKT Activation and Actin Dynamics.

    PubMed

    Masters, Thomas A; Tumbarello, David A; Chibalina, Margarita V; Buss, Folma

    2017-06-06

    APPL1- and RAB5-positive signaling endosomes play a crucial role in the activation of AKT in response to extracellular stimuli. Myosin VI (MYO6) and two of its cargo adaptor proteins, GIPC and TOM1/TOM1L2, localize to these peripheral endosomes and mediate endosome association with cortical actin filaments. Loss of MYO6 leads to the displacement of these endosomes from the cell cortex and accumulation in the perinuclear space. Depletion of this myosin not only affects endosome positioning, but also induces actin and lipid remodeling consistent with endosome maturation, including accumulation of F-actin and the endosomal lipid PI(3)P. These processes acutely perturb endosome function, as both AKT phosphorylation and RAC-dependent membrane ruffling were markedly reduced by depletion of either APPL1 or MYO6. These results place MYO6 and its binding partners at a central nexus in cellular signaling linking actin dynamics at the cell surface and endosomal signaling in the cell cortex. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. [Analysis of vesicle subpopulations carrying early endosomal autoantigen EEA1].

    PubMed

    Zlobina, M V; Kamentseva, R S; Kornilova, E S; Kharchenko, M V

    2014-01-01

    Confocal immunofluorescent analysis of interphase HeLa cells has demonstrated that involved in regulation of homotypic fusions early endosomal autoantigene EEA1 is associated with vesicles represented by two populations differing in apparent size, localization and the level of bound EEA1. Before analysis the cells have been preincubated in serum-deprived medium for 12 h to minimize ligand-dependent endocytosis of serum growth factors. The first subpopulation is mainly represented by large vesicles strongly decorated with EEA1. These vesicles are localized presumably in juxtanuclear region. Microtubule depolimerization experiments have shown that this localization is maintained by tubulin cytoskeleton. The second subpopulation consists of numerous small vesicles slightly stained by EEA1 antibody and localized more peripherally. Double indirect immunofluorescent ananlysis of fixed cell images has revealed that juxtanuclear vesicles enriched in EEA1 are fully colocalized with key protein of early endosomes small GTPase Rab5, whereas about 50% of slightly decorated peripheral vesicles are Rab5-negative. It is found that the number of Rab5-positive vesicles per cell is higher than that of EEA1-positive vesicles. Thus, in serum-deprivated HeLa cells with low endocytic activity two subpopulations of EEA1-vesicles are revealed: the first one carries the both EEA1 at high level and Rab5 (EEA1+++/Rab5+), and the second subpopulation oconsists of weakly decorated EEA1-vesicles, that can be both Rab5-positive and -negative (EEA1+/Rab5- and EEA1+/Rab5+). Besides, there are vesicles carrying Rab5 only (EEA1-/Rab5+). The data obtained favor different functional role of all these subpopulations, which are associated with proteins widely considered as equivalent markers of early endosomes.

  12. SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles

    PubMed Central

    Kubo, Keiji; Kobayashi, Minako; Nozaki, Shohei; Yagi, Chikako; Hatsuzawa, Kiyotaka; Katoh, Yohei; Shin, Hye-Won; Takahashi, Senye; Nakayama, Kazuhisa

    2015-01-01

    ABSTRACT We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn–TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25. PMID:26092867

  13. Odin (ANKS1A) modulates EGF receptor recycling and stability.

    PubMed

    Tong, Jiefei; Sydorskyy, Yaroslav; St-Germain, Jonathan R; Taylor, Paul; Tsao, Ming S; Moran, Michael F

    2013-01-01

    The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.

  14. Odin (ANKS1A) Modulates EGF Receptor Recycling and Stability

    PubMed Central

    Tong, Jiefei; Sydorskyy, Yaroslav; St-Germain, Jonathan R.; Taylor, Paul; Tsao, Ming S.; Moran, Michael F.

    2013-01-01

    The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable. PMID:23825523

  15. Plate tectonics: Crustal recycling evolution

    NASA Astrophysics Data System (ADS)

    Magni, Valentina

    2017-09-01

    The processes that form and recycle continental crust have changed through time. Numerical models reveal an evolution from extensive recycling on early Earth as the lower crust peeled away, to limited recycling via slab break-off today.

  16. Increased flexibility and liposome-binding capacity of CD1e at endosomal pH.

    PubMed

    Bushmarina, Natalia; Tourne, Sylvie; Giacometti, Gaëlle; Signorino-Gelo, François; Garcia-Alles, Luis F; Cazenave, Jean-Pierre; Hanau, Daniel; de la Salle, Henri

    2011-06-01

    The plasma membrane proteins CD1a, CD1b and CD1c are expressed by human dendritic cells, the professional antigen-presenting cells of the immune system, and present lipid antigens to T lymphocytes. CD1e belongs to the same family of molecules, but accumulates as a membrane-associated form in the Golgi compartments of immature dendritic cells and as a soluble cleaved form in the lysosomes of mature dendritic cells. In lysosomes, the N-terminal propeptide of CD1e is also cleaved, but the functional consequences of this step are unknown. Here, we investigated how the pH changes encountered during transport to lysosomes affect the structure of CD1e and its ligand-binding properties. Circular dichroism studies demonstrated that the secondary and tertiary structures of recombinant CD1e were barely altered by pH changes. Nevertheless, at acidic pH, guanidium chloride-induced unfolding of CD1e molecules required lower concentrations of denaturing agent. The nonfunctional L194P allelic variant was found to be structurally less stable at acidic pH than the functional forms, providing an explanation for the lack of its detection in lysosomes. The number of water-exposed hydrophobic patches that bind 8-anilinonaphthalene-1-sulfonate was higher in acidic conditions, especially for the L194P variant. CD1e molecules interacted with lipid surfaces enriched in anionic lipids, such as bis(monoacylglycero)phosphate, a late endosomal/lysosomal lipid, especially at acidic pH, or when the propeptide was present. Altogether, these data indicate that, in the late endosomes/lysosomes of DCs, the acid pH promotes the binding of lipid antigens to CD1e through increased hydrophobic and ionic interactions. © 2011 The Authors Journal compilation © 2011 FEBS.

  17. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  18. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  19. Partnership: Recycling $/$ Outdoor Education.

    ERIC Educational Resources Information Center

    Weir, Phil

    1996-01-01

    The Ottawa Board of Education (Ontario, Canada) has committed revenues generated by a districtwide recycling program to help fund the MacSkimming Outdoor Education Centre. A partnership between recycling and outdoor education is valuable in developing an environmental ethic among students and in finding new ways to fund outdoor education. (LP)

  20. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  1. Recycling at Camp.

    ERIC Educational Resources Information Center

    Cummins, William M.

    1988-01-01

    Outlines a Michigan summer camp's efforts to reduce solid waste disposal by recycling cardboard, tin, glass, aluminum, and plastic milk containers. Points out variables affecting the success of such efforts. Discusses Michigan state funding for the development of recycling programs. (SV)

  2. Reuse, Reduce, Recycle.

    ERIC Educational Resources Information Center

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  3. Recycling at Camp.

    ERIC Educational Resources Information Center

    Cummins, William M.

    1988-01-01

    Outlines a Michigan summer camp's efforts to reduce solid waste disposal by recycling cardboard, tin, glass, aluminum, and plastic milk containers. Points out variables affecting the success of such efforts. Discusses Michigan state funding for the development of recycling programs. (SV)

  4. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  5. Wee Recyclers Resources.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Hands-on activities in this guide are designed to help preschool children (ages 3-5) understand that reducing, reusing, and recycling preserves natural resources and prolongs the life of landfills. Children sort, match and compare recyclable items and learn to separate some items by number and color. The 29 activities are divided into units that…

  6. Wee Recyclers Resources.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Hands-on activities in this guide are designed to help preschool children (ages 3-5) understand that reducing, reusing, and recycling preserves natural resources and prolongs the life of landfills. Children sort, match and compare recyclable items and learn to separate some items by number and color. The 29 activities are divided into units that…

  7. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases.

    PubMed

    Valero, Ruth A; Oeste, Clara L; Stamatakis, Konstantinos; Ramos, Irene; Herrera, Mónica; Boya, Patricia; Pérez-Sala, Dolores

    2010-09-01

    Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.

  8. Characterization of the late endosomal ESCRT machinery in Trypanosoma brucei.

    PubMed

    Silverman, Jason S; Muratore, Katherine A; Bangs, James D

    2013-10-01

    The multivesicular body (MVB) is a specialized Rab7+ late endosome (LE) containing multiple intralumenal vesicles that function in targeting ubiquitinylated cell surface proteins to the lysosome for degradation. African trypanosomes lack a morphologically well-defined MVB, but contain orthologs of the ESCRT (Endosomal Sorting Complex Required for Transport) machinery that mediates MVB formation. We investigate the role of TbVps23, an early ESCRT component, and TbVps4, the terminal ESCRT ATPase, in lysosomal trafficking in bloodstream form trypanosomes. Both localize to the TbRab7+ LE and RNAi silencing of each rapidly blocks growth. TbVps4 silencing results in approximately threefold accumulation of TbVps23 at the LE, consistent with blocking terminal ESCRT disassembly. Trafficking of endocytic and biosynthetic cargo, but not default lysosomal reporters, is also negatively affected. Others reported that TbVps23 mediates ubiquitin-dependent lysosomal degradation of invariant surface glycoproteins (ISG65) (Leung et al., Traffic 2008;9:1698-1716). In contrast, we find that TbVps23 ablation does not affect ISG65 turnover, while TbVps4 silencing markedly enhances lysosomal degradation. We propose several models to accommodate these results, including that the ESCRT machinery actually retrieves ISG65 from the LE to earlier endocytic compartments, and in its absence ISG65 traffics more efficiently to the lysosome. Overall, these results confirm that the ESCRT machinery is essential in Trypanosoma brucei and plays important and novel role(s) in LE function in trypanosomes.

  9. ARHGAP22 Localizes at Endosomes and Regulates Actin Cytoskeleton

    PubMed Central

    Mori, Mamiko; Saito, Koji; Ohta, Yasutaka

    2014-01-01

    Rho small GTPases control cell morphology and motility through the rearrangement of actin cytoskeleton. We have previously shown that FilGAP, a Rac-specific GAP, binds to the actin-cross-linking protein Filamin A (FLNa) and suppresses Rac-dependent lamellae formation and cell spreading. ARHGAP22 is a member of FilGAP family, and implicated in the regulation of tumor cell motility. However, little is known concerning the cellular localization and mechanism of regulation at the molecular level. Whereas FilGAP binds to FLNa and localizes to lamellae, we found that ARHGAP22 did not bind to FLNa. Forced expression of ARHGAP22 induced enlarged vesicular structures containing the endocytic markers EEA1, Rab5, and Rab11. Moreover, endogenous ARHGAP22 is co-localized with EEA1- and Rab11-positive endosomes but not with trans-Golgi marker TNG46. When constitutively activated Rac Q61L mutant was expressed, ARHGAP22 is co-localized with Rac Q61L at membrane ruffles, suggesting that ARHGAP22 is translocated from endosomes to membrane ruffles to inactivate Rac. Forced expression of ARHGAP22 suppressed lamellae formation and cell spreading. Conversely, knockdown of endogenous ARHGAP22 stimulated cell spreading. Thus, our findings suggest that ARHGAP22 controls cell morphology by inactivating Rac but its localization is not mediated by its interaction with FLNa. PMID:24933155

  10. Cytomegalovirus immune evasion by perturbation of endosomal trafficking

    PubMed Central

    Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja

    2015-01-01

    Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a vari