Science.gov

Sample records for recycling promotes endosomal

  1. RAB-10 Promotes EHBP-1 Bridging of Filamentous Actin and Tubular Recycling Endosomes

    PubMed Central

    Wang, Yu; Liu, Ou; Zhang, Jing; Gleason, Adenrele; Yang, Zhenrong; Wang, Hui; Shi, Anbing; Grant, Barth D.

    2016-01-01

    EHBP-1 (Ehbp1) is a conserved regulator of endocytic recycling, acting as an effector of small GTPases including RAB-10 (Rab10). Here we present evidence that EHBP-1 associates with tubular endosomal phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] enriched membranes through an N-terminal C2-like (NT-C2) domain, and define residues within the NT-C2 domain that mediate membrane interaction. Furthermore, our results indicate that the EHBP-1 central calponin homology (CH) domain binds to actin microfilaments in a reaction that is stimulated by RAB-10(GTP). Loss of any aspect of this RAB-10/EHBP-1 system in the C. elegans intestinal epithelium leads to retention of basolateral recycling cargo in endosomes that have lost their normal tubular endosomal network (TEN) organization. We propose a mechanism whereby RAB-10 promotes the ability of endosome-bound EHBP-1 to also bind to the actin cytoskeleton, thereby promoting endosomal tubulation. PMID:27272733

  2. Transport at the Recycling Endosome

    PubMed Central

    Hsu, Victor W.; Prekeris, Rytis

    2010-01-01

    Summary The recycling endosome (RE) has long been considered as a sub-compartment of the early endosome that recycles internalized cargoes to the plasma membrane. The RE is now appreciated to participate in a more complex set of intracellular itineraries. Key cargo molecules and transport factors that act in these pathways are being identified. These advancements are beginning to reveal complexities in pathways involving the RE, and also suggest ways of further delineating functional domains of this compartment. PMID:20541925

  3. Recycling Endosomes Supply AMPA Receptors for LTP

    NASA Astrophysics Data System (ADS)

    Park, Mikyoung; Penick, Esther C.; Edwards, Jeffrey G.; Kauer, Julie A.; Ehlers, Michael D.

    2004-09-01

    Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LTP promoted not only AMPA receptor insertion but also generalized recycling of cargo and membrane from endocytic compartments. Thus, recycling endosomes supply AMPA receptors for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.

  4. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes

    PubMed Central

    Qu, Fangfei; Lorenzo, Damaris N; King, Samantha J; Brooks, Rebecca; Bear, James E; Bennett, Vann

    2016-01-01

    Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos. DOI: http://dx.doi.org/10.7554/eLife.20417.001 PMID:27718357

  5. Recycling Endosomes and Viral Infection

    PubMed Central

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-01-01

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition. PMID:27005655

  6. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    PubMed Central

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  7. Fusion of Endosomes Involved in Synaptic Vesicle Recycling

    PubMed Central

    Holroyd, Claudia; Kistner, Ute; Annaert, Wim; Jahn, Reinhard

    1999-01-01

    Recycling of vesicles of the regulated secretory pathway presumably involves passage through an early endosomal compartment as an intermediate step. To learn more about the involvement of endosomes in the recycling of synaptic and secretory vesicles we studied in vitro fusion of early endosomes derived from pheochromocytoma (PC12) cells. Fusion was not affected by cleavage of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin and syntaxin 1 that operate at the exocytotic limb of the pathway. Furthermore, fusion was inhibited by the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid but not by the slow Ca2+ chelator EGTA. Endosome fusion was restored by the addition of Ca2+ with an optimum at a free Ca2+ concentration of 0.3 × 10−6 M. Other divalent cations did not substitute for Ca2+. A membrane-permeant EGTA derivative caused inhibition of fusion, which was reversed by addition of Ca2+. We conclude that the fusion of early endosomes participating in the recycling of synaptic and neurosecretory vesicles is mediated by a set of SNAREs distinct from those involved in exocytosis and requires the local release of Ca2+ from the endosomal interior. PMID:10473644

  8. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery.

    PubMed

    Dennis, Megan K; Mantegazza, Adriana R; Snir, Olivia L; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V; Bennett, Dorothy C; Raposo, Graça; Marks, Michael S; Setty, Subba Rao Gangi

    2015-05-25

    Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.

  9. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery

    PubMed Central

    Dennis, Megan K.; Mantegazza, Adriana R.; Snir, Olivia L.; Tenza, Danièle; Acosta-Ruiz, Amanda; Delevoye, Cédric; Zorger, Richard; Sitaram, Anand; de Jesus-Rojas, Wilfredo; Ravichandran, Keerthana; Rux, John; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Setty, Subba Rao Gangi

    2015-01-01

    Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation. PMID:26008744

  10. Dynamic imaging of the recycling endosomal network in macrophages.

    PubMed

    Wall, Adam A; Condon, Nicholas D; Yeo, Jeremy C; Hamilton, Nicholas A; Stow, Jennifer L

    2015-01-01

    Recycling endosomes (REs) form an extensive and complex network of subcompartmentalized vesicular and tubular elements that connect with the cell surface and other endosomes in macrophages. As surveillance and defense cells of the innate immune system, macrophages are highly dependent on REs for their active and voluminous cell surface turnover and endocytic, exocytic, and recycling of membrane and cargo. Here we set out three approaches for imaging and analyzing REs in macrophages, based on the expression of fluorescently labeled RE-associated proteins and the uptake of fluorescent cargo. Subcompartments of the REs are identified by co-expression and co-localization analysis of RE associated Rab GTPases. Transferrin is a well-known cargo marker as it recycles through REs and it is compared here to other cargo, revealing how different endocytic routes intersect with REs. We show how the movement of transferrin through REs can be modeled and quantified in live cells. Finally, since phagosomes are a signature organelle for macrophages, and REs fuse with the maturing phagosome, we show imaging of REs with phagosomes using a genetically encoded pH-sensitive SNARE-based probe. Together these approaches provide multiple ways to comprehensively analyze REs and the important roles they play in these immune cells and more broadly in other cell types.

  11. The retromer complex - endosomal protein recycling and beyond.

    PubMed

    Seaman, Matthew N J

    2012-10-15

    The retromer complex is a vital element of the endosomal protein sorting machinery that is conserved across all eukaryotes. Retromer is most closely associated with the endosome-to-Golgi retrieval pathway and is necessary to maintain an active pool of hydrolase receptors in the trans-Golgi network. Recent progress in studies of retromer have identified new retromer-interacting proteins, including the WASH complex and cargo such as the Wntless/MIG-14 protein, which now extends the role of retromer beyond the endosome-to-Golgi pathway and has revealed that retromer is required for aspects of endosome-to-plasma membrane sorting and regulation of signalling events. The interactions between the retromer complex and other macromolecular protein complexes now show how endosomal protein sorting is coordinated with actin assembly and movement along microtubules, and place retromer squarely at the centre of a complex set of protein machinery that governs endosomal protein sorting. Dysregulation of retromer-mediated endosomal protein sorting leads to various pathologies, including neurodegenerative diseases such as Alzheimer disease and spastic paraplegia and the mechanisms underlying these pathologies are starting to be understood. In this Commentary, I will highlight recent advances in the understanding of retromer-mediated endosomal protein sorting and discuss how retromer contributes to a diverse set of physiological processes.

  12. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome.

    PubMed

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-07-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE.

  13. Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling.

    PubMed

    Shi, Anbing; Grant, Barth D

    2013-01-01

    After endocytosis, a selective endocytic recycling process returns many endocytosed molecules back to the plasma membrane. The RAB-10/Rab10 GTPase is known to be a key recycling regulator for specific cargo molecules. New evidence, focused on C. elegans RAB-10 in polarized epithelia, points to a key role of RAB-10 in the regulation of endosomal phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) levels. In turn, PI(4,5)P2 levels strongly influence the recruitment of many peripheral membrane proteins, including those important for vesicle budding through their membrane bending activities. Part of the effect of RAB-10 on endosomal PI(4,5)P2 is through its newly identified effector CNT-1, a predicted GTPase activating protein (GAP) of the small GTPase ARF-6/Arf6. In mammals PI(4,5)P2 generating enzymes are known Arf6 effectors. In C. elegans we found that RAB-10, CNT-1 and ARF-6 are present on the same endosomes, that RAB-10 recruits CNT-1 to endosomes, and that loss of CNT-1 or RAB-10 leads to overaccumulation of endosomal PI(4,5)P2, presumably via hyperactivation of endosomal ARF-6. In turn this leads to over-recruitment of PI(4,5)P2-dependent membrane-bending proteins RME-1/Ehd and SDPN-1/Syndapin/PACSIN. Conversely, in arf-6 mutants, endosomal PI(4,5)P2 levels were reduced and endosomal recruitment of RME-1 and SDPN-1 failed. This work makes an unexpected link between distinct classes of small GTPases that control endocytic recycling, and provides insight into how this interaction affects endosome function at the level of lipid phosphorylation.

  14. Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling

    PubMed Central

    Shi, Anbing; Grant, Barth D.

    2013-01-01

    After endocytosis, a selective endocytic recycling process returns many endocytosed molecules back to the plasma membrane. The RAB-10/Rab10 GTPase is known to be a key recycling regulator for specific cargo molecules. New evidence, focused on C. elegans RAB-10 in polarized epithelia, points to a key role of RAB-10 in the regulation of endosomal phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) levels. In turn, PI(4,5)P2 levels strongly influence the recruitment of many peripheral membrane proteins, including those important for vesicle budding through their membrane bending activities. Part of the effect of RAB-10 on endosomal PI(4,5)P2 is through its newly identified effector CNT-1, a predicted GTPase activating protein (GAP) of the small GTPase ARF-6/Arf6. In mammals PI(4,5)P2 generating enzymes are known Arf6 effectors. In C. elegans we found that RAB-10, CNT-1 and ARF-6 are present on the same endosomes, that RAB-10 recruits CNT-1 to endosomes, and that loss of CNT-1 or RAB-10 leads to overaccumulation of endosomal PI(4,5)P2, presumably via hyperactivation of endosomal ARF-6. In turn this leads to over-recruitment of PI(4,5)P2-dependent membrane-bending proteins RME-1/Ehd and SDPN-1/Syndapin/PACSIN. Conversely, in arf-6 mutants, endosomal PI(4,5)P2 levels were reduced and endosomal recruitment of RME-1 and SDPN-1 failed. This work makes an unexpected link between distinct classes of small GTPases that control endocytic recycling, and provides insight into how this interaction affects endosome function at the level of lipid phosphorylation. PMID:23392104

  15. Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1.

    PubMed

    Matsudaira, Tatsuyuki; Niki, Takahiro; Taguchi, Tomohiko; Arai, Hiroyuki

    2015-08-15

    The retrograde pathway is defined by the transport of proteins and lipids from the plasma membrane through endosomes to the Golgi complex, and is essential for a variety of cellular activities. Recycling endosomes are important sorting stations for some retrograde cargo. SMAP2, a GTPase-activating protein (GAP) for Arf1 with a putative clathrin-binding domain, has previously been shown to participate in the retrograde transport of the cholera toxin B-subunit (CTxB) from recycling endosomes. Here, we found that clathrin, a vesicle coat protein, and clathrin adaptor protein complex 1 (AP-1) were present at recycling endosomes and were needed for the retrograde transport of CTxB from recycling endosomes to the Golgi, but not from the plasma membrane to recycling endosomes. SMAP2 immunoprecipitated clathrin and AP-1 through a putative clathrin-binding domain and a CALM-binding domain, and SMAP2 mutants that did not interact with clathrin or AP-1 could not localize to recycling endosomes. Moreover, knockdown of Arf1 suppressed the retrograde transport of CTxB from recycling endosomes to the Golgi. These findings suggest that retrograde transport is mediated by clathrin-coated vesicles from recycling endosomes and that the role of the coat proteins is in the recruitment of Arf GAP to transport vesicles.

  16. Diacylglycerol kinase α regulates tubular recycling endosome biogenesis and major histocompatibility complex class I recycling.

    PubMed

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-11-14

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling.

  17. The novel endosomal membrane protein Ema interacts with the class C Vps-HOPS complex to promote endosomal maturation.

    PubMed

    Kim, Sungsu; Wairkar, Yogesh P; Daniels, Richard W; DiAntonio, Aaron

    2010-03-08

    Endosomal maturation is critical for accurate and efficient cargo transport through endosomal compartments. Here we identify a mutation of the novel Drosophila gene, ema (endosomal maturation defective) in a screen for abnormal synaptic overgrowth and defective protein trafficking. Ema is an endosomal membrane protein required for trafficking of fluid-phase and receptor-mediated endocytic cargos. In the ema mutant, enlarged endosomal compartments accumulate as endosomal maturation fails, with early and late endosomes unable to progress into mature degradative late endosomes and lysosomes. Defective endosomal down-regulation of BMP signaling is responsible for the abnormal synaptic overgrowth. Ema binds to and genetically interacts with Vps16A, a component of the class C Vps-HOPS complex that promotes endosomal maturation. The human orthologue of ema, Clec16A, is a candidate susceptibility locus for autoimmune disorders, and its expression rescues the Drosophila mutant demonstrating conserved function. Characterizing this novel gene family identifies a new component of the endosomal pathway and provides insights into class C Vps-HOPS complex function.

  18. Calcium-dependent antigen binding as a novel modality for antibody recycling by endosomal antigen dissociation.

    PubMed

    Hironiwa, N; Ishii, S; Kadono, S; Iwayanagi, Y; Mimoto, F; Habu, K; Igawa, T; Hattori, K

    2016-01-01

    The pH-dependent antigen binding antibody, termed a recycling antibody, has recently been reported as an attractive type of second-generation engineered therapeutic antibody. A recycling antibody can dissociate antigen in the acidic endosome, and thus bind to its antigen multiple times. As a consequence, a recycling antibody can neutralize large amounts of antigen in plasma. Because this approach relies on histidine residues to achieve pH-dependent antigen binding, which could limit the epitopes that can be targeted and affect the rate of antigen dissociation in the endosome, we explored an alternative approach for generating recycling antibodies. Since calcium ion concentration is known to be lower in endosome than in plasma, we hypothesized that an antibody with antigen-binding properties that are calcium-dependent could be used as recycling antibody. Here, we report a novel anti-interleukin-6 receptor (IL-6R) antibody, identified from a phage library that binds to IL-6R only in the presence of a calcium ion. Thermal dynamics and a crystal structure study revealed that the calcium ion binds to the heavy chain CDR3 region (HCDR3), which changes and possibly stabilizes the structure of HCDR3 to make it bind to antigen calcium dependently (PDB 5AZE). In vitro and in vivo studies confirmed that this calcium-dependent antigen-binding antibody can dissociate its antigen in the endosome and accelerate antigen clearance from plasma, making it a novel approach for generating recycling antibody.

  19. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity

    PubMed Central

    Marshall, Misty R.; Pattu, Varsha; Halimani, Mahantappa; Maier-Peuschel, Monika; Müller, Martha-Lena; Becherer, Ute; Hong, Wanjin; Hoth, Markus; Tschernig, Thomas

    2015-01-01

    Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated. PMID:26124288

  20. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes

    PubMed Central

    Bamidele, Adebowale O.; Kremer, Kimberly N.; Hirsova, Petra; Clift, Ian C.; Gores, Gregory J.; Billadeau, Daniel D.

    2015-01-01

    IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types. PMID:26195666

  1. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome

    PubMed Central

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-01-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in EEA1-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized MDCK cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. PMID:23593972

  2. Vps1, a recycling factor for the traffic from early endosome to the late Golgi.

    PubMed

    Lukehart, Joshua; Highfill, Chad; Kim, Kyoungtae

    2013-12-01

    Recycling of cellular membranes and their constituents plays a role for cell survival and growth. In the budding yeast, there are recycling traffics from early and late endosomal compartments to the late Golgi. Here, we examined a possible role for Vps1, a large GTPase, in the recycling traffic of GFP-Snc1 from early endosomes to the late Golgi. In the absence of Vps1 we observed an aberrant accumulation of GFP-Snc1 puncta in the cytoplasm that we identified as early endosomes. The N-terminal GTPase and the C-terminal GED domains of Vps1 are essential for Vps1's function in Snc1 recycling. Our finding of genetic interactions of VPS1 with genes involved in early endosome-to-Golgi traffic further suggests Vps1 functions as a recycling factor in the membrane traffic. Finally, we provide evidence that the severe accumulation of GFP-Snc1 cytoplasmic puncta in vps1Δ cells is attributed to a mild defect in the retention of the GARP component Vps51 at the late Golgi, as well as a severe disruption of actin cables.

  3. AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory

    PubMed Central

    Glyvuk, Nataliya; Tsytsyura, Yaroslav; Geumann, Constanze; D'Hooge, Rudi; Hüve, Jana; Kratzke, Manuel; Baltes, Jennifer; Böning, Daniel; Klingauf, Jürgen; Schu, Peter

    2010-01-01

    Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1–σ1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation. PMID:20203623

  4. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane

    PubMed Central

    Tanaka, Yoshiki; Ono, Natsuki; Shima, Takahiro; Tanaka, Gaku; Katoh, Yohei; Nakayama, Kazuhisa; Takatsu, Hiroyuki; Shin, Hye-Won

    2016-01-01

    Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane. PMID:27733620

  5. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration

    PubMed Central

    Fan, Steven Hung-Yi; Numata, Yuka; Numata, Masayuki

    2016-01-01

    Increased recycling and elevated cell surface expression of receptors serve as a mechanism for persistent receptor-mediated signaling. We show that the neuron-enriched Na+/H+ exchanger NHE5 is abundantly expressed in C6 glioma cells and plays an important part in regulating cell surface expression of the receptor tyrosine kinases MET and EGF receptor. NHE5 is associated with transferrin receptor (TfR)- and Rab11-positive recycling endosomal membranes, and NHE5 knockdown by short hairpin RNA significantly elevates pH of TfR-positive recycling endosomes. We present evidence that NHE5 facilitates MET recycling to the plasma membrane, protects MET from degradation, and modulates HGF-induced phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling. Moreover, NHE5 depletion abrogates Rac1 and Cdc42 signaling and actin cytoskeletal remodeling. We further show that NHE5 knockdown impairs directed cell migration and causes loss of cell polarity. Our study highlights a possible role of recycling endosomal pH in regulating receptor-mediated signaling through vesicular trafficking. PMID:26700318

  6. GRASP1 Regulates Synaptic Plasticity and Learning through Endosomal Recycling of AMPA Receptors.

    PubMed

    Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E; Wang, Tao; Huganir, Richard L

    2017-03-22

    Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity, and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescued spine loss in hippocampal CA1 neurons in Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders.

  7. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFalpha.

    PubMed

    Manderson, Anthony P; Kay, Jason G; Hammond, Luke A; Brown, Darren L; Stow, Jennifer L

    2007-07-02

    Activated macrophages secrete an array of proinflammatory cytokines, including tumor necrosis factor-alpha (TNFalpha) and interleukin 6 (IL-6), that are temporally secreted for sequential roles in inflammation. We have previously characterized aspects of the intracellular trafficking of membrane-bound TNFalpha and its delivery to the cell surface at the site of phagocytic cups for secretion (Murray, R.Z., J.G. Kay, D.G. Sangermani, and J.L. Stow. 2005. Science. 310:1492-1495). The trafficking pathway and surface delivery of IL-6, a soluble cytokine, were studied here using approaches such as live cell imaging of fluorescently tagged IL-6 and immunoelectron microscopy. Newly synthesized IL-6 accumulates in the Golgi complex and exits in tubulovesicular carriers either as the sole labeled cargo or together with TNFalpha, utilizing specific soluble NSF attachment protein receptor (SNARE) proteins to fuse with the recycling endosome. Within recycling endosomes, we demonstrate the compartmentalization of cargo proteins, wherein IL-6 is dynamically segregated from TNFalpha and from surface recycling transferrin. Thereafter, these cytokines are independently secreted, with TNFalpha delivered to phagocytic cups but not IL-6. Therefore, the recycling endosome has a central role in orchestrating the differential secretion of cytokines during inflammation.

  8. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome

    PubMed Central

    Xie, Shuwei; Bahl, Kriti; Reinecke, James B.; Hammond, Gerald R. V.; Naslavsky, Naava; Caplan, Steve

    2016-01-01

    The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous “membrane bridges.” Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC. PMID:26510502

  9. Numb regulates the balance between Notch recycling and late-endosome targeting in Drosophila neural progenitor cells

    PubMed Central

    Johnson, Seth A.; Zitserman, Diana; Roegiers, Fabrice

    2016-01-01

    The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors. PMID:27466320

  10. Endosomal recycling regulates Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8-dependent cell spreading.

    PubMed

    Gu, Jingsheng; Faundez, Victor; Werner, Erica

    2010-07-15

    Mechanisms for receptor-mediated anthrax toxin internalization and delivery to the cytosol are well understood. However, far less is known about the fate followed by anthrax toxin receptors prior and after cell exposure to the toxin. We report that Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8 (TEM8) localized at steady state in Rab11a-positive and transferrin receptor-containing recycling endosomes. TEM8 followed a slow constitutive recycling route of approximately 30min as determined by pulsed surface biotinylation and chase experiments. A Rab11a dominant negative mutant and Myosin Vb tail expression impaired TEM8 recycling by sequestering TEM8 in intracellular compartments. Sequestration of TEM8 in intracellular compartments with monensin coincided with increased TEM8 association with a multi-protein complex isolated with antibodies against transferrin receptor. Addition of the cell-binding component of anthrax toxin, Protective Antigen, reduced TEM8 half-life from 7 to 3 hours, without preventing receptor recycling. Pharmacological and molecular perturbation of recycling endosome function using monensin, dominant negative Rab11a, or myosin Vb tail, reduced PA binding efficiency and TEM8-dependent cell spreading on PA-coated surfaces without affecting toxin delivery to the cytosol. These results indicate that the intracellular fate of TEM8 differentially affect its cell adhesion and cell intoxication functions.

  11. Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility.

    PubMed

    Lindsay, Andrew J; McCaffrey, Mary W

    2016-07-09

    Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.

  12. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration*

    PubMed Central

    García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Meneses-Salas, Elsa; Koese, Meryem; Conway, James R. W.; Johnsen, Camilla H.; Alvarez-Guaita, Anna; Morales-Paytuvi, Frederic; Elmaghrabi, Yasmin A.; Pol, Albert; Tebar, Francesc; Murray, Rachael Z.; Timpson, Paul; Enrich, Carlos; Grewal, Thomas; Rentero, Carles

    2016-01-01

    Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration. PMID:26578516

  13. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration.

    PubMed

    García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Meneses-Salas, Elsa; Koese, Meryem; Conway, James R W; Johnsen, Camilla H; Alvarez-Guaita, Anna; Morales-Paytuvi, Frederic; Elmaghrabi, Yasmin A; Pol, Albert; Tebar, Francesc; Murray, Rachael Z; Timpson, Paul; Enrich, Carlos; Grewal, Thomas; Rentero, Carles

    2016-01-15

    Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.

  14. SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans.

    PubMed

    Chen, Sanyou; Li, Lei; Li, Jiangli; Liu, Bei; Zhu, Xinyu; Zheng, Li; Zhang, Rongying; Xu, Tao

    2014-10-28

    Despite the increasing number of regulatory proteins identified in clathrin-independent endocytic (CIE) pathways, our understanding of the exact functions of these proteins and the sequential manner in which they function remains limited. In this study, using the Caenorhabditis elegans intestine as a model, we observed a unique structure of interconnected endosomal tubules, which is required for the basolateral recycling of several CIE cargoes including hTAC, GLUT1, and DAF-4. SEC-10 is a subunit of the octameric protein complex exocyst. Depleting SEC-10 and several other exocyst components disrupted the endosomal tubules into various ring-like structures. An epistasis analysis further suggested that SEC-10 operates at the intermediate step between early endosomes and recycling endosomes. The endosomal tubules were also sensitive to inactivation of the Rab GTPase RAB-10 and disruption of microtubules. Taken together, our data suggest that SEC-10 coordinates with RAB-10 and microtubules to form the endosomal tubular network for efficient recycling of particular CIE cargoes.

  15. Characterization of Heparan Sulfate Proteoglycan-positive Recycling Endosomes Isolated from Glioma Cells

    PubMed Central

    A. PODYMA-INOUE, KATARZYNA; MORIWAKI, TAKUYA; R. RAJAPAKSHE, ANUPAMA; TERASAWA, KAZUE; HARA-YOKOYAMA, MIKI

    2016-01-01

    Background: Heparan sulfate proteoglycans (HSPGs)-dependent endocytic events have been involved in glioma progression. Thus, comprehensive understanding of the intracellular trafficking complexes formed in presence of HSPGs would be important for development of glioma treatments. Materials and Methods: Subcellular fractionation was used to separate vesicles containing HSPGs from the rat C6 glioma cell line. Isolated HSPG-positive vesicles were further characterized with liquid chromatography-mass spectrometry. Results: The HSPG-positive vesicular fractions, distinct from plasma membrane-derived material, were enriched in endocytic marker, Rab11. Proteomic analysis identified more than two hundred proteins to be associated with vesicular membrane, among them, over eighty were related to endosomal uptake, recycling or vesicular transport. Conclusion: Part of HSPGs in glioma cells is internalized through clathrin-dependent endocytosis and undergo recycling. The development of compounds regulating HSPG-mediated trafficking will likely enable design of effective glioma treatment. PMID:27807067

  16. Role of Recycling Endosomes and Lysosomes in Dynein-Dependent Entry of Canine Parvovirus

    PubMed Central

    Suikkanen, Sanna; Sääjärvi, Katja; Hirsimäki, Jonna; Välilehto, Outi; Reunanen, Hilkka; Vihinen-Ranta, Maija; Vuento, Matti

    2002-01-01

    Canine parvovirus (CPV) is a nonenveloped virus with a 5-kb single-stranded DNA genome. Lysosomotropic agents and low temperature are known to prevent CPV infection, indicating that the virus enters its host cells by endocytosis and requires an acidic intracellular compartment for penetration into the cytoplasm. After escape from the endocytotic vesicles, CPV is transported to the nucleus for replication. In the present study the intracellular entry pathway of the canine parvovirus in NLFK (Nordisk Laboratory feline kidney) cells was studied. After clustering in clathrin-coated pits and being taken up in coated vesicles, CPV colocalized with coendocytosed transferrin in endosomes resembling recycling endosomes. Later, CPV was found to enter, via late endosomes, a perinuclear vesicular compartment, where it colocalized with lysosomal markers. There was no indication of CPV entry into the trans-Golgi or the endoplasmic reticulum. Similar results were obtained both with full and with empty capsids. The data thus suggest that CPV or its DNA was released from the lysosomal compartment to the cytoplasm to be then transported to the nucleus. Electron microscopy analysis revealed endosomal vesicles containing CPV to be associated with microtubules. In the presence of nocodazole, a microtubule-disrupting drug, CPV entry was blocked and the virus was found in peripheral vesicles. Thus, some step(s) of the entry process were dependent on microtubules. Microinjection of antibodies to dynein caused CPV to remain in pericellular vesicles. This suggests an important role for the motor protein dynein in transporting vesicles containing CPV along the microtubule network. PMID:11932407

  17. Role of recycling endosomes and lysosomes in dynein-dependent entry of canine parvovirus.

    PubMed

    Suikkanen, Sanna; Sääjärvi, Katja; Hirsimäki, Jonna; Välilehto, Outi; Reunanen, Hilkka; Vihinen-Ranta, Maija; Vuento, Matti

    2002-05-01

    Canine parvovirus (CPV) is a nonenveloped virus with a 5-kb single-stranded DNA genome. Lysosomotropic agents and low temperature are known to prevent CPV infection, indicating that the virus enters its host cells by endocytosis and requires an acidic intracellular compartment for penetration into the cytoplasm. After escape from the endocytotic vesicles, CPV is transported to the nucleus for replication. In the present study the intracellular entry pathway of the canine parvovirus in NLFK (Nordisk Laboratory feline kidney) cells was studied. After clustering in clathrin-coated pits and being taken up in coated vesicles, CPV colocalized with coendocytosed transferrin in endosomes resembling recycling endosomes. Later, CPV was found to enter, via late endosomes, a perinuclear vesicular compartment, where it colocalized with lysosomal markers. There was no indication of CPV entry into the trans-Golgi or the endoplasmic reticulum. Similar results were obtained both with full and with empty capsids. The data thus suggest that CPV or its DNA was released from the lysosomal compartment to the cytoplasm to be then transported to the nucleus. Electron microscopy analysis revealed endosomal vesicles containing CPV to be associated with microtubules. In the presence of nocodazole, a microtubule-disrupting drug, CPV entry was blocked and the virus was found in peripheral vesicles. Thus, some step(s) of the entry process were dependent on microtubules. Microinjection of antibodies to dynein caused CPV to remain in pericellular vesicles. This suggests an important role for the motor protein dynein in transporting vesicles containing CPV along the microtubule network.

  18. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform

    PubMed Central

    Mallard, Frédéric; Tang, Bor Luen; Galli, Thierry; Tenza, Danièle; Saint-Pol, Agnès; Yue, Xu; Antony, Claude; Hong, Wanjin; Goud, Bruno; Johannes, Ludger

    2002-01-01

    The molecular mechanisms underlying early/recycling endosomes-to-TGN transport are still not understood. We identified interactions between the TGN-localized putative t-SNAREs syntaxin 6, syntaxin 16, and Vti1a, and two early/recycling endosomal v-SNAREs, VAMP3/cellubrevin, and VAMP4. Using a novel permeabilized cell system, these proteins were functionally implicated in the post-Golgi retrograde transport step. The function of Rab6a' was also required, whereas its closely related isoform, Rab6a, has previously been implicated in Golgi-to-endoplasmic reticulum transport. Thus, our study shows that membrane exchange between the early endocytic and the biosynthetic/secretory pathways involves specific components of the Rab and SNARE machinery, and suggests that retrograde transport between early/recycling endosomes and the endoplasmic reticulum is critically dependent on the sequential action of two members of the Rab6 subfamily. PMID:11839770

  19. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform.

    PubMed

    Mallard, Frédéric; Tang, Bor Luen; Galli, Thierry; Tenza, Danièle; Saint-Pol, Agnès; Yue, Xu; Antony, Claude; Hong, Wanjin; Goud, Bruno; Johannes, Ludger

    2002-02-18

    The molecular mechanisms underlying early/recycling endosomes-to-TGN transport are still not understood. We identified interactions between the TGN-localized putative t-SNAREs syntaxin 6, syntaxin 16, and Vti1a, and two early/recycling endosomal v-SNAREs, VAMP3/cellubrevin, and VAMP4. Using a novel permeabilized cell system, these proteins were functionally implicated in the post-Golgi retrograde transport step. The function of Rab6a' was also required, whereas its closely related isoform, Rab6a, has previously been implicated in Golgi-to-endoplasmic reticulum transport. Thus, our study shows that membrane exchange between the early endocytic and the biosynthetic/secretory pathways involves specific components of the Rab and SNARE machinery, and suggests that retrograde transport between early/recycling endosomes and the endoplasmic reticulum is critically dependent on the sequential action of two members of the Rab6 subfamily.

  20. Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes.

    PubMed

    Kobayashi, Shintaro; Suzuki, Tadaki; Kawaguchi, Akira; Phongphaew, Wallaya; Yoshii, Kentaro; Iwano, Tomohiko; Harada, Akihiro; Kariwa, Hiroaki; Orba, Yasuko; Sawa, Hirofumi

    2016-03-18

    West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane.

  1. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation.

    PubMed

    Pietiäinen, Vilja; Vassilev, Boris; Blom, Tomas; Wang, Wei; Nelson, Jessica; Bittman, Robert; Bäck, Nils; Zelcer, Noam; Ikonen, Elina

    2013-09-01

    N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.

  2. AP-1/σ1B-Dependent SV Protein Recycling Is Regulated in Early Endosomes and Is Coupled to AP-2 Endocytosis.

    PubMed

    Kratzke, Manuel; Candiello, Ermes; Schmidt, Bernhard; Jahn, Olaf; Schu, Peter

    2015-08-01

    Adaptor protein (AP)-1/σ1B(-/-) mice have reduced synaptic-vesicle (SV) recycling and increased endosomes. Mutant mice have impaired spatial memory, and σ1B-deficient humans have a severe mental retardation. In order to define these σ1B(-/-) 'bulk' endosomes and to determine their functions in SV recycling, we developed a protocol to separate them from the majority of the neuronal endosomes. The σ1B(-/-) 'bulk' endosomes proved to be classic early endosomes with an increase in the phospholipid phosphatidylinositol 3-phosphate (PI-3-P), which recruits proteins mediating protein sorting out of early endosomes into different routes. σ1B deficiency induced alterations in the endosomal proteome reveals two major functions: SV protein storage and sorting into endolysosomes. Alternative endosomal recycling pathways are not up-regulated, but certain SV proteins are misrouted. Tetraspanins are enriched in σ1B(-/-) synaptosomes, but not in their endosomes or in their clathrin-coated-vesicles (CCVs), indicating AP-1/σ1B-dependent sorting. Synapses contain also more AP-2 CCV, although it is expected that they contain less due to reduced SV recycling. Coat composition of these AP-2 CCVs is altered, and thus, they represent a subpopulation of AP-2 CCVs. Association of calmodulin-dependent protein kinase (CaMK)-IIα, -δ and casein kinase (CK)-IIα with the endosome/SV pool is altered, as well as 14-3-3η, indicating changes in specific signalling pathways regulating synaptic plasticity. The accumulation of early endosomes and endocytotic AP-2 CCV indicates the regulation of SV recycling via early endosomes by the interdependent regulation of AP-2-mediated endocytosis and AP-1/σ1B-mediated SV reformation.

  3. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network.

    PubMed

    Jing, Jian; Junutula, Jagath R; Wu, Christine; Burden, Jemima; Matern, Hugo; Peden, Andrew A; Prekeris, Rytis

    2010-09-01

    Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN.

  4. Apical and basolateral transferrin receptors in polarized BeWo cells recycle through separate endosomes

    PubMed Central

    1991-01-01

    Contrary to most other epithelia, trophoblasts in the human placenta, which form the physical barrier between the fetal and the maternal blood circulation, express high numbers of transferrin receptors on their apical cell surface. This study describes the establishment of a polarized trophoblast-like cell line BeWo, which exhibit a high expression of transferrin receptors on the apex of the cells. Cultured on permeable filter supports, BeWo cells formed a polarized monolayer with microvilli on their apical cell surface. Across the monolayer a transepithelial resistance developed of approximately 600 omega.cm2 within 4 d. Depletion of Ca2+ from the medium decreased the resistance to background levels, showing its dependence on the integrity of tight junctions. Within the same period of time the secretion of proteins became polarized. In addition, the compositions of integral membrane proteins at the apical and basolateral plasma membrane domains were distinct as determined by domain-selective iodination. Similar to placental trophoblasts, binding of 125I-labeled transferrin to BeWo monolayers revealed that the transferrin receptor was expressed at both plasma membrane domains. Apical and basolateral transferrin receptors were found in a 1:2 surface ratio and exhibited identical dissociation constants and molecular weights. After uptake, transferrin recycled predominantly to the domain of administration, indicating separate recycling pathways from the apical and basolateral domain. This was confirmed by using diaminobenzidine cytochemistry, a technique by which colocalization of endocytosed 125I-labeled and HRP-conjugated transferrin can be monitored. No mixing of the two types of ligands was observed, when both ligands were simultaneously internalized for 10 or 60 min from opposite domains, demonstrating that BeWo cells possess separate populations of apical and basolateral early endosomes. In conclusion, the trophoblast-like BeWo cell line can serve as a unique

  5. Mistargeting of SH3TC2 away from the recycling endosome causes Charcot-Marie-Tooth disease type 4C.

    PubMed

    Roberts, Rhys C; Peden, Andrew A; Buss, Folma; Bright, Nicholas A; Latouche, Morwena; Reilly, Mary M; Kendrick-Jones, John; Luzio, J Paul

    2010-03-15

    Mutations in the functionally uncharacterized protein SH3TC2 are associated with the severe hereditary peripheral neuropathy, Charcot-Marie-Tooth disease type 4C (CMT4C). Similarly, to other proteins mutated in CMT, a role for SH3TC2 in endocytic membrane traffic has been previously proposed. However, recent descriptions of the intracellular localization of SH3TC2 are conflicting. Furthermore, no clear functional pathogenic mechanisms have so far been proposed to explain why both nonsense and missense mutations in SH3TC2 lead to similar clinical phenotypes. Here, we describe our intracellular localization studies, supported by biochemical and functional data, using wild-type and mutant SH3TC2. We show that wild-type SH3TC2 targets to the intracellular recycling endosome by associating with the small GTPase, Rab11, which is known to regulate the recycling of internalized membrane and receptors back to the plasma membrane. Furthermore, we demonstrate that SH3TC2 interacts preferentially with the GTP-bound form of Rab11, identifying SH3TC2 as a novel Rab11 effector. Of clinical pathological relevance, all SH3TC2 constructs harbouring disease-causing mutations are shown to be unable to associate with Rab11 with consequent loss of recycling endosome localization. Moreover, we show that wild-type SH3TC2, but not mutant SH3TC2, influences transferrin receptor dynamics, consistent with a functional role on the endocytic recycling pathway. Our data therefore implicate mistargeting of SH3TC2 away from the recycling endosome as the fundamental molecular defect that leads to CMT4C.

  6. Internalization of adhesion junction proteins and their association with recycling endosome marker proteins in rat seminiferous epithelium.

    PubMed

    Young, J'Nelle S; Takai, Yoshimi; Kojic, Katarina L; Vogl, A Wayne

    2012-03-01

    Tubulobulbar complexes (TBCs) are elaborate cytoskeleton-related structures that are formed in association with intercellular junctions in the seminiferous epithelium. They consist of a cylindrical double-membrane core composed of the plasma membranes of the two attached cells, cuffed by a dendritic network of actin filaments. TBCs are proposed to be subcellular machines that internalize intercellular junctions during the extensive junction remodeling that occurs during spermatogenesis. At the apical sites of attachment between Sertoli cells and spermatids, junction disassembly is part of the sperm release mechanism. In this study, we used immunological probes to explore junction internalization and recycling at apical TBCs in the rat seminiferous epithelium. We demonstrate that β1-integrin and nectin 2 were concentrated at the ends of TBCs and for the first time show that the early endosome marker RAB5A was also distinctly localized at the ends of TBCs that appear to be the 'bulbar' regions of the complexes. Significantly, we also demonstrate that the 'long-loop' recycling endosome marker RAB11A was co-distributed with nectin 2 at junctions with early spermatids deeper in the epithelium. Our results are consistent with the hypothesis that TBCs associated with late spermatids internalize adhesion junctions and also indicate that some of the internalized junction proteins may be recycled to form junctions with the next generation of spermatids.

  7. RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes

    PubMed Central

    Wurtzel, Jeremy G.T.; Lee, Seunghyung; Singhal, Sharad S.; Awasthi, Sanjay; Ginsberg, Mark H.; Goldfinger, Lawrence E.

    2015-01-01

    R-Ras small GTPase enhances cell spreading and motility via RalBP1/RLIP76, an R-Ras effector that links GTP-R-Ras to activation of Arf6 and Rac1 GTPases. Here, we report that RLIP76 performs these functions by binding cytohesin-2/ARNO, an Arf GTPase guanine exchange factor, and connecting it to R-Ras at recycling endosomes. RLIP76 formed a complex with R-Ras and ARNO by binding ARNO via its N-terminus (residues 1-180) and R-Ras via residues 180-192. This complex was present in Rab11-positive recycling endosomes and the presence of ARNO in recycling endosomes required RLIP76, and was not supported by RLIP76(Δ1-180) or RLIP76(Δ180-192). Spreading and migration required RLIP76(1-180), and RLIP76(Δ1-180) blocked ARNO recruitment to recycling endosomes, and spreading. Arf6 activation with an ArfGAP inhibitor overcame the spreading defects in RLIP76-depleted cells or cells expressing RLIP76(Δ1-180). Similarly, RLIP76(Δ1-180) or RLIP76(Δ180-192) suppressed Arf6 activation. Together these results demonstrate that RLIP76 acts as a scaffold at recycling endosomes by binding activated R-Ras, recruiting ARNO to activate Arf6, thereby contributing to cell spreading and migration. PMID:26498519

  8. The Myopic-Ubpy-Hrs nexus enables endosomal recycling of Frizzled

    PubMed Central

    Pradhan-Sundd, Tirthadipa; Verheyen, Esther M.

    2015-01-01

    Endosomal trafficking of signaling proteins plays an essential role in cellular homeostasis. The seven-pass transmembrane protein Frizzled (Fz) is a critical component of Wnt signaling. Although Wnt signaling is proposed to be regulated by endosomal trafficking of Fz, the molecular events that enable this regulation are not completely understood. Here we show that the endosomal protein Myopic (Mop) regulates Fz trafficking in the Drosophila wing disk by inhibiting the ubiquitination and degradation of Hrs. Deletion of Mop or Hrs results in endosomal accumulation of Fz and therefore reduced Wnt signaling. The in situ proximity ligation assay revealed a strong association between Mop and Hrs in the Drosophila wing disk. Overexpression of Hrs rescues the trafficking defect caused by mop knockdown. Mop aids in the maintenance of Ubpy, which deubiquitinates (and thus stabilizes) Hrs. In the absence of the ubiquitin ligase Cbl, Mop is dispensable. These findings support a previously unknown role for Mop in endosomal trafficking of Fz in Wnt-receiving cells. PMID:26224310

  9. Fission of SNX-BAR–coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1

    PubMed Central

    Chi, Richard J.; Liu, Jingxuan; West, Matthew; Wang, Jing; Odorizzi, Greg

    2014-01-01

    Retromer is an endosomal sorting device that orchestrates capture and packaging of cargo into transport carriers coated with sorting nexin BAR domain proteins (SNX-BARs). We report that fission of retromer SNX-BAR–coated tubules from yeast endosomes is promoted by Vps1, a dynamin-related protein that localizes to endosomes decorated by retromer SNX-BARs and Mvp1, a SNX-BAR that is homologous to human SNX8. Mvp1 exhibits potent membrane remodeling activity in vitro, and it promotes association of Vps1 with the endosome in vivo. Retrograde transport carriers bud from the endosome coated by retromer and Mvp1, and cargo export is deficient in mvp1- and vps1-null cells, but with distinct endpoints; cargo export is delayed in mvp1-null cells, but cargo export completely fails in vps1-null cells. The results indicate that Mvp1 promotes Vps1-mediated fission of retromer- and Mvp1-coated tubules that bud from the endosome, revealing a functional link between the endosomal sorting and fission machineries to produce retrograde transport carriers. PMID:24567361

  10. Fission of SNX-BAR-coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1.

    PubMed

    Chi, Richard J; Liu, Jingxuan; West, Matthew; Wang, Jing; Odorizzi, Greg; Burd, Christopher G

    2014-03-03

    Retromer is an endosomal sorting device that orchestrates capture and packaging of cargo into transport carriers coated with sorting nexin BAR domain proteins (SNX-BARs). We report that fission of retromer SNX-BAR-coated tubules from yeast endosomes is promoted by Vps1, a dynamin-related protein that localizes to endosomes decorated by retromer SNX-BARs and Mvp1, a SNX-BAR that is homologous to human SNX8. Mvp1 exhibits potent membrane remodeling activity in vitro, and it promotes association of Vps1 with the endosome in vivo. Retrograde transport carriers bud from the endosome coated by retromer and Mvp1, and cargo export is deficient in mvp1- and vps1-null cells, but with distinct endpoints; cargo export is delayed in mvp1-null cells, but cargo export completely fails in vps1-null cells. The results indicate that Mvp1 promotes Vps1-mediated fission of retromer- and Mvp1-coated tubules that bud from the endosome, revealing a functional link between the endosomal sorting and fission machineries to produce retrograde transport carriers.

  11. Increased Expression of Rififylin in A < 330 Kb Congenic Strain is Linked to Impaired Endosomal Recycling in Proximal Tubules

    PubMed Central

    Gopalakrishnan, Kathirvel; Kumarasamy, Sivarajan; Yan, Yanling; Liu, Jiang; Kalinoski, Andrea; Kothandapani, Anbarasi; Farms, Phyllis; Joe, Bina

    2012-01-01

    Cell surface proteins are internalized into the cell through endocytosis and either degraded within lysosomes or recycled back to the plasma membrane. While perturbations in endosomal internalization are known to modulate renal function, it is not known whether similar alterations in recycling affect renal function. Rififylin is a known regulator of endocytic recycling with E3 ubiquitin protein ligase activity. In this study, using two genetically similar strains, the Dahl Salt-sensitive rat and an S.LEW congenic strain, which had allelic variants within a < 330 kb segment containing rififylin, we tested the hypothesis that alterations in endosomal recycling affect renal function. The congenic strain had 1.59-fold higher renal expression of rififylin. Transcriptome analysis indicated that components of both endocytosis and recycling were upregulated in the congenic strain. Transcription of Atp1a1 and cell surface content of the protein product of Atp1a1, the alpha subunit of Na+K+ATPase were increased in the proximal tubules from the congenic strain. Because rififylin does not directly regulate endocytosis and it is also a differentially expressed gene within the congenic segment, we reasoned that the observed alterations in the transcriptome of the congenic strain constitute a feedback response to the primary functional alteration of recycling caused by rififylin. To test this, recycling of transferrin was studied in isolated proximal tubules. Recycling was significantly delayed within isolated proximal tubules of the congenic strain, which also had a higher level of polyubiquitinated proteins and proteinuria compared with S. These data provide evidence to suggest that delayed endosomal recycling caused by excess of rififylin indirectly affects endocytosis, enhances intracellular protein polyubiquitination and contributes to proteinuria. PMID:22891072

  12. Endocytic and Recycling Endosomes Modulate Cell Shape Changes and Tissue Behaviour during Morphogenesis in Drosophila

    PubMed Central

    Mateus, Ana Margarida; Gorfinkiel, Nicole; Schamberg, Sabine; Martinez Arias, Alfonso

    2011-01-01

    During development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo. During this process the AS contracts and the epidermis elongates in a coordinated fashion, leading to the closure of a discontinuity in the dorsal epidermis of the Drosophila embryo. We used dominant negative forms of Rab5 and Rab11 to monitor the impact on tissue morphogenesis of altering endocytosis and recycling at the level of single cells. We found different requirements for endocytosis (Rab5) and recycling (Rab11) in dorsal closure, furthermore we found that the two processes are differentially used in the two tissues. Endocytosis is required in the AS to remove membrane during apical constriction, but is not essential in the epidermis. Recycling is required in the AS at early stages and in the epidermis for cell elongation, suggesting a role in membrane addition during these processes. We propose that the modulation of the balance between endocytosis and recycling can regulate cellular morphology and tissue deformations during morphogenesis. PMID:21533196

  13. Direct Pathway from Early/Recycling Endosomes to the Golgi Apparatus Revealed through the Study of Shiga Toxin B-fragment Transport

    PubMed Central

    Mallard, Frédéric; Antony, Claude; Tenza, Danièle; Salamero, Jean; Goud, Bruno; Johannes, Ludger

    1998-01-01

    Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37°C, ultrastructural studies on cryosections failed to detect B-fragment–specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor–containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN. PMID:9817755

  14. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport.

    PubMed

    Mallard, F; Antony, C; Tenza, D; Salamero, J; Goud, B; Johannes, L

    1998-11-16

    Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37 degreesC, ultrastructural studies on cryosections failed to detect B-fragment-specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor-containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN.

  15. P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency.

    PubMed

    Shapira, Iuliana; Lee, Annette; Vora, Reena; Budman, Daniel R

    2013-11-01

    There is no available targeted therapy for triple-negative or its more aggressive subtype, basal-like breast cancer. Multiple therapeutic strategies based on translational knowledge have not improved the treatment options for triple negative patients. As understanding of molecular pathways that drive tumor development is rapidly increasing, it is imperative to adapt our treatment strategies to perturbations in molecular pathways driving the malignant process. Basal-like breast cancers over-express EGFR (without mutations or EGFR gene amplifications) and have p53 mutations. While EGFR drives the malignant behavior in triple negative breast cancer (TNBC), anti-EGFR therapies have fallen short of the expected results in clinical trials. Here we bring evidence that the less than optimal results of the anti-EGFR therapies may be explained in part by the increased potency of the EGFR signaling due to increased endosomal recycling. The functional connection between EGFR and endosomal trafficking in TNBC is mutant p53 found in the most aggressive forms of TNBC. Mutant p53 acquires oncogenic functions and binds p63 protein, a member of p53 family with tumor suppressor activities. In the absence of functional p63 there is an upregulation of endosomal recycling EGFR and integrin to the membrane with increased proinvasive abilities of cancer cells. Blocking endosomal trafficking combined with anti-EGFR treatments may result in better clinical outcomes in TNBC.

  16. A hydrophobic amino acid cluster inserted into the C-terminus of a recycling cell surface receptor functions as an endosomal sorting signal.

    PubMed

    Amano, Yuji; Yoshino, Kazuhisa; Kojima, Katsuhiko; Takeshita, Toshikazu

    2013-11-08

    Cell surface receptors ubiquitylated after ligand stimulation are internalized and delivered to the lysosomal pathway for degradation. Ubiquitylated receptors are captured by ESCRT protein complexes that sort them to the lysosomal pathway. Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a component of endosomal sorting complexes required for transport (ESCRT)-0 that recognizes ubiquitin attached to receptors, indicating that it functions as a key molecule for ubiquitin-dependent endosomal sorting. In a previous study on interleukin (IL)-2 receptor β (IL-2Rβ) and IL-4 receptor α (IL-4Rα), which are constitutively internalized without ligand stimulation, we revealed that Hrs bound to IL-2Rβ and IL-4Rα in a ubiquitin-independent manner, and identified a hydrophobic amino acid cluster in the cytoplasmic region of IL-2Rβ and IL-4Rα as the Hrs-interacting domain. However, a chimeric receptor containing the hydrophobic amino acid cluster inserted into the C-terminal of IL-2Rα was not delivered to late endosomes, but recycled back to the plasma membrane. In the present study, we explored the functional domain related to endosomal sorting in IL-2Rβ together with the hydrophobic amino acid cluster, and discovered the importance of an approximately 30-amino acid stretch following the C-terminus of the hydrophobic amino acid cluster in IL-2Rβ. Even though the amino acid stretch following the hydrophobic amino acid cluster was composed of arbitrary amino acids, such a stretch was also permissive for the sorting ability, suggesting that the hydrophobic amino acid cluster functions as an endosomal sorting signal. These findings clarify part of the molecular mechanism underlying the ubiquitin-independent endosomal sorting of cytokine receptors that are constitutively internalized without ligand stimulation.

  17. ER contact sites direct late endosome transport.

    PubMed

    Wijdeven, Ruud H; Jongsma, Marlieke L M; Neefjes, Jacques; Berlin, Ilana

    2015-12-01

    Endosomes shuttle select cargoes between cellular compartments and, in doing so, maintain intracellular homeostasis and enable interactions with the extracellular space. Directionality of endosomal transport critically impinges on cargo fate, as retrograde (microtubule minus-end directed) traffic delivers vesicle contents to the lysosome for proteolysis, while the opposing anterograde (plus-end directed) movement promotes recycling and secretion. Intriguingly, the endoplasmic reticulum (ER) is emerging as a key player in spatiotemporal control of late endosome and lysosome transport, through the establishment of physical contacts with these organelles. Earlier studies have described how minus-end-directed motor proteins become discharged from vesicles engaged at such contact sites. Now, Raiborg et al. implicate ER-mediated interactions, induced by protrudin, in loading plus-end-directed motor kinesin-1 onto endosomes, thereby stimulating their transport toward the cell's periphery. In this review, we recast the prevailing concepts on bidirectional late endosome transport and discuss the emerging paradigm of inter-compartmental regulation from the ER-endosome interface viewpoint.

  18. Sustained Receptor Stimulation Leads to Sequestration of Recycling Endosomes in a Classical Protein Kinase C- and Phospholipase D-dependent Manner*

    PubMed Central

    Idkowiak-Baldys, Jolanta; Baldys, Aleksander; Raymond, John R.; Hannun, Yusuf A.

    2009-01-01

    Considerable insight has been garnered on initial mechanisms of endocytosis of plasma membrane proteins and their subsequent trafficking through the endosomal compartment. It is also well established that ligand stimulation of many plasma membrane receptors leads to their internalization. However, stimulus-induced regulation of endosomal trafficking has not received much attention. In previous studies, we showed that sustained stimulation of protein kinase C (PKC) with phorbol esters led to sequestration of recycling endosomes in a juxtanuclear region. In this study, we investigated whether G-protein-coupled receptors that activate PKC exerted effects on endosomal trafficking. Stimulation of cells with serotonin (5-hydroxytryptamine (5-HT)) led to sequestration of the 5-HT receptor (5-HT2AR) into a Rab11-positive juxtanuclear compartment. This sequestration coincided with translocation of PKC as shown by confocal microscopy. Mechanistically the observed sequestration of 5-HT2AR was shown to require continuous PKC activity because it was inhibited by pretreatment with classical PKC inhibitor Gö6976 and could be reversed by posttreatment with this inhibitor. In addition, classical PKC autophosphorylation was necessary for receptor sequestration. Moreover inhibition of phospholipase D (PLD) activity and inhibition of PLD1 and PLD2 using dominant negative constructs also prevented this process. Functionally this sequestration did not affect receptor desensitization or resensitization as measured by intracellular calcium increase. However, the PKC- and PLD-dependent sequestration of receptors resulted in co-sequestration of other plasma membrane proteins and receptors as shown for epidermal growth factor receptor and protease activated receptor-1. This led to heterologous desensitization of those receptors and diverted their cellular fate by protecting them from agonist-induced degradation. Taken together, these results demonstrate a novel role for sustained receptor

  19. The Alström Syndrome Protein, ALMS1, Interacts with α-Actinin and Components of the Endosome Recycling Pathway

    PubMed Central

    Collin, Gayle B.; Marshall, Jan D.; King, Benjamin L.; Milan, Gabriella; Maffei, Pietro; Jagger, Daniel J.; Naggert, Jürgen K.

    2012-01-01

    Alström syndrome (ALMS) is a progressive multi-systemic disorder characterized by cone-rod dystrophy, sensorineural hearing loss, childhood obesity, insulin resistance and cardiac, renal, and hepatic dysfunction. The gene responsible for Alström syndrome, ALMS1, is ubiquitously expressed and has multiple splice variants. The protein encoded by this gene has been implicated in ciliary function, cell cycle control, and intracellular transport. To gain better insight into the pathways through which ALMS1 functions, we carried out a yeast two hybrid (Y2H) screen in several mouse tissue libraries to identify ALMS1 interacting partners. The majority of proteins found to interact with the murine carboxy-terminal end (19/32) of ALMS1 were α-actinin isoforms. Interestingly, several of the identified ALMS1 interacting partners (α-actinin 1, α-actinin 4, myosin Vb, rad50 interacting 1 and huntingtin associated protein1A) have been previously associated with endosome recycling and/or centrosome function. We examined dermal fibroblasts from human subjects bearing a disruption in ALMS1 for defects in the endocytic pathway. Fibroblasts from these patients had a lower uptake of transferrin and reduced clearance of transferrin compared to controls. Antibodies directed against ALMS1 N- and C-terminal epitopes label centrosomes and endosomal structures at the cleavage furrow of dividing MDCK cells, respectively, suggesting isoform-specific cellular functions. Our results suggest a role for ALMS1 variants in the recycling endosome pathway and give us new insights into the pathogenesis of a subset of clinical phenotypes associated with ALMS. PMID:22693585

  20. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    PubMed

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  1. Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent.

    PubMed

    Bertuccio, Claudia A; Lee, Shih-Liang; Wu, Guangyu; Butterworth, Michael B; Hamilton, Kirk L; Devor, Daniel C

    2014-01-01

    The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized

  2. The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome.

    PubMed

    Berlin, Ilana; Higginbotham, Katherine M; Dise, Rebecca S; Sierra, Maria I; Nash, Piers D

    2010-11-26

    Reversible ubiquitination orchestrated by the opposition of ubiquitin ligases and deubiquitinating enzymes mediates endocytic trafficking of cell surface receptors for lysosomal degradation. Ubiquitin-specific protease 8 (USP8) has previously been implicated in endocytosis of several receptors by virtue of their deubiquitination. The present study explores an indirect role for USP8 in cargo trafficking through its regulation of the chemokine receptor 4 (CXCR4). Contrary to the effects of USP8 loss on enhanced green fluorescent protein, we find that USP8 depletion stabilizes CXCR4 on the cell surface and attenuates receptor degradation without affecting its ubiquitination status. In the presence of ligand, diminished CXCR4 turnover is accompanied by receptor accumulation on enlarged early endosomes and leads to enhancement of phospho-ERK signaling. Perturbation in CXCR4 trafficking, resulting from USP8 inactivation, occurs at the ESCRT-0 checkpoint, and catalytic mutation of USP8 specifically targeted to the ESCRT-0 complex impairs the spatial and temporal organization of the sorting endosome. USP8 functionally opposes the ubiquitin ligase AIP4 with respect to ESCRT-0 ubiquitination, thereby promoting trafficking of CXCR4. Collectively, our findings demonstrate a functional cooperation between USP8, AIP4, and the ESCRT-0 machinery at the early sorting phase of CXCR4 and underscore the versatility of USP8 in shaping trafficking events at the early-to-late endosome transition.

  3. Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins*

    PubMed Central

    Grimsey, Neil J.; Coronel, Luisa J.; Cordova, Isabel Canto; Trejo, JoAnn

    2016-01-01

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that undergoes proteolytic irreversible activation by coagulant and anti-coagulant proteases. Given the irreversible activation of PAR1, signaling by the receptor is tightly regulated through desensitization and intracellular trafficking. PAR1 displays both constitutive and agonist-induced internalization. Constitutive internalization of PAR1 is important for generating an internal pool of naïve receptors that replenish the cell surface and facilitate resensitization, whereas agonist-induced internalization of PAR1 is critical for terminating G protein signaling. We showed that PAR1 constitutive internalization is mediated by the adaptor protein complex-2 (AP-2), whereas AP-2 and epsin control agonist-induced PAR1 internalization. However, the mechanisms that regulate PAR1 recycling are not known. In the present study we screened a siRNA library of 140 different membrane trafficking proteins to identify key regulators of PAR1 intracellular trafficking. In addition to known mediators of PAR1 endocytosis, we identified Rab11B as a critical regulator of PAR1 trafficking. We found that siRNA-mediated depletion of Rab11B and not Rab11A blocks PAR1 recycling, which enhanced receptor lysosomal degradation. Although Rab11A is not required for PAR1 recycling, depletion of Rab11A resulted in intracellular accumulation of PAR1 through disruption of basal lysosomal degradation of the receptor. Moreover, enhanced degradation of PAR1 observed in Rab11B-deficient cells is blocked by depletion of Rab11A and the autophagy related-5 protein, suggesting that PAR1 is shuttled to an autophagic degradation pathway in the absence of Rab11B recycling. Together these findings suggest that Rab11A and Rab11B differentially regulate intracellular trafficking of PAR1 through distinct endosomal sorting mechanisms. PMID:26635365

  4. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses*♦

    PubMed Central

    Rhee, Hong Jun; Subramanian, Devaraj; Paraskevopoulou, Foteini; Mueller, Rainer; Schultz, Carsten; Brose, Nils; Rhee, Jeong-Seop; Betz, Heinrich

    2017-01-01

    The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations. PMID:27941024

  5. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network

    PubMed Central

    1994-01-01

    Newly synthesized lysosomal enzymes bind to mannose 6-phosphate receptors (MPRs) in the TGN, and are carried to prelysosomes, where they are released. MPRs then return to the TGN for another round of transport. Rab9 is a ras-like GTPase which facilitates MPR recycling to the TGN in vitro. We show here that a dominant negative form of rab9, rab9 S21N, strongly inhibited MPR recycling in living cells. The block was specific in that the rates of biosynthetic protein transport, fluid phase endocytosis and receptor-mediated endocytosis were unchanged. Expression of rab9 S21N was accompanied by a decrease in the efficiency of lysosomal enzyme sorting. Cells compensated for the presence of the mutant protein by inducing the synthesis of both soluble and membrane- associated lysosomal enzymes, and by internalizing lysosomal enzymes that were secreted by default. These data show that MPRs are limiting in the secretory pathway of cells expressing rab9 S21N and document the importance of MPR recycling and the rab9 GTPase for efficient lysosomal enzyme delivery. PMID:7909812

  6. Staphylococcus aureus recruits Cdc42GAP through recycling endosomes and the exocyst to invade human endothelial cells.

    PubMed

    Rauch, Liane; Hennings, Kirsten; Trasak, Claudia; Röder, Anja; Schröder, Barbara; Koch-Nolte, Friedrich; Rivera-Molina, Felix; Toomre, Derek; Aepfelbacher, Martin

    2016-08-01

    Activation and invasion of the vascular endothelium by Staphylococcus aureus is a major cause of sepsis and endocarditis. For endothelial cell invasion, S. aureus triggers actin polymerization through Cdc42, N-WASp (also known as WASL) and the Arp2/3 complex to assemble a phagocytic cup-like structure. Here, we show that after stimulating actin polymerization staphylococci recruit Cdc42GAP (also known as ARHGAP1) which deactivates Cdc42 and terminates actin polymerization in the phagocytic cups. Cdc42GAP is delivered to the invading bacteria on recycling endocytic vesicles in concert with the exocyst complex. When Cdc42GAP recruitment by staphylococci was prevented by blocking recycling endocytic vesicles or the exocyst complex, or when Cdc42 was constitutively activated, phagocytic cup closure was impaired and endothelial cell invasion was inhibited. Thus, to complete invasion of the endothelium, staphylococci reorient recycling endocytic vesicles to recruit Cdc42GAP, which terminates Cdc42-induced actin polymerization in phagocytic cups. Analogous mechanisms might govern other Cdc42-dependent cell functions.

  7. Biogenesis of endosome-derived transport carriers.

    PubMed

    Chi, Richard J; Harrison, Megan S; Burd, Christopher G

    2015-09-01

    Sorting of macromolecules within the endosomal system is vital for physiological control of nutrient homeostasis, cell motility, and proteostasis. Trafficking routes that export macromolecules from the endosome via vesicle and tubule transport carriers constitute plasma membrane recycling and retrograde endosome-to-Golgi pathways. Proteins of the sorting nexin family have been discovered to function at nearly every step of endosomal transport carrier biogenesis and it is becoming increasingly clear that they form the core machineries of cargo-specific transport pathways that are closely integrated with cellular physiology. Here, we summarize recent progress in elucidating the pathways that mediate the biogenesis of endosome-derived transport carriers.

  8. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis.

    PubMed

    Gui, Jinghua; Huang, Yunxian; Shimmi, Osamu

    2016-11-01

    Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV) formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp), a conserved bone morphogenetic protein (BMP)-type ligand, is directionally trafficked from longitudinal veins (LVs) into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib) is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv) localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis.

  9. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis

    PubMed Central

    Gui, Jinghua

    2016-01-01

    Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV) formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp), a conserved bone morphogenetic protein (BMP)-type ligand, is directionally trafficked from longitudinal veins (LVs) into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib) is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv) localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis. PMID:27814354

  10. Recycling.

    ERIC Educational Resources Information Center

    Sinker, Barbara

    1986-01-01

    Discusses the range of benefits resulting from recycling efforts and projects. Presents information and data related to the recycling of metals, cans, paper, fans, and plastics. Suggestions for motivating and involving youth in recycling programs are also offered. (ML)

  11. Rab Family Proteins Regulate the Endosomal Trafficking and Function of RGS4*

    PubMed Central

    Bastin, Guillaume; Heximer, Scott P.

    2013-01-01

    RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function. PMID:23733193

  12. Rab family proteins regulate the endosomal trafficking and function of RGS4.

    PubMed

    Bastin, Guillaume; Heximer, Scott P

    2013-07-26

    RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.

  13. Integrin endosomal signalling suppresses anoikis

    PubMed Central

    Alanko, Jonna; Mai, Anja; Jacquemet, Guillaume; Schauer, Kristine; Kaukonen, Riina; Saari, Markku; Goud, Bruno; Ivaska, Johanna

    2016-01-01

    Integrin containing focal adhesions (FAs) transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localises with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 (EEA1) and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage-independence and metastasis. Integrins are heterodimeric cell surface adhesion receptors functioning as integrators of the extra-cellular matrix (ECM) driven cues, the cellular cytoskeleton and the cellular signalling apparatus 1.Upon adhesion, integrins trigger the formation of plasma-membrane proximal large mechanosensing and signal-transmitting protein clusters depicted as “adhesomes” 2, 3. In addition, integrins undergo constant endocytic traffic to facilitate focal adhesion turnover, cell migration, invasion and cytokinesis 4. For other receptor systems it is well established that endocytic membrane traffic regulates bioavailability of cell-surface molecules and therefore the intensity and/or specificity of receptor-initiated signals 5, 6. Although active integrins and their ligands have been detected in endosomes 7–9 and increased integrin recycling to the plasma membrane contributes

  14. Recycle

    SciTech Connect

    1988-10-01

    ;Contents: The Problem; What`s In Our Trash; Where Does Trash Go; Where Does Our Trash Go; The Solution; What Is Recycling; Why Should We Recycle; A National Goal of 25%; What Can We Recycle; What Do We Do With Our Recyclables.

  15. Membrane Tethering Complexes in the Endosomal System

    PubMed Central

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic. PMID:27243003

  16. The structure and function of presynaptic endosomes

    SciTech Connect

    Jähne, Sebastian; Rizzoli, Silvio O.; Helm, Martin S.

    2015-07-15

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.

  17. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  18. Maintaining protein homeostasis: early and late endosomal dual recycling for the maintenance of intracellular pools of the plasma membrane protein Chs3

    PubMed Central

    Arcones, Irene; Sacristán, Carlos; Roncero, Cesar

    2016-01-01

    The major chitin synthase activity in yeast cells, Chs3, has become a paradigm in the study of the intracellular traffic of transmembrane proteins due to its tightly regulated trafficking. This includes an efficient mechanism for the maintenance of an extensive reservoir of Chs3 at the trans-Golgi network/EE, which allows for the timely delivery of the protein to the plasma membrane. Here we show that this intracellular reservoir of Chs3 is maintained not only by its efficient AP-1–mediated recycling, but also by recycling through the retromer complex, which interacts with Chs3 at a defined region in its N-terminal cytosolic domain. Moreover, the N-terminal ubiquitination of Chs3 at the plasma membrane by Rsp5/Art4 distinctly labels the protein and regulates its retromer-mediated recycling by enabling Chs3 to be recognized by the ESCRT machinery and degraded in the vacuole. Therefore the combined action of two independent but redundant endocytic recycling mechanisms, together with distinct labels for vacuolar degradation, determines the final fate of the intracellular traffic of the Chs3 protein, allowing yeast cells to regulate morphogenesis, depending on environmental constraints. PMID:27798229

  19. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis.

    PubMed

    Delevoye, Cédric; Hurbain, Ilse; Tenza, Danièle; Sibarita, Jean-Baptiste; Uzan-Gafsou, Stéphanie; Ohno, Hiroshi; Geerts, Willie J C; Verkleij, Arie J; Salamero, Jean; Marks, Michael S; Raposo, Graça

    2009-10-19

    Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type-specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1- and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type-specific positioning of endosomes that facilitate endosome-LRO contacts and are required for organelle maturation.

  20. An Automated Image Analysis System to Quantify Endosomal Tubulation

    PubMed Central

    Newton, Timothy M.

    2016-01-01

    Recycling of cargos from early endosomes requires regulation of endosomal tubule formation and fission. This regulation is disrupted in cells depleted of the microtubule severing enzyme spastin, causing elongation of endosomal tubules and mis-trafficking of recycling endosomal cargos such as the transferrin receptor. Spastin is encoded by SPAST, mutations in which are the most frequent cause of autosomal dominant hereditary spastic paraplegia, a condition characterised by a progressive loss of lower limb function resulting from upper motor neuron axonopathy. Investigation of molecular factors involved in endosomal tubule regulation is hindered by the need for manual counting of endosomal tubules. We report here the development of an open source automated system for the quantification of endosomal tubules, using ImageJ and R. We validate the method in cells depleted of spastin and its binding partner IST1. The additional speed and reproducibility of this system compared with manual counting makes feasible screens of candidates to further understand the mechanisms of endosomal tubule formation and fission. PMID:28006827

  1. Moesin and cortactin control actin-dependent multivesicular endosome biogenesis

    PubMed Central

    Muriel, Olivia; Tomas, Alejandra; Scott, Cameron C.; Gruenberg, Jean

    2016-01-01

    We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively. PMID:27605702

  2. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis

    PubMed Central

    Delevoye, Cédric; Hurbain, Ilse; Tenza, Danièle; Sibarita, Jean-Baptiste; Uzan-Gafsou, Stéphanie; Ohno, Hiroshi; Geerts, Willie J.C.; Verkleij, Arie J.; Salamero, Jean; Marks, Michael S.

    2009-01-01

    Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type–specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1– and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type–specific positioning of endosomes that facilitate endosome–LRO contacts and are required for organelle maturation. PMID:19841138

  3. JAM-A promotes neutrophil chemotaxis by controlling integrin internalization and recycling.

    PubMed

    Cera, Maria Rosaria; Fabbri, Monica; Molendini, Cinzia; Corada, Monica; Orsenigo, Fabrizio; Rehberg, Markus; Reichel, Christoph A; Krombach, Fritz; Pardi, Ruggero; Dejana, Elisabetta

    2009-01-15

    The membrane-associated adhesion molecule JAM-A is required for neutrophil infiltration in inflammatory or ischemic tissues. JAM-A expressed in both endothelial cells and neutrophils has such a role, but the mechanism of action remains elusive. Here we show that JAM-A has a cell-autonomous role in neutrophil chemotaxis both in vivo and in vitro, which is independent of the interaction of neutrophils with endothelial cells. On activated neutrophils, JAM-A concentrates in a polarized fashion at the leading edge and uropod. Surprisingly, a significant amount of this protein is internalized in intracellular endosomal-like vesicles where it codistributes with integrin beta1. Clustering of beta1 integrin leads to JAM-A co-clustering, whereas clustering of JAM-A does not induce integrin association. Neutrophils derived from JAM-A-null mice are unable to correctly internalize beta1 integrins upon chemotactic stimuli and this causes impaired uropod retraction and cell motility. Consistently, inhibition of integrin internalization upon treatment with BAPTA-AM induces a comparable phenotype. These data indicate that JAM-A is required for the correct internalization and recycling of integrins during cell migration and might explain why, in its absence, the directional migration of neutrophils towards an inflammatory stimulus is markedly impaired.

  4. SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes.

    PubMed

    Norris, Anne; Tammineni, Prasad; Wang, Simon; Gerdes, Julianne; Murr, Alexandra; Kwan, Kelvin Y; Cai, Qian; Grant, Barth D

    2017-01-17

    After endocytosis, transmembrane cargo reaches endosomes, where it encounters complexes dedicated to opposing functions: recycling and degradation. Microdomains containing endosomal sorting complexes required for transport (ESCRT)-0 component Hrs [hepatocyte growth factor-regulated tyrosine kinase substrate (HGRS-1) in Caenorhabditis elegans] mediate cargo degradation, concentrating ubiquitinated cargo and organizing the activities of ESCRT. At the same time, retromer associated sorting nexin one (SNX-1) and its binding partner, J-domain protein RME-8, sort cargo away from degradation, promoting cargo recycling to the Golgi. Thus, we hypothesized that there could be important regulatory interactions between retromer and ESCRT that balance degradative and recycling functions. Taking advantage of the naturally large endosomes of the C. elegans coelomocyte, we visualized complementary ESCRT-0 and RME-8/SNX-1 microdomains in vivo and assayed the ability of retromer and ESCRT microdomains to regulate one another. We found in snx-1(0) and rme-8(ts) mutants increased endosomal coverage and intensity of HGRS-1-labeled microdomains, as well as increased total levels of HGRS-1 bound to membranes. These effects are specific to SNX-1 and RME-8, as loss of other retromer components SNX-3 and vacuolar protein sorting-associated protein 35 (VPS-35) did not affect HGRS-1 microdomains. Additionally, knockdown of hgrs-1 had little to no effect on SNX-1 and RME-8 microdomains, suggesting directionality to the interaction. Separation of the functionally distinct ESCRT-0 and SNX-1/RME-8 microdomains was also compromised in the absence of RME-8 and SNX-1, a phenomenon we observed to be conserved, as depletion of Snx1 and Snx2 in HeLa cells also led to greater overlap of Rme-8 and Hrs on endosomes.

  5. Major histocompatibility complex class-II molecules promote targeting of human immunodeficiency virus type 1 virions in late endosomes by enhancing internalization of nascent particles from the plasma membrane

    PubMed Central

    Finzi, Andrés; Perlman, Mira; Bourgeois-Daigneault, Marie-Claude; Thibodeau, Jacques; Cohen, Éric A.

    2014-01-01

    Summary Productive assembly of human immunodeficiency virus type 1 (HIV-1) takes place, primarily, at the plasma membrane. However, depending on the cell types, a significant proportion of nascent virus particles are internalized and routed to late endosomes. We previously reported that expression of human leucocyte antigen (HLA)-DR promoted a redistribution of Gag in late endosomes and an increased detection of mature virions in these compartments in HeLa and human embryonic kidney 293T model cell lines. Although this redistribution of Gag resulted in a marked decrease of HIV-1 release, the underlying mechanism remained undefined. Here, we provide evidence that expression of HLA-DR at the cell surface induces a redistribution of mature Gag products into late endosomes by enhancing nascent HIV-1 particle internalization from the plasma membrane through a process that relies on the presence of intact HLA-DR α and β-chain cytosolic tails. These findings raise the possibility that major histocompatibility complex class-II molecules might influence endocytic events at the plasma membrane and as a result promote endocytosis of progeny HIV-1 particles. PMID:23170932

  6. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease.

    PubMed

    Prasad, Hari; Rao, Rajini

    2015-02-27

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na(+)/H(+) exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na(+)/H(+) ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na(+)/H(+) exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology.

  7. TSSC1 is novel component of the endosomal retrieval machinery

    PubMed Central

    Gershlick, David C.; Schindler, Christina; Chen, Yu; Bonifacino, Juan S.

    2016-01-01

    Endosomes function as a hub for multiple protein-sorting events, including retrograde transport to the trans-Golgi network (TGN) and recycling to the plasma membrane. These processes are mediated by tubular-vesicular carriers that bud from early endosomes and fuse with a corresponding acceptor compartment. Two tethering complexes named GARP (composed of ANG2, VPS52, VPS53, and VPS54 subunits) and EARP (composed of ANG2, VPS52, VPS53, and Syndetin subunits) were previously shown to participate in SNARE-dependent fusion of endosome-derived carriers with the TGN and recycling endosomes, respectively. Little is known, however, about other proteins that function with GARP and EARP in these processes. Here we identify a protein named TSSC1 as a specific interactor of both GARP and EARP and as a novel component of the endosomal retrieval machinery. TSSC1 is a predicted WD40/β-propeller protein that coisolates with both GARP and EARP in affinity purification, immunoprecipitation, and gel filtration analyses. Confocal fluorescence microscopy shows colocalization of TSSC1 with both GARP and EARP. Silencing of TSSC1 impairs transport of internalized Shiga toxin B subunit to the TGN, as well as recycling of internalized transferrin to the plasma membrane. Fluorescence recovery after photobleaching shows that TSSC1 is required for efficient recruitment of GARP to the TGN. These studies thus demonstrate that TSSC1 plays a critical role in endosomal retrieval pathways as a regulator of both GARP and EARP function. PMID:27440922

  8. Transport to Late Endosomes Is Required for Efficient Reovirus Infection

    PubMed Central

    Mainou, Bernardo A.

    2012-01-01

    Rab GTPases play an essential role in vesicular transport by coordinating the movement of various types of cargo from one cellular compartment to another. Individual Rab GTPases are distributed to specific organelles and thus serve as markers for discrete types of endocytic vesicles. Mammalian reovirus binds to cell surface glycans and junctional adhesion molecule-A (JAM-A) and enters cells by receptor-mediated endocytosis in a process dependent on β1 integrin. Within organelles of the endocytic compartment, reovirus undergoes stepwise disassembly catalyzed by cathepsin proteases, which allows the disassembly intermediate to penetrate endosomal membranes and release the transcriptionally active viral core into the cytoplasm. The pathway used by reovirus to traverse the endocytic compartment is largely unknown. In this study, we found that reovirus particles traffic through early, late, and recycling endosomes during cell entry. After attachment to the cell surface, reovirus particles and JAM-A codistribute into each of these compartments. Transfection of cells with constitutively active and dominant-negative Rab GTPases that affect early and late endosome biogenesis and maturation influenced reovirus infectivity. In contrast, reovirus infectivity was not altered in cells expressing mutant Rab GTPases that affect recycling endosomes. Thus, reovirus virions localize to early, late, and recycling endosomes during entry into host cells, but only those that traverse early and late endosomes yield a productive infection. PMID:22674975

  9. Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration.

    PubMed

    Majeed, Sophia R; Vasudevan, Lavanya; Chen, Chih-Ying; Luo, Yi; Torres, Jorge A; Evans, Timothy M; Sharkey, Andrew; Foraker, Amy B; Wong, Nicole M L; Esk, Christopher; Freeman, Theresa A; Moffett, Ashley; Keen, James H; Brodsky, Frances M

    2014-05-23

    The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin-actin interactions needed for recycling by G-clathrin during migration.

  10. Molecular assemblies and membrane domains in multivesicular endosome dynamics

    SciTech Connect

    Falguieres, Thomas; Luyet, Pierre-Philippe; Gruenberg, Jean

    2009-05-15

    Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo 'back-fusion' with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.

  11. The BLOC-1 Subunit Pallidin Facilitates Activity-Dependent Synaptic Vesicle Recycling

    PubMed Central

    Ma, Wenpei; Zhang, Shixing; Paluch, Jeremy; Guo, Wanlin

    2017-01-01

    Abstract Membrane trafficking pathways must be exquisitely coordinated at synaptic terminals to maintain functionality, particularly during conditions of high activity. We have generated null mutations in the Drosophila homolog of pallidin, a central subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), to determine its role in synaptic development and physiology. We find that Pallidin localizes to presynaptic microtubules and cytoskeletal structures, and that the stability of Pallidin protein is highly dependent on the BLOC-1 components Dysbindin and Blos1. We demonstrate that the rapidly recycling vesicle pool is not sustained during high synaptic activity in pallidin mutants, leading to accelerated rundown and slowed recovery. Following intense activity, we observe a loss of early endosomes and a concomitant increase in tubular endosomal structures in synapses without Pallidin. Together, our data reveal that Pallidin subserves a key role in promoting efficient synaptic vesicle recycling and re-formation through early endosomes during sustained activity. PMID:28317021

  12. Multiple routes of protein transport from endosomes to the trans Golgi network

    PubMed Central

    Pfeffer, Suzanne R.

    2009-01-01

    Proteins use multiple routes for transport from endosomes to the Golgi complex. Shiga and cholera toxins and TGN38/46 are routed from early and recycling endosomes, while mannose 6-phosphate receptors are routed from late endosomes. The identification of distinct molecular requirements for each of these pathways makes it clear that mammalian cells have evolved more complex targeting mechanisms and routes than previously anticipated. PMID:19879268

  13. The adaptor protein ARH escorts megalin to and through endosomes.

    PubMed

    Nagai, Masaaki; Meerloo, Timo; Takeda, Tetsuro; Farquhar, Marilyn Gist

    2003-12-01

    Megalin is an endocytic receptor that binds multiple ligands and is essential for many physiological processes such as brain development and uptake of proteins by the kidney tubule, yolk sac, and thyroid. The cytoplasmic tail of megalin contains two FXNPXY motifs. Autosomal recessive hypercholesterolemia (ARH) is an adaptor protein that binds to the FXNPXY motif of the low-density lipoprotein receptor as well as clathrin and AP-2. We found that ARH also binds to the first FXNPXY motif of megalin in two-hybrid, pull-down and coimmunoprecipitation assays. ARH colocalizes with megalin in clathrin coated pits and in recycling endosomes in the Golgi region. When cells are treated with nocodazole, the recycling endosomes containing megalin and ARH disperse. On internalization of megalin, ARH and megalin are first seen in clathrin coated pits followed by sequential localization in early endosomes and tubular recycling endosomes in the pericentriolar region followed by their reappearance at the cell surface. Expression of ARH in Madin-Darby canine kidney cells expressing megalin mini-receptors enhances megalin-mediated uptake of 125I-lactoferrin, a megalin ligand. These results show that ARH facilitates endocytosis of megalin, escorts megalin along its endocytic route and raise the possibility that transport through the endosomal system is selective and requires interaction with specific adaptor proteins.

  14. IL4/PGE{sub 2} induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent

    SciTech Connect

    Wainszelbaum, Marisa J.; Proctor, Brandon M.; Pontow, Suzanne E.; Stahl, Philip D. . E-mail: pstahl@cellbiology.wustl.edu; Barbieri, M. Alejandro

    2006-07-15

    The endosomal compartment and the plasma membrane form a complex partnership that controls signal transduction and trafficking of different molecules. The specificity and functionality of the early endocytic pathway are regulated by a growing number of Rab GTPases, particularly Rab5. In this study, we demonstrate that IL4 (a Th-2 cytokine) and prostaglandin E{sub 2} (PGE{sub 2}) synergistically induce Rab5 and several Rab effector proteins, including Rin1 and EEA1, and promote the formation of an enlarged early endocytic (EEE) compartment. Endosome enlargement is linked to a substantial induction of the mannose receptor (MR), a well-characterized macrophage endocytic receptor. Both MR levels and MR-mediated endocytosis are enhanced approximately 7-fold. Fluid-phase endocytosis is also elevated in treated cells. Light microscopy and fractionation studies reveal that MR colocalizes predominantly with Rab5a and partially with Rab11, an endosomal recycling pathway marker. Using retroviral expression of Rab5a:S34N, a dominant negative mutant, and siRNA Rab5a silencing, we demonstrate that Rab5a is essential for the large endosome phenotype and for localization of MR in these structures. We speculate that the EEE is maintained by activated Rab5, and that the EEE phenotype is part of some macrophage developmental program such as cell fusion, a characteristic of IL4-stimulated cells.

  15. Identification of a Rab GTPase-activating protein cascade that controls recycling of the Rab5 GTPase Vps21 from the vacuole

    PubMed Central

    Rana, Meenakshi; Lachmann, Jens; Ungermann, Christian

    2015-01-01

    Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions. PMID:25971802

  16. Protein Kinase C Activation Promotes α1B-Adrenoceptor Internalization and Late Endosome Trafficking through Rab9 Interaction. Role in Heterologous Desensitization.

    PubMed

    Alfonzo-Méndez, Marco A; Hernández-Espinosa, David A; Carmona-Rosas, Gabriel; Romero-Ávila, M Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J Adolfo

    2017-04-01

    Upon agonist stimulation, α1B-adrenergic receptors couple to Gq proteins, calcium signaling and protein kinase C activation; subsequently, the receptors are phosphorylated, desensitized, and internalized. Internalization seems to involve scaffolding proteins, such as β-arrestin and clathrin. However, the fine mechanisms that participate remain unsolved. The roles of protein kinase C and the small GTPase, Rab9, in α1B-AR vesicular traffic were investigated by studying α1B-adrenergic receptor-Rab protein interactions, using Förster resonance energy transfer (FRET), confocal microscopy, and intracellular calcium quantitation. In human embryonic kidney 293 cells overexpressing Discosoma spp. red fluorescent protein (DsRed)-tagged α1B-ARs and enhanced green fluorescent protein--tagged Rab proteins, pharmacological protein kinase C activation mimicked α1B-AR traffic elicited by nonrelated agents, such as sphingosine 1-phosphate (i.e., transient α1B-AR-Rab5 FRET signal followed by a sustained α1B-AR-Rab9 interaction), suggesting brief receptor localization in early endosomes and transfer to late endosomes. This latter interaction was abrogated by blocking protein kinase C activity, resulting in receptor retention at the plasma membrane. Similar effects were observed when a dominant-negative Rab9 mutant (Rab9-GDP) was employed. When α1B-adrenergic receptors that had been mutated at protein kinase C phosphorylation sites (S396A, S402A) were used, phorbol ester-induced desensitization of the calcium response was markedly decreased; however, interaction with Rab9 was only partially decreased and internalization was observed in response to phorbol esters and sphingosine 1-phosphate. Finally, Rab9-GDP expression did not affect adrenergic-mediated calcium response but abolished receptor traffic and altered desensitization. Data suggest that protein kinase C modulates α1B-adrenergic receptor transfer to late endosomes and that Rab9 regulates this process and

  17. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling.

    PubMed

    McGarvey, Jennifer C; Xiao, Kunhong; Bowman, Shanna L; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W Bruce; Ardura, Juan A; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A; Friedman, Peter A

    2016-05-20

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.

  18. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    PubMed

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease.

  19. Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1.

    PubMed

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-12-09

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling.

  20. Endocytic Sorting and Recycling Require Membrane Phosphatidylserine Asymmetry Maintained by TAT-1/CHAT-1

    PubMed Central

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-01-01

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling. PMID:21170358

  1. Proximity Labeling Reveals Molecular Determinants of FGFR4 Endosomal Transport.

    PubMed

    Haugsten, Ellen Margrethe; Sørensen, Vigdis; Kunova Bosakova, Michaela; de Souza, Gustavo Antonio; Krejci, Pavel; Wiedlocha, Antoni; Wesche, Jørgen

    2016-10-07

    The fibroblast growth factor receptors (FGFRs) are important oncogenes promoting tumor progression in many types of cancer, such as breast, bladder, and lung cancer as well as multiple myeloma and rhabdomyosarcoma. However, little is known about how these receptors are internalized and down-regulated in cells. We have here applied proximity biotin labeling to identify proteins involved in FGFR4 signaling and trafficking. For this purpose we fused a mutated biotin ligase, BirA*, to the C-terminal tail of FGFR4 (FGFR4-BirA*) and the fusion protein was stably expressed in U2OS cells. Upon addition of biotin to these cells, proteins in proximity to the FGFR4-BirA* fusion protein became biotinylated and could be isolated and identified by quantitative mass spectrometry. We identified in total 291 proteins, including 80 proteins that were enriched in samples where the receptor was activated by the ligand (FGF1), among them several proteins previously found to be involved in FGFR signaling (e.g., FRS2, PLCγ, RSK2 and NCK2). Interestingly, many of the identified proteins were implicated in endosomal transport, and by precise annotation we were able to trace the intracellular pathways of activated FGFR4. Validating the data by confocal and three-dimensional structured illumination microscopy analysis, we concluded that FGFR4 uses clathrin-mediated endocytosis for internalization and is further sorted from early endosomes to the recycling compartment and the trans-Golgi network. Depletion of cells for clathrin heavy chain led to accumulation of FGFR4 at the cell surface and increased levels of active FGFR4 and PLCγ, while AKT and ERK signaling was diminished, demonstrating that functional clathrin-mediated endocytosis is required for proper FGFR4 signaling. Thus, this study reveals proteins and pathways involved in FGFR4 transport and signaling that provide possible targets and opportunities for therapeutic intervention in FGFR4 aberrant cancer.

  2. The retromer complex and clathrin define an early endosomal retrograde exit site.

    PubMed

    Popoff, Vincent; Mardones, Gonzalo A; Tenza, Danièle; Rojas, Raúl; Lamaze, Christophe; Bonifacino, Juan S; Raposo, Graça; Johannes, Ludger

    2007-06-15

    Previous studies have indicated a role for clathrin, the clathrin adaptors AP1 and epsinR, and the retromer complex in retrograde sorting from early/recycling endosomes to the trans Golgi network (TGN). However, it has remained unclear whether these protein machineries function on the same or parallel pathways. We show here that clathrin and the retromer subunit Vps26 colocalize at the ultrastructural level on early/recycling endosomes containing Shiga toxin B-subunit, a well-studied retrograde transport cargo. As previously described for clathrin, we find that interfering with Vps26 expression inhibits retrograde transport of the Shiga toxin B-subunit to the TGN. Under these conditions, endosomal tubules that take the Shiga toxin B-subunit out of transferrin-containing early/recycling endosomes appear to be stabilized. This situation differs from that previously described for low-temperature incubation and clathrin-depletion conditions under which Shiga toxin B-subunit labeling was found to overlap with that of the transferrin receptor. In addition, we find that the Shiga toxin B-subunit and the transferrin receptor accumulate close to multivesicular endosomes in clathrin-depleted cells, suggesting that clathrin initiates retrograde sorting on vacuolar early endosomes, and that retromer is then required to process retrograde tubules. Our findings thus establish a role for the retromer complex in retrograde transport of the B-subunit of Shiga toxin, and strongly suggest that clathrin and retromer function in consecutive retrograde sorting steps on early endosomes.

  3. Role of TSPAN9 in Alphavirus Entry and Early Endosomes

    PubMed Central

    Stiles, Katie M.

    2016-01-01

    ABSTRACT Alphaviruses are small enveloped RNA viruses that infect cells via clathrin-mediated endocytosis and low-pH-triggered fusion in the early endosome. Using a small interfering RNA (siRNA) screen in human cells, we previously identified TSPAN9 as a host factor that promotes infection by the alphaviruses Sindbis virus (SINV), Semliki Forest virus (SFV), and chikungunya virus (CHIKV). Depletion of TSPAN9 specifically decreases SFV membrane fusion in endosomes. TSPAN9 is a member of the tetraspanin family of multipass membrane proteins, but its cellular function is currently unknown. Here we used U-2 OS cells stably overexpressing TSPAN9 to show that TSPAN9 is localized at the plasma membrane and in early and late endosomes. Internalized SFV particles colocalized with TSPAN9 in vesicles early during infection. Depletion of TSPAN9 led to reductions in the amounts of the late endosomal proteins LAMP1 and CD63 and an increase in the amount of LAMP2. However, TSPAN9 depletion did not alter the delivery of SFV to early endosomes or change their pH or protease activity. Comparative studies showed that TSPAN9 depletion strongly inhibited infection by several viruses that fuse in early endosomes (SFV, SINV, CHIKV, and vesicular stomatitis virus [VSV]), while viruses that fuse in the late endosome (recombinant VSV-Lassa and VSV-Junin), including an SFV point mutant with a lower pH threshold for fusion (SFV E2 T12I), were relatively resistant. Our data suggest that TSPAN9 modulates the early endosome compartment to make it more permissive for membrane fusion of early-penetrating viruses. IMPORTANCE Alphaviruses are spread by mosquitoes and can cause serious human diseases such as arthritis and encephalitis. Recent outbreaks of CHIKV infection are responsible for millions of cases of acute illness and long-term complications. There are no vaccines or antiviral treatments for these important human pathogens. Alphaviruses infect host cells by utilizing the endocytic

  4. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17

    PubMed Central

    Dombernowsky, Sarah Louise; Samsøe-Petersen, Jacob; Petersen, Camilla Hansson; Instrell, Rachael; Hedegaard, Anne-Mette Bornhardt; Thomas, Laurel; Atkins, Katelyn Mae; Auclair, Sylvain; Albrechtsen, Reidar; Mygind, Kasper Johansen; Fröhlich, Camilla; Howell, Michael; Parker, Peter; Thomas, Gary; Kveiborg, Marie

    2015-01-01

    The metalloproteinase ADAM17 activates ErbB signalling by releasing ligands from the cell surface, a key step underlying epithelial development, growth, and tumour progression. However, mechanisms acutely controlling ADAM17 cell-surface availability to modulate the extent of ErbB ligand release are poorly understood. Here, through a functional genome-wide siRNA screen, we identify the sorting protein PACS-2 as a regulator of ADAM17 trafficking and ErbB signalling. PACS-2 loss reduces ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localizes with ADAM17 on early endosomes and PACS-2 knockdown decreases the recycling and stability of internalized ADAM17. Hence, PACS-2 sustains ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways. Interestingly, Pacs2-deficient mice display significantly reduced levels of phosphorylated EGFR and intestinal proliferation. We suggest that this mechanism controlling ADAM17 cell-surface availability and EGFR signalling may play a role in intestinal homeostasis, with potential implications for cancer biology. PMID:26108729

  5. Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling.

    PubMed

    Uchida, Yasunori; Rutaganira, Florentine U; Jullié, Damien; Shokat, Kevan M; von Zastrow, Mark

    2017-01-01

    G protein-coupled receptors (GPCRs), the largest family of signaling receptors, are critically regulated by endosomal trafficking, suggesting that endosomes might provide new strategies for manipulating GPCR signaling. Here we test this hypothesis by focusing on class III phosphatidylinositol 3-kinase (Vps34), which is an essential regulator of endosomal trafficking. We verify that Vps34 is required for recycling of the β2-adrenoceptor (β2AR), a prototypical GPCR, and then investigate the effects of Vps34 inhibition on the canonical cAMP response elicited by β2AR activation. Vps34 inhibition impairs the ability of cells to recover this response after prolonged activation, which is in accord with the established role of recycling in GPCR resensitization. In addition, Vps34 inhibition also attenuates the short-term cAMP response, and its effect begins several minutes after initial agonist application. These results establish Vps34 as an essential determinant of both short-term and long-term canonical GPCR signaling, and support the potential utility of the endosomal system as a druggable target for signaling.

  6. Retromer-mediated endosomal protein sorting: The role of unstructured domains.

    PubMed

    Mukadam, Aamir S; Seaman, Matthew N J

    2015-09-14

    The retromer complex is a key element of the endosomal protein sorting machinery that is conserved through evolution and has been shown to play a role in diseases such as Alzheimer's disease and Parkinson's disease. Through sorting various membrane proteins (cargo), the function of retromer complex has been linked to physiological processes such as lysosome biogenesis, autophagy, down regulation of signalling receptors and cell spreading. The cargo-selective trimer of retromer recognises membrane proteins and sorts them into two distinct pathways; endosome-to-Golgi retrieval and endosome-to-cell surface recycling and additionally the cargo-selective trimer functions as a hub to recruit accessory proteins to endosomes where they may regulate and/or facilitate retromer-mediated endosomal proteins sorting. Unstructured domains present in cargo proteins or accessory factors play key roles in both these aspects of retromer function and will be discussed in this review.

  7. Conformational biosensors reveal GPCR signalling from endosomes.

    PubMed

    Irannejad, Roshanak; Tomshine, Jin C; Tomshine, Jon R; Chevalier, Michael; Mahoney, Jacob P; Steyaert, Jan; Rasmussen, Søren G F; Sunahara, Roger K; El-Samad, Hana; Huang, Bo; von Zastrow, Mark

    2013-03-28

    A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute to the acute G-protein-mediated response. Evidence supporting these various latter hypotheses is indirect or subject to alternative interpretation, and it remains unknown if endosome-localized GPCRs are even present in an active form. Here we describe the application of conformation-specific single-domain antibodies (nanobodies) to directly probe activation of the β2-adrenoceptor, a prototypical GPCR, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane, and suggest a versatile strategy for probing dynamic conformational change in vivo.

  8. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network.

    PubMed

    Hierro, Aitor; Gershlick, David C; Rojas, Adriana L; Bonifacino, Juan S

    2015-01-01

    Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.

  9. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion

    PubMed Central

    Liu, Kai; Jian, Youli; Sun, Xiaojuan; Yang, Chengkui; Gao, Zhiyang; Zhang, Zhili; Liu, Xuezhao; Li, Yang; Xu, Jing; Jing, Yudong; Mitani, Shohei; He, Sudan

    2016-01-01

    Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion. PMID:26783301

  10. Rubicon controls endosome maturation as a Rab7 effector.

    PubMed

    Sun, Qiming; Westphal, Wiebke; Wong, Kwun Ngok; Tan, Irena; Zhong, Qing

    2010-11-09

    The activation and recruitment of the small GTPase Rab7 to early endosome is a critical step for early to late endosome maturation, a process that requires the class III phosphatidylinositol 3-kinase (PI3KC3) and GTPase regulators. However, the molecular mechanism underlying Rab7 activation and endosome maturation is still poorly defined. Here we report that Rubicon, a component of the PI3KC3 complex, prevents endosome maturation through differential interactions with Rab7 and UVRAG. UVRAG activates PI3KC3 and C-VPS/HOPS, a guanine nucleotide exchange factor that catalyzes the exchange of GDP for GTP on Rab7. We demonstrate that Rubicon sequesters UVRAG from C-VPS/HOPS. Active GTP-bound Rab7 competes for Rubicon binding and releases UVRAG to associate with C-VPS/HOPS, which in turn promotes further loading of Rab7 with GTP. This feed-forward loop ensures rapid amplification of GTP-bound Rab7 and consequent stimulation of endosome maturation. Hence, Rubicon serves as a previously unknown Rab7 effector to ensure the proper progression of the endocytic pathway.

  11. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics

    PubMed Central

    Lönn, Peter; Kacsinta, Apollo D.; Cui, Xian-Shu; Hamil, Alexander S.; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F.

    2016-01-01

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells. PMID:27604151

  12. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    PubMed

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-09-08

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.

  13. Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase

    PubMed Central

    1992-01-01

    Endocytic vesicles that are involved in the vasopressin-stimulated recycling of water channels to and from the apical membrane of kidney collecting duct principal cells were isolated from rat renal papilla by differential and Percoll density gradient centrifugation. Fluorescence quenching measurements showed that the isolated vesicles maintained a high, HgCl2-sensitive water permeability, consistent with the presence of vasopressin-sensitive water channels. They did not, however, exhibit ATP-dependent luminal acidification, nor any N-ethylmaleimide-sensitive ATPase activity, properties that are characteristic of most acidic endosomal compartments. Western blotting with specific antibodies showed that the 31- and 70-kD cytoplasmically oriented subunits of the vacuolar proton pump were not detectable in these apical endosomes from the papilla, whereas they were present in endosomes prepared in parallel from the cortex. In contrast, the 56-kD subunit of the proton pump was abundant in papillary endosomes, and was localized at the apical pole of principal cells by immunocytochemistry. Finally, an antibody that recognizes the 16-kD transmembrane subunit of oat tonoplast ATPase cross-reacted with a distinct 16-kD band in cortical endosomes, but no 16-kD band was detectable in endosomes from the papilla. This antibody also recognized a 16-kD band in affinity- purified H+ ATPase preparations from bovine kidney medulla. Therefore, early endosomes derived from the apical plasma membrane of collecting duct principal cells fail to acidify because they lack functionally important subunits of a vacuolar-type proton pumping ATPase, including the 16-kD transmembrane domain that serves as the proton-conducting channel, and the 70-kD cytoplasmic subunit that contains the ATPase catalytic site. This specialized, non-acidic early endosomal compartment appears to be involved primarily in the hormonally induced recycling of water channels to and from the apical plasma membrane of

  14. Membrane binding sites for plasma lipoproteins on endosomes from rat liver.

    PubMed Central

    Jaeckle, S; Brady, S E; Havel, R J

    1989-01-01

    Highly purified endosomal membranes from rat liver, enriched in receptors for a number of macromolecules taken up into hepatocytes via the coated pit/endosome/lysosome pathway [including the receptor for low density lipoproteins (LDL)], were used to characterize binding sites for lipoproteins containing apolipoprotein E. In endosomal membranes from livers of estradiol-treated rats, in which LDL receptors are induced manyfold, two high-affinity binding sites were found for two apolipoprotein E-rich lipoproteins: very low density beta-lipoproteins (beta-VLDL) from cholesterol-fed rabbits and rat chylomicron remnants. One of these sites, binding to which is inhibited by 30 mM EDTA, appears identical to the LDL receptor by ligand and immunoblotting and other characteristics. The other site, highly resistant to EDTA, does not bind LDL. Binding to the EDTA-resistant site, however, is readily inhibited by heparin (as is the LDL receptor) and also by antisera prepared against rat or bovine LDL receptor. The distribution of the EDTA-resistant site among early endosomes, late endosomes, and endosome-derived receptor-recycling membranes is similar to that of the LDL receptor and other recycling receptors. The LDL receptor was present in endosomal membranes from livers of untreated rats at about 10% of the level found in membranes from estradiol-treated rats, but the EDTA-resistant site was barely detectable. No saturable binding of beta-VLDL that could not be inhibited by antisera to the LDL receptor could be detected in endosomal membranes from livers of either untreated or estradiol-treated rats. The EDTA-resistant site may be a modified form of the LDL receptor that recognizes apolipoprotein E but not the B apolipoprotein of LDL. Alternatively, it may be a distinct receptor sharing immunological determinants with the LDL receptor, specialized for the endocytosis of certain lipoproteins containing apolipoprotein E, including chylomicron remnants. Images PMID:2538819

  15. The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling

    PubMed Central

    Rüegger, Stefan; Miki, Takashi S.; Hess, Daniel; Großhans, Helge

    2015-01-01

    The spliceosome is a large molecular machine that serves to remove the intervening sequences that are present in most eukaryotic pre-mRNAs. At its core are five small nuclear ribonucleoprotein complexes, the U1, U2, U4, U5 and U6 snRNPs, which undergo dynamic rearrangements during splicing. Their reutilization for subsequent rounds of splicing requires reversion to their original configurations, but little is known about this process. Here, we show that ZK863.4/USIP-1 (U Six snRNA-Interacting Protein-1) is a ribonucleotidyl transferase that promotes accumulation of the Caenorhabditis elegans U6 snRNA. Endogenous USIP-1–U6 snRNA complexes lack the Lsm proteins that constitute the protein core of the U6 snRNP, but contain the U6 snRNP recycling factor SART3/B0035.12. Furthermore, co-immunoprecipitation experiments suggest that SART3 but not USIP-1 occurs also in a separate complex containing both the U4 and U6 snRNPs. Based on this evidence, genetic interaction between usip-1 and sart-3, and the apparent dissociation of Lsm proteins from the U6 snRNA during spliceosome activation, we propose that USIP-1 functions upstream of SART3 to promote U6 snRNA recycling. PMID:25753661

  16. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane

    PubMed Central

    Lauffer, Benjamin E.L.; Melero, Cristina; Temkin, Paul; Lei, Cai; Hong, Wanjin; Kortemme, Tanja

    2010-01-01

    Postsynaptic density 95/discs large/zonus occludens-1 (PDZ) domain–interacting motifs, in addition to their well-established roles in protein scaffolding at the cell surface, are proposed to act as cis-acting determinants directing the molecular sorting of transmembrane cargo from endosomes to the plasma membrane. This hypothesis requires the existence of a specific trans-acting PDZ protein that mediates the proposed sorting operation in the endosome membrane. Here, we show that sorting nexin 27 (SNX27) is required for efficient PDZ-directed recycling of the β2-adrenoreceptor (β2AR) from early endosomes. SNX27 mediates this sorting function when expressed at endogenous levels, and its recycling activity requires both PDZ domain–dependent recognition of the β2AR cytoplasmic tail and Phox homology (PX) domain–dependent association with the endosome membrane. These results identify a discrete role of SNX27 in PDZ-directed recycling of a physiologically important signaling receptor, and extend the concept of cargo-specific molecular sorting in the recycling pathway. PMID:20733053

  17. The Arf6 GTPase-activating Proteins ARAP2 and ACAP1 Define Distinct Endosomal Compartments That Regulate Integrin α5β1 Traffic*

    PubMed Central

    Chen, Pei-Wen; Luo, Ruibai; Jian, Xiaoying; Randazzo, Paul A.

    2014-01-01

    Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs. PMID:25225293

  18. A proteomic approach to identify endosomal cargoes controlling cancer invasiveness

    PubMed Central

    Diaz-Vera, Jesica; Palmer, Sarah; Hernandez-Fernaud, Juan Ramon; Dornier, Emmanuel; Mitchell, Louise E.; Macpherson, Iain; Edwards, Joanne; Zanivan, Sara

    2017-01-01

    ABSTRACT We have previously shown that Rab17, a small GTPase associated with epithelial polarity, is specifically suppressed by ERK2 (also known as MAPK1) signalling to promote an invasive phenotype. However, the mechanisms through which Rab17 loss permits invasiveness, and the endosomal cargoes that are responsible for mediating this, are unknown. Using quantitative mass spectrometry-based proteomics, we have found that knockdown of Rab17 leads to a highly selective reduction in the cellular levels of a v-SNARE (Vamp8). Moreover, proteomics and immunofluorescence indicate that Vamp8 is associated with Rab17 at late endosomes. Reduced levels of Vamp8 promote transition between ductal carcinoma in situ (DCIS) and a more invasive phenotype. We developed an unbiased proteomic approach to elucidate the complement of receptors that redistributes between endosomes and the plasma membrane, and have pin-pointed neuropilin-2 (NRP2) as a key pro-invasive cargo of Rab17- and Vamp8-regulated trafficking. Indeed, reduced Rab17 or Vamp8 levels lead to increased mobilisation of NRP2-containing late endosomes and upregulated cell surface expression of NRP2. Finally, we show that NRP2 is required for the basement membrane disruption that accompanies the transition between DCIS and a more invasive phenotype. PMID:28062852

  19. The phosphatase of regenerating liver 3 (PRL-3) promotes cell migration through Arf-activity-dependent stimulation of integrin α5 recycling.

    PubMed

    Krndija, Denis; Münzberg, Christin; Maass, Ulrike; Hafner, Margit; Adler, Guido; Kestler, Hans A; Seufferlein, Thomas; Oswald, Franz; von Wichert, Götz

    2012-08-15

    The formation of metastasis is one of the most critical problems in oncology. The phosphatase of regenerating liver 3 (PRL-3) is a new target in colorectal cancer, mediating metastatic behavior through a promigratory function. However, detailed explanations for this effect have remained elusive. Here we show that PRL-3 interacts with the ADP-ribosylation factor 1 (Arf1). PRL-3 colocalizes with Arf1 in an endosomal compartment and associates with transmembrane proteins such as the transferrin receptor and α5 integrins. PRL-3 interacts with Arf1 through a distinct motif and regulates activation of Arf1. PRL-3-mediated migration depends on expression and activation of Arf1 and is sensitive to treatment with Brefeldin A. We also demonstrate that PRL-3 modulates recycling of α5 integrins and that its phosphatase activity as well as Arf activation and compartmentalization with Arf1 are required for this effect. In summary our data identify a new function for PRL-3 and show that Arf1 is a new PRL-3-dependent mediator of enhanced migration of cancer cells through enhanced recycling of matrix receptors.

  20. Development of the consumption behavior that promotes sustainable society: Focusing on recycling of small waste home appliances

    NASA Astrophysics Data System (ADS)

    Ichinose, Takae

    2015-04-01

    Hiroshima University High School (HUHS) became the first UNESCO Associated School in Japan in 1953, and since then it has practiced ESD in various educational activities in all ranges of education. As a teacher of home economics, I have focused on consumer affairs and encouraged my students to consider what each of them can do as an individual consumer in order to create a sustainable society. In Japan, several acts related to consumer affairs have been enforced in recent years. "Act on Promotion of Consumer Education" was enforced in December 2012, and construction of the "Consumer Citizen Society" was proposed. It places emphasis not only on environmental concerns but also on the initiative of consumers and its influence on social and economic trends. In addition, "Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment" was enforced in April, 2013. It aims at protecting living environment and healthy development of the national economy by appropriate treatment of waste materials and effective use of resources. For my lessons on "food, clothing and shelter in relation to consumption behavior and environmental problems", I took up "the recycling of small waste home appliances" as the teaching materials to raise awareness on resources recycling. The purpose of the lessons is three-fold: (1) to make students aware of environmental load; (2) to deepen the understanding of the influence which excessive consumption has on developing countries; (3) to encourage the students to think positively toward the solution of the problems. I am currently practicing the lessons, and I have shown below the summary of the instruction. Lesson 1: Give a quiz based on the database on environmental label from Ministry of the Environment website. Then show a film on whereabouts of the hi-tech industrial waste (e-waste). After the film, show some everyday products for which mineral resources are used in order to impress the idea of "urban mine". Lesson 2: Show a

  1. Hook1, microtubules, and Rab22: mediators of selective sorting of clathrin-independent endocytic cargo proteins on endosomes.

    PubMed

    Maldonado-Báez, Lymarie; Donaldson, Julie G

    2013-01-01

    Clathrin-independent endocytosis (CIE) mediates the internalization of many plasma membrane (PM) proteins involved in homeostasis, immune response, and signaling. CIE cargo molecules are internalized independent of clathrin, and dynamin, and modulated by the small G protein Arf6. After internalization the CIE cargo proteins either follow a default pathway of trafficking to lysosomes for degradation or follow a pathway where they are routed directly to the recycling endosomes for return to the PM. The selective endosomal sorting of molecules like CD44, CD98, and CD147, which are involved in cell-cell and cell-extracellular interactions, indicates that sorting mechanisms dictate the post-endocytic fate of CIE cargo proteins. In a recent study, we identified sorting signals that specify the endosomal trafficking of CIE cargo proteins and uncover a role for Hook1 as an endosomal cargo adaptor that routes CIE cargo to the recycling endosomes. Furthermore, we found that Hook1, microtubules, and Rab22a work in coordination to directly recycle the cargo and facilitate cell spreading. Here, we discuss our current view on the endosomal sorting of CIE cargo proteins and their molecular regulators.

  2. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  3. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  4. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport.

    PubMed

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-09-01

    The importance of endosome-to-trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51-VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport.

  5. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    PubMed Central

    Repella, Tana L.; Ho, Mengfei; Chong, Tracy P. M.; Bannai, Yuka; Wilson, Brenda A.

    2011-01-01

    The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity. PMID:22053287

  6. Arf6-dependent intracellular trafficking of Pasteurella multocida toxin and pH-dependent translocation from late endosomes.

    PubMed

    Repella, Tana L; Ho, Mengfei; Chong, Tracy P M; Bannai, Yuka; Wilson, Brenda A

    2011-03-01

    The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH(4)Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.

  7. OCRL controls trafficking through early endosomes via PtdIns4,5P2-dependent regulation of endosomal actin

    PubMed Central

    Vicinanza, Mariella; Di Campli, Antonella; Polishchuk, Elena; Santoro, Michele; Di Tullio, Giuseppe; Godi, Anna; Levtchenko, Elena; De Leo, Maria Giovanna; Polishchuk, Roman; Sandoval, Lisette; Marzolo, Maria-Paz; De Matteis, Maria Antonietta

    2011-01-01

    Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P2 in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P2 and F-actin at the EEs is essential for exporting cargoes that transit this compartment. PMID:21971085

  8. Bicaudal-D binds clathrin heavy chain to promote its transport and augments synaptic vesicle recycling

    PubMed Central

    Li, Xuan; Kuromi, Hiroshi; Briggs, Laura; Green, David B; Rocha, João J; Sweeney, Sean T; Bullock, Simon L

    2010-01-01

    Cargo transport by microtubule-based motors is essential for cell organisation and function. The Bicaudal-D (BicD) protein participates in the transport of a subset of cargoes by the minus-end-directed motor dynein, although the full extent of its functions is unclear. In this study, we report that in Drosophila zygotic BicD function is only obligatory in the nervous system. Clathrin heavy chain (Chc), a major constituent of coated pits and vesicles, is the most abundant protein co-precipitated with BicD from head extracts. BicD binds Chc directly and interacts genetically with components of the pathway for clathrin-mediated membrane trafficking. Directed transport and subcellular localisation of Chc is strongly perturbed in BicD mutant presynaptic boutons. Functional assays show that BicD and dynein are essential for the maintenance of normal levels of neurotransmission specifically during high-frequency electrical stimulation and that this is associated with a reduced rate of recycling of internalised synaptic membrane. Our results implicate BicD as a new player in clathrin-associated trafficking processes and show a novel requirement for microtubule-based motor transport in the synaptic vesicle cycle. PMID:20111007

  9. GPCR sorting at multivesicular endosomes.

    PubMed

    Dores, Michael Robert; Trejo, JoAnn

    2015-01-01

    The lysosomal degradation of G protein-coupled receptors (GPCRs) is essential for receptor signaling and down regulation. Once internalized, GPCRs are sorted within the endocytic pathway and packaged into intraluminal vesicles (ILVs) that bud inward to form the multivesicular endosome (MVE). The mechanisms that control GPCR sorting and ILV formation are poorly understood. Quantitative strategies are important for evaluating the function of adaptor and scaffold proteins that regulate sorting of GPCRs at MVEs. In this chapter, we outline two strategies for the quantification and visualization of GPCR sorting into the lumen of MVEs. The first protocol utilizes a biochemical approach to assay the sorting of GPCRs in a population of cells, whereas the second strategy examines GPCR sorting in individual cells using immunofluorescence confocal microscopy. Combined, these assays can be used to establish the kinetics of activated GPCR lysosomal trafficking in response to specific ligands, as well as evaluate the contribution of endosomal adaptors to GPCR sorting at MVEs. The protocols presented in this chapter can be adapted to analyze GPCR sorting in a myriad of cell types and tissues, and expanded to analyze the mechanisms that regulate MVE sorting of other cargoes.

  10. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  11. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells

    PubMed Central

    Perez Bay, Andres E.; Schreiner, Ryan; Benedicto, Ignacio; Paz Marzolo, Maria; Banfelder, Jason; Weinstein, Alan M.; Rodriguez-Boulan, Enrique J.

    2016-01-01

    The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station. PMID:27180806

  12. Endosomal Trafficking of Nanoformulated Antiretroviral Therapy Facilitates Drug Particle Carriage and HIV Clearance

    PubMed Central

    Guo, Dongwei; Zhang, Gang; Wysocki, Tadeusz A.; Wysocki, Beata J.; Gelbard, Harris A.; Liu, Xin-Ming; McMillan, JoEllyn M.

    2014-01-01

    ABSTRACT Limitations of antiretroviral therapy (ART) include poor patient adherence, drug toxicities, viral resistance, and failure to penetrate viral reservoirs. Recent developments in nanoformulated ART (nanoART) could overcome such limitations. To this end, we now report a novel effect of nanoART that facilitates drug depots within intracellular compartments at or adjacent to the sites of the viral replication cycle. Poloxamer 407-coated nanocrystals containing the protease inhibitor atazanavir (ATV) were prepared by high-pressure homogenization. These drug particles readily accumulated in human monocyte-derived macrophages (MDM). NanoATV concentrations were ∼1,000 times higher in cells than those that could be achieved by the native drug. ATV particles in late and recycling endosome compartments were seen following pulldown by immunoaffinity chromatography with Rab-specific antibodies conjugated to magnetic beads. Confocal microscopy provided cross validation by immunofluorescent staining of the compartments. Mathematical modeling validated drug-endosomal interactions. Measures of reverse transcriptase activity and HIV-1 p24 levels in culture media and cells showed that such endosomal drug concentrations enhanced antiviral responses up to 1,000-fold. We conclude that late and recycling endosomes can serve as depots for nanoATV. The colocalization of nanoATV at endosomal sites of viral assembly and its slow release sped antiretroviral activities. Long-acting nanoART can serve as a drug carrier in both cells and subcellular compartments and, as such, can facilitate viral clearance. IMPORTANCE The need for long-acting ART is significant and highlighted by limitations in drug access, toxicity, adherence, and reservoir penetrance. We propose that targeting nanoformulated drugs to infected tissues, cells, and subcellular sites of viral replication may improve clinical outcomes. Endosomes are sites for human immunodeficiency virus assembly, and increasing ART

  13. Endosome-lysosomes and neurodegeneration.

    PubMed

    Mayer, R J; Tipler, C; Laszlo, L; Arnold, J; Lowe, J; Landon, M

    1994-01-01

    A number of the major human and animal neurodegenerative diseases, such as Alzheimer's disease and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins. Although our knowledge concerning these diseases is increasing, they remain largely untreatable. Recently, attention has focussed on the mechanisms of production of different types of amyloid and the likely involvement within cells of acid compartments called endosome-lysosomes. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials. These subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Common features of the disease processes give new direction to therapeutic intervention.

  14. A novel choline cotransporter sequestration compartment in cholinergic neurons revealed by selective endosomal ablation.

    PubMed

    Ivy, Michael T; Newkirk, Robert F; Wang, Yilun; Townsel, James G

    2010-03-01

    The sodium-dependent, high affinity choline transporter - choline cotransporter - (ChCoT, aka: cho-1, CHT1, CHT) undergoes constitutive and regulated trafficking between the plasma membrane and cytoplasmic compartments. The pathways and regulatory mechanisms of this trafficking are not well understood. We report herein studies involving selective endosomal ablation to further our understanding of the trafficking of the ChCoT. Selective ablation of early sorting and recycling endosomes resulted in a decrease of approximately 75% of [3H]choline uptake and approximately 70% of [3H]hemicholinium-3 binding. Western blot analysis showed that ablation produced a similar decrease in ChCoTs in the plasma membrane subcellular fraction. The time frame for this loss was approximately 2 h which has been shown to be the constitutive cycling time for ChCoTs in this tissue. Ablation appears to be dependent on the intracellular cycling of transferrin-conjugated horseradish peroxidase and the selective deposition of transferrin-conjugated horseradish peroxidase in early endosomes, both sorting and recycling. Ablated brain slices retained their capacity to recruit via regulated trafficking ChCoTs to the plasma membrane. This recruitment of ChCoTs suggests that the recruitable compartment is distinct from the early endosomes. It will be necessary to do further studies to identify the novel sequestration compartment supportive of the ChCoT regulated trafficking.

  15. Endoplasmic reticulum–endosome contact increases as endosomes traffic and mature

    PubMed Central

    Friedman, Jonathan R.; DiBenedetto, Jared R.; West, Matthew; Rowland, Ashley A.; Voeltz, Gia K.

    2013-01-01

    The endosomal pathway is responsible for plasma membrane cargo uptake, sorting, and, in many cases, lysosome targeting. Endosome maturation is complex, requiring proper spatiotemporal recruitment of factors that regulate the size, maturity, and positioning of endosomal compartments. In animal cells, it also requires trafficking of endosomes on microtubules. Recent work has revealed the presence of contact sites between some endosomes and the endoplasmic reticulum (ER). Although these contact sites are believed to have multiple functions, the frequency, dynamics, and physical attributes of these contacts are poorly understood. Here we use high-resolution three-dimensional electron microscopy to reveal that ER tubules wrap around endosomes and find that both organelles contact microtubules at or near membrane contact sites. As endosomes traffic, they remain bound to the ER, which causes the tubular ER to rearrange its structure around dynamic endosomes at contact sites. Finally, as endosomes transition through steps of maturation, they become more tightly associated with the ER. The major implication of these results is that endosomes mature and traffic while coupled to the ER membrane rather than in isolation. PMID:23389631

  16. They're plastic, but they recycle.

    PubMed

    Halpain, Shelley

    2006-12-07

    Dendritic spines form and grow during hippocampal long-term potentiation (LTP). In this issue of Neuron, a new study by Park et al. uses both serial reconstruction electron microscopy and time-lapse imaging to show that plasma membrane for such spine expansion is trafficked from recycling endosomes that reside locally at the spines themselves.

  17. Cytoplasmic dynein and early endosome transport

    PubMed Central

    Xiang, Xin; Qiu, Rongde; Yao, Xuanli; Arst, Herbert N.; Peñalva, Miguel A.; Zhang, Jun

    2015-01-01

    Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction depends on FHIP and FTS. PMID:26001903

  18. Class III phosphoinositide 3-kinase/VPS34 and dynamin are critical for apical endocytic recycling.

    PubMed

    Carpentier, Sarah; N'Kuli, Francisca; Grieco, Giuseppina; Van Der Smissen, Patrick; Janssens, Virginie; Emonard, Hervé; Bilanges, Benoît; Vanhaesebroeck, Bart; Gaide Chevronnay, Héloïse P; Pierreux, Christophe E; Tyteca, Donatienne; Courtoy, Pierre J

    2013-08-01

    Recycling is a limiting step for receptor-mediated endocytosis. We first report three in vitro or in vivo evidences that class III PI3K/VPS34 is the key PI3K isoform regulating apical recycling. A substractive approach, comparing in Opossum Kidney (OK) cells a pan-class I/II/III PI3K inhibitor (LY294002) with a class I/II PI3K inhibitor (ZSTK474), suggested that class III PI3K/VPS34 inhibition induced selective apical endosome swelling and sequestration of the endocytic receptor, megalin/LRP-2, causing surface down-regulation. GFP-(FYVE)x2 overexpression to sequester PI(3)P caused undistinguishable apical endosome swelling. In mouse kidney proximal tubular cells, conditional Vps34 inactivation also led to vacuolation and intracellular megalin redistribution. We next report that removal of LY294002 from LY294002-treated OK cells induced a spectacular burst of recycling tubules and restoration of megalin surface pool. Acute triggering of recycling tubules revealed recruitment of dynamin-GFP and dependence of dynamin-GTPase, guidance directionality by microtubules, and suggested that a microfilamentous net constrained endosomal swelling. We conclude that (i) besides its role in endosome fusion, PI3K-III is essential for endosome fission/recycling; and (ii) besides its role in endocytic entry, dynamin also supports tubulation of recycling endosomes. The unleashing of recycling upon acute reversal of PI3K inhibition may help study its dynamics and associated machineries.

  19. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway

    PubMed Central

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-01-01

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation. PMID:27411398

  20. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway.

    PubMed

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-07-14

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5(GTP)-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation.

  1. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    PubMed

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-03-22

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  2. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus

    SciTech Connect

    Mesa, Rosana; Magadan, Javier; Barbieri, Alejandro; Lopez, Cecilia; Stahl, Philip D.; Mayorga, Luis S. . E-mail: lmayorga@fcm.uncu.edu.ar

    2005-04-01

    The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN)

  3. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells.

    PubMed

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A

    2015-08-18

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.

  4. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions

    PubMed Central

    Hong, Nan Hyung; Qi, Aidong

    2015-01-01

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691

  5. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling.

    PubMed

    Bai, Zhiyong; Grant, Barth D

    2015-03-24

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.

  6. Opposing Activities of the Snx3-Retromer Complex and ESCRT Proteins Mediate Regulated Cargo Sorting at a Common Endosome

    PubMed Central

    Strochlic, Todd I.; Schmiedekamp, Briana C.; Lee, Jacqueline; Katzmann, David J.

    2008-01-01

    Endocytosed proteins are either delivered to the lysosome to be degraded or are exported from the endosomal system and delivered to other organelles. Sorting of the Saccharomyces cerevisiae reductive iron transporter, composed of the Fet3 and Ftr1 proteins, in the endosomal system is regulated by available iron; in iron-starved cells, Fet3-Ftr1 is sorted by Snx3/Grd19 and retromer into a recycling pathway that delivers it back to the plasma membrane, but when starved cells are exposed to iron, Fet3-Ftr1 is targeted to the lysosome-like vacuole and is degraded. We report that iron-induced endocytosis of Fet3-Ftr1 is independent of Fet3-Ftr1 ubiquitylation, and after endocytosis, degradation of Fet3-Ftr1 is mediated by the multivesicular body (MVB) sorting pathway. In mutant cells lacking any component of the ESCRT protein-dependent MVB sorting machinery, the Rsp5 ubiquitin ligase, or in wild-type cells expressing Fet3-Ftr1 lacking cytosolic lysyl ubiquitin acceptor sites, Fet3-Ftr1 is constitutively sorted into the recycling pathway independent of iron status. In the presence and absence of iron, Fet3-Ftr1 transits an endosomal compartment where a subunit of the MVB sorting receptor (Vps27), Snx3/Grd19, and retromer proteins colocalize. We propose that this endosome is where Rsp5 ubiquitylates Fet3-Ftr1 and where the recycling and degradative pathways diverge. PMID:18768754

  7. Density-Dependent Recycling Promotes the Long-Term Survival of Bacterial Populations during Periods of Starvation

    PubMed Central

    Takano, Sotaro; Pawlowska, Bogna J.; Gudelj, Ivana

    2017-01-01

    ABSTRACT The amount of natural resources in the Earth’s environment is in flux, which can trigger catastrophic collapses of ecosystems. How populations survive under nutrient-poor conditions is a central question in ecology. Curiously, some bacteria persist for a long time in nutrient-poor environments. Although this survival may be accomplished through cell death and the recycling of dead cells, the importance of these processes and the mechanisms underlying the survival of the populations have not been quantitated. Here, we use microbial laboratory experiments and mathematical models to demonstrate that death and recycling are essential activities for the maintenance of cell survival. We also show that the behavior of the survivors is governed by population density feedback, wherein growth is limited not only by the available resources but also by the population density. The numerical simulations suggest that population density-dependent recycling could be an advantageous behavior under starvation conditions. PMID:28174316

  8. Neuropilin-2 Regulates Endosome Maturation and EGFR Trafficking to Support Cancer Cell Pathobiology.

    PubMed

    Dutta, Samikshan; Roy, Sohini; Polavaram, Navatha S; Stanton, Marissa J; Zhang, Heyu; Bhola, Tanvi; Hönscheid, Pia; Donohue, Terrence M; Band, Hamid; Batra, Surinder K; Muders, Michael H; Datta, Kaustubh

    2016-01-15

    Neuropilin-2 (NRP2) is a non-tyrosine kinase receptor frequently overexpressed in various malignancies, where it has been implicated in promoting many protumorigenic behaviors, such as imparting therapeutic resistance to metastatic cancer cells. Here, we report a novel function of NRP2 as a regulator of endocytosis, which is enhanced in cancer cells and is often associated with increased metastatic potential and drug resistance. We found that NRP2 depletion in human prostate and pancreatic cancer cells resulted in the accumulation of EEA1/Rab5-positive early endosomes concomitant with a decrease in Rab7-positive late endosomes, suggesting a delay in early-to-late endosome maturation. NRP2 depletion also impaired the endocytic transport of cell surface EGFR, arresting functionally active EGFR in endocytic vesicles that consequently led to aberrant ERK activation and cell death. Mechanistic investigations revealed that WD-repeat- and FYVE-domain-containing protein 1 (WDFY1) functioned downstream of NRP2 to promote endosome maturation, thereby influencing the endosomal trafficking of EGFR and the formation of autolysosomes responsible for the degradation of internalized cargo. Overall, our results indicate that the NRP2/WDFY1 axis is required for maintaining endocytic activity in cancer cells, which supports their oncogenic activities and confers drug resistance. Therefore, therapeutically targeting endocytosis may represent an attractive strategy to selectively target cancer cells in multiple malignancies.

  9. Neuropilin-2 Regulates Endosome Maturation and EGFR trafficking to Support Cancer Cell Pathobiology

    PubMed Central

    Dutta, Samikshan; Roy, Sohini; Polavaram, Navatha Shree; Stanton, Marissa J.; Zhang, Heyu; Bhola, Tanvi; Hönscheid, Pia; Donohue, Terrence M.; Band, Hamid; Batra, Surinder K.; Muders, Michael H.; Datta, Kaustubh

    2015-01-01

    Neuropilin-2 (NRP2) is a non-tyrosine kinase receptor frequently overexpressed in various malignancies where it has been implicated in promoting many protumorigenic behaviors, such as imparting therapeutic resistance to metastatic cancer cells. Here, we report a novel function of NRP2 as a regulator of endocytosis, which is enhanced in cancer cells and is often associated with increased metastatic potential and drug resistance. We found that NRP2 depletion in human prostate and pancreatic cancer cells resulted in the accumulation of EEA1/Rab5-positive early endosomes concomitant with a decrease in Rab7-positive late endosomes, suggesting a delay in early-to-late endosome maturation. NRP2 depletion also impaired the endocytic transport of cell surface epidermal growth factor receptor (EGFR), arresting functionally active EGFR in endocytic vesicles that consequently led to aberrant ERK activation and cell death. Mechanistic investigations revealed that WD-repeat and FYVE-domain-containing protein 1 (WDFY1) functioned downstream of NRP2 to promote endosome maturation, thereby influencing the endosomal trafficking of EGFR and the formation of autolysosomes responsible for the degradation of internalized cargo. Overall, our results indicate that the NRP2/WDFY1 axis is required for maintaining endocytic activity in cancer cells, which supports their oncogenic activities and confers drug resistance. Therefore, therapeutically targeting endocytosis may represent an attractive strategy to selectively target cancer cells in multiple malignancies. PMID:26560516

  10. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.

    PubMed

    Wang, Chensu; Zhao, Tian; Li, Yang; Huang, Gang; White, Michael A; Gao, Jinming

    2016-09-06

    Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH4Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes.

  11. Measuring interactions of FERM domain-containing sorting Nexin proteins with endosomal lipids and cargo molecules.

    PubMed

    Ghai, Rajesh; Mobli, Mehdi; Collins, Brett M

    2014-01-01

    Endosomal recycling pathways regulate cellular homeostasis via the transport of internalized material back to the plasma membrane. Phox homology (PX) and band 4.1/ezrin/radixin/moesin (FERM) domain-containing proteins are a recently identified subfamily of PX proteins that are critical for the recycling of numerous transmembrane cargo molecules. The PX-FERM subfamily includes three endosome-associated proteins called sorting nexin (SNX) 17, SNX27, and SNX31. These are modular peripheral membrane proteins that act as central scaffolds mediating protein-lipid interactions, cargo binding, and regulatory protein recruitment. This chapter outlines the methodology employed to classify the PX-FERM family using combined bioinformatics and structure prediction tools. It further details the application of isothermal titration calorimetry and nuclear magnetic resonance spectroscopy to understand the mechanisms that underpin their endosomal membrane recruitment and subsequent recognition of NPxY/NxxY peptide sorting motifs, present in many cargo receptors and required for their trafficking. It is now increasingly recognized that the formation of a stable trafficking complex is dictated by a multitude of coordinated protein-protein and protein-lipid interactions, and the approaches highlighted here will be useful for future studies aimed at understanding these biomolecular interactions in greater detail.

  12. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes.

    PubMed

    Saint-Pol, Agnès; Yélamos, Belén; Amessou, Mohamed; Mills, Ian G; Dugast, Marc; Tenza, Danièle; Schu, Peter; Antony, Claude; McMahon, Harvey T; Lamaze, Christophe; Johannes, Ludger

    2004-04-01

    Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.

  13. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    PubMed

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  14. Factors influencing households' participation in recycling.

    PubMed

    Vicente, Paula; Reis, Elizabeth

    2008-04-01

    The success of a recycling programme depends on the active and sustained participation of citizens in the correct separation and collection of recyclable waste. An effective study of strategies aimed at augmenting people's involvement in recycling involves understanding which factors influence the decision to co-operate with a recycling programme. This research investigates the influence of attitudes, incentives, presence of children in household and information through direct media, on households' participation in recycling. The results suggest that positive attitudes toward recycling and information are important factors in explaining recycling participation. Some guidelines that may be considered in future communication and intervention strategies designed to promote recycling participation are discussed.

  15. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex.

    PubMed

    Jacquemet, Guillaume; Green, David M; Bridgewater, Rebecca E; von Kriegsheim, Alexander; Humphries, Martin J; Norman, Jim C; Caswell, Patrick T

    2013-09-16

    Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.

  16. Clathrin and AP1B: Key roles in basolateral trafficking through trans-endosomal routes

    PubMed Central

    Gonzalez, Alfonso; Rodriguez-Boulan, Enrique

    2013-01-01

    Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered. PMID:19854182

  17. Association of myosin I alpha with endosomes and lysosomes in mammalian cells.

    PubMed

    Raposo, G; Cordonnier, M N; Tenza, D; Menichi, B; Dürrbach, A; Louvard, D; Coudrier, E

    1999-05-01

    Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIalpha) is associated with endosomes and lysosomes. We show that the overproduction of MMIalpha or the production of nonfunctional truncated MMIalpha affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIalpha, promote the dissociation of MMIalpha from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIalpha might therefore be involved in membrane trafficking occurring between endosomes and lysosomes.

  18. Association of Myosin I Alpha with Endosomes and Lysosomes in Mammalian Cells

    PubMed Central

    Raposo, Graça; Cordonnier, Marie-Neige; Tenza, Danièle; Menichi, Bernadette; Dürrbach, Antoine; Louvard, Daniel; Coudrier, Evelyne

    1999-01-01

    Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIα) is associated with endosomes and lysosomes. We show that the overproduction of MMIα or the production of nonfunctional truncated MMIα affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIα, promote the dissociation of MMIα from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIα might therefore be involved in membrane trafficking occurring between endosomes and lysosomes. PMID:10233157

  19. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection.

    PubMed

    Cervia, Lisa D; Chang, Chun-Chi; Wang, Liangli; Yuan, Fan

    2017-01-01

    A recent theory suggests that endocytosis is involved in uptake and intracellular transport of electrotransfected plasmid DNA (pDNA). The goal of the current study was to understand if approaches used previously to improve endocytosis of gene delivery vectors could be applied to enhancing electrotransfection efficiency (eTE). Results from the study showed that photochemically induced endosomal escape, which could increase poly-L-lysine (PLL)-mediated gene delivery, decreased eTE. The decrease could not be blocked by treatment of cells with endonuclease inhibitors (aurintricarboxylic acid and zinc ion) or antioxidants (L-glutamine and ascorbic acid). Chemical treatment of cells with an endosomal trafficking inhibitor that blocks endosome progression, bafilomycin A1, resulted in a significant decrease in eTE. However, treatment of cells with lysosomotropic agents (chloroquine and ammonium chloride) had little effects on eTE. These data suggested that endosomes played important roles in protecting and intracellular trafficking of electrotransfected pDNA.

  20. dAcsl, the Drosophila ortholog of acyl-CoA synthetase long-chain family member 3 and 4, inhibits synapse growth by attenuating bone morphogenetic protein signaling via endocytic recycling.

    PubMed

    Liu, Zhihua; Huang, Yan; Hu, Wen; Huang, Sheng; Wang, Qifu; Han, Junhai; Zhang, Yong Q

    2014-02-19

    Fatty acid metabolism plays an important role in brain development and function. Mutations in acyl-CoA synthetase long-chain family member 4 (ACSL4), which converts long-chain fatty acids to acyl-CoAs, result in nonsyndromic X-linked mental retardation. ACSL4 is highly expressed in the hippocampus, a structure critical for learning and memory. However, the underlying mechanism by which mutations of ACSL4 lead to mental retardation remains poorly understood. We report here that dAcsl, the Drosophila ortholog of ACSL4 and ACSL3, inhibits synaptic growth by attenuating BMP signaling, a major growth-promoting pathway at neuromuscular junction (NMJ) synapses. Specifically, dAcsl mutants exhibited NMJ overgrowth that was suppressed by reducing the doses of the BMP pathway components, accompanied by increased levels of activated BMP receptor Thickveins (Tkv) and phosphorylated mothers against decapentaplegic (Mad), the effector of the BMP signaling at NMJ terminals. In addition, Rab11, a small GTPase involved in endosomal recycling, was mislocalized in dAcsl mutant NMJs, and the membrane association of Rab11 was reduced in dAcsl mutant brains. Consistently, the BMP receptor Tkv accumulated in early endosomes but reduced in recycling endosomes in dAcsl mutant NMJs. dAcsl was also required for the recycling of photoreceptor rhodopsin in the eyes, implying a general role for dAcsl in regulating endocytic recycling of membrane receptors. Importantly, expression of human ACSL4 rescued the endocytic trafficking and NMJ phenotypes of dAcsl mutants. Together, our results reveal a novel mechanism whereby dAcsl facilitates Rab11-dependent receptor recycling and provide insights into the pathogenesis of ACSL4-related mental retardation.

  1. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes.

    PubMed

    He, Kangmin; Yan, Xiaohua; Li, Nan; Dang, Song; Xu, Li; Zhao, Bing; Li, Zijian; Lv, Zhizhen; Fang, Xiaohong; Zhang, Youyi; Chen, Ye-Guang

    2015-06-01

    Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.

  2. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  3. Coming or going? Un-BLOC-ing delivery and recycling pathways during melanosome maturation

    PubMed Central

    Cutler, Daniel F.

    2016-01-01

    Melanosome biogenesis requires successive waves of cargo delivery from endosomes to immature melanosomes, coupled with recycling of the trafficking machinery. Dennis et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201605090) report differential roles for BLOC-1 and BLOC-3 complexes in delivery and recycling of melanosomal biogenetic components, supplying directionality to melanosome maturation. PMID:27482050

  4. Hanford recycling

    SciTech Connect

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  5. ESCRT-III on endosomes: new functions, new activation pathway.

    PubMed

    Woodman, Philip

    2016-01-15

    The multivesicular body (MVB) pathway sorts ubiquitinated membrane cargo to intraluminal vesicles (ILVs) within the endosome, en route to the lysosomal lumen. The pathway involves the sequential action of conserved protein complexes [endosomal sorting complexes required for transport (ESCRTs)], culminating in the activation by ESCRT-II of ESCRT-III, a membrane-sculpting complex. Although this linear pathway of ESCRT activation is widely accepted, a study by Luzio and colleagues in a recent issue of the Biochemical Journal suggests that there is greater complexity in ESCRT-III activation, at least for some MVB cargoes. They show that ubiquitin-dependent sorting of major histocompatibility complex (MHC) class I to the MVB requires the central ESCRT-III complex but does not involve either ESCRT-II or functional links between ESCRT-II and ESCRT-III. Instead, they propose that MHC class I utilizes histidine-domain protein tyrosine phosphatase (HD-PTP), a non-canonical ESCRT interactor, to promote ESCRT-III activation.

  6. The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway

    PubMed Central

    Imai, Yuzuru; Kobayashi, Yoshito; Inoshita, Tsuyoshi; Meng, Hongrui; Arano, Taku; Uemura, Kengo; Asano, Takeshi; Yoshimi, Kenji; Zhang, Chang-Liang; Matsumoto, Gen; Ohtsuka, Toshiyuki; Kageyama, Ryoichiro; Kiyonari, Hiroshi; Shioi, Go; Nukina, Nobuyuki; Hattori, Nobutaka; Takahashi, Ryosuke

    2015-01-01

    Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson’s disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2. PMID:26355680

  7. PKD Controls αvβ3 Integrin Recycling and Tumor Cell Invasive Migration Through its Substrate Rabaptin-5

    PubMed Central

    Christoforides, Claudine; Rainero, Elena; Brown, Kristin K.; Norman, Jim C.; Toker, Alex

    2012-01-01

    Summary Integrin recycling is critical for cell migration. Protein Kinase D (PKD) mediates signals from the platelet-derived growth factor-receptor (PDGF-R) to control αvβ3 integrin recycling. We now show that Rabaptin-5, a Rab5 effector in endosomal membrane fusion, is a PKD substrate. PKD phosphorylates Rabaptin-5 at Ser407 and this is both necessary and sufficient for PDGF-dependent short-loop recycling of αvβ3, which in turn inhibits α5β1 integrin recycling. Rab4, but not Rab5, interacts with phosphorylated Rabaptin-5 toward the front of migrating cells to promote delivery of αvβ3 to the leading edge, thereby driving persistent cell motility and invasion that is dependent on this integrin. Consistently, disruption of Rabaptin-5 Ser407 phosphorylation reduces persistent cell migration in 2D and αvβ3-dependent invasion. Conversely, invasive migration that is dependent on α5β1 integrin is promoted by disrupting Rabaptin phosphorylation. These findings demonstrate that the PKD pathway couples receptor tyrosine kinase signaling to an integrin switch, via Rabaptin-5 phosphorylation. PMID:22975325

  8. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  9. Control of Ste6 recycling by ubiquitination in the early endocytic pathway in yeast.

    PubMed

    Krsmanovic, Tamara; Pawelec, Agnes; Sydor, Tobias; Kölling, Ralf

    2005-06-01

    We present evidence that ubiquitination controls sorting of the ABC-transporter Ste6 in the early endocytic pathway. The intracellular distribution of Ste6 variants with reduced ubiquitination was examined. In contrast to wild-type Ste6, which was mainly localized to internal structures, these variants accumulated at the cell surface in a polar manner. When endocytic recycling was blocked by Ypt6 inactivation, the ubiquitination deficient variants were trapped inside the cell. This indicates that the polar distribution is maintained dynamically through endocytic recycling and localized exocytosis ("kinetic polarization"). Ste6 does not appear to recycle through late endosomes, because recycling was not blocked in class E vps (vacuolar protein sorting) mutants (Deltavps4, Deltavps27), which are affected in late endosome function and in the retromer mutant Deltavps35. Instead, recycling was partially affected in the sorting nexin mutant Deltasnx4, which serves as an indication that Ste6 recycles through early endosomes. Enhanced recycling of wild-type Ste6 was observed in class D vps mutants (Deltapep12, Deltavps8, and Deltavps21). The identification of putative recycling signals in Ste6 suggests that recycling is a signal-mediated process. Endocytic recycling and localized exocytosis could be important for Ste6 polarization during the mating process.

  10. Securin and separase modulate membrane traffic by affecting endosomal acidification.

    PubMed

    Bacac, Marina; Fusco, Carlo; Planche, Anne; Santodomingo, Jaime; Demaurex, Nicolas; Leemann-Zakaryan, Ruzanna; Provero, Paolo; Stamenkovic, Ivan

    2011-05-01

    Securin and separase play a key role in sister chromatid separation during anaphase. However, a growing body of evidence suggests that in addition to regulating chromosome segregation, securin and separase display functions implicated in membrane traffic in Caenorhabditis elegans and Drosophila. Here we show that in mammalian cells both securin and separase associate with membranes and that depletion of either protein causes robust swelling of the trans-Golgi network (TGN) along with the appearance of large endocytic vesicles in the perinuclear region. These changes are accompanied by diminished constitutive protein secretion as well as impaired receptor recycling and degradation. Unexpectedly, cells depleted of securin or separase display defective acidification of early endosomes and increased membrane recruitment of vacuolar (V-) ATPase complexes, mimicking the effect of the specific V-ATPase inhibitor Bafilomycin A1. Taken together, our findings identify a new functional role of securin and separase in the modulation of membrane traffic and protein secretion that implicates regulation of V-ATPase assembly and function.

  11. Role of endosomal trafficking dynamics on the regulation of hepatic insulin receptor activity: models for Fao cells.

    PubMed

    Hori, Sharon S; Kurland, Irwin J; DiStefano, Joseph J

    2006-05-01

    Evidence indicates that endosomal insulin receptor (IR) trafficking plays a role in regulating insulin signal transduction. To evaluate its importance, we developed a series of biokinetic models for quantifying activated surface and endosomal IR dynamics from published experimental data. Starting with a published two-compartment Fao hepatoma model, a four-pool model was formulated that depicts IR autophosphorylation after receptor binding, IR endosomal internalization/trafficking, insulin dissociation from and dephosphorylation of internalized IR, and recycling of unliganded, dephosphorylated IR to the plasma membrane. Quantification required three additional data sets, two measured, but unmodeled by the same group. A five-pool model created to include endosomal trafficking of the nonphosphorylated insulin-IR complex was fitted using the same data sets, augmented with another published data set. Creation of a six-pool model added the physiologically relevant dissociation of insulin ligand from the activated endosomal IR. More importantly, all three models, validated against additional data not used in model fitting, predict that, mechanistically, internalization of activated IR is a rate-limiting step, at least under the receptor saturating conditions of the fitting data. This rate includes the transit time to a site where insulin dissociation from and/or dephosphorylation of the IR occurs by docking with protein-tyrosine phosphatases (PTPases), or where a sufficient conformational change occurs in the IR, perhaps due to insulin-IR dissociation, where associated PTPases may complete IR dephosphorylation. Our new models indicate that key events in endosomal IR trafficking have significance in mediating IR activity, possibly serving to regulate insulin signal transduction.

  12. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane.

    PubMed

    Truschel, Steven T; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C; Tenza, Danièle; Thomas, Penelope C; Herman, Kathryn E; Sackett, Sara D; Cowan, David C; Theos, Alexander C; Raposo, Graça; Marks, Michael S

    2009-09-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.

  13. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

    PubMed Central

    Truschel, Steven T.; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C.; Tenza, Danièle; Thomas, Penelope C.; Herman, Kathryn E.; Sackett, Sara D.; Cowan, David C.; Theos, Alexander C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome (HPS) that lack BLOC-1, melanosomal proteins such as Tyrp1 accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverses early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle. PMID:19624486

  14. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei.

    PubMed

    Engstler, Markus; Thilo, Lutz; Weise, Frank; Grünfelder, Christoph G; Schwarz, Heinz; Boshart, Michael; Overath, Peter

    2004-03-01

    The dense coat of glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) covering parasitic African trypanosomes is essential for survival in mammalian hosts. VSG is internalised and recycled exclusively via a specialised part of the plasma membrane, the flagellar pocket. Direct measurement of the kinetics of VSG endocytosis and recycling shows that the VSG cell-surface pool is turned over within 12 minutes. Correspondingly, the turnover of the intracellular pool (9+/-4% of total VSG) requires only 1 minute, and this is an exceptionally high rate considering that endocytosis and exocytosis are limited to only 5% of the cell surface area. Kinetic 3D co-localisation analysis using biotinylated VSG and a panel of compartmental markers provides consistent evidence for the itinerary of VSG through the cell: VSG is endocytosed in large clathrin-coated vesicles, which bud from the flagellar pocket membrane at a rate of 6-7 vesicles per second, and is then delivered to RAB5-positive early endosomes. From there, VSG is recycled to RAB11-positive recycling endosomes at two stages, either directly or via RAB7-positive, late endosomes. Small clathrin-coated vesicles carrying fluid-phase cargo and being depleted of VSG bud from early and recycling endosomes. These vesicles are postulated to deliver their content to late endosomes and/or the lysosome. The recycling endosomes give rise to RAB11-positive exocytic carriers that fuse with the flagellar pocket and thereby return VSG to the cell surface. VSG recycling provides an interesting model for studies on the cellular trafficking and sorting of GPI-anchored proteins.

  15. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes

    PubMed Central

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-ichi

    2014-01-01

    Neurons extend two types of neurites—axons and dendrites—that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. PMID:24672056

  16. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome

    PubMed Central

    1994-01-01

    We have used temperature and nocodazole blocks in an in vivo basolateral to apical transcytosis assay to dissociate the early transcytotic steps occurring during the formation of transcytotic vesicles and their microtubule-dependent translocation into the apical region, from the late steps when transcytotic cargo is delivered into the apical media. We found that polarized MDCK cells transfected with rabbit polymeric IgA receptor (pIgA-R) internalize basolaterally added pIgA-R ligand ([Fab]2 fragment of IgG against the receptor's ectodomain) at 17 degrees C but do not deliver it to the apical PM. Instead, the ligand accumulates in an apically localized transcytotic compartment, distal to the basolateral endosome and the microtubule- requiring translocation step. We have characterized this compartment and show that it is distinct from basolateral transferrin recycling endosomes, basolateral early endosomes or late endosomes or lysosomes. The apical transcytotic compartment colocalizes with the compartment containing apically recycling membrane markers (ricin and apically internalized pIgA-R ligand) but is distinct from the compartment receiving apically internalized fluid phase marker (BSA). This compartment is an intermediate station of the overall pathway since transcytotic ligand can exit the compartment and be released into the apical medium when cells preloaded at 17 degrees C are subsequently incubated at 37 degrees C. We have used this system to examine the effect of Brefeldin A (BFA) and the involvement of trimeric GTPases in the late (post apical transcytotic compartment) steps of the transcytotic pathway. We found that addition of BFA or cholera toxin, a known activator of Gs alpha, to cells preloaded with transcytotic ligand at 17 degrees C significantly inhibits the exit of ligand from the apical transcytotic compartment. General structure and function of the apical endosome are not affected since neither BFA nor cholera toxin inhibit the recycling of

  17. High-Content Imaging Reveals Expansion of the Endosomal Compartment during Coxiella burnetii Parasitophorous Vacuole Maturation

    PubMed Central

    Larson, Charles L.; Heinzen, Robert A.

    2017-01-01

    Coxiella burnetii is an obligate intracellular pathogen and the causative agent of human Q fever. Replication of the bacterium within a large parasitophorous vacuole (PV) resembling a host phagolysosome is required for pathogenesis. PV biogenesis is a pathogen driven process that requires engagement of several host cell vesicular trafficking pathways to acquire vacuole components. The goal of this study was to determine if infection by C. burnetii modulates endolysosomal flux to potentially benefit PV formation. HeLa cells, infected with C. burnetii or left uninfected, were incubated with fluorescent transferrin (Tf) for 0–30 min, and the amount of Tf internalized by cells quantitated by high-content imaging. At 3 and 5 days, but not 1 day post-infection, the maximal amounts of fluorescent Tf internalized by infected cells were significantly greater than uninfected cells. The rates of Tf uptake and recycling were the same for infected and uninfected cells; however, residual Tf persisted in EEA.1 positive compartments adjacent to large PV after 30 min of recycling in the absence of labeled Tf. On average, C. burnetii-infected cells contained significantly more CD63-positive endosomes than uninfected cells. In contrast, cells containing large vacuoles generated by Chlamydia trachomatis exhibited increased rates of Tf internalization without increased CD63 expression. Our results suggest that C. burnetii infection expands the endosomal system to increase capacity for endocytic material. Furthermore, this study demonstrates the power of high-content imaging for measurement of cellular responses to infection by intracellular pathogens. PMID:28293541

  18. Endosomal sorting of VAMP3 is regulated by PI4K2A.

    PubMed

    Jović, Marko; Kean, Michelle J; Dubankova, Anna; Boura, Evzen; Gingras, Anne-Claude; Brill, Julie A; Balla, Tamas

    2014-09-01

    Specificity of membrane fusion in vesicular trafficking is dependent on proper subcellular distribution of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNARE complexes are fairly promiscuous in vitro, substantial specificity is achieved in cells owing to the spatial segregation and shielding of SNARE motifs prior to association with cognate Q-SNAREs. In this study, we identified phosphatidylinositol 4-kinase IIα (PI4K2A) as a binding partner of vesicle-associated membrane protein 3 (VAMP3), a small R-SNARE involved in recycling and retrograde transport, and found that the two proteins co-reside on tubulo-vesicular endosomes. PI4K2A knockdown inhibited VAMP3 trafficking to perinuclear membranes and impaired the rate of VAMP3-mediated recycling of the transferrin receptor. Moreover, depletion of PI4K2A significantly decreased association of VAMP3 with its cognate Q-SNARE Vti1a. Although binding of VAMP3 to PI4K2A did not require kinase activity, acute depletion of phosphatidylinositol 4-phosphate (PtdIns4P) on endosomes significantly delayed VAMP3 trafficking. Modulation of SNARE function by phospholipids had previously been proposed based on in vitro studies, and our study provides mechanistic evidence in support of these claims by identifying PI4K2A and PtdIns4P as regulators of an R-SNARE in intact cells.

  19. PIKfyve Regulation of Endosome-Linked Pathways

    PubMed Central

    de Lartigue, Jane; Polson, Hannah; Feldman, Morri; Shokat, Kevan; Tooze, Sharon A; Urbé, Sylvie; Clague, Michael J

    2009-01-01

    The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5)P2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5)P2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies. PMID:19582903

  20. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes

    PubMed Central

    1996-01-01

    In this paper, we show that beta COP is present on endosomes and is required for the formation of vesicles which mediate transport from early to late endosomes. Both the association of beta COP to endosomal membranes as well as transport vesicle formation depend on the lumenal pH. We find that epsilon COP, but not gamma COP, is also associated to endosomes, and that this association is also lumenal pH dependent. Our data, thus, indicate that a subset of COPs is part of the mechanism regulating endosomal membrane transport, and that membrane association of these COPs is controlled by the acidic properties of early endosomes, presumably via a trans-membrane pH sensor. PMID:8601610

  1. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection

    PubMed Central

    Chang, Chun-Chi; Wang, Liangli; Yuan, Fan

    2017-01-01

    A recent theory suggests that endocytosis is involved in uptake and intracellular transport of electrotransfected plasmid DNA (pDNA). The goal of the current study was to understand if approaches used previously to improve endocytosis of gene delivery vectors could be applied to enhancing electrotransfection efficiency (eTE). Results from the study showed that photochemically induced endosomal escape, which could increase poly-L-lysine (PLL)-mediated gene delivery, decreased eTE. The decrease could not be blocked by treatment of cells with endonuclease inhibitors (aurintricarboxylic acid and zinc ion) or antioxidants (L-glutamine and ascorbic acid). Chemical treatment of cells with an endosomal trafficking inhibitor that blocks endosome progression, bafilomycin A1, resulted in a significant decrease in eTE. However, treatment of cells with lysosomotropic agents (chloroquine and ammonium chloride) had little effects on eTE. These data suggested that endosomes played important roles in protecting and intracellular trafficking of electrotransfected pDNA. PMID:28182739

  2. Phosphorylation of filamin A regulates chemokine receptor CCR2 recycling.

    PubMed

    Pons, Mònica; Izquierdo, Ismael; Andreu-Carbó, Mireia; Garrido, Georgina; Planagumà, Jesús; Muriel, Olivia; Del Pozo, Miguel A; Geli, M Isabel; Aragay, Anna M

    2017-01-15

    Proper endosomal trafficking of ligand-activated G-protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B; one of two isoforms encoded by CCR2), endocytic recycling is important to sustain monocyte migration, whereas filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway. In FLNa-knockdown cells, activated CCR2B accumulated in enlarged EEA-1-positive endosomes, which exhibited slow movement and fast fluorescence recovery, suggesting an imbalance between receptor entry and exit rates. Utilizing super-resolution microscopy, we observed that FLNa-GFP, CCR2B and β2-adrenergic receptor (β2AR) were present in actin-enriched endosomal microdomains. Depletion of FLNa decreased CCR2B association with these microdomains and concomitantly delayed CCR2B endosomal traffic, without apparently affecting the number of microdomains. Interestingly, CCR2B and β2AR signaling induced phosphorylation of FLNa at residue S2152, and this phosphorylation event was contributes to sustain receptor recycling. Thus, our data strongly suggest that CCR2B and β2AR signals to FLNa to stimulate its endocytosis and recycling to the plasma membrane.

  3. Spatio-Temporal Cellular Dynamics of the Arabidopsis Flagellin Receptor Reveal Activation Status-Dependent Endosomal Sorting[C][W

    PubMed Central

    Beck, Martina; Zhou, Ji; Faulkner, Christine; MacLean, Daniel; Robatzek, Silke

    2012-01-01

    The activity of surface receptors is location specific, dependent upon the dynamic membrane trafficking network and receptor-mediated endocytosis (RME). Therefore, the spatio-temporal dynamics of RME are critical to receptor function. The plasma membrane receptor FLAGELLIN SENSING2 (FLS2) confers immunity against bacterial infection through perception of flagellin (flg22). Following elicitation, FLS2 is internalized into vesicles. To resolve FLS2 trafficking, we exploited quantitative confocal imaging for colocalization studies and chemical interference. FLS2 localizes to bona fide endosomes via two distinct endocytic trafficking routes depending on its activation status. FLS2 receptors constitutively recycle in a Brefeldin A (BFA)–sensitive manner, while flg22-activated receptors traffic via ARA7/Rab F2b– and ARA6/Rab F1–positive endosomes insensitive to BFA. FLS2 endocytosis required a functional Rab5 GTPase pathway as revealed by dominant-negative ARA7/Rab F2b. Flg22-induced FLS2 endosomal numbers were increased by Concanamycin A treatment but reduced by Wortmannin, indicating that activated FLS2 receptors are targeted to late endosomes. RME inhibitors Tyrphostin A23 and Endosidin 1 altered but did not block induced FLS2 endocytosis. Additional inhibitor studies imply the involvement of the actin-myosin system in FLS2 internalization and trafficking. Altogether, we report a dynamic pattern of subcellular trafficking for FLS2 and reveal a defined framework for ligand-dependent endocytosis of this receptor. PMID:23085733

  4. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A.

    PubMed

    Phillips-Krawczak, Christine A; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G; Li, Haiying; Dick, Christopher J; Gomez, Timothy S; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F; Geng, Linda N; Kaufmann, Scott H; Hein, Marco Y; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; Sluis, Bart van de; Billadeau, Daniel D; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.

  5. Snx3 regulates recycling of the transferrin receptor and iron assimilation.

    PubMed

    Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H; Hildick-Smith, Gordon J; Shah, Dhvanit I; Cooney, Jeffrey D; Chen, Wen; King, Matthew J; Yien, Yvette Y; Schultz, Iman J; Anderson, Heidi; Dalton, Arthur J; Freedman, Matthew L; Kingsley, Paul D; Palis, James; Hattangadi, Shilpa M; Lodish, Harvey F; Ward, Diane M; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H

    2013-03-05

    Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc) and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism.

  6. Snx3 regulates recycling of the transferrin receptor and iron assimilation

    PubMed Central

    Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H.; Hildick-Smith, Gordon J.; Shah, Dhvanit I.; Cooney, Jeffrey D.; Chen, Wen; King, Matthew J.; Yien, Yvette Y.; Schultz, Iman J.; Anderson, Heidi; Dalton, Arthur J.; Freedman, Matthew L.; Kingsley, Paul D.; Palis, James; Hattangadi, Shilpa M.; Lodish, Harvey F.; Ward, Diane M.; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H.

    2013-01-01

    SUMMARY Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc), and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism. PMID:23416069

  7. Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae.

    PubMed

    Dieci, Giorgio; Giuliodori, Silvia; Catellani, Manuela; Percudani, Riccardo; Ottonello, Simone

    2002-03-01

    The SCR1 gene, coding for the 7SL RNA of the signal recognition particle, is the last known class III gene of Saccharomyces cerevisiae that remains to be characterized with respect to its mode of transcription and promoter organization. We show here that SCR1 represents a unique case of a non-tRNA class III gene in which intragenic promoter elements (the TFIIIC-binding A- and B-blocks), corresponding to the D and TpsiC arms of mature tRNAs, have been adapted to a structurally different small RNA without losing their transcriptional function. In fact, despite the presence of an upstream canonical TATA box, SCR1 transcription strictly depends on the presence of functional, albeit quite unusual, A- and B-blocks and requires all the basal components of the RNA polymerase III transcription apparatus, including TFIIIC. Accordingly, TFIIIC was found to protect from DNase I digestion an 80-bp region comprising the A- and B-blocks. B-block inactivation completely compromised TFIIIC binding and transcription capacity in vitro and in vivo. An inactivating mutation in the A-block selectively affected TFIIIC binding to this promoter element but resulted in much more dramatic impairment of in vivo than in vitro transcription. Transcriptional competition and nucleosome disruption experiments showed that this stronger in vivo defect is due to a reduced ability of A-block-mutated SCR1 to compete with other genes for TFIIIC binding and to counteract the assembly of repressive chromatin structures through TFIIIC recruitment. A kinetic analysis further revealed that facilitated RNA polymerase III recycling, far from being restricted to typical small sized class III templates, also takes place on the 522-bp-long SCR1 gene, the longest known class III transcriptional unit.

  8. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system.

    PubMed

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J; Baldari, Cosima T

    2014-05-01

    T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5(+) endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.

  9. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    PubMed

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    1 has a tumor suppressor function, and the combined marker of Eps15 homology domain 1/phosphorylation of epithelial growth factor receptor expression was identified as a better prognostic marker in breast cancer diagnosis. Furthermore, RAB11FIP3 combines with Eps15 homology domain 1 to promote the endocytosis recycling of phosphorylation of epithelial growth factor receptor.

  10. Ideas: Recycling.

    ERIC Educational Resources Information Center

    Chessin, Debby A.; And Others

    1994-01-01

    Presents classroom ideas focusing on connections among mathematics, concern for the environment, and conservation of natural resources, including decomposition, water conservation, packaging materials, use of manufactured cans, and recycling. Includes reproducible student worksheets. (MKR)

  11. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse.

    PubMed

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J; Baldari, Cosima T

    2015-07-15

    IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.

  12. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse

    PubMed Central

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J.; Baldari, Cosima T.

    2015-01-01

    ABSTRACT IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11+ endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR+ endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis. PMID:26034069

  13. The R-SNARE Endobrevin/VAMP-8 Mediates Homotypic Fusion of Early Endosomes and Late Endosomes

    PubMed Central

    Antonin, Wolfram; Holroyd, Claudia; Tikkanen, Ritva; Höning, Stefan; Jahn, Reinhard

    2000-01-01

    Endobrevin/VAMP-8 is an R-SNARE localized to endosomes, but it is unknown in which intracellular fusion step it operates. Using subcellular fractionation and quantitative immunogold electron microscopy, we found that endobrevin/VAMP-8 is present on all membranes known to communicate with early endosomes, including the plasma membrane, clathrin-coated pits, late endosomes, and membranes of the trans-Golgi network. Affinity-purified antibodies that block the ability of endobrevin/VAMP-8 to form SNARE core complexes potently inhibit homotypic fusion of both early and late endosomes in vitro. Fab fragments were as active as intact immunoglobulin Gs. Recombinant endobrevin/VAMP-8 inhibited both fusion reactions with similar potency. We conclude that endobrevin/VAMP-8 operates as an R-SNARE in the homotypic fusion of early and late endosomes. PMID:11029036

  14. Glass recycling

    SciTech Connect

    Dalmijn, W.L.; Houwelingen, J.A. van

    1995-12-31

    Glass recycling in the Netherlands has grown from 10,000 to 300,000 tonnes per annum. The various advantages and problems of the glass cycle with reference to the state of the art in the Netherlands is given. Special attention is given to new technologies for the automated sorting of cullet with detection systems. In Western Europe the recycling of glass has become a success story. Because of this, the percentage of glass cullet used in glass furnaces has increased. To meet the quality demands of the glass industry, automated sorting for the removal of stones, non-ferrous metals and other impurities had to be developed and incorporated in glass recycling plants. In Holland, Germany and other countries, the amount of glass collected has reached a level that color-sorting becomes necessary to avoid market saturation with mixed cullet. Recently, two systems for color-sorting have been developed and tested for the separation of bottles and cullet in the size range of 20--50 mm. With the increased capacity of the new glass recycling plants, 120,000--200,000 tpy, the quality systems have also to be improved and automated. These quality control systems are based on the automated sorting technology developed earlier for the glass recycling plants. The data obtained are automatically processed and printed. The sampling system and its relation to the theory of Gy will be described. Results of both developments in glass recycling plants will be described.

  15. Flotillins bind to the dileucine sorting motif of β-site amyloid precursor protein-cleaving enzyme 1 and influence its endosomal sorting.

    PubMed

    John, Bincy A; Meister, Melanie; Banning, Antje; Tikkanen, Ritva

    2014-04-01

    The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a protease that participates in the amyloidogenic cleavage of the Alzheimer amyloid precursor protein. Trafficking of BACE1 has been shown to be largely mediated by an acidic cluster dileucine motif in its cytoplasmic tail. This sorting signal functions both in endocytosis and endosomal sorting/recycling of BACE1 by providing a binding site for various sorting factors, such as the Golgi-localizing γ-ear containing ADP ribosylation factor binding (GGA) proteins that mediate BACE1 sorting within endosomes. Because flotillin-1 has been suggested to bind to BACE1 cytoplasmic tail, we analyzed the role of flotillins in BACE1 sorting. We show that flotillin-1 directly binds to the dileucine motif in the cytoplasmic tail of BACE1, whereas flotillin-2 binding is mainly mediated by its interaction with flotillin-1. Depletion of flotillins results in altered subcellular localization of BACE1 in endosomes and stabilization of BACE1 protein. Furthermore, amyloidogenic processing of Alzheimer amyloid precursor protein is increased. Flotillins compete with GGA proteins for binding to the dileucine motif in the BACE1 tail, suggesting that they play an important role in endosomal sorting of BACE1. The present study shows for the first time that flotillins are involved in endosomal sorting of BACE1. Because the endosomal localization of BACE1 affects its function as the β-secretase by increasing amyloidogenic processing of the amyloid precursor protein, flotillins may play a novel role in Alzheimer's disease. The present study is the first to show that flotillins bind to a canonical sorting signal and influence the binding of endosomal sorting factors onto cargo tails.

  16. Annexin II is a major component of fusogenic endosomal vesicles

    PubMed Central

    1993-01-01

    We have used an in vitro assay to follow the proteins transferred from a donor to an acceptor upon fusion of early endosomes. The acceptor was a purified early endosomal fraction immunoisolated on beads and the donor was a metabolically-labeled early endosomal fraction in suspension. In the assay, both fractions were mixed in the presence of unlabeled cytosol, and then the beads were retrieved and washed. The donor proteins transferred to the acceptor were identified by two- dimensional gel electrophoresis and autoradiography. Approximately 50 major proteins were transferred and this transfer fulfilled all criteria established for endosome fusion in vitro. However, only a small subset of proteins was efficiently transferred, if donor endosomes were briefly sonicated to generate small (0.1 micron diam) vesicles before the assay. These include two acidic membrane proteins, and three alkaline peripheral proteins exposed on the cytoplasmic face of the membrane. Partial sequencing and Western blotting indicated that one of the latter components is annexin II, a protein known to mediate membrane-membrane interactions. Immunogold labeling of cryosections confirmed that annexin II is present on early endosomes in vivo. These data demonstrate that annexin II, together with the other four proteins we have identified, is a major component of fusogenic endosomal vesicles, suggesting that these proteins are involved in the binding and/or fusion process. PMID:8449982

  17. Melanosomes – dark organelles enlighten endosomal membrane transport

    PubMed Central

    Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are tissue-specific “lysosome-related” organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light into the molecular machinery that controls specialized endosomal sorting events. PMID:17878918

  18. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  19. Textile recycling

    SciTech Connect

    Jablonowski, E. ); Carlton, J.

    1995-01-01

    The most common household textiles include clothing, linens, draperies, carpets, shoes, handbags, and rugs. Old clothing, of course, is the most readily reused and/or recycled residentially generated textile category. State and/or local mandates to recycle a percentage of the waste stream are providing the impetus to add new materials to existing collection programs. Concurrently, the textile industry is aggressively trying to increase its throughput by seeking new sources of material to meet increased world demand for product. As experienced with drop-off programs for traditional materials, a majority of residents will not recycle materials unless the collection programs are convenient, i.e., curbside collection. The tonnage of marketable textiles currently being landfilled provide evidence of this. It is the authors' contention that if textile recycling is made convenient and accessible to every household in a municipality or region, then the waste stream disposed may be reduced in a similar fashion as when traditional recyclables are included in curbside programs.

  20. Tire Recycling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  1. A huntingtin-mediated fast stress response halting endosomal trafficking is defective in Huntington's disease

    PubMed Central

    Nath, Siddharth; Munsie, Lise N.; Truant, Ray

    2015-01-01

    Cellular stress is a normal part of the aging process and is especially relevant in neurodegenerative disease. Canonical stress responses, such as the heat shock response, activate following exposure to stress and restore proteostasis through the action of isomerases and chaperones within the cytosol. Through live-cell imaging, we demonstrate involvement of the Huntington's disease (HD) protein, huntingtin, in a rapid cell stress response that lies temporally upstream of canonical stress responses. This response is characterized by the formation of distinct cytosolic puncta and reversible localization of huntingtin to early endosomes. The formation of these puncta, which we have termed huntingtin stress bodies (HSBs), is associated with arrest of early-to-recycling and early-to-late endosomal trafficking. The critical domains for this response have been mapped to two regions of huntingtin flanking the polyglutamine tract, and we observe polyglutamine-expanded huntingtin-expressing cells to be defective in their ability to recover from this stress response. We propose that HSB formation rapidly diverts high ATP use from vesicular trafficking during stress, thus mobilizing canonical stress responses without relying on increased energy metabolism, and that restoration from this response is defective in HD. PMID:25205111

  2. [The ESCRT complex: from endosomal transport to the development of multicellular organisms].

    PubMed

    Juan, Thomas; Fürthauer, Maximilian

    2015-01-01

    Since its discovery more than 50 years ago, the endo-lysosomal system has emerged as a central integrator of different cellular activities. This vesicular trafficking apparatus governs processes as diverse as the transduction of stimuli by growth factor receptors, the recycling and secretion of signaling molecules and the regulation of cellular homeostasis through autophagy. Accordingly, dysfunctions of the vesicular transport machinery have been linked to a growing number of pathologies. In this review we take the "Endosomal Sorting Complex Required for Transport" (ESCRT) as an example to illustrate the multiple functions of an evolutionarily conserved endosomal transport machinery. We describe the major concepts that have emerged from the study of this machinery at the level of the development and the physiology of multi-cellular organisms. In particular, we highlight the essential contributions of ESCRT proteins on the regulation of three biological processes: the endocytic regulation of cell signaling, autophagy and its role in neuronal morphogenesis and finally the biogenesis and function of extracellular vesicles.

  3. Interferon-γ-inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages.

    PubMed

    Pei, Gang; Schnettger, Laura; Bronietzki, Marc; Repnik, Urska; Griffiths, Gareth; Gutierrez, Maximiliano Gabriel

    2015-09-01

    Little is known about the molecular players that regulate changes in the endocytic pathway during immune activation. Here we investigate the role of Rab20 in the endocytic pathway during activation of macrophages. Rab20 is associated with endocytic structures, but the function of this Rab GTPase in the endocytic pathway remains poorly characterized. We find that in macrophages, Rab20 expression and endosomal association significantly increase after interferon-γ (IFN-γ) treatment. Moreover, IFN-γ and Rab20 expression induce a dramatic enlargement of endosomes. These enlarged endosomes are the result of homotypic fusion promoted by Rab20 expression. The expression of Rab20 or the dominant-negative mutant Rab20T19N does not affect transferrin or dextran 70 kDa uptake. However, knockdown of Rab20 accelerates epidermal growth factor (EGF) trafficking to LAMP-2-positive compartments and EGF receptor degradation. Thus this work defines a function for Rab20 in the endocytic pathway during immune activation of macrophages.

  4. Live cell imaging of endosomal trafficking in fungi.

    PubMed

    Baumann, Sebastian; Takeshita, Norio; Grün, Nathalie; Fischer, Reinhard; Feldbrügge, Michael

    2015-01-01

    Endosomes are multipurpose membranous carriers important for endocytosis and secretion. During membrane trafficking, endosomes transport lipids, proteins, and even RNAs. In highly polarized cells such as fungal hyphae, they shuttle bidirectionally along microtubules mediated by molecular motors like kinesins and dynein. For in vivo studies of these highly dynamic protein/membrane complexes, advanced fluorescence microscopy is instrumental. In this chapter, we describe live cell imaging of endosomes in two distantly related fungal model systems, the basidiomycete Ustilago maydis and the ascomycete Aspergillus nidulans. We provide insights into live cell imaging of dynamic endosomal proteins and RNA, dual-color detection for colocalization studies, as well as fluorescence recovery after photobleaching (FRAP) for quantification and photo-activated localization microscopy (PALM) for super-resolution. These methods described in two well-studied fungal model systems are applicable to a broad range of other organisms.

  5. Endosome-lysosomes, ubiquitin and neurodegeneration.

    PubMed

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  6. Vps1 in the late endosome-to-vacuole traffic.

    PubMed

    Hayden, Jacob; Williams, Michelle; Granich, Ann; Ahn, Hyoeun; Tenay, Brandon; Lukehart, Joshua; Highfill, Chad; Dobard, Sarah; Kim, Kyoungtae

    2013-03-01

    Vacuolar protein sorting 1 (Vps1), the yeast homolog to human dynamin, is a GTP hydrolyzing protein, which plays an important role in protein sorting and targeting between the Golgi and late endosomal compartments. In this study, we assessed the functional significance of Vps1 in the membrane traffic towards the vacuole. We show here that vps1 delta cells accumulated FM4-64 to a greater extent than wild-type (WT))cells, suggesting slower endocytic degradation traffic toward the vacuole. In addition, we observed that two endosome-to-vacuole traffic markers, DsRed-FYVE and Ste2-GFP, were highly accumulated in Vps1-deficient cells, further supporting Vps1's implication in efficient trafficking of endocytosed materials to the vacuole. Noteworthy, a simultaneous imaging analysis in conjunction with FM4-64 pulse-chase experiment further revealed that Vps1 plays a role in late endosome to the vacuole transport. Consistently, our subcellular localization analysis showed that Vps1 is present at the late endosome. The hyperaccumulation of endosomal intermediates in the vps1 mutant cells appears to be caused by the disruption of integrity of HOPS tethering complexes, manifested by mislocalization of Vps39 to the cytoplasm. Finally, we postulate that Vps1 functions together with the Endosomal Sorting Complex Required for Transport (ESCRT) complex at the late endosomal compartments, based on the observation that the double mutants, in which VPS1 along with singular ESCRT I, II and III genes have been disrupted, exhibited synthetic lethality. Together, we propose that Vps1 is required for correct and efficient trafficking from the late endosomal compartments to the vacuole.

  7. Signaling Components of Redox Active Endosomes: The Redoxosomes

    PubMed Central

    Oakley, Fredrick D.; Abbott, Duane; Li, Qiang

    2009-01-01

    Abstract Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers. Antioxid. Redox Signal. 11, 1313–1333. PMID:19072143

  8. SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models.

    PubMed

    Meng, Ronghua; Wang, Yuhuan; Yao, Yu; Zhang, Zhe; Harper, Dawn C; Heijnen, Harry F G; Sitaram, Anand; Li, Wei; Raposo, Graça; Weiss, Mitchell J; Poncz, Mortimer; Marks, Michael S

    2012-07-12

    Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.

  9. Recycling Philology.

    ERIC Educational Resources Information Center

    Knapp, Peggy A.

    1993-01-01

    Proposes that English teachers recycle philology as a field of study. Redefines the shape of philology in view of postmodern theories of signification. Considers concepts of hermeneutics in retheorizing the aims of philology. Shows how such philological investigation might be used in the classroom to study literary texts. (HB)

  10. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P.

    PubMed

    Dong, Rui; Saheki, Yasunori; Swarup, Sharan; Lucast, Louise; Harper, J Wade; De Camilli, Pietro

    2016-07-14

    VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.

  11. Qualitative and quantitative analysis of endocytic recycling.

    PubMed

    Reineke, James B; Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    Endocytosis, which encompasses the internalization and sorting of plasma membrane (PM) lipids and proteins to distinct membrane-bound intracellular compartments, is a highly regulated and fundamental cellular process by which eukaryotic cells dynamically regulate their PM composition. Indeed, endocytosis is implicated in crucial cellular processes that include proliferation, migration, and cell division as well as maintenance of tissue homeostasis such as apical-basal polarity. Once PM constituents have been taken up into the cell, either via clathrin-dependent endocytosis (CDE) or clathrin-independent endocytosis (CIE), they typically have two fates: degradation through the late-endosomal/lysosomal pathway or returning to the PM via endocytic recycling pathways. In this review, we will detail experimental procedures that allow for both qualitative and quantitative assessment of endocytic recycling of transmembrane proteins internalized by CDE and CIE, using the HeLa cervical cancer cell line as a model system.

  12. β2-adrenergic receptor control of endosomal PTH receptor signaling via Gβγ

    PubMed Central

    Jean-Alphonse, Frédéric G; Wehbi, Vanessa L; Chen, Jingming; Noda, Masaki; Taboas, Juan M; Xiao, Kunhong; Vilardaga, Jean-Pierre

    2017-01-01

    Cells express several G-protein-coupled receptors (GPCRs) at their surfaces, transmitting simultaneous extracellular hormonal and chemical signals into cells. A comprehensive understanding of mechanisms underlying the integrated signaling response induced by distinct GPCRs is thus required. Here we found that the β2-adrenergic receptor, which induces a short cAMP response, prolongs nuclear cAMP and protein kinase A (PKA) activation by promoting endosomal cAMP production in parathyroid hormone (PTH) receptor signaling through the stimulatory action of G protein Gβγ subunits on adenylate cyclase type 2. PMID:28024151

  13. Two barcodes encoded by the type-1 PDZ and by phospho-Ser(312) regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.

    PubMed

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß1-AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß1-AR is inhibited when PKA or its substrate serine at position 312 (Ser(312)) are inactivated. We tested the hypothesis that phospho-Ser(312) provided a second barcode for ß1-AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß1-AR trafficking. Recycling of WT ß1-AR or WT ß2-AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21C). These maneuvers however, did not inhibit the recycling of a phospho-Ser(312) ß1-AR mimic ((S312D) ß1-AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß1-AR and WT ß2-AR, but had no effect on (S312D) ß1-AR∆PDZ or on phosphorylation of WT ß1-AR by PKA at Ser(312). However, depletion of FKBP15, a FAM21C-binding endosomal protein, selectively inhibited WT ß1-AR but not ß2-AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß1-AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser(312)" verification "barcode". This organization allows tight regulation of ß1-AR density to signaling intensity in conditions associated with aberrant ß1-AR signaling such as in hypertension and heart failure.

  14. Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes

    PubMed Central

    Pinilla-Macua, Itziar; Watkins, Simon C.; Sorkin, Alexander

    2016-01-01

    Signaling from epidermal growth factor receptor (EGFR) to extracellular-stimuli–regulated protein kinase 1/2 (ERK1/2) is proposed to be transduced not only from the cell surface but also from endosomes, although the role of endocytosis in this signaling pathway is controversial. Ras is the only membrane-anchored component in the EGFR–ERK signaling axis, and therefore, its location determines intracellular sites of downstream signaling. Hence, we labeled endogenous H-Ras (HRas) with mVenus fluorescent protein using gene editing in HeLa cells. mVenus-HRas was primarily located at the plasma membrane, and in small amounts in tubular recycling endosomes and associated vesicles. EGF stimulation resulted in fast but transient activation of mVenus-HRas. Although EGF:EGFR complexes were rapidly accumulated in endosomes together with the Grb2 adaptor, very little, if any, mVenus-HRas was detected in these endosomes. Interestingly, the activities of MEK1/2 and ERK1/2 remained high beyond the point of the physical separation of HRas from EGF:EGFR complexes and down-regulation of Ras activity. Paradoxically, this sustained MEK1/2 and ERK1/2 activation was dependent on the active EGFR kinase. Cell surface biotinylation and selective inactivation of surface EGFRs suggested that a small fraction of active EGFRs remaining in the plasma membrane is responsible for continuous signaling to MEK1/2 and ERK1/2. We propose that, under physiological conditions of cell stimulation, EGFR endocytosis serves to spatially separate EGFR–Grb2 complexes and Ras, thus terminating Ras-mediated signaling. However, sustained minimal activation of Ras by a small pool of active EGFRs in the plasma membrane is sufficient for extending MEK1/2 and ERK1/2 activities. PMID:26858456

  15. An endosome-to-plasma membrane pathway involved in trafficking of a mutant plasma membrane ATPase in yeast.

    PubMed

    Luo, W j; Chang, A

    2000-02-01

    The plasma membrane ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway. Previously, we characterized a temperature-sensitive pma1 mutant in which newly synthesized Pma1-7 is not delivered to the plasma membrane but is mislocalized instead to the vacuole at 37 degrees C. Several vps mutants, which are defective in vacuolar protein sorting, suppress targeting-defective pma1 by allowing mutant Pma1 to move once again to the plasma membrane. In this study, we have analyzed trafficking in the endosomal system by monitoring the movement of Pma1-7 in vps36, vps1, and vps8 mutants. Upon induction of expression, mutant Pma1 accumulates in the prevacuolar compartment in vps36 cells. After chase, a fraction of newly synthesized Pma1-7 is delivered to the plasma membrane. In both vps1 and vps8 cells, newly synthesized mutant Pma1 appears in small punctate structures before arrival at the cell surface. Nevertheless, biosynthetic membrane traffic appears to follow different routes in vps8 and vps1: the vacuolar protein-sorting receptor Vps10p is stable in vps8 but not in vps1. Furthermore, a defect in endocytic delivery to the vacuole was revealed in vps8 (and vps36) but not vps1 by endocytosis of the bulk membrane marker FM 4-64. Moreover, in vps8 cells, there is defective down-regulation from the cell surface of the mating receptor Ste3, consistent with persistent receptor recycling from an endosomal compartment to the plasma membrane. These data support a model in which mutant Pma1 is diverted from the Golgi to the surface in vps1 cells. We hypothesize that in vps8 and vps36, in contrast to vps1, mutant Pma1 moves to the surface via endosomal intermediates, implicating an endosome-to-surface traffic pathway.

  16. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  17. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  18. Role of ARF6, Rab11 and External Hsp90 in the Trafficking and Recycling of Recombinant-Soluble Neisseria meningitidis Adhesin A (rNadA) in Human Epithelial Cells

    PubMed Central

    Montanari, Paolo; Benucci, Barbara; Biancucci, Marco; Nardi-Dei, Vincenzo; Caproni, Elena; Barrile, Riccardo; Picciani, Benedetta; Savino, Silvana; Aricò, Beatrice; Rappuoli, Rino; Pizza, Mariagrazia; Luini, Alberto; Sallese, Michele; Merola, Marcello

    2014-01-01

    Neisseria meningitidis adhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells. PMID:25347845

  19. Pavement recycling catching on

    SciTech Connect

    Dallaire, G.

    1980-11-01

    The soaring costs of asphalt, aggregates, energy, and labor have revived interest in the recycling of old pavements and road bases. Two types of techniqueshot mix recycling and cold mix recycling are described and compared. The experiences of Wisconsin and Texas with pavement recycling are reviewed. Wisconsin uses the hot mix recycling, while Texas refurbishes its roads with the cold mix recycling. One contractor's doubts about surface recycling of pavements are outlined. (13 photos)

  20. Autophagy Induced by Calcium Phosphate Precipitates Targets Damaged Endosomes*

    PubMed Central

    Chen, Xi; Khambu, Bilon; Zhang, Hao; Gao, Wentao; Li, Min; Chen, Xiaoyun; Yoshimori, Tamotsu; Yin, Xiao-Ming

    2014-01-01

    Calcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62. PMID:24619419

  1. Lipid peroxidation causes endosomal antigen release for cross-presentation.

    PubMed

    Dingjan, Ilse; Verboogen, Daniëlle Rj; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie Sv; Figdor, Carl G; Ter Beest, Martin; van den Bogaart, Geert

    2016-02-24

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer.

  2. Lipid peroxidation causes endosomal antigen release for cross-presentation

    PubMed Central

    Dingjan, Ilse; Verboogen, Daniëlle RJ; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie SV; Figdor, Carl G; ter Beest, Martin; van den Bogaart, Geert

    2016-01-01

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer. PMID:26907999

  3. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  4. A cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for endosomal degradation and counteracts interferon-induced restriction.

    PubMed

    Kueck, Tonya; Neil, Stuart J D

    2012-01-01

    The HIV-1 accessory protein Vpu counteracts tetherin (BST-2/CD317) by preventing its incorporation into virions, reducing its surface expression, and ultimately promoting its degradation. Here we characterize a putative trafficking motif, EXXXLV, in the second alpha helix of the subtype-B Vpu cytoplasmic tail as being required for efficient tetherin antagonism. Mutation of this motif prevents ESCRT-dependent degradation of tetherin/Vpu complexes, tetherin cell surface downregulation, but not its physical interaction with Vpu. Importantly, this motif is required for efficient cell-free virion release from CD4+ T cells, particularly after their exposure to type-1 interferon, indicating that the ability to reduce surface tetherin levels and promote its degradation is important to counteract restriction under conditions that the virus likely encounters in vivo. Vpu EXXXLV mutants accumulate with tetherin at the cell surface and in endosomal compartments, but retain the ability to bind both β-TrCP2 and HRS, indicating that this motif is required for a post-binding trafficking event that commits tetherin for ESCRT-dependent degradation and prevents its transit to the plasma membrane and viral budding zones. We further found that while Vpu function is dependent on clathrin, and the entire second alpha helix of the Vpu tail can be functionally complemented by a clathrin adaptor binding peptide derived from HIV-1 Nef, none of the canonical clathrin adaptors nor retromer are required for this process. Finally we show that residual activity of Vpu EXXXLV mutants requires an intact endocytic motif in tetherin, suggesting that physical association of Vpu with tetherin during its recycling may be sufficient to compromise tetherin activity to some degree.

  5. Sara endosomes and the asymmetric division of intestinal stem cells.

    PubMed

    Montagne, Chrystelle; Gonzalez-Gaitan, Marcos

    2014-05-01

    Tissue homeostasis is maintained by adult stem cells, which self-renew and give rise to differentiating cells. The generation of daughter cells with different fates is mediated by signalling molecules coming from an external niche or being asymmetrically dispatched between the two daughters upon stem cell mitosis. In the adult Drosophila midgut, the intestinal stem cell (ISC) divides to generate a new ISC and an enteroblast (EB) differentiating daughter. Notch signalling activity restricted to the EB regulates intestinal cell fate decision. Here, we show that ISCs divide asymmetrically, and Sara endosomes in ISCs are specifically dispatched to the presumptive EB. During ISC mitosis, Notch and Delta traffic through Sara endosomes, thereby contributing to Notch signalling bias, as revealed in Sara mutants: Sara itself contributes to the control of the ISC asymmetric division. Our data uncover an intrinsic endosomal mechanism during ISC mitosis, which participates in the maintenance of the adult intestinal lineage.

  6. The Salih ataxia mutation impairs Rubicon endosomal localization.

    PubMed

    Assoum, M; Salih, M A; Drouot, N; Hnia, K; Martelli, A; Koenig, M

    2013-12-01

    We previously described a new form of recessive ataxia, Salih ataxia, in a large consanguineous Saudi Arabian family with three affected children carrying a new identified mutation in the KIAA0226 gene (c.2624delC; p.Ala875ValfsX146) coding for Rubicon. The pathogenicity of such mutation remains to be identified. Hence, we address the cellular impact of Rubicon p.Ala875ValfsX146 on endosomal/lysosomal machinery on cultured cells. We confirm that Rubicon colocalizes with the late endosome marker Rab7 and demonstrate that it also colocalizes with LampI at lysosomes. The Salih ataxia mutation leads to a diffuse cytosolic distribution and mislocalized protein from the late endosomes, indicating that deletion of the diacylglycerol binding-like motif in the mutant protein interferes with normal Rubicon subcellular localization and confirming the pathogenicity of the mutation.

  7. The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans.

    PubMed

    Zhao, Yani; Holmgren, Benjamin T; Hinas, Andrea

    2017-03-01

    Small RNA pathways, including RNA interference (RNAi), play crucial roles in regulation of gene expression. Initially considered to be cytoplasmic, these processes have later been demonstrated to associate with membranes. For example, maturation of late endosomes/multivesicular bodies (MVBs) is required for efficient RNAi, whereas fusion of MVBs to lysosomes appears to reduce silencing efficiency. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane fusion and are thus at the core of membrane trafficking. In spite of this, no SNARE has previously been reported to affect RNAi. Here, we demonstrate that in Caenorhabditis elegans, loss of the conserved SNARE SEC-22 results in enhanced RNAi upon ingestion of double-stranded RNA. Furthermore, SEC-22 overexpression inhibits RNAi in wild-type animals. We find that overexpression of SEC-22 in the target tissue (body wall muscle) strongly suppresses the sec-22(-) enhanced RNAi phenotype, supporting a primary role for SEC-22 in import of RNAi silencing signals or cell autonomous RNAi. A functional mCherry::SEC-22 protein localizes primarily to late endosomes/MVBs and these compartments are enlarged in animals lacking sec-22 SEC-22 interacts with late endosome-associated RNA transport protein SID-5 in a yeast two-hybrid assay and functions in a sid-5-dependent manner. Taken together, our data indicate that SEC-22 reduces RNAi efficiency by affecting late endosome/MVB function, for example, by promoting fusion between late endosomes/MVBs and lysosomes. To our knowledge, this is the first report of a SNARE with a function in small RNA-mediated gene silencing.

  8. The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans

    PubMed Central

    Zhao, Yani; Holmgren, Benjamin T.

    2017-01-01

    Small RNA pathways, including RNA interference (RNAi), play crucial roles in regulation of gene expression. Initially considered to be cytoplasmic, these processes have later been demonstrated to associate with membranes. For example, maturation of late endosomes/multivesicular bodies (MVBs) is required for efficient RNAi, whereas fusion of MVBs to lysosomes appears to reduce silencing efficiency. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane fusion and are thus at the core of membrane trafficking. In spite of this, no SNARE has previously been reported to affect RNAi. Here, we demonstrate that in Caenorhabditis elegans, loss of the conserved SNARE SEC-22 results in enhanced RNAi upon ingestion of double-stranded RNA. Furthermore, SEC-22 overexpression inhibits RNAi in wild-type animals. We find that overexpression of SEC-22 in the target tissue (body wall muscle) strongly suppresses the sec-22(−) enhanced RNAi phenotype, supporting a primary role for SEC-22 in import of RNAi silencing signals or cell autonomous RNAi. A functional mCherry::SEC-22 protein localizes primarily to late endosomes/MVBs and these compartments are enlarged in animals lacking sec-22. SEC-22 interacts with late endosome-associated RNA transport protein SID-5 in a yeast two-hybrid assay and functions in a sid-5-dependent manner. Taken together, our data indicate that SEC-22 reduces RNAi efficiency by affecting late endosome/MVB function, for example, by promoting fusion between late endosomes/MVBs and lysosomes. To our knowledge, this is the first report of a SNARE with a function in small RNA-mediated gene silencing. PMID:27974622

  9. Physiology and pathology of endosome-to-Golgi retrograde sorting.

    PubMed

    Burd, Christopher G

    2011-08-01

    Bidirectional traffic between the Golgi apparatus and the endosomal system sustains the functions of the trans-Golgi network (TGN) in secretion and organelle biogenesis. Export of cargo from the TGN via anterograde trafficking pathways depletes the organelle of sorting receptors, processing proteases, SNARE molecules, and other factors, and these are subsequently retrieved from endosomes via the retrograde pathway. Recent studies indicate that retrograde trafficking is vital to early metazoan development, nutrient homeostasis, and for processes that protect against Alzheimer's and other neurological diseases.

  10. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  11. Analysis of TCR/CD3 Recycling at the Immune Synapse.

    PubMed

    Patrussi, Laura; Baldari, Cosima T

    2017-01-01

    Engagement of the T cell antigen receptor (TCR) by specific ligand bound to the major histocompatibility complex is the primary event that leads to the assembly of the immune synapse (IS). Central to this process is TCR clustering at the T cell-APC contact, which is achieved with the contribution of an endosomal pool that is delivered to the IS by polarized recycling. As the TCR recycling process has not been fully elucidated, we developed methods suitable to quantitate recycling to the plasma membrane of TCR/CD3 complexes that have been engaged at the cell surface and track their traffic through the intracellular vesicular compartments toward the IS.

  12. Phloem-Specific Methionine Recycling Fuels Polyamine Biosynthesis in a Sulfur-Dependent Manner and Promotes Flower and Seed Development1[OPEN

    PubMed Central

    Hajirezaei, Mohammad R.

    2016-01-01

    The Yang or Met Cycle is a series of reactions catalyzing the recycling of the sulfur (S) compound 5′-methylthioadenosine (MTA) to Met. MTA is produced as a by-product in ethylene, nicotianamine, and polyamine biosynthesis. Whether the Met Cycle preferentially fuels one of these pathways in a S-dependent manner remained unclear so far. We analyzed Arabidopsis (Arabidopsis thaliana) mutants with defects in the Met Cycle enzymes 5-METHYLTHIORIBOSE-1-PHOSPHATE-ISOMERASE1 (MTI1) and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (DEP1) under different S conditions and assayed the contribution of the Met Cycle to the regeneration of S for these pathways. Neither mti1 nor dep1 mutants could recycle MTA but showed S-dependent reproductive failure, which was accompanied by reduced levels of the polyamines putrescine, spermidine, and spermine in mutant inflorescences. Complementation experiments with external application of these three polyamines showed that only the triamine spermine could specifically rescue the S-dependent reproductive defects of the mutant plants. Furthermore, expressing gene-reporter fusions in Arabidopsis showed that MTI1 and DEP1 were mainly expressed in the vasculature of all plant parts. Phloem-specific reconstitution of Met Cycle activity in mti1 and dep1 mutant plants was sufficient to rescue their S-dependent mutant phenotypes. We conclude from these analyses that phloem-specific S recycling during periods of S starvation is essential for the biosynthesis of polyamines required for flowering and seed development. PMID:26662272

  13. Analysis of occludin trafficking, demonstrating continuous endocytosis, degradation, recycling and biosynthetic secretory trafficking.

    PubMed

    Fletcher, Sarah J; Iqbal, Mudassar; Jabbari, Sara; Stekel, Dov; Rappoport, Joshua Z

    2014-01-01

    Tight junctions (TJs) link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK) epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes). By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ∼20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes.

  14. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    SciTech Connect

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  15. Isolation and characterization of endosomes from rat liver

    SciTech Connect

    Kennedy, G.C.

    1987-01-01

    Three fractions of rat liver endosomes, called 50 Kg Light, 50 Kg Heavy, and 150 Kg have been isolated on 16% Percoll gradients. The 50 Kg Heavy fraction accumulates ligand as a function of time after injection, using either /sup 125/I-asialoorosomucoid (/sup 125/I-ASOR) or /sup 125/I-immunoglobulin A (/sup 125/I-IgA) as ligands. A pulse-chase protocol was also used to study the kinetics of ligand entry into the endosomal compartments. A double-label, 3,3'-diaminobenzidine (DAB)-induced density shift protocol was used to study the internalization of two ligands with different destinations in the hepatocyte. Rats were injected intraportally with /sup 125/I-ASOR-HRP and /sup 131/I-IgA and the liver was fractionated at various times post-injection. The three ligand-containing endosomal fractions were isolated and each subjected to the DAB shift procedure. This treatment causes organelles containing /sup 125/I-ASOR-HRP and another ligand occupying the same compartment to shift to a higher density. Thus, information on whether the /sup 131/I-IgA is colocalized or segregated from the /sup 125/I-ASOR-HRP can be obtained. The authors have used an instantaneous pulse, temperature shift protocol to study the heterogeneity of these three endosomal fractions isolated from rat liver.

  16. Structural Basis for Endosomal Targeting by the Bro1 Domain

    PubMed Central

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  17. Structural basis for endosomal targeting by the Bro1 domain.

    PubMed

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M; Odorizzi, Greg; Hurley, James H

    2005-06-01

    Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs.

  18. Endosomal system genetics and autism spectrum disorders: A literature review.

    PubMed

    Patak, Jameson; Zhang-James, Yanli; Faraone, Stephen V

    2016-06-01

    Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted.

  19. Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4.

    PubMed

    Zhang, Fan; Gaur, Naseem A; Hasek, Jiri; Kim, Soon-ja; Qiu, Hongfang; Swanson, Mark J; Hinnebusch, Alan G

    2008-11-01

    The late endosome (MVB) plays a key role in coordinating vesicular transport of proteins between the Golgi complex, vacuole/lysosome, and plasma membrane. We found that deleting multiple genes involved in vesicle fusion at the MVB (class C/D vps mutations) impairs transcriptional activation by Gcn4, a global regulator of amino acid biosynthetic genes, by decreasing the ability of chromatin-bound Gcn4 to stimulate preinitiation complex assembly at the promoter. The functions of hybrid activators with Gal4 or VP16 activation domains are diminished in class D mutants as well, suggesting a broader defect in activation. Class E vps mutations, which impair protein sorting at the MVB, also decrease activation by Gcn4, provided they elicit rapid proteolysis of MVB cargo proteins in the aberrant late endosome. By contrast, specifically impairing endocytic trafficking from the plasma membrane, or vesicular transport to the vacuole, has a smaller effect on Gcn4 function. Thus, it appears that decreasing cargo proteins in the MVB through impaired delivery or enhanced degradation, and not merely the failure to transport cargo properly to the vacuole or downregulate plasma membrane proteins by endocytosis, is required to attenuate substantially transcriptional activation by Gcn4.

  20. Recycling Lesson Plans.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Environmental Resources, Harrisburg.

    This document contains lesson plans about recycling for teachers in grades K-12. Titles include: (1) "Waste--Where Does It Come From? Where Does It Go?" (2) "Litter Detectives," (3) "Classroom Paper Recycling," (4) "Recycling Survey," (5) "Disposal and Recycling Costs," (6) "Composting…

  1. Green Science: Revisiting Recycling

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  2. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function.

    PubMed

    Ejzykowicz, Daniele E; Locken, Kristopher M; Ruiz, Fiona J; Manandhar, Surya P; Olson, Daniel K; Gharakhanian, Editte

    2016-11-03

    Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.

  3. Endosomal Escape and Transfection Efficiency of PEGylated Cationic Lipid–DNA Complexes Prepared with an Acid-Labile PEG-Lipid

    PubMed Central

    Chan, Chia-Ling; Majzoub, Ramsey N.; Shirazi, Rahau S.; Ewert, Kai K.; Chen, Yen-Ju; Liang, Keng S.

    2012-01-01

    Cationic liposome–DNA (CL–DNA) complexes are being pursued as nonviral gene delivery systems for use in applications that include clinic trials. However, to compete with viral vectors for systemic delivery in vivo, their efficiencies and pharmacokinetics need to be improved. The addition of poly (ethylene glycol)-lipids (PEGylation) prolongs circulation lifetimes of liposomes, but inhibits cellular uptake and endosomal escape of CL–DNA complexes. We show that this limits their transfection efficiency (TE) in a manner dependent on the amount of PEG-lipid, the lipid/DNA charge ratio, and the lipid membrane charge density. To improve endosomal escape of PEGylated CL–DNA complexes, we prepared an acid-labile PEG-lipid (HPEG2K-lipid, PEG MW 2000) which is designed to lose its PEG chains at the pH of late endosomes. The HPEG2K-lipid and a similar but acid-stable PEG-lipid were used to prepare PEGylated CL–DNA complexes. TLC and dynamic light scattering showed that HPEG2K-CL–DNA complexes are stable at pH 7.4 for more than 24 hours, but the PEG chains are cleaved at pH 5 within one hour, leading to complex aggregation. The acid-labile HPEG2K-CL–DNA complexes showed enhanced TE over complexes stabilized with the acid-stable PEG-lipid. Live-cell imaging showed that both types of complexes were internalized to quantitatively similar particle distributions within the first 2 hours of incubation with cells. Thus, we attribute the increased TE of the HPEG2K-CL–DNA complexes to efficient endosomal escape, enabled by the acid-labile HPEG2K-lipid which sheds its PEG chains in the low-pH environment of late endosomes, effectively switching on the electrostatic interactions that promote fusion of the membranes of complex and endosome. PMID:22469293

  4. Action in the axon: generation and transport of signaling endosomes.

    PubMed

    Cosker, Katharina E; Courchesne, Stephanie L; Segal, Rosalind A

    2008-06-01

    Neurons extend axonal processes over long distances, necessitating efficient transport mechanisms to convey target-derived neurotrophic survival signals from remote distal axons to cell bodies. Retrograde transport, powered by dynein motors, supplies cell bodies with survival signals in the form of 'signaling endosomes'. In this review, we will discuss new advances in our understanding of the motor proteins that bind to and move signaling components in a retrograde direction and discuss mechanisms that might specify distinct neuronal responses to spatially restricted neurotrophin signals. Disruption of retrograde transport leads to a variety of neurodegenerative diseases, highlighting the role of retrograde transport of signaling endosomes for axonal maintenance and the importance of efficient transport for neuronal survival and function.

  5. YEAST Dynamin interaction with ESCRT proteins at the endosome.

    PubMed

    Banh, Bryan T; McDermott, Hyoeun; Woodman, Sara; Gadila, Shiva Kumar Goud; Saimani, Uma; Short, John Cw; Kim, Kyoungtae

    2017-02-09

    The dynamin-like protein, Vps1, is a GTPase involved in cargo sorting and membrane remodeling in multiple cellular trafficking pathways. Recently, Vps1 has been shown to genetically interact with ESCRT subunits. We tested the hypothesis that the functional connection of Vps1 with some of these subunits of ESCRT complexes occurs via a physical interaction. By utilizing the yeast two-hybrid system, we revealed that Vps1 physically interacts with the ESCRT-II subunits, Vps22 and Vps36, and the ESCRT-III subunit Vps24. We found that Vps1 and ESCRT-II components colocalize with Pep12, an endosomal marker. Additionally, loss of Vps1 or depletion of the GTPase activity of Vps1 results in a moderate defect in Cps1 targeting to the vacuole. Here, we discussed the potential implications of Vps1 and ESCRT interaction and their roles in the endosome-to-vacuole traffic.

  6. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    PubMed

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  7. Intracellular trafficking of recycling apolipoprotein E in Chinese hamster ovary cells.

    PubMed

    Braun, Nicole A; Mohler, Peter J; Weisgraber, Karl H; Hasty, Alyssa H; Linton, MacRae F; Yancey, Patricia G; Su, Yan Ru; Fazio, Sergio; Swift, Larry L

    2006-06-01

    We have investigated apolipoprotein E (apoE) recycling in Chinese hamster ovary (CHO) cells, a peripheral cell that does not produce lipoproteins or express apoE. Using a pulse-chase protocol in which cells were pulsed with 125I-apoE-VLDL and chased for different periods, approximately 30% of the apoE internalized during the pulse was resecreted within a 4 h chase in a relatively lipid-free state. The addition of lysosomotropic agents or brefeldin A had no effect on apoE recycling. Unlike previous results with hepatocytes and macrophages, neither apoA-I nor upregulation of ABCA1 stimulated apoE recycling. However, cyclodextrin, which extracts cholesterol from plasma membrane lipid rafts, increased recycling. Confocal studies revealed that apoE, internalized during a 1 h pulse, colocalizes with early endosomal antigen-1, Rab5, Rab11a, and lysobisphosphatidic acid but not with lysosomal-associated membrane protein-1. Colocalization of apoE and Rab11a persisted even after cells had been chased for 1 h, suggesting a pool of apoE within the endosomal recycling compartment (ERC). Our data suggest that apoE recycling in CHO cells is linked to cellular cholesterol removal via the ERC and phospholipid-containing acceptors in a pathway alternative to the ABCA1-apoA-I axis.

  8. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering.

  9. Cbl controls EGFR fate by regulating early endosome fusion.

    PubMed

    Visser Smit, Gina D; Place, Trenton L; Cole, Sara L; Clausen, Kathryn A; Vemuganti, Soumya; Zhang, Guojuan; Koland, John G; Lill, Nancy L

    2009-12-22

    Amino acid residues 1 to 434 of the E3 ubiquitin ligase Cbl control signaling of the epidermal growth factor receptor (EGFR) by enhancing its ubiquitination, down-regulation, and lysosomal degradation. This region of Cbl comprises a tyrosine kinase-binding domain, a linker region, a really interesting new gene finger (RF), and a subset of the residues of the RF tail. In experiments with full-length alanine substitution mutants, we demonstrated that the RF tail of Cbl regulated biochemically distinct checkpoints in the endocytosis of EGFR. The Cbl- and ubiquitin-dependent degradation of the regulator of internalization hSprouty2 was compromised by the Val(431)--> Ala mutation, whereas the Cbl- and EGFR-dependent dephosphorylation or degradation of the endosomal trafficking regulator Hrs was compromised by the Phe(434)--> Ala mutation. Deregulated phosphorylation of Hrs correlated with inhibition of the fusion of early endosomes and of the degradation of EGFR. This study provides the first evidence that Cbl regulates receptor fate by controlling the fusion of sorting endosomes. We postulate that it does so by modulating the abundance of tyrosine-phosphorylated Hrs.

  10. CBL CONTROLS EGF RECEPTOR FATE BY REGULATING EARLY ENDOSOME FUSION#

    PubMed Central

    Visser Smit, Gina D.; Place, Trenton L.; Cole, Sara L.; Clausen, Kathryn A.; Vemuganti, Soumya; Zhang, Guojuan; Koland, John G.; Lill, Nancy L.

    2010-01-01

    Residues 1-434 of the ubiquitin ligase Cbl control epidermal growth factor receptor (EGF-R) signaling by enhancing receptor ubiquitination, downregulation, and lysosomal degradation. Cbl 1-434 comprises a tyrosine kinase-binding domain, linker region, RING finger (RF), and a subset of the RF tail amino acids 420-436. Using full-length alanine substitution mutants, we demonstrate that the Cbl RF tail regulates biochemically distinct EGF-R endocytosis checkpoints: 1) Cbl- and ubiquitin-dependent degradation of hSprouty2 upstream of EGF-R ubiquitination (compromised by Cbl V431A); and 2) Cbl- and EGF-R-dependent dephosphorylation or degradation of the endosomal trafficking regulator Hrs (compromised by Cbl F434A). Deregulated Hrs phosphorylation correlates with the inhibition of both early endosome fusion and EGF-R degradation. This is the first evidence that Cbl can regulate receptor fate by controlling the fusion of sorting endosomes. We postulate that it does so by modulating the generation and loss of tyrosine phosphorylated Hrs. PMID:20029031

  11. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    PubMed Central

    2012-01-01

    Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ). We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD)1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs. PMID:22974368

  12. Recycled Art: Create Puppets Using Recycled Objects.

    ERIC Educational Resources Information Center

    Clearing, 2003

    2003-01-01

    Presents an activity from "Healthy Foods from Healthy Soils" for making puppets using recycled food packaging materials. Includes background information, materials, instructions, literature links, resources, and benchmarks. (NB)

  13. Challenges in metal recycling.

    PubMed

    Reck, Barbara K; Graedel, T E

    2012-08-10

    Metals are infinitely recyclable in principle, but in practice, recycling is often inefficient or essentially nonexistent because of limits imposed by social behavior, product design, recycling technologies, and the thermodynamics of separation. We review these topics, distinguishing among common, specialty, and precious metals. The most beneficial actions that could improve recycling rates are increased collection rates of discarded products, improved design for recycling, and the enhanced deployment of modern recycling methodology. As a global society, we are currently far away from a closed-loop material system. Much improvement is possible, but limitations of many kinds--not all of them technological--will preclude complete closure of the materials cycle.

  14. Benchmarking in municipal solid waste recycling.

    PubMed

    Lavee, Doron; Khatib, Mahmood

    2010-11-01

    The paper presents an analysis of the factors influencing the recycling potential of municipalities in Israel, including population size and density, geographic location, current waste levels, and current waste management system. We employ a standard regression analysis in order to develop an econometric model to predict where potential for economically efficient recycling is highest. By applying this model to readily available data, it is possible to predict with close to 90% accuracy whether or not recycling will be economically efficient in any given municipality. Government agencies working to promote advanced waste management solutions have at their disposal only limited resources and budget, and so must concentrate their efforts where they will be most effective. The paper thus provides policy-makers with a powerful tool to help direct their efforts to promote recycling at those municipalities where it is indeed optimal.

  15. Fluorescent biosensors illuminate calcium levels within defined beta-cell endosome subpopulations.

    PubMed

    Albrecht, Tobias; Zhao, Yongxin; Nguyen, Trang Hai; Campbell, Robert E; Johnson, James D

    2015-04-01

    Live cell imaging has revealed that calcium ions (Ca(2+)) pass in and out of many cellular organelles. However, technical hurdles have limited measurements of Ca(2+) in acidic organelles, such as endosomes. Although evidence hints that endosomes play a role in Ca(2+) signaling, direct measurements within endosomal lumina represent one of the final frontiers in organelle imaging. To measure Ca(2+) in a TiVAMP-positive endosome sub-population, the pH-resistant ratiometric Ca(2+) biosensor GEM-GECO1 and the ratiometric pH biosensor mKeima were used. A positive correlation between acidic endosomal pH and higher Ca(2+) was observed within these Rab5a- and Rab7-positive compartments. Ca(2+) concentration in most endosomes was estimated to be below 2μM, lower than Ca(2+) levels in several other intracellular stores, indicating that endosomes may take up Ca(2+) during physiological stimulation. Indeed, endosomes accumulated Ca(2+) during glucose-stimulation, a condition where endosomal pH did not change. Our biosensors permitted the first measurements revealing a role for endosomes in cellular Ca(2+) homeostasis during physiological stimulation.

  16. The arsenic-based cure of acute promyelocytic leukemia promotes cytoplasmic sequestration of PML and PML/RARA through inhibition of PML body recycling.

    PubMed

    Lång, Emma; Grudic, Amra; Pankiv, Serhiy; Bruserud, Oystein; Simonsen, Anne; Bjerkvig, Rolf; Bjørås, Magnar; Bøe, Stig Ove

    2012-07-26

    Arsenic in the form of arsenic trioxide (ATO) is used as a therapeutic drug for treatment of acute promyelocytic leukemia (APL). The mechanism by which this agent cures this disease was previously shown to involve direct interactions between ATO and the promyelocytic leukemia protein (PML), as well as accelerated degradation of the APL-associated fusion oncoprotein PML/retinoic acid receptor α (RARA). Here we investigated the fate of PML-generated nuclear structures called PML bodies in ATO-treated cells. We found that ATO inhibits formation of progeny PML bodies while it stabilizes cytoplasmic precursor compartments, referred to as cytoplasmic assemblies of PML and nucleoporins (CyPNs), after cell division. This block in PML body recycling is readily detected at pharmacologic relevant ATO concentrations (0.02-0.5μM) that do not cause detectable cell-cycle defects, and it does not require modification of PML by SUMOylation. In addition, PML and PML/RARA carrying mutations previously identified in ATO-resistant APL patients are impeded in their ability to become sequestered within CyPNs. Thus, ATO may inhibit nuclear activities of PML and PML/RARA in postmitotic cells through CyPN-dependent cytoplasmic sequestration.

  17. Complementary roles of the neuron-enriched endosomal proteins NEEP21 and calcyon in neuronal vesicle trafficking.

    PubMed

    Muthusamy, Nagendran; Chen, Yong-Jun; Yin, Dong-Min; Mei, Lin; Bergson, Clare

    2015-01-01

    Understanding mechanisms governing the trafficking of transmembrane (TM) cargoes to synapses and other specialized membranes in neurons represents a long-standing challenge in cell biology. Investigation of the neuron-enriched endosomal protein of 21 kDa (NEEP21, or NSG1or P21) and Calcyon (Caly, or NSG3) indicates that the emergence of the NEEP21/Caly/P19 gene family could play a vital role in the success of these mechanisms in vertebrates. The upshot of a sizeable body of work is that the NEEP21 and Caly perform distinct endocytic and recycling functions, which impact (i) α amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor trafficking at excitatory synapses; (ii) transport to/in neuronal axons; as well as (iii) proteolytic processing of amyloid precursor protein and neuregulin 1, suggesting roles in neuron development, synaptic function, and neurodegeneration. We argue that their distinct effects on cargo endocytosis and recycling depend on interactions with vesicle trafficking and synaptic scaffolding proteins. As they play complementary, but opposing roles in cargo endocytosis, recycling, and degradation, balancing NEEP21 and Caly expression levels or activity could be important for homeostasis in a variety of signaling pathways, and also lead to a novel therapeutic strategy for disorders like Alzheimer's disease and schizophrenia. This review focuses on two closely related, neuron-enriched endosomal proteins: NEEP21 and Calcyon which perform distinct roles in regulating receptor endocytosis, recycling, and degradation. Based on an in-depth examination of the literature, we argue that these two proteins carry out complementary yet sometimes opposing vesicle trafficking functions that impact excitatory transmission, transcytosis, axonal transport, and also proteolytic processing by beta-secretase I (BACE1). Finally, we propose that balancing NEEP21 and Calcyon expression and/or activity could be important for homeostasis in a variety

  18. Recycling Research. Tracking Trash.

    ERIC Educational Resources Information Center

    DeLago, Louise Furia

    1991-01-01

    An activity in which students research the effectiveness of recycling is presented. Students compare the types and amount of litter both before and after recycling is implemented. Directions for the activity and a sample data sheet are included. (KR)

  19. Certified Electronics Recyclers

    EPA Pesticide Factsheets

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  20. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB

    PubMed Central

    Ruhe, Frederike; Olling, Alexandra; Abromeit, Rasmus; Rataj, Dennis; Grieschat, Matthias; Zeug, Andre; Gerhard, Ralf; Alekov, Alexi

    2017-01-01

    Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities

  1. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB.

    PubMed

    Ruhe, Frederike; Olling, Alexandra; Abromeit, Rasmus; Rataj, Dennis; Grieschat, Matthias; Zeug, Andre; Gerhard, Ralf; Alekov, Alexi

    2017-01-01

    Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities

  2. Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22

    PubMed Central

    Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen

    2015-01-01

    ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex

  3. Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation.

    PubMed

    Vistein, Rachel; Puthenveedu, Manojkumar A

    2014-11-01

    The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here, we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways.

  4. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    PubMed

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation.

  5. Stop or Go? Endosome Positioning in the Establishment of Compartment Architecture, Dynamics, and Function.

    PubMed

    Neefjes, Jacques; Jongsma, Marlieke M L; Berlin, Ilana

    2017-03-28

    The endosomal system constitutes a key negotiator between the environment of a cell and its internal affairs. Comprised of a complex membranous network, wherein each vesicle can in principle move autonomously throughout the cell, the endosomal system operates as a coherent unit to optimally face external challenges and maintain homeostasis. Our appreciation of how individual endosomes are controlled in time and space to best serve their collective purpose has evolved dramatically in recent years. In light of these efforts, the endoplasmic reticulum (ER) - with its expanse of membranes permeating the cytoplasmic space - has emerged as a potent spatiotemporal organizer of endosome biology. We review the latest advances in our understanding of the mechanisms underpinning endosomal transport and positioning, with emphasis on the contributions from the ER, and offer a perspective on how the interplay between these aspects shapes the architecture and dynamics of the endosomal system and drives its myriad cellular functions.

  6. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+NIK+ signalosome on Rab5+ endosomes

    PubMed Central

    Jane-wit, Dan; Surovtseva, Yulia V.; Qin, Lingfeng; Li, Guangxin; Liu, Rebecca; Clark, Pamela; Manes, Thomas D.; Wang, Chen; Kashgarian, Michael; Kirkiles-Smith, Nancy C.; Tellides, George; Pober, Jordan S.

    2015-01-01

    Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB–inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5+endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC+ endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt+NIK+ signalosome on Rab5+ endosomes. PMID:26195760

  7. TVP23 interacts genetically with the yeast SNARE VTI1 and functions in retrograde transport from the early endosome to the late Golgi.

    PubMed

    Stein, Ivar S; Gottfried, Anna; Zimmermann, Jana; Fischer von Mollard, Gabriele

    2009-04-01

    SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins contribute to specific recognition between transport vesicles and target membranes and are required for fusion of membranes. The SNARE Vti1p is required for several transport steps between late Golgi, endosomes and the vacuole in the yeast Saccharomyces cerevisiae. Here, we identified the late Golgi membrane protein TVP23 as a multicopy suppressor of the growth defect in vti1-2 cells. By contrast, the growth defect in vti1-11 cells was not suppressed by TVP23 overexpression. Deletion of TVP23 aggravated the growth defect in vti1-2 cells. Genetic interactions between TVP23 and vti1-2 were not found in transport from the late Golgi via the late endosome to the vacuole or in transport from the Golgi directly to the vacuole. These results suggest that Tvp23p is not involved in forward transport from the late Golgi. Therefore retrograde traffic to the late Golgi was analysed. vti1-2 cells accumulated GFP (green fluorescent protein)-Snc1p within the cell, indicating that retrograde transport from the early endosome to the late Golgi was defective in these cells. Deletion of TVP23 in vti1-2 cells resulted in a synthetic defect in GFP-Snc1p recycling, whereas tvp23Delta cells had a slight defect. These results indicate that Tvp23p performs a partially redundant function in retrograde transport from the early endosome to the late Golgi. This transport step was unaffected in vti1-11 cells, providing an explanation for the allele-specific multicopy suppression by TVP23.

  8. Recycling and the automobile

    SciTech Connect

    Holt, D.J.

    1993-10-01

    This article examines the current status of automobile recycling and contains a summary of a survey which points out the major drivers and their impacts on automotive recycling. The topics of the article include computerized dismantling, polyurethane, sheet molding compound, polyester, thermoplastic polyester, recycling salvaged parts, vinyl and automotive shredder residue.

  9. Buying recycled helps market

    SciTech Connect

    Watts, G.

    1996-08-01

    The waste reduction and recycling program of Thousand Oaks, California is summarized. Descriptions of the program, market development for recycled products, business development, and economic development are provided. The emphasis of the program is on market development for recycled products. Procurement guidelines used by the city are reprinted in the paper.

  10. European update on recycling

    SciTech Connect

    Birch, S.

    1993-10-01

    This article discusses the current status of recycling of automobiles in Europe based on a report compiled by Euromotor Reports and also discusses the move toward designing automobiles for disassembly to aid in the recycling process. Plastics and rubber are the emphasis of the report along with copper and aluminum. Problem areas in recycling or dismantling are also discussed.

  11. The Sustainability of Recycling.

    ERIC Educational Resources Information Center

    Juniper, Christopher

    1993-01-01

    Describes the need for closing the business cycle in the recycling process. Discusses whether the government should mandate or the free market create uses for recycled products. Presents challenges associated with marketing recycled materials including what has been and what needs to be done to stimulate markets, encourage business, and balance…

  12. Rethink, Rework, Recycle.

    ERIC Educational Resources Information Center

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  13. A Functional Role for the GCC185 Golgin in Mannose 6-Phosphate Receptor Recycling

    PubMed Central

    Reddy, Jonathan V.; Burguete, Alondra Schweizer; Sridevi, Khambhampaty; Ganley, Ian G.; Nottingham, Ryan M.

    2006-01-01

    Mannose 6-phosphate receptors (MPRs) deliver newly synthesized lysosomal enzymes to endosomes and then recycle to the Golgi. MPR recycling requires Rab9 GTPase; Rab9 recruits the cytosolic adaptor TIP47 and enhances its ability to bind to MPR cytoplasmic domains during transport vesicle formation. Rab9-bearing vesicles then fuse with the trans-Golgi network (TGN) in living cells, but nothing is known about how these vesicles identify and dock with their target. We show here that GCC185, a member of the Golgin family of putative tethering proteins, is a Rab9 effector that is required for MPR recycling from endosomes to the TGN in living cells, and in vitro. GCC185 does not rely on Rab9 for its TGN localization; depletion of GCC185 slightly alters the Golgi ribbon but does not interfere with Golgi function. Loss of GCC185 triggers enhanced degradation of mannose 6-phosphate receptors and enhanced secretion of hexosaminidase. These data assign a specific pathway to an interesting, TGN-localized protein and suggest that GCC185 may participate in the docking of late endosome-derived, Rab9-bearing transport vesicles at the TGN. PMID:16885419

  14. Endocytosis and Recycling of Tight Junction Proteins in Inflammation

    PubMed Central

    Utech, Markus; Mennigen, Rudolf; Bruewer, Matthias

    2010-01-01

    A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC) consisting of tight junctions (TJs) and adherens junctions (AJs) and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-γ), induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells. PMID:20011071

  15. Increased flexibility and liposome-binding capacity of CD1e at endosomal pH.

    PubMed

    Bushmarina, Natalia; Tourne, Sylvie; Giacometti, Gaëlle; Signorino-Gelo, François; Garcia-Alles, Luis F; Cazenave, Jean-Pierre; Hanau, Daniel; de la Salle, Henri

    2011-06-01

    The plasma membrane proteins CD1a, CD1b and CD1c are expressed by human dendritic cells, the professional antigen-presenting cells of the immune system, and present lipid antigens to T lymphocytes. CD1e belongs to the same family of molecules, but accumulates as a membrane-associated form in the Golgi compartments of immature dendritic cells and as a soluble cleaved form in the lysosomes of mature dendritic cells. In lysosomes, the N-terminal propeptide of CD1e is also cleaved, but the functional consequences of this step are unknown. Here, we investigated how the pH changes encountered during transport to lysosomes affect the structure of CD1e and its ligand-binding properties. Circular dichroism studies demonstrated that the secondary and tertiary structures of recombinant CD1e were barely altered by pH changes. Nevertheless, at acidic pH, guanidium chloride-induced unfolding of CD1e molecules required lower concentrations of denaturing agent. The nonfunctional L194P allelic variant was found to be structurally less stable at acidic pH than the functional forms, providing an explanation for the lack of its detection in lysosomes. The number of water-exposed hydrophobic patches that bind 8-anilinonaphthalene-1-sulfonate was higher in acidic conditions, especially for the L194P variant. CD1e molecules interacted with lipid surfaces enriched in anionic lipids, such as bis(monoacylglycero)phosphate, a late endosomal/lysosomal lipid, especially at acidic pH, or when the propeptide was present. Altogether, these data indicate that, in the late endosomes/lysosomes of DCs, the acid pH promotes the binding of lipid antigens to CD1e through increased hydrophobic and ionic interactions.

  16. Cytomegalovirus immune evasion by perturbation of endosomal trafficking

    PubMed Central

    Lučin, Pero; Mahmutefendić, Hana; Blagojević Zagorac, Gordana; Ilić Tomaš, Maja

    2015-01-01

    Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms. PMID:25263490

  17. G Protein–Coupled Receptor Sorting to Endosomes and Lysosomes

    PubMed Central

    Marchese, Adriano; Paing, May M.; Temple, Brenda R.S.; Trejo, JoAnn

    2010-01-01

    The heptahelical G protein–coupled receptors (GPCRs) belong to the largest family of cell surface signaling receptors encoded in the human genome. GPCRs signal to diverse extracellular stimuli and control a vast number of physiological responses, making this receptor class the target of nearly half the drugs currently in use. In addition to rapid desensitization, receptor trafficking is crucial for the temporal and spatial control of GPCR signaling. Sorting signals present in the intracytosolic domains of GPCRs regulate trafficking through the endosomal-lysosomal system. GPCR internalization is mediated by serine and threonine phosphorylation and arrestin binding. Short, linear peptide sequences including tyrosine- and dileucine-based motifs, and PDZ ligands that are recognized by distinct endocytic adaptor proteins also mediate internalization and endosomal sorting of GPCRs. We present new data from bioinformatic searches that reveal the presence of these types of sorting signals in the cytoplasmic tails of many known GPCRs. Several recent studies also indicate that the covalent modification of GPCRs with ubiquitin serves as a signal for internalization and lysosomal sorting, expanding the diversity of mechanisms that control trafficking of mammalian GPCRs. PMID:17995450

  18. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases.

    PubMed

    Valero, Ruth A; Oeste, Clara L; Stamatakis, Konstantinos; Ramos, Irene; Herrera, Mónica; Boya, Patricia; Pérez-Sala, Dolores

    2010-09-01

    Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.

  19. ARHGAP22 Localizes at Endosomes and Regulates Actin Cytoskeleton

    PubMed Central

    Mori, Mamiko; Saito, Koji; Ohta, Yasutaka

    2014-01-01

    Rho small GTPases control cell morphology and motility through the rearrangement of actin cytoskeleton. We have previously shown that FilGAP, a Rac-specific GAP, binds to the actin-cross-linking protein Filamin A (FLNa) and suppresses Rac-dependent lamellae formation and cell spreading. ARHGAP22 is a member of FilGAP family, and implicated in the regulation of tumor cell motility. However, little is known concerning the cellular localization and mechanism of regulation at the molecular level. Whereas FilGAP binds to FLNa and localizes to lamellae, we found that ARHGAP22 did not bind to FLNa. Forced expression of ARHGAP22 induced enlarged vesicular structures containing the endocytic markers EEA1, Rab5, and Rab11. Moreover, endogenous ARHGAP22 is co-localized with EEA1- and Rab11-positive endosomes but not with trans-Golgi marker TNG46. When constitutively activated Rac Q61L mutant was expressed, ARHGAP22 is co-localized with Rac Q61L at membrane ruffles, suggesting that ARHGAP22 is translocated from endosomes to membrane ruffles to inactivate Rac. Forced expression of ARHGAP22 suppressed lamellae formation and cell spreading. Conversely, knockdown of endogenous ARHGAP22 stimulated cell spreading. Thus, our findings suggest that ARHGAP22 controls cell morphology by inactivating Rac but its localization is not mediated by its interaction with FLNa. PMID:24933155

  20. Characterization of the late endosomal ESCRT machinery in Trypanosoma brucei.

    PubMed

    Silverman, Jason S; Muratore, Katherine A; Bangs, James D

    2013-10-01

    The multivesicular body (MVB) is a specialized Rab7+ late endosome (LE) containing multiple intralumenal vesicles that function in targeting ubiquitinylated cell surface proteins to the lysosome for degradation. African trypanosomes lack a morphologically well-defined MVB, but contain orthologs of the ESCRT (Endosomal Sorting Complex Required for Transport) machinery that mediates MVB formation. We investigate the role of TbVps23, an early ESCRT component, and TbVps4, the terminal ESCRT ATPase, in lysosomal trafficking in bloodstream form trypanosomes. Both localize to the TbRab7+ LE and RNAi silencing of each rapidly blocks growth. TbVps4 silencing results in approximately threefold accumulation of TbVps23 at the LE, consistent with blocking terminal ESCRT disassembly. Trafficking of endocytic and biosynthetic cargo, but not default lysosomal reporters, is also negatively affected. Others reported that TbVps23 mediates ubiquitin-dependent lysosomal degradation of invariant surface glycoproteins (ISG65) (Leung et al., Traffic 2008;9:1698-1716). In contrast, we find that TbVps23 ablation does not affect ISG65 turnover, while TbVps4 silencing markedly enhances lysosomal degradation. We propose several models to accommodate these results, including that the ESCRT machinery actually retrieves ISG65 from the LE to earlier endocytic compartments, and in its absence ISG65 traffics more efficiently to the lysosome. Overall, these results confirm that the ESCRT machinery is essential in Trypanosoma brucei and plays important and novel role(s) in LE function in trypanosomes.

  1. Structure of the ESCRT-II endosomal trafficking complex.

    PubMed

    Hierro, Aitor; Sun, Ji; Rusnak, Alexander S; Kim, Jaewon; Prag, Gali; Emr, Scott D; Hurley, James H

    2004-09-09

    The multivesicular-body (MVB) pathway delivers transmembrane proteins and lipids to the lumen of the endosome. The multivesicular-body sorting pathway has crucial roles in growth-factor-receptor downregulation, developmental signalling, regulation of the immune response and the budding of certain enveloped viruses such as human immunodeficiency virus. Ubiquitination is a signal for sorting into the MVB pathway, which also requires the functions of three protein complexes, termed ESCRT-I, -II and -III (endosomal sorting complex required for transport). Here we report the crystal structure of the core of the yeast ESCRT-II complex, which contains one molecule of the Vps protein Vps22, the carboxy-terminal domain of Vps36 and two molecules of Vps25, and has the shape of a capital letter 'Y'. The amino-terminal coiled coil of Vps22 and the flexible linker leading to the ubiquitin-binding NZF domain of Vps36 both protrude from the tip of one branch of the 'Y'. Vps22 and Vps36 form nearly equivalent interactions with the two Vps25 molecules at the centre of the 'Y'. The structure suggests how ubiquitinated cargo could be passed between ESCRT components of the MVB pathway through the sequential transfer of ubiquitinated cargo from one complex to the next.

  2. Cellular Uptake Mechanisms and Endosomal Trafficking of Supercharged Proteins

    PubMed Central

    Thompson, David B.; Villaseñor, Roberto; Dorr, Brent M.; Zerial, Marino; Liu, David R.

    2012-01-01

    Summary Supercharged proteins can deliver functional macromolecules into the cytoplasm of mammalian cells with potencies that exceed those of cationic peptides. The structural features of supercharged proteins that determine their delivery effectiveness and the intracellular fate of supercharged proteins once they enter cells have not yet been studied. Using a large set of supercharged GFP (scGFP) variants, we found that the level of cellular uptake is sigmoidally related to net charge, and that scGFPs enter cells through multiple pathways including clathrin-dependent endocytosis and macropinocytosis. Supercharged proteins activate Rho and ERK1/2, and also alter the endocytic transport of transferrin and EGF. Finally, we discovered that the intracellular trafficking of endosomes containing scGFPs is altered in a manner that correlates with protein delivery potency. Collectively, our findings establish basic structure-activity relationships of supercharged proteins and implicate the modulation of endosomal trafficking as a determinant of cell-penetration and macromolecule-delivery efficiency. PMID:22840771

  3. An Endosomal NAADP-Sensitive Two-Pore Ca(2+) Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling.

    PubMed

    Kilpatrick, Bethan S; Eden, Emily R; Hockey, Leanne N; Yates, Elizabeth; Futter, Clare E; Patel, Sandip

    2017-02-14

    Membrane contact sites are regions of close apposition between organelles that facilitate information transfer. Here, we reveal an essential role for Ca(2+) derived from the endo-lysosomal system in maintaining contact between endosomes and the endoplasmic reticulum (ER). Antagonizing action of the Ca(2+)-mobilizing messenger NAADP, inhibiting its target endo-lysosomal ion channel, TPC1, and buffering local Ca(2+) fluxes all clustered and enlarged late endosomes/lysosomes. We show that TPC1 localizes to ER-endosome contact sites and is required for their formation. Reducing NAADP-dependent contacts delayed EGF receptor de-phosphorylation consistent with close apposition of endocytosed receptors with the ER-localized phosphatase PTP1B. In accord, downstream MAP kinase activation and mobilization of ER Ca(2+) stores by EGF were exaggerated upon NAADP blockade. Membrane contact sites between endosomes and the ER thus emerge as Ca(2+)-dependent hubs for signaling.

  4. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.

    PubMed

    Sriram, V; Krishnan, K S; Mayor, Satyajit

    2003-05-12

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.

  5. A coat of filamentous actin prevents clustering of late-endosomal vacuoles in vivo.

    PubMed

    Drengk, Anja; Fritsch, Jürgen; Schmauch, Christian; Rühling, Harald; Maniak, Markus

    2003-10-14

    The endocytic pathway depends on the actin cytoskeleton. Actin contributes to internalization at the plasma membrane and to subsequent trafficking steps like propulsion through the cytoplasm, fusion of phagosomes with early endosomes, and transport from early to late endosomes. In vitro studies with mammalian endosomes and yeast vacuoles implicate actin in membrane fusion. Here, we investigate the function of the actin coat that surrounds late endosomes in Dictyostelium. Latrunculin treatment leads to aggregation of these endosomes into grape-like clusters and completely blocks progression of endocytic marker. In addition, the cells round up and stop moving. Because this drug treatment perturbs all actin assemblies in the cell simultaneously, we used a novel targeting approach to specifically study the function of the cytoskeleton in one subcellular location. To this end, we constructed a hybrid protein targeting cofilin, an actin depolymerizing protein, to late endosomes. As a consequence, the endosomal compartments lost their actin coats and aggregated, but these cells remained morphologically normal, and the kinetics of endocytic marker trafficking were unaltered. Therefore, the actin coat prevents the clustering of endosomes, which could be one safeguard mechanism precluding their docking and fusion.

  6. SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles

    PubMed Central

    Kubo, Keiji; Kobayashi, Minako; Nozaki, Shohei; Yagi, Chikako; Hatsuzawa, Kiyotaka; Katoh, Yohei; Shin, Hye-Won; Takahashi, Senye; Nakayama, Kazuhisa

    2015-01-01

    ABSTRACT We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn–TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25. PMID:26092867

  7. Improving the Endosomal Escape of Cell-Penetrating Peptides and Their Cargos: Strategies and Challenges

    PubMed Central

    Erazo-Oliveras, Alfredo; Muthukrishnan, Nandhini; Baker, Ryan; Wang, Ting-Yi; Pellois, Jean-Philippe

    2012-01-01

    Cell penetrating peptides (CPPs) can deliver cell-impermeable therapeutic cargos into cells. In particular, CPP-cargo conjugates tend to accumulate inside cells by endocytosis. However, they often remain trapped inside endocytic organelles and fail to reach the cytosolic space of cells efficiently. In this review, the evidence for CPP-mediated endosomal escape is discussed. In addition, several strategies that have been utilized to enhance the endosomal escape of CPP-cargos are described. The recent development of branched systems that display multiple copies of a CPP is presented. The use of viral or synthetic peptides that can disrupt the endosomal membrane upon activation by the low pH of endosomes is also discussed. Finally, we survey how CPPs labeled with chromophores can be used in combination with light to stimulate endosomal lysis. The mechanisms and challenges associated with these intracellular delivery methodologies are discussed. PMID:24223492

  8. Myosin Ib modulates the morphology and the protein transport within multi-vesicular sorting endosomes.

    PubMed

    Salas-Cortes, Laura; Ye, Fei; Tenza, Danièle; Wilhelm, Claire; Theos, Alexander; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne

    2005-10-15

    Members of at least four classes of myosin (I, II, V and VI) have been implicated in the dynamics of a large variety of organelles. Despite their common motor domain structure, some of these myosins, however, are non processive and cannot move organelles along the actin tracks. Here, we demonstrate in the human pigmented MNT-1 cell line that, (1) the overexpression of one of these myosins, myosin 1b, or the addition of cytochalasin D affects the morphology of the sorting multivesicular endosomes; (2) the overexpression of myosin 1b delays the processing of Pmel17 (the product of murine silver locus also named GP100), which occurs in these multivesicular endosomes; (3) myosin 1b associated with endosomes coimmunoprecipitates with Pmel17. All together, these observations suggest that myosin 1b controls the traffic of protein cargo in multivesicular endosomes most probably through its ability to modulate with actin the morphology of these sorting endosomes.

  9. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites.

    PubMed

    Wilhelm, Léa P; Wendling, Corinne; Védie, Benoît; Kobayashi, Toshihide; Chenard, Marie-Pierre; Tomasetto, Catherine; Drin, Guillaume; Alpy, Fabien

    2017-04-04

    StAR-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that creates endoplasmic reticulum (ER)-endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill-defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3-mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER-endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER-anchored partner, Vesicle-associated membrane protein-associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER-endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.

  10. Benchmarking survey for recycling.

    SciTech Connect

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  11. FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in Aspergillus

    PubMed Central

    Yao, Xuanli; Wang, Xiangfeng; Xiang, Xin

    2014-01-01

    The minus end–directed microtubule motor cytoplasmic dynein transports various cellular cargoes, including early endosomes, but how dynein binds to its cargo remains unclear. Recently fungal Hook homologues were found to link dynein to early endosomes for their transport. Here we identified FhipA in Aspergillus nidulans as a key player for HookA (A. nidulans Hook) function via a genome-wide screen for mutants defective in early-endosome distribution. The human homologue of FhipA, FHIP, is a protein in the previously discovered FTS/Hook/FHIP (FHF) complex, which contains, besides FHIP and Hook proteins, Fused Toes (FTS). Although this complex was not previously shown to be involved in dynein-mediated transport, we show here that loss of either FhipA or FtsA (A. nidulans FTS homologue) disrupts HookA–early endosome association and inhibits early endosome movement. Both FhipA and FtsA associate with early endosomes, and interestingly, while FtsA–early endosome association requires FhipA and HookA, FhipA–early endosome association is independent of HookA and FtsA. Thus FhipA is more directly linked to early endosomes than HookA and FtsA. However, in the absence of HookA or FtsA, FhipA protein level is significantly reduced. Our results indicate that all three proteins in the FtsA/HookA/FhipA complex are important for dynein-mediated early endosome movement. PMID:24870033

  12. Local cytoskeletal and organelle interactions impact molecular motor-driven early endosomal trafficking

    PubMed Central

    Zajac, Allison L.; Goldman, Yale E.; Holzbaur, Erika L.F.; Ostap, E. Michael

    2013-01-01

    SUMMARY Background In the intracellular environment, motor-driven cargo must navigate a dense cytoskeletal network among abundant organelles. Results We investigated the effects of the crowded intracellular environment on early endosomal trafficking. Live-cell imaging of an endosomal cargo (endocytosed epidermal growth factor-conjugated quantum dots) combined with high-resolution tracking was used to analyze the heterogeneous motion of individual endosomes. The motile population of endosomes moved towards the perinuclear region in directed bursts of microtubule-based, dynein-dependent transport interrupted by longer periods of diffusive motion. Actin network density did not affect motile endosomes during directed runs or diffusive interruptions. Simultaneous two-color imaging was used to correlate changes in endosomal movement with potential obstacles to directed runs. Termination of directed runs spatially correlated with microtubule-dense regions, encounters with other endosomes, and interactions with the endoplasmic reticulum. During a subset of run terminations, we also observed merging and splitting of endosomes, deformation of the endoplasmic reticulum, and directional reversals at speeds up to ten-fold greater than characteristic in vitro motor velocities. These observations suggest endosomal membrane tension is high during directed run termination. Conclusions Our results indicate that the crowded cellular environment significantly impacts the motor-driven motility of organelles. Rather than simply acting as impediments to movement, interactions of trafficking cargos with intracellular obstacles may facilitate communication between membrane-bound compartments or contribute to the generation of membrane tension necessary for fusion and fission of endosomal membranes or remodeling of the endoplasmic reticulum. PMID:23770188

  13. Retrograde Transport from Early Endosomes to the trans-Golgi Network Enables Membrane Wrapping and Egress of Vaccinia Virus Virions

    PubMed Central

    Sivan, Gilad; Weisberg, Andrea S.; Americo, Jeffrey L.

    2016-01-01

    ABSTRACT The anterograde pathway, from the endoplasmic reticulum through the trans-Golgi network to the cell surface, is utilized by trans-membrane and secretory proteins. The retrograde pathway, which directs traffic in the opposite direction, is used following endocytosis of exogenous molecules and recycling of membrane proteins. Microbes exploit both routes: viruses typically use the anterograde pathway for envelope formation prior to exiting the cell, whereas ricin and Shiga-like toxins and some nonenveloped viruses use the retrograde pathway for cell entry. Mining a human genome-wide RNA interference (RNAi) screen revealed a need for multiple retrograde pathway components for cell-to-cell spread of vaccinia virus. We confirmed and extended these results while discovering that retrograde trafficking was required for virus egress rather than entry. Retro-2, a specific retrograde trafficking inhibitor of protein toxins, potently prevented spread of vaccinia virus as well as monkeypox virus, a human pathogen. Electron and confocal microscopy studies revealed that Retro-2 prevented wrapping of virions with an additional double-membrane envelope that enables microtubular transport, exocytosis, and actin polymerization. The viral B5 and F13 protein components of this membrane, which are required for wrapping, normally colocalize in the trans-Golgi network. However, only B5 traffics through the secretory pathway, suggesting that F13 uses another route to the trans-Golgi network. The retrograde route was demonstrated by finding that F13 was largely confined to early endosomes and failed to colocalize with B5 in the presence of Retro-2. Thus, vaccinia virus makes novel use of the retrograde transport system for formation of the viral wrapping membrane. IMPORTANCE Efficient cell-to-cell spread of vaccinia virus and other orthopoxviruses depends on the wrapping of infectious particles with a double membrane that enables microtubular transport, exocytosis, and actin

  14. Age-related oxidative stress compromises endosomal proteostasis.

    PubMed

    Cannizzo, Elvira S; Clement, Cristina C; Morozova, Kateryna; Valdor, Rut; Kaushik, Susmita; Almeida, Larissa N; Follo, Carlo; Sahu, Ranjit; Cuervo, Ana Maria; Macian, Fernando; Santambrogio, Laura

    2012-07-26

    A hallmark of aging is an imbalance between production and clearance of reactive oxygen species and increased levels of oxidatively damaged biomolecules. Herein, we demonstrate that splenic and nodal antigen-presenting cells purified from aging mice accumulate oxidatively modified proteins with side-chain carbonylation, advanced glycation end products, and lipid peroxidation. Furthermore, we show that the endosomal accumulation of oxidatively modified proteins interferes with the efficient processing of exogenous antigens and degradation of macroautophagy-delivered proteins. In support of a causative role for oxidized products in the inefficient immune response, a decrease in oxidative stress improved the adaptive immune response to immunizing antigens. These findings underscore a previously unrecognized negative effect of age-dependent changes in cellular proteostasis on the immune response.

  15. Role of Endosomes and Lysosomes in Human Disease

    PubMed Central

    Maxfield, Frederick R.

    2014-01-01

    In addition to their roles in normal cell physiology, endocytic processes play a key role in many diseases. In this review, three diseases are discussed as examples of the role of endocytic processes in disease. The uptake of cholesterol via LDL is central to our understanding of atherosclerosis, and the study of this disease led to many of the key breakthroughs in understanding receptor-mediated endocytosis. Alzheimer’s disease is a growing burden as the population ages. Endosomes and lysosomes play important but only partially understood roles in both the formation and the degradation of the amyloid fibrils that are associated with Alzheimer’s disease. Inherited lysosomal storage diseases are individually rare, but collectively they affect many individuals. Recent advances are leading to improved enzyme replacement therapy and are also leading to small-molecule drugs to treat some of these diseases. PMID:24789821

  16. Age-related Oxidative Stress Compromises Endosomal Proteostasis

    PubMed Central

    Cannizzo, Elvira S.; Clement, Cristina C.; Morozova, Kateryna; Valdor, Rut; Kaushik, Susmita; Almeida, Larissa N.; Follo, Carlo; Sahu, Ranjit; Cuervo, Ana Maria; Macian, Fernando; Santambrogio, Laura

    2012-01-01

    A hallmark of aging is an imbalance between production and clearance of reactive oxygen species and increased levels of oxidatively damaged biomolecules. Herein we demonstrate that splenic and nodal antigen presenting cells purified from old mice accumulate oxidatively modified proteins with side chain carbonylation, advanced glycation end products and lipid peroxidation. We show further that the endosomal accumulation of oxidatively modified proteins interferes with the efficient processing of exogenous antigens and degradation of macroautophagy-delivered proteins. In support of a causative role for oxidized products in the inefficient immune response, a decrease in oxidative stress improved the adaptive immune response to immunizing antigens. These findings underscore a previously unrecognized negative effect of age-dependent changes in cellular proteostasis on the immune response. PMID:22840404

  17. Recycling at Camp.

    ERIC Educational Resources Information Center

    Cummins, William M.

    1988-01-01

    Outlines a Michigan summer camp's efforts to reduce solid waste disposal by recycling cardboard, tin, glass, aluminum, and plastic milk containers. Points out variables affecting the success of such efforts. Discusses Michigan state funding for the development of recycling programs. (SV)

  18. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  19. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  20. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  1. Partnership: Recycling $/$ Outdoor Education.

    ERIC Educational Resources Information Center

    Weir, Phil

    1996-01-01

    The Ottawa Board of Education (Ontario, Canada) has committed revenues generated by a districtwide recycling program to help fund the MacSkimming Outdoor Education Centre. A partnership between recycling and outdoor education is valuable in developing an environmental ethic among students and in finding new ways to fund outdoor education. (LP)

  2. Wee Recyclers Resources.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Hands-on activities in this guide are designed to help preschool children (ages 3-5) understand that reducing, reusing, and recycling preserves natural resources and prolongs the life of landfills. Children sort, match and compare recyclable items and learn to separate some items by number and color. The 29 activities are divided into units that…

  3. Ash recycling - the coming of age!

    SciTech Connect

    Barnes, J.M.; Roffman, H.K.; Roethel, F.J.

    1997-12-01

    A major concern of the Waste-To-Energy (WTE) industry is ash disposal and the uncertainty of controlled long term ash management. Ash management costs have risen steadily over the last ten years making it the fastest rising cost segment of the WTE industry. The challenge of how to curb the rising cost while maintaining the protection of human health and the environment has been accomplished by responsibly recycling the ash on a commercial basis. American Ash Recycling Corp. (AAR), utilizing the Duos Engineering (USA), Inc. patent pending ash recycling technology, has promoted ash recycling on a commercial basis in the United States. An important product of the processing and recycling of non-hazardous municipal waste combustor (MWC) ash is Treated Ash Aggregate (TAA). Additionally, ferrous and non-ferrous metals are recovered and unburned materials removed and returned to the WTE facility for re-combustion. The TAA is sized and then treated by the WES-PHix{reg_sign} immobilization process in order to reduce the potential solubility and environmental availability of the metal constituents of the MWC ash. The TAA is available for commercial use in such applications as an aggregate substitute in roadway materials, asphalt and concrete applications, as structural fill, and as landfill cover. Commercial and technical considerations that must be addressed before ash can be beneficially recycled are: permitting requirements, physical and chemical characteristics, potential end uses, environmental concerns (product safety), product market development, and economic viability. True recycling only occurs if all of these considerations can be addressed. This paper presents the details of AAR`s most recent experience in the development of an ash recycling facility in the State of Maine and the associated beneficial use of the TAA product. Each of the considerations listed above are discussed with a special focus on the permitting process.

  4. ER network homeostasis is critical for plant endosome streaming and endocytosis

    PubMed Central

    Stefano, Giovanni; Renna, Luciana; Lai, YaShiuan; Slabaugh, Erin; Mannino, Nicole; Buono, Rafael A; Otegui, Marisa S; Brandizzi, Federica

    2015-01-01

    Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network. PMID:27462431

  5. Image-based and biochemical assays to investigate endosomal protein sorting.

    PubMed

    Breusegem, Sophia Y; Seaman, Matthew N J

    2014-01-01

    The sorting of membrane proteins within the endosomal system occurs through a panoply of highly dynamic sequential molecular interactions that together govern many physiologically important processes. A key component of the endosomal protein sorting machinery is the retromer complex. Through two distinct subcomplexes, retromer operates to select cargo for endosome-to-Golgi retrieval and also drives membrane tubule formation. Many accessory proteins associate with retromer to facilitate protein sorting and/or tubule formation. The experience we have gained from studying retromer-mediated endosomal protein sorting and the assays developed and applied in the course of these studies can provide a template for researchers interested in related endosomal trafficking pathways. Herein we describe image-based assays that can be applied to study endosomal protein sorting through the use of antibody-uptake assays in low-, medium-, and high-throughput formats. We additionally detail simple but effective native immunoprecipitation methods that can be employed to identify novel proteins that may interact transiently with a protein of interest within the endosomal pathway.

  6. Modifications of the endosomal compartment in peripheral blood mononuclear cells and fibroblasts from Alzheimer's disease patients

    PubMed Central

    Corlier, F; Rivals, I; Lagarde, J; Hamelin, L; Corne, H; Dauphinot, L; Ando, K; Cossec, J-C; Fontaine, G; Dorothée, G; Malaplate-Armand, C; Olivier, J-L; Dubois, B; Bottlaender, M; Duyckaerts, C; Sarazin, M; Potier, M-C; Alnajjar-Carpentier, Dr Amer; Logak, Dr Michel; Leder, Dr Sara; Marchal, Dr Dominique; Pitti-Ferandi, Dr Hélène; Brugeilles, Dr Hélene; Roualdes, Dr Brigitte; Michon, Dr Agnes

    2015-01-01

    Identification of blood-based biomarkers of Alzheimer's disease (AD) remains a challenge. Neuropathological studies have identified enlarged endosomes in post-mortem brains as the earliest cellular change associated to AD. Here the presence of enlarged endosomes was investigated in peripheral blood mononuclear cells from 48 biologically defined AD patients (25 with mild cognitive impairment and 23 with dementia (AD-D)), and 23 age-matched healthy controls using immunocytochemistry and confocal microscopy. The volume and number of endosomes were not significantly different between AD and controls. However, the percentage of cells containing enlarged endosomes was significantly higher in the AD-D group as compared with controls. Furthermore, endosomal volumes significantly correlated to [C11]PiB cortical index measured by positron emission tomography in the AD group, independently of the APOE genotype, but not to the levels of amyloid-beta, tau and phosphorylated tau measured in the cerebrospinal fluid. Importantly, we confirmed the presence of enlarged endosomes in fibroblasts from six unrelated AD-D patients as compared with five cognitively normal controls. This study is the first, to our knowledge, to report morphological alterations of the endosomal compartment in peripheral cells from AD patients correlated to amyloid load that will now be evaluated as a possible biomarker. PMID:26151923

  7. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance.

    PubMed

    Hammerling, Babette C; Najor, Rita H; Cortez, Melissa Q; Shires, Sarah E; Leon, Leonardo J; Gonzalez, Eileen R; Boassa, Daniela; Phan, Sébastien; Thor, Andrea; Jimenez, Rebecca E; Li, Hong; Kitsis, Richard N; Dorn Ii, Gerald W; Sadoshima, Junichi; Ellisman, Mark H; Gustafsson, Åsa B

    2017-01-30

    Damaged mitochondria pose a lethal threat to cells that necessitates their prompt removal. The currently recognized mechanism for disposal of mitochondria is autophagy, where damaged organelles are marked for disposal via ubiquitylation by Parkin. Here we report a novel pathway for mitochondrial elimination, in which these organelles undergo Parkin-dependent sequestration into Rab5-positive early endosomes via the ESCRT machinery. Following maturation, these endosomes deliver mitochondria to lysosomes for degradation. Although this endosomal pathway is activated by stressors that also activate mitochondrial autophagy, endosomal-mediated mitochondrial clearance is initiated before autophagy. The autophagy protein Beclin1 regulates activation of Rab5 and endosomal-mediated degradation of mitochondria, suggesting cross-talk between these two pathways. Abrogation of Rab5 function and the endosomal pathway results in the accumulation of stressed mitochondria and increases susceptibility to cell death in embryonic fibroblasts and cardiac myocytes. These data reveal a new mechanism for mitochondrial quality control mediated by Rab5 and early endosomes.

  8. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance

    PubMed Central

    Hammerling, Babette C.; Najor, Rita H.; Cortez, Melissa Q.; Shires, Sarah E.; Leon, Leonardo J.; Gonzalez, Eileen R.; Boassa, Daniela; Phan, Sébastien; Thor, Andrea; Jimenez, Rebecca E.; Li, Hong; Kitsis, Richard N.; Dorn II, Gerald W.; Sadoshima, Junichi; Ellisman, Mark H.; Gustafsson, Åsa B.

    2017-01-01

    Damaged mitochondria pose a lethal threat to cells that necessitates their prompt removal. The currently recognized mechanism for disposal of mitochondria is autophagy, where damaged organelles are marked for disposal via ubiquitylation by Parkin. Here we report a novel pathway for mitochondrial elimination, in which these organelles undergo Parkin-dependent sequestration into Rab5-positive early endosomes via the ESCRT machinery. Following maturation, these endosomes deliver mitochondria to lysosomes for degradation. Although this endosomal pathway is activated by stressors that also activate mitochondrial autophagy, endosomal-mediated mitochondrial clearance is initiated before autophagy. The autophagy protein Beclin1 regulates activation of Rab5 and endosomal-mediated degradation of mitochondria, suggesting cross-talk between these two pathways. Abrogation of Rab5 function and the endosomal pathway results in the accumulation of stressed mitochondria and increases susceptibility to cell death in embryonic fibroblasts and cardiac myocytes. These data reveal a new mechanism for mitochondrial quality control mediated by Rab5 and early endosomes. PMID:28134239

  9. Trisomy for Synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes

    PubMed Central

    Cossec, Jack-Christophe; Lavaur, Jérémie; Berman, Diego E.; Rivals, Isabelle; Hoischen, Alexander; Stora, Samantha; Ripoll, Clémentine; Mircher, Clotilde; Grattau, Yann; OlivoMarin, Jean-Christophe; de Chaumont, Fabrice; Lecourtois, Magalie; Antonarakis, Stylianos E.; Veltman, Joris A.; Delabar, Jean M.; Duyckaerts, Charles; Di Paolo, Gilbert; Potier, Marie-Claude

    2012-01-01

    Enlarged early endosomes have been observed in neurons and fibroblasts in Down syndrome (DS). These endosome abnormalities have been implicated in the early development of Alzheimer's disease (AD) pathology in these subjects. Here, we show the presence of enlarged endosomes in blood mononuclear cells and lymphoblastoid cell lines (LCLs) from individuals with DS using immunofluorescence and confocal microscopy. Genotype–phenotype correlations in LCLs carrying partial trisomies 21 revealed that triplication of a 2.56 Mb locus in 21q22.11 is associated with the endosomal abnormalities. This locus contains the gene encoding the phosphoinositide phosphatase synaptojanin 1 (SYNJ1), a key regulator of the signalling phospholipid phosphatidylinositol-4,5-biphosphate that has been shown to regulate clathrin-mediated endocytosis. We found that SYNJ1 transcripts are increased in LCLs from individuals with DS and that overexpression of SYNJ1 in a neuroblastoma cell line as well as in transgenic mice leads to enlarged endosomes. Moreover, the proportion of enlarged endosomes in fibroblasts from an individual with DS was reduced after silencing SYNJ1 expression with RNA interference. In LCLs carrying amyloid precursor protein (APP) microduplications causing autosomal dominant early-onset AD, enlarged endosomes were absent, suggesting that APP overexpression alone is not involved in the modification of early endosomes in this cell type. These findings provide new insights into the contribution of SYNJ1 overexpression to the endosomal changes observed in DS and suggest an attractive new target for rescuing endocytic dysfunction and lipid metabolism in DS and in AD. PMID:22511594

  10. The Retromer Complex Is Required for Rhodopsin Recycling and Its Loss Leads to Photoreceptor Degeneration

    PubMed Central

    Wang, Shiuan; Tan, Kai Li; Agosto, Melina A.; Xiong, Bo; Yamamoto, Shinya; Sandoval, Hector; Jaiswal, Manish; Bayat, Vafa; Zhang, Ke; Charng, Wu-Lin; David, Gabriela; Duraine, Lita; Venkatachalam, Kartik; Wensel, Theodore G.; Bellen, Hugo J.

    2014-01-01

    Rhodopsin mistrafficking can cause photoreceptor (PR) degeneration. Upon light exposure, activated rhodopsin 1 (Rh1) in Drosophila PRs is internalized via endocytosis and degraded in lysosomes. Whether internalized Rh1 can be recycled is unknown. Here, we show that the retromer complex is expressed in PRs where it is required for recycling endocytosed Rh1 upon light stimulation. In the absence of subunits of the retromer, Rh1 is processed in the endolysosomal pathway, leading to a dramatic increase in late endosomes, lysosomes, and light-dependent PR degeneration. Reducing Rh1 endocytosis or Rh1 levels in retromer mutants alleviates PR degeneration. In addition, increasing retromer abundance suppresses degenerative phenotypes of mutations that affect the endolysosomal system. Finally, expressing human Vps26 suppresses PR degeneration in Vps26 mutant PRs. We propose that the retromer plays a conserved role in recycling rhodopsins to maintain PR function and integrity. PMID:24781186

  11. RhoGAP68F controls transport of adhesion proteins in Rab4 endosomes to modulate epithelial morphogenesis of Drosophila leg discs

    PubMed Central

    de Madrid, Beatriz Hernandez; Greenberg, Lina; Hatini, Victor

    2015-01-01

    SUMMARY Elongation and invagination of epithelial tissues are fundamental developmental processes that contribute to the morphogenesis of embryonic and adult structures and are dependent on coordinated remodeling of cell-cell contacts. The morphogenesis of Drosophila leg imaginal discs depends on extensive remodeling of cell contacts and thus provides a useful system with which to investigate the underlying mechanisms. The small Rho GTPase regulator RhoGAP68F has been previously implicated in leg morphogenesis. It consists of an N-terminal Sec14 domain and a C-terminal GAP domain. Here we examined the molecular function and role of RhoGAP68F in epithelial remodeling. We find that depletion of RhoGAP68F impairs epithelial remodeling from a pseudostratified to simple, while overexpression of RhoGAP68F causes tears of lateral cell-cell contacts and thus impairs epithelial integrity. We show that the RhoGAP68F protein localizes to Rab4 recycling endosomes and forms a complex with the Rab4 protein. The Sec14 domain is sufficient for localizing to Rab4 endosomes, while the activity of the GAP domain is dispensable. RhoGAP68F, in turn, inhibits the scission and movement of Rab4 endosomes involved in transport the adhesion proteins Fasciclin3 and E-cadherin back to cell-cell contacts. Expression of RhoGAP68F is upregulated during prepupal development suggesting that RhoGAP68F decreases the transport of key adhesion proteins to the cell surface during this developmental stage to decrease the strength of adhesive cell-cell contacts and thereby facilitate epithelial remodeling and leg morphogenesis. PMID:25617722

  12. Diacylglycerol kinase α controls RCP-dependent integrin trafficking to promote invasive migration.

    PubMed

    Rainero, Elena; Caswell, Patrick T; Muller, Patricia A J; Grindlay, Joan; McCaffrey, Mary W; Zhang, Qifeng; Wakelam, Michael J O; Vousden, Karen H; Graziani, Andrea; Norman, Jim C

    2012-01-23

    Inhibition of αvβ3 integrin or expression of oncogenic mutants of p53 promote invasive cell migration by enhancing endosomal recycling of α5β1 integrin under control of the Rab11 effector Rab-coupling protein (RCP). In this paper, we show that diacylglycerol kinase α (DGK-α), which phosphorylates diacylglycerol to phosphatidic acid (PA), was required for RCP to be mobilized to and tethered at the tips of invasive pseudopods and to allow RCP-dependent α5β1 recycling and the resulting invasiveness of tumor cells. Expression of a constitutive-active mutant of DGK-α drove RCP-dependent invasion in the absence of mutant p53 expression or αvβ3 inhibition, and conversely, an RCP mutant lacking the PA-binding C2 domain was not capable of being tethered at pseudopod tips. These data demonstrate that generation of PA downstream of DGK-α is essential to connect expression of mutant p53s or inhibition of αvβ3 to RCP and for this Rab11 effector to drive the trafficking of α5β1 that is required for tumor cell invasion through three-dimensional matrices.

  13. Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis

    PubMed Central

    Paul, Blessy; Kim, Hyun Sung; Kerr, Markus C; Huston, Wilhelmina M; Teasdale, Rohan D; Collins, Brett M

    2017-01-01

    During infection chlamydial pathogens form an intracellular membrane-bound replicative niche termed the inclusion, which is enriched with bacterial transmembrane proteins called Incs. Incs bind and manipulate host cell proteins to promote inclusion expansion and provide camouflage against innate immune responses. Sorting nexin (SNX) proteins that normally function in endosomal membrane trafficking are a major class of inclusion-associated host proteins, and are recruited by IncE/CT116. Crystal structures of the SNX5 phox-homology (PX) domain in complex with IncE define the precise molecular basis for these interactions. The binding site is unique to SNX5 and related family members SNX6 and SNX32. Intriguingly the site is also conserved in SNX5 homologues throughout evolution, suggesting that IncE captures SNX5-related proteins by mimicking a native host protein interaction. These findings thus provide the first mechanistic insights both into how chlamydial Incs hijack host proteins, and how SNX5-related PX domains function as scaffolds in protein complex assembly. DOI: http://dx.doi.org/10.7554/eLife.22311.001 PMID:28226239

  14. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  15. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    PubMed Central

    vandenBerghe, Peter V. E.; Folmer, Dineke E.; Malingré, Helga E. M.; vanBeurden, Ellen; Klomp, Adriana E. M.; vandeSluis, Bart; Merkx, Maarten; Berger, Ruud; Klomp, Leo W. J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis, epitope-tagged hCTR2 was transiently expressed in different cell lines. hCTR2–vsvG (vesicular-stomatitis-virus glycoprotein) predominantly migrated as a 17 kDa protein after imunoblot analysis, consistent with its predicted molecular mass. Chemical cross-linking resulted in the detection of higher-molecular-mass complexes containing hCTR2–vsvG. Furthermore, hCTR2–vsvG was co-immunoprecipitated with hCTR2–FLAG, suggesting that hCTR2 can form multimers, like hCTR1. Transiently transfected hCTR2–eGFP (enhanced green fluorescent protein) was localized exclusively to late endosomes and lysosomes, and was not detected at the plasma membrane. To functionally address the role of hCTR2 in copper metabolism, a novel transcription-based copper sensor was developed. This MRE (metal-responsive element)–luciferase reporter contained four MREs from the mouse metallothionein 1A promoter upstream of the firefly luciferase open reading frame. Thus the MRE–luciferase reporter measured bioavailable cytosolic copper. Expression of hCTR1 resulted in strong activation of the reporter, with maximal induction at 1 μM CuCl2, consistent with the Km of hCTR1. Interestingly, expression of hCTR2 significantly induced MRE–luciferase reporter activation in a copper-dependent manner at 40 and 100 μM CuCl2. Taken together, these results identify hCTR2 as an oligomeric membrane protein localized in lysosomes, which stimulates copper delivery to the cytosol of human cells at relatively high copper concentrations. This work suggests a role for endosomal and lysosomal copper pools in the maintenance of cellular copper homoeostasis. PMID:17617060

  16. The VPS-20 subunit of the endosomal sorting complex ESCRT-III exhibits an open conformation in the absence of upstream activation.

    PubMed

    Schuh, Amber L; Hanna, Michael; Quinney, Kyle; Wang, Lei; Sarkeshik, Ali; Yates, John R; Audhya, Anjon

    2015-03-15

    Members of the endosomal sorting complex required for transport (ESCRT) machinery function in membrane remodelling processes during multivesicular endosome (MVE) biogenesis, cytokinesis, retroviral budding and plasma membrane repair. During luminal vesicle formation at endosomes, the ESCRT-II complex and the ESCRT-III subunit vacuolar protein sorting (VPS)-20 play a specific role in regulating assembly of ESCRT-III filaments, which promote vesicle scission. Previous work suggests that Vps20 isoforms, like other ESCRT-III subunits, exhibits an auto-inhibited closed conformation in solution and its activation depends on an association with ESCRT-II specifically at membranes [1]. However, we show in the present study that Caenorhabditis elegans ESCRT-II and VPS-20 interact directly in solution, both in cytosolic cell extracts and in using recombinant proteins in vitro. Moreover, we demonstrate that purified VPS-20 exhibits an open extended conformation, irrespective of ESCRT-II binding, in contrast with the closed auto-inhibited architecture of another ESCRT-III subunit, VPS-24. Our data argue that individual ESCRT-III subunits adopt distinct conformations, which are tailored for their specific functions during ESCRT-mediated membrane reorganization events.

  17. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker.

    PubMed

    Hanaki, Ken-ichi; Momo, Asami; Oku, Taisuke; Komoto, Atsushi; Maenosono, Shinya; Yamaguchi, Yukio; Yamamoto, Kenji

    2003-03-14

    For the purpose of selecting the efficient dispersion condition of hydrophilic semiconductor quantum dots (QDs) in biological buffers, the dispersion of the QDs mixed with a serum albumin from 9 different species or an ovalbumin was compared by a fluorescence intensity analysis. The QDs mixed with sheep serum albumin (SSA) showed the highest fluorescence of all when the mixtures were dissolved in Dulbecco's MEM. QD/SSA complexes were accumulated in the endosome/lysosome of Vero cells and the fluorescence could be detected over a 5-day post-incubation period. The photostability of QD/SSA complexes associated with the endosomes was detectable, at least, 30 times as long as that of fluorescein-labeled dextran involved in endosomes. QD/SSA complex, therefore, can be used as a long-life and highly photostable endosome marker.

  18. Fermilab recycler diagnostics

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

  19. The Totem Pole Recycled.

    ERIC Educational Resources Information Center

    Sewall, Susan Breyer

    1991-01-01

    Presents an activity that integrates science, environmental education, art, and social studies. Students identify and research an endangered species and construct a totem pole depicting the species using a recyclable material. (MDH)

  20. Analysis of Signaling Endosome Composition and Dynamics Using SILAC in Embryonic Stem Cell-Derived Neurons*

    PubMed Central

    Debaisieux, Solène; Encheva, Vesela; Chakravarty, Probir; Snijders, Ambrosius P.; Schiavo, Giampietro

    2016-01-01

    Neurons require efficient transport mechanisms such as fast axonal transport to ensure neuronal homeostasis and survival. Neurotrophins and their receptors are conveyed via fast axonal retrograde transport of signaling endosomes to the soma, where they elicit transcriptional responses. Despite the essential roles of signaling endosomes in neuronal differentiation and survival, little is known about their molecular identity, dynamics, and regulation. Gaining a better mechanistic understanding of these organelles and their kinetics is crucial, given the growing evidence linking vesicular trafficking deficits to neurodegeneration. Here, we exploited an affinity purification strategy using the binding fragment of tetanus neurotoxin (HCT) conjugated to monocrystalline iron oxide nanoparticles (MIONs), which in motor neurons, is transported in the same carriers as neurotrophins and their receptors. To quantitatively assess the molecular composition of HCT-containing signaling endosomes, we have developed a protocol for triple Stable Isotope Labeling with Amino acids in Cell culture (SILAC) in embryonic stem cell-derived motor neurons. After HCT internalization, retrograde carriers were magnetically isolated at different time points and subjected to mass-spectrometry and Gene Ontology analyses. This purification strategy is highly specific, as confirmed by the presence of essential regulators of fast axonal transport in the make-up of these organelles. Our results indicate that signaling endosomes undergo a rapid maturation with the acquisition of late endosome markers following a specific time-dependent kinetics. Strikingly, signaling endosomes are specifically enriched in proteins known to be involved in neurodegenerative diseases and neuroinfection. Moreover, we highlighted the presence of novel components, whose precise temporal recruitment on signaling endosomes might be essential for proper sorting and/or transport of these organelles. This study provides the first

  1. Imaging and Quantitation Techniques for Tracking Cargo along Endosome-to-Golgi Transport Pathways

    PubMed Central

    Chia, Pei Zhi Cheryl; Gleeson, Paul A.

    2013-01-01

    Recent improvements in the resolution of light microscopy, coupled with the development of a range of fluorescent-based probes, have provided new approaches to dissecting membrane domains and the regulation of membrane trafficking. Here, we review these advances, as well as highlight developments in quantitative image analysis and novel unbiased analytical approaches to quantitate protein localization. The application of these approaches to endosomal sorting and endosome-to-Golgi transport is discussed. PMID:24709647

  2. The Recycler Electron Cooler

    SciTech Connect

    Shemyakin, A.; Prost, L. R.

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  3. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA

    PubMed Central

    Salogiannis, John; Egan, Martin J.

    2016-01-01

    Eukaryotic cells use microtubule-based intracellular transport for the delivery of many subcellular cargos, including organelles. The canonical view of organelle transport is that organelles directly recruit molecular motors via cargo-specific adaptors. In contrast with this view, we show here that peroxisomes move by hitchhiking on early endosomes, an organelle that directly recruits the transport machinery. Using the filamentous fungus Aspergillus nidulans we found that hitchhiking is mediated by a novel endosome-associated linker protein, PxdA. PxdA is required for normal distribution and long-range movement of peroxisomes, but not early endosomes or nuclei. Using simultaneous time-lapse imaging, we find that early endosome-associated PxdA localizes to the leading edge of moving peroxisomes. We identify a coiled-coil region within PxdA that is necessary and sufficient for early endosome localization and peroxisome distribution and motility. These results present a new mechanism of microtubule-based organelle transport in which peroxisomes hitchhike on early endosomes and identify PxdA as the novel linker protein required for this coupling. PMID:26811422

  4. Antigen Processing and Remodeling of the Endosomal Pathway: Requirements for Antigen Cross-Presentation

    PubMed Central

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation. PMID:22566920

  5. Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes

    PubMed Central

    Villaseñor, Roberto; Nonaka, Hidenori; Del Conte-Zerial, Perla; Kalaidzidis, Yannis; Zerial, Marino

    2015-01-01

    An outstanding question is how receptor tyrosine kinases (RTKs) determine different cell-fate decisions despite sharing the same signalling cascades. Here, we uncovered an unexpected mechanism of RTK trafficking in this process. By quantitative high-resolution FRET microscopy, we found that phosphorylated epidermal growth factor receptor (p-EGFR) is not randomly distributed but packaged at constant mean amounts in endosomes. Cells respond to higher EGF concentrations by increasing the number of endosomes but keeping the mean p-EGFR content per endosome almost constant. By mathematical modelling, we found that this mechanism confers both robustness and regulation to signalling output. Different growth factors caused specific changes in endosome number and size in various cell systems and changing the distribution of p-EGFR between endosomes was sufficient to reprogram cell-fate decision upon EGF stimulation. We propose that the packaging of p-RTKs in endosomes is a general mechanism to ensure the fidelity and specificity of the signalling response. DOI: http://dx.doi.org/10.7554/eLife.06156.001 PMID:25650738

  6. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes.

    PubMed

    Theos, Alexander C; Tenza, Danièle; Martina, José A; Hurbain, Ilse; Peden, Andrew A; Sviderskaya, Elena V; Stewart, Abigail; Robinson, Margaret S; Bennett, Dorothy C; Cutler, Daniel F; Bonifacino, Juan S; Marks, Michael S; Raposo, Graça

    2005-11-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies.

  7. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity.

    PubMed

    van der Kant, Rik; Jonker, Caspar T H; Wijdeven, Ruud H; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques

    2015-12-18

    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway.

  8. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes.

    PubMed

    Mizuno, Emi; Iura, Takanobu; Mukai, Akiko; Yoshimori, Tamotsu; Kitamura, Naomi; Komada, Masayuki

    2005-11-01

    Ligand-activated receptor tyrosine kinases undergo endocytosis and are transported via endosomes to lysosomes for degradation. This "receptor down-regulation" process is crucial to terminate the cell proliferation signals produced by activated receptors. During the process, ubiquitination of the receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. Here, we describe the role of a deubiquitinating enzyme UBPY/USP8 in the down-regulation of epidermal growth factor (EGF) receptor (EGFR). Overexpression of UBPY reduced the ubiquitination level of EGFR and delayed its degradation in EGF-stimulated cells. Immunopurified UBPY deubiquitinated EGFR in vitro. In EGF-stimulated cells, UBPY underwent ubiquitination and bound to EGFR. Overexpression of Hrs or a dominant-negative mutant of SKD1, proteins that play roles in the endosomal sorting of ubiquitinated receptors, caused the accumulation of endogenous UBPY on exaggerated endosomes. A catalytically inactive UBPY mutant clearly localized on endosomes, where it overlapped with EGFR when cells were stimulated with EGF. Finally, depletion of endogenous UBPY by RNA interference resulted in elevated ubiquitination and accelerated degradation of EGF-activated EGFR. We conclude that UBPY negatively regulates the rate of EGFR down-regulation by deubiquitinating EGFR on endosomes.

  9. Identification of an endosomal antigen specific to absorptive cells of suckling rat ileum

    PubMed Central

    1987-01-01

    A membrane fraction enriched in apical endosomal tubules was isolated from absorptive cells of suckling rat ileum and used as an immunogen to generate anti-endosome monoclonal antibodies. By immunofluorescence, one of these antibodies bound exclusively to the region of the apical endocytic complex in ileal absorptive cells, but not to other cell types. Immunoblot analysis showed the antigen as a diffuse 55-61-kD band which was highly enriched in the endosome fraction over whole-cell homogenate. The antigen appears to be an intramembrane glycoprotein: it partitioned primarily in the detergent phase after TX-114 extraction, and shifted to 44 kD after chemical deglycosylation. EM immunocytochemistry showed that the antibody bound to the luminal side of endosomal tubule membranes, a portion of endosomal vesicle membranes, and in endocytic pits of apical plasma membranes. However, it did not bind to multivesicular bodies, the giant lysosome, or other organelles. Immunocytochemistry after uptake with adsorbed or soluble tracer proteins showed that the antigen labeled portions of both prelysosomal pathways previously described in these cells (Gonnella, P.A., and M. R. Neutra, 1984, J. Cell Biol., 99:909-917). The function of this glycoprotein is not known, but inasmuch as it has been detected only in absorptive cells of suckling rat ileum, it may serve a function specific to these cells. Nevertheless, this endosomal antigen, designated glycoprotein (gp) 55-61, will serve as a useful marker for exploring membrane dynamics in early stages of the endocytic pathway. PMID:3305521

  10. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis.

    PubMed

    Jaillais, Yvon; Fobis-Loisy, Isabelle; Miège, Christine; Rollin, Claire; Gaude, Thierry

    2006-09-07

    Polarized cellular distribution of the phytohormone auxin and its carriers is essential for normal plant growth and development. Polar auxin transport is maintained by a network of auxin influx (AUX) and efflux (PIN) carriers. Both auxin transport and PIN protein cycling between the plasma membrane and endosomes require the activity of the endosomal GNOM; however, intracellular routes taken by these carriers remain largely unknown. Here we show that Arabidopsis thaliana SORTING NEXIN 1 (AtSNX1) is involved in the auxin pathway and that PIN2, but not PIN1 or AUX1, is transported through AtSNX1-containing endosomes. We demonstrate that the snx1-null mutant exhibits multiple auxin-related defects and that loss of function of AtSNX1 severely enhances the phenotype of a weak gnom mutant. In root cells, we further show that AtSNX1 localizes to an endosomal compartment distinct from GNOM-containing endosomes, and that PIN2 accumulates in this compartment after treatment with the phosphatidylinositol-3-OH kinase inhibitor wortmannin or after a gravity stimulus. Our data reveal the existence of a novel endosomal compartment involved in PIN2 endocytic sorting and plant development.

  11. Recycling of nonmetallics

    USGS Publications Warehouse

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  12. Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection

    PubMed Central

    Sangaré, Lamba Omar; Alayi, Tchilabalo Dilezitoko; Westermann, Benoit; Hovasse, Agnes; Sindikubwabo, Fabien; Callebaut, Isabelle; Werkmeister, Elisabeth; Lafont, Frank; Slomianny, Christian; Hakimi, Mohamed-Ali; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine; Tomavo, Stanislas

    2016-01-01

    Membrane trafficking pathways play critical roles in Apicomplexa, a phylum of protozoan parasites that cause life-threatening diseases worldwide. Here we report the first retromer-trafficking interactome in Toxoplasma gondii. This retromer complex includes a trimer Vps35–Vps26–Vps29 core complex that serves as a hub for the endosome-like compartment and parasite-specific proteins. Conditional ablation of TgVps35 reveals that the retromer complex is crucial for the biogenesis of secretory organelles and for maintaining parasite morphology. We identify TgHP12 as a parasite-specific and retromer-associated protein with functions unrelated to secretory organelle formation. Furthermore, the major facilitator superfamily homologue named TgHP03, which is a multiple spanning and ligand transmembrane transporter, is maintained at the parasite membrane by retromer-mediated endocytic recycling. Thus, our findings highlight that both evolutionarily conserved and unconventional proteins act in concert in T. gondii by controlling retrograde transport that is essential for parasite integrity and host infection. PMID:27064065

  13. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots

    NASA Astrophysics Data System (ADS)

    Narayanan, Karthikeyan; Yen, Swee Kuan; Dou, Qingqing; Padmanabhan, Parasuraman; Sudhaharan, Thankiah; Ahmed, Sohail; Ying, Jackie Y.; Selvan, Subramanian Tamil

    2013-07-01

    Protein transport is an important phenomenon in biological systems. Proteins are transported via several mechanisms to reach their destined compartment of cell for its complete function. One such mechanism is the microtubule mediated protein transport. Up to now, there are no reports on synthetic systems mimicking the biological protein transport mechanism. Here we report a highly efficient method of mimicking the microtubule mediated protein transport using newly designed biotinylated peptides encompassing a microtubule-associated sequence (MTAS) and a nuclear localization signaling (NLS) sequence, and their final conjugation with streptavidin-coated CdSe/ZnS quantum dots (QDs). Our results demonstrate that these novel bio-conjugated QDs enhance the endosomal escape and promote targeted delivery into the nucleus of human mesenchymal stem cells via microtubules. Mimicking the cellular transport mechanism in stem cells is highly desirable for diagnostics, targeting and therapeutic applications, opening up new avenues in the area of drug delivery.

  14. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    SciTech Connect

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2007-10-19

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function.

  15. Brefeldin A sensitive mechanisms contribute to endocytotic membrane retrieval and vesicle recycling in cerebellar granule cells.

    PubMed

    Rampérez, Alberto; Sánchez-Prieto, José; Torres, Magdalena

    2017-03-11

    The recycling of synaptic vesicle (SV) proteins and transmitter release both occur at multiple sites along the axon. These processes are sensitive to inhibition of the small GTP binding protein ARF1, which regulates the AP-1/AP-3 complex. As the axon matures, SV recycling becomes restricted to the presynaptic bouton, and its machinery undergoes a complex process of maturation. We used the styryl dye FM1-43 to highlight differences in the efficiency of membrane recycling at different sites in cerebellar granule cells cultured for 7 days in vitro. We used Brefeldin A (BFA) to inhibit AP-1/AP-3-mediated recycling and to test the contribution of this pathway to the heterogeneity of the responses when these cells are strongly stimulated. Combining imaging techniques and ultrastructural analyses, we found a significant decrease in the density of functional boutons and an increase in the presence of endosome-like structures within the boutons of cells incubated with BFA prior to FM1-43 loading. Such effects were not observed when BFA was added 5 minutes after the end of the loading step, when endocytosis was almost fully completed. In this situation, vesicles were found closer to the active zone (AZ) in boutons exposed to BFA. Together, these data suggest that the AP-1/AP-3 pathway contributes to SV recycling, affecting different steps in all boutons but not equally, and thus being partly responsible for the heterogeneity of the different recycling efficiencies. This article is protected by copyright. All rights reserved.

  16. ARH directs megalin to the endocytic recycling compartment to regulate its proteolysis and gene expression.

    PubMed

    Shah, Mehul; Baterina, Oscar Y; Taupin, Vanessa; Farquhar, Marilyn G

    2013-07-08

    Receptors internalized by endocytosis can return to the plasma membrane (PM) directly from early endosomes (EE; fast recycling) or they can traffic from EE to the endocytic recycling compartment (ERC) and recycle from there (slow recycling). How receptors are sorted for trafficking along these two pathways remains unclear. Here we show that autosomal recessive hypercholesterolemia (ARH) is required for trafficking of megalin, a member of the LDL receptor family, from EE to the ERC by coupling it to dynein; in the absence of ARH, megalin returns directly to the PM from EE via the connecdenn2/Rab35 fast recycling pathway. Binding of ARH to the endocytic adaptor AP-2 prevents fast recycling of megalin. ARH-mediated trafficking of megalin to the ERC is necessary for γ-secretase mediated cleavage of megalin and release of a tail fragment that mediates transcriptional repression. These results identify a novel mechanism for sorting receptors for trafficking to the ERC and link ERC trafficking to regulated intramembrane proteolysis (RIP) and expression of megalin.

  17. Inactivation of Caenorhabditis elegans aminopeptidase DNPP-1 restores endocytic sorting and recycling in tat-1 mutants

    PubMed Central

    Li, Xin; Chen, Baohui; Yoshina, Sawako; Cai, Tanxi; Yang, Fuquan; Mitani, Shohei; Wang, Xiaochen

    2013-01-01

    In Caenorhabditis elegans, the P4-ATPase TAT-1 and its chaperone, the Cdc50 family protein CHAT-1, maintain membrane phosphatidylserine (PS) asymmetry, which is required for membrane tubulation during endocytic sorting and recycling. Loss of tat-1 and chat-1 disrupts endocytic sorting, leading to defects in both cargo recycling and degradation. In this study, we identified the C. elegans aspartyl aminopeptidase DNPP-1, loss of which suppresses the sorting and recycling defects in tat-1 mutants without reversing the PS asymmetry defect. We found that tubular membrane structures containing recycling cargoes were restored in dnpp-1 tat-1 double mutants and that these tubules overlap with RME-1–positive recycling endosomes. The restoration of the tubular structures in dnpp-1 tat-1 mutants requires normal functions of RAB-5, RAB-10, and RME-1. In tat-1 mutants, we observed alterations in membrane surface charge and targeting of positively charged proteins that were reversed by loss of dnpp-1. DNPP-1 displays a specific aspartyl aminopeptidase activity in vitro, and its enzymatic activity is required for its function in vivo. Our data reveal the involvement of an aminopeptidase in regulating endocytic sorting and recycling and suggest possible roles of peptide signaling and/or protein metabolism in these processes. PMID:23427264

  18. Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation.

    PubMed

    Wang, Yan Yan; Hu, Chun Fang; Li, Juan; You, Xiang; Gao, Feng Guang

    2016-06-21

    Cross-presentation by dendritic cells (DCs) requires surface molecules such as lectin, CD40, langerin, heat shock protein, mannose receptor, mediated endocytosis, the endosomal translocation of internalized antigen, and the relocation of transporter associated with antigen processing (TAP). Although the activation of α7 nicotinic acetylcholine receptor (α7 nAchR) up-regulate surface molecule expression, augment endocytosis, and enhance cross-presentation, the molecular mechanism of α7 nAchR activation-increased cross-presentation is still poorly understood. In this study, we investigated the role of mannose receptor in nicotine-increased cross-presentation and the mechanism that endotoxins orchestrating the recruitment of TAP toward endosomes. We demonstrated that nicotine increase the expressiones of mannose receptor and Toll-like receptor 4 (TLR4) via PI3K-Akt-mTOR-p70S6 pathway. Both endosomal translocation of mannose receptor-internalized antigens and TLR4 sig- naling are necessary for nicotine-augmented cross-presentation and cross-priming. Importantly, the recruitment of TAP toward endosomes via TLR4-MyD88-IRAK4 signaling contributes to nicotine-increased cross-presentation and cross-activation of T cells. Thus, these data suggest that increased recruitment of TAP to Ag-containing vesicles contributes to the superior cross-presentation efficacy of α7 nAchR activated DCs.

  19. The GPRC6A Receptor displays Constitutive Internalization and Sorting to the Slow Recycling Pathway.

    PubMed

    Jacobsen, Stine Engesgaard; Ammendrup-Johnsen, Ina; Jansen, Anna Mai; Gether, Ulrik; Madsen, Kenneth Lindegaard; Bräuner-Osborne, Hans

    2017-03-09

    The class C G protein-coupled receptor GPRC6A is a putative nutrient sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization while the agonist-induced effects were imperceptible. Moreover, post-endocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non-canonical trafficking mechanisms are a common feature for the nutrient sensing class C family that ensure functional receptors in the cell membrane despite prolonged agonist exposure.

  20. Recycling in a megacity.

    PubMed

    Themelis, Nickolas J; Todd, Claire E

    2004-04-01

    In the aftermath of the 9/11 disaster, Mayor Bloomberg of New York City unveiled an aggressive budget plan that included the temporary suspension of glass and plastics recycling. This was considered by many to be anti-environmental, but the results of this study show that for lack of markets, even at zero or negative prices, nearly 90% of the plastic and glass set aside by thoughtful New Yorkers was transported to materials recovery facilities (MRFs) and from there to landfills. Sending bales of plastics to landfills is not limited to New York City. It is an environmental paradox that the United States is digging up new oil fields in pristine areas and, at the same time, continues to convert greenfields to brownfields by burying nearly 20 million tons of plastic fuel annually. The study also determined that at the present rate of source separation, estimated to be less than 30% of the available recyclables in 1999, building large, modern MRFs may increase substantially the rate of New York City recycling and also allow single-stream collection of commingled recyclables, as is done in Phoenix, AZ. Single-stream collection simplifies separation at the source by citizens and increases the amount of collected recyclables. Also, because collection represents a large fraction of the costs of waste management, it may have a significant economic advantage.

  1. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  2. A multilevel perspective to explain recycling behaviour in communities.

    PubMed

    Tabernero, Carmen; Hernández, Bernardo; Cuadrado, Esther; Luque, Bárbara; Pereira, Cícero R

    2015-08-15

    Previous research on the motivation for environmentally responsible behaviour has focused mainly on individual variables, rather than organizational or collective variables. Therefore, the results of those studies are hardly applicable to environmental management. This study considers individual, collective, and organizational variables together that contribute to the management of environmental waste. The main aim is to identify, through the development of a multilevel model, those predictive variables of recycling behaviour that help organizations to increase the recycling rates in their communities. Individual (age, gender, educational level, self-efficacy with respect to residential recycling, individual recycling behaviour), organizational (satisfaction with the quality of the service provided by a recycling company), and collective (community recycling rates, number of inhabitants, community efficacy beliefs) motivational factors relevant to recycling behaviour were analysed. A sample of 1501 residents from 55 localities was surveyed. The results of multilevel analyses indicated that there was significant variability within and between localities. Interactions between variables at the level of the individual (e.g. satisfaction with service quality) and variables at the level of the collective (e.g. community efficacy) predicted recycling behaviour in localities with low and high community recycling rates and large and small populations. The interactions showed that the relationship between self-efficacy and recycling is stronger in localities with weak community efficacy beliefs than in communities with strong beliefs. The findings show that the relationship between satisfaction with service quality and recycling behaviour is stronger in localities with strong community efficacy beliefs than in communities with weaker beliefs and a smaller population. The results are discussed accordingly in relation to theory and possible contribution to waste management

  3. Lysosomes can fuse with a late endosomal compartment in a cell-free system from rat liver

    PubMed Central

    1994-01-01

    The passage of pulse doses of asialoglycoproteins through the endosomal compartments of rat liver hepatocytes was studied by subcellular fractionation and EM. The kinetics of disappearance of radiolabeled asialofetuin from light endosomes prepared on Ficoll gradients were the same as the kinetics of disappearance of asialoorosomucoid-horse radish peroxidase reaction products from intracellular membrane-bound structures in the blood sinusoidal regions of hepatocytes. The light endosomes were therefore identifiable as being derived from the peripheral early endosome compartment. In contrast, the labeling of dense endosomes from the middle of the Ficoll gradient correlated with EM showing large numbers of reaction product-containing structures in the nonsinusoidal parts of the hepatocyte. In cell-free, postmitochondrial supernatants, we have previously observed that dense endosomes, but not light endosomes, interact with lysosomes. Cell-free interaction between isolated dense endosomes and lysosomes has now been reconstituted and analyzed in three ways: by transfer of radiolabeled ligand from endosomal to lysosomal densities, by a fluorescence dequenching assay which can indicate membrane fusion, and by measurement of content mixing. Maximum transfer of radiolabel to lysosomal densities required ATP and GTP plus cytosolic components, including N-ethylmaleimide-sensitive factor(s). Dense endosomes incubated in the absence of added lysosomes did not mature into vesicles of lysosomal density. Content mixing, and hence fusion, between endosomes and lysosomes was maximal in the presence of cytosol and ATP and also showed inhibition by N-ethyl-maleimide. Thus, we have demonstrated that a fusion step is involved in the transfer of radiolabeled ligand from an isolated endosome fraction derived from the nonsinusoidal regions of the hepatocyte to preexisting lysosomes in a cell-free system. PMID:7520447

  4. Scrap tire recycling

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1997-03-01

    As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

  5. Who owns the recyclables

    SciTech Connect

    Parker, B.

    1994-05-01

    On March 31, the California Supreme Court decided the much awaited Rancho Mirage'' case (Waste Management of the Desert, Inc., and the City of Rancho Mirage v. Palm Springs Recycling Center, Inc.), and held that the California Integrated Waste Management Act of 1989 does not allow an exclusive franchise for the collection of recyclables not discarded by their owner.'' This ends a three-year slugfest between secondary materials processors in the state and municipalities and their franchised garbage haulers who also collect and process recyclables as part of their exclusive arrangement. Central to this nationally-watched litigation is a most fundamental question in waste management: at what point in time do articles in the solid waste stream become actual or potentially valuable secondary materials

  6. AGAP2 regulates retrograde transport between early endosomes and the TGN

    PubMed Central

    Shiba, Yoko; Römer, Winfried; Mardones, Gonzalo A.; Burgos, Patricia V.; Lamaze, Christophe; Johannes, Ludger

    2010-01-01

    The retrograde transport route links early endosomes and the TGN. Several endogenous and exogenous cargo proteins use this pathway, one of which is the well-explored bacterial Shiga toxin. ADP-ribosylation factors (Arfs) are ~20 kDa GTP-binding proteins that are required for protein traffic at the level of the Golgi complex and early endosomes. In this study, we expressed mutants and protein fragments that bind to Arf-GTP to show that Arf1, but not Arf6 is required for transport of Shiga toxin from early endosomes to the TGN. We depleted six Arf1-specific ARF-GTPase-activating proteins and identified AGAP2 as a crucial regulator of retrograde transport for Shiga toxin, cholera toxin and the endogenous proteins TGN46 and mannose 6-phosphate receptor. In AGAP2-depleted cells, Shiga toxin accumulates in transferrin-receptor-positive early endosomes, suggesting that AGAP2 functions in the very early steps of retrograde sorting. A number of other intracellular trafficking pathways are not affected under these conditions. These results establish that Arf1 and AGAP2 have key trafficking functions at the interface between early endosomes and the TGN. PMID:20551179

  7. Endosomal type Iγ PIP 5-kinase controls EGF receptor lysosomal sorting.

    PubMed

    Sun, Yue; Hedman, Andrew C; Tan, Xiaojun; Schill, Nicholas J; Anderson, Richard A

    2013-04-29

    Endosomal trafficking and degradation of epidermal growth factor receptor (EGFR) play an essential role in the control of its signaling. Phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2)) is an established regulator of endocytosis, whereas PtdIns3P modulates endosomal trafficking. However, we demonstrate here that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes PtdIns4,5P(2), controls endosome-to-lysosome sorting of EGFR. In this pathway, PIPKIγi5 interacts with sorting nexin 5 (SNX5), a protein that binds PtdIns4,5P(2) and other phosphoinositides. PIPKIγi5 and SNX5 localize to endosomes, and loss of either protein blocks EGFR sorting into intraluminal vesicles (ILVs) of the multivesicular body. Loss of ILV sorting greatly enhances and prolongs EGFR signaling. PIPKIγi5 and SNX5 prevent Hrs ubiquitination, and this facilitates the Hrs association with EGFR that is required for ILV sorting. These findings reveal that PIPKIγi5 and SNX5 form a signaling nexus that controls EGFR endosomal sorting, degradation, and signaling.

  8. Both clathrin-positive and -negative coats are involved in endosomal sorting of the EGF receptor

    SciTech Connect

    Myromslien, Froydis D.; Grovdal, Lene Melsaether; Raiborg, Camilla; Stenmark, Harald; Madshus, Inger Helene; Stang, Espen . E-mail: espen.stang@medisin.uio.no

    2006-10-01

    Sorting of endocytosed EGF receptor (EGFR) to internal vesicles of multivesicular bodies (MVBs) depends on sustained activation and ubiquitination of the EGFR. Ubiquitination of EGFR is mediated by the ubiquitin ligase Cbl, being recruited to the EGFR both directly and indirectly through association with Grb2. Endosomal sorting of ubiquitinated proteins further depends on interaction with ubiquitin binding adaptors like Hrs. Hrs localizes to flat, clathrin-coated domains on the limiting membrane of endosomes. In the present study, we have investigated the localization of EGFR, Cbl and Grb2 with respect to coated and non-coated domains of the endosomal membrane and to vesicles within MVBs. Both EGFR, Grb2, and Cbl were concentrated in coated domains of the limiting membrane before translocation to inner vesicles of MVBs. While almost all Hrs was in clathrin-positive coats, EGFR and Grb2 in coated domains only partially colocalized with Hrs and clathrin. The extent of colocalization of EGFR and Grb2 with Hrs and clathrin varied with time of incubation with EGF. These results demonstrate that both clathrin-positive and clathrin-negative electron dense coats exist on endosomes and are involved in endosomal sorting of the EGFR.

  9. MiniCORVET is a Vps8-containing early endosomal tether in Drosophila

    PubMed Central

    Lőrincz, Péter; Lakatos, Zsolt; Varga, Ágnes; Maruzs, Tamás; Simon-Vecsei, Zsófia; Darula, Zsuzsanna; Benkő, Péter; Csordás, Gábor; Lippai, Mónika; Andó, István; Hegedűs, Krisztina; Medzihradszky, Katalin F; Takáts, Szabolcs; Juhász, Gábor

    2016-01-01

    Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.14226.001 PMID:27253064

  10. Cargo-dependent degradation of ESCRT-I as a feedback mechanism to modulate endosomal sorting.

    PubMed

    Malerød, Lene; Pedersen, Nina Marie; Sem Wegner, Catherine Elisabeth; Lobert, Viola Hélène; Leithe, Edward; Brech, Andreas; Rivedal, Edgar; Liestøl, Knut; Stenmark, Harald

    2011-09-01

    Ligand-mediated lysosomal degradation of growth factor receptors, mediated by the endosomal sorting complex required for transport (ESCRT) machinery, is a mechanism that attenuates the cellular response to growth factors. In this article, we present a novel regulatory mechanism that involves ligand-mediated degradation of a key component of the sorting machinery itself. We have investigated the endosomal localization of subunits of the four ESCRTs-Hrs (ESCRT-0), Tsg101 (ESCRT-I), EAP30/Vps22 (ESCRT-II) and charged multivesicular body protein 3/Vps24 (ESCRT-III). All the components were detected on the limiting membrane of multivesicular endosomes (MVEs). Surprisingly, however, Tsg101 and other ESCRT-I subunits were also detected within intraluminal vesicles (ILVs) of MVEs. Tsg101 was sequestered along with cargo during endosomal sorting into ILVs and further degraded in lysosomes. Importantly, ESCRT-mediated downregulation of two distinct cargoes, epidermal growth factor receptor (EGFR) and connexin43, mutually made cells refractory to degradation of the other cargo. Our observations indicate that the degradation of a key ESCRT component along with cargo represents a novel feedback control of endosomal sorting by preventing collateral degradation of cell surface receptors following stimulation of one specific pathway.

  11. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    PubMed

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  12. In Vitro Budding of Intralumenal Vesicles into Late Endosomes Is Regulated by Alix and Tsg101

    PubMed Central

    Falguières, Thomas; Luyet, Pierre-Philippe; Bissig, Christin; Scott, Cameron C.; Velluz, Marie-Claire

    2008-01-01

    Endosomes along the degradation pathway leading to lysosomes accumulate membranes in their lumen and thus exhibit a characteristic multivesicular appearance. These lumenal membranes typically incorporate down-regulated EGF receptor destined for degradation, but the mechanisms that control their formation remain poorly characterized. Here, we describe a novel quantitative biochemical assay that reconstitutes the formation of lumenal vesicles within late endosomes in vitro. Vesicle budding into the endosome lumen was time-, temperature-, pH-, and energy-dependent and required cytosolic factors and endosome membrane components. Our light and electron microscopy analysis showed that the compartment supporting the budding process was accessible to endocytosed bulk tracers and EGF receptor. We also found that the EGF receptor became protected against trypsin in our assay, indicating that it was sorted into the intraendosomal vesicles that were formed in vitro. Our data show that the formation of intralumenal vesicles is ESCRT-dependent, because the process was inhibited by the K173Q dominant negative mutant of hVps4. Moreover, we find that the ESCRT-I subunit Tsg101 and its partner Alix control intralumenal vesicle formation, by acting as positive and negative regulators, respectively. We conclude that budding of the limiting membrane toward the late endosome lumen, which leads to the formation of intraendosomal vesicles, is controlled by the positive and negative functions of Tsg101 and Alix, respectively. PMID:18768755

  13. EGF and amphiregulin differentially regulate Cbl recruitment to endosomes and EGF receptor fate

    PubMed Central

    Stern, Kathryn A.; Place, Trenton L.; Lill, Nancy L.

    2012-01-01

    EGF-R [EGF (epidermal growth factor) receptor] ligands can promote or inhibit cell growth. The biological outcome of receptor activation is dictated, at least in part, by ligand-specified patterns of endocytic trafficking. EGF-R trafficking downstream of the ligands EGF and TGF-α (transforming growth factor-α) has been investigated extensively. However, less is known about EGF-R fates induced by the ligands BTC (betacellulin) and AR (amphiregulin). We undertook comparative analyses to identify ligand-specific molecular events that regulate EGF-R trafficking and degradation. EGF (17 nM) and BTC (8.5 nM) induced significant EGF-R degradation, with or without ectopic expression of the ubiquitin ligase Cbl. Human recombinant AR (17 nM) failed to affect receptor degradation in either case. Notably, levels of ligand-induced EGF-R ubiquitination did not correlate strictly with receptor degradation. Dose–response experiments revealed that AR at a saturating concentration was a partial agonist at the EGF-R, with approx. 40 % efficacy (relative to EGF) at inducing receptor tyrosine phosphorylation, ubiquitination and association with Cbl. EGF-R down-regulation and degradation also were compromised upon cell stimulation with AR (136 nM). These outcomes correlated with decreased degradation of the Cbl substrate and internalization inhibitor hSprouty2. Downstream of the hSprouty2 checkpoint in AR-stimulated cells, Cbl-free EGF-R was incorporated into endosomes from which Cbl–EGF-R complexes were excluded. Our results suggest that the AR-specific EGF-R fate results from decreased hSprouty2 degradation and reduced Cbl recruitment to underphosphorylated EGF-R, two effects that impair EGF-R trafficking to lysosomes. PMID:18045238

  14. Recycling Decisions and Green Design.

    ERIC Educational Resources Information Center

    Lave, Lester B.; And Others

    1994-01-01

    Explores the facts and perceptions regarding recycling, what can be done to make products more environmentally compatible, and how to think about recycling decisions in a more helpful way. (Contains 39 references.) (MDH)

  15. Filter Backwash Recycling Rule Documents

    EPA Pesticide Factsheets

    The purpose of the FBRR is to require (PWSs) to review their recycle practices and, where appropriate, work with the state Primacy Agency to make any necessary changes to recycle practices that may compromise microbial control.

  16. The efficacy of a theory-based, participatory recycling intervention on a college campus.

    PubMed

    Largo-Wight, Erin; Johnston, Dedee DeLongpre; Wight, Jeff

    2013-11-01

    Recycling solid waste is an important primary prevention focus to protect environmental resources and human health. Recycling reduces energy consumption and emissions and the need to harvest raw material, which protects air, water, and land. In the study described in this article, the authors conducted an eight week field study to test the efficacy of an intervention aimed to increase can and bottle recycling on a college campus. Recycling volume was assessed in three campus buildings (two treatments and one control) over eight weeks. The control building had standard outdoor-only recycling. The treatment buildings had standard outdoor recycling plus four weeks with the treatment indoor recycling. Total can and bottle recycling volume increased 65%-250% in the treatment buildings compared to the control building. Recycling significantly increased in both the classroom (t = -2.9, p < .05) and administrative (t = -12.4, p < .001) treatment buildings compared to the control building (t = -.13, p = .91). Results suggest that convenience of receptacles alone, without education or additional promotion, resulted in significantly more recycling. Health promoters should prioritize efforts to make recycling easy and convenient.

  17. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    PubMed

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  18. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    PubMed

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.

  19. Recycled Insect Models

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  20. Recycling, Rethinking, and Retraining.

    ERIC Educational Resources Information Center

    Evans, William E.

    The issues and problems confronted by a professor of literature when asked to teach a technical writing course for engineers are related in this paper. The first section of the paper explains how the professor was "recycled" from a teacher of literature to a professor of technical writing at his college. The second section describes some of the…

  1. Designing for recycling

    SciTech Connect

    1997-08-01

    The instrument panel (IP) with its variety of materials is one of the most difficult parts of the automobile to recycle. Selection of materials to minimize material count and maximize separability is critical to cost-effective IP recycling. Choices of assembly and disassembly techniques also should consider recycling. Current practices for recycling automobiles focus on the recovery of usable parts and metals with other materials becoming landfill. New design practices or significant developments in recovery technology must occur to reduce the volume of landfill materials. Design practices will be most effective if they allow cost-effective recovery of desired materials from the plastic components before shredding. Recovery technology continues to improve, but most parts are shredded with the car and land-filled as automotive shredder residue (ASR). Shredding followed by mechanical separation conceptually is the most cost-effective option, but the typical instrument panel contains six or more plastic materials. This makes separation difficult and expensive to get acceptable material yields and purity.

  2. The Recycle Team.

    ERIC Educational Resources Information Center

    Scott, Roger; And Others

    This guide provides lessons that enable students to learn how important it is for each of us to take care of the environment by minimizing the problems caused by too much trash. In the 10 lessons included here, students and their families learn how they can be part of the solution by practicing source reduction and by reusing, recycling, and…

  3. Fuels from Recycling Systems

    ERIC Educational Resources Information Center

    Tillman, David A.

    1975-01-01

    Three systems, operating at sufficient scale, produce fuels that may be alternatives to oil and gas. These three recycling systems are: Black Clawson Fiberclaim, Franklin, Ohio; Union Carbide, South Charleston, West Virginia; and Union Electric, St. Louis, Missouri. These produce a wet fuel, a pyrolytic gas, and a dry fuel, respectively. (BT)

  4. Recycling for radio astronomy

    NASA Astrophysics Data System (ADS)

    Hoare, Melvin

    2012-02-01

    Melvin Hoare, Steve Rawlings and the CUGA consortium look forward to the potential offered by recycling the ˜30 m class antennas at Goonhilly Earth Station in Cornwall, including a new deep-space tracking facility, research and training, and the possibility of enhancing the e-MERLIN array.

  5. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  6. Recycling Study Guide.

    ERIC Educational Resources Information Center

    Hallowell, Anne; And Others

    This study guide was designed to help teachers and students understand the problems surrounding solid wastes. It includes an overview of solid waste and recycling, a glossary, suggested activities and a list of resource publications, audiovisual materials and organizations. There are 19 activity suggestions included in this guide designed for use…

  7. Teacher Values in Teaching Recycling.

    ERIC Educational Resources Information Center

    Heimlich, Joseph E.; Harako, Eiichiro Atom

    1994-01-01

    Examines teachers' perceived values about recycling and how their values then influence the teaching of recycling. Results suggest that the teachers surveyed have a strong supportive feeling toward recycling and consequently impose their values onto their students in the teaching/learning exchange. (Contains 16 references.) (Author/MDH)

  8. Recycling Behavior: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  9. Protein kinase A dependent membrane protein phosphorylation and chloride conductance in endosomal vesicles from kidney cortex

    SciTech Connect

    Reenstra, W.W.; Bae, H.R.; Verkman, A.S. Univ. of California, San Francisco ); Sabolic, I. Harvard Medical School, Charlestown, MA )

    1992-01-14

    Regulation of Cl conductance by protein kinase A action, cell-free measurements of Cl transport and membrane protein phosphorylation were carried out in apical endocytic vesicles from rabbit kidney proximal tubule. Cl transport was measured by a stopped-flow quenching assay in endosomes labeled in vivo with the fluorescent Cl indicator 6-methoxy-N-(3-sulfopropyl)quinolinium. Phosphorylation was studied in a purified endosomal preparation by SDS-PAGE and autoradiography of membrane proteins labeled by ({gamma}-{sup 32}P)ATP. These results suggest that, in a cell-free system, protein kinase A increases Cl conductance in endosomes from kidney proximal tubule by a phosphorylation mechanism. The labeled protein has a size similar to that of the 64-kDa putative kidney Cl channel reported by Landry et al. but is much smaller than the {approximately}170-kDa cystic fibrosis transmembrane conductance regulatory protein.

  10. Use of Kaede fusions to visualize recycling of G protein-coupled receptors.

    PubMed

    Schmidt, Antje; Wiesner, Burkhard; Weisshart, Klaus; Schulz, Katharina; Furkert, Jens; Lamprecht, Björn; Rosenthal, Walter; Schülein, Ralf

    2009-01-01

    The heptahelical G protein-coupled receptors (GPCRs) are internalized following agonist treatment and either recycle rapidly to the plasma membrane or enter the lysosomal degradation pathway. Many conventional GPCR recycling assays suffer from the fact that receptors arriving from the secretory pathway may interfere with recycling receptors. In this study, we introduce a new methodology to study post-endocytotic GPCR trafficking using fusions with the recently cloned Kaede protein. In contrast to the widely used green fluorescent protein, the fluorescence of Kaede can be converted from green to red using ultraviolet irradiation. Our methodology allows to study recycling of GPCRs microscopically in real-time bypassing problems with secretory pathway receptors. Initially, receptors are internalized using an agonist. Fluorescence signals in endosomes are switched, and trafficking of the receptors to the plasma membrane can be easily visualized by monitoring their new fluorescence. Using this methodology, we show that the corticotropin-releasing factor receptor type 1 belongs to the family of recycling GPCRs. Moreover, we demonstrate by fluorescence correlation spectroscopy that Kaede does not oligomerize when fused to membrane proteins, representing an additional advantage of this technique. The Kaede technology may be a powerful tool to study membrane protein trafficking in general.

  11. Recycled sand in lime-based mortars.

    PubMed

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure.

  12. Hox Genes Promote Neuronal Subtype Diversification through Posterior Induction in Caenorhabditis elegans.

    PubMed

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2015-11-04

    Although Hox genes specify the differentiation of neuronal subtypes along the anterior-posterior axis, their mode of action is not entirely understood. Using two subtypes of the touch receptor neurons (TRNs) in C. elegans, we found that a "posterior induction" mechanism underlies the Hox control of terminal neuronal differentiation. The anterior subtype maintains a default TRN state, whereas the posterior subtype undergoes further morphological and transcriptional specification induced by the posterior Hox proteins, mainly EGL-5/Abd-B. Misexpression of the posterior Hox proteins transformed the anterior TRN subtype toward a posterior identity both morphologically and genetically. The specification of the posterior subtype requires EGL-5-induced repression of TALE cofactors, which antagonize EGL-5 functions, and the activation of rfip-1, a component of recycling endosomes, which mediates Hox activities by promoting subtype-specific neurite outgrowth. Finally, EGL-5 is required for subtype-specific circuit formation by acting in both the sensory neuron and downstream interneuron to promote functional connectivity.

  13. Refrigerator recycling and CFCs

    SciTech Connect

    Shepard, M.; Hawthorne, W.; Wilson, A.

    1994-12-31

    Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

  14. Early Endosomes Are Required for Major Histocompatiblity Complex Class II Transport to Peptide-loading Compartments

    PubMed Central

    Brachet, Valérie; Péhau-Arnaudet, Gérard; Desaymard, Catherine; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes. PMID:10473634

  15. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion.

    PubMed

    Tomavo, Stanislas; Slomianny, Christian; Meissner, Markus; Carruthers, Vern B

    2013-10-01

    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles.

  16. Secretory Granule Membrane Protein Recycles Through Multivesicular Bodies

    PubMed Central

    Bäck, Nils; Rajagopal, Chitra; Mains, Richard E.; Eipper, Betty A.

    2010-01-01

    The recycling of secretory granule membrane proteins that reach the plasma membrane following exocytosis is poorly understood. As a model, peptidylglycine α-amidating monooxygenase (PAM), a granule membrane protein that catalyzes a final step in peptide processing was examined. Ultrastructural analysis of antibody internalized by PAM and surface biotinylation demonstrated efficient return of plasma membrane PAM to secretory granules. Electron microscopy revealed the rapid movement of PAM from early endosomes to the limiting membranes of multivesicular bodies and then into intralumenal vesicles. Wheat germ agglutinin and PAM antibody internalized simultaneously were largely segregated when they reached multivesicular bodies. Mutation of basally phosphorylated residues (Thr946, Ser949) in the cytoplasmic domain of PAM to Asp (TS/DD) substantially slowed its entry into intralumenal vesicles. Mutation of the same sites to Ala (TS/AA) facilitated the entry of internalized PAM into intralumenal vesicles and its subsequent return to secretory granules. Entry of PAM into intralumenal vesicles is also associated with a juxtamembrane endoproteolytic cleavage that releases a 100 kDa soluble PAM fragment that can be returned to secretory granules. Controlled entry into the intralumenal vesicles of multivesicular bodies plays a key role in the recycling of secretory granule membrane proteins. PMID:20374556

  17. Recycle of plastics from auto shredder residue: incentives and barriers

    SciTech Connect

    Curlee, T.R.

    1985-01-01

    Most of the work that has been done recently in the area of plastics recycling has focused on technological questions, and to a great extent this work has been successful. However, the degree to which recycling processes will be adopted by the market place will depend not only on technological developments but also on non-technological incentives and barriers to recycle. This paper focuses on waste plastics from the residue of auto shredders and discusses the incentives and barriers to the recycling of these plastics from three main perspectives: (1) the physical composition of shredder residue; (2) the private firm that operates a shredder and the firm that might utilize shredder residue in a recycling operation; and (3) society, which may or may not have an incentive to promote a level of recycle greater than the level provided by private firms. From each perspective significant incentives, as well as barriers, are identified that may have a pronounced impact on the degree to which plastics from shredder residue are ultimately disposed or recycled. 31 references, 5 tables.

  18. Solvent Recycling for Shipyards

    DTIC Science & Technology

    1993-05-01

    alternatives to solvent cleaning. Typical equipment types that can be effectively cleaned with recycled solvents include spray guns paint hoses pumps...in place of solvent-based coatings; or equipment changes, such as the use of airless or HVLP systems to reduce paint consumption and overspray...Using mechanical cleaning methods instead of solvent cleaning Change from conventional painting to solventless processes such as thermal spray or powder

  19. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling.

    PubMed

    Sahay, Gaurav; Querbes, William; Alabi, Christopher; Eltoukhy, Ahmed; Sarkar, Sovan; Zurenko, Christopher; Karagiannis, Emmanouil; Love, Kevin; Chen, Delai; Zoncu, Roberto; Buganim, Yosef; Schroeder, Avi; Langer, Robert; Anderson, Daniel G

    2013-07-01

    Despite efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain unclear. Here we examine cellular uptake of short interfering RNA (siRNA) delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy. We also employed defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR and cathepsins. siRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann-Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes and lysosomes, and increased gene silencing of the target gene. Our data suggest that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways.

  20. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1.

    PubMed

    Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M; Rinné, Susanne; Decher, Niels; Schlichthörl, Günter; Daut, Jürgen

    2014-06-15

    The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion.

  1. Actin-dependent propulsion of endosomes and lysosomes byrecruitment of n-wasp

    SciTech Connect

    Taunton J; Rowning BA; Coughlin ML; Wu M; Moon RT; Mitchison TJ; Larabell CA

    2000-02-07

    We examined the spatial and temporal control of actin assembly in living Xenopus eggs. Within minutes of egg activation,dynamic actin-rich comet tails appeared on a subset of cytoplasmic vesicles that were enriched in protein kinase C (PKC), causing the vesicles to move through the cytoplasm. Actin comet tail formation in vivo was stimulated by the PKC activator phorbol myristate acetate (PMA),and this process could be reconstituted in a cell-free system. We used this system to define the characteristics that distinguish vesicles associated with actin comet tails from other vesicles in the extract. We found that the protein, N-WASP, was recruited to the surface of every vesicle associated with an actin comet tail, suggesting that vesicle movement results from actin assembly nucleated by the Arp2/3 complex, the immediate downstream target of N-WASP, The motile vesicles accumulated the dye acridine orange, a marker for endosomes and lysosomes. Furthermore, vesicles associated with actin comet tails had the morphological features of multivesicular endosomes as revealed by electron microscopy. Endosomes and lysosomes from mammalian cells preferentially nucleated actin assembly and moved in the Xenopus egg extract system. These results define endosomes and lysosomes as recruitment sites for the actin nucleation machinery and demonstrate that actin assembly contributes to organelle movement. Conversely, by nucleating actin assembly, intracellular membranes may contribute to the dynamic organization of the actin cytoskeleton.

  2. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1

    PubMed Central

    Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M.; Rinné, Susanne; Decher, Niels; Schlichthörl, Günter; Daut, Jürgen

    2014-01-01

    The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion. PMID:24743596

  3. Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease.

    PubMed

    Matej, Radoslav; Botond, Gergö; László, Lajos; Kopitar-Jerala, Natasa; Rusina, Robert; Budka, Herbert; Kovacs, Gabor G

    2010-09-01

    Sporadic motor neuron disease (MND) is characterized by progressive degeneration of motor neurons and intraneuronal cytoplasmic translocation and deposition of the nuclear protein TDP-43. There is a paucity of data on the subcellular mechanisms of the nuclear-cytoplasmic trafficking of TDP-43, particularly about the precise role of the endosomal-lysosomal system (ELS). In the present study, using a neuron-specific morphometric approach, we examined the expression of the early endosomal marker Rab5 and lysosomal cathepsins B, D, F, and L as well as PAS-stained structures in the anterior horn cells in 11 individuals affected by sporadic MND and 5 age-matched controls. This was compared with the expression of ubiquitin, p62 and TDP-43 and its phosphorylated form. The principal finding was the increased expression of the endosomal marker Rab5 and lysosomal cathepsin D, and of PAS-positive structures in motor neurons of MND cases. Furthermore, the area-portion of Rab5 immunoreactivity correlated well with the intracellular accumulation of ubiquitin, p62 and (phosphorylated) TDP-43. However, double immunolabelling and immunogold electron microscopy excluded colocalization of phosphorylated TDP-43 with the ELS. These data contrast with observations on neuronal cytopathology in Alzheimer's or prion diseases where the disease-specific proteins are processed within endosomes, and suggest a distinct role of the ELS in MND.

  4. Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II

    PubMed Central

    Wernimont, Amy K; Weissenhorn, Winfried

    2004-01-01

    Background Down-regulation of plasma membrane receptors via the endocytic pathway involves their monoubiquitylation, transport to endosomal membranes and eventual sorting into multi vesicular bodies (MVB) destined for lysosomal degradation. Successive assemblies of Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II and III) largely mediate sorting of plasma membrane receptors at endosomal membranes, the formation of multivesicular bodies and their release into the endosomal lumen. In addition, the human ESCRT-II has been shown to form a complex with RNA polymerase II elongation factor ELL in order to exert transcriptional control activity. Results Here we report the crystal structure of Vps25 at 3.1 Å resolution. Vps25 crystallizes in a dimeric form and each monomer is composed of two winged helix domains arranged in tandem. Structural comparisons detect no conformational changes between unliganded Vps25 and Vps25 within the ESCRT-II complex composed of two Vps25 copies and one copy each of Vps22 and Vps36 [1,2]. Conclusions Our structural analyses present a framework for studying Vps25 interactions with ESCRT-I and ESCRT-III partners. Winged helix domain containing proteins have been implicated in nucleic acid binding and it remains to be determined whether Vps25 has a similar activity which might play a role in the proposed transcriptional control exerted by Vps25 and/or the whole ESCRT-II complex. PMID:15579210

  5. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles.

    PubMed

    Kaksonen, M; Peng, H B; Rauvala, H

    2000-12-01

    We have used fluorescent protein tagging to study the localization and dynamics of the actin-binding protein cortactin in living NIH 3T3 fibroblast cells. Cortactin was localized to active lamellipodia and to small cytoplasmic spots. Time-lapse imaging revealed that these cortactin labeled structures were very dynamic. In the lamellipodia, cortactin labeled structures formed at the leading edge and then moved toward the cell center. Experiments with green fluorescent protein (GFP)-tagged actin showed that cortactin movement was coincident with the actin retrograde flow in the lamellipodia. Cytoplasmic cortactin spots also contained F-actin and were propelled by actin polymerization. Arp3, a component of the arp2/3 complex which is a key regulator of actin polymerization, co-localized with cortactin. Cytoplasmic cortactin-labeled spots were found to be associated with endosomal vesicles. Association was asymmetric and approximately half of the endosomes were associated with cortactin spots. Time-lapse imaging suggested that these cortactin and F-actin-containing spots propelled endosomes. Actin polymerization based propulsion may be a common mechanism for endomembrane trafficking in the same manner as used in the plasma membrane protrusions. As cortactin is known to interact with membrane-associated signaling proteins it could have a role in linking signaling complexes with dynamic actin on endosomes and in lamellipodia.

  6. Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2.

    PubMed

    Hasdemir, Burcu; Murphy, Jane E; Cottrell, Graeme S; Bunnett, Nigel W

    2009-10-09

    The E3 ubiquitin ligase c-Cbl ubiquitinates the G protein-coupled receptor protease-activated receptor 2 (PAR(2)), which is required for postendocytic sorting of activated receptors to lysosomes, where degradation terminates signaling. The mechanisms of PAR(2) deubiquitination and its importance in trafficking and signaling of endocytosed PAR(2) are unknown. We report that receptor deubiquitination occurs between early endosomes and lysosomes and involves the endosomal deubiquitinating proteases AMSH and UBPY. Expression of the catalytically inactive mutants, AMSH(D348A) and UBPY(C786S), caused an increase in PAR(2) ubiquitination and trapped the receptor in early endosomes, thereby preventing lysosomal trafficking and degradation. Small interfering RNA knockdown of AMSH or UBPY also impaired deubiquitination, lysosomal trafficking, and degradation of PAR(2). Trapping PAR(2) in endosomes through expression of AMSH(D348A) or UBPY(C786S) did not prolong the association of PAR(2) with beta-arrestin2 or the duration of PAR(2)-induced ERK2 activation. Thus, AMSH and UBPY are essential for trafficking and down-regulation of PAR(2) but not for regulating PAR(2) dissociation from beta-arrestin2 or PAR(2)-mediated ERK2 activation.

  7. Endosomal gene expression: a new indicator for prostate cancer patient prognosis?

    PubMed Central

    Johnson, Ian R.D.; Parkinson-Lawrence, Emma J.; Keegan, Helen; Spillane, Cathy D.; Barry-O'Crowley, Jacqui; Watson, William R.; Selemidis, Stavros; Butler, Lisa M.; O'Leary, John J.; Brooks, Doug A.

    2015-01-01

    Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients. PMID:26473288

  8. Venezuelan equine encephalitis virus entry mechanism requires late endosome formation and resists cell membrane cholesterol depletion

    SciTech Connect

    Kolokoltsov, Andrey A.; Fleming, Elisa H.; Davey, Robert A. . E-mail: radavey@utmb.edu

    2006-04-10

    Virus envelope proteins determine receptor utilization and host range. The choice of receptor not only permits specific targeting of cells that express it, but also directs the virus into specific endosomal trafficking pathways. Disrupting trafficking can result in loss of virus infectivity due to redirection of virions to non-productive pathways. Identification of the pathway or pathways used by a virus is, thus, important in understanding virus pathogenesis mechanisms and for developing new treatment strategies. Most of our understanding of alphavirus entry has focused on the Old World alphaviruses, such as Sindbis and Semliki Forest virus. In comparison, very little is known about the entry route taken by more pathogenic New World alphaviruses. Here, we use a novel contents mixing assay to identify the cellular requirements for entry of a New World alphavirus, Venezuelan equine encephalitis virus (VEEV). Expression of dominant negative forms of key endosomal trafficking genes shows that VEEV must access clathrin-dependent endocytic vesicles for membrane fusion to occur. Unexpectedly, the exit point is different from Old World alphaviruses that leave from early endosomes. Instead, VEEV also requires functional late endosomes. Furthermore, unlike the Old World viruses, VEEV entry is insensitive to cholesterol sequestration from cell membranes and may reflect a need to access an endocytic compartment that lacks cholesterol. This indicates fundamental differences in the entry route taken by VEEV compared to Old World alphaviruses.

  9. SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting.

    PubMed

    van Weering, Jan R T; Verkade, Paul; Cullen, Peter J

    2010-06-01

    The endocytic network is morphologically characterized by a wide variety of membrane bound compartments that are able to undergo dynamic re-modeling through tubular and vesicular structures. The precise molecular mechanisms governing such re-modeling, and the events that co-ordinated this with the major role of endosomes, cargo sorting, remain unclear. That said, recent work on a protein family of sorting nexins (SNX) - especially a subfamily of SNX that contain a BAR domain (SNX-BARs) - has begun to shed some much needed light on these issues and in particular the process of tubular-based endosomal sorting. SNX-BARs are evolutionary conserved in endosomal protein complexes such as retromer, where they co-ordinate membrane deformation with cargo selection. Furthermore a central theme emerges of SNX-BARs linking the forming membrane carrier to cytoskeletal elements for transport through motor proteins such as dynein. By studying these SNX-BARs, we are gaining an increasingly detailed appreciation of the mechanistic basis of endosomal sorting and how this highly dynamic process functions in health and disease.

  10. The CLC-5 2Cl(-)/H(+) exchange transporter in endosomal function and Dent's disease.

    PubMed

    Lippiat, Jonathan D; Smith, Andrew J

    2012-01-01

    CLC-5 plays a critical role in the process of endocytosis in the proximal tubule of the kidney and mutations that alter protein function are the cause of Dent's I disease. In this X-linked disorder impaired reabsorption results in the wasting of calcium and low molecular weight protein to the urine, kidney stones, and progressive renal failure. Several different ion-transporting and protein clustering roles have been proposed as the physiological function of CLC-5 in endosomal membranes. At the time of its discovery, nearly 20 years ago, it was understandably assumed to be a chloride channel similar to known members of the CLC family, such as CLC-1, suggesting that chloride transport by CLC-5 was critical for endosomal function. Since then CLC-5 was found instead to be a 2Cl(-)/H(+) exchange transporter with voltage-dependent activity. Recent studies have determined that it is this coupled exchange of protons for chloride, and not just chloride transport, which is critical for endosomal and kidney function. This review discusses the recent ideas that describe how CLC-5 might function in endosomal membranes, the aspects that we still do not understand, and where controversies remain.

  11. BCR and Endosomal TLR Signals Synergize to Increase AID Expression and Establish Central B Cell Tolerance.

    PubMed

    Kuraoka, Masayuki; Snowden, Pilar B; Nojima, Takuya; Verkoczy, Laurent; Haynes, Barton F; Kitamura, Daisuke; Kelsoe, Garnett

    2017-02-14

    Activation-induced cytidine deaminase (AID) is required to purge autoreactive immature and transitional-1 (immature/T1) B cells at the first tolerance checkpoint, but how AID selectively removes self-reactive B cells is unclear. We now show that B cell antigen receptor (BCR) and endosomal Toll-like receptor (TLR) signals synergize to elicit high levels of AID expression in immature/T1 B cells. This synergy is restricted to ligands for endocytic TLR and requires phospholipase-D activation, endosomal acidification, and MyD88. The first checkpoint is significantly impaired in AID- or MyD88-deficient mice and in mice doubly heterozygous for AID and MyD88, suggesting interaction of these factors in central B cell tolerance. Moreover, administration of chloroquine, an inhibitor of endosomal acidification, results in a failure to remove autoreactive immature/T1 B cells in mice. We propose that a BCR/TLR pathway coordinately establishes central tolerance by hyper-activating AID in immature/T1 B cells that bind ligands for endosomal TLRs.

  12. The membrane-associated protein, supervillin, accelerates F-actin-dependent rapid integrin recycling and cell motility.

    PubMed

    Fang, Zhiyou; Takizawa, Norio; Wilson, Korey A; Smith, Tara C; Delprato, Anna; Davidson, Michael W; Lambright, David G; Luna, Elizabeth J

    2010-06-01

    In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.

  13. The Membrane-associated Protein, Supervillin, Accelerates F-actin-dependent Rapid Integrin Recycling and Cell Motility

    PubMed Central

    Fang, Zhiyou; Takizawa, Norio; Wilson, Korey A.; Smith, Tara C.; Delprato, Anna; Davidson, Michael W.; Lambright, David G.; Luna, Elizabeth J.

    2010-01-01

    In migrating cells, the cytoskeleton coordinates signal transduction and re-distributions of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, “lipid raft” membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases 1 and 2 (ERK) and increases the velocity of cell translocation. These results suggest that supervillin, F-actin, and associated proteins may coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility. PMID:20331534

  14. Understanding recycling behavior in Kentucky: Who recycles and why

    NASA Astrophysics Data System (ADS)

    Morgan, Fred W.; Hughes, Margaret V.

    2006-08-01

    Recycling behavior and the motivations behind recycling are being analyzed in a collaborative study between the Sloan Industry Center for a Sustainable Aluminum Industry, the Center for Aluminum Technology, Secat, and the Gatton College of Business and Economics at the University of Kentucky in Lexington. The goals of this study are to determine why people recycle and to find ways to motivate people to recycle more, using Fayette County, Kentucky, as a sample study. It is hoped that the information gathered through educational and motivational efforts in this county can be used on a larger scale in communities throughout the United States.

  15. Natural selection for costly nutrient recycling in simulated microbial metacommunities.

    PubMed

    Boyle, Richard A; Williams, Hywel T P; Lenton, Timothy M

    2012-11-07

    Recycling of essential nutrients occurs at scales from microbial communities to global biogeochemical cycles, often in association with ecological interactions in which two or more species utilise each others' metabolic by-products. However, recycling loops may be unstable; sequences of reactions leading to net recycling may be parasitised by side-reactions causing nutrient loss, while some reactions in any closed recycling loop are likely to be costly to participants. Here we examine the stability of nutrient recycling loops in an individual-based ecosystem model based on microbial functional types that differ in their metabolism. A supplied nutrient is utilised by a "source" functional type, generating a secondary nutrient that is subsequently used by two other types-a "mutualist" that regenerates the initial nutrient at a growth rate cost, and a "parasite" that produces a refractory waste product but does not incur any additional cost. The three functional types are distributed across a metacommunity in which separate patches are linked by a stochastic diffusive migration process. Regions of high mutualist abundance feature high levels of nutrient recycling and increased local population density leading to greater export of individuals, allowing the source-mutualist recycling loop to spread across the system. Individual-level selection favouring parasites is balanced by patch-level selection for high productivity, indirectly favouring mutualists due to the synergistic productivity benefits of the recycling loop they support. This suggests that multi-level selection may promote nutrient cycling and thereby help to explain the apparent ubiquity and stability of nutrient recycling in nature.

  16. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes.

    PubMed

    Popoff, Vincent; Mardones, Gonzalo A; Bai, Siau-Kun; Chambon, Valérie; Tenza, Danièle; Burgos, Patricia V; Shi, Anbing; Benaroch, Philippe; Urbé, Sylvie; Lamaze, Christophe; Grant, Barth D; Raposo, Graça; Johannes, Ludger

    2009-12-01

    Clathrin and retromer have key functions for retrograde trafficking between early endosomes and the trans-Golgi network (TGN). Previous studies on Shiga toxin suggested that these two coat complexes operate in a sequential manner. Here, we show that the curvature recognition subunit component sorting nexin 1 (SNX1) of retromer interacts with receptor-mediated endocytosis-8 (RME-8) protein, and that RME-8 and SNX1 colocalize on early endosomes together with a model cargo of the retrograde route, the receptor-binding B-subunit of Shiga toxin (STxB). RME-8 has previously been found to bind to the clathrin uncoating adenosine triphosphatase (ATPase) Hsc70, and we now report that depletion of RME-8 or Hsc70 affects retrograde trafficking at the early endosomes-TGN interface of STxB and the cation-independent mannose 6-phosphate receptor, an endogenous retrograde cargo protein. We also provide evidence that retromer interacts with the clathrin-binding protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) not only via SNX1, as previously published (Chin Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069-7078), but also via the core complex component Vps35. Hrs codistributes at the ultrastructural level with STxB on early endosomes, and interfering with Hrs function using antibodies or mild overexpression inhibits retrograde transport. Our combined data suggest a model according to which the functions in retrograde sorting on early endosomes of SNX1/retromer and clathrin are articulated by RME-8, and possibly also by Hrs.

  17. HookA is a novel dynein–early endosome linker critical for cargo movement in vivo

    PubMed Central

    Zhang, Jun; Qiu, Rongde; Arst, Herbert N.; Peñalva, Miguel A.

    2014-01-01

    Cytoplasmic dynein transports membranous cargoes along microtubules, but the mechanism of dynein–cargo interaction is unclear. From a genetic screen, we identified a homologue of human Hook proteins, HookA, as a factor required for dynein-mediated early endosome movement in the filamentous fungus Aspergillus nidulans. HookA contains a putative N-terminal microtubule-binding domain followed by coiled-coil domains and a C-terminal cargo-binding domain, an organization reminiscent of cytoplasmic linker proteins. HookA–early endosome interaction occurs independently of dynein–early endosome interaction and requires the C-terminal domain. Importantly, HookA interacts with dynein and dynactin independently of HookA–early endosome interaction but dependent on the N-terminal part of HookA. Both dynein and the p25 subunit of dynactin are required for the interaction between HookA and dynein–dynactin, and loss of HookA significantly weakens dynein–early endosome interaction, causing a virtually complete absence of early endosome movement. Thus, HookA is a novel linker important for dynein–early endosome interaction in vivo. PMID:24637327

  18. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  19. Recycler barrier RF buckets

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  20. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector

    PubMed Central

    Prigent, Magali; Dubois, Thierry; Raposo, Graça; Derrien, Valérie; Tenza, Danièle; Rossé, Carine; Camonis, Jacques; Chavrier, Philippe

    2003-01-01

    The small guanosine triphosphate (GTP)–binding protein ADP-ribosylation factor (ARF) 6 regulates membrane recycling to regions of plasma membrane remodeling via the endocytic pathway. Here, we show that GTP–bound ARF6 interacts with Sec10, a subunit of the exocyst complex involved in docking of vesicles with the plasma membrane. We found that Sec10 localization in the perinuclear region is not restricted to the trans-Golgi network, but extends to recycling endosomes. In addition, we report that depletion of Sec5 exocyst subunit or dominant inhibition of Sec10 affects the function and the morphology of the recycling pathway. Sec10 is found to redistribute to ruffling areas of the plasma membrane in cells expressing GTP-ARF6, whereas dominant inhibition of Sec10 interferes with ARF6-induced cell spreading. Our paper suggests that ARF6 specifies delivery and insertion of recycling membranes to regions of dynamic reorganization of the plasma membrane through interaction with the vesicle-tethering exocyst complex. PMID:14662749

  1. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector.

    PubMed

    Prigent, Magali; Dubois, Thierry; Raposo, Graça; Derrien, Valérie; Tenza, Danièle; Rossé, Carine; Camonis, Jacques; Chavrier, Philippe

    2003-12-08

    The small guanosine triphosphate (GTP)-binding protein ADP-ribosylation factor (ARF) 6 regulates membrane recycling to regions of plasma membrane remodeling via the endocytic pathway. Here, we show that GTP-bound ARF6 interacts with Sec10, a subunit of the exocyst complex involved in docking of vesicles with the plasma membrane. We found that Sec10 localization in the perinuclear region is not restricted to the trans-Golgi network, but extends to recycling endosomes. In addition, we report that depletion of Sec5 exocyst subunit or dominant inhibition of Sec10 affects the function and the morphology of the recycling pathway. Sec10 is found to redistribute to ruffling areas of the plasma membrane in cells expressing GTP-ARF6, whereas dominant inhibition of Sec10 interferes with ARF6-induced cell spreading. Our paper suggests that ARF6 specifies delivery and insertion of recycling membranes to regions of dynamic reorganization of the plasma membrane through interaction with the vesicle-tethering exocyst complex.

  2. Loss of the Sec1/Munc18-family proteins VPS-33.2 and VPS-33.1 bypasses a block in endosome maturation in Caenorhabditis elegans

    PubMed Central

    Solinger, Jachen A.; Spang, Anne

    2014-01-01

    The end of the life of a transport vesicle requires a complex series of tethering, docking, and fusion events. Tethering complexes play a crucial role in the recognition of membrane entities and bringing them into close opposition, thereby coordinating and controlling cellular trafficking events. Here we provide a comprehensive RNA interference analysis of the CORVET and HOPS tethering complexes in metazoans. Knockdown of CORVET components promoted RAB-7 recruitment to subapical membranes, whereas in HOPS knockdowns, RAB-5 was found also on membrane structures close to the cell center, indicating the RAB conversion might be impaired in the absence of these tethering complexes. Unlike in yeast, metazoans have two VPS33 homologues, which are Sec1/Munc18 (SM)-family proteins involved in the regulation of membrane fusion. We assume that in wild type, each tethering complex contains a specific SM protein but that they may be able to substitute for each other in case of absence of the other. Of importance, knockdown of both SM proteins allowed bypass of the endosome maturation block in sand-1 mutants. We propose a model in which the SM proteins in tethering complexes are required for coordinated flux of material through the endosomal system. PMID:25273556

  3. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  4. Closing the Loop: Recycling and Buying Recycled Paper.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; Weltman, Eric

    1993-01-01

    Purchasing recycled paper should be part of every school's solid-waste reduction efforts. Public purchasing can stimulate demand for collected materials and encourage industry to produce recycled products. Schools can form buying consortiums to reduce costs. Schools can also practice source reduction of waste. Lists information resources. (MLF)

  5. End-of-life vehicle recycling and international cooperation between Japan, China and Korea: Present and future scenario analysis.

    PubMed

    Che, Jia; Yu, Jeong-Soo; Kevin, Roy Serrona

    2011-06-01

    In the area of end-of-life vehicle (ELV) recycling, Japan passed the Automobile Recycling Law in January 2005, the first in Asia. Korea followed suit with the passage of the resource circulation method in 2009. China is expected make a new recycling law in 2011. In contribution to these initiatives, Tohoku University made a comparative analysis of ELV recycling laws, advance dismantling experiments and scenario analysis to promote international cooperation. This is envisioned to introduce ELV recycling system in Japan, China and Korea and in developing countries as well.

  6. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p.

    PubMed

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show; Toshima, Junko Y; Toshima, Jiro

    2014-01-10

    Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V(o) subunit of vacuolar-type H(+)-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  7. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  8. Recycling the news

    SciTech Connect

    Sager, K.A.

    1997-09-01

    With its infamous bureaucracy, legions of news organizations, and the prominence of the federal government, Washington, D.C., and its environs generate literally tons of paper every day. Paper represents almost 40% of the waste stream, according to the US EPA. The agency`s figures show that more than 80 million tpy of paper are generated, and with such a significant portion of this waste capable of being recycled, it is essential that the nation`s capital have enough paper recycling facilities. Capital Fiber (Springfield, VA.), a large-scale intermediate paper processing facility, is an example of one such facility. Its primary material is old newspapers (ONP), and its operations consist of receiving, sorting, and consolidating waste paper for baling and resale. The company is a joint venture between daily newspaper giant the Washington Post (Washington, D.C.), which owns 80%, and the Canusa Corp. (Baltimore), a waste paper brokerage firm, which owns the other 20% of Capitol Fiber. Capital Fiber`s Springfield facility handles nine grades of paper, including pre-consumer and post-consumer ONP, blank news (newspaper trimmings that have not been printed on), old corrugated containers (OCC), sorted white ledger and sorted office waste, and various wrappers, supermixes, and other mixed grades. Within each of these categories are various sub-grades of paper, and the facility also takes old telephone books, computer paper, and flyleaf, the extra tim cut from periodicals. But, not surprisingly, the predominant material is ONP.

  9. CFC recycling system

    SciTech Connect

    Furmanek, D.J.

    1991-06-25

    This patent describes a method for recycling freon. It comprises attaching a freon removal valve to a freon supply located in an appliance such as an air conditioner, refrigerator, freezer or the like, positioning a substantially empty freon collecting vessel in gas flow relationship to the valve by providing the freon removal valve with a puncture needle extending upwardly and adapted to puncture a freon supply tubing in the appliance, below the puncture needle is positioned a spring means, and below the spring means is positioned a piercing means adapted to pierce a closure in the collecting vessel to thereby establish a gas passage means extending from the supply tube, through the needle, through the piercing means to the collecting vessel, collecting the freon thereby in the collecting vessel, providing a substantially gas-free sealing means on the collecting vessel to insure substantial total containment of the freon within the collecting vessel, and delivering the collecting vessel to a collection center for reuse and recycling of the freon.

  10. Interaction between the ligand-binding domain of the LDL receptor and the C-terminal domain of PCSK9 is required for PCSK9 to remain bound to the LDL receptor during endosomal acidification.

    PubMed

    Tveten, Kristian; Holla, Øystein L; Cameron, Jamie; Strøm, Thea Bismo; Berge, Knut Erik; Laerdahl, Jon K; Leren, Trond P

    2012-03-15

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor homology domain repeat A of the low-density lipoprotein receptor (LDLR) at the cell surface and disrupts recycling of the internalized LDLR. As a consequence, the LDLR is rerouted to the lysosomes for degradation. Although PCSK9 may bind to an LDLR lacking the ligand-binding domain, at least three ligand-binding repeats of the ligand-binding domain are required for PCSK9 to reroute the LDLR to the lysosomes. In this study, we have studied the binding of PCSK9 to an LDLR with or without the ligand-binding domain at increasingly acidic conditions in order to mimic the milieu of the LDLR:PCSK9 complex as it translocates from the cell membrane to the sorting endosomes. These studies have shown that PCSK9 is rapidly released from an LDLR lacking the ligand-binding domain at pH in the range of 6.9-6.1. A similar pattern of release at acidic pH was also observed for the binding to the normal LDLR of mutant PCSK9 lacking the C-terminal domain. Together these data indicate that an interaction between the negatively charged ligand-binding domain of the LDLR and the positively charged C-terminal domain of PCSK9 is required for PCSK9 to remain bound to the LDLR during the early phase of endosomal acidification as the LDLR translocates from the cell membrane to the sorting endosome.

  11. Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors

    SciTech Connect

    Perron, Amelie; Sharif, Nadder; Gendron, Louis; Lavallee, Mariette; Stroh, Thomas; Mazella, Jean; Beaudet, Alain . E-mail: abeaudet@frsq.gouv.qc.ca

    2006-05-12

    In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [{sup 125}I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores, as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.

  12. A tiered approach to evaluate an iodine recycling inhibition adverse outcome pathway (AOP) in amphibians

    EPA Science Inventory

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces thyroid hormone synthesis, which leads to insufficiency in tissues and subsequent ne...

  13. The effectiveness of recycling policy options: waste diversion or just diversions?

    PubMed

    Mueller, William

    2013-03-01

    Recycling is becoming ever more important as waste generation rates increase globally. Policy-makers must decide which recycling practices to implement from the host of options at their disposal to best divert waste from landfill. This study strived to determine the most important characteristics in recycling programs that were associated with higher material recovery rates, including bag limits, user pay programs, the number of materials collected, curbside collection frequency, promotion and education (P&E) activities, Best Practice principles, and the type of recycling collection stream. Data collected from 223 recycling programs in Ontario during 2005-2010 were used to perform multiple regression analyses. The findings of this study suggest that attributes of convenience are more important to encourage recycling than those that penalize disposal, thus providing important implications for waste policy-makers, both in Ontario and in other jurisdictions.

  14. Recycling Study Guide [Resource Packet].

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    This resource packet contains six documents developed by the Wisconsin Department of Natural Resources in order to help teachers infuse the environmental education topics of recycling and solid waste into social studies, art, English, health, mathematics, science, and environmental education classes. "Recycling Study Guide" contains 19…

  15. Automotive aluminum recycling in 2010

    SciTech Connect

    Not Available

    1994-08-01

    This article examines the aluminium recycling industry's ability to handle effectively the increased amounts of automotive aluminium scrap resulting from increased amounts of wrought and cast aluminium alloys in automobile manufacturing. This study takes a system-wide view of both volume and composition aspects of automotive aluminium recycling.

  16. The Dynamic Earth: Recycling Naturally!

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  17. Recycling Solid Waste in Chattanooga

    ERIC Educational Resources Information Center

    Vredeveld, Ruth; Martin, Robin

    1973-01-01

    Students undertook a group project in collaboration with city officials to study garbage types in the community and possibilities of recycling solid wastes. Data collected from various sources revealed that public attitude was favorable for recycling efforts and that it was feasible economically. (PS)

  18. Information Sources on Rural Recycling.

    ERIC Educational Resources Information Center

    Notess, Greg; Kuske, Jodee

    1992-01-01

    Provides resources for rural recycling operations with the principle aim of assisting rural government officials, planners, residents, and educators to encourage recycling as an integral part of an individual's or community's solid waste management plan. Sources range from bibliographies, directories, and government documents to case studies. (49…

  19. American Art of Conspicuous Recycling.

    ERIC Educational Resources Information Center

    Gomez, Aurelia

    1999-01-01

    Characterizes the use of recycling "junk" as a means for creating art by exploring various recycling traditions that are present in the United States. Demonstrates to students that "junk" can be fashioned into beautiful works of art. Offers four works of art and provides discussion questions and project ideas for each artwork. (CMK)

  20. Recycling and reuse of industrial wastes in Taiwan.

    PubMed

    Wei, M S; Huang, K H

    2001-01-01

    Eighteen million metric tons of industrial wastes are produced every year in Taiwan. In order to properly handle the industrial wastes, the Taiwan Environmental Protection Administration (Taiwan EPA) has set up strategic programs that include establishment of storage, treatment, and final disposal systems, establishment of a management center for industrial wastes, and promotion of recycling and reuse of industrial wastes. The Taiwan EPA has been actively promoting the recycling and reuse of industrial wastes over the years. In July 1995 the Taiwan EPA amended and promulgated the Criteria for the Industrial Waste Storage, Collection and Processing Facility, July, 1995 that added articles related to general industrial waste recycling and reuse. In June 1996 the Taiwan EPA promulgated the Non-listed General Industrial Waste Reuse Application Procedures, June, 1996, followed by the Regulations Governing the Permitting of Hazardous Industrial Waste Reuse, June 1996, setting up a full regulatory framework for governing industrial waste reuse. To broaden the recycling and reuse of general industrial wastes, the Taiwan EPA has listed 14 industrial waste items for recycling and reuse, including waste paper, waste iron, coal ash, tempered high furnace bricks (cinder), high furnace bricks (cinder), furnace transfer bricks (cinder), sweetening dregs, wood (whole/part), glass (whole/part), bleaching earth, ceramics (pottery, brick, tile and cast sand), individual metal scraps (copper, zinc, aluminum and tin), distillery grain (dregs) and plastics. As of June 1999, 99 applications for reuse of industrial wastes had been approved with 1.97 million metric tons of industrial wastes being reused.

  1. Technology for more profitable recycling

    SciTech Connect

    Lamarre, L. )

    1992-03-01

    Recycling has been part of the US heritage for more than a century. But in contrast to the country's earliest recycling - which was pursued simply because it made good money - today's movement is fueled primarily by environmental concerns. One result of this change in motivation is that modern recycling isn't always profitable. Sometimes the supply of collected materials far exceeds the demand, and with some substances even minor contamination can prohibit reuse. Now advanced technologies, including a number of electricity-based processes, are helping overcome market barriers. While technology alone can't solve all the problems of the recycling industry, researchers are confident that technological advancements will help pave the way to more profitable recycling.

  2. Nanodomains in Biomembranes with Recycling.

    PubMed

    Berger, Mareike; Manghi, Manoel; Destainville, Nicolas

    2016-10-13

    Cell membranes are out of thermodynamic equilibrium notably because of membrane recycling, i.e., active exchange of material with the cytosol. We propose an analytically tractable model of biomembrane predicting the effects of recycling on the size of protein nanodomains also called protein clusters. The model includes a short-range attraction between proteins and a weaker long-range repulsion which ensures the existence of so-called cluster phases in equilibrium, where monomeric proteins coexist with finite-size domains. Our main finding is that, when taking recycling into account, the typical cluster size at steady state increases logarithmically with the recycling rate at fixed protein concentration. Using physically realistic model parameters, the predicted 2-fold increase due to recycling in living cells is most likely experimentally measurable with the help of super-resolution microscopy.

  3. Salmonella enterica Remodels the Host Cell Endosomal System for Efficient Intravacuolar Nutrition.

    PubMed

    Liss, Viktoria; Swart, A Leoni; Kehl, Alexander; Hermanns, Natascha; Zhang, Yuying; Chikkaballi, Deepak; Böhles, Nathalie; Deiwick, Jörg; Hensel, Michael

    2017-03-08

    Salmonella enterica is a facultative intracellular pathogen that survives and proliferates in the Salmonella-containing vacuole (SCV), yet how these vacuolar bacteria acquire nutrition remains to be determined. Intracellular Salmonella convert the host endosomal system into an extensive network of interconnected tubular vesicles, of which Salmonella-induced filaments (SIFs) are the most prominent. We found that membranes and lumen of SIFs and SCVs form a continuum, giving vacuolar Salmonella access to various types of endocytosed material. Membrane proteins and luminal content rapidly diffuse between SIFs and SCVs. Salmonella in SCVs without connection to SIFs have reduced access to endocytosed components. On a single-cell level, Salmonella within the SCV-SIF continuum were found to exhibit higher metabolic activity than vacuolar bacteria lacking SIFs. Our data demonstrate that formation of the SCV-SIF continuum allows Salmonella to bypass nutritional restriction in the intracellular environment by acquiring nutrients from the host cell endosomal system.

  4. Rab24 interacts with the Rab7/Rab interacting lysosomal protein complex to regulate endosomal degradation.

    PubMed

    Amaya, Celina; Militello, Rodrigo D; Calligaris, Sebastián D; Colombo, María I

    2016-11-01

    Endocytosis is a multistep process engaged in extracellular molecules internalization. Several proteins including the Rab GTPases family coordinate the endocytic pathway. The small GTPase Rab7 is present in late endosome (LE) compartments being a marker of endosome maturation. The Rab interacting lysosomal protein (RILP) is a downstream effector of Rab7 that recruits the functional dynein/dynactin motor complex to late compartments. In the present study, we have found Rab24 as a component of the endosome-lysosome degradative pathway. Rab24 is an atypical protein of the Rab GTPase family, which has been attributed a function in vesicle trafficking and autophagosome maturation. Using a model of transiently expressed proteins in K562 cells, we found that Rab24 co-localizes in vesicular structures labeled with Rab7 and LAMP1. Moreover, using a dominant negative mutant of Rab24 or a siRNA-Rab24 we showed that the distribution of Rab7 in vesicles depends on a functional Rab24 to allow DQ-BSA protein degradation. Additionally, by immunoprecipitation and pull down assays, we have demonstrated that Rab24 interacts with Rab7 and RILP. Interestingly, overexpression of the Vps41 subunit from the homotypic fusion and protein-sorting (HOPS) complex hampered the co-localization of Rab24 with RILP or with the lysosomal GTPase Arl8b, suggesting that Vps41 would affect the Rab24/RILP association. In summary, our data strongly support the hypothesis that Rab24 forms a complex with Rab7 and RILP on the membranes of late compartments. Our work provides new insights into the molecular function of Rab24 in the last steps of the endosomal degradative pathway.

  5. EHD3-Dependent Endosome Pathway Regulates Cardiac Membrane Excitability and Physiology

    PubMed Central

    Curran, Jerry; Makara, Michael A.; Little, Sean C.; Musa, Hassan; Liu, Bin; Wu, Xiangqiong; Polina, Iuliia; Alecusan, Joe; Wright, Patrick; Li, Jingdong; Billman, George E.; Boyden, Penelope A.; Gyorke, Sandor; Band, Hamid; Hund, Thomas J.; Mohler, Peter J.

    2014-01-01

    Rationale Cardiac function is dependent on the coordinate activities of membrane ion channels, transporters, pumps, and hormone receptors to dynamically tune the membrane electrochemical gradient in response to acute and chronic stress. While our knowledge of membrane proteins has rapidly advanced over the past decade, our understanding of the subcellular pathways governing the trafficking and localization of integral membrane proteins is limited, and essentially unstudied in vivo. In heart, to our knowledge, there are no in vivo mechanistic studies that directly link endosome-based machinery with cardiac physiology. Objective Define the in vivo roles of endosome-based cellular machinery for cardiac membrane protein trafficking, myocyte excitability, and cardiac physiology. Methods and Results We identify the endosome-based EHD3 pathway as essential for cardiac physiology. EHD3−/− hearts display structural and functional defects including bradycardia and rate variability, conduction block, and blunted response to adrenergic stimulation. Mechanistically, EHD3 is critical for membrane protein trafficking, as EHD3−/− myocytes display reduced expression/localization of Na/Ca exchanger and Cav1.2 with a parallel reduction in INCX and ICa,L. Functionally, EHD3−/− myocytes show increased sarcoplasmic reticulum [Ca], increased spark frequency, and reduced expression/localization of ankyrin-B, a binding partner for EHD3 and Na/Ca exchanger. Finally, we show that in vivo EHD3−/− defects are due to cardiac-specific roles of EHD3 as mice with cardiac-selective EHD3 deficiency demonstrate both structural and electrical phenotypes. Conclusions These data provide new insight into the critical role of endosome-based pathways in membrane protein targeting and cardiac physiology. EHD3 is a critical component of protein trafficking in heart and is essential for the proper membrane targeting of select cellular proteins that maintain excitability. PMID:24759929

  6. Urban water recycling.

    PubMed

    Asano, T

    2005-01-01

    Increasing urbanization has resulted in an uneven distribution of population, industries, and water in urban areas; thus, imposing unprecedented pressures on water supplies and water pollution control. These pressures are exacerbated during the periods of drought and climatic uncertainties. The purpose of this paper is to summarize emergence of water reclamation, recycling and reuse as a vital component of sustainable water resources in the context of integrated water resources management in urban and rural areas. Water quality requirements and health and public acceptance issues related to water reuse are also discussed. Reclaimed water is a locally controllable water resource that exists right at the doorstep of the urban environment, where water is needed the most and priced the highest. Closing the water cycle loop not only is technically feasible in agriculture, industries, and municipalities but also makes economic sense. Society no longer has the luxury of using water only once.

  7. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    PubMed Central

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  8. Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

    PubMed

    Han, Seungsu; Shin, Donghyuk; Choi, Hoon; Lee, Sangho

    2014-03-28

    Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3.

  9. SNX4 in Complex with Clathrin and Dynein: Implications for Endosome Movement

    PubMed Central

    Skånland, Sigrid S.; Wälchli, Sébastien; Brech, Andreas; Sandvig, Kirsten

    2009-01-01

    Background Sorting nexins (SNXs) constitute a family of proteins classified by their phosphatidylinositol (PI) binding Phox homology (PX) domain. Some members regulate intracellular trafficking. We have here investigated mechanisms underlying SNX4 mediated endosome to Golgi transport. Methodology/Principal Findings We show that SNX4 forms complexes with clathrin and dynein. The interactions were inhibited by wortmannin, a PI3-kinase inhibitor, suggesting that they form when SNX4 is associated with PI(3)P on endosomes. We further localized the clathrin interacting site on SNX4 to a clathrin box variant. A short peptide containing this motif was sufficient to pull down both clathrin and dynein. Knockdown studies demonstrated that clathrin is not required for the SNX4/dynein interaction. Moreover, clathrin knockdown led to increased Golgi transport of the toxin ricin, as well as redistribution of endosomes. Conclusions/Significance We discuss the possibility of clathrin serving as a regulator of SNX4-dependent transport. Upon clathrin release, dynein may bind SNX4 and mediate retrograde movement. PMID:19529763

  10. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation.

    PubMed

    Kim, Young-Mi; Jung, Chang Hwa; Seo, Minchul; Kim, Eun Kyoung; Park, Ji-Man; Bae, Sun Sik; Kim, Do-Hyung

    2015-01-22

    mTORC1 plays a key role in autophagy as a negative regulator. The currently known targets of mTORC1 in the autophagy pathway mainly function at early stages of autophagosome formation. Here, we identify that mTORC1 inhibits later stages of autophagy by phosphorylating UVRAG. Under nutrient-enriched conditions, mTORC1 binds and phosphorylates UVRAG. The phosphorylation positively regulates the association of UVRAG with RUBICON, thereby enhancing the antagonizing effect of RUBICON on UVRAG-mediated autophagosome maturation. Upon dephosphorylation, UVRAG is released from RUBICON to interact with the HOPS complex, a component for the late endosome and lysosome fusion machinery, and enhances autophagosome and endosome maturation. Consequently, the dephosphorylation of UVRAG facilitates the lysosomal degradation of epidermal growth factor receptor (EGFR), reduces EGFR signaling, and suppresses cancer cell proliferation and tumor growth. These results demonstrate that mTORC1 engages in late stages of autophagy and endosome maturation, defining a broader range of mTORC1 functions in the membrane-associated processes.

  11. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation.

    PubMed

    Row, Paula E; Prior, Ian A; McCullough, John; Clague, Michael J; Urbé, Sylvie

    2006-05-05

    UBPY is a ubiquitin-specific protease that can deubiquitinate monoubiquitinated receptor tyrosine kinases, as well as process Lys-48- and Lys-63-linked polyubiquitin to lower denomination forms in vitro. Catalytically inactive UBPY localizes to endosomes, which accumulate ubiquitinated proteins. We have explored the sequelae of short interfering RNA-mediated knockdown of UBPY. Global levels of ubiquitinated protein increase and ubiquitin accumulates on endosomes, although free ubiquitin levels are unchanged. UBPY-depleted cells have more and larger multivesicular endosomal structures that are frequently associated through extended contact areas, characterized by regularly spaced, electron-dense, bridging profiles. Degradation of acutely stimulated receptor tyrosine kinases, epidermal growth factor receptor and Met, is strongly inhibited in UBPY knockdown cells suggesting that UBPY function is essential for growth factor receptor down-regulation. In contrast, stability of the UBPY binding partner STAM is dramatically compromised in UBPY knockdown cells. The cellular functions of UBPY are complex but clearly distinct from those of the Lys-63-ubiquitin-specific protease, AMSH, with which it shares a binding site on the SH3 domain of STAM.

  12. Atypical parkinsonism–associated retromer mutant alters endosomal sorting of specific cargo proteins

    PubMed Central

    McMillan, Kirsty J.; Gallon, Matthew; Jellett, Adam P.; Clairfeuille, Thomas; Tilley, Frances C.; Danson, Chris M.; Wilkinson, Kevin A.; Collins, Brett M.

    2016-01-01

    The retromer complex acts as a scaffold for endosomal protein complexes that sort integral membrane proteins to various cellular destinations. The retromer complex is a heterotrimer of VPS29, VPS35, and VPS26. Two of these paralogues, VPS26A and VPS26B, are expressed in humans. Retromer dysfunction is associated with neurodegenerative disease, and recently, three VPS26A mutations (p.K93E, p.M112V, and p.K297X) were discovered to be associated with atypical parkinsonism. Here, we apply quantitative proteomics to provide a detailed description of the retromer interactome. By establishing a comparative proteomic methodology, we identify how this interactome is perturbed in atypical parkinsonism-associated VPS26A mutants. In particular, we describe a selective defect in the association of VPS26A (p.K297X) with the SNX27 cargo adaptor. By showing how a retromer mutant leads to altered endosomal sorting of specific PDZ ligand–containing cargo proteins, we reveal a new mechanism for perturbed endosomal cargo sorting in atypical parkinsonism. PMID:27528657

  13. Calsyntenin-1 Regulates Axon Branching and Endosomal Trafficking during Sensory Neuron Development In Vivo

    PubMed Central

    Ponomareva, Olga Y.; Holmen, Ian C.; Sperry, Aiden J.; Eliceiri, Kevin W.

    2014-01-01

    Precise regulation of axon branching is crucial for neuronal circuit formation, yet the mechanisms that control branch formation are not well understood. Moreover, the highly complex morphology of neurons makes them critically dependent on protein/membrane trafficking and transport systems, although the functions for membrane trafficking in neuronal morphogenesis are largely undefined. Here we identify a kinesin adaptor, Calsyntenin-1 (Clstn-1), as an essential regulator of axon branching and neuronal compartmentalization in vivo. We use morpholino knockdown and a Clstn-1 mutant to show that Clstn-1 is required for formation of peripheral but not central sensory axons, and for peripheral axon branching in zebrafish. We used live imaging of endosomal trafficking in vivo to show that Clstn-1 regulates transport of Rab5-containing endosomes from the cell body to specific locations of developing axons. Our results suggest a model in which Clstn-1 patterns separate axonal compartments and define their ability to branch by directing trafficking of specific endosomes. PMID:25009257

  14. Endotoxin priming of neutrophils requires endocytosis and NADPH oxidase-dependent endosomal reactive oxygen species.

    PubMed

    Lamb, Fred S; Hook, Jessica S; Hilkin, Brieanna M; Huber, Jody N; Volk, A Paige Davis; Moreland, Jessica G

    2012-04-06

    NADPH oxidase 2 (Nox2)-generated reactive oxygen species (ROS) are critical for neutrophil (polymorphonuclear leukocyte (PMN)) microbicidal function. Nox2 also plays a role in intracellular signaling, but the site of oxidase assembly is unknown. It has been proposed to occur on secondary granules. We previously demonstrated that intracellular NADPH oxidase-derived ROS production is required for endotoxin priming. We hypothesized that endotoxin drives Nox2 assembly on endosomes. Endotoxin induced ROS generation within an endosomal compartment as quantified by flow cytometry (dihydrorhodamine 123 and Oxyburst Green). Inhibition of endocytosis by the dynamin-II inhibitor Dynasore blocked endocytosis of dextran, intracellular generation of ROS, and priming of PMN by endotoxin. Confocal microscopy demonstrated a ROS-containing endosomal compartment that co-labeled with gp91(phox), p40(phox), p67(phox), and Rab5, but not with the secondary granule marker CD66b. To further characterize this compartment, PMNs were fractionated by nitrogen cavitation and differential centrifugation, followed by free flow electrophoresis. Specific subfractions made superoxide in the presence of NADPH by cell-free assay (cytochrome c). Subfraction content of membrane and cytosolic subunits of Nox2 correlated with ROS production. Following priming, there was a shift in the light membrane subfractions where ROS production was highest. CD66b was not mobilized from the secondary granule compartment. These data demonstrate a novel, nonphagosomal intracellular site for Nox2 assembly. This compartment is endocytic in origin and is required for PMN priming by endotoxin.

  15. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  16. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  17. The Human Papillomavirus Type 16 E5 Oncoprotein Inhibits Epidermal Growth Factor Trafficking Independently of Endosome Acidification ▿

    PubMed Central

    Suprynowicz, Frank A.; Krawczyk, Ewa; Hebert, Jess D.; Sudarshan, Sawali R.; Simic, Vera; Kamonjoh, Christopher M.; Schlegel, Richard

    2010-01-01

    The human papillomavirus type 16 E5 oncoprotein (16E5) enhances acute, ligand-dependent activation of the epidermal growth factor receptor (EGFR) and concomitantly alkalinizes endosomes, presumably by binding to the 16-kDa “c” subunit of the V-ATPase proton pump (16K) and inhibiting V-ATPase function. However, the relationship between 16K binding, endosome alkalinization, and altered EGFR signaling remains unclear. Using an antibody that we generated against 16K, we found that 16E5 associated with only a small fraction of endogenous 16K in keratinocytes, suggesting that it was unlikely that E5 could significantly affect V-ATPase function by direct inhibition. Nevertheless, E5 inhibited the acidification of endosomes, as determined by a new assay using a biologically active, pH-sensitive fluorescent EGF conjugate. Since we also found that 16E5 did not alter cell surface EGF binding, the number of EGFRs on the cell surface, or the endocytosis of prebound EGF, we postulated that it might be blocking the fusion of early endosomes with acidified vesicles. Our studies with pH-sensitive and -insensitive fluorescent EGF conjugates and fluorescent dextran confirmed that E5 prevented endosome maturation (acidification and enlargement) by inhibiting endosome fusion. The E5-dependent defect in vesicle fusion was not due to detectable disruption of actin, tubulin, vimentin, or cytokeratin filaments, suggesting that membrane fusion was being directly affected rather than vesicle transport. Perhaps most importantly, while bafilomycin A1 (like E5) binds to 16K and inhibits endosome acidification, it did not mimic the ability of E5 to inhibit endosome enlargement or the trafficking of EGF. Thus, 16E5 alters EGF endocytic trafficking via a pH-independent inhibition of vesicle fusion. PMID:20686024

  18. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    PubMed Central

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  19. Deficient Peptide Loading and MHC Class II Endosomal Sorting in a Human Genetic Immunodeficiency Disease: the Chediak-Higashi Syndrome

    PubMed Central

    Faigle, Wolfgang; Raposo, Graça; Tenza, Daniele; Pinet, Valérie; Vogt, Anne B.; Kropshofer, Harald; Fischer, Alain; de Saint-Basile, Geneviève; Amigorena, Sebastian

    1998-01-01

    The Chediak-Higashi syndrome (CHS) is a human recessive autosomal disease caused by mutations in a single gene encoding a protein of unknown function, called lysosomal-trafficking regulator. All cells in CHS patients bear enlarged lysosomes. In addition, T- and natural killer cell cytotoxicity is defective in these patients, causing severe immunodeficiencies. We have analyzed major histocompatibility complex class II functions and intracellular transport in Epstein Barr Virus–transformed B cells from CHS patients. Peptide loading onto major histocompatibility complex class II molecules and antigen presentation are strongly delayed these cells. A detailed electron microscopy analysis of endocytic compartments revealed that only lysosomal multilaminar compartments are enlarged (reaching 1–2 μm), whereas late multivesicular endosomes have normal size and morphology. In contrast to giant multilaminar compartments that bear most of the usual lysosomal markers in these cells (HLA-DR, HLA-DM, Lamp-1, CD63, etc.), multivesicular late endosomes displayed reduced levels of all these molecules, suggesting a defect in transport from the trans-Golgi network and/or early endosomes into late multivesicular endosomes. Further insight into a possible mechanism of this transport defect came from immunolocalizing the lysosomal trafficking regulator protein, as antibodies directed to a peptide from its COOH terminal domain decorated punctated structures partially aligned along microtubules. These results suggest that the product of the Lyst gene is required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules. PMID:9606205

  20. Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak-Higashi syndrome.

    PubMed

    Faigle, W; Raposo, G; Tenza, D; Pinet, V; Vogt, A B; Kropshofer, H; Fischer, A; de Saint-Basile, G; Amigorena, S

    1998-06-01

    The Chediak-Higashi syndrome (CHS) is a human recessive autosomal disease caused by mutations in a single gene encoding a protein of unknown function, called lysosomal-trafficking regulator. All cells in CHS patients bear enlarged lysosomes. In addition, T- and natural killer cell cytotoxicity is defective in these patients, causing severe immunodeficiencies. We have analyzed major histocompatibility complex class II functions and intracellular transport in Epstein Barr Virus-transformed B cells from CHS patients. Peptide loading onto major histocompatibility complex class II molecules and antigen presentation are strongly delayed these cells. A detailed electron microscopy analysis of endocytic compartments revealed that only lysosomal multilaminar compartments are enlarged (reaching 1-2 micron), whereas late multivesicular endosomes have normal size and morphology. In contrast to giant multilaminar compartments that bear most of the usual lysosomal markers in these cells (HLA-DR, HLA-DM, Lamp-1, CD63, etc.), multivesicular late endosomes displayed reduced levels of all these molecules, suggesting a defect in transport from the trans-Golgi network and/or early endosomes into late multivesicular endosomes. Further insight into a possible mechanism of this transport defect came from immunolocalizing the lysosomal trafficking regulator protein, as antibodies directed to a peptide from its COOH terminal domain decorated punctated structures partially aligned along microtubules. These results suggest that the product of the Lyst gene is required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules.

  1. Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞

    PubMed Central

    Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça

    2005-01-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817

  2. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    PubMed

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  3. Environmentally acceptable recycling in Europe

    SciTech Connect

    King, J.F.

    1995-12-31

    The modern concept of ecologically sound recycling is to ensure, as far as possible, effective use or reuse of all materials arising during the production of a component, and also the component itself at the end of its useful life. The recycling circle is well established for widely used metals such as iron and steel, aluminium and zinc. However, for magnesium, although recycled secondary scrap was a major input into magnesium casting production in the 1950`s recycling of this type of material back to components is currently almost nonexistent. The current rapid growth in use of magnesium die castings by the automotive industry will eventually result in a significant growth in availability of secondary magnesium scrap, which will present new challenges and opportunities to the skillful recyclers. However this has not yet happened, and the major preoccupation of most recyclers is to satisfy the demands of the growing die-casting industry, balancing the triple requirements of: (1) recycling or disposing of all products arising from the die-casting operation at a price, or cost, perceived as fair by the die caster; (2) satisfying our public demands to safeguard the environment in terms of emissions, effluents and disposal to land fill; and (3) establishing and maintaining a viable business activity while satisfying (1) and (2). It is to this area that the remainder of this paper is dedicated.

  4. Plastics recycling: challenges and opportunities.

    PubMed

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  5. Plastics recycling: challenges and opportunities

    PubMed Central

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  6. ESCRT-0 marks an APPL1-independent transit route for EGFR between the cell surface and the EEA1-positive early endosome.

    PubMed

    Flores-Rodriguez, Neftali; Kenwright, David A; Chung, Pei-Hua; Harrison, Andrew W; Stefani, Flavia; Waigh, Thomas A; Allan, Victoria J; Woodman, Philip G

    2015-02-15

    Endosomal sorting complexes required for transport (ESCRT)-0 sorts ubiquitylated EGFR within the early endosome so that the receptor can be incorporated into intralumenal vesicles. An important question is whether ESCRT-0 acts solely upon EGFR that has already entered the vacuolar early endosome (characterised by the presence of EEA1) or engages EGFR within earlier compartments. Here, we employ a suite of software to determine the localisation of ESCRT-0 at subpixel resolution and to perform particle-based colocalisation analysis with other endocytic markers. We demonstrate that although some of the ESCRT-0 subunit Hrs (also known as HGS) colocalises with the vacuolar early endosome marker EEA1, most localises to a population of peripheral EEA1-negative endosomes that act as intermediates in transporting EGFR from the cell surface to more central early endosomes. The peripheral Hrs-labelled endosomes are distinct from APPL1-containing endosomes, but co-label with the novel endocytic adaptor SNX15. In contrast to ESCRT-0, ESCRT-I is recruited to EGF-containing endosomes at later times as they move to more a central position, whereas ESCRT-III is also recruited more gradually. RNA silencing experiments show that both ESCRT-0 and ESCRT-I are important for the transit of EGF to EEA1 endosomes.

  7. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    SciTech Connect

    Liang Sai; Zhang, Tianzhu; Xu Yijian

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  8. Coal liquefaction with preasphaltene recycle

    DOEpatents

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  9. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    SciTech Connect

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show; Toshima, Junko Y.; Toshima, Jiro

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  10. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture.

  11. You're a "What"? Recycling Coordinator

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  12. 16 CFR 260.12 - Recyclable claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... established recycling program for reuse or use in manufacturing or assembling another item. (b) Marketers... the availability of recycling programs and collection sites to consumers. (1) When recycling..., means at least 60 percent. (2) When recycling facilities are available to less than a...

  13. 16 CFR 260.12 - Recyclable claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... established recycling program for reuse or use in manufacturing or assembling another item. (b) Marketers... the availability of recycling programs and collection sites to consumers. (1) When recycling..., means at least 60 percent. (2) When recycling facilities are available to less than a...

  14. Operating A Recycling Program: A Citizen's Guide.

    ERIC Educational Resources Information Center

    Mulligan, Kevin; Powell, Jerry

    Presented are recycling program alternatives, procedures for handling and marketing recyclable materials, and suggestions for financing and publicizing a recycling operation. This publication offers a general overview of the possibilities and potential pitfalls of recycling efforts, thereby serving as a catalyst and guide for organizations wishing…

  15. The Three Rs: Reduce, Reuse, Recycle.

    ERIC Educational Resources Information Center

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  16. Plutonium Multiple Recycling In PWRs

    SciTech Connect

    Nigon, Jean-Louis; Lenain, Richard; Zaetta, Alain

    2002-07-01

    Reprocessing and recycling open the road to a sustainable management of nuclear materials and an environment friendly management of nuclear waste. However, long or very long term recycling implies fast neutron reactors. High burn-ups of irradiated standard UO{sub 2} fuel as well as recycling of plutonium fuel in thermal reactors lead to a 'degradation' of plutonium that means a low fissile content, which is hardly compatible with recycling in LWRs. Thus the question of plutonium management has been raised; although there are some limitations, a truly large variety of options do exist; no one of the presently selected ways of plutonium management is a dead end road. Among these various options, some are fully compatible with the existing reactors and may be considered for the mid term future; they offer a competitive management of plutonium during the transition from thermal to fast reactors. (authors)

  17. Recycling and Disposal of CFLs

    EPA Pesticide Factsheets

    Consumers can help prevent the release of mercury into the environment by taking advantage of available local options for recycling CFLs and other household hazardous wastes, rather than disposing of them in regular household trash.

  18. Fuel collecting and recycling system

    SciTech Connect

    Cole, E.F.

    1980-06-10

    This system serves to collect and recycle fuel leftover in the fuel manifold and fuel distribution system of a gas turbine power plant when it is shutdown and operates in conjunction with the power plant's existing fuel control.

  19. Considerations for Recycling School Buildings.

    ERIC Educational Resources Information Center

    Frederickson, John H.

    1983-01-01

    Knowledgeable recycling of existing educational facilities requires an assessment of educational needs, evaluation of available facilities, and determination of the historical significance of structures being considered for renovation. (MLF)

  20. Ship recycling and marine pollution.

    PubMed

    Chang, Yen-Chiang; Wang, Nannan; Durak, Onur Sabri

    2010-09-01

    This paper discusses the historical background, structure and enforcement of the '2009 Hong Kong International Convention on the Safe and Environmentally Sound Recycling of Ships.' the 2009 Hong Kong Convention establishes control and enforcement instruments related to ship recycling, determining the control rights of Port States and the obligations of Flag States, Parties and recycling facilities under its jurisdiction. The Convention also controls the communication and exchange of information procedures, establishes a reporting system to be used upon the completion of recycling, and outlines an auditing system for detecting violations. The Convention, however, also contains some deficiencies. This paper concludes these deficiencies will eventually influence the final acceptance of this Convention by the international community.

  1. New approaches to recycling tires

    SciTech Connect

    Spencer, R.

    1991-03-01

    Steel-belted radial tires are potentially one of the most recyclable products created by modern industry, although the potential has been barely tapped. Discarded tires pile up at an astonishing rate each year - 234 million in the US and 26 million passenger tire equivalents in Canada. They represent a mother lode of raw material waiting for modern day miners to transform them into recycled rubber, steel, fiber and energy. The tremendous increase in use of steel belted radials since the early 1970s has complicated their recyclability compared to the bias ply tire, but it has also accomplished waste reduction by tripling tire service life. Part one of this report describes processes being developed to convert tires to crumb rubber, as well as some potential uses of recycled rubber. Part two, to appear next month, will examine such uses as rubberized athletic tracks and highway asphalt.

  2. On achieving the state's household recycling target: A case study of Northern New Jersey, USA

    SciTech Connect

    Otegbeye, M.; Abdel-Malek, L.; Hsieh, H.N.; Meegoda, J.N.

    2009-02-15

    In recent times, the State of New Jersey (USA) has been making attempts at promoting recycling as an environmentally friendly means of attaining self-sufficiency at waste disposal, and the state has put in place a 50% recycling target for its municipal solid waste stream. While the environmental benefits of recycling are obvious, a recycling program must be cost effective to ensure its long-term sustainability. In this paper, a linear programming model is developed to examine the current state of recycling in selected counties in Northern New Jersey and assess the needs to achieve the state's recycling goal in these areas. The optimum quantities of waste to be sent to the different waste facilities, which include landfills, incinerators, transfer stations, recycling and composting plants, are determined by the model. The study shows that for these counties, the gap between the current waste practices where the recycling rate stands at 32% and the state's goal can be bridged by more efficient utilization of existing facilities and reasonable investment in expanding those for recycling activities.

  3. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control.

    PubMed

    Wang, Jianbo; Xu, Zhenming

    2015-01-20

    Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.

  4. Illinois recycled materials: market directory

    SciTech Connect

    Not Available

    1987-12-01

    This market directory serves as a guide for recyclers desiring a comprehensive list of companies purchasing large volumes of residential and commercial post-consumer recyclables. Throughout the directory, recyclers are reminded to check with buyers regarding current-delivery schedules, requirements for material preparation and shipping, and to determine if buyers are actually purchasing the type of materials that you have to sell. In summary, this is a detailed guide to who is buying what and how they want it processed. But since market conditions and buying policies change, recyclers are cautioned to always contact buyers before shipping. The directory provides data on end manufacturers, major material processors, and brokers. It does not include a listing of collection centers for consumers to take recyclables nor does it include buyers of scrap iron and steel. That information is provided in the Directory of Illinois Recycling Centers, available from the Department of Energy and Natural Resources (ENR). Information was obtained primarily through telephone contacts with individual buyers.

  5. Lysosomal and endosomal heterogeneity in the liver: A comparison of the intracellular pathways of endocytosis in rat liver cells

    SciTech Connect

    Kindberg, G.M.; Tolleshaug, H.; Gjoen, T.; Berg, T. )

    1991-02-01

    Air-filled albumin microspheres, asialoorosomucoid and formaldehyde-treated serum albumin are selectively taken up by endocytosis in rat liver Kupffer cells, parenchymal cells and endothelial cells, respectively. Intracellular transport and degradation of endocytosed material were studied by subcellular fractionation in sucrose and Nycodenz gradients after intravenous injection of the ligand. By using ligands labeled with 125I-tyramine-cellobiose, the subcellular distribution of labeled degradation products can be studied because they are trapped at the site of formation. The results show that the kinetics of intracellular transport are different in hepatic parenchymal, endothelial and Kupffer cells. In endothelial cells, the ligand is associated with two types of endosomes during the first minutes after internalization and then is transferred rapidly to the lysosomes. In parenchymal cells, 125I-tyramine-cellobiose-asialoorosomucoid was located in a relatively slowly sedimenting vesicle during the first minute after internalization and subsequently in denser endosomes. Degradation of 125I-tyramine-cellobiose-asialoorosomucoid in parenchymal cells started later than that of 125I-tyramine-cellobiose-formaldehyde-treated serum albumin in endothelial cells. Furthermore, the ligand seemed to be transferred relatively slowly from endosomes to lysosomes, and most of the undegraded ligand was in the endosomes. The rate-limiting step of proteolysis in parenchymal cells is probably the transport from endosomes to lysosomes. In Kupffer cells, most 125I-tyramine-cellobiose-microspheres are found as undegraded material in very dense endosomes up to 3 hr after injection. After 20 hr, most of the ligand is degraded in lysosomes distributed at a lower density than the endosomes in Nycodenz and sucrose gradients.

  6. Recycling steel. Conducting a waste audit.

    PubMed

    Crawford, G

    1996-01-01

    This is the second in a series of three articles regarding steel can recycling from foodservice operations of healthcare facilities. This article highlights the basic methods of recycling steel cans, and includes information on conducting a waste audit and negotiating with a hauler regarding the benefits of recycling. The previous article discussed how steel is recycled across the country. The next article will convey a case history of actual foodservice recycling practice from a healthcare facility.

  7. SNX17 Affects T Cell Activation by Regulating T Cell Receptor and Integrin Recycling

    PubMed Central

    Osborne, Douglas G.; Piotrowski, Joshua T.; Dick, Christopher J.; Zhang, Jin-San; Billadeau, Daniel D.

    2015-01-01

    A key component in T cell activation is the endosomal recycling of receptors to the cell surface, thereby allowing continual integration of signaling and antigen recognition. One protein potentially involved in T cell receptor transport is sorting nexin 17 (SNX17). SNX proteins have been found to bind proteins involved in T cell activation, but specifically the role of SNX17 in receptor recycling and T cell activation is unknown. Using immunofluorescence, we find that SNX17 co-localizes with TCR and localizes to the immune synapse in T-APC conjugates. Significantly, knockdown of the SNX17 resulted in fewer T-APC conjugates, lower CD69, TCR, and LFA-1 surface expression, as well as lower overall TCR recycling compared to control T cells. Lastly, we identified the FERM-domain of SNX17 as being responsible in the binding and trafficking of TCR and LFA-1 to the cell surface. These data suggest that SNX17 plays a role in the maintenance of normal surface levels of activating receptors and integrins to permit optimum T cell activation at the immune synapse. PMID:25825439

  8. WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion

    PubMed Central

    King, Jason S.; Gueho, Aurélie; Hagedorn, Monica; Gopaldass, Navin; Leuba, Florence; Soldati, Thierry; Insall, Robert H.

    2013-01-01

    Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starvation. WASH is required for efficient phagosomal proteolysis, and proteomic analysis demonstrates that this is due to reduced delivery of lysosomal hydrolases. Both protease and lipase delivery are disrupted, and lipid catabolism is also perturbed. Starvation-induced autophagy therefore leads to phospholipid accumulation within WASH-null lysosomes. This causes the formation of multilamellar bodies typical of many lysosomal storage diseases. Mechanistically, we show that, in cells lacking WASH, cathepsin D becomes trapped in a late endosomal compartment, unable to be recycled to nascent phagosomes and autophagosomes. WASH is therefore required for the maturation of lysosomes to a stage at which hydrolases can be retrieved and reused. PMID:23885127

  9. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  10. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  11. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    SciTech Connect

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  12. An Empirical Test of an Expanded Version of the Theory of Planned Behavior in Predicting Recycling Behavior on Campus

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Bian, Hui; Lange, Lori

    2012-01-01

    Background: The study and promotion of environmental health behaviors, such as recycling, is an emerging focus in public health. Purpose: This study was designed to examine the determinants of recycling intention on a college campus. Methods: Undergraduate students (N=189) completed a 35-item web-based survey past findings and an expanded version…

  13. Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Revathi, P.; Selvi, R. S.; Velin, S. S.

    2013-09-01

    In the recent years, construction and demolition waste management issues have attracted the attention from researchers around the world. In the present study, the potential usage of recycled aggregate obtained from crushed demolition waste for making self compacting concrete (SCC) was researched. The barriers in promoting the use of recycled material in new construction are also discussed. In addition, the results of an experimental study involving the use of recycled concrete aggregate as coarse aggregates for producing self-compacting concrete to study their flow and strength characteristics are also presented. Five series of mixture were prepared with 0, 25, 50, 75, and 100 % coarse recycled aggregate adopting Nan Su's mix proportioning method. The fresh concrete properties were evaluated through the slump flow, J-ring and V-funnel tests. Compressive and tensile strengths were also determined. The results obtained showed that SCC could be successfully developed by incorporating recycled aggregates.

  14. A fluorescence resonance energy transfer-based approach for investigating late endosome-lysosome retrograde fusion events.

    PubMed

    Kaufmann, A M; Goldman, S D B; Krise, J P

    2009-03-01

    Traditionally, lysosomes have been considered to be a terminal endocytic compartment. Recent studies suggest that lysosomes are quite dynamic, being able to fuse with other late endocytic compartments as well as with the plasma membrane. Here we describe a quantitative fluorescence energy transfer (FRET)-based method for assessing rates of retrograde fusion between terminal lysosomes and late endosomes in living cells. Late endosomes were specifically labeled with 800-nm latex beads that were conjugated with streptavidin and Alexa Fluor 555 (FRET donor). Terminal lysosomes were specifically labeled with 10,000-MW dextran polymers conjugated with biotin and Alexa Fluor 647 (FRET acceptor). Following late endosome-lysosome fusion, the strong binding affinity between streptavidin and biotin brought the donor and acceptor fluorophore molecules into close proximity, thereby facilitating the appearance of a FRET emission signal. Because apparent size restrictions in the endocytic pathway do not permit endocytosed latex beads from reaching terminal lysosomes in an anterograde fashion, the appearance of the FRET signal is consistent with retrograde transport of lysosomal cargo back to late endosomes. We assessed the efficiency of this transport step in fibroblasts affected by different lysosome storage disorders-Niemann-Pick type C, mucolipidosis type IV, and Sandhoff's disease, all of which have a similar lysosomal lipid accumulation phenotype. We report here, for the first time, that these disorders can be distinguished by their rate of transfer of lysosome cargos to late endosomes, and we discuss the implications of these findings for developing new therapeutic strategies.

  15. BLOC-1 Is Required for Cargo-specific Sorting from Vacuolar Early Endosomes toward Lysosome-related Organelles

    PubMed Central

    Setty, Subba Rao Gangi; Tenza, Danièle; Truschel, Steven T.; Chou, Evelyn; Sviderskaya, Elena V.; Theos, Alexander C.; Lamoreux, M. Lynn; Di Pietro, Santiago M.; Starcevic, Marta; Bennett, Dorothy C.; Dell'Angelica, Esteban C.; Raposo, Graça

    2007-01-01

    Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1–deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS. PMID:17182842

  16. BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles.

    PubMed

    Setty, Subba Rao Gangi; Tenza, Danièle; Truschel, Steven T; Chou, Evelyn; Sviderskaya, Elena V; Theos, Alexander C; Lamoreux, M Lynn; Di Pietro, Santiago M; Starcevic, Marta; Bennett, Dorothy C; Dell'Angelica, Esteban C; Raposo, Graça; Marks, Michael S

    2007-03-01

    Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1-deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS.

  17. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes

    PubMed Central

    Gschweitl, Michaela; Ulbricht, Anna; Barnes, Christopher A; Enchev, Radoslav I; Stoffel-Studer, Ingrid; Meyer-Schaller, Nathalie; Huotari, Jatta; Yamauchi, Yohei; Greber, Urs F; Helenius, Ari; Peter, Matthias

    2016-01-01

    Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets. DOI: http://dx.doi.org/10.7554/eLife.13841.001 PMID:27008177

  18. Recycling came of age in 1994

    SciTech Connect

    Rabasca, L.

    1995-04-01

    While metal and glass recycling have a long history, newer recycling efforts for paper and plastic have gone from a nascent business to maturing industry. After five years, sufficient infrastructure exists to support recycling as a full-fledged business. In the late 1980s, recycling was a business trying to get off the ground. Now it is recognized by many cities and states as a means of economic development and job creation. But recycling`s coming of age was not without growing pains. Many recyclers had to hang on while markets were poor and spotty. Gluts of plastic, waste paper, aluminum, and green glass often made it difficult for recyclers to turn a profit. Until early 1994, prices for most commodities were significantly low, and in some cases, these low prices forced recyclers and processors to close their doors, or at least curtail their operations.

  19. What can Recycling in Thermal Reactors Accomplish?

    SciTech Connect

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-09-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

  20. DWPF Recycle Evaporator Simulant Tests

    SciTech Connect

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  1. Shock Wave Therapy Enhances Angiogenesis through VEGFR2 Activation and Recycling

    PubMed Central

    Huang, Tien-Hung; Sun, Cheuk-Kwan; Chen, Yi-Ling; Wang, Ching-Jen; Yin, Tsung-Cheng; Lee, Mel S; Yip, Hon-Kan

    2016-01-01

    Although low-energy shock wave (SW) is adopted to treat ischemic diseases because of its pro-angiogenic properties, the underlying mechanism remains unclear. This study is aimed at testing whether SW-induced angiogenesis may be through endothelial vascular endothelial growth factor receptor 2 (VEGFR2) signaling and trafficking. Phosphorylation of VEGFR2- Akt-eNOS axis and production of nitric oxide (NO) were determined in human umbilical vein endothelial cells (HUVECs) treated with SW. Carotid artery in ob/ob mice was treated with SW before evaluation with sprouting assay. Critical limb ischemia was induced in ob/ob mice to evaluate blood flow recovery post-SW treatment. Tube formation and migration assays were also performed with/without SW treatment in the presence/absence of SU5416 (VEGFR2 kinase inhibitor) and siRNA-driven silencing of VEGFR2. Chloroquine was used for disrupting endosome, and Rab11a controlling slow endocytic recycling was silenced with siRNA in vitro. Following SW treatment, augmented ligand-independent phosphorylation in VEGFR2-Akt-eNOS axis and endogenous NO production, increased cellular migration and tube formation and elevated sprouting of carotid artery and blood flow in ischemic limb in ob/ob mice were noted. Moreover, SU5416 and VEGFR2 silencing both inhibited SW-induced angiogenesis. SW-induced angiogenesis, accompanied by increased VEGFR2 protein expression without transcriptional change, was suppressed by chloroquine and Rab11a silencing. We concluded that SW enhanced angiogenesis via ligand-independent activation of VEGFR2 and further prolonged angiogenesis through endosome-to-plasma membrane recycling in endothelial cells. PMID:27925633

  2. HIV and HCV Activate the Inflammasome in Monocytes and Macrophages via Endosomal Toll-Like Receptors without Induction of Type 1 Interferon

    PubMed Central

    Chattergoon, Michael A.; Latanich, Rachel; Quinn, Jeffrey; Winter, Matthew E.; Buckheit, Robert W.; Blankson, Joel N.; Pardoll, Drew; Cox, Andrea L.

    2014-01-01

    Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation. PMID:24788318

  3. Radioactive materials in recycled metals

    SciTech Connect

    Lubenau, J.O.; Yusko, J.G.

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap-radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  4. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  5. Recycling of polymers: a review.

    PubMed

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential.

  6. Nucleic acids and endosomal pattern recognition: how to tell friend from foe?

    PubMed

    Brencicova, Eva; Diebold, Sandra S

    2013-01-01

    The innate immune system has evolved endosomal and cytoplasmic receptors for the detection of viral nucleic acids as sensors for virus infection. Some of these pattern recognition receptors (PRR) detect features of viral nucleic acids that are not found in the host such as long stretches of double-stranded RNA (dsRNA) and uncapped single-stranded RNA (ssRNA) in case of Toll-like receptor (TLR) 3 and RIG-I, respectively. In contrast, TLR7/8 and TLR9 are unable to distinguish between viral and self-nucleic acids on the grounds of distinct molecular patterns. The ability of these endosomal TLR to act as PRR for viral nucleic acids seems to rely solely on the mode of access to the endolysosomal compartment in which recognition takes place. The current dogma states that self-nucleic acids do not enter the TLR-sensing compartment under normal physiological conditions. However, it is still poorly understood how dendritic cells (DC) evade activation by self-nucleic acids, in particular with regard to specific DC subsets, which are specialized in taking up material from dying cells for cross-presentation of cell-associated antigens. In this review we discuss the current understanding of how the immune system distinguishes between foreign and self-nucleic acids and point out some of the key aspects that still require further research and clarification.

  7. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes.

    PubMed

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-05-13

    NEU3 sialidase has been shown to be a key player in many physi