Tripette, Julien; Alexy, Tamas; Hardy-Dessources, Marie-Dominique; Mougenel, Daniele; Beltan, Eric; Chalabi, Tawfik; Chout, Roger; Etienne-Julan, Maryse; Hue, Olivier; Meiselman, Herbert J; Connes, Philippe
2009-08-01
Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease. We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA). Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates. The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates.
Tao, Yong; Rongin, Uwitije; Xing, Zhongwen
2016-01-01
The malaria-infected red blood cells experience a significant decrease in cell deformability and increase in cell membrane adhesion. Blood hemodynamics in microvessels is significantly affected by the alteration of the mechanical property as well as the aggregation of parasitized red blood cells. In this study, we aim to numerically study the connection between cell-level mechanobiological properties of human red blood cells and related malaria disease state by investigating the transport of multiple red blood cell aggregates passing through microchannels with symmetric stenosis. Effects of stenosis magnitude, aggregation strength, and cell deformability on cell rheology and flow characteristics were studied by a two-dimensional model using the fictitious domain-immersed boundary method. The results indicated that the motion and dissociation of red blood cell aggregates were influenced by these factors and the flow resistance increases with the increase of aggregating strength and cell stiffness. Further, the roughness of the velocity profile was enhanced by cell aggregation, which considerably affected the blood flow characteristics. The study may assist us in understanding cellular-level mechanisms in disease development. PMID:28105411
Hemoglobin Aggregation in Single Red Blood Cells of Sickle Cell Anemia
NASA Astrophysics Data System (ADS)
Nishio, Izumi; Tanaka, Toyoichi; Sun, Shao-Tang; Imanishi, Yuri; Tsuyoshi Ohnishi, S.
1983-06-01
A laser light scattering technique was used to observe the extent of hemoglobin aggregation in solitary red blood cells of sickle cell anemia. Hemoglobin aggregation was confirmed in deoxygenated cells. The light scattering technique can also be applied to cytoplasmic studies of any biological cell.
Dintenfass, L; Osman, P D; Jedrzejczyk, H
1985-01-01
The 'secret' D.O.D. Mission on flight STS 51-C also carried nearly 100 kg of automated instrumentation of the Australian experiment on aggregation of red cells ("ARC"). The automated Slit-Capillary Photo Viscometer contained blood samples from subjects with history of coronary heart disease, cancer of the colon, insulin-dependent diabetes, etc., as well as normals. The experiment ran for nine hours, according to the program of its microcomputers. When shuttle landed and instrumentation recovered and opened in the presence of NASA quality control officers, it was obvious that experiment was a success. Tentative and preliminary results can be summarized as follows: red cells did not change shape under zero gravity; red cells do aggregate under zero gravity, although the size of aggregates is smaller than on the ground; the morphology of aggregates of red cells appears to be of rouleaux type under zero gravity, notwithstanding the fact that pathological blood was used. These results will have to be confirmed in the future flights. The background and history of development of the project are described, and put into context of our general haemorheological studies.
NASA Technical Reports Server (NTRS)
Dintenfass, L.
1985-01-01
The objectives of this program are: (1) to determine whether the size of red cell aggregates, kinetics and morphology of these aggregates are influenced by near-zero gravity; (2) whether viscosity, especially at low shear rate, is afflicted by near-zero gravity (the latter preventing sedimentation of red cells); (3) whether the actual shape of red cells changes; and (4) whether blood samples obtained from different donors (normal and patients suffering from different disorders) react in the same manner to near-zero gravity.
NASA Astrophysics Data System (ADS)
Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.
2012-02-01
Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.
Multiscale simulation of red blood cell aggregation
NASA Astrophysics Data System (ADS)
Bagchi, P.; Popel, A. S.
2004-11-01
In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.
Early alterations of red blood cell rheology in critically ill patients.
Reggiori, Giulia; Occhipinti, Giovanna; De Gasperi, Andrea; Vincent, Jean-Louis; Piagnerelli, Michael
2009-12-01
To investigate red blood cell rheology in a large intensive care unit population on admission, and to assess the possible influence of comorbidities on the rheology. : Prospective study. Medico-surgical intensive care unit with 31 beds. All intensive care unit admissions during a 5-month period and 20 healthy volunteers. Blood sampling. A total of 196 intensive care patients (160 without and 36 with sepsis) and 20 healthy volunteers were studied. Red blood cell rheology (deformability and aggregation) was assessed ex vivo using the laser-assisted optical rotational cell analyzer (LORCA; Mechatronics Instruments BV, AN Zwaag, Netherlands) within the first 24 hrs after intensive care unit admission. Red blood cell deformability was determined by the elongation index in relation to the shear stress (0.3 to 50 Pa) applied on the red blood cell membrane surface. Aggregation was assessed by the aggregation index. Septic patients were more likely to have anemia, coagulation abnormalities, and comorbidities than were nonseptic patients. Red blood cell deformability was significantly altered in septic compared to nonseptic patients and volunteers for the majority of shear stress rates studied. The aggregation index was greater in septic patients than in volunteers (67.9% [54.7-73.5] vs. 61.8% [58.2-68.4]; p < .05). Only sepsis and hematologic disease influenced the elongation index (both p < .01). Other comorbidities, like cancer, diabetes mellitus, cirrhosis, and terminal renal failure, had no effect on the elongation index. Aggregation index was related to the degree of organ failure (Sequential Organ Failure Assessment score), the red blood cell count, and fibrinogen concentrations. Early alterations of red blood cell rheology are common in intensive care unit patients, especially in those with sepsis. Comorbidities (other than hematologic diseases) do not significantly influence these abnormalities. These alterations could contribute to the microcirculatory alterations observed in critically ill patients.
NASA Astrophysics Data System (ADS)
Dintenfass, L.
The aim of this experiment was to study aggregation of red cells in the blood of patients with ischaemic heart disease, diabetes, hyperlipidaemia, and (silent) cancer, and in two normal donors. Reconstituted blood using IgG was also used. The instrument, the automated slit-capillary photo-viscometer (100 kg weight) was set on the middeck of the Space Shuttle. An analogous instrument was at the Kennedy Space Center. Blood was obtained from donors, anticoagulated, and adjusted to haematocrit of 30% using native plasma. Experiments took place at 25°C, during which blood was forced to flow in the slit formed by two parallel glass plates. Macro and microphotography was carried out at specific intervals controlled by a computer. During stasis, lasting 6 minutes, aggregates (or clumps) of the red cells were formed. Results indicated that red cell aggregates do form under zero-G; that such aggregates are smaller than the ones obtained at one-G; that morphology is different, the zero-G showing rouleaux while one-G showing usual sludge-like clumps of red cells in all severe disorders. Platelets appeared to remain monodisperse under zero-G. Assuming that these data can be confirmed, one could suggest that zero-G affects cell-cell interaction, and may consequently influence the internal microstructure of the cell membrane and of the receptors, as well as their activity. Gravitational studies may thus open a new door on immunology and haematology in general.
Automatic analysis of microscopic images of red blood cell aggregates
NASA Astrophysics Data System (ADS)
Menichini, Pablo A.; Larese, Mónica G.; Riquelme, Bibiana D.
2015-06-01
Red blood cell aggregation is one of the most important factors in blood viscosity at stasis or at very low rates of flow. The basic structure of aggregates is a linear array of cell commonly termed as rouleaux. Enhanced or abnormal aggregation is seen in clinical conditions, such as diabetes and hypertension, producing alterations in the microcirculation, some of which can be analyzed through the characterization of aggregated cells. Frequently, image processing and analysis for the characterization of RBC aggregation were done manually or semi-automatically using interactive tools. We propose a system that processes images of RBC aggregation and automatically obtains the characterization and quantification of the different types of RBC aggregates. Present technique could be interesting to perform the adaptation as a routine used in hemorheological and Clinical Biochemistry Laboratories because this automatic method is rapid, efficient and economical, and at the same time independent of the user performing the analysis (repeatability of the analysis).
Muravyov, A V; Tikhomirova, I A; Maimistova, A A; Bulaeva, S V; Mikhailov, P V; Kislov, N V
2011-01-01
This study was designed to investigate whether the red cell aggregation depends on its initial level under drug therapy or cell incubation with bioactive chemical compounds. Sixty six subjects were enrolled onto this study, and sub-divided into two groups: the first group of patients (n = 36) with cerebral atherosclerosis received pentoxifylline therapy (400 mg, thrice daily) for 4 weeks. The patients of the second group were initially treated with Epoetin beta 10,000 units subcutaneously thrice a week, for 4 weeks. The second group - adult anemic patients (n = 30) with the confirmed diagnosis of solid cancer (Hb < 100 g/L). After 4 weeks of pentoxifylline treatment the red cell aggregation increased (p < 0.05) in the patients with initially low RBCA. On the other hand in the patients with initially high RBCA treatment with pentoxifylline reduced it markedly (p < 0.01). In vitro experiments with pentoxifylline RBC incubation resulted in a decrease of the initially high RBCA by 47% (p < 0.01), whereas in the sub-group with initially low RBCA it increased. It was observed that after 4 weeks of epoetin-beta treatment 75% the anemic patients with initially high RBCA had an aggregation lowering. The drop of aggregation was about 34% (p < 0.01). At the same time 25% of the study patients had a significant RBCA increase (p < 0.05) after treatment. The initially low red cell aggregation after incubation with epoetin-beta was markedly increased by 122% (p < 0.05). On the contrary initially high RBCA was reduced by 47% (p < 0.05). When forskolin (10 μM) was added to the RBC suspensions the RBCA was increased in sub-group of subjects with initially low aggregation and it was decreased in sub-group with initially high one. The similar RBCA changes were observed when RBC suspensions were incubated with vinpocetine, calcium ionophore (A23187), Phorbol 12-myristate 13-acetate (PMA) as a protein kinase C (PKC) stimulator. A major finding of this study is that the red cell aggregation effects of some drugs depend markedly on the initial, pre-treatment aggregation status of the patients. These results demonstrate that the different red blood cell aggregation responses to the biological stimuli depend strongly on the initial, pre-treatment status of the subject and the most probably it is connected with the crosstalk between the adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism.
Red blood cell deformability and aggregation behaviour in different animal species.
Plasenzotti, R; Stoiber, B; Posch, M; Windberger, U
2004-01-01
Comparative animal studies showed the wide variation of whole blood and plasma viscosity, and erythrocyte aggregation among mammalian species. Whole blood viscosity and red blood cell aggregation is influenced by red cell fluidity. To evaluate differences in erythrocyte deformability in mammals, three species were investigated, whose erythrocytes have a different aggregation property: horse, as a species with high, dog with medium, and sheep with almost unmeasurable aggregation tendency. Erythrocyte deformability was tested ektacytometrically (Elongation Index [EI], LORCA, Mechatronics, Hoorn, Netherlands) at shear stresses from 0.30 to 53.06 Pa. Equine erythrocytes showed EI-values from 0.047 at low shear stress to 0.541 at high shear stress. The EI from dog's erythrocytes ranged from 0.035 to 0.595. Sheep's erythrocytes had an EI of 0.005 at low and 0.400 at high shear stress. Although it might be presumed from the aggregation property that horse had the highest EI among the three species, the EI of canine erythrocytes exceeded the value in horses by 10% at high shear stress. Further, equine erythrocytes started to deform at higher shear stresses (1.69 Pa) than did canine and ovine cells, whose EI increased continuously with increasing shear stress. At moderate shear stress (1-5 Pa) deformability was even higher in the sheep than in the horse. However, at shear stresses higher than 5.34 Pa, equine red cell elongation clearly exceeded the values of sheep. We conclude that erythrocyte elongation is different between the animal species, not clearly linked with the aggregation property, and that the degree of deformability at various shear stresses is species-specific.
Light scattering method to measure red blood cell aggregation during incubation
NASA Astrophysics Data System (ADS)
Grzegorzewski, B.; Szołna-Chodór, A.; Baryła, J.; DreŻek, D.
2018-01-01
Red blood cell (RBC) aggregation can be observed both in vivo as well as in vitro. This process is a cause of alterations of blood flow in microvascular network. Enhanced RBC aggregation makes oxygen and nutrients delivery difficult. Measurements of RBC aggregation usually give a description of the process for a sample where the state of a solution and cells is well-defined and the system reached an equilibrium. Incubation of RBCs in various solutions is frequently used to study the effects of the solutions on the RBC aggregation. The aggregation parameters are compared before and after incubation while the detailed changes of the parameters during incubation remain unknown. In this paper we have proposed a method to measure red blood cell aggregation during incubation based on the well-known technique where backscattered light is used to assess the parameters of the RBC aggregation. Couette system consisting of two cylinders is adopted in the method. The incubation is observed in the Couette system. In the proposed method following sequence of rotations is adapted. Two minutes rotation is followed by two minutes stop. In this way we have obtained a time series of back scattered intensity consisting of signals respective for disaggregation and aggregation. It is shown that the temporal changes of the intensity manifest changes of RBC aggregation during incubation. To show the ability of the method to assess the effect of incubation time on RBC aggregation the results are shown for solutions that cause an increase of RBC aggregation as well as for the case where the aggregation is decreased.
Small-angle X-ray scattering probe of intermolecular interaction in red blood cells
NASA Astrophysics Data System (ADS)
Liu, Guan-Fen; Wang, We-Jia; Xu, Jia-Hua; Dong, Yu-Hui
2015-03-01
With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. Supported by National Basic Research Program of China (2009CB918600) and National Natural Science Foundation of China (10979005)
Experiment on aggregation of red cells under microgravity on STS 51-C
NASA Astrophysics Data System (ADS)
Dintenfass, L.; Osman, P.; Maguire, B.; Jedrzejczyk, H.
Kinetics and morphology of aggregation of red cells were studied using automatic slit-capillary photo-viscometers, one situated on the middeck of the space shuttle `Discovery', and the other in the ground laboratory at KSC. Experiments were run simultaneously, blood samples being adjusted to haematocrit of 0.30 using native plasma, at temp. of 25°C, and anticoagulated by EDTA. Donors included patients with myocardial infarction, insulin-dependent diabetes, hyperlipidaemia and hypertension. Macro and microphotographs were obtained during flow and statis. There was a striking difference in the morphology of aggregates formed in space and on the ground. Aggregates formed under zero gravity showed rouleaux formation, while the same blood samples showed severe clumping on the ground, in all patients blood. Normal blood showed rouleaux on the ground, but a random swarm-like pattern in space. The shape of the red cells remained normal under zero gravity.
Lai, Zhigang; Yin, Kedong
2014-01-01
Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.
The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows
NASA Astrophysics Data System (ADS)
Brust, M.; Aouane, O.; Thiébaud, M.; Flormann, D.; Verdier, C.; Kaestner, L.; Laschke, M. W.; Selmi, H.; Benyoussef, A.; Podgorski, T.; Coupier, G.; Misbah, C.; Wagner, C.
2014-03-01
The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects.
White, A. P.; Gibson, D. L.; Grassl, G. A.; Kay, W. W.; Finlay, B. B.; Vallance, B. A.; Surette, M. G.
2008-01-01
The Salmonella rdar (red, dry, and rough) morphotype is an aggregative and resistant physiology that has been linked to survival in nutrient-limited environments. Growth of Salmonella enterica serovar Typhimurium was analyzed in a variety of nutrient-limiting conditions to determine whether aggregation would occur at low cell densities and whether the rdar morphotype was involved in this process. The resulting cultures consisted of two populations of cells, aggregated and nonaggregated, with the aggregated cells preferentially displaying rdar morphotype gene expression. The two groups of cells could be separated based on the principle that aggregated cells were producing greater amounts of thin aggregative fimbriae (Tafi or curli). In addition, the aggregated cells retained some physiological characteristics of the rdar morphotype, such as increased resistance to sodium hypochlorite. Competitive infection experiments in mice showed that nonaggregative ΔagfA cells outcompeted rdar-positive wild-type cells in all tissues analyzed, indicating that aggregation via the rdar morphotype was not a virulence adaptation in Salmonella enterica serovar Typhimurium. Furthermore, in vivo imaging experiments showed that Tafi genes were not expressed during infection but were expressed once Salmonella was passed out of the mice into the feces. We hypothesize that the primary role of the rdar morphotype is to enhance Salmonella survival outside the host, thereby aiding in transmission. PMID:18195033
NASA Astrophysics Data System (ADS)
Lee, Kisung; Wagner, Christian; Priezzhev, Alexander V.
2017-09-01
Red blood cell (RBC) aggregation is an intrinsic property of the blood that has a direct effect on the blood viscosity and circulation. Nevertheless, the mechanism behind the RBC aggregation has not been confirmed and is still under investigation with two major hypotheses, known as "depletion layer" and "cross-bridging." We aim to ultimately understand the mechanism of the RBC aggregation and clarify both models. To measure the cell interaction in vitro in different suspensions (including plasma, isotonic solution of fibrinogen, isotonic solution of fibrinogen with albumin, and phosphate buffer saline) while moving the aggregate from one solution to another, an approach combining optical trapping and microfluidics has been applied. The study reveals evidence that RBC aggregation in plasma is at least partly due to the cross-bridging mechanism. The cell interaction strength measured in the final solution was found to be significantly changed depending on the initial solution where the aggregate was formed.
Curcumin inhibits aggregation of alpha-synuclein.
Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E
2008-04-01
Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.
Red blood cell generation by three-dimensional aggregate cultivation of late erythroblasts.
Lee, EunMi; Han, So Yeon; Choi, Hye Sook; Chun, Bokhwan; Hwang, Byunghee; Baek, Eun Jung
2015-02-01
Stem cell-derived erythroid cells hold great potential for the treatment of blood-loss anemia and for erythropoiesis research; however, cultures using conventional flat plates or bioreactors have failed to show promising results. By mimicking the in vivo bone marrow (BM) environment in which most erythroid cells are physically aggregated, we show that a three-dimensional (3D) aggregate culture system facilitates erythroid cell maturation and red blood cell (RBC) production more effectively than two-dimensional high-density cell cultivation. Late erythroblasts (polychromatic or orthochromatic erythroblasts) were differentiated from cord blood CD34(+) cells over 15 days and then allowed to form tight aggregates at a minimum density of 1×10(7) cells/mL for 2-3 days. To scale up the cell culture and to make the media supply efficient throughout the cell aggregates, several macroporous microcarriers and porous scaffolds were applied to the 3D culture system. In comparison to control culture conditions, erythroid cells in 3D aggregates were significantly more differentiated toward RBCs with significantly reduced nuclear dysplasia. When 3D culture was performed inside macroporous microcarriers, the cell culture scale was increased and cells exhibited enhanced differentiation and enucleation. Microcarriers with a pore diameter of approximately 400 μm produced more mature cells than those with a smaller pore diameter. In addition, this aggregate culture method minimized the culture space and media volume required. In conclusion, a 3D aggregate culture system can be used to generate transfusable human erythrocytes at the terminal maturation stage, mimicking the in vivo BM microenvironment. Porous structures can efficiently maximize the culture scale, enabling large-scale production of RBCs. These results enhance our understanding of the importance of physical contact among late erythroblasts for their final maturation into RBCs.
Some potential blood flow experiments for space
NASA Technical Reports Server (NTRS)
Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.
1979-01-01
Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.
de Monchy, Romain; Rouyer, Julien; Destrempes, François; Chayer, Boris; Cloutier, Guy; Franceschini, Emilie
2018-04-01
Quantitative ultrasound techniques based on the backscatter coefficient (BSC) have been commonly used to characterize red blood cell (RBC) aggregation. Specifically, a scattering model is fitted to measured BSC and estimated parameters can provide a meaningful description of the RBC aggregates' structure (i.e., aggregate size and compactness). In most cases, scattering models assumed monodisperse RBC aggregates. This study proposes the Effective Medium Theory combined with the polydisperse Structure Factor Model (EMTSFM) to incorporate the polydispersity of aggregate size. From the measured BSC, this model allows estimating three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Two successive experiments were conducted: a first experiment on blood sheared in a Couette flow device coupled with an ultrasonic probe, and a second experiment, on the same blood sample, sheared in a plane-plane rheometer coupled to a light microscope. Results demonstrated that the polydisperse EMTSFM provided the best fit to the BSC data when compared to the classical monodisperse models for the higher levels of aggregation at hematocrits between 10% and 40%. Fitting the polydisperse model yielded aggregate size distributions that were consistent with direct light microscope observations at low hematocrits.
Mobility Enhancement of Red Blood Cells with Biopolymers
NASA Astrophysics Data System (ADS)
Tahara, Daiki; Oikawa, Noriko; Kurita, Rei
2016-03-01
Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.
Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.
Lim, Hyun-Jung; Nam, Jeong-Hun; Lee, Yong-Jin; Shin, Sehyun
2009-09-01
Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which typically exhibits temperature dependence. Quite recently, a critical shear-stress was proposed as a new dimensional index to represent the aggregative and disaggregative behaviors of RBCs. The present study investigated the effect of the temperature on the critical shear-stress that is required to keep RBC aggregates dispersed. The critical shear-stress was measured at various temperatures (4, 10, 20, 30, and 37 degrees C) through the use of a transient microfluidic aggregometry. The critical shear-stress significantly increased as the blood temperature lowered, which accorded with the increase in the low-shear blood viscosity with the lowering of the temperature. Furthermore, the critical shear-stress also showed good agreement with the threshold shear-stress, as measured in a rotational Couette flow. These findings assist in rheologically validating the critical shear-stress, as defined in the microfluidic aggregometry.
NASA Astrophysics Data System (ADS)
Kim, Jeongho; Kim, Jae Hyung; Chang, Boksoon; Choi, Eun Ha; Park, Hun-Kuk
2016-11-01
Atmospheric pressure non-thermal plasma has been introduced in various applications such as wound healing, sterilization of infected tissues, blood coagulation, delicate surgeries, and so on. The non-thermal plasma generates reactive oxygen species (ROS), including ozone. Various groups have reported that the produced ROS influence proliferation and differentiation of cells, as well as apoptosis and growth arrest of tumor cells. In this study, we investigated the effects of non-thermal plasma on rheological characteristics of red blood cells (RBC). We experimentally measured the extent of hemolysis, deformability, and aggregation of red blood cells (RBC) with respect to exposure times of non-thermal plasma. RBC morphology was also examined using field-emission scanning electron microscopy. The absorbance of hemoglobin released from the RBCs increased with increasing exposure time of the non-thermal plasma. Values of the elongation index and aggregation index were shown to decrease significantly with increasing plasma exposure times. Therefore, hemorheological properties of RBCs could be utilized to assess the performance of various non-thermal plasmas.
Li, Jianping; Sapkota, Achyut; Kikuchi, Daisuke; Sakota, Daisuke; Maruyama, Osamu; Takei, Masahiro
2018-07-30
Red blood cells (RBCs) aggregability A G of coagulating blood in extracorporeal circulation system has been investigated under the condition of pulsatile flow. Relaxation frequency f c from the multiple-frequency electrical impedance spectroscopy is utilized to obtain RBCs aggregability A G . Compared with other methods, the proposed multiple-frequency electrical impedance method is much easier to obtain non-invasive measurement with high speed and good penetrability performance in biology tissues. Experimental results show that, RBCs aggregability A G in coagulating blood falls down with the thrombus formation while that in non-coagulation blood almost keeps the same value, which has a great agreement with the activated clotting time (ACT) fibrinogen concertation (F bg ) tests. Modified Hanai formula is proposed to quantitatively analyze the influence of RBCs aggregation on multiple-frequency electrical impedance measurement. The reduction of RBCs aggregability A G is associated with blood coagulation reaction, which indicates the feasibility of the high speed, compact and cheap on-line thrombus measurement biosensors in extracorporeal circulation systems. Copyright © 2018 Elsevier B.V. All rights reserved.
[A study of the aggregation of human red blood cells induced by picric acid].
Sheremet'ev, Iu A; Sheremet'eva, A V; Lednev, A V
2005-01-01
The effect of picric acid on the aggregation of human erythrocytes was studied. It was shown that the addition of picric acid to a suspension of washed erythrocytes leads to a decrease in pH of medium to 1.5-2 and the formation of echinocytes. Stirring the suspension of echinocytes at low pH values results in a strong aggregation of cells. Increasing the pH value to 7.4 leads to a desaggregation of echinocytes. It was found that picric acid does not induce the aggregation of cells fixed by glutaraldehyde. A substantial decrease in the aggegation of spheric erythrocytes obtained after heating the cells at 50 degrees C was observed.
Effects of ethanol on red blood cell rheological behavior.
Rabai, M; Detterich, J A; Wenby, R B; Toth, K; Meiselman, H J
2014-01-01
Consumption of red wine is associated with a decreased risk of several cardiovascular diseases (e.g., coronary artery disease, stroke), but unfortunately literature reports regarding ethanol's effects on hemorheological parameters are not concordant. In the present study, red blood cell (RBC) deformability was tested via laser ektacytometry (LORCA, 0.3-30 Pa) using two approaches: 1) addition of ethanol to whole blood at 0.25%-2% followed by incubation and testing in ethanol-free LORCA medium; 2) addition of ethanol to the LORCA medium at 0.25%-6% then testing untreated native RBC in these media. The effects of ethanol on deformability for oxidatively stressed RBC were investigated as were changes of RBC aggregation (Myrenne Aggregometer) for cells in autologous plasma or 3% 70 kDa dextran. Significant dose-related increases of RBC deformability were observed at 0.25% (p < 0.05) and higher concentrations only if ethanol was in the LORCA medium; no changes occurred for cells previously incubated with ethanol then tested in ethanol-free medium. The impaired deformability of cells pre-exposed to oxidative stress was improved only if ethanol was in the LORCA medium. RBC aggregation decreased with concentration at 0.25% and higher for cells in both autologous plasma and dextran 70. Our results indicate that ethanol reversibly improves erythrocyte deformability and irreversibly decreases erythrocyte aggregation; the relevance of these results to the health benefits of moderate wine consumption require further investigation.
Comparison of three optical methods to study erythrocyte aggregation.
Zhao, H; Wang, X; Stoltz, J F
1999-01-01
The aim of this work was to evaluate three optical methods designed to determine erythrocyte aggregation: Erythroaggregometer (EA; Regulest, France), Laser-assisted Optical Rotational Cell Analyzer (LORCA; Mechatronics, Netherlands) and Fully Automatic Erythrocyte Aggregometer (FAEA; Myrenne, GmbH, Germany). Blood samples were taken from fifty donors (26 males and 24 females). The aggregation of normal red blood cell (RBC) and RBCs suspended in three normo- and hyperaggregating suspending media was studied. The results revealed some significant correlations between parameters measured by these instruments, in particular, between the indexes of aggregation of EA and LORCA. Further, RBC aggregation of multiple myeloma patients was also studied and a hyper erythrocyte aggregation state was found by EA and LORCA.
Gu, Y John; Vermeijden, Wytze J; de Vries, Adrianus J; Hagenaars, J Ans M; Graaff, Reindert; van Oeveren, Willem
2008-11-01
Mechanical cell salvage is increasingly used during cardiac surgery. Although this procedure is considered safe, it is unknown whether it affects the red blood cell (RBC) function, especially the RBC aggregation, deformability, and the contents of 2,3-diphosphoglycerate (2,3-DPG). This study examines the following: (1) whether the cell salvage procedure influences RBC function; and (2) whether retransfusion of the salvaged blood affects RBC function in patients. Forty patients undergoing cardiac surgery with cardiopulmonary bypass were randomly allocated to a cell saver group (n = 20) or a control group (n = 20). In the cell saver group, the blood aspirated from the wound area and the residual blood from the heart-lung machine were processed with a continuous-flow cell saver before retransfusion. In the control group this blood was retransfused without processing. The RBC aggregation and deformability were measured with a laser-assisted optical rotational cell analyzer and 2,3,-DPG by conventional laboratory test. The cell saver procedure did not influence the RBC aggregation but significantly reduced the RBC deformability (p = 0.007) and the content of RBC 2,3-DPG (p = 0.032). However, in patients receiving the processed blood, their intraoperative and postoperative RBC aggregation, deformability, and 2,3-DPG content did not differ from those of the control patients. Both groups of patients had a postoperative drop of RBC function as a result of hemodilution. The mechanical cell salvage procedure reduces the RBC deformability and the cell 2,3-DPG content. Retransfusion of the processed blood by cell saver does not further compromise the RBC function in patients undergoing cardiac surgery with cardiopulmonary bypass.
Molecular mechanism of tau aggregation induced by anionic and cationic dyes.
Lira-De León, Karla I; García-Gutiérrez, Ponciano; Serratos, Iris N; Palomera-Cárdenas, Marianela; Figueroa-Corona, María Del P; Campos-Peña, Victoria; Meraz-Ríos, Marco A
2013-01-01
Abnormal tau filaments are a hallmark of Alzheimer's disease. Anionic dyes such as Congo Red, Thiazine Red, and Thioflavin S are able to induce tau fibrillization in vitro. SH-SY5Y cells were incubated with each dye for seven days leading to intracellular aggregates of tau protein, with different morphological characteristics. Interestingly, these tau aggregates were not observed when the Methylene Blue dye was added to the cell culture. In order to investigate the molecular mechanisms underlying this phenomenon, we developed a computational model for the interaction of the tau paired helical filament (PHF) core with every dye by docking analysis. The polar/electrostatic and nonpolar contribution to the free binding energy in the tau PHF core-anionic dye interaction was determined. We found that the tau PHF core can generate a positive net charge within the binding site localized at residuesLys311 and Lys340 (numbering according to the longest isoform hTau40). These residues are important for the binding affinity of the negative charges present in the anionic dyes causing an electrostatic environment that stabilizes the complex. Tau PHF core protofibril-Congo Red interaction has a stronger binding affinity compared to Thiazine Red or Thioflavin S. By contrast, the cationic dye Methylene Blue does not bind to nor stabilize the tau PHF core protofibrils. These results characterize the driving forces responsible for the binding of tau to anionic dyes leading to their self-aggregation and suggest that Methylene Blue may act as a destabilizing agent of tau aggregates.
Inhibition of Platelet Aggregation by Supernates from Stored Red Blood Cells
2010-04-01
platelet aggregates in fresh whole blood.[10] In those experiments , we observed that platelets in blood incubated with supernates from stored RBC...volumes in sterile cryovials, and the vials were stored at -80C. For each experiment , aliquots were thawed quickly in a 37°C water bath just before...The final ratio of whole blood to supernate was 2:1. For each experiment , blood was collected first into one red top Vacutainer tube (no anti
Naeem, Aabgeena; Amani, Samreen
2013-01-01
The misfolding and aggregation of proteins is involved in some of the most prevalent neurodegenerative disorders. The importance of human serum albumin (HSA) stems from the fact that it is involved in bio-regulatory and transport phenomena. Here the effect of acetonitrile (ACN) on the conformational stability of HSA and by comparison, ovalbumin (OVA) has been evaluated in the presence and absence of NaCl. The results show the presence of significant amount of secondary structure in HSA at 70% ACN and in OVA at 50% ACN, as evident from far-UV Circular Dichroism (CD) and Attenuated Total Reflection Fourier transformed infra red spectroscopy (ATR-FTIR). Tryptophan and 8-Anilino-1-Naphthalene-Sulphonic acid (ANS) fluorescence indicate altered tryptophan environment and high ANS binding suggesting a compact “molten globule”-like conformation with enhanced exposure of hydrophobic surface area. However, in presence of NaCl no intermediate state was observed. Detection of aggregates in HSA and OVA was possible at 90% ACN. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and ATR-FTIR. These aggregates exhibit increase Thioflavin T (Th T) fluorescence with a red shift of Congo red (CR) absorption spectrum. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis confirmed the presence of fibrillar aggregates. Single cell gel electrophoresis (SCGE) assay of these fibrillar aggregates showed the DNA damage resulting in cell necrosis confirming their genotoxic nature. Some proteins not related to any human disease form fibrils in vitro. In the present study ACN gives access to a model system to study the process of aggregation. PMID:23342075
Detection and characterization of red blood cell (RBC) aggregation with photoacoustics
NASA Astrophysics Data System (ADS)
Hysi, Eno; Saha, Ratan K.; Rui, Min; Kolios, Michael C.
2012-02-01
Red blood cells (RBCs) aggregate in the presence of increased plasma fibrinogen and low shear forces during blood flow. RBC aggregation has been observed in deep vein thrombosis, sepsis and diabetes. We propose using photoacoustics (PA) as a non-invasive imaging modality to detect RBC aggregation. The theoretical and experimental feasibility of PA for detecting and characterizing aggregation was assessed. A simulation study was performed to generate PA signals from non-aggregated and aggregated RBCs using a frequency domain approach and to study the PA signals' dependence on hematocrit and aggregate size. The effect of the finite bandwidth nature of transducers on the PA power spectra was also investigated. Experimental confirmation of theoretical results was conducted using porcine RBC samples exposed to 1064 nm optical wavelength using the Imagio Small Animal PA imaging system (Seno Medical Instruments, Inc., San Antonio, TX). Aggregation was induced with Dextran-70 (Sigma-Aldrich, St. Louis, MO) and the effect of hematocrit and aggregation level was investigated. The theoretical and experimental PA signal amplitude increased linearly with increasing hematocrit. The theoretical dominant frequency content of PA signals shifted towards lower frequencies (<30 MHz) and 9 dB enhancements in spectral power were observed as the size of aggregates increased compared to non-aggregating RBCs. Calibration of the PA spectra with the transducer response obtained from a 200 nm gold film was performed to remove system dependencies. Analysis of the spectral parameters from the calibrated spectra suggested that PA can assess the degree of aggregation at multiple hematocrit and aggregation levels.
Velocity Profiles of Slow Blood Flow in a Narrow Tube
NASA Astrophysics Data System (ADS)
Chen, Jinyu; Huang, Zuqia; Zhuang, Fengyuan; Zhang, Hui
1998-04-01
A fractal model is introduced into the slow blood motion. When blood flows slowly in a narrow tube, red cell aggregation results in the formation of an approximately cylindrical core of red cells. By introducing the fractal model and using the power law relation between area fraction φ and distance from tube axis ρ, rigorous velocity profiles of the fluid in and outside the aggregated core and of the core itself are obtained analytically for different fractal dimensions. It shows a blunted velocity distribution for a relatively large fractal dimension (D ˜ 2), which can be observed in normal blood; a pathological velocity profile for moderate dimension (D = 1), which is similar to the Segre-Silberberg effect; and a parabolic profile for negligible red cell concentration (D = 0), which likes in the Poiseuille flow. The project supported by the National Basic Research Project "Nonlinear Science", National Natural Science Foundation of China and the State Education Commission through the Foundation of Doctoral Training
Kinetic studies of a doubly bound red cell antigen-antibody system.
Oberhardt, B J; Miller, I F
1972-08-01
The Polybrene method for detection of red cell antibodies which utilizes continuous flow equipment was modified so that kinetic studies could be performed on red cell antibodies doubly bound between adjacent red cells. In the anti-Rh(o)-Rh(o) erythrocyte system, deaggregation by temperature was studied over an antibody concentration range of from approximately 1 to 500 antibody molecules per erythrocyte, a residence time range of approximately eightfold, and a temperature range of from 10 to 55 degrees C. The rate of dissociation of antigen-antibody complex, as determined from deaggregation of antibody-dependent red cell aggregates, was found to be of apparent zero order. The apparent activation energy for the antigen-antibody reaction under the experimental conditions was determined and found to be higher than would be expected for singly bound antigen-antibody systems. Possible explanations are considered for these findings in terms of an antigen-antibody bond-breaking model.
Observation of Bright Ring Phenomenon for Red Blood Cells by Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Kim, Young Woo; Moon, Ji Young; Lee, Joon Sang
2017-11-01
RBC (Red Blood Cell) aggregation is one of interests for various biomechanical fields such as cell chip or visualization. The unique phenomenon called ``bright ring'' is due to RBC aggregation in pulsatile flow of blood. Shear rate and flow acceleration on RBC causes them to repeat aggregating and scattering from center of the channel. The reason that this phenomenon is called bright ring is because that when observed by ultrasound imaging, the bright ring occurs periodically. Many studies tried to observe this bright ring phenomenon experimentally. However, there are yet not many studies trying to make use of this phenomenon for practical purposes. Bright ring phenomenon has high potential when used for cell separation or other microchip devices. In this paper, the Lattice Boltzmann method is used to control this bright ring phenomenon. The purpose of this paper is to find conditions when bright ring phenomenon occurs, and to control the aggregating-scattering frequency and degree. Deformability of RBC is calculated following the work of Moon JY et al. (2016). The result of this paper could be further extended to the optimization of cell-separating microchips. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and Brain Korea 21 Plus.
Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia
Charache, Samuel; Grisolia, Santiago; Fiedler, Adam J.; Hellegers, Andre E.
1970-01-01
Blood of patients with sickle cell anemia (SS) exhibits decreased affinity for oxygen, although the oxygen affinity of hemoglobin S is the same as that of hemoglobin A. SS red cells contain more 2,3-diphosphoglycerate (DPG) than normal erythrocytes. The oxygen affinity of hemolyzed red cells is decreased by added DPG, and hemolysates prepared from SS red cells do not differ from normal hemolysates in this regard. Reduction of oxygen affinity to the levels found in intact SS red cells required DPG concentrations in excess of those found in most SS patients. The same was true of oxygen affinity of patients with pyruvate kinase deficiency. Other organic phosphates, as well as inorganic ions, are known to alter the oxygen affinity of dilute solutions of hemoglobin. These substances, the state of aggregation of hemoglobin molecules, and cytoarchitectural factors probably play roles in determining oxygen affinity of both normal and SS red cells. PMID:5443181
Optical tweezers for measuring the interaction of the two single red blood cells in flow condition
NASA Astrophysics Data System (ADS)
Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander
2017-03-01
Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)
Design of a microfluidic system for red blood cell aggregation investigation.
Mehri, R; Mavriplis, C; Fenech, M
2014-06-01
The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.
Yeom, Eunseop; Nam, Kweon-Ho; Paeng, Dong-Guk; Lee, Sang-Joon
2014-08-01
Ultrasound speckle image of blood is mainly attributed by red blood cells (RBCs) which tend to form RBC aggregates. RBC aggregates are separated into individual cells when the shear force is over a certain value. The dissociation of RBC aggregates has an influence on the performance of ultrasound speckle image velocimetry (SIV) technique in which a cross-correlation algorithm is applied to the speckle images to get the velocity field information. The present study aims to investigate the effect of the dissociation of RBC aggregates on the estimation quality of SIV technique. Ultrasound B-mode images were captured from the porcine blood circulating in a mock-up flow loop with varying flow rate. To verify the measurement performance of SIV technique, the centerline velocity measured by the SIV technique was compared with that measured by Doppler spectrograms. The dissociation of RBC aggregates was estimated by using decorrelation of speckle patterns in which the subsequent window was shifted as much as the speckle displacement to compensate decorrelation caused by in-plane loss of speckle patterns. The decorrelation of speckles is considerably increased according to shear rate. Its variations are different along the radial direction. Because the dissociation of RBC aggregates changes ultrasound speckles, the estimation quality of SIV technique is significantly correlated with the decorrelation of speckles. This degradation of measurement quality may be improved by increasing the data acquisition rate. This study would be useful for simultaneous measurement of hemodynamic and hemorheological information of blood flows using only speckle images. Copyright © 2014 Elsevier B.V. All rights reserved.
Hansen, Christian; Angot, Elodie; Bergström, Ann-Louise; Steiner, Jennifer A.; Pieri, Laura; Paul, Gesine; Outeiro, Tiago F.; Melki, Ronald; Kallunki, Pekka; Fog, Karina; Li, Jia-Yi; Brundin, Patrik
2011-01-01
Post-mortem analyses of brains from patients with Parkinson disease who received fetal mesencephalic transplants show that α-synuclein–containing (α-syn–containing) Lewy bodies gradually appear in grafted neurons. Here, we explored whether intercellular transfer of α-syn from host to graft, followed by seeding of α-syn aggregation in recipient neurons, can contribute to this phenomenon. We assessed α-syn cell-to-cell transfer using microscopy, flow cytometry, and high-content screening in several coculture model systems. Coculturing cells engineered to express either GFP– or DsRed-tagged α-syn resulted in a gradual increase in double-labeled cells. Importantly, α-syn–GFP derived from 1 neuroblastoma cell line localized to red fluorescent aggregates in other cells expressing DsRed–α-syn, suggesting a seeding effect of transmitted α-syn. Extracellular α-syn was taken up by cells through endocytosis and interacted with intracellular α-syn. Next, following intracortical injection of recombinant α-syn in rats, we found neuronal uptake was attenuated by coinjection of an endocytosis inhibitor. Finally, we demonstrated in vivo transfer of α-syn between host cells and grafted dopaminergic neurons in mice overexpressing human α-syn. In summary, intercellularly transferred α-syn interacts with cytoplasmic α-syn and can propagate α-syn pathology. These results suggest that α-syn propagation is a key element in the progression of Parkinson disease pathology. PMID:21245577
Chang, Kuo-Hsuan; Chen, I-Cheng; Lin, Hsuan-Yuan; Chen, Hsuan-Chiang; Lin, Chih-Hsin; Lin, Te-Hsien; Weng, Yu-Ting; Chao, Chih-Ying; Wu, Yih-Ru; Lin, Jung-Yaw; Lee-Chen, Guey-Jen; Chen, Chiung-Mei
2016-01-01
Background Alzheimer’s disease (AD) and several neurodegenerative disorders known as tauopathies are characterized by misfolding and aggregation of tau protein. Although several studies have suggested the potential of traditional Chinese medicine (TCM) as treatment for neurodegenerative diseases, the role of TCM in treating AD and tauopathies have not been well explored. Materials and methods Tau protein was coupled to the DsRed fluorophore by fusing a pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD) with DsRed. The ΔK280 tauRD-DsRed fusion gene was then used to generate Tet-On 293 and SH-SY5Y cell clones as platforms to test the efficacy of 39 aqueous extracts of TCM in reducing tau misfolding and in neuroprotection. Results Seven TCM extracts demonstrated a significant reduction in tau misfolding and reactive oxidative species with low cytotoxicity in the ΔK280 tauRD-DsRed 293 cell model. Glycyrrhiza inflata and Panax ginseng also demonstrated the potential to improve neurite outgrowth in the ΔK280 tauRD-DsRed SH-SY5Y neuronal cell model. G. inflata further rescued the upregulation of ERN2 (pro-apoptotic) and downregulation of unfolded-protein-response-mediated chaperones ERP44, DNAJC3, and SERP1 in ΔK280 tauRD-DsRed 293 cells. Conclusion This in vitro study provides evidence that G. inflata may be a novel therapeutic for AD and tauopathies. Future applications of G. inflata on animal models of AD and tauopathies are warranted to corroborate its effect of reducing misfolding and potential disease modification. PMID:27013866
Ishii, Tomohiro; Kawakami, Emiko; Endo, Kentaro; Misawa, Hidemi; Watabe, Kazuhiko
2017-01-01
TAR DNA-binding protein 43 (TDP-43) is a main constituent of cytoplasmic aggregates in neuronal and glial cells in cases of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We have previously demonstrated that adenovirus-transduced artificial TDP-43 cytoplasmic aggregates formation is enhanced by proteasome inhibition in vitro and in vivo. However, the relationship between cytoplasmic aggregate formation and cell death remains unclear. In the present study, rat neural stem cell lines stably transfected with EGFP- or Sirius-expression vectors under the control of tubulin beta III, glial fibrillary acidic protein, or 2′,3′-cyclic nucleotide 3′-phosphodiesterase promoter were differentiated into neurons, astrocytes, and oligodendrocytes, respectively, in the presence of retinoic acid. The differentiated cells were then transduced with adenoviruses expressing DsRed-tagged human wild type and C-terminal fragment TDP-43 under the condition of proteasome inhibition. Time-lapse imaging analyses revealed growing cytoplasmic aggregates in the transduced neuronal and glial cells, followed by collapse of the cell. The aggregates remained insoluble in culture media, consisted of sarkosyl-insoluble granular materials, and contained phosphorylated TDP-43. Moreover, the released aggregates were incorporated into neighboring neuronal cells, suggesting cell-to-cell spreading. The present study provides a novel tool for analyzing the detailed molecular mechanisms of TDP-43 proteinopathy in vitro. PMID:28599005
Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken
2014-01-01
We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation. PMID:24817874
Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken
2014-01-01
We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation.
Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung
2016-01-01
Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. Results The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow. PMID:27298790
Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung
2016-06-01
Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.
Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations
2017-01-01
Red blood cell (RBC) aggregation and erythrocyte sedimentation rate (ESR) are considered to be promising biomarkers for effectively monitoring blood rheology at extremely low shear rates. In this study, a microfluidic-based measurement technique is suggested to evaluate RBC aggregation under hematocrit variations due to the continuous ESR. After the pipette tip is tightly fitted into an inlet port, a disposable suction pump is connected to the outlet port through a polyethylene tube. After dropping blood (approximately 0.2 mL) into the pipette tip, the blood flow can be started and stopped by periodically operating a pinch valve. To evaluate variations in RBC aggregation due to the continuous ESR, an EAI (Erythrocyte-sedimentation-rate Aggregation Index) is newly suggested, which uses temporal variations of image intensity. To demonstrate the proposed method, the dynamic characterization of the disposable suction pump is first quantitatively measured by varying the hematocrit levels and cavity volume of the suction pump. Next, variations in RBC aggregation and ESR are quantified by varying the hematocrit levels. The conventional aggregation index (AI) is maintained constant, unrelated to the hematocrit values. However, the EAI significantly decreased with respect to the hematocrit values. Thus, the EAI is more effective than the AI for monitoring variations in RBC aggregation due to the ESR. Lastly, the proposed method is employed to detect aggregated blood and thermally-induced blood. The EAI gradually increased as the concentration of a dextran solution increased. In addition, the EAI significantly decreased for thermally-induced blood. From this experimental demonstration, the proposed method is able to effectively measure variations in RBC aggregation due to continuous hematocrit variations, especially by quantifying the EAI. PMID:28878199
Coherent and incoherent ultrasound backscatter from cell aggregates.
de Monchy, Romain; Destrempes, François; Saha, Ratan K; Cloutier, Guy; Franceschini, Emilie
2016-09-01
The effective medium theory (EMT) was recently developed to model the ultrasound backscatter from aggregating red blood cells [Franceschini, Metzger, and Cloutier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2668-2679 (2011)]. The EMT assumes that aggregates can be treated as homogeneous effective scatterers, which have effective properties determined by the aggregate compactness and the acoustical characteristics of the cells and the surrounding medium. In this study, the EMT is further developed to decompose the differential backscattering cross section of a single cell aggregate into coherent and incoherent components. The coherent component corresponds to the squared norm of the average scattering amplitude from the effective scatterer, and the incoherent component considers the variance of the scattering amplitude (i.e., the mean squared norm of the fluctuation of the scattering amplitude around its mean) within the effective scatterer. A theoretical expression for the incoherent component based on the structure factor is proposed and compared with another formulation based on the Gaussian direct correlation function. This theoretical improvement is assessed using computer simulations of ultrasound backscatter from aggregating cells. The consideration of the incoherent component based on the structure factor allows us to approximate the simulations satisfactorily for a product of the wavenumber times the aggregate radius kr ag around 2.
Kiss, F; Toth, E; Peto, K; Miko, I; Nemeth, N
2015-12-01
Among the haemorheological parameters, red blood cell (RBC) aggregation shows the largest interspecies diversity, and often controversial data can be found in the literature, besides the methodology-dependent issues. In this present investigation, we compared four experimental/laboratory animal species' RBC aggregation by two different photometric methods for better revealing the differences. Blood samples (K3-EDTA, 1.5 mg/ml) were taken from female animals: 16 inbred mice (Mus musculus, cardiac puncture), 15 outbred rats (Rattus norvegicus, caudal caval vein puncture), 15 beagle dogs (Canis canis, cephalic vein) and 23 juvenile pigs (Sus scrofa domesticus, medial saphenous vein). Haematological parameters (microcell counter) and RBC aggregation (light transmission and syllectometry-laser backscatter methods) were determined within 2 h after sampling. Describing the first 5-10 s of the aggregation process, additional parameters were calculated out of the syllectometric raw data. Standardized difference was calculated to determine the sensitivity of the two devices. Parameters describing the extent and magnitude of red blood cell aggregation showed the lowest values in the rat and the highest in the pig and canine blood. In turn, parameters describing the kinetics of aggregation showed the lowest values in the mouse and the highest in the rat. The standardized difference values for the laser backscattering method were 2-4 times larger vs. the light transmission one. The magnitude of the differences was not consequent in the aggregation parameters. These comparative results show that the laser backscattering method can detect the RBC aggregation differences between the investigated species more sensitively than the light transmission method. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Sutter, Marc; Oliveira, Sabrina; Sanders, Niek N; Lucas, Bart; van Hoek, Arie; Hink, Mark A; Visser, Antonie J W G; De Smedt, Stefaan C; Hennink, Wim E; Jiskoot, Wim
2007-03-01
The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein beta-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of beta-galactosidase below and above the protein's unfolding temperature of 57.4 degrees C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with beta-galactosidase aggregates led to a shift of the emission maximum (lambda (max)) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated beta-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native beta-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with beta-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages.
NASA Astrophysics Data System (ADS)
Kurokawa, Yusaku; Taki, Hirofumi; Yashiro, Satoshi; Nagasawa, Kan; Ishigaki, Yasushi; Kanai, Hiroshi
2016-07-01
We propose a method for assessment of the degree of red blood cell (RBC) aggregation using the backscattering property of high-frequency ultrasound. In this method, the scattering property of RBCs is extracted from the power spectrum of RBC echoes normalized by that from the posterior wall of a vein. In an experimental study using a phantom, employing the proposed method, the sizes of microspheres 5 and 20 µm in diameter were estimated to have mean values of 4.7 and 17.3 µm and standard deviations of 1.9 and 1.4 µm, respectively. In an in vivo experimental study, we compared the results between three healthy subjects and four diabetic patients. The average estimated scatterer diameters in healthy subjects at rest and during avascularization were 7 and 28 µm, respectively. In contrast, those in diabetic patients receiving both antithrombotic therapy and insulin therapy were 11 and 46 µm, respectively. These results show that the proposed method has high potential for clinical application to assess RBC aggregation, which may be related to the progress of diabetes.
Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell
2014-12-01
The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean chromatophores share various features with those of vertebrate pigment cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia.
Sandor, Barbara; Marin, Mickaël; Lapoumeroulie, Claudine; Rabaï, Miklos; Lefevre, Sophie D; Lemonne, Nathalie; El Nemer, Wassim; Mozar, Anaïs; Français, Olivier; Le Pioufle, Bruno; Connes, Philippe; Le Van Kim, Caroline
2016-04-01
Vaso-occlusive crisis (VOC) is the main acute complication in sickle cell anaemia (SS) and several clinical trials are investigating different drugs to improve the clinical severity of SS patients. A phase III study is currently exploring the profit of Velopoloxamer in SS during VOCs. We analysed, in-vitro, the effect of poloxamer (P188) on red blood cell (RBC) properties by investigating haemorheology, mechanical and adhesion functions using ektacytometry, microfluidics and dynamic adhesion approaches, respectively. We show that poloxamer significantly reduces blood viscosity, RBC aggregation and adhesion to endothelial cells, supporting the beneficial use of this molecule in SS therapy. © 2016 John Wiley & Sons Ltd.
The incomplete anti-Rh antibody agglutination mechanism of trypsinized ORh+ red cells.
Margni, R A; Leoni, J; Bazzurro, M
1977-01-01
The capacity for binding to trypsinized and non-trypsinized ORh+ red cells, of the IgG incomplete anti-Rh antibody and its F(ab')2 and Fc fragments has been investigated. An analysis has also been made of the capacity of non-specific human IgG, aggregated non-specific human IgG, human IgM (19S) and IgM (7S), and of fragments Fcgamma, Fcmu and Fc5mu to inhibit the agglutination of trypsinized ORh+ red cells by the IgG incomplete anti-Rh antibody. The results obtained indicate that these antibodies behave in a similar manner to that of nonprecipitating antibodies, and that the agglutination of trypsinized red cells seems to be a mixed reaction due to the interaction of an Fab fragment with its Rh antigenic determinant present in the surface of a red cell and the Fc of the same molecule with a receptor for Fc present in adjacent red cells. The trypsin treatment apparently results in the liberation of occult Fc receptors. It has also been demonstrated that in the agglutination of ORh+ red cells by IgG incomplete anti-Rh antibody in the presence of albumin, interaction must occur in some manner between the albumin and the Fc fragment since the F(ab')2 fragment does not give rise to agglutination under such conditions. Images Figure 1 PMID:415968
Influence of classical and rock music on red blood cell rheological properties in rats.
Erken, Gulten; Bor Kucukatay, Melek; Erken, Haydar Ali; Kursunluoglu, Raziye; Genc, Osman
2008-01-01
A number of studies have reported physiological effects of music. Different types of music have been found to induce different alterations. Although some physiological and psychological parameters have been demonstrated to be influenced by music, the effect of music on hemorheological parameters such as red blood cell (RBC) deformability and aggregation are unknown. This study aimed at investigating the effects of classical and rock music on hemorheological parameters in rats. Twenty-eight rats were divided into four groups: the control, noise-applied, and the classical music- and rock music-applied groups. Taped classical or rock music were played repeatedly for 1 hour a day for 2 weeks and 95-dB machine sound was applied to the noise-applied rats during the same period. RBC deformability and aggregation were measured using an ektacytometer. RBC deformability was found to be increased in the classical music group. Exposure to both classical and rock music resulted in a decrement in erythrocyte aggregation, but the decline in RBC aggregation was of a higher degree of significance in the classical music group. Exposure to noise did not have any effect on the parameters studied. The results of this study indicate that the alterations in hemorheological parameters were more pronounced in the classical music group compared with the rock music group.
Photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex.
Zhang, Zhigang; Dai, Ruihui; Ma, Jiajia; Wang, Shuying; Wei, Xuehong; Wang, Hongfei
2015-02-01
Many planar photosensitizers tend to self-aggregate via van der Waals interactions between π-conjugated systems. The self-aggregation of the photosensitizer may reduce the efficiency of the photosensitizer to generate singlet oxygen, thereby diminishing its photodynamic activity. Efforts have been made to improve the photodynamic activity of bis-(o-diiminobenzosemiquinonato)platinum(II) which has planar geometry by the introduction of the sterically hindered triphenylamine moiety into the ligand. Herein we report the photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex in red light studied by fluorescence spectra, agarose gel assay and cell viability assay. The results suggest that the triphenylamine-modified platinum-diimine complex has better capability to generate singlet oxygen than bis-(o-diiminobenzosemiquinonato)platinum(II), and it can induce DNA damage in red light, causing high photocytotoxicity in HepG-2 cells in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.
Kannan, R; Labotka, R; Low, P S
1988-09-25
Because the interaction of denatured hemoglobins (i.e. hemichromes) with the red cell membrane has been associated with several abnormalities commonly observed in hemichrome-containing erythrocytes, we have undertaken to isolate and characterize the hemichrome-rich membrane protein aggregates from sickle cells. The aggregates were isolated by two procedures: one at low ionic strength by centrifugation of detergent-solubilized spectrin-depleted inside-out vesicles, and the other at physiological ionic strength by detergent solubilization of whole cells followed by cytoskeletal disruption and centrifugation. The extensively washed aggregates obtained by both methods yielded similar results. These insoluble complexes were found to be highly cross-linked by predominantly intermolecular disulfide bonds; however, other nonreducible covalent linkages were also observed. Both in the presence and absence of reducing agents, the aggregate disintegrated when the hemichromes were removed by high ionic strength, suggesting that the aggregate depended heavily on the cohesive properties of the hemichromes for stability. Protein assays demonstrated that the aggregates comprised approximately 1.3% of the total membrane protein, roughly two-thirds of which appeared to be globin chains. Other major components identified in the aggregate were band 3, ankyrin, bands 4.1, 4.9, and 5, glycophorins A and B, and autologous IgG. Quantitative analysis of the IgG content demonstrated that three-fourths of the surface-bound IgG on washed sickle cells was clustered at these aggregate sites, representing an enrichment of approximately 250-fold over nonaggregated regions of the membrane. Since clustered cell surface IgG is thought to trigger removal of erythrocytes from circulation, the hemichrome-induced membrane reorganization at these aggregate sites may be an important cause of the greatly shortened life span of sickle cells.
Age- and gender-related hemorheological alterations in intestinal ischemia-reperfusion in the rat.
Mester, Anita; Magyar, Zsuzsanna; Molnar, Akos; Somogyi, Viktoria; Tanczos, Bence; Peto, Katalin; Nemeth, Norbert
2018-05-01
Intestinal ischemia-reperfusion (I/R) is a life-threatening clinical disorder. During I/R, the microrheological parameters of blood (red blood cell deformability and aggregation) worsen, which may contribute to microcirculatory deterioration. Age and gender also have a great influence on hemorheological parameters. We aimed to investigate the gender and age-related microrheological alterations during intestinal I/R. After the cannulation of the left femoral artery, median laparotomy was performed in Crl:WI rats under general anesthesia. In the young control animals there were no other interventions (female n = 7; male n = 7). In the young (female n = 7; male n = 7) and older I/R groups (female n = 6; male n = 6), the superior mesenteric artery was clipped for 30 min, and a 120-min reperfusion period was observed afterward. Blood samples were taken before and at the 30-min ischemia, in the 30th, 60th, and 120th min of the reperfusion. Hematological parameters, erythrocyte deformability, and aggregation were determined. Hematocrit increased significantly in the younger female I/R group. Red blood cell count was higher in male and older animals. In case of white blood cell count, male animals had higher values compared with females. Platelet count elevated in the younger male and older female I/R animals. Red blood cell deformability worsened, mainly in the male and older I/R groups. Enhanced erythrocyte aggregation was seen in all groups, being more expressed in the female I/R groups. Microrheological parameters show gender and age-related differences during intestinal I/R. These observations have importance in the planning and evaluation of experimental data. Copyright © 2018 Elsevier Inc. All rights reserved.
Local viscosity distribution in bifurcating microfluidic blood flows
NASA Astrophysics Data System (ADS)
Kaliviotis, E.; Sherwood, J. M.; Balabani, S.
2018-03-01
The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.
Li, Lizi; Tian, Junfei; Ballerini, David; Li, Miaosi; Shen, Wei
2013-09-07
Recent research on the use of bioactive paper for human blood typing has led to the discovery of a new method for identifying the haemagglutination of red blood cells (RBCs). When a blood sample is introduced onto paper treated with the grouping antibodies, RBCs undergo haemagglutination with the corresponding grouping antibodies, forming agglutinated cell aggregates in the paper. A subsequent washing of the paper with saline buffer could not remove these aggregates from the paper; this phenomenon provides a new method for rapid, visual identification of the antibody-specific haemagglutination reactions and thus the determination of the blood type. This study aims to understand the mechanism of RBC immobilization inside the paper which follows haemagglutination reactions. Confocal microscopy is used to observe the morphology of the free and agglutinated RBCs that are labelled with FITC. Chromatographic elution patterns of both agglutinated and non-agglutinated RBCs are studied to gain insight into the transport behaviour of free RBCs and agglutinated aggregates. This work provides new information about RBC haemagglutination inside the fibre network of paper on a microscopic level, which is important for the future design of paper-based blood typing devices with high sensitivity and assaying speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Cole, Jacqueline M.
2014-08-29
The optical and electronic properties of dye aggregates of p-methyl red on a TiO2 anatase (101) surface were modeled as a function of aggregation order (monomer to pentameric dye) via first principles calculations. A progressive red-shifting and intensity increase toward the visible region in UV/vis absorption spectra is observed from monomeric-to-tetrameric dyes, with each molecule in a given aggregate binding to one of the four possible TiO2 (101) adsorption sites. The pentamer exhibits a blue-shifted peak wave- length in the UV/vis absorption spectra and less absorption intensity in the visible region in comparison; a corresponding manifestation of H-aggregation occurs sincemore » one of these five molecules cannot occupy an adsorption site. This finding is consistent with experiment. Calculated density of states (DOS) and partial DOS spectra reveal similar dye…TiO2 nanocomposite conduction band characteristics but different valence band features. Associated molecular orbital distributions reveal dye-to-TiO2 interfacial charge transfer in all five differing aggregate orders; meanwhile, the level of intramolecular charge transfer in the dye becomes progressively localized around its azo- and electron-donating groups, up to the tetrameric dye/TiO2 species. Dye adsorption energies and dye coverage levels are calculated and compared with experiment. Overall, the findings of this case study serve to aid the molecular design of azo dyes towards better performing DSSC devices wherein they are incorporated. In addition, they provide a helpful example reference for understanding the effects of dye aggregation on the adsorbate…TiO2 interfacial optical and electronic properties.« less
Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu
2016-09-01
The aggregability of red blood cell (RBCs) is associated with the contribution of plasma proteins, such as fibrinogen and lipoproteids, to blood-clotting. Hence, we hypothesized that RBC aggregability reflects the blood-clotting reaction. A noninvasive optical monitoring method to measure RBC aggregability for the assessment of blood-clotting stage during mechanical circulatory support was developed. An in vitro thrombogenic test was conducted with a rotary blood pump using heparinized fresh porcine blood. Near-infrared laser light at a wavelength of 785 nm was guided by an optical fiber. The fibers for detecting incident, forward-, and backward-scattered light were fixed on the circuit tubing with an inner diameter of 1/4 inch. Because there is substantial RBC aggregation at low shear flow rates, a pulsatile flow was generated by controlling the pump rotational speed. The flow rate was changed from 0 to 8.5 L/min at a period of 40 s. The intensities of forward- and backward-scattered light changed dramatically when the flow stopped. The aggregability was evaluated by the increase ratio of the transmitted light intensity from the flow stopping in the low-flow condition. The experiment started when the anticoagulation was stopped by the addition of protamine into the circulating blood. Reduction in RBC aggregability was associated with a decrease in the amount of fibrinogen and the number of platelets. Continuous, noninvasive monitoring of thrombosis risk is possible using optical measurements combining pulsatile flow control of a rotary blood pump. RBC aggregometry is a potential label-free method for evaluating blood-clotting risk.
Kaul, D K; Roth, E F; Nagel, R L; Howard, R J; Handunnetti, S M
1991-08-01
The occurrence of rosetting of Plasmodium falciparum-infected human red blood cells (IRBC) with uninfected red blood cells (RBC) and its potential pathophysiologic consequences were investigated under flow conditions using the perfused rat mesocecum vasculature. Perfusion experiments were performed using two knobby (K+) lines of P falciparum, ie, rosetting positive (K+R+) and rosetting negative (K+R-). The infusion of K+R+ IRBC resulted in higher peripheral resistance (PRU) than K+R- IRBC (P less than .0012). Video microscopy showed that under conditions of flow, in addition to cytoadherence of K+R+ IRBC to the venular endothelium, rosette formation was also restricted to venules, especially in the areas of slow flow. Rosettes were absent in arterioles and were presumably dissociated by higher wall shear rates. The presence of rosettes in the venules must therefore reflect their rapid reformation after disruption. Cytoadherence of K+R+ IRBC was characterized by formation of focal clusters along the venular wall. In addition, large aggregates of RBC were frequently observed at venular junctions, probably as a result of interaction between flowing rosettes, free IRBC, and uninfected RBC. In contrast, the infusion of K+R+ IRBC resulted in diffuse cytoadherence of these cells exclusively to the venular endothelium but not in rosetting or large aggregate formation. The cytoadherence of K+R+ IRBC showed strong inverse correlation with the venular diameter (r = -.856, P less than .00001). Incubation of K+R+ IRBC with heparin and with monoclonal antibodies to glycoprotein IV/CD36 abolished the rosette formation and resulted in decreased PRU and microvascular blockage. These findings demonstrate that rosetting of K+R+ IRBC with uninfected RBC enhances vasocclusion, suggesting an important in vivo role for rosetting in the microvascular sequestration of P falciparum-infected RBC.
Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun
2014-10-14
A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.
Riazantseva, N V; Novitskiĭ, V V
2003-02-01
Investigation into structural, metabolic, and functional conditions of red blood cells was performed in 24 patients with a neurosis (neurasthenia, disturbance of asaptation) with the aid of electrophoretic division of proteins of the erythrocyte membrane, thin-layer chromatography, fluorescent probing of membranes, evaluation of peroxidative oxidation process, scanning and transmission electron microscopy, laser diphractometry, photometry. The patients with neurotic disorders at the early period after the influence of psychogenic factors (up to 3 months) revealed disorganization of lipid and protein composition of the red cell membrane, increase in microviscosity of its lipid phase, impairment of surface architectonics and ultrastructure of red cells, decrease of a deformation ability and increase of aggregate properties of erythrocytes. The authors treat stability of erythrocytes' homeostasis under the long-term influence of psychogenic factors from a viewpoint of adaptive changes in organism under the influence of neurogenic factors.
Lin, Liyun; Hu, Yuefang; Zhang, Liangliang; Huang, Yong; Zhao, Shulin
2017-08-15
In this work, we prepared glutathione (GSH)-capped copper nanoclusters (Cu NCs) with red emission by simply adjusting the pH of GSH/Cu 2+ mixture at room temperature. A photoluminescence light-up method for detecting Zn 2+ was then developed based on the aggregation induced emission enhancement of GSH-capped Cu NCs. Zn 2+ could trigger the aggregation of Cu NCs, inducing the enhancement of luminescence and the increase of absolute quantum yield from 1.3% to 6.2%. GSH-capped Cu NCs and the formed aggregates were characterized, and the possible mechanism was also discussed. The prepared GSH-capped Cu NCs exhibited a fast response towards Zn 2+ and a wider detection range from 4.68 to 2240μM. The detection limit (1.17μM) is much lower than that of the World Health Organization permitted in drinking water. Furthermore, taking advantages of the low cytotoxicity, large Stokes shift, red emission and light-up detection mode, we explored the use of the prepared GSH-capped Cu NCs in the imaging of Zn 2+ in living cells. The developed luminescence light-up nanoprobe may hold the potentials for Zn 2+ -related drinking water safety and biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Ryu, Je-Young; Siswanto, Antoni; Harimoto, Kenichi; Tagawa, Yoh-ichi
2013-06-01
The pancreatic islet is an assembly of specific endocrine cells. There are many conflicting reports regarding whether the acinus develops from single or multiple progenitor cells. This study investigated the development and maintenance clonality of the pancreatic acinus and duct using a chimeric analysis with EGFP and DsRed2 transgenic mice. Chimeric mice (G-R mice) were obtained by the aggregation method, using 8-cell stage embryos from EGFP and DsRed2 transgenic mice. The islets from the G-R mice were chimeric and mosaic, consisting of either EGFP- or DsRed2-positive populations, as in previous reports. On the other hand, most acini developed from either EGFP or DsRed2 origin, but some were chimeric. Interestingly, these chimeric acini were clearly separated into two-color regions and were not mosaic. Some large intralobular pancreatic ducts consisting of more than 10 cells were found to be chimeric, but no small ducts made up of less than 9 cells were chimeric. Our histological observations suggest that the pancreatic acinus polyclonally and directionally is maintained by multiple progenitor cells. Pancreatic large ducts also seem to develop polyclonally and might result from the assembly of small ducts that develop from a single origin. These findings provide useful information for further understanding pancreatic maintenance.
Nemeth, Richard S.
2006-01-01
Many species of groupers form spawning aggregations, dramatic events where 100s to 1000s of individuals gather annually at specific locations for reproduction. Spawning aggregations are often targeted by local fishermen, making them extremely vulnerable to over fishing. The Red Hind Bank Marine Conservation District located in St. Thomas, United States Virgin Islands, was closed seasonally in 1990 and closed permanently in 1999 to protect an important red hind Epinephelus guttatus spawning site. This study provides some of the first information on the population response of a spawning aggregation located within a marine protected area. Tag-and-release fishing and fish transects were used to evaluate population characteristics and habitat utilization patterns of a red hind spawning aggregation between 1999 and 2004. Compared with studies conducted before the permanent closure, the average size of red hind increased mostly during the seasonal closure period (10 cm over 12 yr), but the maximum total length of male red hind increased by nearly 7 cm following permanent closure. Average density and biomass of spawning red hind increased by over 60% following permanent closure whereas maximum spawning density more than doubled. Information from tag returns indicated that red hind departed the protected area following spawning and migrated 6 to 33 km to a ca. 500 km2 area. Protection of the spawning aggregation site may have also contributed to an overall increase in the size of red hind caught in the commercial fishery, thus increasing the value of the grouper fishery for local fishermen. PMID:16612415
NASA Astrophysics Data System (ADS)
Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi
2011-07-01
Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.
Veciana, Jaume; Ardizzone, Antonio; Blasi, Davide; Grimaldi, Natascia; Sala, Santi; Ratera, Imma; Vona, Danilo; Rosspeintner, Arnulf; Punzi, Angela; Altamura, Emiliano; Vauthey, Eric; Farinola, Gianluca M; Ventosa, Nora
2018-06-05
Diketopyrrolopyrroles (DPPs) have recently attracted large interest as highly bright and photostable red-emitting molecules. However, their tendency to form non-fluorescent aggregates in water via the so-called Aggregation Caused Quenching (ACQ) effect is a major issue that limits their application under the microscope. In this work, two DPP molecules have been incorporated in the membrane of highly stable and water-soluble Quatsomes (QS, nanovesicles made by surfactants and sterols), allowing their nanostructuration in water limiting at the same time the ACQ effect. The obtained fluorescent organic nanoparticles (FONs) showed superior structural homogeneity along with long-time colloidal and optical stability. A thorough one- (1P) and two-photon (2P) fluorescence characterization revealed the promising photophysical features of these fluorescent nanovesicles, which showed a high 1P and 2P brightness. Finally, the fluorescent QSs were used for the in vitro bioimaging of Saos-2 osteosarcoma cell lines, demonstrating their potential as nanomaterials for bioimaging applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microfluidic approach of Sickled Cell Anemia
NASA Astrophysics Data System (ADS)
Abkarian, Manouk; Loiseau, Etienne; Massiera, Gladys
2012-11-01
Sickle Cell Anemia is a disorder of the microcirculation caused by a genetic point mutation that produces an altered hemoglobin protein called HbS. HbS self-assembles reversibly into long rope like fibers inside the red blood cells. The resulting distorded sickled red blood cells are believed to block the smallest capillaries of the tissues producing anemia. Despite the large amount of work that provided a thorough understanding of HbS polymerization in bulk as well as in intact red blood cells at rest, no consequent cellular scale approaches of the study of polymerization and its link to the capillary obstruction have been proposed in microflow, although the problem of obstruction is in essence a circulatory problem. Here, we use microfluidic channels, designed to mimic physiological conditions (flow velocity, oxygen concentration, hematocrit...) of the microcirculation to carry out a biomimetic study at the cellular scale of sickled cell vaso-occlusion. We show that flow geometry, oxygen concentration, white blood cells and free hemoglobin S are essential in the formation of original cell aggregates which could play a role in the vaso-occlusion events.
Zhou, Ji-Yin; Zhou, Shi-Wen; Du, Xiao-Huang; Zeng, Sheng-Ya
2012-09-28
Seabuckthorn (Hippophae rhamnoides L.) has been used to treat high altitude diseases. The effects of five-week treatment with total flavonoids of seabuckthorn (35, 70, 140 mg/kg, ig) on cobalt chloride (5.5 mg/kg, ip)- and hypobaric chamber (simulating 5,000 m)-induced high-altitude polycythemia in rats were measured. Total flavonoids decreased red blood cell number, hemoglobin, hematocrit, mean corpuscular hemoglobin levels, span of red blood cell electrophoretic mobility, aggregation index of red blood cell, plasma viscosity, whole blood viscosity, and increased deformation index of red blood cell, erythropoietin level in serum. Total flavonoids increased pH, pO₂, Sp(O₂), pCO₂ levels in arterial blood, and increased Na⁺, HCO₃⁻, Cl⁻, but decreased K⁺ concentrations. Total flavonoids increased mean arterial pressure, left ventricular systolic pressure, end-diastolic pressure, maximal rate of rise and decrease, decreased heart rate and protected right ventricle morphology. Changes in hemodynamic, hematologic parameters, and erythropoietin content suggest that administration of total flavonoids from seabuckthorn may be useful in the prevention of high altitude polycythaemia in rats.
Bína, David; Gardian, Zdenko; Herbstová, Miroslava; Kotabová, Eva; Koník, Peter; Litvín, Radek; Prášil, Ondřej; Tichý, Josef; Vácha, František
2014-06-01
A novel chlorophyll a containing pigment-protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~20kDa proteins of the light-harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705nm at room temperature in addition to the main chlorophyll a maximum at 677nm producing the major emission band at 714nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700nm unrelated to LHCI. Copyright © 2014 Elsevier B.V. All rights reserved.
Red blood cells as modulators of T cell growth and survival.
Arosa, Fernando A; Pereira, Carlos F; Fonseca, Ana M
2004-01-01
T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.
NASA Astrophysics Data System (ADS)
Tang, J.; Wang, Y.
2013-12-01
Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to < 0.25 mm, but the distribution of water-stable aggregates did not follow this pattern. Compared with the chemical fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long-term fertilization. OC mainly existed in the macroaggregate (> 0.25 mm) of red soils after the long-term fertilization, and the organic matter was the most important colloid material for macroaggregates. We conclude that the long-term, appropriate application of chemical fertilizer and the combination with organic manure were the most effective measures to improve soil structure and organic carbon contents in red soil regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Ting; Phan-Thien, Nhan, E-mail: Nhan@nus.edu.sg; Khoo, Boo Cheong
In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the othermore » malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.« less
NASA Astrophysics Data System (ADS)
Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong
2013-01-01
Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.
Wiewiora, Maciej; Piecuch, Jerzy; Glûck, Marek; Slowinska-Lozynska, Ludmila; Sosada, Krystyn
2014-01-01
The aim of this study was to evaluate the effects of the obesity degree on red blood cell aggregation and deformability. We studied 56 obese patients before weight loss surgery who were divided into two groups: morbid obesity and super obesity. The aggregation and deformability of RBCs were evaluated using a Laser-assisted Optical Rotational Cell Analyzer (Mechatronics, the Netherlands). The following parameters specific to the aggregation process were estimated: aggregation index (AI), aggregation half-time (t1/2) and threshold shear rate (γthr). RBC deformability was expressed as erythrocyte elongation (EI), which was measured at 18.49 Pa and 30.2 Pa shear stresses. Super obese patients presented significantly higher AI (P < 0.05) and γthr (P < 0.05) and significantly lower t1/2 (P < 0.05) compared with morbidly obese individuals. Multivariate analyses showed that fibrinogen (β 0.46, P < 0.01 and β 0.98, P < 0.01) and hematocrit (β 0.38, P < 0.05 and β 1.01, P < 0.01) independently predicted the AI in morbidly obese and super obese patients. Fibrinogen (β -0.4, P < 0.05 and β -0.91, P < 0.05) and hematocrit (β -0.38, P < 0.05 and β -1.11, P < 0.01) were also independent predictors of the t1/2 in both obese groups. The triglyceride level (β 0.32, P < 0.05) was an independent predictor of the t1/2 in the morbidly obese group. No differences in EI were observed between obese subjects. Multivariate analyses showed that the triglyceride level independently predicted EI at 18.49 Pa (β -0.42, P < 0.05 and β -0.53, P < 0.05) and 30.2 Pa (β -0.44, P < 0.01 and β -0.49, P < 0.05) in both obese groups. This study indicated that the obesity degree of patients who qualify for bariatric surgery affects RBC aggregation properties, but it does not indicate the reasons for this difference. Further studies are needed to determine factors associated with hyperaggregation in super obesity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Min; Mikecz, Anna von
Despite of their exponentially growing use, little is known about cell biological effects of nanoparticles. Here, we report uptake of silica (SiO{sub 2}) nanoparticles to the cell nucleus where they induce aberrant clusters of topoisomerase I (topo I) in the nucleoplasm that additionally contain signature proteins of nuclear domains, and protein aggregation such as ubiquitin, proteasomes, cellular glutamine repeat (polyQ) proteins, and huntingtin. Formation of intranuclear protein aggregates (1) inhibits replication, transcription, and cell proliferation; (2) does not significantly alter proteasomal activity or cell viability; and (3) is reversible by Congo red and trehalose. Since SiO{sub 2} nanoparticles trigger amore » subnuclear pathology resembling the one occurring in expanded polyglutamine neurodegenerative disorders, we suggest that integrity of the functional architecture of the cell nucleus should be used as a read out for cytotoxicity and considered in the development of safe nanotechnology.« less
Wang, Chuanxi; Jiang, Kaili; Wu, Qian; Wu, Jiapeng; Zhang, Chi
2016-10-04
Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel "turn-on" carbon-dot-based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave-assisted method and exhibit red fluorescence (λem =615 nm) with high quantum yields (15 %). Then, an on-off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation-induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs-GSH mixture could behave as an off-on fluorescent probe for temperature. Thus, red-emitting CNDs can be utilized for "turn-on" fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3-E1 cells as an example model to demonstrate the red-emitting CNDs can function as "non-contact" tools for the accurate measurement of temperature and its gradient inside a living cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calcium movements during pigment aggregation in freshwater shrimp chromatophores.
Ribeiro, Márcia; McNamara, John Campbell
2007-02-01
Pigment granule migration within crustacean chromatophores provides an excellent model with which to investigate cytoplasmic movements, given the antagonistic, neurosecretory peptide regulation of granule translocation, and the absence of innervation in these large, brightly colored cells. Red pigment-concentrating hormone (RPCH) induces pigment aggregation in shrimp chromatophores via an increase in intracellular Ca2+; however, how this increase is brought about is not known. To examine the putative Ca2+ movements leading to pigment translocation in red, ovarian chromatophores of the freshwater shrimp, Macrobrachium olfersii, this study manipulates intra- and extracellular Ca2+ employing ER Ca2+-ATPase inhibitors, ryanodine-sensitive, ER Ca2+ channel blockers, and EDTA/EGTA-buffered A23187/Ca2+-containing salines. Our findings reveal that during pigment aggregation, cytosolic Ca2+ apparently increases from an intracellular source, the abundant SER, loaded by the SERCA and released through ryanodine-sensitive receptor/channels, triggered by capacitative calcium influx and/or calcium-induced calcium release mechanisms. Aggregation also depends on external calcium, which may modulate RPCH/receptor coupling. Such calcium-regulated pigment movements form the basis of a complex system of chromatic adaptation, which confers selective advantages like camouflage and protection against ultra-violet radiation to this palaemonid shrimp.
Lauf, U; Lopez, P; Falk, M M
2001-06-01
A novel, brilliantly red fluorescent protein, DsRed has become available recently opening up a wide variety of experimental opportunities for double labeling and fluorescence resonance electron transfer experiments in combination with green fluorescent protein (GFP). Unlike in the case of GFP, proteins tagged with DsRed were often found to aggregate within the cell. Here we report a simple method that allows rescuing the function of an oligomeric protein tagged with DsRed. We demonstrate the feasibility of this approach on the subunit proteins of an oligomeric membrane channel, gap junction connexins. Additionally, DsRed fluorescence was easily detected 12-16 h post transfection, much earlier than previously reported, and could readily be differentiated from co-expressed GFP. Thus, this approach can eliminate the major drawbacks of this highly attractive autofluorescent protein.
NASA Astrophysics Data System (ADS)
Bocsi, József; Nieschke, Kathleen; Mittag, Anja; Reichert, Thomas; Laffers, Wiebke; Marecka, Monika; Pierzchalski, Arkadiusz; Piltz, Joachim; Esche, Hans-Jürgen; Wolf, Günther; Dähnert, Ingo; Baumgartner, Adolf; Tarnok, Attila
2014-03-01
Myocardial infarction (MI) is an acute life-threatening disease with a high incidence worldwide. Aim of this study was to test lectin-carbohydrate binding-induced red blood cell (RBC) agglutination as an innovative tool for fast, precise and cost effective diagnosis of MI. Five lectins (Ricinus communis agglutinin (RCA), Phaseolus vulgaris erythroagglutinin (PHA), Datura stramonium agglutinin (DSA), Artocarpus agglutinin (ArA), Triticum agglutinin (TA)) were tested for ability to differentiate between agglutination characteristics in patients with MI (n = 101) or angina pectoris without MI (AP) (n = 34) and healthy volunteers (HV) as control (n =68) . RBC agglutination was analyzed by light absorbance of a stirred RBC suspension in the green to red light spectrum in an agglutimeter (amtec, Leipzig, Germany) for 15 min after lectin addition. Mean cell count in aggregates was estimated from light absorbance by a mathematical model. Each lectin induced RBC agglutination. RCA led to the strongest RBC agglutination (~500 RBCs/aggregate), while the others induced substantially slower agglutination and lead to smaller aggregate sizes (5-150 RBCs/aggregate). For all analyzed lectins the lectin-induced RBC agglutination of MI or AP patients was generally higher than for HV. However, only PHA induced agglutination that clearly distinguished MI from HV. Variance analysis showed that aggregate size after 15 min. agglutination induced by PHA was significantly higher in the MI group (143 RBCs/ aggregate) than in the HV (29 RBC-s/aggregate, p = 0.000). We hypothesize that pathological changes during MI induce modification of the carbohydrate composition on the RBC membrane and thus modify RBC agglutination. Occurrence of carbohydrate-lectin binding sites on RBC membranes provides evidence about MI. Due to significant difference in the rate of agglutination between MI > HV the differentiation between these groups is possible based on PHA-induced RBC-agglutination. This novel assay could serve as a rapid, cost effective valuable new tool for diagnosis of MI.
Wrobel, Dominika; Kolanowska, Katarzyna; Gajek, Arkadiusz; Gomez-Ramirez, Rafael; de la Mata, Javier; Pedziwiatr-Werbicka, Elżbieta; Klajnert, Barbara; Waczulikova, Iveta; Bryszewska, Maria
2014-03-01
We have investigated the interactions between cationic NN16 and BDBR0011 carbosilane dendrimers with red blood cells or their cell membranes. The carbosilane dendrimers used possess 16 cationic functional groups. Both the dendrimers are made of water-stable carbon-silicon bonds, but NN16 possesses some oxygen-silicon bonds that are unstable in water. The nucleic acid used in the experiments was targeted against GAG-1 gene from the human immunodeficiency virus, HIV-1. By binding to the outer leaflet of the membrane, carbosilane dendrimers decreased the fluidity of the hydrophilic part of the membrane but increased the fluidity of the hydrophobic interior. They induced hemolysis, but did not change the morphology of the cells. Increasing concentrations of dendrimers induced erythrocyte aggregation. Binding of short interfering ribonucleic acid (siRNA) to a dendrimer molecule decreased the availability of cationic groups and diminished their cytotoxicity. siRNA-dendrimer complexes changed neither the fluidity of biological membranes nor caused cell hemolysis. Addition of dendriplexes to red blood cell suspension induced echinocyte formation. Copyright © 2013 Elsevier B.V. All rights reserved.
The Isolation and Partial Characterization of a Membrane Fraction Containing Phytochrome 12
Marmé, Dieter; Mackenzie, John M.; Boisard, Jean; Briggs, Winslow R.
1974-01-01
If 4-day-old dark-grown zucchini squash seedlings (Cucurbita pepo L. cv. Black Beauty) are exposed briefly to red light, subsequent cell fractionation yields about 40% of the total extractable phytochrome in the far red-absorbing form bound to a particulate fraction. The amount of far red-absorbing phytochrome in the pellet is strongly dependent on the Mg concentration in the extraction medium. The apparent density of the Pfr-containing particles following sedimentation on sucrose gradients corresponds to 15% (w/w) sucrose with 0.1 mm Mg and 40% sucrose with 10 mm Mg. This particulate fraction could be readily separated from mitochondria and other particulate material by taking advantage of these apparent density changes with changes in Mg concentration. Electron microscopy of negatively stained preparations shows that with 1 mm Mg only minute particles are present. These were too small to reveal structural detail with this technique. With 3 mm Mg, separate membranous vesicles between 400 and 600 Ångstroms in diameter appear. At higher Mg concentrations, the vesicles aggregate, causing obvious turbity. The effect of Mg on vesicle formation and aggregation is completely reversible. Above 10 mm Mg, vesicle aggregation persists, but the percentage of bound Pfr decreases. Images PMID:16658871
Physics of a rapid CD4 lymphocyte count with colloidal gold.
Hansen, P; Barry, D; Restell, A; Sylvia, D; Magnin, O; Dombkowski, D; Preffer, F
2012-03-01
The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ∼30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important. Copyright © 2011 International Society for Advancement of Cytometry.
Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa
2016-10-21
Multilayer dye aggregation at the dye/TiO 2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO 2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO 2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO 2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO 2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells.
Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa
2016-01-01
Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells. PMID:27767196
NASA Astrophysics Data System (ADS)
Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.
2017-05-01
Despite the beneficial effects of low-level lasers on wound healing, their application for treatment of infected injuries is controversial because low-level lasers could stimulate bacterial growth exacerbating the infectious process. Thus, the aim of this work was to evaluate in vitro effects of low-level lasers on survival, morphology and cell aggregation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the survival, cell aggregation, filamentation and morphology of bacterial cells in exponential and stationary growth phases. Fluence, wavelength and emission mode were those used in therapeutic protocols for wound healing. Data show no changes in morphology and cell aggregation, but dichromatic laser radiation decreased bacterial survival in exponential growth phase and monochromatic red and infrared lasers increased bacterial survival at the same fluence. Simultaneous dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation and simultaneous dichromatic laser could be the option for treatment of infected pressure injuries by Pantoea agglomerans.
Inhibition of p53 Mutant Peptide Aggregation In Vitro by Cationic Osmolyte Acetylcholine Chloride.
Chen, Zhaolin; Kanapathipillai, Mathumai
2017-01-01
Mutations of tumor suppressor protein p53 are present in almost about 50% of all cancers. It has been reported that the p53 mutations cause aggregation and subsequent loss of p53 function, leading to cancer progression. Here in this study we focus on the inhibitory effects of cationic osmolyte molecules acetylcholine chloride, and choline on an aggregation prone 10 amino acid p53 mutant peptide WRPILTIITL, and the corresponding wildtype peptide RRPILTIITL in vitro. The characterization tools used for this study include Thioflavin- T (ThT) induced fluorescence, transmission electron microscopy (TEM), congo red binding, turbidity, dynamic light scattering (DLS), and cell viability assays. The results show that acetylcholine chloride in micromolar concentrations significantly inhibit p53 mutant peptide aggregation in vitro, and could be promising candidate for p53 mutant/ misfolded protein aggregation inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pathophysiology and Clinical Manifestations of the β-Thalassemias
Nienhuis, Arthur W.; Nathan, David G.
2012-01-01
The β-thalassemia syndromes reflect deficient or absent β-globin synthesis usually owing to a mutation in the β-globin locus. The relative excess of α-globin results in the formation of insoluble aggregates leading to ineffective erythropoiesis and shortened red cell survival. A relatively high capacity for fetal hemoglobin synthesis is a major genetic modifier of disease severity, with polymorphisms in other genes also having a significant role. Iron overload secondary to enhanced absorption and red cell transfusions causes an increase in liver iron and in various other tissues, leading to endocrine and cardiac dysfunction. Modern chelation regimens are effective in removing iron and preserving or restoring organ function. PMID:23209183
Investigations on a novel photoacoustofluidic effect
NASA Astrophysics Data System (ADS)
Dumy, Gabriel; Hoyos, Mauricio; Aider, Jean-Luc
2017-11-01
Acoustic manipulation of micro-objects (particles, cells, bacteria) can be achieved using ultrasonic standing waves in a fluidic or microfluidic resonator. By matching resonator dimensions and acoustic field frequency it is possible to use acoustic radiation force (ARF) to gather the particles in the pressure nodal (or anti-nodal) plane, creating one or several aggregates. In standard operating conditions, they are stable for as long as needed in acoustic levitation at this position. In this study, we present a new unexpected phenomenon. After creating an aggregate of light-absorbing particles, we show that it is possible to force the breakup of the aggregate when lighting it with an electromagnetic wave of adequate wavelength and intensity. While the particles remain in levitation, they are rejected and propelled away from the aggregate, leading to its destruction. We show that this phenomenon depends on both amplitude of the ultrasonic field and lighting intensity. Various experiments with different types of particles and concentrations are used to discuss the possible phenomenon explanations. Moreover, investigations showed that this phenomenon applies to biological compounds such as red blood cells and stem cells, suggesting potential biomedical applications. We are thankful to doctoral school ``Frontières du vivant'' for supporting G. Dumy's PhD.
Aristov, Alexander; Nosova, Ekaterina
2017-04-01
The paper focuses on research aimed at creating and testing a new approach to evaluate the processes of aggregation and sedimentation of red blood cells for purpose of its use in clinical laboratory diagnostics. The proposed method is based on photometric analysis of blood sample formed as a sessile drop. The results of clinical approbation of this method are given in the paper. Analysis of the processes occurring in the sample in the form of sessile drop during the process of blood cells sedimentation is described. The results of experimental studies to evaluate the effect of the droplet sample focusing properties on light radiation transmittance are presented. It is shown that this method significantly reduces the sample volume and provides sufficiently high sensitivity to the studied processes.
[Blood fluidity and omega-3 fatty acids].
Ernst, E
1991-01-01
Omega-3 fatty acids are highly unsaturated fatty acids with a first (counted from the methyl end) double bound at the third carbon atom. Their biological effects--mainly changes of blood lipids and of the eicosanoid pattern--are due to a competitive inhibition of omega-6 fatty acids within the prostaglandin metabolism. Hemorheological effects have also been described repeatedly. A placebo-controlled, double blind study shows that red cell deformability is raised and blood viscosity decreased by omega-3 fatty acids in stepwise increasing doses. When the dose is further increased there is a drop of plasma viscosity and red cell aggregation. An open study with hyperlipoproteinemic patients confirms these effects: After 21 days of 8 capsules Ameu per day there is a significant reduction of plasma viscosity. After 56 days treatment (same dosage) blood viscosity drops and red cell deformability increases significantly. At present the evidence is growing to suggest that omega-3 fatty acids can delay atherogenesis. The above data allow the hypothesis that hemorheology may be involved in this.
Sheet, Sanjoy Kumar; Sen, Bhaskar; Patra, Sumit Kumar; Rabha, Monosh; Aguan, Kripamoy; Khatua, Snehadrinarayan
2018-05-02
The development of red emissive aggregation-induced emission (AIE) active probes for organelle-specific imaging is of great importance. Construction of metal complex-based AIE-active materials with metal-to-ligand charge transfer (MLCT), ligand-to-metal charge transfer (LMCT) emission together with the ligand-centered and intraligand (LC/ILCT) emission is a challenging task. We developed a red emissive ruthenium(II) complex, 1[PF 6 ] 2 , and its perchlorate analogues of the 4,7-dichloro phenanthroline ligand. 1[PF 6 ] 2 has been characterized by spectroscopic and single-crystal X-ray diffraction. Complex 1 showed AIE enhancement in water, highly dense polyethylene glycol media, and also in the solid state. The possible reason behind the AIE property may be the weak supramolecular π···π, C-H···π, and C-Cl···H interactions between neighboring phen ligands as well as C-Cl···O halogen bonding (XB). The crystal structures of the two perchlorate analogues revealed C-Cl···O distances shorter than the sum of the van der Waals radii, which confirmed the XB interaction. The AIE property was supported by scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and atomic force microscopy studies. Most importantly, the probe was found to be low cytotoxicity and to efficiently permeate the cell membrane. The cell-imaging experiments revealed rapid staining of the nucleolus in HeLa cells via the interaction with nucleolar ribosomal ribonucleic acid (rRNA). It is expected that the supramolecular interactions as well as C-Cl···O XB interaction with rRNA is the origin of aggregation and possible photoluminescence enhancement. To the best of our knowledge, this is the first report of red emissive ruthenium(II) complex-based probes with AIE characteristics for selective rRNA detection and nucleolar imaging.
Wine as a biological fluid: history, production, and role in disease prevention.
Soleas, G J; Diamandis, E P; Goldberg, D M
1997-01-01
Wine has been part of human culture for 6,000 years, serving dietary and socio-religious functions. Its production takes place on every continent, and its chemical composition is profoundly influenced by enological techniques, the grape cultivar from which it originates, and climatic factors. In addition to ethanol, which in moderate consumption can reduce mortality from coronary heart disease by increasing high-density lipoprotein cholesterol and inhibiting platelet aggregation, wine (especially red wine) contains a range of polyphenols that have desirable biological properties. These include the phenolic acids (p-coumaric, cinnamic, caffeic, gentisic, ferulic, and vanillic acids), trihydroxy stilbenes (resveratrol and polydatin), and flavonoids (catechin, epicatechin, and quercetin). They are synthesized by a common pathway from phenylalanine involving polyketide condensation reactions. Metabolic regulation is provided by competition between resveratrol synthase and chalcone synthase for a common precursor pool of acyl-CoA derivatives. Polymeric aggregation gives rise, in turn to the viniferins (potent antifungal agents) and procyanidins (strong antioxidants that also inhibit platelet aggregation). The antioxidant effects of red wine and of its major polyphenols have been demonstrated in many experimental systems spanning the range from in vitro studies (human low-density lipoprotein, liposomes, macrophages, cultured cells) to investigations in healthy human subjects. Several of these compounds (notably catechin, quercetin, and resveratrol) promote nitric oxide production by vascular endothelium; inhibit the synthesis of thromboxane in platelets and leukotriene in neutrophils, modulate the synthesis and secretion of lipoproteins in whole animals and human cell lines, and arrest tumour growth as well as inhibit carcinogenesis in different experimental models. Target mechanisms to account for these effects include inhibition of phospholipase A2 and cyclo-oxygenase, inhibition of phosphodiesterase with increase in cyclic nucleotide concentrations, and inhibition of several protein kinases involved in cell signalling. Although their bioavailability remains to be fully established, red wine provides a more favourable milieu than fruits and vegetables, their other dietary source in humans.
Platelet response heterogeneity in thrombus formation.
Munnix, Imke C A; Cosemans, Judith M E M; Auger, Jocelyn M; Heemskerk, Johan W M
2009-12-01
Vascular injury leads to formation of a structured thrombus as a consequence of platelet activation and aggregation, thrombin and fibrin formation, and trapping of leukocytes and red cells. This review summarises current evidence for heterogeneity of platelet responses and functions in the thrombus-forming process. Environmental factors contribute to response heterogeneity, as the platelets in a thrombus adhere to different substrates, and sense specific (ant)agonists and rheological conditions. Contraction of platelets and interaction with fibrin and other blood cells cause further response variation. On the other hand, response heterogeneity can also be due to intrinsic differences between platelets in age and in receptor and signalling proteins. As a result, at least three subpopulations of platelets are formed in a thrombus: aggregating platelets with (reversible) integrin activation, procoagulant (coated) platelets exposing phosphatidylserine and binding coagulation factors, and contracting platelets with cell-cell contacts. This recognition of thrombus heterogeneity has implications for the use and development of antiplatelet medication.
Tracking hypoxic signaling within encapsulated cell aggregates.
Skiles, Matthew L; Sahai, Suchit; Blanchette, James O
2011-12-16
In Diabetes mellitus type 1, autoimmune destruction of the pancreatic β-cells results in loss of insulin production and potentially lethal hyperglycemia. As an alternative treatment option to exogenous insulin injection, transplantation of functional pancreatic tissue has been explored. This approach offers the promise of a more natural, long-term restoration of normoglycemia. Protection of the donor tissue from the host's immune system is required to prevent rejection and encapsulation is a method used to help achieve this aim. Biologically-derived materials, such as alginate and agarose, have been the traditional choice for capsule construction but may induce inflammation or fibrotic overgrowth which can impede nutrient and oxygen transport. Alternatively, synthetic poly(ethylene glycol) (PEG)-based hydrogels are non-degrading, easily functionalized, available at high purity, have controllable pore size, and are extremely biocompatible. As an additional benefit, PEG hydrogels may be formed rapidly in a simple photo-crosslinking reaction that does not require application of non-physiological temperatures. Such a procedure is described here. In the crosslinking reaction, UV degradation of the photoinitiator, 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 2959), produces free radicals which attack the vinyl carbon-carbon double bonds of dimethacrylated PEG (PEGDM) inducing crosslinking at the chain ends. Crosslinking can be achieved within 10 minutes. PEG hydrogels constructed in such a manner have been shown to favorably support cells, and the low photoinitiator concentration and brief exposure to UV irradiation is not detrimental to viability and function of the encapsulated tissue. While we methacrylate our PEG with the method described below, PEGDM can also be directly purchased from vendors such as Sigma. An inherent consequence of encapsulation is isolation of the cells from a vascular network. Supply of nutrients, notably oxygen, is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 10(10) pfu/mL. Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion. Western blot analysis of encapsulated cells in 20% and 1% oxygen also showed a significant increase in HIF-1α for cells cultured in the low oxygen conditions which correlates with the expression of the DsRed DR protein.
Somogyi, Viktoria; Peto, Katalin; Deak, Adam; Tanczos, Bence; Nemeth, Norbert
2018-01-01
Age- and gender-related alterations of hemorheological parameters have not been completely elucidated to date. Experiments on older animals may give valuable information on this issue. However, the majority of rheological studies have been performed in young rodents. We aimed to investigate the influence of aging and gender on hemorheological parameters in rats. Coeval male (n=10) and female (n=10) Wistar (Crl:WI) rats were followed-up over 15 months. Blood samples were obtained from the lateral tail vein at 3, 4, 5, 9, 12, 15 and 18 months of age. Hematological parameters, red blood cell deformability (elongation under shear), osmotic gradient deformability and erythrocyte aggregation were tested. Body weight and the estrus cycle (in females) were also examined. Erythrocyte aggregation showed age- and gender-related variations. Red blood cell deformability was greater in females and gradually decreased over the 15-month period in both genders. Erythrocyte aggregation was greater in male rats at most ages, but did not show consistent changes with age. The micro-rheological parameters showed age-related alterations with gender differences. The effect of the estrous cycle cannot be excluded in female rats. The results provide reference data for studies of aging in rats and of the mechanism related to age and gender differences in hemorheology.
Jain, Sudeep; Chen, Jinru
2007-11-01
This study was undertaken to quantify thin aggregative fimbriae and cellulose produced by Salmonella and to evaluate their roles in attachment and biofilm formation on polystyrene and glass surfaces. Thin aggregative fimbriae and cellulose produced by four wild-type and two pairs of Salmonella, representing four different colony morphotypes (rdar: red, dry, and rough; pdar: pink, dry, and rough; bdar: brown, dry, and rough; and saw: smooth and white), were quantified. The ability of the Salmonella cells to attach and form biofilms on the selected surfaces was evaluated in Luria-Bertani (LB) broth with or without salt (0.5%) or glucose (2%) at 28 degrees C during a 7-day period. The cells expressing the rdar or pdar colony morphotypes produced significantly greater amounts of thin aggregative fimbriae and cellulose on LB no salt agar, respectively. The cells expressing the rdar colony morphotype attached in higher numbers and formed more biofilm than did the cells expressing the pdar colony morphotype. The members of the pairs expressing the bdar colony morphotype attached more efficiently and formed more biofilm on the tested surfaces than did their counterparts expressing the saw colony morphotype. These results indicated that thin aggregative fimbriae impart attachment ability to Salmonella and, upon coexpression with cellulose, enhance biofilm formation on certain abiotic surfaces. The knowledge acquired in the study may help develop better cleaning strategies for food processing equipment.
Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films
NASA Astrophysics Data System (ADS)
Gardelis, S.; Fakis, M.; Droseros, N.; Georgiadou, D.; Travlos, A.; Nassiopoulou, A. G.
2017-01-01
We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed.
Effect of low-power He-Ne ILIB on rheology in patients with cerebral infarction
NASA Astrophysics Data System (ADS)
Lu, Zheng-Guo
1998-11-01
We determined rheology in patients with cerebral infarction, before and after low-power He-Ne ILIB. The test covered whole blood viscosity red blood cell distortion index, platelet aggregation and D-dimer. The results shoed that low-power He-Ne ILIB results in non-significant decrease in whole blood viscosity, significant decrease in plasma viscosity, platelet aggregation and D-dimer and significant increase in RBC rheology index. This study suggests that He- He ILIB which may improve rheology and clinical symptoms of cerebral infarction patients is a simple, safe and effective therapy.
Mechanical Dissociation of Platelet Aggregates in Blood Stream
NASA Astrophysics Data System (ADS)
Hoore, Masoud; Fedosov, Dmitry A.; Gompper, Gerhard; Complex; Biological Fluids Group Team
2017-11-01
von Willebrand factor (VWF) and platelet aggregation is a key phenomenon in blood clotting. These aggregates form critically in high shear rates and dissolve reversibly in low shear rates. The emergence of a critical shear rate, beyond which aggregates form and below which they dissolve, has an interesting impact on aggregation in blood flow. As red blood cells (RBCs) migrate to the center of the vessel in blood flow, a RBC free layer (RBC-FL) is left close to the walls into which the platelets and VWFs are pushed back from the bulk flow. This margination process provides maximal VWF-platelet aggregation probability in the RBC-FL. Using mesoscale hydrodynamic simulations of aggregate dynamics in blood flow, it is shown that the aggregates form and grow in RBC-FL wherein shear rate is high for VWF stretching. By growing, the aggregates penetrate to the bulk flow and get under order of magnitude lower shear rates. Consequently, they dissolve and get back into the RBC-FL. This mechanical limitation for aggregates prohibits undesired thrombosis and vessel blockage by aggregates, while letting the VWFs and platelets to aggregate close to the walls where they are actually needed. The support by the DFG Research Unit FOR 1543 SHENC and CPU time Grant by the Julich Supercomputing Center are acknowledged.
Red blood cell transport mechanisms in polyester thread-based blood typing devices.
Nilghaz, Azadeh; Ballerini, David R; Guan, Liyun; Li, Lizi; Shen, Wei
2016-02-01
A recently developed blood typing diagnostic based on a polyester thread substrate has shown great promise for use in medical emergencies and in impoverished regions. The device is easy to use and transport, while also being inexpensive, accurate, and rapid. This study used a fluorescent confocal microscope to delve deeper into how red blood cells were behaving within the polyester thread-based diagnostic at the cellular level, and how plasma separation could be made to visibly occur on the thread, making it possible to identify blood type in a single step. Red blood cells were stained and the plasma phase dyed with fluorescent compounds to enable them to be visualised under the confocal microscope at high magnification. The mechanisms uncovered were in surprising contrast with those found for a similar, paper-based method. Red blood cell aggregates did not flow over each other within the thread substrate as expected, but suffered from a restriction to their flow which resulted in the chromatographic separation of the RBCs from the liquid phase of the blood. It is hoped that these results will lead to the optimisation of the method to enable more accurate and sensitive detection, increasing the range of blood systems that can be detected.
Bharathi, Vidhya; Girdhar, Amandeep; Prasad, Archana; Verma, Meenkshi; Taneja, Vibha; Patel, Basant K
2016-12-01
Mutations in adenine biosynthesis pathway genes ADE1 and ADE2 have been conventionally used to score for prion [PSI + ] in yeast. If ade1-14 mutant allele is present, which contains a premature stop codon, [psi - ] yeast appear red on YPD medium owing to accumulation of a red intermediate compound in vacuoles. In [PSI + ] yeast, partial inactivation of the translation termination factor, Sup35 protein, owing to its amyloid aggregation allows for read-through of the ade1-14 stop codon and the yeast appears white as the red intermediate pigment is not accumulated. The red colour development in ade1 and ade2 mutant yeast requires reduced-glutathione, which helps in transport of the intermediate metabolite P-ribosylaminoimidazole carboxylate into vacuoles, which develops the red colour. Here, we hypothesize that amyloid-induced oxidative stress would deplete reduced-glutathione levels and thus thwart the development of red colour in ade1 or ade2 yeast. Indeed, when we overexpressed amyloid-forming human proteins TDP-43, Aβ-42 and Poly-Gln-103 and the yeast prion protein Rnq1, the otherwise red ade1 yeast yielded some white colonies. Further, the white colour eventually reverted back to red upon turning off the amyloid protein's expression. Also, the aggregate-bearing yeast have increased oxidative stress and white phenotype yeast revert to red when grown on media with reducing agent. Furthermore, the red/white assay could also be emulated in ade2-1, ade2Δ, and ade1Δ mutant yeast and also in an ade1-14 mutant with erg6 gene deletion that increases cell-wall permeability. This model would be useful tool for drug-screening against general amyloid-induced oxidative stress and toxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rapid separation of bacteria from blood — Chemical aspects
Alizadeh, Mahsa; Wood, Ryan L.; Buchanan, Clara M.; Bledsoe, Colin G.; Wood, Madison E.; McClellan, Daniel S.; Blanco, Rae; Ravsten, Tanner V.; Husseini, Ghaleb A.; Hickey, Caroline L.; Robison, Richard A.; Pitt, William G.
2017-01-01
To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000 rpm for 1 min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. PMID:28365426
Diwan, Uzra; Kumar, Virendra; Mishra, Rakesh K; Rana, Nishant Kumar; Koch, Biplob; Singh, Manish Kumar; Upadhyay, K K
2016-07-27
The present study deals with the photophysical property of a pyrene-benzthiazolium conjugate R1, as a strong intramolecular charge transfer (ICT) probe exhibiting long wavelength emission in the red region. Unlike traditional planar polyaromatic hydrocarbons whose aggregation generally quenches the light emission, the pyrene based R1 was found to display aggregation-induced emission (AIE) property along with simultaneous increase in its quantum yield upon increasing the water content of the medium. The R1 exhibits high specificity towards HSO3(-)/SO3(2-) by interrupting its own ICT producing there upon a large ratiometric blue shift of ∼220 nm in its emission spectrum. The lowest detection limit for the above measurement was found to be 8.90 × 10(-8) M. The fluorescent detection of HSO3(-) was also demonstrated excellently by test paper strip and silica coated TLC plate incorporating R1. The live cell imaging of HSO3(─) through R1 in HeLa cells was studied using fluorescence microscopic studies. The particle size and morphological features of R1 and R1-HSO3(-) aggregates in aqueous solution were characterized by DLS along with SEM analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Two-phase model for prediction of cell-free layer width in blood flow
Namgung, Bumseok; Ju, Meongkeun; Cabrales, Pedro; Kim, Sangho
2014-01-01
This study aimed to develop a numerical model capable of predicting changes in the cell-free layer (CFL) width in narrow tubes with consideration of red blood cell aggregation effects. The model development integrates to empirical relations for relative viscosity (ratio of apparent viscosity to medium viscosity) and core viscosity measured on independent blood samples to create a continuum model that includes these two regions. The constitutive relations were derived from in vitro experiments performed with three different glass-capillary tubes (inner diameter = 30, 50 and 100 μm) over a wide range of pseudoshear rates (5-300 s−1). The aggregation tendency of the blood samples was also varied by adding Dextran 500 kDa. Our model predicted that the CFL width was strongly modulated by the relative viscosity function. Aggregation increased the width of CFL, and this effect became more pronounced at low shear rates. The CFL widths predicted in the present study at high shear conditions were in agreement with those reported in previous studies. However, unlike previous multi-particle models, our model did not require a high computing cost, and it was capable of reproducing results for a thicker CFL width at low shear conditions, depending on aggregating tendency of the blood. PMID:23116701
Lavanya, V; Anil Kumar, B; Jamal, Shazia; Khan, Md Khurshid Alam; Ahmed, Neesar
2017-02-01
The irreversible thermal unfolding of jacalin, the lectin purified from jackfruit seeds was accompanied by aggregation, where intermolecular interactions among the subunits are favoured over intramolecular interactions. The extent of aggregation increased as a function of temperature, time and protein concentration. The anionic surfactant, sodium dodecyl sulphate (SDS) significantly suppressed the formation of aggregates as observed by turbidity measurements and Rayleigh scattering assay. Moreover, far UV-CD spectra indicate that the protein β sheet transforms into α helical structure, when denatured in the presence of 3 mM SDS. Further, jacalin when heated in the presence of SDS partially retained the hemagglutination activity when jacalin-SDS mixture was diluted to 1:8 factor since 3 mM SDS was found to lyse the red blood cells. Thus, SDS only altered the aggregation behaviour of jacalin by preventing intermolecular hydrogen bonding among the exposed residues but did not completely stabilize the native conformation.
A High Affinity Red Fluorescence and Colorimetric Probe for Amyloid β Aggregates
NASA Astrophysics Data System (ADS)
Rajasekhar, K.; Narayanaswamy, Nagarjun; Murugan, N. Arul; Kuang, Guanglin; Ågren, Hans; Govindaraju, T.
2016-04-01
A major challenge in the Alzheimer’s disease (AD) is its timely diagnosis. Amyloid β (Aβ) aggregates have been proposed as the most viable biomarker for the diagnosis of AD. Here, we demonstrate hemicyanine-based benzothiazole-coumarin (TC) as a potential probe for the detection of highly toxic Aβ42 aggregates through switch-on, enhanced (~30 fold) red fluorescence (Emax = 654 nm) and characteristic colorimetric (light red to purple) optical outputs. Interestingly, TC exhibits selectivity towards Aβ42 fibrils compared to other abnormal protein aggregates. TC probe show nanomolar binding affinity (Ka = 1.72 × 107 M-1) towards Aβ42 aggregates and also displace ThT bound to Aβ42 fibrils due to its high binding affinity. The Aβ42 fibril-specific red-shift in the absorption spectra of TC responsible for the observed colorimetric optical output has been attributed to micro-environment change around the probe from hydrophilic-like to hydrophobic-like nature. The binding site, binding energy and changes in optical properties observed for TC upon interaction with Aβ42 fibrils have been further validated by molecular docking and time dependent density functional theory studies.
Venkataraman, A; Blackwell, J W; Funkhouser, W K; Birchard, K R; Beamer, S E; Simmons, W T; Randell, S H; Egan, T M
2017-09-01
We began to recover lungs from uncontrolled donation after circulatory determination of death to assess for transplant suitability by means of ex vivo lung perfusion (EVLP) and computerized tomographic (CT) scan. Our first case had a cold agglutinin with an interesting outcome. A 60-year-old man collapsed at home and was pronounced dead by Emergency Medical Services personnel. Next-of-kin consented to lung retrieval, and the decedent was ventilated and transported. Lungs were flushed with cold Perfadex, removed, and stored cold. The lungs did not flush well. Medical history revealed a recent hemolytic anemia and a known cold agglutinin. Warm nonventilated ischemia time was 51 minutes. O 2 -ventilated ischemia time was 141 minutes. Total cold ischemia time was 6.5 hours. At cannulation for EVLP, established clots were retrieved from both pulmonary arteries. At initiation of EVLP with Steen solution, tiny red aggregates were observed initially. With warming, the aggregates disappeared and the perfusate became red. After 1 hour, EVLP was stopped because of florid pulmonary edema. The lungs were cooled to 20°C; tiny red aggregates formed again in the perfusate. Ex vivo CT scan showed areas of pulmonary edema and a pyramidal right middle lobe opacity. Dissection showed multiple pulmonary emboli-the likely cause of death. However, histology showed agglutinated red blood cells in the microvasculature in pre- and post-EVLP biopsies, which may have contributed to inadequate parenchymal preservation. Organ donors with cold agglutinins may not be suitable owing to the impact of hypothermic preservation. Copyright © 2017 Elsevier Inc. All rights reserved.
Vascular effects of wine polyphenols.
Dell'Agli, Mario; Buscialà, Alessandra; Bosisio, Enrica
2004-09-01
Moderate consumption of red wine has been putatively associated with lowering the risk of developing coronary heart disease. This beneficial effect is mainly attributed to the occurrence of polyphenol compounds such as anthocyanosides (ACs), catechins, proanthocyanidins (PAs), stilbenes and other phenolics in red wine. This review focuses on the vascular effects of red wine polyphenols (RWPs), with emphasis on anthocyanosides and proanthocyanidins. From in vitro studies, the effect of red wine polyphenols on the vascular tone is thought to be due to short- and long-term mechanisms. NO-mediated vasorelaxation represents the short-term response to wine polyphenols, which exert the effect by increasing the influx of extracellular Ca(2+), and the mobilization of intracellular Ca(2+) in endothelial cells. Polyphenolic compounds may also have long-term properties, as they increase endothelial NO synthase expression acting on the promoter activity. In addition, they decrease the expression of adhesion molecules and growth factors, involved in migration and proliferation of vascular smooth muscle cells. Moreover, they inhibit platelet aggregation. However, a paucity of data as regards the bioavailability and metabolism of these compounds in human studies is a limiting factor to proving their efficacy in vivo.
Anesthetic 2,2,2-trifluoroethanol induces amyloidogenesis and cytotoxicity in human serum albumin.
Naeem, Aabgeena; Iram, Afshin; Bhat, Sheraz Ahmed
2015-08-01
Trifluoroethanol (TFE) mimics the membrane environments as it simulates the hydrophobic environment and better stabilizes the secondary structures in peptides owing to its hydrophobicity and hydrogen bond-forming properties. Its dielectric constant approximates that of the interior of proteins and is one-third of that of water. Human serum albumin (HSA) is a biological transporter. The effect of TFE on HSA gives the clue about the conformational changes taking place in HSA on transport of ligands across the biological membranes. At 25% (v/v) and 60% (v/v) TFE, HSA exhibits non-native β-sheet, altered tryptophan fluorescence, exposed hydrophobic clusters, increased thioflavin T fluorescence and prominent red shifted Congo red absorbance, and large hydrodynamic radii suggesting the aggregate formation. Isothermal titration calorimetric results indicate weak binding of TFE and HSA. This suggests that solvent-mediated effects dominate the interaction of TFE and HSA. TEM confirmed prefibrillar at 25% (v/v) and fibrillar aggregates at 60% (v/v) TFE. Comet assay of prefibrillar aggregates showed DNA damage causing cell necrosis hence confirming cytotoxic nature. On increasing concentration of TFE to 80% (v/v), HSA showed retention of native-like secondary structure, increased Trp and ANS fluorescence, a transition from β-sheet to α-helix. Thus, TFE at high concentration possess anti- aggregating potency. Copyright © 2015 Elsevier B.V. All rights reserved.
ACTIVITY OF DISSOCIATED AND REASSOCIATED 19S ANTI-γ-GLOBULINS
Schrohenloher, Ralph E.; Kunkel, Henry G.; Tomasi, Thomas B.
1964-01-01
19S anti-γ-globulins were isolated in a high state of purity from the sera of two patients with rheumatoid arthritis. Following reduction with ethyl mercaptan and alkylation by iodoacetamide, fragments were produced which retained the capacity to combine with 7S γ-globulin. The fragments from one of the 19S anti-γ-globulins agglutinated red cells coated with incomplete anti-Rh antibodies. This activity was shown by density gradient ultracentrifugation to be associated with low molecular weight fractions. The agglutination of the coated red cells by the fragments was strongly inhibited by normal and myeloma 7S γ-globulins and showed a greater specificity than the parent 19S material. Analytical ultracentrifuge experiments demonstrated that the fragments from either of the 19S anti-γ-globulins formed complexes with 7S γ-globulin. Reassociation of the dissociated fragments through reformation of disulfide bonds resulted in the formation of fast sedimenting molecules having properties similar to those of the untreated 19S material in respect to precipitation with aggregated γ-globulin and agglutination of coated red cells. PMID:14238936
Granat, Fanny; Geffré, Anne; Bourgès-Abella, Nathalie; Braun, Jean-Pierre; Trumel, Catherine
2013-06-01
In veterinary medicine a complete blood cell count (CBC) cannot always be performed within 24 h as usually recommended, particularly for specimens shipped to a reference laboratory. This raises the question of the stability of the variables, especially in ethylenediamine tetra-acetic acid (EDTA) feline blood specimens, known to be prone to in vitro platelet aggregation. Citrate, theophylline, adenosine and dipyridamole (CTAD) has been reported to limit platelet aggregation in feline blood specimens. The aim of this study was to measure the stability of the haematological variables and the platelet aggregation score in EDTA and EDTA plus CTAD (EDCT) feline blood specimens during 48 h of storage at room temperature. Forty-six feline EDTA and EDCT blood specimens were analysed with a Sysmex XT-2000iV analyser, and the platelet count and score of platelet aggregation were estimated immediately and after 24 and 48 h of storage. A significant increase in mean corpuscular volume, haematocrit, reticulocyte and eosinophil counts, and a significant decrease in mean corpuscular haemoglobin concentration and monocyte count were observed. Haemoglobin, mean corpuscular haemoglobin, and red blood cell, white blood cell, neutrophil and lymphocyte counts remained stable. Changes in reticulocyte indexes with time (low fluorescence ratio, medium fluorescence ratio, high fluorescence ratio and immature reticulocyte fraction) were not significant. Changes were generally more pronounced in EDTA than in EDCT. Platelet aggregation decreased markedly in initially highly aggregated EDTA specimens, and increased slightly in initially non- or mildly-aggregated EDTA or EDCT specimens. Platelet counts increased and decreased, or remained stable, respectively. CTAD can reduce storage-induced changes of the haematological variables in feline samples, thus improving the reliability of a CBC and limiting clinical misinterpretations.
Wang, Qian; Wang, Yingying; Zheng, Wei; Shahid, Bilal; Qiu, Meng; Wang, Di; Zhu, Dangqiang; Yang, Renqiang
2017-09-20
For many high-performance photovoltaic materials in polymer solar cells (PSCs), the active layers usually need to be spin-coated at high temperature due to the strong intermolecular aggregation of donor polymers, which is unfavorable in device repeatability and large-scale PSC printing. In this work, we adopted a ternary copolymerization strategy to regulate polymer solubility and molecular aggregation. A series of D-A 1 -D-A 2 random polymers based on different acceptors, strong electron-withdrawing unit ester substituted thieno[3,4-b]thiophene (TT-E), and highly planar dithiazole linked TT-E (DTzTT) were constructed to realize the regulation of molecular aggregation and simplification of device fabrication. The results showed that as the relative proportion of TT-E segment in the backbone increased, the absorption evidently red-shifted with a gradually decreased aggregation in solution, eventually leading to the active layers that can be fabricated at low temperature. Furthermore, due to the excellent phase separation and low recombination, the optimized solar cells based on the terpolymer P1 containing 30% of TT-E segment exhibit high power conversion efficiency (PCE) of 9.09% with a significantly enhanced fill factor up to 72.86%. Encouragingly, the photovoltaic performance is insensitive to the fabrication temperature of the active layer, and it still could maintain high PCE of 8.82%, even at room temperature. This work not only develops the highly efficient photovoltaic materials for low temperature processed PSCs through ternary copolymerization strategy but also preliminarily constructs the relationship between aggregation and photovoltaic performance.
Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation
Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter
2011-01-01
Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120
Chen, Bin; Feng, Guangxue; He, Bairong; Goh, Chiching; Xu, Shidang; Ramos-Ortiz, Gabriel; Aparicio-Ixta, Laura; Zhou, Jian; Ng, Laiguan; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong
2016-02-10
Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moderate consumption of red wine and human platelet responsiveness.
Tozzi Ciancarelli, Maria Giuliana; Di Massimo, Caterina; De Amicis, Daniela; Ciancarelli, Irene; Carolei, Antonio
2011-08-01
Available studies showed an inverse association between red wine consumption and prevalence of vascular risk factors in coronary hearth disease and stroke. Effects were mainly associated to wine antioxidant and antiaggregant properties. Actually, in vitro studies indicate a favourable effect of wine and/or of its non-alcoholic components in decreasing platelet sensitivity and aggregability. In a 4-week supplementation in 15 healthy male volunteers, we evaluated whether moderate red wine consumption might improve antioxidant defence mechanisms and promote positive modulation of inflammatory cytokines and cell adhesion molecules in relation to platelet responsiveness. We did not find any change of ADP- and collagen-induced platelet aggregation ex vivo, any change of biomarkers of oxidative stress, and any change of plasma lipid profile and haemostatic parameters, with the only exception of decreased fibrinogen levels (P<0.05). We also found an increase of mean platelet volume (P<0.05) without any significant modification of CD40 Ligand and P-selectin levels. Increased expressions of intercellular adhesion molecule-1, soluble E-selectin and interleukin-6 (P<0.05) were also observed. According to our findings increased circulating levels of inflammatory and endothelial cell activation markers may indicate a low-grade systemic inflammation and vascular activation that could be responsible for the lack of inhibition or of decreased platelet responsiveness, possibly because the plasmatic increase of wine antioxidant compounds is insufficient to improve endothelial function and to counteract the influence of ethanol on endothelial activation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tong, Hui; Hong, Yuning; Dong, Yongqiang; Ren, Yan; Häussler, Matthias; Lam, Jacky W Y; Wong, Kam Sing; Tang, Ben Zhong
2007-03-01
A chiral pyran derivative containing two cholesteryl groups (1) is synthesized, and its optical properties are investigated. Whereas the isolated molecule of 1 is virtually nonluminescent in dilute solutions, it becomes highly emissive with a 2 orders of magnitude increase in fluorescence quantum yield upon aggregation in poor solvents or in solid state, showing a novel phenomenon of aggregation-induced emission (AIE). The color and efficiency of the AIE of 1 can be tuned by varying the morphology of its aggregates: photoluminescence of its aggregates formed in a tetrahydrofuran/water mixture progressively red-shifts (green --> yellow --> red) with increasing water content of the mixture, with the crystalline aggregates emitting bluer lights in higher efficiencies than their amorphous counterparts.
NASA Astrophysics Data System (ADS)
Toderi, Martín A.; Castellini, Horacio V.; Riquelme, Bibiana D.
2017-01-01
The study of red blood cell (RBC) aggregation is of great interest because of its implications for human health. Altered RBC aggregation can lead to microcirculatory problems as in vascular pathologies, such as hypertension and diabetes, due to a decrease in the erythrocyte surface electric charge and an increase in the ligands present in plasma. The process of erythrocyte aggregation was studied in stasis situation (free shear stresses), using an optical chip based on the laser transmission technique. Kinetic curves of erythrocyte aggregation under different conditions were obtained, allowing evaluation and characterization of this process. Two main characteristics of blood that influence erythrocyte aggregation were analyzed: the erythrocyte surface anionic charge (EAC) after digestion with the enzyme trypsin and plasmatic protein concentration in suspension medium using plasma dissolutions in physiological saline with human albumin. A theoretical approach was evaluated to obtain aggregation and disaggregation ratios by syllectograms data fitting. Sensible parameters (Amp100, t) regarding a reduced erythrocyte EAC were determined, and other parameters (AI, M-Index) resulted that are representative of a variation in the plasmatic protein content of the suspension medium. These results are very useful for further applications in biomedicine.
Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Bocage, Bruno; Renaudeau, David
2014-01-01
Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24 °C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32 °C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.
A practical toxicity bioassay for vicine and convicine levels in faba bean (Vicia faba).
Getachew, Fitsum; Vandenberg, Albert; Smits, Judit
2018-04-02
Faba bean (Vicia faba) vicine and convicine (V-C) aglycones (divicine and isouramil respectively) provoke an acute hemolytic anemia called favism in individuals with a glucose-6-phosphate dehydrogenase (G6PD) enzyme defect in their red blood cells. Geneticists/plant breeders are working with faba bean to decrease V-C levels to improve public acceptance of this high-protein pulse crop. Here, we present a fast and simple ex vivo in vitro bioassay for V-C toxicity testing of faba bean or faba bean food products. We have shown that 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU)-treated (i.e., sensitized) normal red blood cells, like G6PD-defective blood, displayed (i) continuous glutathione (GSH) depletion with no regeneration as incubation time and the dose of aglycones increased, (ii) progressive accumulation of denatured hemoglobin products into high molecular weight (HMW) proteins with increased aglycone dose, (iii) both band 3 membrane proteins and hemichromes, in HMW protein aggregates. We have also demonstrated that sensitized red blood cells can effectively differentiate various levels of toxicity among faba bean varieties through the two hemolysis biomarkers: GSH depletion and HMW clumping. BCNU-sensitized red blood cells provide an ideal model for favism blood, to assess and compare the toxicity of faba bean varieties and their food products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Kinetics of red blood cell rouleaux formation studied by light scattering
NASA Astrophysics Data System (ADS)
Szołna-Chodór, Alicja; Bosek, Maciej; Grzegorzewski, Bronisław
2015-02-01
Red blood cell (RBC) rouleaux formation was experimentally studied using a light scattering technique. The suspensions of RBCs were obtained from the blood of healthy donors. Hematocrit of the samples was adjusted ranging from 1% to 4%. Measurements of the intensity of the coherent component of light scattered by the suspensions were performed and the scattering coefficient of the suspensions was determined. The number of RBCs per rouleaux was obtained using anomalous diffraction theory. The technique was used to show the effect of time, hematocrit, and sample thickness on the process. The number of cells per rouleaux first increases linearly, reaches a critical value at ˜3 cells per rouleaux, and then a further increase in the rouleaux size is observed. The kinetic constant of the rouleaux growth in the linear region is found to be independent of hematocrit. The aggregation rate increases as the sample thickness increases. The time at which the critical region appears strongly decreases as the hematocrit of the suspension increases.
Predicting human blood viscosity in silico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedosov, Dmitry A.; Pan, Wenxiao; Caswell, Bruce
2011-07-05
Cellular suspensions such as blood are a part of living organisms and their rheological and flow characteristics determine and affect majority of vital functions. The rheological and flow properties of cell suspensions are determined by collective dynamics of cells, their structure or arrangement, cell properties and interactions. We study these relations for blood in silico using a mesoscopic particle-based method and two different models (multi-scale/low-dimensional) of red blood cells. The models yield accurate quantitative predictions of the dependence of blood viscosity on shear rate and hematocrit. We explicitly model cell aggregation interactions and demonstrate the formation of reversible rouleaux structuresmore » resulting in a tremendous increase of blood viscosity at low shear rates and yield stress, in agreement with experiments. The non-Newtonian behavior of such cell suspensions (e.g., shear thinning, yield stress) is analyzed and related to the suspension’s microstructure, deformation and dynamics of single cells. We provide the flrst quantitative estimates of normal stress differences and magnitude of aggregation forces in blood. Finally, the flexibility of the cell models allows them to be employed for quantitative analysis of a much wider class of complex fluids including cell, capsule, and vesicle suspensions.« less
Impaired Hemorheology in Exacerbations of COPD
Can, Ilknur; Kilic-Erkek, Ozgen; Altinisik, Goksel; Bor-Kucukatay, Melek
2017-01-01
Background Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation. Cardiovascular-related comorbidities are established to contribute to morbidity and mortality especially during exacerbations. The aim of the current study was to determine alterations in hemorheology (erythrocyte aggregation, deformability) in newly diagnosed COPD patients and their response to medical treatment and to compare with values of COPD patients with exacerbations. Materials and Methods The study comprised 13 COPD patients, 12 controls, and 16 COPD patients with exacerbations. The severity of COPD was determined according to Global Initiative for Chronic Obstructive Lung Disease guidelines. Red blood cell (RBC) deformability and aggregation were measured by an ektacytometer. Results RBC deformability of COPD patients with exacerbations was decreased compared to the other groups. Erythrocyte aggregation and plasma fibrinogen of COPD patients determined during exacerbations were higher than control. Conclusion Decreased RBC deformability and increased aggregation associated with exacerbations of COPD may serve as unfavorable mechanisms to worsen oxygenation and thus clinical symptoms of the patient. Treatment modalities that modify rheological parameters might be beneficial. PMID:29089816
Inhibition of Alzheimer’s Amyloid Toxicity with a Tricyclic Pyrone Molecule In Vitro and In Vivo
Hong, Hyun-Seok; Rana, Sandeep; Barrigan, Lydia; Shi, Aibin; Zhang, Yi; Zhou, Feimeng; Jin, Lee-Way; Hua, Duy H.
2009-01-01
Small amyloid β 1–42 aggregates are toxic to neurons and may be the primary toxic species in Alzheimer’s disease (AD). Methods to reduce the level of Aβ, prevent Aβ aggregation, and eliminate existing Aβ aggregates have been proposed for treatment of AD. A tricyclic pyrone named CP2 is found to prevent cell death associated with Aβ oligomers. We studied the possible mechanisms of neuroprotection by CP2. Surface plasmon resonance spectroscopy shows a direct binding of CP2 with Aβ42 oligomer. Circular dichroism spectroscopy reveals monomeric Aβ42 peptide remains as a random coil/α-helix structure in the presence of CP2 over 48 h. Atomic force microscopy (AFM) studies show CP2 exhibits similar ability to inhibit Aβ42 aggregation as that of Congo Red and curcumin. AFM closed-fluid cell study demonstrates that CP2 disaggregates Aβ42 oligomers and protofibrils. CP2 also blocks Aβ fibrillations using a protein quantification method. Treatment of 5x FAD mice, a robust Aβ42-producing animal model of AD, with a two-week course of CP2 resulted in 40% and 50% decreases in non-fibrillar and fibrillar Aβ species, respectively. Our results suggest that CP2 might be beneficial to AD patients by preventing Aβ aggregation and disaggregating existing Aβ oligomers and protofibrils. PMID:19141069
Chakravarthy, A K; Chandrashekharaiah, M; Kandakoor, Subhash B; Nagaraj, D N
2014-05-01
Red palm weevil and Rhinoceros beetle are the major pests inflicting severe damage to coconut palms. Due to ineffectiveness of the current management practices to control the two important pests on coconut, a study was conducted to know the attractiveness of red palm weevil and rhinoceros beetle to aggregation pheromone. Olfactometer studies indicated that the aggregation pheromone of red palm weevil and rhinoceros beetle attracted significantly more number of weevils (13.4 females and 7.6 male weevils) and beetles (6.5 male and 12.3 female beetles), respectively than control. Similarly, field studies found that both 750 and 1000 mg pheromone dosage lures of red palm weevil and rhinoceros beetle trapped significantly higher numbers of weevils (695.80 and 789 weevils, respectively) and beetles (98 and 108 beetles, respectively) in traps (P < 0.05), respectively. On an average (n = 6 field trials) 80-85% red palm weevil and 72-78% rhinoceros beetle population got trapped. Observations indicated activity of red palm weevil throughout the year and of rhinoceros beetle from September to March around Bangalore, South India. Pheromone traps for red palm weevil can be placed in fields from June to August and October to December and September to February for rhinoceros beetle. Population reductions of the two coleopteran pests by pheromone traps are compatible with mechanical and cultural management tools with cumulative effects.
Klaihmon, Phatchanat; Vimonpatranon, Sinmanus; Noulsri, Egarit; Lertthammakiat, Surapong; Anurathapan, Usanarat; Sirachainan, Nongnuch; Hongeng, Suradej; Pattanapanyasat, Kovit
2017-10-01
Bone marrow transplantation (BMT) serves as the only curative treatment for patients with β-thalassemia major; however, hemostatic changes have been observed in these BMT patients. Aggregability of thalassemic red blood cells (RBCs) and increased red blood cell-derived microparticles (RMPs) expressing phosphatidylserine (PS) are thought to participate in thromboembolic events by initially triggering platelet activation. To our knowledge, there has been no report providing quantitation of these circulating PS-expressing RBCs and RMPs in young β-thalassemia patients after BMT. Whole blood from each subject was fluorescently labeled to detect RBC markers (CD235a) and annexin-V together with the known number TruCount™ beads. PS-expressing RBCs, RMPs, and activated platelets were identified by flow cytometry. In our randomized study, we found the decreased levels of three aforementioned factors compared to levels in patients receiving regular blood transfusion (RT). This study showed that BMT in β-thalassemia patients decreases the levels of circulating PS-expressing RBCs, their MPs, and procoagulant platelets when compared to patients who received RT. Normalized levels of these coagulation markers may provide the supportive evidence of the effectiveness of BMT for curing thalassemia.
Huang, Peng; Chiu, Yi-Ting; Chen, Chongguang; Wang, Yujun; Liu-Chen, Lee-Yuan
2013-01-01
Introduction In contrast to green fluorescent protein and variants (GFPs), red fluorescent proteins (RFPs) have rarely been employed for generation of GPCR fusion proteins, likely because of formation of aggregates and cell toxicity of some RFPs. Among all the RFPs available, tdTomato (tdT), one of the non-aggregating RFP, has the highest brightness score (about 3 times that of eGFP) and unsurpassed photostability. Methods We fused tdT to the KOPR C-terminus. The KOPR-tdT cDNA construct was transfected into Neuro2A mouse neuroblastoma cell line (Neuro2A cells) and rat cortical primary neurons for characterization of pharmacological properties and imaging studies on KOPR trafficking. Results KOPR-tdT retained KOPR properties (cell surface expression, ligand binding, agonist-induced signaling and internalization) when expressed in Neuro2A cells and rat primary cortical neurons. Live cell imaging of KOPR-tdT enables visualization of time course of agonist-induced internalization of KOPR in real time for 60 min, without photobleaching and apparent cell toxicity. U50,488H-induced KOPR internalization occurred as early as 4 min and plateaued at about 30 min. A unique pattern of internalized KOPR in processes of primary neurons was induced by U50,488H. Discussion tdT is an alternative to, or even a better tool than, GFPs for fusing to GPCR for trafficking studies, because tdT has higher brightness and thus better resolution and less photobleaching problems due to reduced laser power used. It also has advantages associated with its longer-wavelength emission including spectral separation from autofluorescence and GFPs, reduced cell toxicity the laser may impose, and greater tissue penetration. These advantages of tdT over GPFs may be critical for live cell imaging studies of GPCRs in vitro and for studying GPCRs in vivo because of their low abundance. PMID:23856011
NASA Astrophysics Data System (ADS)
Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi
2016-05-01
Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01492e
Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.
Hayashi-Takanaka, Yoko; Stasevich, Timothy J; Kurumizaka, Hitoshi; Nozaki, Naohito; Kimura, Hiroshi
2014-01-01
To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab) fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph) and acetylated H3K9 (H3K9ac). These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green), Cy3 (red), and Cy5 or CF640 (far-red).
Anumala, Upendra Rao; Gu, Jiamin; Lo Monte, Fabio; Kramer, Thomas; Heyny-von Haußen, Roland; Hölzer, Jana; Goetschy-Meyer, Valerie; Schön, Christian; Mall, Gerhard; Hilger, Ingrid; Czech, Christian; Herms, Jochen; Schmidt, Boris
2013-09-01
There is a high demand for the development of an imaging agent for neurofibrillary tangles (NFTs) detection in Alzheimer's diagnosis. In the present study, a series of rhodanine-3-acetic acids was synthesized and evaluated for fluorescence imaging of NFTs in brain tissues of AD patients. Five out of seven probes have shown excellent binding affinity to NFTs over amyloid plaques in the Thiazine red R displacement assay. However, the selectivity in this in vitro assay is not confirmed by the histopathological evaluation, which indicates significant differences in the binding sites in the assays. Probe 6 showed binding affinity (IC50=19nM) to tau aggregates which is the highest among this series. Probes 2, 3, 4 and 5 display IC50 values of lower than 100nM to tau aggregates to displace Thiazine red R. Evaluation of the cytotoxicity of these five probes with human liver carcinoma cells revealed that these compounds excert negligible cytotoxicity. The in vivo studies with zebrafish embryos confirmed negligible cytotoxicity at 24 and 72h post fertilization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Movement patterns of juvenile whale sharks tagged at an aggregation site in the Red Sea.
Berumen, Michael L; Braun, Camrin D; Cochran, Jesse E M; Skomal, Gregory B; Thorrold, Simon R
2014-01-01
Conservation efforts aimed at the whale shark, Rhincodon typus, remain limited by a lack of basic information on most aspects of its ecology, including global population structure, population sizes and movement patterns. Here we report on the movements of 47 Red Sea whale sharks fitted with three types of satellite transmitting tags from 2009-2011. Most of these sharks were tagged at a single aggregation site near Al-Lith, on the central coast of the Saudi Arabian Red Sea. Individuals encountered at this site were all juveniles based on size estimates ranging from 2.5-7 m total length with a sex ratio of approximately 1∶1. All other known aggregation sites for juvenile whale sharks are dominated by males. Results from tagging efforts showed that most individuals remained in the southern Red Sea and that some sharks returned to the same location in subsequent years. Diving data were recorded by 37 tags, revealing frequent deep dives to at least 500 m and as deep as 1360 m. The unique temperature-depth profiles of the Red Sea confirmed that several whale sharks moved out of the Red Sea while tagged. The wide-ranging horizontal movements of these individuals highlight the need for multinational, cooperative efforts to conserve R. typus populations in the Red Sea and Indian Ocean.
Movement Patterns of Juvenile Whale Sharks Tagged at an Aggregation Site in the Red Sea
Berumen, Michael L.; Braun, Camrin D.; Cochran, Jesse E. M.; Skomal, Gregory B.; Thorrold, Simon R.
2014-01-01
Conservation efforts aimed at the whale shark, Rhincodon typus, remain limited by a lack of basic information on most aspects of its ecology, including global population structure, population sizes and movement patterns. Here we report on the movements of 47 Red Sea whale sharks fitted with three types of satellite transmitting tags from 2009–2011. Most of these sharks were tagged at a single aggregation site near Al-Lith, on the central coast of the Saudi Arabian Red Sea. Individuals encountered at this site were all juveniles based on size estimates ranging from 2.5–7 m total length with a sex ratio of approximately 1∶1. All other known aggregation sites for juvenile whale sharks are dominated by males. Results from tagging efforts showed that most individuals remained in the southern Red Sea and that some sharks returned to the same location in subsequent years. Diving data were recorded by 37 tags, revealing frequent deep dives to at least 500 m and as deep as 1360 m. The unique temperature-depth profiles of the Red Sea confirmed that several whale sharks moved out of the Red Sea while tagged. The wide-ranging horizontal movements of these individuals highlight the need for multinational, cooperative efforts to conserve R. typus populations in the Red Sea and Indian Ocean. PMID:25076407
Tumor Uptake And Photodynamic Activity Of Sulfonated Metallo Phthalocyanines
NASA Astrophysics Data System (ADS)
van Lier, Johan E.; Rousseau, Jacques; Paquette, Benoit; Brasseur, N.; Langlois, Rejean; Ali, Hasrat
1989-06-01
Sulfonated metallo phthalocyanines (M-SPC) are extensively studied as sensitizers for photodynamic therapy of cancer. They strongly absorb clinically useful red light with absorption maxima between 670-680 nm. Their photodynamic properties depend on the nature of the central metal ion as well as the degree of substitution on the macrocycle. The zinc, aluminum and gallium complexes are efficient photo-generators of singlet oxygen, the species most likely responsible for their phototoxicity and tumoricidal action. Tissue distribution pattern, cell penetration and dye aggregation are strongly affected by the degree of sulfonation of the dyes. Mono- and disulfonated M-SPC have the highest tendency to form photo-inactive aggregates. However, these lower sulfonated dyes more readily cross cell membranes resulting, in vitro, in enhanced phototoxicity. In vivo, the highly sulfonated hydrophilic M-SPC show the best tumor localization properties but the lower sulfonated dyes still exhibit the best photo-activity. Variations in activities between the differently sulfonated M-SPC are far less pronounced in vivo as compared to in vitro conditions. Such discrepancies are explained by the combined action of numerous vectors including interaction of M-SPC with plasma proteins, vascular versus cellular photo-damage, tumor retention, cell penetration as well as the degree of aggregation of the dye.
Rubino, L; Di Franco, A; Russo, M
2000-01-01
Carnation Italian ringspot tombusvirus encodes a protein, referred to as 36K, that possesses a mitochondrial targeting signal and two transmembrane segments which are thought to anchor this protein to the outer membrane of the mitochondrial envelope of infected plant cells. To determine the topology of the virus protein inserted in the cell membrane, as well as the sequence requirements for targeting and insertion, an in vivo system was set up in which this could be analysed in the absence of productive virus infection. The 36K protein was expressed in the yeast Saccharomyces cerevisiae in native form or fused to the green fluorescent protein. Using a fluorescence microscope, large green-fluorescing cytoplasmic aggregates were visible which stained red when cells were treated with the vital stain MitoTracker, which is specific for mitochondria. These aggregates were shown by electron microscopy to be composed of either mitochondria or membranes. The latter type was particularly abundant for the construct in which the green fluorescent protein was fused at the N terminus of the 36K protein. Immunoelectron microscopy demonstrated that the viral protein is present in the anomalous aggregates and Western blot analysis of protein extracts showed 36K to be resistant to alkaline, urea or salt extraction, a property of integral membrane proteins.
NASA Astrophysics Data System (ADS)
Dasgupta, Anushka
Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal/spatial relationship between carbonylation, protein aggregation and cellular apoptosis. Furthermore, the effectiveness of the carbonyl scavenger hydralazine, histidine hydrazide and methoxylamine at preventing cell death identifies protein carbonyls as the toxic species. Experiments using well-characterized apoptosis inhibitors place protein carbonylation downstream of the mitochondrial transition pore opening and upstream of caspase activation. These in vitro studies demonstrate for the first time a causal relationship between carbonylation, protein aggregation and apoptosis of neurons undergoing oxidative damage. This relationship was further strengthened with the experiments carried out in chapter 4, which show that inhibition of protein aggregation with congo red (CR) or 2-hydroxypropyl beta-cyclodextrin (HPCD) significantly reduced neuronal cell death without affecting the levels of oxidized proteins. Interestingly, large, juxta-nuclear aggregates are not formed upon GSH depletion, suggesting that the small protein aggregates are the cytotoxic species. Together, our data suggest that protein carbonylation causes protein aggregation to mediate neuronal apoptosis in vitro and that a similar mechanism might be contributing to neuronal/glial apoptosis in EAE. These studies provide the basis for testing protein carbonylation scavengers and protein aggregation inhibitors for the treatment of inflammatory demyelinating disorders.
No difference in mitochondrial distribution is observed in human oocytes after cryopreservation.
Stimpfel, Martin; Vrtacnik-Bokal, Eda; Virant-Klun, Irma
2017-08-01
The primary aim of this study was to determine if any difference in mitochondrial distribution can be observed between fresh and cryopreserved (slow-frozen/thawed and vitrified/warmed) oocytes when oocytes are stained with Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Additionally, the influence of cryopreservation procedure on the viable rates of oocytes at different maturation stages was evaluated. The germinal vesicle (GV) and MII oocytes were cryopreserved with slow-freezing and vitrification. After thawing/warming, oocytes were stained using Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Mitotracker staining revealed that in GV oocytes the pattern of mitochondrial distribution appeared as aggregated clusters around the whole oocyte. In mature MII oocytes, three different patterns of mitochondrial distribution were observed; a smooth pattern around the polar body with aggregated clusters at the opposite side of the polar body, a smooth pattern throughout the whole cell, and aggregated clusters as can be seen in GV oocytes. There were no significant differences in the observed patterns between fresh, vitrified/warmed and frozen/thawed oocytes. When comparing the viable rates of oocytes after two different cryopreservation procedures, the results showed no significant differences, although the trend of viable MII oocytes tends to be higher after vitrification/warming and for viable GV oocytes it tends to be higher after slow-freezing/thawing. Mitotracker Red CMXRos staining of mitochondria in oocytes did not reveal differences in mitochondrial distribution between fresh and cryopreserved oocytes at different maturity stages. Additionally, no difference was observed in the viable rates of GV and MII oocytes after slow-freezing/thawing and vitrification/warming.
Wagner, Ines; Steinweg, Christian; Posten, Clemens
2016-08-01
Illumination with red and blue photons is known to be efficient for cultivation of higher plants. For microalgae cultivation, illumination with specific wavelengths rather than full spectrum illumination can be an alternative where there is a lack of knowledge about achievable biomass yields. This study deals with the usage of color LED illumination to cultivate microalgae integrated into closed life support systems for outer space. The goal is to quantify biomass yields using color illumination (red, blue, green and mixtures) compared to white light. Chlamydomonas reinhardtii was cultivated in plate reactors with color compared to white illumination regarding PCE, specific pigment concentration and cell size. Highest PCE values were achieved under low PFDs with a red/blue illumination (680 nm/447 nm) at a 90 to 10% molar ratio. At higher PFDs saturation effects can be observed resulting from light absorption characteristics and the linear part of PI curve. Cell size and aggregation are also influenced by the applied light color. Red/blue color illumination is a promising option applicable for microalgae-based modules of life support systems under low to saturating light intensities and double-sided illumination. Results of higher PCE with addition of blue photons to red light indicate an influence of sensory pigments. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetics of red blood cell rouleaux formation studied by light scattering.
Szolna-Chodór, Alicja; Bosek, Maciej; Grzegorzewski, Bronislaw
2015-02-01
Red blood cell (RBC) rouleaux formation was experimentally studied using a light scattering technique. The suspensions of RBCs were obtained from the blood of healthy donors. Hematocrit of the samples was adjusted ranging from 1% to 4%. Measurements of the intensity of the coherent component of light scattered by the suspensions were performed and the scattering coefficient of the suspensions was determined. The number of RBCs per rouleaux was obtained using anomalous diffraction theory. The technique was used to show the effect of time, hematocrit, and sample thickness on the process. The number of cells per rouleaux first increases linearly, reaches a critical value at ∼3 cells per rouleaux, and then a further increase in the rouleaux size is observed. The kinetic constant of the rouleaux growth in the linear region is found to be independent of hematocrit. The aggregation rate increases as the sample thickness increases. The time at which the critical region appears strongly decreases as the hematocrit of the suspension increases. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Raman spectroscopy and imaging of whole functional cells
NASA Astrophysics Data System (ADS)
McNaughton, Don; Lim, Janelle; Hammer, Larissa; Langford, Steven J.; Collie, Jocelyn; Wood, Bayden R.
2005-02-01
With the advent of Raman spectrometers based on CCD array detectors, instruments have been coupled to optical microscopes leading to all the advantages of bright field microscopy with the added advantage of a direct chemical probe. The primary biological solvent, water, is a weak Raman scatterer and so these instruments can now be used to investigate the chemistry of living systems at spatial resolutions of 1 μm and below. We have developed techniques that allow us to study functional red blood cells and monitor the exchange of ligands and the development and chemistry of disease processes. These techniques take advantage of Aggregated Enhanced Raman Spectroscopy, which enables us to use the haem group of the haemoglobins and related haem pigments, such as the malarial pigment haemozoin, as a sensitive probe for changes in oxidation state, spin state and electronic structure. We have used the Raman microprobe to investigate the effect of drugs such as quinoline on the food vacuole of the malarial parasite in vivo. Sickle cell disease affects 1 out of 600 African American births and is caused by a mutant form (β6 glu-->val) of haemoglobin (HbS). HbS polymerizes and forms higher order aggregates under hypoxic conditions, leading to distortion and rigidity of the erythrocyte. These rigid cells can block the microvasculature resulting in tissue ischaemia, organ damage, and ultimately death. The sensitivity of the Raman technique to haem aggregation provides a tool with which we can analyse the changes that occur between normal and sickle cells.
Buono, Michael J; Krippes, Taylor; Kolkhorst, Fred W; Williams, Alexander T; Cabrales, Pedro
2016-02-01
What is the central question of this study? The purpose of the present study was to determine the effects of exercise-induced haemoconcentration and hyperthermia on blood viscosity. What is the main finding and its importance? Exercise-induced haemoconcentration, increased plasma viscosity and increased blood aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell (RBC) deformability (e.g. RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and postexercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced haemoconcentration and hyperthermia and to determine their combined effects on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% relative humidity), which resulted in significant increases from pre-exercise values for rectal temperature (from 37.11 ± 0.35 to 38.76 ± 0.13 °C), haemoconcentration (haematocrit increased from 43.6 ± 3.6 to 45.6 ± 3.5%) and dehydration (change in body weight = -3.6 ± 0.7%). Exercise-induced haemoconcentration significantly (P < 0.05) increased blood viscosity by 9% (from 3.97 to 4.33 cP at 300 s(-1)), whereas exercise-induced hyperthermia significantly decreased blood viscosity by 7% (from 3.97 to 3.69 cP at 300 s(-1)). When both factors were considered together, there was no overall change in blood viscosity (from 3.97 to 4.03 cP at 300 s(-1)). The effects of exercise-induced haemoconcentration, increased plasma viscosity and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell deformability (e.g. red blood cell membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro
2013-01-01
Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592
Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds
Stefani, Massimo; Rigacci, Stefania
2013-01-01
Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols. PMID:23765219
Space station image captures a red tide ciliate bloom at high spectral and spatial resolution.
Dierssen, Heidi; McManus, George B; Chlus, Adam; Qiu, Dajun; Gao, Bo-Cai; Lin, Senjie
2015-12-01
Mesodinium rubrum is a globally distributed nontoxic ciliate that is known to produce intense red-colored blooms using enslaved chloroplasts from its algal prey. Although frequent enough to have been observed by Darwin, blooms of M. rubrum are notoriously difficult to quantify because M. rubrum can aggregate into massive clouds of rusty-red water in a very short time due to its high growth rates and rapid swimming behavior and can disaggregate just as quickly by vertical or horizontal dispersion. A September 2012 hyperspectral image from the Hyperspectral Imager for the Coastal Ocean sensor aboard the International Space Station captured a dense red tide of M. rubrum (10(6) cells per liter) in surface waters of western Long Island Sound. Genetic data confirmed the identity of the chloroplast as a cryptophyte that was actively photosynthesizing. Microscopy indicated extremely high abundance of its yellow fluorescing signature pigment phycoerythrin. Spectral absorption and fluorescence features were related to ancillary photosynthetic pigments unique to this organism that cannot be observed with traditional satellites. Cell abundance was estimated at a resolution of 100 m using an algorithm based on the distinctive yellow fluorescence of phycoerythrin. Future development of hyperspectral satellites will allow for better enumeration of bloom-forming coastal plankton, the associated physical mechanisms, and contributions to marine productivity.
Space station image captures a red tide ciliate bloom at high spectral and spatial resolution
Dierssen, Heidi; McManus, George B.; Chlus, Adam; Qiu, Dajun; Gao, Bo-Cai; Lin, Senjie
2015-01-01
Mesodinium rubrum is a globally distributed nontoxic ciliate that is known to produce intense red-colored blooms using enslaved chloroplasts from its algal prey. Although frequent enough to have been observed by Darwin, blooms of M. rubrum are notoriously difficult to quantify because M. rubrum can aggregate into massive clouds of rusty-red water in a very short time due to its high growth rates and rapid swimming behavior and can disaggregate just as quickly by vertical or horizontal dispersion. A September 2012 hyperspectral image from the Hyperspectral Imager for the Coastal Ocean sensor aboard the International Space Station captured a dense red tide of M. rubrum (106 cells per liter) in surface waters of western Long Island Sound. Genetic data confirmed the identity of the chloroplast as a cryptophyte that was actively photosynthesizing. Microscopy indicated extremely high abundance of its yellow fluorescing signature pigment phycoerythrin. Spectral absorption and fluorescence features were related to ancillary photosynthetic pigments unique to this organism that cannot be observed with traditional satellites. Cell abundance was estimated at a resolution of 100 m using an algorithm based on the distinctive yellow fluorescence of phycoerythrin. Future development of hyperspectral satellites will allow for better enumeration of bloom-forming coastal plankton, the associated physical mechanisms, and contributions to marine productivity. PMID:26627232
Freeman, Fiona E; Allen, Ashley B; Stevens, Hazel Y; Guldberg, Robert E; McNamara, Laoise M
2015-11-05
During endochondral ossification, both the production of a cartilage template and the subsequent vascularisation of that template are essential precursors to bone tissue formation. Recent studies have found the application of both chondrogenic and vascular priming of mesenchymal stem cells (MSCs) enhanced the mineralisation potential of MSCs in vitro whilst also allowing for immature vessel formation. However, the in vivo viability, vascularisation and mineralisation potential of MSC aggregates that have been pre-conditioned in vitro by a combination of chondrogenic and vascular priming, has yet to be established. In this study, we test the hypothesis that a tissue regeneration approach that incorporates both chondrogenic priming of MSCs, to first form a cartilage template, and subsequent pre-vascularisation of the cartilage constructs, by co-culture with human umbilical vein endothelial cells (HUVECs) in vitro, will improve vessel infiltration and thus mineral formation once implanted in vivo. Human MSCs were chondrogenically primed for 21 days, after which they were co-cultured with MSCs and HUVECs and cultured in endothelial growth medium for another 21 days. These aggregates were then implanted subcutaneously in nude rats for 4 weeks. We used a combination of bioluminescent imaging, microcomputed tomography, histology (Masson's trichrome and Alizarin Red) and immunohistochemistry (CD31, CD146, and α-smooth actin) to assess the vascularisation and mineralisation potential of these MSC aggregates in vivo. Pre-vascularised cartilaginous aggregates were found to have mature endogenous vessels (indicated by α-smooth muscle actin walls and erythrocytes) after 4 weeks subcutaneous implantation, and also viable human MSCs (detected by bioluminescent imaging) 21 days after subcutaneous implantation. In contrast, aggregates that were not pre-vascularised had no vessels within the aggregate interior and human MSCs did not remain viable beyond 14 days. Interestingly, the pre-vascularised cartilaginous aggregates were also the only group to have mineralised nodules within the cellular aggregates, whereas mineralisation occurred in the alginate surrounding the aggregates for all other groups. Taken together these results indicate that a combined chondrogenic priming and pre-vascularisation approach for in vitro culture of MSC aggregates shows enhanced vessel formation and increased mineralisation within the cellular aggregate when implanted subcutaneously in vivo.
Watanabe, Taisuke; Isobe, Kazushige; Suzuki, Taiji; Kawabata, Hideo; Nakamura, Masayuki; Tsukioka, Tsuneyuki; Okudera, Toshimitsu; Okudera, Hajime; Uematsu, Kohya; Okuda, Kazuhiro; Nakata, Koh; Kawase, Tomoyuki
2017-01-01
Platelet concentrates should be quality-assured of purity and identity prior to clinical use. Unlike for the liquid form of platelet-rich plasma, platelet counts cannot be directly determined in solid fibrin clots and are instead calculated by subtracting the counts in other liquid or semi-clotted fractions from those in whole blood samples. Having long suspected the validity of this method, we herein examined the possible loss of platelets in the preparation process. Blood samples collected from healthy male donors were immediately centrifuged for advanced platelet-rich fibrin (A-PRF) and concentrated growth factors (CGF) according to recommended centrifugal protocols. Blood cells in liquid and semi-clotted fractions were directly counted. Platelets aggregated on clot surfaces were observed by scanning electron microscopy. A higher centrifugal force increased the numbers of platelets and platelet aggregates in the liquid red blood cell fraction and the semi-clotted red thrombus in the presence and absence of the anticoagulant, respectively. Nevertheless, the calculated platelet counts in A-PRF/CGF preparations were much higher than expected, rendering the currently accepted subtraction method inaccurate for determining platelet counts in fibrin clots. To ensure the quality of solid types of platelet concentrates chairside in a timely manner, a simple and accurate platelet-counting method should be developed immediately. PMID:29563413
Measurement of rheologic property of blood by a falling-ball blood viscometer.
Eguchi, Yoko; Karino, Takeshi
2008-04-01
The viscosity of blood obtained by using a rotational viscometer decreases with the time elapsed from the beginning of measurement until it reaches a constant value determined by the magnitude of shear rate. It is not possible to obtain an initial value of viscosity at time t = 0 that is considered to exhibit an intrinsic property of the fluid by this method. Therefore, we devised a new method by which one can obtain the viscosity of various fluids that are not affected by both the time elapsed from the beginning of measurement and the magnitude of shear rate by considering the balance of the forces acting on a solid spherical particle freely falling in a quiescent viscous fluid. By using the new method, we studied the rheologic behavior of corn syrups, carboxy-methyl cellulose, and human blood; and compared the results with those obtained with a cone-and-plate viscometer. It was found that in the case of corn syrups and washed red cell suspensions in which no red cell aggregate (rouleau) was formed, the viscosity obtained with the two different methods were almost the same. In contrast to this, in the case of the whole blood in which massive aggregates were formed, the viscosity obtained with a falling-ball viscometer was much larger than that obtained with a cone-plate viscometer.
NASA Astrophysics Data System (ADS)
Fakra, S.; Luef, B.; Tyliszczak, T.; Castelle, C. J.; Mullin, S. W.; Hug, L. A.; Williams, K. H.; Marcus, M.; Banfield, J. F.
2015-12-01
Accurate mapping of the composition and ultrastructure of minerals and cells is key to understanding biogeochemical process in contaminated environments. Here we developed two apparatus that allow correlation of cryogenic transmission electron microscopy (TEM), synchrotron hard X-ray microprobe (SHXM) and scanning transmission X-ray microscopy (STXM) datasets. These cryogenic methods enabled precise determination of the distribution, valence state and structure of selenium in intact biofilms sampled during a biostimulation experiment in a contaminated aquifer near Rifle, CO, USA. Results were replicated in the laboratory via anaerobic selenate-reducing enrichment cultures. 16S rRNA analyses of field-derived biofilm indicated the dominance of Betaproteobacteria from the Comamonadaceae family, and uncultivated members of the Simplicispira genus. The major product in field and culture-derived biofilms consists of ~25-300 nm red amorphous Se0 aggregates of colloidal nanoparticles. Correlative analyses of the cultures provided direct evidence for microbial dissimilatory reduction of Se(VI) to Se(IV) to Se0. X-ray diffraction and Se K-edge extended X-ray absorption fine structure spectroscopy revealed red amorphous Se0 with a first shell Se-Se interatomic distance of 2.339 ± 0.003 Å. STXM showed that these aggregates are strongly associated with a protein-rich biofilm matrix containing acidic polysaccharides. From Rifle groundwater, we isolated a strain that shares 98.9% 16S rRNA gene sequence identity with Dechloromonas aromatica RCB and grows anaerobically by oxidizing acetate and reducing selenate. We refer to this isolate as Dechloromonas selenatis strain RGW99. 3D cryo-electron tomography showed that Se0 particles do not form inside the cytoplasm but rather originate in the cell membrane. The end product of selenate reduction by D. selenatis is 240 ± 66 nm diameter red amorphous Se0 colloidal aggregates. This product was found to be stable for months. Overall, these results established a role for D. selenatis RGW99 in selenate reduction in the Rifle aquifer and provided new insights into the nature and stability of selenium bioreduction products in the subsurface.
Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Gallo, Giuseppe
2017-09-01
Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O 2 -plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O 2 -plasma treated PLA membranes specifically promoted higher ACT production than not treated membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
Risks Associated with Fresh Whole Blood and Red Blood Cell Transfusions in a Combat Support Hospital
2007-01-01
collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2007 2 . REPORT TYPE 3 . DATES COVERED 00-00-2007...coagulation function [13, 14] Increased RBC aggregation [28] Increased free hemoglobin [29] Decreased 2 , 3 DPG and tissue perfusion [30] Decreased oxygen...0.07%) were positive for human lymphotropic virus enzyme immunoassay, and none of 2,831 were positive for both human immunodeficiency virus 1/ 2 and
Anand, K; Singh, Thishana; Madhumitha, G; Phulukdaree, A; Gengan, Robert M; Chuturgoon, A A
2017-04-01
The bio-synthesized DTAuNPs have an average size of 21nm. The aggregation extent depends on the concentration of melamine, which was validated by UV-vis spectra and visual method of melamine detection was developed. The major observation in this method was the color change of DTAuNPs from red to purple due to the aggregation of ligand capped gold nanoparticles instigated by melamine. The reaction of color changes were processed due to the shifting of bonding in hydrogen in between nanoparticles and melamine. The aggregation extent depends on the concentration of melamine, which can be validated UV-vis spectra and visual method of detecting melamine is developed. The electron density and conventional UV-vis, FTIR spectroscopy and DFT studies on the ligand was performed using computational methods. The theoretical and experimental data for the energy transitions and the molar extinction coefficients of the ligands studied has been obtained. Further, the ligand capped gold nanoparticles was assessed for cytotoxicity against A549 cells which resulted in significant decrease in cell viability was noted in 50μg/mL DTAu, 4-ATP and AXT treated cells at 2h (85% and 66%) and 6h (83% and 36%) respectively, (p<0.01) were studied and reported in this manuscript. Copyright © 2017 Elsevier B.V. All rights reserved.
Splanchnic vein thrombosis as a first manifestation of Primary myelofibrosis
Campos-Cabrera, Gregorio; Campos-Cabrera, Virginia; Campos-Cabrera, Salvador; Campos-Villagómez, José-Luis; Romero-González, Alejandra
2017-01-01
Myeloproliferative neoplasms are chronic disorders of clonal hematopoietic stem cells, characterized by an overproduction of functional granulocytes, red blood cells and / or platelets, and one of the major complications is the occurrence of venous and arterial thrombotic problems caused by increased platelet aggregation and thrombin generation. In this study 11 cases of primary myelofibrosis (PM) were evaluated and 2 debuted with splanchnic venous thrombosis (SVT); so after seeing the results of this study and of world literature, it is suggested that in patients with SVT, diagnostic methods for PM like the JAK2V617F mutation should be included. Copyright: © 2017 SecretarÍa de Salud
NASA Astrophysics Data System (ADS)
Furkan, Mohammad; Alam, Md Tauqir; Rizvi, Asim; Khan, Kashan; Ali, Abad; Shamsuzzaman; Naeem, Aabgeena
2017-05-01
Aggregation of proteins is a physiological process which contributes to the pathophysiology of several maladies including diabetes mellitus, Huntington's and Alzheimer's disease. In this study we have reported that aloe emodin (AE), an anthroquinone, which is one of the active components of the Aloe vera plant, acts as an inhibitor of hemoglobin (Hb) aggregation. Hb was thermally aggregated at 60 °C for four days as evident by increased thioflavin T and ANS fluorescence, shifted congo red absorbance, appearance of β sheet structure, increase in turbidity and presence of oligomeric aggregates. Increasing concentration of AE partially reverses the aggregation of the model heme protein (hemoglobin). The maximum effect of AE was observed at 100 μM followed by saturation at 125 μM. The results were confirmed by UV-visible spectrometry, intrinsic fluorescence, ThT, ANS, congo red assay as well as transmission electron microscopy (TEM). These results were also supported by fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) which shows the disappearance of β sheet structure and appearance of α helices. This study will serve as baseline for translatory research and the development of AE based therapeutics for diseases attributed to protein aggregation.
Microconfined flow behavior of red blood cells.
Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano
2016-01-01
Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Priezzhev, Alexander V.; Firsov, Nikolai N.; Vyshlova, Marina G.; Lademann, Juergen; Richter, Heike; Kiesewetter, Holger; Mueller, Gerhard J.
1999-05-01
We report on the results of a collaborative effort made in the field of optical diagnostics of whole blood samples to study the ability of red blood cells to aggregate in a Couette chamber. We studied a possibility to quantitatively measure this ability as a function of the physiological state of blood donors. The aggregometer designed by the Russian coauthors of this paper and described in their earlier publications (see e.g. Proc SPIE 1884, 2100, 2678, 2982) was extensively used in the experiments performed in the Rheumatology Institute in Moscow and in the Charite Clinic in Berlin. The following parameters were measured: two characteristic times of RBC aggregation and the average spontaneous aggregation rate in the state of stasis, the average hydrodynamic strength of all aggregates and that of the largest aggregates. Different algorithms of the remission signal processing for the quantitative evaluation of the above parameters were compared. Reproducible alterations of the parameters from their normal values were obtained for blood samples from individuals suffering auto-immune disease and diabetes. Statistical data is reported proving high efficiency of the technique for the diagnostics of rheological disorders. Basing on these data the quantitative criteria of the heaviness of hemorheological state of the patients are proposed that are important for choosing specific therapies for which the patient is minimally resistant.
The influence of platelets, plasma and red blood cells on functional haemostatic assays.
Bochsen, Louise; Johansson, Pär I; Kristensen, Annemarie T; Daugaard, Gedske; Ostrowski, Sisse R
2011-04-01
Functional whole blood haemostatic assays are used increasingly to guide transfusion therapy and monitor medical treatment and are also applied for in-vitro evaluations of the haemostatic potential of stored platelets. We investigated how the cellular and plasmatic elements, both isolated and combined, influenced the two methodologically different assays, thrombelastography (TEG) and impedance aggregometry (Multiplate). Platelet-rich plasma (200 × 10/l) or pure plasma (0 platelets), with and without added red blood cells (RBCs), hematocrit 0, 0.15 or 0.29, were produced in vitro from platelet concentrates, fresh frozen plasma and stored RBC. Pure platelets were investigated by removing plasma components from platelet concentrates by diafiltration against the platelet storage solution Intersol. Plasma was readded by diafiltration against plasma in Intersol. Haemostatic function was evaluated by TEG and Multiplate. In the TEG, increasing amounts of RBC reduced clot strength and clot kinetics (α-angle), most markedly in plasma/RBC without platelets. In contrast, RBC in a platelet concentrate matrix enhanced Multiplate aggregation in response to weak agonists (ADP and arachidonic acid). Furthermore, removing plasma from platelet concentrates eliminated the TEG response and diminished the Multiplate aggregation response, but readding plasma to the pure platelet concentrates restored the response. Each of the elements in whole blood, plasma, platelets and RBC, affected the Multiplate and TEG results differently. The results emphasize that the concentrations of all cellular and plasmatic components in whole blood should be taken into account when interpreting results obtained by TEG and multiplate.
Pineda, Jesús; Cho, Walter; Starczak, Victoria; Govindarajan, Annette F; Guzman, Héctor M; Girdhar, Yogesh; Holleman, Rusty C; Churchill, James; Singh, Hanumant; Ralston, David K
2016-01-01
A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount's elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4-10 m above the bottom. The high density aggregations were constrained to 355-385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m(2), and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.
Cho, Walter; Starczak, Victoria; Govindarajan, Annette F.; Guzman, Héctor M.; Girdhar, Yogesh; Holleman, Rusty C.; Churchill, James; Singh, Hanumant; Ralston, David K.
2016-01-01
A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects. PMID:27114859
Macek-Rowland, Kathleen M.; Arntson, Allan D.; Ryberg, Karen R.; Dahl, Ann L.; Lieb, Amy
2004-01-01
The Red River of the North, located in the north-central plains of the United States, plays an important role in population growth and economic development of the region. Because of recent and projected growth in population, industry, and agriculture in the Red River of the North Basin, alternatives to additional water resources will be needed to supplement future water needs. Past and current water-use data are needed to help select the most viable water-resource alternatives. Withdrawal and return flow data were collected from various sources throughout the Red River of the North Basin from 1979 through 2001. The withdrawal data were aggregated by subbasin, monthly totals, and water-use categories. The return flow data were aggregated by subbasin and monthly totals. The Red River of the North Basin was divided into subbasins based on locations of U.S. Geological Survey streamflow-gaging stations and by specifically-identified reaches. Results of the water-use compilation are provided in this report.
Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg
2016-04-01
Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (<2 mm) than in the higher aggregate sizes (>2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.
Wang, Y; Yan, M; Fan, Z; Ma, L; Yu, Y; Yu, J
2014-10-01
This study was designed to investigate the effects of mineral trioxide aggregate (MTA) on the osteo/odontogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). inflammatory DPSCs were isolated from the inflammatory pulps of rat incisors and cocultured with MTA-conditioned medium. MTT assay and flow cytometry were performed to evaluate the proliferation of iDPSCs. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time RT-PCR, and Western blot assay were used to investigate the differentiation capacity as well as the involvement of NF-κB pathway in iDPSCs. Mineral trioxide aggregate-treated iDPSCs demonstrated the higher ALP activity and formed more mineralized nodules than the untreated group. The odonto/osteoblastic markers (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN, and Dspp/DSP, respectively) in MTA-treated iDPSCs were significantly upregulated as compared with untreated iDPSCs. Mechanistically, cytoplastic phos-P65 and nuclear P65 in MTA-treated iDPSCs were significantly increased in a time-dependent manner. Moreover, the inhibition of NF-κB pathway suppressed the MTA-induced odonto/osteoblastic differentiation of iDPSCs, as indicated by decreased ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic genes (Osx, Ocn, and Dspp). Mineral trioxide aggregate enhances the odonto/osteogenic capacity of DPSCs from inflammatory sites via activating the NF-κB pathway. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ahn, Junho; Choi, Yeonweon; Lee, Ae-Ree; Lee, Joon-Hwa; Jung, Jong Hwa
2016-03-21
Using duplex DNA-AuNP aggregates, a sequence-specific DNA-binding protein, SQUAMOSA Promoter-binding-Like protein 12 (SPL-12), was directly determined by SPL-12-duplex DNA interaction-based colorimetric actions of DNA-Au assemblies. In order to prepare duplex DNA-Au aggregates, thiol-modified DNA 1 and DNA 2 were attached onto the surface of AuNPs, respectively, by the salt-aging method and then the DNA-attached AuNPs were mixed. Duplex-DNA-Au aggregates having the average size of 160 nm diameter and the maximum absorption at 529 nm were able to recognize SPL-12 and reached the equivalent state by the addition of ∼30 equivalents of SPL-12 accompanying a color change from red to blue with a red shift of the maximum absorption at 570 nm. As a result, the aggregation size grew to about 247 nm. Also, at higher temperatures of the mixture of duplex-DNA-Au aggregate solution and SPL-12, the equivalent state was reached rapidly. On the contrary, in the control experiment using Bovine Serum Albumin (BSA), no absorption band shift of duplex-DNA-Au aggregates was observed.
Blood cell interactions and segregation in flow.
Munn, Lance L; Dupin, Michael M
2008-04-01
For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall.
Wang, Y; Li, J; Song, W; Yu, J
2014-06-01
The aim of this study was to investigate effects of mineral trioxide aggregate (MTA) on odonto/osteogenic differentiation of bone marrow stromal cells (BMSCs) from craniofacial bones. Craniofacial BMSCs were isolated from rat mandible and effects of MTA on their proliferation, differentiation and MAPK pathway involvement were subsequently investigated, in vitro. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazoliumbromide) assay was performed to evaluate proliferation of the MTA-treated cells. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time reverse transcription polymerase chain reaction and western blot assays were used to assess differentiation capacity as well as MAPK pathway involvement. 0.02 mg/ml MTA-treated BMSCs had significantly higher ALP activity and formed more mineralized nodules than the untreated group. Odonto/osteoblastic marker genes/proteins (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN and Dspp/DSP respectively) in MTA-treated cells were remarkably upregulated compared to untreated ones. Mechanistically, phosphorylated Jun N-terminal kinase (P-JNK) and phosphorylated extracellular regulated protein kinases (P-ERK) in MTA-treated BMSCs increased significantly in a time-dependent manner, while inhibition of JNK and ERK MAPK pathways dramatically blocked MTA-induced odonto/osteoblastic differentiation, as indicated by reduced ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic marker genes (Alp, Runx2, Osx, Ocn and Dspp). Mineral trioxide aggregate promoted odonto/osteogenic capacity of craniofacial BMSCs via JNK and ERK MAPK signalling pathways. © 2014 John Wiley & Sons Ltd.
Schwab, Karima; Frahm, Silke; Horsley, David; Rickard, Janet E.; Melis, Valeria; Goatman, Elizabeth A.; Magbagbeolu, Mandy; Douglas, Morag; Leith, Michael G.; Baddeley, Thomas C.; Storey, John M. D.; Riedel, Gernot; Wischik, Claude M.; Harrington, Charles R.; Theuring, Franz
2018-01-01
α-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson’s disease (PD). We have tested whether N,N,N′,N′-tetramethyl-10H-phenothiazine-3,7-diaminium bis(hydromethanesulfonate) (leuco-methylthioninium bis(hydromethanesulfonate); LMTM), a tau aggregation inhibitor, affects α-Syn aggregation in vitro and in vivo. Both cellular and transgenic models in which the expression of full-length human α-Syn (h-α-Syn) fused with a signal sequence peptide to promote α-Syn aggregation were used. Aggregated α-Syn was observed following differentiation of N1E-115 neuroblastoma cells transfected with h-α-Syn. The appearance of aggregated α-Syn was inhibited by LMTM, with an EC50 of 1.1 μM, with minimal effect on h-α-Syn mRNA levels being observed. Two independent lines of mice (L58 and L62) transgenic for the same fusion protein accumulated neuronal h-α-Syn that, with aging, developed into fibrillary inclusions characterized by both resistance to proteinase K (PK)-cleavage and their ability to bind thiazin red. There was a significant decrease in α-Syn-positive neurons in multiple brain regions following oral treatment of male and female mice with LMTM administered daily for 6 weeks at 5 and 15 mg MT/kg. The early aggregates of α-Syn and the late-stage fibrillar inclusions were both susceptible to inhibition by LMTM, a treatment that also resulted in the rescue of movement and anxiety-related traits in these mice. The results suggest that LMTM may provide a potential disease modification therapy in PD and other synucleinopathies through the inhibition of α-Syn aggregation. PMID:29375308
Francischetti, Ivo M B; Oliveira, Carlo J; Ostera, Graciela R; Yager, Stephanie B; Debierre-Grockiego, Françoise; Carregaro, Vanessa; Jaramillo-Gutierrez, Giovanna; Hume, Jen C C; Jiang, Lubin; Moretz, Samuel E; Lin, Christina K; Ribeiro, José M C; Long, Carole A; Vickers, Brandi K; Schwarz, Ralph T; Seydel, Karl B; Iacobelli, Massimo; Ackerman, Hans C; Srinivasan, Prakash; Gomes, Regis B; Wang, Xunde; Monteiro, Robson Q; Kotsyfakis, Michail; Sá-Nunes, Anderson; Waisberg, Michael
2012-03-01
The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. Therapeutic use of DF in malaria is proposed.
Renoux, Céline; Connes, Philippe; Nader, Elie; Skinner, Sarah; Faes, Camille; Petras, Marie; Bertrand, Yves; Garnier, Nathalie; Cuzzubbo, Daniela; Divialle-Doumdo, Lydia; Kebaïli, Kamila; Renard, Cécile; Gauthier, Alexandra; Etienne-Julan, Maryse; Cannas, Giovanna; Martin, Cyril; Hardy-Dessources, Marie-Dominique; Pialoux, Vincent; Romana, Marc; Joly, Philippe
2017-08-01
Sickle cell anaemia (SCA) is a severe hereditary haemoglobinopathy characterised by haemorheological abnormalities, which play a role in the occurrence of several acute and chronic clinical complications. While β S -haplotypes and alpha-thalassaemia modulate SCA clinical severity, their effects on blood rheology have been incompletely described. The aim of this study was to test the effects of these genetic modifiers on the haemorheological properties and clinical complication of children with SCA. Steady-state haemorheological profile, biological parameters, β S -haplotypes, alpha-globin status, vaso-occlusive crisis (VOC) and acute chest syndrome frequencies were analysed in 128 children (aged 5 to 18 years) with SCA. Patients with alpha-thalassaemia showed increased red blood cell (RBC) deformability and aggregation compared to those without. Median VOC rate was higher in patients with homozygous alpha-thalassaemia compared to those with a normal alpha genotype. Conversely, the haemorheological profile and clinical complications were not influenced by the β S -haplotypes in our study. Our results demonstrate that alpha-thalassaemia is associated with higher risk for VOC events in children with SCA, which may be due in part to its effects on RBC deformability and aggregation. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yuan, Xiang-Ai; Wen, Jin; Zheng, Dong; Ma, Jing
2018-04-01
This Review highlights the structure/property relationship underlying the morphology modulation through various factors towards the exploration of light-absorbing materials for efficient utilisation of solar power. Theoretical study using a combination of molecular dynamics imulations and the time-dependent density functional theory demonstrated that the planarity plays an important role in tuning spectral properties of oligomer aggregates. The aggregation-induced blue-shift in absorption spectra of oligothiophenes and the red-shift for oligofluorenols were rationalised in a unified way from the reduced (and increased) content of planar conformations in molecular aggregates. The planarity versus non-planarity of oligomers can be modulated by introduction of alkyl side chain or steric bulky substituents. The substitution with various groups in the ortho-position of azobenzene leads to the distorted backbone, breaking symmetry, and hence the red-shift in spectra, expanding the application in biological systems with visible light absorption. The donor-acceptor substituent groups in conjugated oligomers can increase the degree of planarity, electron delocalisation and polarisation, and charge separation, giving rise to the red-shift in spectra and enhancement in polarisability and charge mobility for device applications. The solvent dependent and pH-sensitive properties and intramolecular hydrogen bonds also caused the shift of absorption spectra with the appearance of planar conformers.
Edwards, Jason; Morrison, Chris; Mohiuddin, Maleeha; Tchatalbachev, Vladislav; Patel, Charmi; Schwickerath, Vicki L; Menitove, Jay E; Singh, Gurmukh
2012-11-01
Blood transfusion management strategies minimize transfusion-associated risks, enhance outcomes, and reduce costs. We explored an association of discharge hemoglobin (Hb) with pretransfusion Hb, transfusion indications, and red blood cell (RBC) transfusions. We stipulate that patients with discharge Hb concentrations greater than 10.0 g/dL, or even 9.0 g/dL, received excessive RBC transfusions. We examined aggregate data from five hospitals and for one of the hospitals, the focus hospital, we reviewed patient records for a period of 6 months. Data analyses included number of RBC units transfused and Hb values before transfusion, after transfusion, and at discharge. In aggregate, 27% to 47% patients had discharge Hb levels greater than 10.0 g/dL. At the focus hospital, 27% had a discharge Hb level greater than 10 g/dL and 50.3% had a discharge Hb level greater than 9.0 g/dL. At the focus hospital, the mean Hb trigger for transfusion was a Hb level of 7.3 g/dL; the mean posttransfusion Hb level was 9.3 g/dL and mean discharge Hb level was 9.2 g/dL. Overall, 76% of the transfusions were of an even number of RBC units. In aggregate, overutilization exceeded 20%. At the focus hospital, approximately one-quarter of patients receiving transfusions had a Hb concentration greater than 10.0 g/dL at discharge. Transfused patients' discharge Hb concentration represents an effective indicator for retrospective monitoring of transfusion appropriateness. In light of the large number of patients receiving even number transfusions, reviewing Hb levels after transfusion of each RBC unit could reduce unnecessary transfusions. Retrospective review of discharge Hb data focuses providers on transfusion outcomes and affords an educational opportunity for blood utilization management. © 2012 American Association of Blood Banks.
Tokarz, Danielle; Cisek, Richard; El-Ansari, Omar; Espie, George S; Fekl, Ulrich; Barzda, Virginijus
2014-01-01
Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily forms H- and J-aggregates in aqueous solutions, PIPO THG studies of astaxanthin aggregates contained in red aplanospores were compared to PIPO THG of in vitro self-assembled H- and J-aggregates of astaxanthin. The PIPO THG data clearly showed an isotropic organization of astaxanthin in red aplanospores of H. pluvialis. This is in contrast to the highly anisotropic organization of astaxanthin in synthetic H- and J-aggregates, which showed to be uniaxial. Since carotenoids in vitro preferentially form H- and J-aggregates, but in vivo form a randomly organized structure, this implies that astaxanthin undergoes a different way of packing in biological organisms, which is either due to the unique physical environment of the alga or is controlled enzymatically.
Tokarz, Danielle; Cisek, Richard; El-Ansari, Omar; Espie, George S.; Fekl, Ulrich; Barzda, Virginijus
2014-01-01
Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily forms H- and J-aggregates in aqueous solutions, PIPO THG studies of astaxanthin aggregates contained in red aplanospores were compared to PIPO THG of in vitro self-assembled H- and J-aggregates of astaxanthin. The PIPO THG data clearly showed an isotropic organization of astaxanthin in red aplanospores of H. pluvialis. This is in contrast to the highly anisotropic organization of astaxanthin in synthetic H- and J-aggregates, which showed to be uniaxial. Since carotenoids in vitro preferentially form H- and J-aggregates, but in vivo form a randomly organized structure, this implies that astaxanthin undergoes a different way of packing in biological organisms, which is either due to the unique physical environment of the alga or is controlled enzymatically. PMID:25215522
Mintz, Beatrice; Palm, Joy
1969-01-01
Erythropoietic cells of two unrelated strains, C3H (or C3Hf) and C57BL/6, can coexist throughout hematopoiesis in allophenic mice experimentally produced from aggregated, undifferentiated blastomeres of separate genotypes. The presence of two red cell genotypes in these circumstances signifies that the erythroid population must normally be multiclonal, i.e., derived mitotically from at least two genetically determined cells. The two strains were detected by hemagglutination and absorption tests of erythrocytes for the specific histocompatibility antigens dictated by the H-2k and H-2b alleles. Of 34 C3H(f) ↔ C57BL/6 allophenics tested, 16 had both red cell types; the remaining 18 showed only C3H or C57 red cells and included 12 mice with both cell strains present in some other tissues. All animals with evidence of two H-2 phenotypes among circulating erythrocytes were permanently immunologically tolerant of both antigenic types and remained free of runt disease. They lived a full lifespan, up to 2 yr 7½ months of age. The data suggest a possible specific selective advantage of C57BL/6 over C3H erythropoietic tissue. There is considerable individual variability, not only in proportions of antigenically distinct erythrocytes, but also in strain composition of other tissues in the same animals. A broad spectrum of distinctive situations is found, in which parameters are varied within or outside of the circulatory system. Allophenic mice can therefore serve as investigative tools for entirely new kinds of experimental studies of gene control mechanisms and blood physiology in normal hematopoiesis and in a number of hereditary blood diseases. PMID:5778785
Zhang, Li; An, Guo-Yao; Zhang, Wen-Guang; Chen, Kai
2012-12-01
To observe effects of Tanshinone- II A sulfonate on expression of Nuclear factor-kappaB (NF-kappaB), Vascular Cell Adhesion Molecule-1 (VCAM-1) and hemorrheology during spinal cord ischemia reperfusion injury,and explore the function and mechnism. Fifty-four New Zealand rabbits (aged 3 months,weighted 2.0 +/- 0.2 kg) were randomly divided into 6 in sham group (lumbar artery were separated in operation,0.8 ml/kg saline were injected at 0.5 h before and after operation), 24 in ischemia group ( lumbar artery were clipped after seperation, and the same dose of saline), 24 in Tanshinone group (lumbar artery were clipped after seperation, and the same dose of Tanshinone- II A sulfonate) . Abdomincal aorta blood were drawed after treatment respectively at 0.5 h, 1 h, 4 h and 8 h, and tesetd whole blood viscosity [high cut (mpa.s)/150(l/s), middle cut (mpa.s)/60(l/s) and low cut (mpa.s)/10(l/s)], capillary plasma viscosity, red cell aggregation index, rigid index, deformation index and electrophoresis index. Spinal cord tissues were divided into two sections,one fixed in 4% paraformaldehyde, another stored in liquid nitrogen. Immunohistochemical method and ELISA were used to test change of content of NF-kappaB and VCAM-1. 1) The expression of NF-kappaB in Tanshinone group were lowest, and in ischemia group were highest. 2) Compared with sham group, VCAM-1 in ischemia group at different time were obviously increased,especially at 0.5, 1 and 4 h (P<0.01), and had meaning at 8 h (P<0.05). Compare between Tanshinone group and ischemia group, VCAM-1 at 0.5 h were obviously decreased (P<0.01), and had meaning at 1 h, 4 h and 8 h (P<0.05). 3) There were no postive vasvular expression in sham group, and at 0.5 h in Tanshinone group and ischemia group. The highest postive vasvular expression in ischemia group were at 1 h, 4 h and 8 h, and had significant meaning at 1 h and 4 h between ischemia group and Tanshinone group (P<0.05), and 8 h were obviously most. 4) The whole blood viscosity in ischemia group at 10 s(-1), 60 s(-1), 150 s(-1) were highest, and capillary viscosity increased (P<0.05 or P<0.01). While capillary viscosity, red cell aggregation index, figid index, deformation index in Tanshinone group decreased obviously (P<0.01). Tanshinone-II A sulfonate can relieve spinal cord ischemia reperfusion injury by regulating expression of NF-kappaB, VCAM-1, decreasing whole blood viscosity, capillary plasma viscosity, red cell aggregation index, rigid index, and improve hemorhelogy.
Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio
2014-01-01
Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein. PMID:24497973
The mechanism of the polymer-induced drag reduction in blood.
Pribush, Alexander; Hatzkelzon, Lev; Meyerstein, Dan; Meyerstein, Naomi
2013-03-01
Literature reports provide evidence that nanomolar concentrations of spaghetti-like, high molecular weight polymers decrease the hydrodynamic resistance of blood thereby improving impaired blood circulation. It has been suggested that the polymer-induced drag reduction is caused by the corralling of red blood cells (RBCs) among extended macromolecules aligned in the flow direction. This mechanism predicts that drag-reducing polymers must affect the conductivity of completely dispersed blood, time-dependent and steady state structural organization of aggregated RBCs at rest. However, experimental results obtained at the concentration of poly(ethylene oxide) (PEO, MW=4 × 10(6)) of 35 ppm show that neither the conductivity of completely dispersed blood, nor the kinetics of RBC aggregation occurring after the stoppage of flow, nor the structural organization of aggregated RBCs in the quiescent blood are affected by PEO. As these results are at odds with the "corralling" hypothesis, it is assumed that the effect of these polymers on the drag is associated with their interactions with local irregularities of disturbed laminar blood flow. Copyright © 2012 Elsevier B.V. All rights reserved.
Xu, Dazhuang; Zou, Hui; Liu, Meiying; Tian, Jianwen; Huang, Hongye; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2017-12-15
Fluorescent organic nanoparticles (FONs) with aggregation-induced emission (AIE) features have recently emerged as promising fluorescent probes for biomedical applications owing to their excellent optical properties, designability and biocompatibility. Significant progress has been made recently for synthesis and biomedical applications of these AIE-active FONs. However, only very limited reports have demonstrated the fabrication of biodegradable AIE-active FONs with red fluorescence emission. In this study, a novel strategy has been developed for the preparation of biodegradable AIE-active polyurethanes (PUs) through a two-step polymerization, in which the diisocyanate-terminated polyethylene glycol (NCO-PEG-NCO) was synthesized and subsequently conjugated with diamine-containing AIE dye (NH 2 -Phe-NH 2 ). The successful synthesis of AIE-active Phe-PEG 2000 PUs is evidenced by a series of characterization techniques. Because of the formation of AIE-active amphiphilic PUs, the final copolymers can self-assemble into spherical nanoparticles, which exhibit strong luminescence and high water dispersion. The biological evaluation results suggest that the AIE-active Phe-PEG 2000 FONs possess low toxicity and desirable cell permeability. Therefore, we anticipate that these AIE-active FONs with biodegradable potential will trigger much research enthusiasm and effort toward the creation of new AIE-active materials with improved properties for various biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.
A pretreatment method for grain size analysis of red mudstones
NASA Astrophysics Data System (ADS)
Jiang, Zaixing; Liu, Li'an
2011-11-01
Traditional sediment disaggregation methods work well for loose mud sediments, but not for tightly cemented mudstones by ferric oxide minerals. In this paper, a new pretreatment method for analyzing the grain size of red mudstones is presented. The experimental samples are Eocene red mudstones from the Dongying Depression, Bohai Bay Basin. The red mudstones are composed mainly of clay minerals, clastic sediments and ferric oxides that make the mudstones red and tightly compacted. The procedure of the method is as follows. Firstly, samples of the red mudstones were crushed into fragments with a diameter of 0.6-0.8 mm in size; secondly, the CBD (citrate-bicarbonate-dithionite) treatment was used to remove ferric oxides so that the cementation of intra-aggregates and inter-aggregates became weakened, and then 5% dilute hydrochloric acid was added to further remove the cements; thirdly, the fragments were further ground with a rubber pestle; lastly, an ultrasonicator was used to disaggregate the samples. After the treatment, the samples could then be used for grain size analysis or for other geological analyses of sedimentary grains. Compared with other pretreatment methods for size analysis of mudstones, this proposed method is more effective and has higher repeatability.
Moeller, Curt H.; Mudd, J. Brian
1982-01-01
Filipin was used as a cytochemical probe for membrane sterols in the root storage tissue of the red beet Beta vulgaris L. and the chloroplasts of Spinacia oleracea L. In unfixed beet tissue, filipin lysed the cells. Freeze-fracture replicas revealed that the filipin-sterol complexes were tightly aggregated in the plasma membrane, while in thin section the complexes corrugated the plasma membrane. If the cells were fixed with glutaraldehyde prior to the filipin treatment, the cell structure was preserved. Filipin-induced lesions were dispersed or clustered loosely in the plasma membrane. A few filipin-sterol complexes were observed in the tonoplast. In spinach chloroplasts, filipin-sterol complexes were limited to the outer membrane of the envelope and were not found in the inner membrane of the envelope or in the lamellar membranes. If the filipin-sterol complexes accurately mapped the distribution of membrane sterols, then sterol was located predominantly in the plasma membrane of the red beet and in the outer membrane of the chloroplast envelope. Furthermore, the sterol may be heterogenously distributed laterally in both these membranes. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16662716
J-aggregation in porphyrin nanoparticles induced by diphenylalanine
NASA Astrophysics Data System (ADS)
Li, Fengqing; Liu, Dongzhi; Wang, Tianyang; Hu, Jianxin; Meng, Fancui; Sun, Haiya; Shang, Zhi; Li, Pingan; Feng, Wenhui; Li, Wei; Zhou, Xueqin
2017-08-01
In this report, L-diphenylalanine-decorated tetraphenylporphyrin (TPPtFFC) was synthesized and self-assembled into regular nano-architechtures. The morphology of the assemblies varied with the concentration of TPPtFFC. The absorption spectra of the nanoparticles show the Soret band merges with the Q bands and redistributes with great red-shift, indicative of the formation of J-aggregates of the porphyrin molecules. The fluorescence emission of the nanoparticles is merged and red-shifted to near-infrared region. Studies of absorption and fluorescence spectra reveal an indispensible role of diphenylalanine group in the formation of J-aggregates. The Raman spectra disclose that diprotonation of the porphyrin core contributes to delocalized coherent excited states in the nanoparticles. The positive cotton effect in circular dichroism spectra corresponding to the Soret band of TPPtFFC in solution confirms the formation of J-aggregates with right-handed chirality of the dipole moment. This report will shed light on the rational design of porphyrin-peptide conjugates to mimic naturally light-harvesting complexes.
Role of streams in myxobacteria aggregate formation
NASA Astrophysics Data System (ADS)
Kiskowski, Maria A.; Jiang, Yi; Alber, Mark S.
2004-10-01
Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been attributed to attractive chemotaxis, a long range interaction, but there is growing evidence that myxobacteria organization depends on contact-mediated cell-cell communication. We present a discrete stochastic model based on contact-mediated signaling that suggests an explanation for the initialization of early aggregates, aggregation dynamics and final aggregate distribution. Our model qualitatively reproduces the unique structures of myxobacteria aggregates and detailed stages which occur during myxobacteria aggregation: first, aggregates initialize in random positions and cells join aggregates by random walk; second, cells redistribute by moving within transient streams connecting aggregates. Streams play a critical role in final aggregate size distribution by redistributing cells among fewer, larger aggregates. The mechanism by which streams redistribute cells depends on aggregate sizes and is enhanced by noise. Our model predicts that with increased internal noise, more streams would form and streams would last longer. Simulation results suggest a series of new experiments.
Parasite transmission among relatives halts Red Queen dynamics.
Greenspoon, Philip B; Mideo, Nicole
2017-03-01
The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Lin, Yu-Chung; Tsai, Lin-Wei; Perevedentseva, Elena; Chang, Hsin-Hou; Lin, Ching-Hui; Sun, Der-Shan; Lugovtsov, Andrei E; Priezzhev, Alexander; Mona, Jani; Cheng, Chia-Liang
2012-10-01
Nanodiamond has been proven to be biocompatible and proposed for various biomedical applications. Recently, nanometer-sized diamonds have been demonstrated as an effective Raman/fluorescence probe for bio-labeling, as well as, for drug delivery. Bio-labeling/drug delivery can be extended to the human blood system, provided one understands the interaction between nanodiamonds and the blood system. Here, the interaction of nanodiamonds (5 and 100 nm) with human red blood cells (RBC) in vitro is discussed. Measurements have been facilitated using Raman spectroscopy, laser scanning fluorescence spectroscopy, and laser diffractometry (ektacytometry). Data on cell viability and hemolytic analysis are also presented. Results indicate that the nanodiamonds in the studied condition do not cause hemolysis, and the cell viability is not affected. Importantly, the oxygenation/deoxygenation process was not found to be altered when nanodiamonds interacted with the RBC. However, the nanodiamond can affect some RBC properties such as deformability and aggregation in a concentration dependent manner. These results suggest that the nanodiamond can be used as an effective bio-labeling and drug delivery tool in ambient conditions, without complicating the blood's physiological conditions. However, controlling the blood properties including deformability of RBCs and rheological properties of blood is necessary during treatment.
Blood Flow: Multi-scale Modeling and Visualization (July 2011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-01-01
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less
Rheological properties of erythrocytes in patients infected with Clostridium difficile.
Czepiel, Jacek; Jurczyszyn, Artur; Biesiada, Grażyna; Sobczyk-Krupiarz, Iwona; Jałowiecka, Izabela; Świstek, Magdalena; Perucki, William; Teległów, Aneta; Marchewka, Jakub; Dąbrowski, Zbigniew; Mach, Tomasz; Garlicki, Aleksander
2014-12-04
Clostridium difficile infection (CDI) is a bacterial infection of the digestive tract. Acute infections are accompanied by increased risk for venous thromboembolism (VTE). To date, there have been no studies of the rheological properties of blood during the course of digestive tract infections. The aim of our study was to examine the effects of CDI on red blood cell (RBC) rheology, specifically RBC deformability, RBC aggregation, and plasma viscosity. In addition, the activity of glucose 6 phosphate dehydrogenase (G6PD) and acetylcholinesterase (AChE) in RBC was studied. Our study group included 20 patients with CDI, 20 healthy persons comprised the control group. We examined the effects of CDI on the rheology of RBCs, their deformability and aggregation, using a Laser-assisted Optical Rotational Cell Analyzer (LORCA). Plasma viscosity was determined using a capillary tube plasma viscosymeter. Moreover, we estimated the activity of AChE and G6PD in RBC using spectrophotometric method. A statistically significant increase was found in the aggregation index, viscosity and activity of G6PD whereas the amount of time to reach half of maximum aggregation (t½) and the amplitude of aggregation (AMP) both showed statistically significantly decreases among patients with CDI compared to the control group. We also observed that the Elongation Index (EI) was decreased when shear stress values were low, between 0.3 Pa and 0.58 Pa, whereas EI was increased for shear stress in the range of 1.13-59.97 Pa. These observations were statistically significant. We report for the first time that acute infection of the gastrointestinal tract with Clostridium difficile is associated with abnormalities in rheological properties of blood, increased serum viscosity as well as increased aggregation of RBCs, which correlated with severity of inflammation. These abnormalities may be an additional mechanism causing increased incidence of VTE in CDI.
Ganguly, Mainak; Mondal, Chanchal; Pal, Anjali; Pratik, Saied Md; Pal, Jaya; Pal, Tarasankar
2014-07-07
The participation of sodium borohydride (NaBH4) in hydrogen bonding interactions and transient anion radical formation has been proved. Thus, the properties of NaBH4 are extended beyond the purview of its normal reducing capability and nucleophilic property. It is reported that ortho- and para-nitroanilines (NAs) form stable aggregates only in tetrahydrofuran (THF) in the presence of NaBH4 and unprecedented orange/red colorations are observed. The same recipe with nitrobenzene instead of nitroanilines (NAs) in the presence of NaBH4 evolves a transient rose red solution due to the formation of a highly fluorescent anion radical. Spectroscopic studies (UV-vis, fluorescence, RLS, Raman, NMR etc.) as well as theoretical calculations supplement the J-aggregate formation of NAs due to extensive hydrogen bonding. This is the first report where BH4(-) in THF has been shown to support such an aggregation process through H-bonding. It is further confirmed that stable intermolecular hydrogen bond-induced aggregation requires a geometrical match in both the nitro- and amino-functionalities attached to the phenyl ring with proper geometry. On the contrary, meta-nitroaniline remains as the odd man out and does not take part in such aggregation. Surprisingly, Au nanoparticles dismantle the J-aggregates of NA in THF. Explicit hydrogen bond formation in NA has been confirmed experimentally considering its promising applications in different fields including non-linear optics.
Blood flow and blood cell interactions and migration in microvessels
NASA Astrophysics Data System (ADS)
Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard
2011-11-01
Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.
Effects of disinfectants in renal dialysis patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, E.
1986-11-01
Patients receiving hemodialysis therapy risk exposure to both disinfectants and sterilants. Dialysis equipment is disinfected periodically with strong solutions of hypochlorite or formaldehyde. Gross hemolysis resulting from accidental hypochlorite infusion has led to cardiac arrest, probably as a result of hyperkalemia. Formaldehyde is commonly used in 4% solutions to sterilize the fluid paths of dialysis controllers and to sterilize dialyzers before reuse. It can react with red cell antigenic surfaces leading to the formation of anti-N antibodies. The major exposure risk is the low concentration of disinfectant found in municipal water used to prepare 450 L dialysate weekly. With thrice-weeklymore » treatment schedules, the quality requirements for water used to make this solution must be met rigorously. Standards for water used in the preparation of dialysate have recently been proposed but not all patients are treated with dialysate meeting such standards. The introduction of sterilants via tap water is insidious and has let to more pervasive consequences. Both chlorine and chloramines, at concentrations found in potable water, are strong oxidants that cause extensive protein denaturation and hemolysis. Oxidation of the Fe/sup 2 +/ in hemoglobin to Fe/sup 3 +/ forms methemoglobin, which is incapable of carrying either O/sub 2/ or CO/sub 2/. Chloramine can form not only methemoglobin, but can also denature proteins within the red cell, thus forming aggregates (Heinz bodies). Chloramines also inhibit hexose monophosphate shunt activity, a mechanism that makes the red cell even more susceptible to oxidant damage.« less
A model for the kinetics of homotypic cellular aggregation under static conditions
NASA Technical Reports Server (NTRS)
Neelamegham, S.; Munn, L. L.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)
1997-01-01
We present the formulation and testing of a mathematical model for the kinetics of homotypic cellular aggregation. The model considers cellular aggregation under no-flow conditions as a two-step process. Individual cells and cell aggregates 1) move on the tissue culture surface and 2) collide with other cells (or aggregates). These collisions lead to the formation of intercellular bonds. The aggregation kinetics are described by a system of coupled, nonlinear ordinary differential equations, and the collision frequency kernel is derived by extending Smoluchowski's colloidal flocculation theory to cell migration and aggregation on a two-dimensional surface. Our results indicate that aggregation rates strongly depend upon the motility of cells and cell aggregates, the frequency of cell-cell collisions, and the strength of intercellular bonds. Model predictions agree well with data from homotypic lymphocyte aggregation experiments using Jurkat cells activated by 33B6, an antibody to the beta 1 integrin. Since cell migration speeds and all the other model parameters can be independently measured, the aggregation model provides a quantitative methodology by which we can accurately evaluate the adhesivity and aggregation behavior of cells.
Nissimov, Jozef I; Vandzura, Rebecca; Johns, Christopher T; Natale, Frank; Haramaty, Liti; Bidle, Kay D
2018-06-19
Emiliania huxleyi produces calcium carbonate (CaCO 3 ) coccoliths and transparent exopolymer particles (TEP), sticky, acidic carbohydrates that facilitate aggregation. E. huxleyi's extensive oceanic blooms are often terminated by coccolithoviruses (EhVs) with the transport of cellular debris and associated particulate organic carbon (POC) to depth being facilitated by TEP-bound "marine snow" aggregates. The dynamics of TEP production and particle aggregation in response to EhV infection are poorly understood. Using flow cytometry, spectrophotometry, and FlowCam visualization of alcian blue (AB)-stained aggregates, we assessed TEP production and the size spectrum of aggregates for E. huxleyi possessing different degrees of calcification and cellular CaCO 3 :POC mass ratios, when challenged with two EhVs (EhV207 and EhV99B1). FlowCam imaging also qualitatively assessed the relative amount of AB-stainable TEP (i.e. blue:red ratio of each particle). We show significant increases in TEP during early phase EhV207-infection (∼24 hours) of calcifying strains and a shift towards large aggregates following EhV99B1-infection. We also observed the formation of large aggregates with low blue:red ratios, suggesting that other exopolymer substances contribute towards aggregation. Our findings show the potential for virus infection and the associated response of their hosts to impact carbon flux dynamics and provide incentive to explore these dynamics in natural populations. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J
2017-01-01
Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hierso, Régine; Lemonne, Nathalie; Villaescusa, Rinaldo; Lalanne-Mistrih, Marie-Laure; Charlot, Keyne; Etienne-Julan, Maryse; Tressières, Benoit; Lamarre, Yann; Tarer, Vanessa; Garnier, Yohann; Hernandez, Ada Arce; Ferracci, Serge; Connes, Philippe; Romana, Marc; Hardy-Dessources, Marie-Dominique
2017-03-01
Painful vaso-occlusive crisis, a hallmark of sickle cell anaemia, results from complex, incompletely understood mechanisms. Red blood cell (RBC) damage caused by continuous endogenous and exogenous oxidative stress may precipitate the occurrence of vaso-occlusive crises. In order to gain insight into the relevance of oxidative stress in vaso-occlusive crisis occurrence, we prospectively compared the expression levels of various oxidative markers in 32 adults with sickle cell anaemia during vaso-occlusive crisis and steady-state conditions. Compared to steady-state condition, plasma levels of free haem, advanced oxidation protein products and myeloperoxidase, RBC caspase-3 activity, as well as the concentrations of total, neutrophil- and RBC-derived microparticles were increased during vaso-occlusive crises, whereas the reduced glutathione content was decreased in RBCs. In addition, natural anti-band 3 autoantibodies levels decreased during crisis and were negatively correlated with the rise in plasma advanced oxidation protein products and RBC caspase-3 activity. These data showed an exacerbation of the oxidative stress during vaso-occlusive crises in sickle cell anaemia patients and strongly suggest that the higher concentration of harmful circulating RBC-derived microparticles and the reduced anti-band 3 autoantibodies levels may be both related to the recruitment of oxidized band 3 into membrane aggregates. © 2016 John Wiley & Sons Ltd.
Excited-state dynamics of astaxanthin aggregates
NASA Astrophysics Data System (ADS)
Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš
2013-05-01
Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.
Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi
2016-04-01
Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5.
Lin, Li; Peng, Bosi; Shi, Wenye; Guo, Yingying; Li, Renjie
2015-03-28
A zinc phthalocyanine (ZnPc) derivative (Zn-tri-PcNc-8) containing tri-benzonaphtho-condensed porphyrazine with one carboxylic and six diphenylphenoxy peripheral substitutions was designed and synthesized as a sensitizer for dye-sensitized solar cells (DSSCs). For the purpose of extending the absorption spectra while minimizing the formation of ZnPc molecular aggregates, bulky 2,6-diphenylphenoxy groups were used as electron donor moieties, and the carboxylic group as an anchoring group to graft the sensitizer onto the semiconductor. It was found that a TiO2-based solar cell sensitized by Zn-tri-PcNc-8 shows a maximum incident photon-to-current conversion efficiency in the red/near-IR light range (650-750 nm), and a solar cell sensitized at near room temperature (30 °C) for 48 h exhibits the best efficiency (3.01%). The efficiency was much higher than that (1.96%) for a solar cell sensitized by its analogue (Zn-tri-PcNc-2) having one carboxyl and three tert-butyl groups without chenodeoxycholic acid (CDCA), indicating that the introduction of six bulky diphenylphenoxy substitutions with large steric hindrance in the ZnPc macrocycle can effectively suppress the molecular aggregates, thus resulting in an improved conversion efficiency. The present results shed light on an effective solution to adjust the ZnPc property via chemical modification such as changing the "push-pull" effect and adding large steric hindrance substituents to further improve the efficiency of the phthalocyanine-sensitized solar cell.
An Enhanced Collaborative-Software Environment for Information Fusion at the Unit of Action
2007-12-07
GRAY CONVOY RED CONVOY DISMOUNT SA-18 D O DISMOUNT W/ SURVEILANCE EQUIPDISMOUNT UNKNOWN zC-LFFRLIFEFORM < SA-18 FIXED WING CLASSIFIED INFORMATION...Ground Truth Semantic-aggregation hierarchy (evaluation-use only) BSGs GTGs BSOS GTOS Reports Figure 4: Semantic-Aggregation Hierarchy PIR/SIR CIFAR...Finally, GTOs can be aggregated into GTGs (ground-truth groups) using the provided ground-truth force structure hierarchy for GTOs. GTGs can only be
Oguntibeju, O O; Esterhuyse, A J; Truter, E J
2009-01-01
The link between dietary fats and cardiovascular disease has created a growing interest in dietary red palm oil research. Also, the link between nutrition and health, oxidative stress and the severity or progression of disease has stimulated further interest in the potential role of red palm oil (a natural antioxidant product) to improve oxidative status by reducing oxidative stress in patients with cardiovascular disease, cancer and other chronic diseases. In spite of its level of saturated fatty acid content (50%), red palm oil has not been found to promote atherosclerosis and/or arterial thrombosis. This is probably due to the ratio of its saturated fatty acid to unsaturated fatty acid content and its high concentration of antioxidants such as beta-carotene, tocotrienols, tocopherols and vitamin E. It has also been reported that the consumption of red palm oil reduces the level of endogenous cholesterol, and this seems to be due to the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of red palm oil to health include a reduction in the risk of arterial thrombosis and/or atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, a reduction in oxidative stress and a reduction in blood pressure. It has also been shown that dietary red palm oil, taken in moderation in animals and humans, promotes the efficient utilisation of nutrients, activates hepatic drug metabolising enzymes, facilitates the haemoglobinisation of red blood cells and improves immune function. This review provides a comprehensive overview of the nutritional, physiological and biochemical roles of red palm oil in improving wellbeing and quality of life.
Expression of membrane-associated proteins within single emulsion cell facsimiles.
Chanasakulniyom, Mayuree; Martino, Chiara; Paterson, David; Horsfall, Louise; Rosser, Susan; Cooper, Jonathan M
2012-07-07
MreB is a structural membrane-associated protein which is one of the key components of the bacterial cytoskeleton. Although it plays an important role in shape maintenance of rod-like bacteria, the understanding of its mechanism of action is still not fully understood. This study shows how segmented flow and microdroplet technology can be used as a new tool for biological in vitro investigation of this protein. In this paper, we demonstrate cell-free expression in a single emulsion system to express red fluorescence protein (RFP) and MreB linked RFP (MreB-RFP). We follow the aggregation and localisation of the fusion protein MreB-RFP in this artificial cell-like environment. The expression of MreB-RFP in single emulsion droplets leads to the formation of micrometer-scale protein patches distributed at the water/oil interface.
Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.
Ferrer, Maria L; del Monte, Francisco
2005-01-13
Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi < 54.7 degrees) prior to their assembly in the supramolecular architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).
Blood Cell Interactions and Segregation in Flow
Munn, Lance L.; Dupin, Michael M.
2009-01-01
For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall. PMID:18188702
Ruf, J C; Berger, J L; Renaud, S
1995-01-01
We investigated in rats fed a purified diet for 2 and 4 months whether wine drinking was associated with the rebound effect on thrombin-induced platelet aggregation observed after alcohol withdrawal. With 6% ethanol drinking or its equivalent in red or white wine, platelet aggregation was reduced similarly by 70% when the animals drank the alcoholic beverages up to the venipuncture. Depriving the rats of alcoholic beverages for 18 hours was associated with an increase in the platelet response of 124% in those receiving 6% ethanol, of 46% with white wine but a decrease of 59% in those with red wine. The protective effect of red wine on platelets could be reproduced by tannins (procyanidins) extracted from grape seeds or red wine and added to 6% ethanol, but not by glycerol or wine without alcohol. That was related to inhibition of the alcohol-induced lipid peroxidation as shown by the lowering of conjugated dienes, lipid peroxides, and the increase in vitamin E in plasma. Owing to tannins, the platelets of rats drinking red wine did not exhibit the rebound effect observed hours after alcohol drinking, eventually associated with sudden death and stroke in humans.
NASA Astrophysics Data System (ADS)
Marijke, Grau; Vera, Abeln; Tobias, Vogt; Wilhelm, Bloch; Stefan, Schneider
2017-02-01
Artificial gravity protocols are used to improve g-tolerance of aviators and discussed as countermeasure during prolonged space flight. Little is known about the impact of artificial gravity on the red blood cells (RBC). The purpose of the study was to test how artificial gravity affects RBC deformability and aggregation, which are important determinants of microcirculation. Nine male subjects were exposed to two hypergravity protocols using a short arm human centrifuge: a continuous (CONT) protocol with constant +2 Gz for 30 min and an intermittent (INTER) protocol with repeated intervals of +2 Gz and rest. Blood was sampled pre and post interventions to measure basal blood parameters, RBC nitrite, RBC deformability, aggregation, and to determine the shear rate balancing aggregation and disaggregation (γ at dIsc min). To test for orthostasis effects, five male subjects were asked to stay for 46 min, corresponding to the length of the centrifuge protocols, with blood sampling pre and post intervention. Artificial gravity programs did not affect basal blood parameters or RBC nitrite levels; a marker for RBC deformability influencing nitric oxide. The INTER program did not affect any of the tested parameters. The CONT program did not remarkably affect RBC deformability or γ at dIsc min but significantly aggravated aggregation. Orthostasis effects were thus excluded. The results indicate that continuous artificial gravity, especially with higher g-forces applied, may negatively affect the RBC system and that for a prolonged space flight intermittent but not continuous artificial gravity might represent an appropriate countermeasure.
Ding, Long-jun; Xiao, He-ai; Wu, Jin-shui; Ge, Ti-da
2010-07-01
In order to further understand the mechanisms of microbial immobilization of phosphorous (P) in highly weathered red soil with organic amendment, an incubation test was conducted to investigate the roles of microbial functional groups in the transformation of P in 0.2-2 mm soil aggregates. Throughout the 90-day incubation period, amendment with rice straw induced a substantial increase in the amounts of microbial biomass C and P, Olsen-P, and organic P in the aggregates. Comparing with rice straw amendment alone, the amendment with rice straw plus fungal inhibitor actidione decreased the amount of microbial biomass C in the aggregates by 10.5%-31.8% in the first 30 days. Such a decrement was significantly larger than that (6.8%-11.6%) in the treatment amended with rice straw plus bacterial inhibitors tetracycline and streptomycin sulphate (P<0.01). After the first 30 days, the microbial biomass C remained constant. In the first 20 days, the amount of microbial biomass P in the aggregates was 10.0%-28.8% higher in the treatment amended with bacterial inhibitors than in the treatment amended with fungal inhibitor (P<0.01). All the results suggested that that both the fungal and the bacterial groups were involved in the microbial immobilization of P in the soil aggregates, and the fungal group played a relatively larger role.
Biocatalytic route to sugar-PEG-based polymers for drug delivery applications.
Bhatia, Sumati; Mohr, Andreas; Mathur, Divya; Parmar, Virinder S; Haag, Rainer; Prasad, Ashok K
2011-10-10
Sugar-PEG-based polymers were synthesized by enzymatic copolymerization of 4-C-hydroxymethyl-1,2-O-isopropylidene-β-L-threo-pentofuranose/4-C-hydroxymethyl-1,2-O-benzylidene-β-L-threo-pentofuranose/4-C-hydroxymethyl-1,2-O-isopropylidene-3-O-pentyl-β-L-threo-pentofuranose with PEG-600 dimethyl ester using Novozyme-435 (Candida antarctica lipase immobilized on polyacrylate). Carbohydrate monomers were obtained by the multistep synthesis starting from diacetone-D-glucose and PEG-600 dimethyl ester, which was in turn obtained by the esterification of the commercially available PEG-600 diacid. Aggregation studies on the copolymers revealed that in aqueous solution those polymers bearing the hydrophobic pentyl/benzylidene moiety spontaneously self-assembled into supramolecular aggregates. The critical aggregation concentration (CAC) of polymers was determined by surface tension measurements, and the precise size of the aggregates was obtained by dynamic light scattering. The polymeric aggregates were further explored for their drug encapsulation properties in buffered aqueous solution of pH 7.4 (37 °C) using nile red as a hydrophobic model compound by means of UV/vis and fluorescence spectroscopy. There was no significant encapsulation in polymer synthesized from 4-C-hydroxymethyl-1,2-O-isopropylidene-β-L-threo-pentofuranose because this sugar monomer does not contain a big hydrophobic moiety as the pentyl or the benzylidene moiety. Nile red release study was performed at pH 5.0 and 7.4 using fluorescence spectroscopy. The release of nile red from the polymer bearing benzylidene moiety and pentyl moiety was observed with a half life of 3.4 and 2.0 h, respectively at pH 5.0, whereas no release was found at pH 7.4.
Chao, Xi-Juan; Wang, Kang-Nan; Sun, Li-Li; Cao, Qian; Ke, Zhuo-Feng; Cao, Du-Xia; Mao, Zong-Wan
2018-04-25
Studies on the development of fluorescent organic molecules with different emission colors for imaging of organelles and their biomedical application are gaining lots of focus recently. Here, we report two cationic organochalcogens 1 and 2, both of which exhibit very weak green emission (Φ 1 = 0.12%; Φ 2 = 0.09%) in dilute solution as monomers, but remarkably enhanced green emission upon interaction with nucleic acids and large red-shifted emission in aggregate state by the formation of excimers at high concentration. More interestingly, the monomer emission and excimer-like emission can be used for dual color imaging of different organelles. Upon passively diffusing into cells, both probes selectively stain nucleoli with strong green emission upon 488 nm excitation, whereas upon 405 nm excitation, a completely different stain pattern by staining lysosomes (for 1) or mitochondria (for 2) with distinct red emission is observed because of the highly concentrated accumulation in these organelles. Studies on the mechanism of the accumulation in lysosomes (for 1) or mitochondria (for 2) found that the accumulations of the probes are dependent on the membrane permeabilization, which make the probes have great potential in diagnosing cell damage by sensing lysosomal or mitochondrial membrane permeabilization. The study is demonstrative, for the first time, of two cationic molecules for dual-color imaging nucleoli and lysosomes (1)/mitochondria (2) simultaneously in live cell based on monomer and excimer-like emission, respectively, and more importantly, for diagnosing cell damage.
Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping
2015-02-01
Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data indicate that CD147 and CD98 might play important roles in cyclophilin-induced cell migration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dynamical clustering of red blood cells in capillary vessels.
Boryczko, Krzysztof; Dzwinel, Witold; Yuen, David A
2003-02-01
We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.
Liu, Hsiao-Chuan; Li, Ying; Chen, Ruimin; Jung, Hayong; Shung, K Kirk
2017-04-01
Single-beam acoustic tweezers (SBATs) represent a new technology for particle and cell trapping. The advantages of SBATs are their deep penetration into tissues, reduction of tissue damage and ease of application to in vivo studies. The use of these tools for applications in drug delivery in vivo must meet the following conditions: large penetration depth, strong trapping force and tissue safety. A reasonable penetration depth for SBATs in the development of in vivo applications was established in a previous study conducted in water with zero velocity. However, capturing objects in flowing fluid can provide more meaningful results. In this study, we investigated the capability of SBATs to trap red blood cells (RBCs) and polystyrene microspheres in flowing RBC suspensions. Two different types of RBC suspension were prepared in this work: an RBC phosphate-buffered saline (PBS) suspension and an RBC plasma suspension. The results indicated that SBATs successfully trapped RBCs and polystyrene microspheres in a flowing RBC PBS suspension with an average steady velocity of 1.6 cm/s in a 2-mm-diameter polyimide. Furthermore, SBATs were found able to trap RBCs in a flowing RBC PBS suspension at speeds as high as 7.9 cm/s in a polyimide tube, which is higher than the velocity in capillaries (0.03 cm/s) and approaches the velocity in arterioles and venules. Moreover, the results also indicated that polystyrene microspheres can be trapped in an RBC plasma suspension, where aggregation is observed. This work represents a step forward in using this tool in actual in vivo experimentation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Lupo, Francesca; Tibaldi, Elena; Matte, Alessandro; Sharma, Alok K; Brunati, Anna Maria; Alper, Seth L; Zancanaro, Carlo; Benati, Donatella; Siciliano, Angela; Bertoldi, Mariarita; Zonta, Francesca; Storch, Alexander; Walker, Ruth H; Danek, Adrian; Bader, Benedikt; Hermann, Andreas; De Franceschi, Lucia
2016-12-22
Chorea-acanthocytosis is one of the hereditary neurodegenerative disorders known as the neuroacanthocytoses. Chorea-acanthocytosis is characterized by circulating acanthocytes deficient in chorein, a protein of unknown function. We report here for the first time that chorea-acanthocytosis red cells are characterized by impaired autophagy, with cytoplasmic accumulation of active Lyn and of autophagy-related proteins Ulk1 and Atg7. In chorea-acanthocytosis erythrocytes, active Lyn is sequestered by HSP90-70 to form high-molecular-weight complexes that stabilize and protect Lyn from its proteasomal degradation, contributing to toxic Lyn accumulation. An interplay between accumulation of active Lyn and autophagy was found in chorea-acanthocytosis based on Lyn coimmunoprecipitation with Ulk1 and Atg7 and on the presence of Ulk1 in Lyn-containing high-molecular-weight complexes. In addition, chorein associated with Atg7 in healthy but not in chorea-acanthocytosis erythrocytes. Electron microscopy detected multivesicular bodies and membrane remnants only in circulating chorea-acanthocytosis red cells. In addition, reticulocyte-enriched chorea-acanthocytosis red cell fractions exhibited delayed clearance of mitochondria and lysosomes, further supporting the impairment of authophagic flux. Because autophagy is also important in erythropoiesis, we studied in vitro CD34 + -derived erythroid precursors. In chorea-acanthocytosis, we found (1) dyserythropoiesis; (2) increased active Lyn; (3) accumulation of a marker of autophagic flux and autolysososme degradation; (4) accumlation of Lamp1, a lysosmal membrane protein, and LAMP1-positive aggregates; and (5) reduced clearance of lysosomes and mitochondria. Our results uncover in chorea-acanthocytosis erythroid cells an association between accumulation of active Lyn and impaired autophagy, suggesting a link between chorein and autophagic vesicle trafficking in erythroid maturation.
Processing pathway dependence of amorphous silica nanoparticle toxicity - colloidal versus pyrolytic
Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao; Meng, Huan; Sun, Bingbing; Tarn, Derrick; Xue, Min; Wang, Xiang; Lin, Sijie; Ji, Zhaoxia; Li, Ruibin; Garcia, Fred L.; Yang, Jing; Kirk, Martin L.; Xia, Tian; Zink, Jeffrey I; Nel, Andre; Brinker, C. Jeffrey
2012-01-01
We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low temperature, colloidal (e.g. Stöber silica) or high temperature pyrolysis (e.g. fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16-nm in diameter). Based on erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to post-synthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially non-toxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chain-like aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica but largely absent in colloidal silicas may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silica is created equal and that the unusual toxicity of fumed silica compared to colloidal silica derives from its framework and surface chemistry along with its fused chain-like morphology established by high temperature synthesis (>1300°C) and rapid thermal quenching. PMID:22924492
Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization
NASA Astrophysics Data System (ADS)
Chen, Li Qiang; Kang, Bin; Ling, Jian
2013-03-01
Cuprous oxide nanoparticles (Cu2O NPs) possess unique physical and chemical properties which are employed in a broad variety of applications. However, little is known about the adverse effects of Cu2O NPs on organisms. In the current study, in vitro cytotoxicity of Cu2O NPs (ca. 60 nm in diameter) to the blood cells of freshwater fish Carassius auratus was evaluated. A concentration-dependent hemolytic activity of Cu2O NPs to red blood cells (RBCs) and the phagocytosis of Cu2O NPs by leukocytes were revealed. The results showed that dosages of Cu2O NPs greater than 40 μg/mL were toxic to blood cells, and could cause serious membrane damage to RBCs. The EC50 value of Cu2O NPs as obtained from RBCs and whole blood exposure was 26 and 63 μg/mL, respectively. The generation of reactive oxygen species and the direct interaction between Cu2O NPs and the cell membrane were suggested as the possible mechanism for cytotoxicity, and the intrinsic hemolytic active of Cu2O NPs was the main contributor to the toxicity rather than solubilized copper ions. The adsorption of plasma proteins on the surfaces of Cu2O NPs led to their aggregation in whole blood, and aggregate formation can significantly alleviate the hemolytic effect and subsequently mediate the phagocytosis of Cu2O NPs by leukocytes.
Nader, E; Guillot, N; Lavorel, L; Hancco, I; Fort, R; Stauffer, E; Renoux, C; Joly, P; Germain, M; Connes, P
2018-05-01
We compared the effects of cycling and running exercise on hemorheological and hematological properties, as well as eryptosis markers. Seven endurance-trained subjects randomly performed a progressive and maximal exercise test on a cycle ergometer and a treadmill. Blood was sampled at rest and at the end of the exercise to analyze hematological and blood rheological parameters including hematocrit (Hct), red blood cell (RBC) deformability, aggregation, and blood viscosity. Hemoglobin saturation (SpO2), blood lactate, and glucose levels were also monitored. Red blood cell oxidative stress, calcium content, and phosphatidylserine exposure were determined by flow cytometry to assess eryptosis level. Cycling exercise increased blood viscosity and RBC aggregation whereas it had no significant effect on RBC deformability. In contrast, blood viscosity remained unchanged and RBC deformability increased with running. The increase in Hct, lactate, and glucose concentrations and the loss of weight at the end of exercise were not different between running and cycling. Eryptosis markers were not affected by exercise. A significant drop in SpO2 was noted during running but not during cycling. Our study showed that a progressive and maximal exercise test conducted on a cycle ergometer increased blood viscosity while the same test conducted on a treadmill did not change this parameter because of different RBC rheological behavior between the 2 tests. We also demonstrated that a short maximal exercise does not alter RBC physiology in trained athletes. We suspect that exercise-induced hypoxemia occurring during running could be at the origin of the RBC rheological behavior differences with cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nam, Kweon-Ho; Paeng, Dong-Guk
2014-07-01
The "black hole," a hypo-echoic hole at the center of the bloodstream surrounded by a hyper-echoic zone in cross-sectional views, has been observed in ultrasound backscattering measurements of blood with red blood cell aggregation in in vitro studies. We investigated whether the phenomenon occurs in the in vivo arterial bloodstream of rats using a high-frequency ultrasound imaging system. Longitudinal and cross-sectional ultrasound images of the rat common carotid artery (CCA) and abdominal aorta were obtained using a 40-MHz ultrasound system. A high-frame-rate retrospective imaging mode was employed to precisely examine the dynamic changes in blood echogenicity in the arteries. When the imaging was performed with non-invasive scanning, blood echogenicity was very low in the CCA as compared with the surrounding tissues, exhibiting no hypo-echoic zone at the center of the vessel. Invasive imaging of the CCA by incising the skin and subcutaneous tissues at the imaging area provided clearer and brighter blood echo images, showing the "black hole" phenomenon near the center of the vessel in longitudinal view. The "black hole" was also observed in the abdominal aorta under direct imaging after laparotomy. The aortic "black hole" was clearly observed in both longitudinal and cross-sectional views. Although the "black hole" was always observed near the center of the arteries during the diastolic phase, it dissipated or was off-center along with the asymmetric arterial wall dilation at systole. In conclusion, we report the first in vivo observation of the hypo-echoic "black hole" caused by the radial variation of red blood cell aggregation in arterial bloodstream. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Femia, Eti Alessandra; Pugliano, Mariateresa; Podda, Gianmarco; Cattaneo, Marco
2012-01-01
Light transmission aggregometry (LTA), the gold standard for the study of patients with defects of platelet function, is a poorly standardized technique. The guidelines that have been produced so far are largely based on consensus of experts, due to the absence of studies directly comparing different procedures. Therefore, ad hoc studies are needed to gather scientific evidence on how to choose the most appropriate procedures for LTA measurement. In this study, we aimed at evaluating the most appropriate conditions for preparing samples of platelet-rich plasma (PRP) for studies of platelet aggregation by LTA. Citrate-anticoagulated blood from 32 individuals was centrifuged at 150, 200, 250 or 300×g at room temperature for 10 min. Red blood cells contamination was highest in PRP prepared at 150×g; mean platelet volume (MPV) was lowest in PRP prepared at 300×g. The extent of platelet aggregation measured by LTA was lower and more variable in PRP prepared at 300×g. Therefore, centrifugation of blood at 200×g or 250×g for 10 min appears to be the best condition for preparing PRP for LTA studies.
Korupalli, Chiranjeevi; Huang, Chieh-Cheng; Lin, Wei-Chih; Pan, Wen-Yu; Lin, Po-Yen; Wan, Wei-Lin; Li, Meng-Ju; Chang, Yen; Sung, Hsing-Wen
2017-02-01
Focal infections that are caused by antibiotic-resistant bacteria are becoming an ever-growing challenge to human health. To address this challenge, a pH-responsive amphiphilic polymer of polyaniline-conjugated glycol chitosan (PANI-GCS) that can self-assemble into nanoparticles (NPs) in situ is developed. The PANI-GCS NPs undergo a unique surface charge conversion that is induced by their local pH, favoring bacterium-specific aggregation without direct contact with host cells. Following conjugation onto GCS, the optical-absorbance peak of PANI is red-shifted toward the near-infrared (NIR) region, enabling PANI-GCS NPs to generate a substantial amount of heat, which is emitted to their neighborhood. The local temperature of the NIR-irradiated PANI-GCS NPs is estimated to be approximately 5 °C higher than their ambient tissue temperature, ensuring specific and direct heating of their aggregated bacteria; hence, damage to tissue is reduced and wound healing is accelerated. The above results demonstrate that PANI-GCS NPs are practical for use in the photothermal ablation of focal infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Noe, Rebecca S; Schnall, Amy H; Wolkin, Amy F; Podgornik, Michelle N; Wood, April D; Spears, Jeanne; Stanley, Sharon A R
2013-01-01
To describe the injuries and illnesses treated by the American Red Cross (Red Cross) during Hurricanes Gustav and Ike disaster relief operations reported on a new Aggregate Morbidity Report Form. From August 28 to October 18, 2008, 119 Red Cross field service locations in Louisiana, Mississippi, Tennessee, and Texas addressed the healthcare needs of people affected by the hurricanes. From these locations, individual client visit data were retrospectively collated per site onto new 24-hour Aggregate Morbidity Report Forms. A total of 3863 clients were treated. Of the clients, 48% were girls and women and 44% were boys and men; 61% were 19 to 64 years old. Ninety-eight percent of the visits occurred in shelters. The reasons for half of the visits were acute illness and symptoms (eg, pain) and 16% were for routine follow-up care. The majority (65%) of the 2516 visits required treatment at a field location, although 34%, or 1296 visits, required a referral, including 543 healthcare facility transfers. During the hurricanes, a substantial number of displaced evacuees sought care for acute and routine healthcare needs. The capacity of the Red Cross to address the immediate and ongoing health needs of sheltered clients for an extended period of time is a critical resource for local public health agencies, which are often overwhelmed during a disaster. This article highlights the important role that this humanitarian organization fills, to decrease surge to local healthcare systems and to monitor health effects following a disaster. The Aggregate Morbidity Report Form has the potential to assist greatly in this role, and thus its utility for real-time reporting should be evaluated further.
Characterization of the phosphate-specific transport system in Cronobacter sakazakii BAA-894.
Liang, X; Hu, X; Wang, X; Wang, J; Fang, Y; Li, Y
2017-09-01
Characterize the phosphate-specific transport system in Cronobacter sakazakii BAA-894. The genes relevant to phosphate transfer in C. sakazakii BAA-894 were determined by using sequence alignment to the corresponding genes in Escherichia coli. Then, the determined pst operon in C. sakazakii BAA-894 was deleted using the lambda Red recombination system. Using the wild type C. sakazakii BAA-894 as a control, the membrane permeability, auto-aggregation, exopolysaccharide biosynthesis, biofilm formation, and adhesion ability of the mutant ▵pst grown in media containing high or low concentrations of phosphate were investigated; stronger auto-aggregation, less biofilm formation and higher adhesion ability were observed in ▵pst cells grown in low phosphate media. Transcriptome analysis showed that phosphate availability has a global influence to C. sakazakii BAA-894 and ▵pst cells. Phosphorus availability is important for C. sakazakii in many ways including biofilm formation and adhesion ability. This study demonstrates that phosphate availability has a global influence to C. sakazakii, expends our understanding to the phosphate transfer in C. sakazakii, and is helpful for revealing the survival mechanism of C. sakazakii under stress conditions. © 2017 The Society for Applied Microbiology.
Rheological alteration of erythrocytes exposed to carbon nanotubes.
Heo, Yujin; Li, Cheng-Ai; Kim, Duckjong; Shin, Sehyun
2017-01-01
Single-walled carbon nanotubes (SWNTs) have been increasingly used in a variety of biomedical applications, such as in vivo delivery of drugs and tumor imaging. Potential exposure of SWNTs to human red blood cells (RBCs) may cause serious toxicity including alteration of mechanical properties of cells. The present study investigated the cellular response to exposure of SWNTs with measuring rheological characteristics of RBCs, including hemolysis, deformability, aggregation, and morphological changes. RBCs were exposed to two different dispersion-state samples (i.e. individual SWNTs and bundled SWNTs) in chitosan hydroxyphenyl acetamide (CHPA) solutions. The concentrations of SWNTs were carefully chosen to avoid any hemorheological alterations due to hemolysis. Rheological characteristics were measured using microfluidic-laser diffractometry and aggregometry. Our results show that the bundled SWNTs had higher hemolytic activity than did the individual SWNTs. RBC aggregation apparently decreased as the concentration of SWNTs or incubation time increased. Additionally, bundled SWNTs caused significant alterations in the shape and fusion of RBCs. In conclusion, bundled SWNTs were found to be more toxic than individual SWNTs. These results provide important insights into the interactions between RBCs and SWNTs and will facilitate assessment of the risk of nanomaterial toxicity of blood.
Liu, Shufeng; Du, Zongfeng; Li, Peng; Li, Feng
2012-05-15
A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH, MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 × 10(-9)M to 8.0 × 10(-6)M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination. Copyright © 2012 Elsevier B.V. All rights reserved.
Dinkla, Sip; Peppelman, Malou; Van Der Raadt, Jori; Atsma, Femke; Novotný, Vera M J; Van Kraaij, Marian G J; Joosten, Irma; Bosman, Giel J C G M
2014-04-01
Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibility of red blood cells to stress-induced phosphatidylserine exposure increases with storage. Phosphatidylserine exposure may, therefore, constitute a link between donor variation and the quality of red blood cell concentrates. In order to examine the relationship between storage parameters and donor characteristics, the percentage of phosphatidylserine-exposing red blood cells was measured in red blood cell concentrates during storage and in fresh red blood cells from blood bank donors. The percentage of phosphatidylserine-exposing red blood cells was compared with red blood cell susceptibility to osmotic stress-induced phosphatidylserine exposure in vitro, with the regular red blood cell concentrate quality parameters, and with the donor characteristics age, body mass index, haemoglobin level, gender and blood group. Phosphatidylserine exposure varies between donors, both on red blood cells freshly isolated from the blood, and on red blood cells in red blood cell concentrates. Phosphatidylserine exposure increases with storage time, and is correlated with stress-induced phosphatidylserine exposure. Increased phosphatidylserine exposure during storage was found to be associated with haemolysis and vesicle concentration in red blood cell concentrates. The percentage of phosphatidylserine-exposing red blood cells showed a positive correlation with the plasma haemoglobin concentration of the donor. The fraction of phosphatidylserine-exposing red blood cells is a parameter of red blood cell integrity in red blood cell concentrates and may be an indicator of red blood cell survival after transfusion. Measurement of phosphatidylserine exposure may be useful in the selection of donors and red blood cell concentrates for specific groups of patients.
Kawaguchi, Kouhei; Kikuma, Takashi; Higuchi, Yujiro; Takegawa, Kaoru; Kitamoto, Katsuhiko
2016-11-04
In eukaryotic cells, acyl-CoA binding protein (ACBP) is important for cellular activities, such as in lipid metabolism. In the industrially important fungus Aspergillus oryzae, the ACBP, known as AoACBP, has been biochemically characterized, but its physiological function is not known. In the present study, although we could not find any phenotype of AoACBP disruptants in the normal growth conditions, we examined the subcellular localization of AoACBP to understand its physiological function. Using an enhanced green fluorescent protein (EGFP)-tagged AoACBP construct we showed that AoACBP localized to punctate structures in the cytoplasm, some of which moved inside the cells in a microtubule-dependent manner. Further microscopic analyses showed that AoACBP-EGFP co-localized with the autophagy marker protein AoAtg8 tagged with red fluorescent protein (mDsRed). Expression of AoACBP-EGFP in disruptants of autophagy-related genes revealed aggregation of AoACBP-EGFP fluorescence in the cytoplasm of Aoatg1, Aoatg4 and Aoatg8 disruptant cells. However, in cells harboring disruption of Aoatg15, which encodes a lipase for autophagic body, puncta of AoACBP-EGFP fluorescence accumulated in vacuoles, indicating that AoACBP is transported to vacuoles via the autophagy machinery. Collectively, these results suggest the existence of a regulatory mechanism between AoACBP localization and autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.
Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi
2017-01-01
Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH aggregation specifically induces mitochondrial dysfunction via PTP opening, leading to cell death. PMID:28167533
Bistable aggregate of all-trans-astaxanthin in an aqueous solution
NASA Astrophysics Data System (ADS)
Mori, Yuso; Yamano, Kuniko; Hashimoto, Hideki
1996-05-01
The temperature dependence of the optical absorption spectra for astaxanthin aggregate has been studied between 2 and 32°C. Red-shifted absorption bands as compared to the monomer absorption band are found above 21°C in addition to the blue-shifted band of the aggregate. The spectra suggest that the molecular arrangement in the aggregate is a bistable one consisting of head-to-tail and card-packed arrangements. A diagram describing the bistability together with the monomer state is proposed in the space defined by the free energy and the quantity of Σi = 1 N< θ12 + < σθ12 for the ith molecule in the N-molecule aggregate.
Han, Yi; Liu, Xing-Mao; Liu, Hong; Li, Shi-Chong; Wu, Ben-Chuan; Ye, Ling-Ling; Wang, Qu-Wei; Chen, Zhao-Lie
2006-11-01
Recombinant Chinese hamster ovary (rCHO) cells capable of producing a prourokinase mutant (mPro-uk) grown as suspended aggregates in stirred vessels were described and characterized. The addition of chitosan to a mixture of DMEM and Ham's F12 (D-MEM/F-12) medium promoted cell aggregation and spheroid formation efficiently. Multicellular aggregates formed immediately after the rCHO cells were inoculated into the chitosan-added medium, and the mean diameter of the cell aggregates reflecting the aggregate size increased with culture time, shifting from 65 to 163 mum after 2 and 9 d of culture in spinner flasks. No significant difference in the metabolism performance of the rCHO cells was observed between suspended aggregates and anchored monolayers. However, the cells cultured as suspended aggregates showed a marked decrease in growth rate as evaluated from specific growth rate (mu). Replacing D-MEM/F-12 medium with CD 293 medium caused compact spherical cell aggregates to dissociate into small irregular aggregates and single cells without apparent effects on cell performance in subcultures. The perfusion culture of the rCHO cells grown as suspended aggregates in a 2-l stirred tank bioreactor for 15 d resulted in a maximum viable cell density of 5.6 x 10(6) cells ml(-1) and an mPro-uk concentration of about 2.6 x 10(3) IU ml(-1), and cell viability was remained at roughly 90% during the entire run.
Live Cell Characterization of DNA Aggregation Delivered through Lipofection
Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A.; Gratton, Enrico; Jones, Mark R
2015-01-01
DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation. PMID:26013547
NASA Astrophysics Data System (ADS)
Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-05-01
Fluorescent silica nanoparticles (FSNPs) have been extensively investigated for various biomedical applications in recently years. However, the aggregation of organic dyes in silica nanoparticles also leads the significant fluorescence quenching owing to the aggregation caused quenching effects of organic dyes. Herein, we developed a rather facile strategy to fabricate FSNPs with desirable fluorescent properties through non-covalent incorporation of fluorophores with aggregation-induced emission (AIE) feature into silica nanoparticles, which were subsequently modified with functional polymers. The resultant FSNPs polymer nanocomposites (named as FSNPs-poly(IA-co-PEGMA)) exhibited uniform spherical morphology, high water dispersiity, and bright red fluorescence. Cytotoxicity results indicate that FSNPs-poly(IA-co-PEGMA) possess excellent biocompatibility. Cell uptake behavior suggests FSNPs-poly(IA-co-PEGMA) are of great potential for biological imaging applications. Taken together, we have reported a facile method for the fabrication of FSNPs through non-covalent encapsulation using an AIE-active dye. These FSNPs can be further functionalized with functional polymers through ring-opening reaction and the resultant FSNPs-poly(IA-co-PEGMA) showed great potential for biological imaging. More importantly, we believe that many other functional components could also be integrated into these FSNPs through the facile ring-opening reaction. Therefore, this method should be a facile and general tool for fabrication of polymer functionalized AIE-active FSNPs.
Pais, Eszter; Alexy, Tamas; Holsworth, Ralph E; Meiselman, Herbert J
2006-01-01
The vegetable cheese-like food, natto, is extremely popular in Japan with a history extending back over 1000 years. A fibrinolytic enzyme, termed nattokinase, can be extracted from natto; the enzyme is a subtilisin-like serine protease composed of 275 amino acid residues and has a molecular weight of 27.7 kDa. In vitro and in vivo studies have consistently demonstrated the potent pro-fibrinolytic effect of the enzyme. However, no studies to date have evaluated the effects of nattokinase on various hemorheological parameters and thus we have begun to assess the effects of the enzyme on RBC aggregation and blood viscosity. Blood samples were incubated with nattokinase (final activities of 0, 15.6, 31.3, 62.5 and 125 units/ml) for 30 minutes at 37 degrees C. RBC aggregation was measured using a Myrenne MA-1 aggregometer and blood viscosity assessed over 1-1000 s(-1) with a computer controlled scanning capillary rheometer (Rheolog). Our in vitro results showed a significant, dose-dependent decrease of RBC aggregation and low-shear viscosity, with these beneficial effects evident at concentrations similar to those achieved in previous in vivo animal trials. Our preliminary data thus indicate positive in vitro hemorheological effects of nattokinase, and suggest its potential value as a therapeutic agent and the need for additional studies and clinical trials.
Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Bell, Fernanda Tinti; McNamara, John Campbell
2016-11-01
Pigment aggregation in shrimp chromatophores is triggered by red pigment concentrating hormone (RPCH), a neurosecretory peptide whose plasma membrane receptor may be a G-protein coupled receptor (GPCR). While RPCH binding activates the Ca 2+ /cGMP signaling cascades, a role for cyclic AMP (cAMP) in pigment aggregation is obscure, as are the steps governing Ca 2+ release from the smooth endoplasmic reticulum (SER). A role for the antagonistic neuropeptide, pigment dispersing homone (α-PDH) is also unclear. In red, ovarian chromatophores from the freshwater shrimp Macrobrachium olfersi, we show that a G-protein antagonist (AntPG) strongly inhibits RPCH-triggered pigment aggregation, suggesting that RPCH binds to a GPCR, activating an inhibitory G-protein. Decreasing cAMP levels may cue pigment aggregation, since cytosolic cAMP titers, when augmented by cholera toxin, forskolin or vinpocentine, completely or partially impair pigment aggregation. Triggering opposing Ca 2+ /cGMP and cAMP cascades by simultaneous perfusion with lipid-soluble cyclic nucleotide analogs induces a "tug-of-war" response, pigments aggregating in some chromatosomes with unpredictable, oscillatory movements in others. Inhibition of cAMP-dependent protein kinase accelerates aggregation and reduces dispersion velocities, suggesting a role in phosphorylation events, possibly regulating SER Ca 2+ release and pigment aggregation. The second messengers IP 3 and cADPR do not stimulate SER Ca 2+ release. α-PDH does not sustain pigment dispersion, suggesting that pigment translocation in caridean chromatophores may be regulated solely by RPCH, since PDH is not required. We propose a working hypothesis to further unravel key steps in the mechanisms of pigment translocation within crustacean chromatophores that have remained obscure for nearly a century. © 2016 Wiley Periodicals, Inc.
Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds
2012-01-01
Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Result Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Conclusion Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation. PMID:22269093
Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds.
Jaiswal, Pundrik; Soldati, Thierry; Thewes, Sascha; Baskar, Ramamurthy
2012-01-23
Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation.
Vollmer, G; Layer, P G
1987-12-01
Dissociated single cells from chicken retina or tectum kept in rotation-mediated cell culture aggregate, proliferate and establish a certain degree of histotypical cell-to-cell relationships ("sorting out"), but these systems never form highly laminated aggregates ("nonstratified" R- and T-aggregates). In contrast, a mixture of retinal plus pigment epithelial cells forms highly "stratified" aggregates ("RPE-aggregates", see Vollmer et al. 1984). The present comparative study of "stratified" and "nonstratified" aggregates enables us to investigate the process of cell proliferation uncoupled from that of tissue stratification. Here we try to relate these two basic neurogenetic processes with patterns of expression of cholinesterases (AChE, BChE) during formation of both types of aggregates. During early aggregate formation, in both "stratified" and "nonstratified" aggregates an increased butyrylcholinesterase activity is observed close to mitotically active cells. Quantitatively both phenomena show their maxima after 2-3 days in culture. In contrast, AChE-expression in all systems increases with incubation time. In nonproliferative areas, in the center of RPE-aggregates, the formation of plexiform layers is characterized initially by weak BChE- and then strong AChE-activity. These areas correspond with the inner (IPL) and outer (OPL) plexiform layers of the retina in vivo. Although by sucrose gradient centrifugation we find that the 6S- and the fiber-associated 11S-molecules of AChE are present in all types of aggregates, during the culture period the ratio of 11S/6S-forms increases only in RPE-aggregates, which again indicates the advanced degree of differentiation within these aggregates.(ABSTRACT TRUNCATED AT 250 WORDS)
Role of Multicellular Aggregates in Biofilm Formation
Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.
2016-01-01
ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463
Interaction study of collagen and sericin in blending solution.
Duan, Lian; Yuan, Jingjie; Yang, Xiao; Cheng, Xinjian; Li, Jiao
2016-12-01
The interactions of collagen and sericin were studied by fluorescence spectra, ultraviolet spectra, FTIR spectra and dynamic light scattering. The fluorescence quenching in emission spectra and red-shift (283-330nm) in synchronous fluorescence spectra suggested the Tyr of collagen and sericin overlapped with a distance of 3Å, generating excimer. The overlapped Tyr of collagen and sericin decreased the hydrophobicity of collagen, which resulted in the red-shifts (233-240nm) in ultraviolet spectra. Moreover, the red-shifts of amide bands of collagen in FTIR spectra indicated the hydrogen bonds of collagen were weaken and it could also be explained by the overlapped Tyr. The results of 2D-FTIR spectra demonstrated the backbone of collagen molecule was varied and the most susceptible structure of collagen was the triple helix with the presence of sericin. Based on dynamic light scattering, we conjectured large pure collagen aggregates were replaced by hybrid aggregates of collagen and sericin particles after the addition of sericin. With ascending sericin ratio, the diameters of the hybrid aggregates increased and attained maximum with 60% ratio of sericin, which were on account of the increasing excimer number. The results of DSC demonstrated the presence of sericin enhanced the thermal stability of collagen. Copyright © 2016 Elsevier B.V. All rights reserved.
Boyle, Robert Tew; McNamara, John Campbell
2008-04-01
A model for intracellular transport of pigment granules in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi is proposed on the basis of shifts in the equilibrium of resting forces acting on an elastic pigment matrix. The model describes a pigment-transport mechanism in which mechanochemical protein motors like kinesin and myosin alternately stretch and compress a structurally unified, elastic pigment matrix. Quantifiable properties of the spring-matrix obey Hooke's Law during the rapid phases of pigment aggregation and dispersion. The spring-like response of the pigment mass is estimated from previous kinetic experiments on pigment translocation induced by red pigment concentrating hormone, or by the calcium ionophore A23187. Both translocation effectors trigger an initial phase of rapid pigment aggregation, and their removal or washout after complete aggregation produces a phase of rapid pigment dispersion, followed by slow pigment translocation. The rapid-phase kinetics of pigment transport are in reasonable agreement with Hooke's Law, suggesting that such phases represent the release of kinetic energy, probably produced by the mechanochemical protein motors and stored in the form of matrix deformation during the slow phases of translocation. This semiquantitative model should aid in analyzing intracellular transport systems that incorporate an elastic component.
Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels
Sridharan, BanuPriya; Lin, Staphany M.; Hwu, Alexander T.; Laflin, Amy D.; Detamore, Michael S.
2015-01-01
There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance. PMID:26719986
Effects of midstory reduction and thinning in red-cockaded woodpecker cavity tree clusters
Richard N. Conner; D. Craig Rudolph
1991-01-01
The red-cockaded woodpecker's (Picoides borealis) preference for open pine forest is well known (U.S. Fish and Wildl. Serv. 1985). Encroachment of hardwood midstory within redcockaded woodpecker clusters (colonies, aggregations of cavity trees used by groups of woodpeckers, see Walters et al. 1988) is believed to cause cluster abandonment (Hopkins and Lynn 1971,...
Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli
Neeli-Venkata, Ramakanth; Martikainen, Antti; Gupta, Abhishekh; Gonçalves, Nadia; Fonseca, Jose
2016-01-01
ABSTRACT Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. Combined with cell divisions, this generates heterogeneous aggregate distributions in subsequent cell generations. We studied the robustness of this process with differing medium richness and antibiotics stress, which affect nucleoid size, using multimodal, time-lapse microscopy of live cells expressing both a fluorescently tagged chaperone (IbpA), which identifies in vivo the location of aggregates, and HupA-mCherry, a fluorescent variant of a nucleoid-associated protein. We find that the relative sizes of the nucleoid's major and minor axes change widely, in a positively correlated fashion, with medium richness and antibiotic stress. The aggregate's distribution along the major cell axis also changes between conditions and in agreement with the nucleoid exclusion phenomenon. Consequently, the fraction of aggregates at the midcell region prior to cell division differs between conditions, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, from the location of the peak of anisotropy in the aggregate displacement distribution, the nucleoid relative size, and the spatiotemporal aggregate distribution, we find that the exclusion of detectable aggregates from midcell is most pronounced in cells with mid-sized nucleoids, which are most common under optimal conditions. We conclude that the aggregate management mechanisms of E. coli are significantly robust but are not immune to stresses due to the tangible effect that these have on nucleoid size. IMPORTANCE Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. From live single-cell microscopy studies of the robustness of this process to various stresses known to affect nucleoid size, we find that nucleoid size and aggregate preferential locations change concordantly between conditions. Also, the degree of influence of the nucleoid on aggregate positioning differs between conditions, causing aggregate numbers at midcell to differ in cell division events, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, we find that aggregate segregation to the cell poles is most pronounced in cells with mid-sized nucleoids. We conclude that the energy-free process of the midcell exclusion of aggregates partially loses effectiveness under stressful conditions. PMID:26728194
Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro
2017-10-01
Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Peel, D J; Johnson, S A; Milner, M J
1990-01-01
We have examined the ultrastructure of cellular vesicles in primary cultures of wing imaginal disc cells of Drosophila melanogaster. These cells maintain the apico-basal polarity characteristic of epithelial cells. The apical surfaces secrete extracellular material into the lumen of the vesicle from plasma membrane plaques at the tip of microvilli. During the course of one passage, cells from the established cell lines grow to confluence and then aggregate into discrete condensations joined by aligned bridges of cells. Cells in these aggregates are tightly packed, and there appears to be a loss of the epithelial polarity characteristic of the vesicle cells. Elongated cell extensions containing numerous microtubules are found in aggregates, and we suggest that these may be epithelial feet involved in the aggregation process. Virus particles are commonly found both within the nucleus and the cytoplasm of cells in the aggregates.
Venous and Arterial Thromboses: Two Sides of the Same Coin?
Lippi, Giuseppe; Favaloro, Emmanuel J
2018-04-01
Arterial and venous thromboses are sustained by development of intraluminal thrombi, respectively, within the venous and arterial systems. The composition and structure of arterial and venous thrombi have been historically considered as being very different. Arterial thrombi (conventionally defined as "white") have been traditionally proposed to be composed mainly of fibrin and platelet aggregates, whilst venous thrombi (conventionally defined as "red") have been proposed as mostly being enriched in fibrin and erythrocytes. This archaic dichotomy seems ever more questionable, since it barely reflects the pathophysiology of thrombus formation in vivo. Both types of thrombi are actually composed of a complex fibrin network but, importantly, also contain essentially the same blood-borne cells (i.e., red blood cells, leukocytes, and platelets), and it is only the relative content of these individual elements that differ between venous and arterial clots or, otherwise, between thrombi generated under different conditions of blood flow and shear stress. Convincing evidence now suggests that either white or red intracoronary thrombi may be present in patients with myocardial infarction and, even more importantly, red thrombi may be more prone to distal embolization during percutaneous coronary intervention than those with lower content of erythrocytes. Conversely, it is now accepted that components traditionally considered to be involved "only" in arterial thrombosis are also represented in venous thrombosis. Thus, platelets comprise important components of venous clots, although they may be present in lower amounts here than in arterial thrombi, and von Willebrand factor is also represented in both arterial and venous thrombi. Of importance, such evidence thus supports the concept that adjunctive treatment normally associated to prevention of arterial thrombosis (e.g., aspirin) may have a role also in prevention and treatment of venous thrombosis. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Measuring electrical and mechanical properties of red blood cells with a double optical tweezers
NASA Astrophysics Data System (ADS)
Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; Pozzo, Liliana d. Y.; Barbosa, Luiz C.; Cesar, Carlos L.
2006-08-01
The fluid lipid bilayer viscoelastic membrane of red blood cells (RBC) contains antigen glycolproteins and proteins which can interact with antibodies to cause cell agglutination. This is the basis of most of the immunohematologic tests in blood banks and the identification of the antibodies against the erythrocyte antigens is of fundamental importance for transfusional routines. The negative charges of the RBCs creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. The first counterions cloud strongly binded moving together with the RBC is called the compact layer. This report proposes the use of a double optical tweezers for a new procedure for measuring: (1) the apparent membrane viscosity, (2) the cell adhesion, (3) the zeta potential and (4) the compact layer's size of the charges formed around the cell in the electrolytic solution. To measure the membrane viscosity we trapped silica beads strongly attached to agglutinated RBCs and measured the force to slide one RBC over the other as a function of the relative velocity. The RBC adhesion was measured by slowly displacing two RBCs apart until the disagglutination happens. The compact layer's size was measured using the force on the silica bead attached to a single RBC in response to an applied voltage and the zeta potential was obtained by measuring the terminal velocity after releasing the RBC from the optical trap at the last applied voltage. We believe that the methodology here proposed can improve the methods of diagnosis in blood banks.
Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide
2004-05-28
We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.
Emily B. Schultz; J. Clint Iles; Thomas G. Matney; Andrew W. Ezell; James S. Meadows; Theodor D. Leininger; al. et.
2010-01-01
Greater emphasis is being placed on Southern bottomland hardwood management, but relatively few growth and yield prediction systems exist that are based on sufficient measurements. We present the aggregate stand-level expected yield and structural component equations for a red oak (Quercus section Lobatae)-sweetgum (Liquidambar styraciflua L.) growth and yield model....
JeriLynn E. Peck; Eric K. Zenner; Brian Palik
2012-01-01
Retention harvests are proposed as mechanisms for introducing two-aged structure into even-aged red pine (Pinus resinosa Ait.) stands, yet little is known about seedling responses to overstory abundance and resource availability under potential harvesting treatments. We related spatially explicit measurements of overstory abundance, proportional...
An unusually large number of eggs laid by a breeding red-cockaded woodpecker female
Richard N. Conner; Daniel Saenz; James R. McCormick
2001-01-01
The Red-cockaded Woodpecker (Picoides borealis) is a cooperatively breeding species that typically uses a single cavity for nesting (Ligon 1970, Walters et al. 1988). A single tree, or aggregation of cavity trees, termed the cluster, is inhabited by a group of woodpeckers that includes a single breeding pair and up to several helpers, which are...
Red mud flocculation process in alumina production
NASA Astrophysics Data System (ADS)
Fedorova, E. R.; Firsov, A. Yu
2018-05-01
The process of thickening and washing red mud is a gooseneck of alumina production. The existing automated systems of the thickening process control involve stabilizing the parameters of the primary technological circuits of the thickener. The actual direction of scientific research is the creation and improvement of models and systems of the thickening process control by model. But the known models do not fully consider the presence of perturbing effects, in particular the particle size distribution in the feed process, distribution of floccules by size after the aggregation process in the feed barrel. The article is devoted to the basic concepts and terms used in writing the population balance algorithm. The population balance model is implemented in the MatLab environment. The result of the simulation is the particle size distribution after the flocculation process. This model allows one to foreseen the distribution range of floccules after the process of aggregation of red mud in the feed barrel. The mud of Jamaican bauxite was acting as an industrial sample of red mud; Cytec Industries of HX-3000 series with a concentration of 0.5% was acting as a flocculant. When simulating, model constants obtained in a tubular tank in the laboratories of CSIRO (Australia) were used.
Women with Red Hair Report A Slightly Increased Rate of Bruising, but Have Normal Coagulation Tests
Liem, Edwin B.; Hollensead, Sandra C.; Joiner, Teresa V.
2005-01-01
There is an anecdotal impression that redheads experience more perioperative bleeding complications than those with other hair colors. We, therefore, tested the hypothesis that perceived problems with hemostasis could be detected with commonly used coagulation tests. Se studied healthy female Caucasian volunteers, 18 to 40 years, comparable in terms of height, weight, and age, with natural bright red (n = 25) or black or dark brown (n = 26) hair. Volunteers were questioned about their bleeding history and the following tests were performed: complete blood count, prothrombin time/international normalized ratio, activated partial thromboplastin time, platelet function analysis (PFA-100), and platelet aggregation using standard turbidimetric methodology. Agonists for aggregation were adenosine diphosphate, arachidonic acid, collagen, epinephrine, and two concentrations of ristocetin. The red-haired volunteers reported significantly more bruising, but there were no significant differences between the red- and dark-haired groups in hemoglobin concentration, platelet numbers, prothrombin time/international normalized ratio, or activated partial thromboplastin time. Furthermore, no significant differences in platelet function, as measured with the PFA-100 or with platelet aggregometry, were observed. We conclude that if redheads have hemostasis abnormalities, they are subtle. PMID:16368849
Milograna, Sarah Ribeiro; Bell, Fernanda Tinti; McNamara, John Campbell
2010-11-01
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by ω-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation.
Nikitin, N S
1977-01-01
The morphogenetic potencies of somatic cells of the fresh-water sponge Ephydatia fluviatilis in the developing aggregates depend on their initial specialization and the number of cells in the aggregate. The aggregates of nucleolar amoebocytes consisting of 500 or more cells have the highest morphogenetic potencies. All main cell types can arise in the developing homogeneous aggregates of nucleolar amoebocytes. The fine structure of nucleolar amoebocytes at different stages of development of the homogeneous aggregates was studied by means of electron microscopy. The structural rearrangements are described which accompany the process of redifferentiation of the nucleolar amoebocytes in other cell types.
Heileman, K L; Tabrizian, M
2017-05-02
3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.
Han, Shun; Li, Xiang; Luo, Xuesong; Wen, Shilin; Chen, Wenli; Huang, Qiaoyun
2018-01-01
Nitrification is the two-step aerobic oxidation of ammonia to nitrate via nitrite in the nitrogen-cycle on earth. However, very limited information is available on how fertilizer regimes affect the distribution of nitrite oxidizers, which are involved in the second step of nitrification, across aggregate size classes in soil. In this study, the community compositions of nitrite oxidizers ( Nitrobacter and Nitrospira ) were characterized from a red soil amended with four types of fertilizer regimes over a 26-year fertilization experiment, including control without fertilizer (CK), swine manure (M), chemical fertilization (NPK), and chemical/organic combined fertilization (MNPK). Our results showed that the addition of M and NPK significantly decreased Nitrobacter Shannon and Chao1 index, while M and MNPK remarkably increased Nitrospira Shannon and Chao1 index, and NPK considerably decreased Nitrospira Shannon and Chao1 index, with the greatest diversity achieved in soils amended with MNPK. However, the soil aggregate fractions had no impact on that alpha-diversity of Nitrobacter and Nitrospira under the fertilizer treatment. Soil carbon, nitrogen and phosphorus in the soil had a significant correlation with Nitrospira Shannon and Chao1 diversity index, while total potassium only had a significant correlation with Nitrospira Shannon diversity index. However, all of them had no significant correlation with Nitrobacter Shannon and Chao1 diversity index. The resistance indices for alpha-diversity indexes (Shannon and Chao1) of Nitrobacter were higher than those of Nitrospira in response to the fertilization regimes. Manure fertilizer is important in enhancing the Nitrospira Shannon and Chao1 index resistance. Principal co-ordinate analysis revealed that Nitrobacter - and Nitrospira -like NOB communities under four fertilizer regimes were differentiated from each other, but soil aggregate fractions had less effect on the nitrite oxidizers community. Redundancy analysis and Mantel test indicated that soil nitrogen, carbon, phosphorus, and available potassium content were important environmental attributes that control the Nitrobacter - and Nitrospira -like NOB community structure across different fertilization treatments under aggregate levels in the red soil. In general, nitrite-oxidizing bacteria community composition and alpha-diversity are depending on fertilizer regimes, but independent of the soil aggregate.
2-Styrylindolium based fluorescent probes visualize neurofibrillary tangles in Alzheimer's disease.
Gu, Jiamin; Anumala, Upendra Rao; Lo Monte, Fabio; Kramer, Thomas; Heyny von Haußen, Roland; Hölzer, Jana; Goetschy-Meyer, Valérie; Mall, Gerhard; Hilger, Ingrid; Czech, Christian; Schmidt, Boris
2012-12-15
We evaluated 2-styrylindolium derivatives (6-11) as novel and selective probes for neurofibrillary tangles (NFTs) on brain sections of AD patients. The staining experiments indicated that these compounds may bind selectively to NFTs in the presence of ß-amyloid (Aß) plaques. Cell free binding assays confirmed that 2-[2-[4-(1-pyrrolidinyl)phenyl]ethenyl]-1,3,3-trimethyl-3H-indolium iodide (9) and 2-[2-[4-(diethylamino)phenyl]ethenyl]-1-butyl-3,3-dimethyl-3H-indolium iodide (11) display excellent affinities to Tau-aggregates (IC(50) values of 5.1 and 1.4 nM, respectively) in the displacement of Thiazin Red R. These probes have good solubility in distilled water and low or no cytotoxicity in zebrafish embryo and liver hepatocellular carcinoma cell assays. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vanin, A F; Borodulin, R R; Kubrina, L N; Mikoian, V D; Burbaev, D Sh
2013-01-01
Current notions and new experimental data of the authors on physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands (glutathione or cysteine), underlying the ability of the complexes to act as NO molecule and nitrosonium ion donors, are considered. This ability determines various biological activities of dinitrosyl iron complexes--inducing long-lasting vasodilation and thereby long-lasting hypotension in human and animals, inhibiting pellet aggregation, increasing red blood cell elasticity, thereby stimulating microcirculation, and reducing necrotic zone in animals with myocardial infarction. Moreover, dinitrosyl iron complexes are capable of accelerating skin wound healing, improving the function of penile cavernous tissue, blocking apoptosis development in cell cultures. When decomposed dinitrosyl iron complexes can exert cytotoxic effect that can be used for curing infectious and carcinogenic pathologies.
Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram
2008-09-01
PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.
Rejuvenation of allogenic red cells: benefits and risks.
Aujla, H; Woźniak, M; Kumar, T; Murphy, G J
2018-06-04
To review preclinical and clinical studies that have evaluated the effects of red cell rejuvenation in vivo and in vitro and to assess the potential risks and benefits from their clinical use. A systematic review and narrative synthesis of the intervention of red cell rejuvenation using a red cell processing solution containing inosine, pyruvate, phosphate and adenine. Outcomes of interest in vitro were changes in red cell characteristics including adenosine triphosphate (ATP), 2,3-diphosphoglycerate (2,3-DPG), deformability and the accumulation of oxidized lipids and other reactive species in the red cell supernatant. Outcomes in vivo were 24-h post-transfusion survival and the effects on oxygen delivery, organ function and inflammation in transfused recipients. The literature search identified 49 studies evaluating rejuvenated red cells. In vitro rejuvenation restored cellular properties including 2,3-DPG and ATP to levels similar to freshly donated red cells. In experimental models, in vivo transfusion of rejuvenated red cells improved oxygen delivery and myocardial, renal and pulmonary function when compared to stored red cells. In humans, in vivo 24-h survival of rejuvenated red cells exceeded 75%. In clinical studies, rejuvenated red cells were found to be safe, with no reported adverse effects. In one adult cardiac surgery trial, transfusion of rejuvenated red cells resulted in improved myocardial performance. Transfusion of rejuvenated red cells reduces organ injury attributable to the red cell storage lesion without adverse effects in experimental studies in vivo. The clinical benefits of this intervention remain uncertain. © 2018 International Society of Blood Transfusion.
Plasmonics-Based Detection of Virus Using Sialic Acid Functionalized Gold Nanoparticles.
Lee, Changwon; Wang, Peng; Gaston, Marsha A; Weiss, Alison A; Zhang, Peng
2017-01-01
Biosensor for the detection of virus was developed by utilizing plasmonic peak shift phenomenon of the gold nanoparticles and viral infection mechanism of hemagglutinin on virus and sialic acid on animal cells. The plasmonic peak of the colloidal gold nanoparticles changes with the aggregation of the particles due to the plasmonic interaction between nearby particles and the color of the colloidal nanoparticle solution changes from wine red to purple. Sialic acid reduced and stabilized colloidal gold nanoparticle aggregation is induced by the addition of viral particles in the solution due to the hemagglutinin-sialic acid interaction. In this work, sialic acid reduced and stabilized gold nanoparticles (d = 20.1 ± 1.8 nm) were synthesized by a simple one-pot, green method without chemically modifying sialic acid. The gold nanoparticles showed target-specific aggregation with viral particles via hemagglutinin-sialic acid binding. A linear correlation was observed between the change in optical density and dilution of chemically inactivated influenza B virus species. The detection limit of the virus dilution (hemagglutinination assay titer, 512) was shown to be 0.156 vol% and the upper limit of the linearity can be extended with the use of more sialic acid-gold nanoparticles.
Effects of a Meal on the Hemorheologic Responses to Exercise in Young Males
Bilski, Jan; Teległów, Aneta; Pokorski, Janusz; Nitecki, Jacek; Pokorska, Joanna; Nitecka, Ewa; Marchewka, Anna; Dąbrowski, Zbigniew; Marchewka, Jakub
2014-01-01
Aim. This study investigates the changes in hemorheologic parameters resulting from exercise followed by a standard meal. Methods. In twelve moderately active men a period of exercise on a bicycle ergometer for 30 min at 60% VO2max was followed by a test meal or by 30 min rest. Venous blood was sampled for further analysis at baseline, after exercise, and after the meal/rest period. Results. The elongation index (EI) was reduced and a marked rise in plasma viscosity was observed after exercise. A significant decrease in half time of total aggregation (T 1/2) and a rise in aggregation index (AI) after exercise were observed; however, after the postexercise period these changes were reversed. Conclusion. The present study demonstrates that physical exercise causes several changes in blood rheology parameters, such as an increase of blood viscosity, a decrease in EI and an increase in AI, and a fall in the T 1/2 values. The meal eaten in the postexercise period caused a further reduction in EI values indicating higher red cell rigidity, but not in plasma viscosity or aggregations indices. Such alterations in hemorheologic parameters should not impair the function of the cardiovascular system in fit and healthy people but it could constitute a serious risk under various pathophysiological conditions. PMID:25089277
Effects of a meal on the hemorheologic responses to exercise in young males.
Bilski, Jan; Teległów, Aneta; Pokorski, Janusz; Nitecki, Jacek; Pokorska, Joanna; Nitecka, Ewa; Marchewka, Anna; Dąbrowski, Zbigniew; Marchewka, Jakub
2014-01-01
This study investigates the changes in hemorheologic parameters resulting from exercise followed by a standard meal. In twelve moderately active men a period of exercise on a bicycle ergometer for 30 min at 60% VO2max was followed by a test meal or by 30 min rest. Venous blood was sampled for further analysis at baseline, after exercise, and after the meal/rest period. The elongation index (EI) was reduced and a marked rise in plasma viscosity was observed after exercise. A significant decrease in half time of total aggregation (T 1/2) and a rise in aggregation index (AI) after exercise were observed; however, after the postexercise period these changes were reversed. The present study demonstrates that physical exercise causes several changes in blood rheology parameters, such as an increase of blood viscosity, a decrease in EI and an increase in AI, and a fall in the T 1/2 values. The meal eaten in the postexercise period caused a further reduction in EI values indicating higher red cell rigidity, but not in plasma viscosity or aggregations indices. Such alterations in hemorheologic parameters should not impair the function of the cardiovascular system in fit and healthy people but it could constitute a serious risk under various pathophysiological conditions.
Klaihmon, Phatchanat; Phongpao, Kunwadee; Kheansaard, Wasinee; Noulsri, Egarit; Khuhapinant, Archrob; Fucharoen, Suthat; Morales, Noppawan Phumala; Svasti, Saovaros; Pattanapanyasat, Kovit; Chaichompoo, Pornthip
2017-02-01
Thromboembolic events including cerebral thrombosis, deep vein thrombosis, and pulmonary embolism are major complications in β-thalassemia. Damaged red blood cells and chronic platelet activation in splenectomized β-thalassemia/HbE patients were associated with increased microparticles (MPs) releases into blood circulation. MPs are small membrane vesicles, which play important roles on coagulation. However, the role of MP in thalassemia is poorly understood. In this study, the effects of splenectomized-MPs on platelet activation and aggregation were investigated. The results showed that isolated MPs from fresh platelet-free plasma of patients and normal subjects directly induce platelet activation, platelet aggregation, and platelet-neutrophil aggregation in a dose-dependent manner. Interestingly, MPs obtained from splenectomized patients are more efficient in induction of platelet activation (P-selectin + ) when compared to MPs from normal subjects (P < 0.05), tenfold lower than pathophysiological level, at 1:0.1 platelet MP ratio. Co-incubation of splenectomized-MPs with either normal-, non-splenectomized- or splenectomized-platelets at 1:10 platelet MP ratio increased platelet activation up to 5.1 ± 2.2, 5.6 ± 3.7, and 9.5 ± 3.0%, respectively, when normalized with individual baseline. These findings suggest that splenectomized patients were proned to be activated by MPs, and splenectomized-MPs could play an important role on chronic platelet activation and aggregation, leading to thrombus formation in β-thalassemia/HbE patients.
De Palo, Giovanna; Yi, Darvin; Endres, Robert G.
2017-01-01
The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient, short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we developed a multiscale model verified by quantitative microscopy to describe behaviors ranging widely from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell—cell communication and hence aggregation, we analyzed cell—cell correlations, showing evidence of self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. By comparing wild-type and mutant cells with impaired aggregation, we found the longest cell—cell communication distance in wild-type cells, suggesting that criticality provides an adaptive advantage and optimally sized aggregates for the dispersal of spores. PMID:28422986
21 CFR 640.10 - Red Blood Cells.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...
21 CFR 640.10 - Red Blood Cells.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...
21 CFR 640.10 - Red Blood Cells.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Red Blood Cells. 640.10 Section 640.10 Food and...
21 CFR 640.10 - Red Blood Cells.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...
21 CFR 640.10 - Red Blood Cells.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining...
Critical radius in the organisation of synuclein-alpha interacting protein in living cells
NASA Astrophysics Data System (ADS)
Narayanan, Arjun; Meriin, Anatoli; Sherman, Michael; Cisse, Ibrahim
We report a super-resolution imaging study of protein aggregation in the living cell. Focusing on the aggregation of the Parkinsons's disease linked Synuclein-alpha interacting protein, we found and characterized sub-diffraction aggregates in healthy cells and studied the progression of these aggregates in stressed cells. Our results allowed us to establish the aggregation process as amenable to a simple physical description - the well-established thermodynamics of condensation phenomena. This description turned out to be both robust and useful. Not only did the distribution of aggregate sizes fit exceedingly well to the thermodynamic predictions in all tested conditions, but its evolving shape under pharmacological and genetic perturbations correlated intuitively with predictions from cell biology. The picture emerging from measurements in different genetic and pharmacological states is a view of protein aggregate size distribution as resulting from a non-equilibrium steady state maintained - even in healthy cells - with continuous and concurrent aggregate production and clearance.
Evaluation of canine red blood cell quality after processing with an automated cell salvage device.
Hofbauer, Nina; Windberger, Ursula; Schwendenwein, Ilse; Tichy, Alexander; Eberspächer, Eva
2016-05-01
To evaluate the properties of RBC concentrate harvested after processing fresh whole blood units from healthy dogs with an automated cell salvage device. Prospective, in vitro, experimental study. University teaching hospital. Sixteen healthy, privately owned dogs of various breeds. Fresh canine whole blood collected in bags with citrate phosphate dextrose adenine solution was processed with an automated cell salvage device and analyzed in vitro. Laboratory values determined before (baseline, from a catheter sample) and after processing RBCs (procRBCs) included a complete blood count, selected blood chemistry analytes, erythrocyte osmotic resistance, whole blood viscosity, RBC aggregation, and RBC deformability. Total recovery of RBCs was 80% ± 12%. Hematocrit of the procRBCs yielded by the device was 77% ± 3.7% (mean ± standard deviation). Gross morphology of the RBCs remained unchanged. The mean corpuscular volume, erythrocyte osmotic resistance, RBC deformability, RBC aggregation, and the activity of lactate dehydrogenase showed minor but statistically significant changes from baseline. No differences in the concentrations of free hemoglobin were observed. Whole blood viscosity was less in the procRBCs. Seventy-seven percent (mean) of the platelets were washed out, while a mean of 57% of the leukocytes remained in the procRBCs. Although processing canine blood with this automated cell salvage device leads to slight changes in some properties of RBCs, most of these changes are comparable to changes seen in human blood after processing. Present data indicate that the use of this cell salvage device does not induce changes in canine RBC concentrate that would preclude its use for transfusion. © Veterinary Emergency and Critical Care Society 2016.
Carterson, A J; Höner zu Bentrup, K; Ott, C M; Clarke, M S; Pierson, D L; Vanderburg, C R; Buchanan, K L; Nickerson, C A; Schurr, M J
2005-02-01
A three-dimensional (3-D) lung aggregate model was developed from A549 human lung epithelial cells by using a rotating-wall vessel bioreactor to study the interactions between Pseudomonas aeruginosa and lung epithelial cells. The suitability of the 3-D aggregates as an infection model was examined by immunohistochemistry, adherence and invasion assays, scanning electron microscopy, and cytokine and mucoglycoprotein production. Immunohistochemical characterization of the 3-D A549 aggregates showed increased expression of epithelial cell-specific markers and decreased expression of cancer-specific markers compared to their monolayer counterparts. Immunohistochemistry of junctional markers on A549 3-D cells revealed that these cells formed tight junctions and polarity, in contrast to the cells grown as monolayers. Additionally, the 3-D aggregates stained positively for the production of mucoglycoprotein while the monolayers showed no indication of staining. Moreover, mucin-specific antibodies to MUC1 and MUC5A bound with greater affinity to 3-D aggregates than to the monolayers. P. aeruginosa attached to and penetrated A549 monolayers significantly more than the same cells grown as 3-D aggregates. Scanning electron microscopy of A549 cells grown as monolayers and 3-D aggregates infected with P. aeruginosa showed that monolayers detached from the surface of the culture plate postinfection, in contrast to the 3-D aggregates, which remained attached to the microcarrier beads. In response to infection, proinflammatory cytokine levels were elevated for the 3-D A549 aggregates compared to monolayer controls. These findings suggest that A549 lung cells grown as 3-D aggregates may represent a more physiologically relevant model to examine the interactions between P. aeruginosa and the lung epithelium during infection.
Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn
2015-07-27
We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within severalmore » molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.« less
Takemoto, Naohiro; Liu, Xibao; Takii, Kento; Teramura, Yuji; Iwata, Hiroo
2014-02-15
Transplantation of islets of Langerhans (islets) was used to treat insulin-dependent diabetes mellitus. However, islet grafts must be maintained by administration of immunosuppressive drugs, which can lead to complications in the long term. An approach that avoids immunosuppressive drug use is desirable. Co-aggregates of Sertoli cells and islet cells from BALB/c mice that were prepared by the hanging drop method were transplanted into C57BL/6 mouse liver through the portal vein as in human clinical islet transplantation. The core part of the aggregates contained mainly Sertoli cells, and these cells were surrounded by islet cells. The co-aggregates retained the functions of both Sertoli and islet cells. When 800 co-aggregates were transplanted into seven C57BL/6 mice via the portal vein, six of seven recipient mice demonstrated quasi-normoglycemia for more than 100 days. The hanging drop method is suitable for preparing aggregates of Sertoli and islet cells for transplantation. Notably, transplantation of these allogeneic co-aggregates into mice with chemically induced diabetes via the portal vein resulted in long-term graft survival without systemic immunosuppression.
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments intended...
NASA Astrophysics Data System (ADS)
Alet, Analía. I.; Basso, Sabrina; Delannoy, Marcela; Alet, Nicolás. A.; D'Arrigo, Mabel; Castellini, Horacio V.; Riquelme, Bibiana D.
2015-06-01
Drugs used during anesthesia could enhance microvascular flow disturbance, not only for their systemic cardiovascular actions but also by a direct effect on the microcirculation and in particular on hemorheology. This is particularly important in high-risk surgical patients such as those with vascular disease (diabetes, hypertension, etc.). Therefore, in this work we propose a set of innovative parameters obtained by digital analysis of microscopic images to study the in vitro hemorheological effect of propofol and vecuronium on red blood cell from type 2 diabetic patients compared to healthy donors. Obtained innovative parameters allow quantifying alterations in erythrocyte aggregation, which can increase the in vivo risk of microcapillary obstruction.
NASA Astrophysics Data System (ADS)
Zhang, Kristine A.; Li, Yat
2015-08-01
Alzheimer's disease (AD), an age-related neurodegenerative disorder, is the seventh leading cause of death in the United States. One strong pathological indicator of AD is senile plaques, which are aggregates of fibrils formed from amyloid β (Aβ) peptides. Thus, detection and inhibition of Aβ aggregation are critical for the prevention and treatment of AD. Congo red (CR) is one of the most widely used dye molecules for probing as well as inhabiting Aβ aggregation. However, the nature of interaction between CR and Aβ is not well understood. In this research, we systematically studied the interaction between CR and Aβ using a combination of optical techniques, including electronic absorption, fluorescence, Raman scattering, and circular dichroism, to provide detailed information with molecular specificity and high sensitivity. Compared to CR alone, interaction of the dye with Aβ results in a new absorption peak near 540 nm and significantly enhanced photoluminescence as well as Raman signal. Our results led us to propose a new model suggesting that CR exists primarily in a micellar form, resembling H-aggregates, in water and dissociates into monomers upon interaction with Aβ. This model has significant implications for the development of new strategies to detect and inhibit brain plaques for treatment of neurological diseases like AD.
Woźniak, Marcin J; Qureshi, Saqib; Sullo, Nikol; Dott, William; Cardigan, Rebecca; Wiltshire, Michael; Nath, Mintu; Patel, Nishith N; Kumar, Tracy; Goodall, Alison H; Murphy, Gavin J
2018-02-01
We evaluated the effects of two interventions that modify the red cell storage lesion on kidney and lung injury in experimental models of transfusion. White-landrace pigs (n = 32) were allocated to receive sham transfusion (crystalloid), 14-day stored allogeneic red cells, 14-day red cells washed using the red cells washing/salvage system (CATS; Fresenius, Germany), or 14-day red cells rejuvenated using the inosine solution (Rejuvesol solution; Zimmer Biomet, USA) and washed using the CATS device. Functional, biochemical, and histologic markers of organ injury were assessed for up to 24 h posttransfusion. Transfusion of 14 day red cells resulted in lung injury (lung injury score vs. sham, mean difference -0.3 (95% CI, -0.6 to -0.1; P = 0.02), pulmonary endothelial dysfunction, and tissue leukocyte sequestration. Mechanical washing reduced red cell-derived microvesicles but increased cell-free hemoglobin in 14-day red cell units. Transfusion of washed red cells reduced leukocyte sequestration but did not reduce the lung injury score (mean difference -0.2; 95% CI, -0.5 to 0.1; P = 0.19) relative to 14-day cells. Transfusion of washed red cells also increased endothelial activation and kidney injury. Rejuvenation restored adenosine triphosphate to that of fresh red cells and reduced microvesicle concentrations without increasing cell-free hemoglobin release. Transfusion of rejuvenated red cells reduced plasma cell-free hemoglobin, leukocyte sequestration, and endothelial dysfunction in recipients and reduced lung and kidney injury relative to 14-day or washed 14-day cells. Reversal of the red cell storage lesion by rejuvenation reduces transfusion-associated organ injury in swine.
Evidence for Compression of Escherichia coli K12 Cells under the Effect of TiO₂ Nanoparticles.
Zhukova, Lyudmila V
2015-12-16
It has been shown that treatment with titanium dioxide nanoparticles (TiO2 NPs) combined with near-ultraviolet (UV-A) irradiation or in certain dark conditions reduced the numbers of various microorganisms, but the mechanism of this effect remains unclear. In this study to further clarify the mechanism of the antibacterial effect of TiO2 NPs the physiological state of E. coli K12 cells was estimated after incubation with the NPs (0.2 g/L) for different periods of time, with or without UV-A irradiation. Cell incubation with TiO2 NPs, combined or not combined with UV-A irradiation, showed that inactive cells were located only within cell aggregates formed after incubation with TiO2 NPs and that the larger the aggregate, the greater the number of such cells. When the formation of large aggregates was prevented, exposure to NPs under UV-A irradiation failed to result in cell inactivation. A comparative analysis of fluorescence and optical microscopic images of the same aggregates showed that the location of inactivated cells coincided with the zone of increased optical density within the aggregate. After treatment with TiO2 NPs under UV-A for 30, 60, or 120 min cells within the aggregates were the first to be inactivated. Cells on which NPs irradiated more strongly (at the periphery of large aggregates and single) remained active for a longer time than cells within the aggregates. As the time of treatment increased, so did the degree of cell compaction, with some zones of the aggregates eventually transforming into an acellular mass. After UV-A irradiation the cell aggregates spontaneously moved toward each other and gradually fused into larger structures, indicating that such exposure enhanced mutual attraction of cells treated with the NPs. Present study provides evidence for hypothesis that bacterial cells covered with TiO2 NPs are inactivated due to their mutual attraction and consequent compression.
Self-organized, near-critical behavior during aggregation in Dictyostelium discoideum
NASA Astrophysics Data System (ADS)
de Palo, Giovanna; Yi, Darvin; Gregor, Thomas; Endres, Robert
During starvation, the social amoeba Dictyostelium discoideum aggregates artfully via pattern formation into a multicellular slug and finally spores. The aggregation process is mediated by the secretion and sensing of cyclic adenosine monophosphate, leading to the synchronized movement of cells. The whole process is a remarkable example of collective behavior, spontaneously emerging from single-cell chemotaxis. Despite this phenomenon being broadly studied, a precise characterization of the transition from single cells to multicellularity has been elusive. Here, using fluorescence imaging data of thousands of cells, we investigate the role of cell shape in aggregation, demonstrating remarkable transitions in cell behavior. To better understand their functional role, we analyze cell-cell correlations and provide evidence for self-organization at the onset of aggregation (as opposed to leader cells), with features of criticality in this finite system. To capture the mechanism of self-organization, we extend a detailed single-cell model of D.discoideum chemotaxis by adding cell-cell communication. We then use these results to extract a minimal set of rules leading to aggregation in the population model. If universal, similar rules may explain other types of collective cell behavior.
Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.
NASA Astrophysics Data System (ADS)
Krueger, Susan Takacs
Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of varying cross-sectional diameters. The biochemical experiments not only confirmed the ability of the core constituents to form large aggregates but also established that phospholipids do not play a role in this aggregate formation.
Rheologic and hemodynamic characteristics of red cells of mouse, rat and human.
Chen, D; Kaul, D K
1994-01-01
The present study compares hematologic, rheologic and hemodynamic characteristics of red cells from mouse, rat and human. Red cells in these species are biconcave discs that show significant differences in diameter and mean corpuscular volume (MCV). However, differences in mean corpuscular hemoglobin concentration (MCHC) are not significant. Viscosity measurement of washed red cell suspensions (in each case the medium osmolarity adjusted to match plasma osmolarity) showed significant interspecies differences at shear rates of 37.5 and 750 sec-1 as follows: Human > rat > mouse. Hemodynamic and microcirculatory behavior of these red cells was investigated in the artificially perfused ex vivo mesocecum vasculature of the rat. Hemodynamic measurements in the whole ex vivo mesocecum preparation revealed maximal increase in the peripheral resistance unit (PRU) for the human red cells followed by the rat and mouse red cells, respectively at a hematocrit (Hct) of 40%. Further, measurements of red cell velocities (Vrbc) in single arterioles of the mesocecum vasculature, during sustained perfusion with washed red cell suspensions, showed that at any given perfusion pressure (Pa), Vrbc for both mouse and rat red cells was higher than that for human red cells, while Vrbc for mouse red cells was higher than that for the rat. These results demonstrate that the microvascular flow behavior of these red cells is likely to be influenced by both physical and rheologic characteristics.
Trevino, R. Sean; Lauckner, Jane E.; Sourigues, Yannick; Pearce, Margaret M.; Bousset, Luc; Melki, Ronald; Kopito, Ron R.
2012-01-01
The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces. PMID:22753412
Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil.
Angulo, S C; Ulsen, C; John, V M; Kahn, H; Cincotto, M A
2009-02-01
This study presents a methodology for the characterization of construction and demolition (C&D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&D samples taken from the São Paulo region in Brazil are discussed. Chemical compositions of mixed C&D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&D into red or grey and geographical origin. The amount of measured soluble salts in C&D aggregates (0.15-25.4mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&D powders (<0.15 mm). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO(2), the powders have potential use as raw materials for the cement industry.
Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation.
Sart, Sébastien; Ma, Teng; Li, Yan
2013-01-01
Cultivation of undifferentiated pluripotent stem cells (PSCs) as aggregates has emerged as an efficient culture configuration, enabling rapid and controlled large scale expansion. Aggregate-based PSC cryopreservation facilitates the integrated process of cell expansion and cryopreservation, but its feasibility has not been demonstrated. The goals of current study are to assess the suitability of cryopreserving intact mouse embryonic stem cell (mESC) aggregates and investigate the effects of aggregate size and the formulation of cryopreservation solution on mESC survival and recovery. The results demonstrated the size-dependent cell survival and recovery of intact aggregates. In particular, the generation of reactive oxygen species (ROS) and caspase activation were reduced for small aggregates (109 ± 55 μm) compared to medium (245 ± 77 μm) and large (365 ± 141 μm) ones, leading to the improved cell recovery. In addition, a defined protein-free formulation was tested and found to promote the aggregate survival, eliminating the cell exposure to animal serum. The cryopreserved aggregates also maintained the pluripotent markers and the differentiation capacity into three-germ layers after thawing. In summary, the cryopreservation of small PSC aggregates in a defined protein-free formulation was shown to be a suitable approach toward a fully integrated expansion and cryopreservation process at large scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors
NASA Astrophysics Data System (ADS)
Cho, Edward H.; Wendel, Marco; Luttgen, Madelyn; Yoshioka, Craig; Marrinucci, Dena; Lazar, Daniel; Schram, Ethan; Nieva, Jorge; Bazhenova, Lyudmila; Morgan, Alison; Ko, Andrew H.; Korn, W. Michael; Kolatkar, Anand; Bethel, Kelly; Kuhn, Peter
2012-02-01
Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may make to metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung, 18 pancreatic, 15 prostate stage IV cancer patients and 15 normal blood donors. Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic ratios between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE.
Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity
Weisberg, Sarah J.; Lyakhovetsky, Roman; Werdiger, Ayelet-chen; Gitler, Aaron D.; Soen, Yoav; Kaganovich, Daniel
2012-01-01
Neurodegenerative diseases constitute a class of illnesses marked by pathological protein aggregation in the brains of affected individuals. Although these disorders are invariably characterized by the degeneration of highly specific subpopulations of neurons, protein aggregation occurs in all cells, which indicates that toxicity arises only in particular cell biological contexts. Aggregation-associated disorders are unified by a common cell biological feature: the deposition of the culprit proteins in inclusion bodies. The precise function of these inclusions remains unclear. The starting point for uncovering the origins of disease pathology must therefore be a thorough understanding of the general cell biological function of inclusions and their potential role in modulating the consequences of aggregation. Here, we show that in human cells certain aggregate inclusions are active compartments. We find that toxic aggregates localize to one of these compartments, the juxtanuclear quality control compartment (JUNQ), and interfere with its quality control function. The accumulation of SOD1G93A aggregates sequesters Hsp70, preventing the delivery of misfolded proteins to the proteasome. Preventing the accumulation of SOD1G93A in the JUNQ by enhancing its sequestration in an insoluble inclusion reduces the harmful effects of aggregation on cell viability. PMID:22967507
In vivo studies of sickle red blood cells.
Kaul, Dhananjay K; Fabry, Mary E
2004-03-01
The defining clinical feature of sickle cell anemia is periodic occurrence of painful vasoocclusive crisis. Factors that promote trapping and sickling of red cells in the microcirculation are likely to trigger vasoocclusion. The marked red cell heterogeneity in sickle blood and abnormal adhesion of sickle red cells to vascular endothelium would be major disruptive influences. Using ex vivo and in vivo models, the authors show how to dissect the relative contribution of heterogeneous sickle red cell classes to adhesive and obstructive events. These studies revealed that (1) both rheological abnormalities and adhesion of sickle red cells contribute to their abnormal hemodynamic behavior, (2) venules are the sites of sickle cell adhesion, and (3) sickle red cell deformability plays an important role in adhesive and obstructive events. Preferential adhesion of deformable sickle red cells in postcapillary venules followed by selective trapping of dense sickle red cells could result in vasoocclusion. An updated version of this 2-step model is presented. The multifactorial nature of sickle red cell adhesion needs to be considered in designing antiadhesive therapy in vivo.
WANG, WEI; WANG, HONG; WANG, CHUN-MEI; GOU, SI; CHEN, ZHONG-HUA; GUO, JIE
2014-01-01
The aim of this study was to investigate whether Huisheng oral solution (HSOS) has an inhibitory effect on the development of pulmonary thrombosis and metastasis in mice with Lewis lung carcinoma (LLC), and to explore the possible mechanisms involved. A mouse model of LLC was developed, and model mice were divided into either a treatment group or a control group to undergo treatment with HSOS or normal saline. Normal mice treated with saline were used as normal controls. On day 25 after treatment, blood samples were drawn from the eyes of half the mice in each group to determine blood cell counts and plasma levels of D-Dimer and vascular endothelial growth factor (VEGF), while heart blood samples were collected from the remaining mice to measure the rate of thrombin-induced platelet aggregation. For all mice, pathological analyses of the cerebrum, lung, mesentery, femoral vein, external iliac vein and spleen were performed. Tumors were weighed to assess the impact of HSOS treatment on tumor growth, and the number of thrombi, metastatic nodules and neovessels in the tumor tissue were counted. In addition, 24 normal New Zealand rabbits were divided into two groups and treated with either HSOS or normal saline to determine the rates of ADP-, collagen- or thrombin-induced platelet aggregation. Compared with the model group, HSOS treatment decreased the incidence of pulmonary thromboembolism and metastasis, the number of metastatic nodules, the plasma levels of D-dimer and VEGF, the rate of collagen-induced platelet aggregation in rabbits and the numbers of leukocytes and tumor neovessels (P<0.05 for all). It increased the thymus and spleen coefficients and the number of platelets (P<0.05 for all), but had no significant effect on thrombin-induced platelet aggregation in mice and rabbits, ADP-induced platelet aggregation in rabbits, or the number of red blood cells. The reduced rate of tumor growth was 9.7% in mice treated with HSOS. HSOS treatment effectively reduced the development of pulmonary thromboembolism and metastasis in mice bearing LLC via mechanisms possibly associated with ameliorating a blood hypercoagulable state, decreasing tumor angiogenesis and enhancing immunity. PMID:24348827
Cotter, Christopher R.; Schüttler, Heinz-Bernd; Igoshin, Oleg A.; Shimkets, Lawrence J.
2017-01-01
Collective cell movement is critical to the emergent properties of many multicellular systems, including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known for its social developmental cycle, the bacterium Myxococcus xanthus uses coordinated movement to generate three-dimensional aggregates called fruiting bodies. Despite extensive progress in identifying genes controlling fruiting body development, cell behaviors and cell–cell communication mechanisms that mediate aggregation are largely unknown. We developed an approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven models. A unique feature of this approach is the ability to identify cell behaviors affecting the observed aggregation dynamics without full knowledge of the underlying biological mechanisms. The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells in a radial direction to the nearest aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed that aggregation is generally robust to perturbations in these behaviors and identified possible compensatory mechanisms. The resulting approach of directly combining behavior quantification with data-driven simulations can be applied to more complex systems of collective cell movement without prior knowledge of the cellular machinery and behavioral cues. PMID:28533367
NASA Astrophysics Data System (ADS)
Fontes, Adriana; Fernandes, Heloise P.; de Thomaz, André A.; Barbosa, Luiz C.; Barjas-Castro, Maria L.; Cesar, Carlos L.
2007-07-01
The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. The basis of the immunohematologic tests is the interaction between antigens and antibodies that causes hemagglutination. The identification of antibodies and antigens is of fundamental importance for the transfusional routine. This agglutination is induced by decreasing the zeta-potential through the introduction of artificial potential substances. This report proposes the use of the optical tweezers to measure the membrane viscosity, the cell adhesion, the zeta-potential and the size of the double layer of charges (CLC) formed around the cell in an electrolytic solution. The adhesion was quantified by slowly displacing two RBCs apart until the disagglutination. The CLC was measured using the force on the bead attached to a single RBC in response to an applied voltage. The zeta-potential was obtained by measuring the terminal velocity after releasing the RBC from the optical trap at the last applied voltage. For the membrane viscosity experiment, we trapped a bead attached to RBCs and measured the force to slide one RBC over the other as a function of the relative velocity. After we tested the methodology, we performed measurements using antibody and potential substances. We observed that this experiment can provide information about cell agglutination that helps to improve the tests usually performed in blood banks. We also believe that this methodology can be applied for measurements of zeta-potentials in other kind of samples.
Radiological risk of building materials using homemade airtight radon chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan
Soil based building materials known to contain various amounts of natural radionuclide mainly {sup 238}U and {sup 232}Th series and {sup 40}K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived {sup 222}Radon and its progenies which arise from the decay of {sup 226}Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samplesmore » were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m{sup −3}, 192 Bq m{sup −3}, 176 Bq m{sup −3} and 28 Bq m{sup −3}, respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m{sup −3} i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y{sup −1}, 4.85 mSv y{sup −1}, 4.44 mSv y{sup −1} and 0.72 mSv y{sup −1}, respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y{sup −1}. As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively.« less
NASA Astrophysics Data System (ADS)
Apostol, Barbara L.; Kazantsev, Alexsey; Raffioni, Simona; Illes, Katalin; Pallos, Judit; Bodai, Laszlo; Slepko, Natalia; Bear, James E.; Gertler, Frank B.; Hersch, Steven; Housman, David E.; Marsh, J. Lawrence; Michels Thompson, Leslie
2003-05-01
The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.
Synthetic food additive dye "Tartrazine" triggers amorphous aggregation in cationic myoglobin.
Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Khan, Mohd Shahnawaz; Ali, Mohd Sajid; Al-Senaidy, Abdulrahman M; Alsenaidy, Mohammad A; Husain, Fohad Mabood; Al-Lohedan, Hamad A
2017-05-01
Protein aggregation, a characteristic of several neurodegenerative diseases, displays vast conformational diversity from amorphous to amyloid-like aggregates. In this study, we have explored the interaction of tartrazine with myoglobin protein at two different pHs (7.4 and 2.0). We have utilized various spectroscopic techniques (turbidity, Rayleigh light scattering (RLS), intrinsic fluorescence, Congo Red and far-UV CD) along with microscopy techniques i.e. atomic force microscopy (AFM) and transmission electron microscopy (TEM) to characterize the tartrazine-induced aggregation in myoglobin. The results showed that higher concentrations of tartrazine (2.0-10.0mM) induced amorphous aggregation in myoglobin at pH 2.0 via electrostatic interactions. However, tartrazine was not able to induce aggregation in myoglobin at pH 7.4; because of strong electrostatic repulsion between myoglobin and tartrazine at this pH. The tartrazine-induced amorphous aggregation process is kinetically very fast, and aggregation occurred without the formation of a nucleus. These results proposed that the electrostatic interaction is responsible for tartrazine-induced amorphous aggregation. This study may help in the understanding of mechanistic insight of aggregation by tartrazine. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Johannes; German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich; Hillmer, Andreas S.
Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregationmore » process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein aggregates at the oligomer level. • The technique detects molecules inhibiting α-synuclein aggregate formation. • Single particle spectroscopy is suited for high throughput measurements.« less
Red cell metabolism studies on Skylab
NASA Technical Reports Server (NTRS)
Mengel, C. E.
1977-01-01
Blood samples from Spacelab crewmembers were studied for possible environment effects on red cell components. Analysis involved peroxidation of red cell lipids, enzymes of red cell metabolism, and levels of 2,3-diphosphoglyceric acid and adenosine triphosphate. Results show that there is no evidence of lipid peroxidation, that biochemical effect known to be associated with irreversible red cell damage. Changes observed in glycolytic intermediates and enzymes cannot be directly implicated as indicating evidence of red cell damage.
Neocytolysis: physiological down-regulator of red-cell mass
NASA Technical Reports Server (NTRS)
Alfrey, C. P.; Rice, L.; Udden, M. M.; Driscoll, T. B.
1997-01-01
It is usually considered that red-cell mass is controlled by erythropoietin-driven bone marrow red-cell production, and no physiological mechanisms can shorten survival of circulating red cells. In adapting to acute plethora in microgravity, astronauts' red-cell mass falls too rapidly to be explained by diminished red-cell production. Ferrokinetics show no early decline in erythropolesis, but red cells radiolabelled 12 days before launch survive normally. Selective destruction of the youngest circulating red cells-a process we call neocytolysis-is the only plausible explanation. A fall in erythropoietin below a threshold is likely to initiate neocytolysis, probably by influencing surface-adhesion molecules. Recognition of neocytolysis will require re-examination of the pathophysiology and treatment of several blood disorders, including the anaemia of renal disease.
Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.
Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi
2018-01-01
It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.
Itakura, Masanori; Nakajima, Hidemitsu; Semi, Yuko; Higashida, Shusaku; Azuma, Yasu-Taka; Takeuchi, Tadayoshi
2015-11-13
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death. Copyright © 2015 Elsevier Inc. All rights reserved.
Earthing (Grounding) the Human Body Reduces Blood Viscosity—a Major Factor in Cardiovascular Disease
Chevalier, Gaétan; Sinatra, Stephen T.; Delany, Richard M.
2013-01-01
Abstract Objectives Emerging research is revealing that direct physical contact of the human body with the surface of the earth (grounding or earthing) has intriguing effects on human physiology and health, including beneficial effects on various cardiovascular risk factors. This study examined effects of 2 hours of grounding on the electrical charge (zeta potential) on red blood cells (RBCs) and the effects on the extent of RBC clumping. Design/interventions Subjects were grounded with conductive patches on the soles of their feet and palms of their hands. Wires connected the patches to a stainless-steel rod inserted in the earth outdoors. Small fingertip pinprick blood samples were placed on microscope slides and an electric field was applied to them. Electrophoretic mobility of the RBCs was determined by measuring terminal velocities of the cells in video recordings taken through a microscope. RBC aggregation was measured by counting the numbers of clustered cells in each sample. Settings/location Each subject sat in a comfortable reclining chair in a soundproof experiment room with the lights dimmed or off. Subjects Ten (10) healthy adult subjects were recruited by word-of-mouth. Results Earthing or grounding increased zeta potentials in all samples by an average of 2.70 and significantly reduced RBC aggregation. Conclusions Grounding increases the surface charge on RBCs and thereby reduces blood viscosity and clumping. Grounding appears to be one of the simplest and yet most profound interventions for helping reduce cardiovascular risk and cardiovascular events. PMID:22757749
Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Delany, Richard M
2013-02-01
Emerging research is revealing that direct physical contact of the human body with the surface of the earth (grounding or earthing) has intriguing effects on human physiology and health, including beneficial effects on various cardiovascular risk factors. This study examined effects of 2 hours of grounding on the electrical charge (zeta potential) on red blood cells (RBCs) and the effects on the extent of RBC clumping. SUBJECTS were grounded with conductive patches on the soles of their feet and palms of their hands. Wires connected the patches to a stainless-steel rod inserted in the earth outdoors. Small fingertip pinprick blood samples were placed on microscope slides and an electric field was applied to them. Electrophoretic mobility of the RBCs was determined by measuring terminal velocities of the cells in video recordings taken through a microscope. RBC aggregation was measured by counting the numbers of clustered cells in each sample. Each subject sat in a comfortable reclining chair in a soundproof experiment room with the lights dimmed or off. Ten (10) healthy adult subjects were recruited by word-of-mouth. Earthing or grounding increased zeta potentials in all samples by an average of 2.70 and significantly reduced RBC aggregation. Grounding increases the surface charge on RBCs and thereby reduces blood viscosity and clumping. Grounding appears to be one of the simplest and yet most profound interventions for helping reduce cardiovascular risk and cardiovascular events.
Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov
2013-04-24
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less
Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes.
Sekowski, Szymon; Ionov, Maksim; Dubis, Alina; Mavlyanov, Saidmukhtar; Bryszewska, Maria; Zamaraeva, Maria
2016-04-01
We have examined the interaction between hydrolysable tannin 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-D-glucose (OGβDG) with neutral liposomes as a model of cell membranes composed of three lipids: lecithin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at different mass ratios. OGβDG in the concentration range 0.5-15 µg/ml (0.4-12 µM) strongly interacts with liposomal membranes by changing their structure, surface charge and fluidity. Used OGβDG molecules decrease and increase the rigidity of hydrophilic surface and hydrophobic parts of liposomes, respectively. At higher concentrations of tannin (>15 µM), liposomes are aggregated. Fourier Transform Infra-Red (FTIR) analysis showed that mainly -OH groups from OGβDG and also PO(2-) groups from phospholipids are responsible for the interaction. Obtained data indicate the importance of membrane lipid composition in interactions between tannins and cells.
Song, Jaejung; Kim, Jeesu; Hwang, Sekyu; Jeon, Mansik; Jeong, Sanghwa; Kim, Chulhong; Kim, Sungjee
2016-07-07
'Smart' gold nanoparticles can respond to mild acidic environments, rapidly form aggregates, and shift the absorption to red and near-infrared. They were used as a photoacoustic imaging agent responsive to the cancer microenvironment, and have demonstrated the cancer-specific accumulation at the cellular level and an amplified signal which is twice higher than the control in vivo.
Method using CO for extending the useful shelf-life of refrigerated red blood cells
Bitensky, Mark W.
1995-01-01
Method using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient.
Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin
2010-02-01
This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.
NASA Astrophysics Data System (ADS)
Rasia, Rodolfo J.; Rasia-Valverde, Juana R.; Stoltz, Jean F.
1996-01-01
Laser backscattering is an excellent tool to investigate size and concentration of suspended particles. It was successfully applied to the analysis of erythrocyte aggregation. A method is proposed that applies laser backscattering to the evaluation of the strength of the immunologic erythrocyte agglutination by approaching the energy required for the mechanical dissociation of agglutinates. Mills and Snabre have proposed a theory of laser backscattering for erythrocyte aggregation analysis. It is applied here to analyze the dissociation process of erythrocyte agglutinates performed by imposing a constant shear rate to the agglutinate suspension in a couette viscometer until a dispersion of isolated red cells is attained. Experimental verifications of the method were performed on the erythrocytes of the ABO group reacting against an anti-A test serum in twofold series dilutions. Spent energy is approached by a numerical process carried out on the backscattered intensity data registered during mechanical dissociation. Velocities of agglutination and dissociation lead to the calculation of dissociation parameters These values are used to evaluate the strength of the immunological reaction and to discriminate weak subgroups of ABO system.
Cheng, Weiren; Wang, Guan; Pan, Xiaoyong; Zhang, Yong; Tang, Ben Zhong; Liu, Ye
2014-08-01
The redox environment between intracellular compartments and extracellular matrix is significantly different, and the cellular redox homeostasis determines many physiological functions. Here, redox-responsive nanoparticles with aggregation-induced emission (AIE) characteristic for fluorescence imaging are developed by encapsulation of fluorophore with redox "turn-on" AIE characteristic, TPE-MI, into the micelles of poly(ethylene glycol) (PEG)- and cholesterol (CE)-conjugated disulfide containing poly(amido amine)s. The redox-responsive fluorescence profiles of the nanoparticles are investigated after reaction with glutathione (GSH). The encapsulation of TPE-MI in micelles leads to a higher efficiency and red shift in emission, and the fluorescence intensity of the nanoparticles increases with the concentration of GSH. Confocal microscopy imaging shows that the nanoparticles can provide obvious contrast between the intracellular compartments and the extracellular matrix in MCF-7 and HepG2 cells. So the nanoparticles with PEG shells and low cytotoxicity are promising to provide fluorescence bioimaging with a high contrast and for differentiation of cellular redox environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inhibition of Human Amylin Aggregation and Cellular Toxicity by Lipoic Acid and Ascorbic Acid.
Azzam, Sarah Kassem; Jang, Hyunwoo; Choi, Myung Chul; Alsafar, Habiba; Lukman, Suryani; Lee, Sungmun
2018-04-30
More than 30 human degenerative diseases result from protein aggregation such as Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Islet amyloid deposits, a hallmark in T2DM, are found in pancreatic islets of more than 90 % of T2DM patients. An association between amylin aggregation and reduction in β-cell mass was also established by post-mortem studies. A strategy in preventing protein aggregation-related disorders is to inhibit the protein aggregation and associated toxicity. In this study we demonstrated that two inhibitors, lipoic acid and ascorbic acid, significantly inhibited amylin aggregation. Compared to amylin (15 μM) as 100 %, lipoic acid and ascorbic acid reduced amylin fibril formation to 42.1 ± 17.2 % and 42.9 ± 12.8 % respectively, which is confirmed by fluorescence and TEM images. In cell viability tests, both inhibitors protected RIN-m5f β-cells from the toxicity of amylin aggregates. At 10:1 molar ratio of lipoic acid to amylin, lipoic acid with amylin increased the cell viability to 70.3 %, whereas only 42.8 % RIN-m5f β-cells survived in amylin aggregates. For ascorbic acid, an equimolar ratio achieved the highest cell viability of 63.3 % as compared to 42.8 % with amylin aggregates only. Docking results showed that lipoic acid and ascorbic acid physically interact with amylin amyloidogenic region (residues Ser20-Ser29) via hydrophobic interactions; hence reducing aggregation levels. Therefore, lipoic acid and ascorbic acid prevented amylin aggregation via hydrophobic interactions, which resulted in the prevention of cell toxicity in vitro.
Al adjuvants can be tracked in viable cells by lumogallion staining.
Mile, Irene; Svensson, Andreas; Darabi, Anna; Mold, Matthew; Siesjö, Peter; Eriksson, Håkan
2015-07-01
The mechanism behind the adjuvant effect of aluminum salts is poorly understood notwithstanding that aluminum salts have been used for decades in clinical vaccines. In an aqueous environment and at a nearly neutral pH, the aluminum salts form particulate aggregates, and one plausible explanation of the lack of information regarding the mechanisms could be the absence of an efficient method of tracking phagocytosed aluminum adjuvants and thereby the intracellular location of the adjuvant. In this paper, we want to report upon the use of lumogallion staining enabling the detection of phagocytosed aluminum adjuvants inside viable cells. Including micromolar concentrations of lumogallion in the culture medium resulted in a strong fluorescence signal from cells that had phagocytosed the aluminum adjuvant. The fluorescence appeared as spots in the cytoplasm and by confocal microscopy and co-staining with probes presenting fluorescence in the far-red region of the spectrum, aluminum adjuvants could to a certain extent be identified as localized in acidic vesicles, i.e., lysosomes. Staining and detection of intracellular aluminum adjuvants was achieved not only by diffusion of lumogallion into the cytoplasm, thereby highlighting the presence of the adjuvant, but also by pre-staining the aluminum adjuvant prior to incubation with cells. Pre-staining of aluminum adjuvants resulted in bright fluorescent particulate aggregates that remained fluorescent for weeks and with only a minor reduction of fluorescence upon extensive washing or incubation with cells. Both aluminum oxyhydroxide and aluminum hydroxyphosphate, two of the most commonly used aluminum adjuvants in clinical vaccines, could be pre-stained with lumogallion and were easily tracked intracellularly after incubation with phagocytosing cells. Staining of viable cells using lumogallion will be a useful method in investigations of the mechanisms behind aluminum adjuvants' differentiation of antigen-presenting cells into inflammatory cells. Information will be gained regarding the phagosomal pathways and the events inside the phagosomes, and thereby the ultimate fate of phagocytosed aluminum adjuvants could be resolved. Copyright © 2015 Elsevier B.V. All rights reserved.
Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder
2011-05-01
Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.
Study of the cell activity in three-dimensional cell culture by using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Arunngam, Pakajiraporn; Mahardika, Anggara; Hiroko, Matsuyoshi; Andriana, Bibin Bintang; Tabata, Yasuhiko; Sato, Hidetoshi
2018-02-01
The purpose of this study is to develop a estimation technique of local cell activity in cultured 3D cell aggregate with gelatin hydrogel microspheres by using Raman spectroscopy. It is an invaluable technique allowing real-time, nondestructive, and invasive measurement. Cells in body generally exist in 3D structure, which physiological cell-cell interaction enhances cell survival and biological functions. Although a 3D cell aggregate is a good model of the cells in living tissues, it was difficult to estimate their physiological conditions because there is no effective technique to make observation of intact cells in the 3D structure. In this study, cell aggregates were formed by MC3T-E1 (pre-osteoblast) cells and gelatin hydrogel microspheres. In appropriate condition MC3T-E1 cells can differentiate into osteoblast. We assume that the activity of the cell would be different according to the location in the aggregate because the cells near the surface of the aggregate have more access to oxygen and nutrient. Raman imaging technique was applied to measure 3D image of the aggregate. The concentration of the hydroxyapatite (HA) is generated by osteoblast was estimated with a strong band at 950-970 cm-1 which assigned to PO43- in HA. It reflects an activity of the specific site in the cell aggregate. The cell density in this specific site was analyzed by multivariate analysis of the 3D Raman image. Hence, the ratio between intensity and cell density in the site represents the cell activity.
Anderson, C L; Grey, H M
1974-05-01
An autoradiographic binding assay employing (125)I-labeled heat-aggregated mouse IgG2b myeloma protein (MOPC 141) was used to demonstrate receptors for IgG on 20-45% of Balb/c thymocytes and on 70-80% of splenocytes. Binding could also be shown with heat or BDB aggregates of another IgG2b (MOPC 195), with IgG1 and with human gamma-globulin, but not with aggregated chicken gamma-globulin, IgA, BSA, nor with aggregated Fab fragments of IgG2b. Optimum binding was obtained at 37 degrees C. Detection of binding was dependent upon aggregate size with complexes of more than 100 IgG molecules being optimal, aggregates of 6-25 detecting splenocytes but not thymocytes, and aggregates of less than 6 binding to a negligible extent. Comparison of grain counts on various cell types showed mastocytoma cells (P815) and macrophages averaging 40-50 grains/cell/day, allogeneically activated thymocytes 20-30, splenocytes 2-3, L5178 lymphoma cells 1, and positive thymocytes 0.6 grains/cell/day. Double labeling experiments for surface Ig, theta-antigen, and agg IgG receptor on mouse spleen cells indicated that a relatively high density of receptor was present on about 80% of B cells, 30% of T cells, and 60% of SIg(-), theta(-), null cells.
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.8540 - Red cell lysing reagent.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
21 CFR 864.5300 - Red cell indices device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...
Porto, B; Fonseca, A M; Godinho, I; Arosa, F A; Porto, G
2001-12-01
The present study was designed to analyse the effect of red blood cells on T-cell proliferation and expansion. A comparative study was done in peripheral blood cell cultures stimulated with phytohemagglutinin, with or without red blood cells. The presence of red blood cells had a consistent enhancing effect on T lymphocyte proliferation, as determined by an increase in both the mitotic index and thymidine uptake. Phenotypic characterization of T cell blasts by flow cytometry revealed that, in the presence of red blood cells, expanding cells were preferentially CD8+ cells. Accordingly, proliferation of CD8+ lymphocytes from two patients with CD8+ hyperlymphocytosis was dependent on the presence of red blood cells. In contrast, proliferation of CD4+ lymphocytes from two patients with CD4+ hyperlymphocytosis was strongly inhibited by the presence of red blood cells. This is the first reported evidence that human red blood cells have an enhancing effect on the expansion of CD8+ lymphocytes in vitro.
Aggregate formation affects ultrasonic disruption of microalgal cells.
Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih
2015-12-01
Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of recombinant protein misfolding and aggregation on bacterial membranes.
Ami, D; Natalello, A; Schultz, T; Gatti-Lafranconi, P; Lotti, M; Doglia, S M; de Marco, A
2009-02-01
The expression of recombinant proteins is known to induce a metabolic rearrangement in the host cell. We used aggregation-sensitive model systems to study the effects elicited in Escherichia coli cells by the aggregation of recombinant glutathione-S-transferase and its fusion with the green fluorescent protein that, according to the expression conditions, accumulate intracellularly as soluble protein, or soluble and insoluble aggregates. We show that the folding state of the recombinant protein and the complexity of the intracellular aggregates critically affect the cell response. Specifically, protein misfolding and aggregation induce changes in specific host proteins involved in lipid metabolism and oxidative stress, a reduction in the membrane permeability, as well as a rearrangement of its lipid composition. The temporal evolution of the host cell response and that of the aggregation process pointed out that the misfolded protein and soluble aggregates are responsible for the membrane modifications and the changes in the host protein levels. Interestingly, native recombinant protein and large insoluble aggregates do not seem to activate stress markers and membrane rearrangements.
Motility and Segregation of Hsp104-Associated Protein Aggregates in Budding Yeast
Zhou, Chuankai; Slaughter, Brian D.; Unruh, Jay R.; Eldakak, Amr; Rubinstein, Boris; Li, Rong
2011-01-01
SUMMARY During yeast cell division, aggregates of damaged proteins are segregated asymmetrically between the bud and the mother. It is thought that protein aggregates are cleared from the bud via actin cable-based retrograde transport toward the mother, and that Bni1p formin regulates this transport. Here we examined the dynamics of Hsp104-associated protein aggregates by video microscopy, particle tracking and image correlation analysis. We show that protein aggregates undergo random walk without directional bias. Clearance of heat-induced aggregates from the bud does not depend on formin proteins but occurs mostly through dissolution via Hsp104p chaperon. Aggregates formed naturally in aged cells also exhibit random walk but do not dissolve during observation. Although our data does not disagree with a role for actin or cell polarity in aggregate segregation, modeling suggests that their asymmetric inheritance can be a predictable outcome of aggregates' slow diffusion and the geometry of yeast cells. PMID:22118470
Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia.
Boas, F E; Forman, L; Beutler, E
1998-03-17
Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells.
Superior survival of ex vivo cultured human reticulocytes following transfusion into mice.
Kupzig, Sabine; Parsons, Stephen F; Curnow, Elinor; Anstee, David J; Blair, Allison
2017-03-01
The generation of cultured red blood cells from stem cell sources may fill an unmet clinical need for transfusion-dependent patients, particularly in countries that lack a sufficient and safe blood supply. Cultured red blood cells were generated from human CD34 + cells from adult peripheral blood or cord blood by ex vivo expansion, and a comprehensive in vivo survival comparison with standard red cell concentrates was undertaken. Significant amplification (>10 5 -fold) was achieved using CD34 + cells from both cord blood and peripheral blood, generating high yields of enucleated cultured red blood cells. Following transfusion, higher levels of cultured red cells could be detected in the murine circulation compared to standard adult red cells. The proportions of cultured blood cells from cord or peripheral blood sources remained high 24 hours post-transfusion (82±5% and 78±9%, respectively), while standard adult blood cells declined rapidly to only 49±9% by this time. In addition, the survival time of cultured blood cells in mice was longer than that of standard adult red cells. A paired comparison of cultured blood cells and standard adult red blood cells from the same donor confirmed the enhanced in vivo survival capacity of the cultured cells. The study herein represents the first demonstration that ex vivo generated cultured red blood cells survive longer than donor red cells using an in vivo model that more closely mimics clinical transfusion. Cultured red blood cells may offer advantages for transfusion-dependent patients by reducing the number of transfusions required. Copyright© Ferrata Storti Foundation.
Spólnik, Paweł; Konieczny, Leszek; Piekarska, Barbara; Rybarska, Janina; Stopa, Barbara; Zemanek, Grzegorz; Król, Marcin; Roterman, Irena
2004-06-01
Monoclonal myeloma proteins often have an abnormal, unstable structure, and tend to aggregate with fatal clinical consequences. A method for early clinical identification of this aggregation tendency is impatiently awaited. This work proposes the use of supramolecular dyes as specific ligands to reveal protein instability. Disclosure of excessive polypeptide chain flexibility in unstable monoclonal proteins, leading to increased susceptibility to penetration by foreign compounds, appeared possible when new supramolecular Congo red-derived dyes with different protein-binding capabilities were used for complexation. Two basic protein instability levels, local and global, were differentiated by comparing the extent of protein loading with dye and the subsequent electrophoretic migration rate of the complexes. A simple electrophoretic test is proposed for assessment of the instability of monoclonal proteins in clinical conditions.
Optical Measurement of Cell Colonization Patterns on Individual Suspended Sediment Aggregates
NASA Astrophysics Data System (ADS)
Nguyen, Thu Ha; Tang, Fiona H. M.; Maggi, Federico
2017-10-01
Microbial processes can make substantial differences to the way in which particles settle in aquatic environments. A novel method (OMCEC, optical measurement of cell colonization) is introduced to systematically map the biological spatial distribution over individual suspended sediment aggregates settling through a water column. OMCEC was used to investigate (1) whether a carbon source concentration has an impact on cell colonization, (2) how cells colonize minerals, and (3) if a correlation between colonization patterns and aggregate geometry exists. Incubations of Saccharomyces cerevisiae and stained montmorillonite at four sucrose concentrations were tested in a settling column equipped with a full-color microparticle image velocimetry system. The acquired high-resolution images were processed to map the cell distribution on aggregates based on emission spectra separation. The likelihood of cells colonizing minerals increased with increasing sucrose concentration. Colonization patterns were classified into (i) scattered, (ii) well touched, and (iii) poorly touched, with the second being predominant. Cell clusters in well-touched patterns were found to have lower capacity dimension than those in other patterns, while the capacity dimension of the corresponding aggregates was relatively high. A strong correlation of colonization patterns with aggregate biomass fraction and properties suggests dynamic colonization mechanisms from cell attachment to minerals, to joining of isolated cell clusters, and finally cell growth over the entire aggregate. This paper introduces a widely applicable method for analyses of microbial-affected sediment dynamics and highlights the microbial control on aggregate geometry, which can improve the prediction of large-scale morphodynamics processes.
New Developments in Red Blood Cell Preservation Using Liquid and Freezing Procedures.
1982-04-02
restore or improve the red cell 2,3 DPG and ATP levels . Biochemically modified red blood cells may be cryopreserved for indefinite storage, or they may...salvage outdated red blood cells. However,,-ndated red blood cells are also being biochemically modified to increase’the 2,3 DPG levels to 2 to 3...restore or improve the edcell 2,3 DPG and ATP levels . Biochemically modified red blood cells iay-be cryopreserved for indefinite storage. or-thy my be
Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells.
Zarà, Marta; Canobbio, Ilaria; Visconte, Caterina; Canino, Jessica; Torti, Mauro; Guidetti, Gianni Francesco
2018-08-01
Tumor cell-induced platelet aggregation represents a critical process both for successful metastatic spread of the tumor and for the development of thrombotic complications in cancer patients. To get further insights into this process, we investigated and compared the molecular mechanisms of platelet aggregation induced by two different breast cancer cell lines (MDA-MB-231 and MCF7) and a colorectal cancer cell line (Caco-2). All the three types of cancer cells were able to induce comparable platelet aggregation, which, however, was observed exclusively in the presence of CaCl 2 and autologous plasma. Aggregation was supported both by fibrinogen binding to integrin αIIbβ3 as well as by fibrin formation, and was completely prevented by the serine protease inhibitor PPACK. Platelet aggregation was preceded by generation of low amounts of thrombin, possibly through tumor cells-expressed tissue factor, and was supported by platelet activation, as revealed by stimulation of phospholipase C, intracellular Ca 2+ increase and activation of Rap1b GTPase. Pharmacological inhibition of phospholipase C, but not of phosphatidylinositol 3-kinase or Src family kinases prevented tumor cell-induced platelet aggregation. Tumor cells also induced dense granule secretion, and the stimulation of the P2Y12 receptor by released ADP was found to be necessary for complete platelet aggregation. By contrast, prevention of thromboxane A 2 synthesis by aspirin did not alter the ability of all the cancer cell lines analyzed to induce platelet aggregation. These results indicate that tumor cell-induced platelet aggregation is not related to the type of the cancer cells or to their metastatic potential, and is triggered by platelet activation and secretion driven by the generation of small amount of thrombin from plasma and supported by the positive feedback signaling through secreted ADP. Copyright © 2018 Elsevier Inc. All rights reserved.
Han, Shun; Li, Xiang; Luo, Xuesong; Wen, Shilin; Chen, Wenli; Huang, Qiaoyun
2018-01-01
Nitrification is the two-step aerobic oxidation of ammonia to nitrate via nitrite in the nitrogen-cycle on earth. However, very limited information is available on how fertilizer regimes affect the distribution of nitrite oxidizers, which are involved in the second step of nitrification, across aggregate size classes in soil. In this study, the community compositions of nitrite oxidizers (Nitrobacter and Nitrospira) were characterized from a red soil amended with four types of fertilizer regimes over a 26-year fertilization experiment, including control without fertilizer (CK), swine manure (M), chemical fertilization (NPK), and chemical/organic combined fertilization (MNPK). Our results showed that the addition of M and NPK significantly decreased Nitrobacter Shannon and Chao1 index, while M and MNPK remarkably increased Nitrospira Shannon and Chao1 index, and NPK considerably decreased Nitrospira Shannon and Chao1 index, with the greatest diversity achieved in soils amended with MNPK. However, the soil aggregate fractions had no impact on that alpha-diversity of Nitrobacter and Nitrospira under the fertilizer treatment. Soil carbon, nitrogen and phosphorus in the soil had a significant correlation with Nitrospira Shannon and Chao1 diversity index, while total potassium only had a significant correlation with Nitrospira Shannon diversity index. However, all of them had no significant correlation with Nitrobacter Shannon and Chao1 diversity index. The resistance indices for alpha-diversity indexes (Shannon and Chao1) of Nitrobacter were higher than those of Nitrospira in response to the fertilization regimes. Manure fertilizer is important in enhancing the Nitrospira Shannon and Chao1 index resistance. Principal co-ordinate analysis revealed that Nitrobacter- and Nitrospira-like NOB communities under four fertilizer regimes were differentiated from each other, but soil aggregate fractions had less effect on the nitrite oxidizers community. Redundancy analysis and Mantel test indicated that soil nitrogen, carbon, phosphorus, and available potassium content were important environmental attributes that control the Nitrobacter- and Nitrospira-like NOB community structure across different fertilization treatments under aggregate levels in the red soil. In general, nitrite-oxidizing bacteria community composition and alpha-diversity are depending on fertilizer regimes, but independent of the soil aggregate. PMID:29867799
NASA Astrophysics Data System (ADS)
Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; de Ysasa Pozzo, Liliana; Barbosa, Luiz C.; Cesar, Carlos L.
2006-02-01
The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. There are techniques, however, to decrease the zeta potential to allow cell agglutination which are the basis of most of the tests of antigen-antibody interactions in blood banks. This report shows the use of a double optical tweezers to measure RBC membrane viscosity, agglutination and zeta potential. In our technique one of the optical tweezers trap a silica bead that binds strongly to a RBC at the end of a RBCs rouleaux and, at the same time, acts as a pico-Newton force transducer, after calibration through its displacement from the equilibrium position. The other optical tweezers trap the RBC at the other end. To measure the membrane viscosity the optical force is measured as a function of the velocity between the RBCs. To measure the adhesion the tweezers are slowly displaced apart until the RBCs disagglutination happens. The RBC zeta potential is measured in two complimentary ways, by the force on the silica bead attached to a single RBC in response to an applied electric field, and the conventional way, by the measurement of terminal velocity of the RBC after released from the optical trap. These two measurements provide information about the RBC charges and, also, electrolytic solution properties. We believe this can improve the methods of diagnosis in blood banks.
Blood volume changes. [weightlessness effects
NASA Technical Reports Server (NTRS)
Johnson, P. C.; Driscoll, T. B.; Leblance, A. D.
1974-01-01
Analysis of radionuclide volume determinations made for the crewmembers of selected Gemini and Apollo missions showed that orbital spaceflight has an effect on red cell mass. Because the methods and the protocol developed for earlier flights were used for the crews of the three Skylab missions, direct comparisons are possible. After each Skylab mission, decreases were found in crewmembers' red cell masses. The mean red cell mass decrease of 11 percent or 232 milliliters was approximately equal to the 10 percent mean red cell mass decrease of the Apollo 14 to 17 crewmembers. The red cell mass drop was greatest and the postrecovery reticulocyte response least for crewmembers of the 28-day Skylab 2 mission. Analyses of data from the red cell mass determinations indicate that the red cell mass drops occurred in the first 30 days of flight and that a gradual recovery of the red cell mass deficits began approximately 60 days after launch. The beginning of red cell mass regeneration during the Skylab 4 flight may explain the higher postmission reticulocyte counts.
Tsujimura, Atsushi; Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tatebe, Harutsugu; Tokuda, Takahiko; Mizuno, Toshiki; Tanaka, Masaki
2015-01-01
The formation of intracellular aggregates containing α-synuclein (α-Syn) is one of the key steps in the progression of Parkinson's disease and dementia with Lewy bodies. Recently, it was reported that pathological α-Syn fibrils can undergo cell-to-cell transmission and form Lewy body-like aggregates. However, little is known about how they form α-Syn aggregates from fibril seeds. Here, we developed an assay to study the process of aggregate formation using fluorescent protein-tagged α-Syn-expressing cells and examined the aggregate forming activity of exogenous α-Syn fibrils. α-Syn fibril-induced formation of intracellular aggregates was suppressed by a cathepsin B specific inhibitor, but not by a cathepsin D inhibitor. α-Syn fibrils pretreated with cathepsin B in vitro enhanced seeding activity in cells. Knockdown of cathepsin B also reduced fibril-induced aggregate formation. Moreover, using LAMP-1 immunocytochemistry and live-cell imaging, we observed that these aggregates initially occurred in the lysosome. They then rapidly grew larger and moved outside the boundary of the lysosome within one day. These results suggest that the lysosomal protease cathepsin B is involved in triggering intracellular aggregate formation by α-Syn fibrils. Copyright © 2015. Published by Elsevier Inc.
Li, Rui; Yu, Guanglin; Azarin, Samira M; Hubel, Allison
2018-05-01
Inadequate preservation methods of human induced pluripotent stem cells (hiPSCs) have impeded efficient reestablishment of cell culture after the freeze-thaw process. In this study, we examined roles of the cooling rate, seeding temperature, and difference between cell aggregates (3-50 cells) and single cells in controlled rate freezing of hiPSCs. Intracellular ice formation (IIF), post-thaw membrane integrity, cell attachment, apoptosis, and cytoskeleton organization were evaluated to understand the different freezing responses between hiPSC single cells and aggregates, among cooling rates of 1, 3, and 10°C/min, and between seeding temperatures of -4°C and -8°C. Raman spectroscopy images of ice showed that a lower seeding temperature (-8°C) did not affect IIF in single cells, but significantly increased IIF in aggregates, suggesting higher sensitivity of aggregates to supercooling. In the absence of IIF, Raman images showed greater variation of dimethyl sulfoxide concentration across aggregates than single cells, suggesting cryoprotectant transport limitations in aggregates. The ability of cryopreserved aggregates to attach to culture substrates did not correlate with membrane integrity for the wide range of freezing parameters, indicating inadequacy of using only membrane integrity-based optimization metrics. Lower cooling rates (1 and 3°C/min) combined with higher seeding temperature (-4°C) were better at preventing IIF and preserving cell function than a higher cooling rate (10°C/min) or lower seeding temperature (-8°C), proving the seeding temperature range of -7°C to -12°C from literature to be suboptimal. Unique f-actin cytoskeletal organization into a honeycomb-like pattern was observed in postpassage and post-thaw colonies and correlated with successful reestablishment of cell culture.
Method using CO for extending the useful shelf-life of refrigerated red blood cells
Bitensky, M.W.
1995-12-19
A method is disclosed using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient. 5 figs.
Renoux, Céline; Romana, Marc; Joly, Philippe; Ferdinand, Séverine; Faes, Camille; Lemonne, Nathalie; Skinner, Sarah; Garnier, Nathalie; Etienne-Julan, Maryse; Bertrand, Yves; Petras, Marie; Cannas, Giovanna; Divialle-Doumdo, Lydia; Nader, Elie; Cuzzubbo, Daniela; Lamarre, Yann; Gauthier, Alexandra; Waltz, Xavier; Kebaili, Kamila; Martin, Cyril; Hot, Arnaud; Hardy-Dessources, Marie-Dominique; Pialoux, Vincent; Connes, Philippe
2016-01-01
Blood rheology plays a key role in the pathophysiology of sickle cell anaemia (SS) and sickle cell haemoglobin C disease (SC), but its evolution over the lifespan is unknown. Blood viscosity, red blood cell (RBC) deformability and aggregation, foetal haemoglobin (HbF) and haematocrit were measured in 114 healthy individuals (AA), 267 SS (161 children + 106 adults) and 138 SC (74 children + 64 adults) patients. Our results showed that 1) RBC deformability is at its maximal value during the early years of life in SS and SC populations, mainly because HbF level is also at its peak, 2) during childhood and adulthood, hydroxycarbamide treatment, HbF level and gender modulated RBC deformability in SS patients, independently of age, 3) blood viscosity is higher in older SS and SC patients compared to younger ones and 4) haematocrit decreases as SS patients age. The hemorheological changes detected in older patients could play a role in the progressive development of several chronic disorders in sickle cell disease, whose prevalence increases with age. Retarding these age-related haemorheological impairments, by using suitable drugs, may minimize the risks of vaso-occlusive events and chronic disorders.
NASA Astrophysics Data System (ADS)
Kern, V. D.; Sack, F. D.
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g.
Clafshenkel, William P.; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Russell, Alan J.
2016-01-01
Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system. PMID:27331401
Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J
2016-01-01
Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.
Red cell-derived microparticles (RMP) as haemostatic agent.
Jy, Wenche; Johansen, Max E; Bidot, Carlos; Horstman, Lawrence L; Ahn, Yeon S
2013-10-01
Among circulating cell-derived microparticles, those derived from red cells (RMP) have been least well investigated. To exploit potential haemostatic benefit of RMP, we developed a method of producing them in quantity, and here report on their haemostatic properties. High-pressure extrusion of washed RBC was employed to generate RMP. RMP were identified and enumerated by flow cytometry. Their size distribution was assessed by Doppler electrophoretic light scattering analysis (DELSA). Interaction with platelets was studied by platelet aggregometry, and shear-dependent adhesion by Diamed IMPACT-R. Thrombin generation and tissue factor (TF) expression was also measured. The effect of RMP on blood samples of patients with bleeding disorders was investigated ex vivo by thromboelastography (TEG). Haemostatic efficacy in vivo was assessed by measuring reduction of blood loss and bleeding time in rats and rabbits. RMP have mean diameter of 0.45 µm and 50% of them exhibit annexin V binding, a proxy for procoagulant phospholipids (PL). No TF could be detected by flow cytometry. At saturating concentrations of MPs, RMP generated thrombin robustly but after longer delay compared to PMP and EMP. RMP enhanced platelet adhesion and aggregation induced by low-dose ADP or AA. In TEG study, RMP corrected or improved haemostatic defects in blood of patients with platelet and coagulation disorders. RMP reduced bleeding time and blood loss in thrombocytopenic rabbits (busulfan-treated) and in Plavix-treated rats. In conclusion, RMP has broad haemostatic activity, enhancing both primary (platelet) and secondary (coagulation) haemostasis, suggesting potential use as haemostatic agent for treatment of bleeding.
NASA Astrophysics Data System (ADS)
Fedyaeva, O. A.; Shubenkova, E. G.; Poshelyuzhnaya, E. G.; Lutaeva, I. A.
2016-08-01
The effect the degree of hydration has on optical and electrophysical properties of water/AOT/ n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.
Whiteman, E.A.; Jennings, C.A.; Nemeth, R.S.
2005-01-01
Ultrasonic imaging was used to determine the spawning population structure and develop a fecundity estimation model for a red hind Epinephelus guttatus spawning aggregation within the Red Hind Bank Marine Conservation District, St Thomas, U.S.V.I. The spawning population showed considerable within-month and between-month variation in population size- and sex-structure. In the spawning season studied, males appeared to arrive at the aggregation site first in December although females represented a large proportion of the catch early in the aggregation periods in January and February. Spawning occurred in January and February, and size frequency distributions suggested that an influx of small females occurred during the second spawning month. An overall sex ratio of 2.9:1 (female:male) was recorded for the whole reproductive season. The sex ratio, however, differed between months and days within months. More females per male were recorded in January than in February when the sex ratio was male biased. Fecundity estimates for this species predicted very high potential fecundities (2.4 ?? 105-2.4 ?? 106 oocytes). The ultrasound model also illustrated a rapid increase in potential female fecundity with total length. Ultrasonic imaging may prove a valuable tool in population assessment for many species and locations in which invasive fishing methods are clearly undesirable. ?? 2005 The Fisheries Society of the British Isles.
Division of labour and the evolution of multicellularity
Ispolatov, Iaroslav; Ackermann, Martin; Doebeli, Michael
2012-01-01
Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors when the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level owing to mechanisms present in unicellular ancestors and does not require any genetic predisposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modelled as evolution of a hereditary parameter: the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily owing to the fitness advantage generated by the division of labour between cells in an aggregate. PMID:22158952
Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells
Mairbäurl, Heimo
2013-01-01
During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise. PMID:24273518
A red tide of Alexandrium fundyense in the Gulf of Maine.
McGillicuddy, D J; Brosnahan, M L; Couture, D A; He, R; Keafer, B A; Manning, J P; Martin, J L; Pilskaln, C H; Townsend, D W; Anderson, D M
2014-05-01
In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense .
A red tide of Alexandrium fundyense in the Gulf of Maine
NASA Astrophysics Data System (ADS)
McGillicuddy, D. J.; Brosnahan, M. L.; Couture, D. A.; He, R.; Keafer, B. A.; Manning, J. P.; Martin, J. L.; Pilskaln, C. H.; Townsend, D. W.; Anderson, D. M.
2014-05-01
In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.
Chemical-mineralogical characterization of C and D waste recycled aggregates from Sao Paulo, Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angulo, S.C.; Ulsen, C.; John, V.M.
2009-02-15
This study presents a methodology for the characterization of construction and demolition (C and D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C and D samples taken from the Sao Paulo region in Brazil are discussed.more » Chemical compositions of mixed C and D aggregate samples have mostly been influenced by particle size rather than the visual classification of C and D into red or grey and geographical origin. The amount of measured soluble salts in C and D aggregates (0.15-25.4 mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C and D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C and D powders (<0.15 mm). The clay content of the powders was also high, potentially resulting from soil intermixed with the C and D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO{sub 2}, the powders have potential use as raw materials for the cement industry.« less
Destruction of newly released red blood cells in space flight
NASA Technical Reports Server (NTRS)
Alfrey, C. P.; Udden, M. M.; Huntoon, C. L.; Driscoll, T.
1996-01-01
Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.
Peto, Katalin; Nemeth, Norbert; Mester, Anita; Magyar, Zsuzsanna; Ghanem, Souleiman; Somogyi, Viktoria; Tanczos, Bence; Deak, Adam; Bidiga, Laszlo; Frecska, Ede; Nemes, Balazs
2018-04-13
Micro-rheological relations of renal ischemia-reperfusion (I/R) have not been completely elucidated yet. Concerning anti-inflammatory agents, it is supposed that sigma-1 receptor agonist N,N-dimethyl-tryptamin (DMT) can be useful to reduce I/R injury. To investigate the micro-rheological and metabolic parameters, and the effects of DMT in renal I/R in rats. In anesthetized rats from median laparotomy both kidneys were exposed. In Control group (n = 6) no other intervention happened. In I/R group (n = 10) the right renal vessels were ligated and after 60 minutes the organ was removed. The left renal vessels were clamped for 60 minutes followed by 120-minute reperfusion. In I/R+DMT group (n = 10) DMT was administered 15 minutes before the ischemia. Blood samples were taken before/after ischemia and during the reperfusion for testing hematological, metabolic parameters, erythrocyte deformability and aggregation. Lactate concentration significantly increased and accompanied with decreased blood pH. Enhanced erythrocyte aggregation and impaired deformability were observed from the 30th minute of reperfusion. In I/R+DMT group we found diminished changes compared to the I/R group (lactate, pH, electrolytes, red blood cell deformability and aggregation). Metabolic and micro-rheological parameters impair during renal I/R. DMT could reduce but not completely prevent the changes in this rat model.
Phosphate Ion Exchange Resin Used in the Liquid Preservation of Baboon Red Blood Cells.
1982-06-08
absence of resin. The addition of a phosphate anion exchange resin to the CPD anticoagulant provided better maintenance of red cell 23 DPG and P50 levels ...than red blood cells S.prepared from blood without resin. Red blood cell ATP levels and 24-hour post- transfusion survival values were similar whether or...coagulant provided better maintenance of red cell 2,3 DPG and P50 levels during storage of whole blood at 4 C, and red blood cells prepared from whole
Transient inter-cellular polymeric linker.
Ong, Siew-Min; He, Lijuan; Thuy Linh, Nguyen Thi; Tee, Yee-Han; Arooz, Talha; Tang, Guping; Tan, Choon-Hong; Yu, Hanry
2007-09-01
Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2014 CFR
2014-04-01
... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibrator for red cell and white cell counting...
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2012 CFR
2012-04-01
... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibrator for red cell and white cell counting...
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2011 CFR
2011-04-01
... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibrator for red cell and white cell counting...
21 CFR 864.8185 - Calibrator for red cell and white cell counting.
Code of Federal Regulations, 2013 CFR
2013-04-01
... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibrator for red cell and white cell counting...
Growth and replication of red rain cells at 121°C and their red fluorescence
NASA Astrophysics Data System (ADS)
Gangappa, Rajkumar; Wickramasinghe, Chandra; Wainwright, Milton; Kumar, A. Santhosh; Louis, Godfrey
2010-09-01
We have shown that the red cells found in the Red Rain (which fell on Kerala, India, in 2001) survive and grow after incubation for periods of up to two hours at 121°C . Under these conditions daughter cells appear within the original mother cells and the number of cells in the samples increases with length of exposure to 121°C. No such increase in cells occurs at room temperature, suggesting that the increase in daughter cells is brought about by exposure of the Red Rain cells to high temperatures. This is an independent confirmation of results reported earlier by two of the present authors, claiming that the cells can replicate under high pressure at temperatures upto 300°C. The flourescence behaviour of the red cells is shown to be in remarkable correspondence with the extended red emission observed in the Red Rectagle planetary nebula and other galactic and extragalactic dust clouds, suggesting, though not proving an extraterrestrial origin.
Titus, Steven A; Southall, Noel; Marugan, Juan; Austin, Christopher P; Zheng, Wei
2012-01-01
A hallmark of Huntington’s disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson’s, Alzheimer’s, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies. Based on a detergent insoluble property of the Huntingtin protein aggregates, we have developed a homogenous assay to rapidly quantitate the levels of protein aggregates in a cellular model of Huntington’s disease. The protein aggregation assay has also been multiplexed with a protease release assay for the measurement of cytotoxicity resulting from aggregated proteins in the same cells. Through a testing screen of a compound library, we have demonstrated that this multiplexed cytotoxicity and protein aggregation assay has ability to identify active compounds that prevent cell death and/or modulate protein aggregation in cells of the Huntington’s disease model. Therefore, this multiplexed screening approach is also useful for development of high-throughput screening assays for other neurodegenerative diseases involving protein aggregation. PMID:23346268
NASA Astrophysics Data System (ADS)
Shvartsman, Leonid D.; Fine, Ilya
2001-06-01
We develop theoretical models of light transmission through whole blood considering RBC aggregation. RBC aggregates are considered to be the main centers of scattering in red/near- infrared spectral region. In pulsatile blood flow the periodic changes of aggregate geometry cause oscillations of light scattering. Thus scattering-assisted mechanism has to be taken into account in pulse oximeter calibration. In case of over-systolic vessel occlusion the size of aggregates grows, and the light transmission rises. Light diffraction on a single scatterer makes the transmission growth non- monotonic for certain spectral range. For the most typical set of aggregate parameters this range corresponds to wavelengths below 760 nm, and this prediction fits well both in vivo and in vitro experimental results. This spectral range depends on the refraction index mismatch and the geometry of aggregates. Both of them may be affected by the chemistry of blood. For instance, changes of glucose and hemoglobin have different effect on light transmission time response. Consequently, their content may be determined from time evolution of optical transmission.
Describing Myxococcus xanthus Aggregation Using Ostwald Ripening Equations for Thin Liquid Films
Bahar, Fatmagül; Pratt-Szeliga, Philip C.; Angus, Stuart; Guo, Jiaye; Welch, Roy D.
2014-01-01
When starved, a swarm of millions of Myxococcus xanthus cells coordinate their movement from outward swarming to inward coalescence. The cells then execute a synchronous program of multicellular development, arranging themselves into dome shaped aggregates. Over the course of development, about half of the initial aggregates disappear, while others persist and mature into fruiting bodies. This work seeks to develop a quantitative model for aggregation that accurately simulates which will disappear and which will persist. We analyzed time-lapse movies of M. xanthus development, modeled aggregation using the equations that describe Ostwald ripening of droplets in thin liquid films, and predicted the disappearance and persistence of aggregates with an average accuracy of 85%. We then experimentally validated a prediction that is fundamental to this model by tracking individual fluorescent cells as they moved between aggregates and demonstrating that cell movement towards and away from aggregates correlates with aggregate disappearance. Describing development through this model may limit the number and type of molecular genetic signals needed to complete M. xanthus development, and it provides numerous additional testable predictions. PMID:25231319
Tien, Joe; Truslow, James G; Nelson, Celeste M
2012-01-01
This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D) aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.
Engineering a fibrocartilage spectrum through modulation of aggregate redifferentiation.
Murphy, Meghan K; Masters, Taylor E; Hu, Jerry C; Athanasiou, Kyriacos A
2015-01-01
Expanded costochondral cells provide a clinically relevant cell source for engineering both fibrous and hyaline articular cartilage. Expanding chondrocytes in a monolayer results in a shift toward a proliferative, fibroblastic phenotype. Three-dimensional aggregate culture may, however, be used to recover chondrogenic matrix production. This study sought to engineer a spectrum of fibrous to hyaline neocartilage from a single cell source by varying the duration of three-dimensional culture following expansion. In third passage porcine costochondral cells, the effects of aggregate culture duration were assessed after 0, 8, 11, 14, and 21 days of aggregate culture and after 4 subsequent weeks of neocartilage formation. Varying the duration of aggregate redifferentiation generated a spectrum of fibrous to hyaline neocartilage. Within 8 days of aggregation, proliferation ceased, and collagen and glycosaminoglycan production increased, compared with monolayer cells. In self-assembled neocartilage, type II-to-I collagen ratio increased with increasing aggregate duration, yet glycosaminoglycan content varied minimally. Notably, 14 days of aggregate redifferentiation increased collagen content by 25%, tensile modulus by over 110%, and compressive moduli by over 50%, compared with tissue formed in the absence of redifferentiation. A spectrum of fibrous to hyaline cartilage was generated using a single, clinically relevant cell source, improving the translational potential of engineered cartilage.
Engineering a Fibrocartilage Spectrum Through Modulation of Aggregate Redifferentiation
Murphy, Meghan K.; Masters, Taylor E.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2015-01-01
Expanded costochondral cells provide a clinically relevant cell source for engineering both fibrous and hyaline articular cartilage. Expanding chondrocytes in monolayer results in a shift toward a proliferative, fibroblastic phenotype. Three-dimensional aggregate culture may, however, be used to recover chondrogenic matrix production. This study sought to engineer a spectrum of fibrous to hyaline neocartilage from a single cell source by varying the duration of three-dimensional culture following expansion. In third passage porcine costochondral cells, the effects of aggregate culture duration were assessed after 0, 8, 11, 14, and 21 days of aggregate culture and after 4 subsequent weeks of neocartilage formation. Varying the duration of aggregate redifferentiation generated a spectrum of fibrous to hyaline neocartilage. Within 8 days of aggregation, proliferation ceased, and collagen and glycosaminoglycan production increased, compared with monolayer cells. In self-assembled neocartilage, type II to I collagen ratio increased with increasing aggregate duration, yet glycosaminoglycan content varied minimally. Notably, 14 days of aggregate redifferentiation increased collagen content by 25%, tensile modulus by over 110%, and compressive moduli by over 50%, compared with tissue formed in the absence of redifferentiation. A spectrum of fibrous to hyaline cartilage was generated using a single, clinically relevant cell source, improving the translational potential of engineered cartilage. PMID:24380383
21 CFR 660.30 - Reagent Red Blood Cells.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Reagent Red Blood Cells. 660.30 Section 660.30 Food... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be Reagent Red...
Raz, Vered; Vermolen, Bart J; Garini, Yuval; Onderwater, Jos J M; Mommaas-Kienhuis, Mieke A; Koster, Abraham J; Young, Ian T; Tanke, Hans; Dirks, Roeland W
2008-12-15
Ex vivo, human mesenchymal stem cells (hMSCs) undergo spontaneous cellular senescence after a limited number of cell divisions. Intranuclear structures of the nuclear lamina were formed in senescent hMSCs, which are identified by the presence of Hayflick-senescence-associated factors. Notably, spatial changes in lamina shape were observed before the Hayflick senescence-associated factors, suggesting that the lamina morphology can be used as an early marker to identify senescent cells. Here, we applied quantitative image-processing tools to study the changes in nuclear architecture during cell senescence. We found that centromeres and telomeres colocalised with lamina intranuclear structures, which resulted in a preferred peripheral distribution in senescent cells. In addition, telomere aggregates were progressively formed during cell senescence. Once formed, telomere aggregates showed colocalization with gamma-H2AX but not with TERT, suggesting that telomere aggregates are sites of DNA damage. We also show that telomere aggregation is associated with lamina intranuclear structures, and increased telomere binding to lamina proteins is found in cells expressing lamina mutants that lead to increases in lamina intranuclear structures. Moreover, three-dimensional image processing revealed spatial overlap between telomere aggregates and lamina intranuclear structures. Altogether, our data suggest a mechanical link between changes in lamina spatial organization and the formation of telomere aggregates during senescence of hMSCs, which can possibly contribute to changes in nuclear activity during cell senescence.
Cell culture media impact on drug product solution stability.
Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J
2016-07-08
To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016. © 2016 American Institute of Chemical Engineers.
Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.
Paul, Albert Jesuran; Schwab, Karen; Prokoph, Nina; Haas, Elena; Handrick, René; Hesse, Friedemann
2015-06-01
Product yields, efficacy, and safety of monoclonal antibodies (mAbs) are reduced by the formation of higher molecular weight aggregates during upstream processing. In-process characterization of mAb aggregate formation is a challenge since there is a lack of a fast detection method to identify mAb aggregates in cell culture. In this work, we present a rapid method to characterize mAb aggregate-containing Chinese hamster ovary (CHO) cell culture supernatants. The fluorescence dyes thioflavin T (ThT) and 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS) enabled the detection of soluble as well as large mAb aggregates. Partial least square (PLS) regression models were used to evaluate the linearity of the dye-based mAb aggregate detection in buffer down to a mAb aggregate concentration of 2.4 μg mL(-1). Furthermore, mAb aggregates were detected in bioprocess medium using Bis-ANS and ThT. Dye binding to aggregates was stable for 60 min, making the method robust and reliable. Finally, the developed method using 10 μmol L(-1) Bis-ANS enabled discrimination between CHO cell culture supernatants containing different levels of mAb aggregates. The method can be adapted for high-throughput screening, e.g., to screen for cell culture conditions influencing mAb product quality, and hence can contribute to the improvement of production processes of biopharmaceuticals in mammalian cell culture.
Altered expression of blood group A and H antigens on red cells from an acute leukemic patient.
Matsuki, T; Shimano, S; Furukawa, K
1992-01-01
Alternate expressions of the blood group A and H antigens on red cells are described in a patient with acute myelocytic leukemia. The patient's red cells showed mixed field agglutination with anti-A and anti-H sera and lectins, and no agglutination with anti-B serum. The agglutinability of the A red cells with Dolichos biflorus lectin was between A1 and A2 (A intermediate). Inagglutinable red cells were separated with anti-A agglutinin, and the proportion was about 80% of total cells. The agglutinating activity with Ulex europaeus anti-H of red cells, which were inagglutinable with anti-A, was 16 times weaker than that of group O cells. The weaker reaction with Ricinus communis lectin and the stronger reaction with Psathyrella velutina lectin on the inagglutinable cells with anti-A than those on the group O cells suggest that fucosyl alpha (1-2) and galactosyl beta (1-4) residues at the nonreducing end of carbohydrate chains of H antigens on the red cells were diminished, and N-acetylglucosaminyl beta (1-3) residues were sequentially exposed. His saliva contained A and H substances in normal amounts of a secretor. Serum alpha-N-acetylgalactosaminyltransferase activity which converts O red cells to A red cells was the same as those in sera from A1 individuals. These results suggest that the synthesis of H precursors is partially blocked in this patient's red cells.
Development of long-term primary cell aggregates from Mediterranean octocorals.
Huete-Stauffer, Carla; Valisano, Laura; Gaino, Elda; Vezzulli, Luigi; Cerrano, Carlo
2015-09-01
In lower metazoans, the aggregative properties of dissociated cells leading to in vitro stable multicellular aggregates have furnished a remarkable experimental material to carry out investigations in various research fields. One of the main expectations is to find good models for the study in vitro of the first steps of biomineralization processes. In this study, we examined five common Mediterranean gorgonians (Paramuricea clavata, Corallium rubrum, Eunicella singularis, Eunicella cavolinii, and Eunicella verrucosa) using mechanical cell aggregate production techniques. In particular, we investigated the conditions of aggregate formation, their number and survival in experimental conditions, the DNA synthesizing activity using 5'-bromo-2'-deoxyuridine (BrdU) tests, and the response to calcein addition and observed the secretion of newly formed sclerites. The BrdU tests showed that cell proliferation depends on the size of aggregates and on the presence/absence of symbiotic zooxanthellae. With epifluorescent and confocal imaging from calcein addition assays, we observed the presence of calcium ions within cells, a possible clue for prediction of sclerite formation or calcium deposition. The species-specific efficiency in production of cell aggregates is correlated to the size of polyps, showing that the higher density of polyps and their diameter correspond to higher production of cell aggregates. Regarding the long-term maintenance, we obtained the best results from E. singularis, which formed multicellular aggregates of 0.245 mm ± 0.086 mm in size and maintained symbiotic association with zooxanthellae throughout the experimental run. Formation of sclerites within aggregates opens a wide field of investigation on biomineralization, since de novo sclerites were observed around 30 d after the beginning of the experiment.
Effects of green and red light in βL-crystallin and ovalbumin
Espinoza, J. Horacio; Reynaga-Hernández, Elizabeth; Ruiz-García, Jaime; Montero-Morán, Gabriela; Sanchez-Dominguez, Margarita; Mercado-Uribe, Hilda
2015-01-01
The effects of visible light on biological systems have been widely studied. In particular, the alterations of blue light on the ocular lens have recently attracted much attention. Here, we present a study about the effects produced by green and red light on two different proteins: βL-crystallin and ovalbumin. Based on differential scanning calorimetry (DSC), circular dichroism (CD), dynamic light scattering (DLS), and fluorescence emission measurements, we found that both wavelengths induce structural changes in these proteins. We also observed that βL-crystallin aggregates. Our work may advance our understanding about conformational and aggregation processes in proteins subjected to visible radiation and the possible relationship with cataracts. While blue light has been considered the only harmful component in the visible espectrum, our findings show the possibility that lower energy components may be also of some concern. PMID:26656181
Free, Paul; Conger, Gao; Siji, Wu; Zhang, Jing Bo; Fernig, David G
2016-10-01
The stability of gold nanorods was assessed following coating with various charged or uncharged ligands, mostly peptides. Highly stable monodispersed gold nanorods were obtained by coating CTAB-stabilized gold nanorods with a pentapeptide with C-terminal ethylene glycol units (peptide-EG). UV-vis spectroscopy of these nanorods suspended in saline solutions indicated no signs of aggregation, and they were easily purified using size-exclusion chromatography. A more stringent measure of nanorod stability involved observing changes in the UV-vis absorbance of gold nanorods subjected to etching with cyanide. The λmax absorbance of peptide-EG coated nanorods red-shifted in etchant solution. The hypothesis that changes in the nanorod aspect ratio led to this red-shift was confirmed by TEM analysis, which showed pit formation along the transverse axis. The etching process was followed in solution using nanoparticle tracking analysis. The red-shift was shown to occur while the particles remained mono-dispersed, and so was not due to aggregation. Adding both etchant solution and peptide-EG to the nanorods was further shown to allow modulation of the Δλmax red-shift and increase the etchant resistance of peptide-EG nanorods. Thus, very stable gold nanorods can be produced using the peptide-EG coating approach and their optical properties modulated with etchant. Copyright © 2016 Elsevier B.V. All rights reserved.
Red Blood Cell Susceptibility to Pneumolysin
Bokori-Brown, Monika; Petrov, Peter G.; Khafaji, Mawya A.; Mughal, Muhammad K.; Naylor, Claire E.; Shore, Angela C.; Gooding, Kim M.; Casanova, Francesco; Mitchell, Tim J.; Titball, Richard W.; Winlove, C. Peter
2016-01-01
This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell. PMID:26984406
Aggregation Dynamics Using Phase Wave Signals and Branching Patterns
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Kusagaki, Takuma
2016-09-01
The aggregation dynamics of slime mold is studied using coupled equations of phase ϕ and cell concentration n. Phase waves work as tactic signals for aggregation. Branching structures appear during the aggregation. A stationary branching pattern appears like a river network, if cells are uniformly supplied into the system.
Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip†
Jain, Abhishek
2013-01-01
Blood cells naturally auto-segregate in postcapillary venules, with the erythrocytes (red blood cells, RBCs) aggregating near the axis of flow and the nucleated cells (NCs)—which include leukocytes, progenitor cells and, in cancer patients, circulating tumor cells—marginating toward the vessel wall. We have used this principle to design a microfluidic device that extracts nucleated cells (NCs) from whole blood. Fabricated using polydimethylsiloxane (PDMS) soft lithography, the biomimetic cell extraction device consists of rectangular microchannels that are 20–400 μm wide, 11 μm deep and up to 2 cm long. The key design feature is the use of repeated expansions/contractions of triangular geometry mimicking postcapillary venules, which enhance margination and optimize the extraction. The device operates on unprocessed whole blood and is able to extract 94 ± 4.5% of NCs with 45.75 ± 2.5-fold enrichment in concentration at a rate of 5 nl s−1. The device eliminates the need to preprocess blood via centrifugation or RBC lysis, and is ready to be implemented as the initial stage of lab-on-a-chip devices that require enriched nucleated cells. The potential downstream applications are numerous, encompassing all preclinical and clinical assays that operate on enriched NC populations and include on-chip flow cytometry PMID:21773633
Biogrid--a microfluidic device for large-scale enzyme-free dissociation of stem cell aggregates.
Wallman, Lars; Åkesson, Elisabet; Ceric, Dario; Andersson, Per Henrik; Day, Kelly; Hovatta, Outi; Falci, Scott; Laurell, Thomas; Sundström, Erik
2011-10-07
Culturing stem cells as free-floating aggregates in suspension facilitates large-scale production of cells in closed systems, for clinical use. To comply with GMP standards, the use of substances such as proteolytic enzymes should be avoided. Instead of enzymatic dissociation, the growing cell aggregates may be mechanically cut at passage, but available methods are not compatible with large-scale cell production and hence translation into the clinic becomes a severe bottle-neck. We have developed the Biogrid device, which consists of an array of micrometerscale knife edges, micro-fabricated in silicon, and a manifold in which the microgrid is placed across the central fluid channel. By connecting one side of the Biogrid to a syringe or a pump and the other side to the cell culture, the culture medium with suspended cell aggregates can be aspirated, forcing the aggregates through the microgrid, and ejected back to the cell culture container. Large aggregates are thereby dissociated into smaller fragments while small aggregates pass through the microgrid unaffected. As proof-of-concept, we demonstrate that the Biogrid device can be successfully used for repeated passage of human neural stem/progenitor cells cultured as so-called neurospheres, as well as for passage of suspension cultures of human embryonic stem cells. We also show that human neural stem/progenitor cells tolerate transient pressure changes far exceeding those that will occur in a fluidic system incorporating the Biogrid microgrids. Thus, by using the Biogrid device it is possible to mechanically passage large quantities of cells in suspension cultures in closed fluidic systems, without the use of proteolytic enzymes.
[Studies on red orpiment induction of NB4 and HL-60 cell apoptosis].
Bai, Y; Huang, S
1998-09-01
To study the possible mechanism of red orpiment, which is main component of composite indigo naturalis tablets, in the treatment of acute promyelocytic leukemia(APL). The effect of red orpiment on induction of APL cell line NB4 and HL-60 apoptosis were studied by cell morphology, DNA gel electrophoresis and flow cytometry assay. Red orpiment induced NB4 and HL-60 cell apoptosis. When treated with different concentration of red orpiment(25-200 micrograms/ml) for 16 hours, both NB4 and HL-60 cells showed typical apoptosis features. If decreased the concentration of red orpiment to 12.5 micrograms/ml, the NB4 cell still showed apoptosis features while the HL-60 cell did not when cultured for 72 hours. Arsenic disulfide(As2S2) had the same effect as red orpiment did under the same experiment condition. It is the main component, As2S2 of the red orpiment that can induces NB4 and HL-60 cell apoptosis. and the red orpiment is responsible for the high CR rate of APL induced by the composite indigo naturalis tablets.
Aeromonas species exhibit aggregative adherence to HEp-2 cells.
Neves, M S; Nunes, M P; Milhomem, A M
1994-01-01
Clinical and environmental isolates of Aeromonas species (five A. hydrophila isolates, three A. caviae isolates, and two A. sobria isolates) were tested for their adherence to HEp-2 cells. Clinical isolates of A. hydrophila and A. sobria exhibited aggregative adherence similar to that presented by enteroadherent-aggregative Escherichia coli. Bacterial aggregates adhered to cells with a typical "stacked-brick" appearance. In contrast, A. caviae strains showed a diffuse adherence pattern. Images PMID:8027331
Red blood cell vesiculation in hereditary hemolytic anemia
Alaarg, Amr; Schiffelers, Raymond M.; van Solinge, Wouter W.; van Wijk, Richard
2013-01-01
Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias. PMID:24379786
Morphological classification of bioaerosols from composting using scanning electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamer Vestlund, A.; FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW; Al-Ashaab, R.
2014-07-15
Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samplesmore » were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.« less
Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C
2016-05-15
Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. Copyright © 2015 Elsevier Inc. All rights reserved.
Lu, Y.; Aguirre, A.A.; Work, Thierry M.; Balazs, G.H.; Nerurkar, V.R.; Yanagihara, R.
2000-01-01
Serial cultivation of cell lines derived from lung, testis, periorbital and tumor tissues of a green turtle (Chelonia mydas) with fibropapillomas resulted in the in vitro formation of tumor-like cell aggregates, ranging in size from 0.5 to 2.0 mm in diameter. Successful induction of tumor-like aggregates was achieved in a cell line derived from lung tissue of healthy green turtles, following inoculation with cell-free media from these tumor-bearing cell lines, suggesting the presence of a transmissible agent. Thin-section electron microscopy of the cell aggregates revealed massive collagen deposits and intranuclear naked viral particles, measuring 5095 nm in diameter. These findings, together with the morphological similarity between these tumor-like cell aggregates and the naturally occurring tumor, suggest a possible association between this novel virus and the disease. Further characterization of this small naked virus will clarify its role in etiology of green turtle fibropapilloma, a life-threatening disease of this endangered marine species.
Inflight Assay of Red Blood Cell Deformability
NASA Technical Reports Server (NTRS)
Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.
1985-01-01
Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.
Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe
Nakaoka, Hidenori; Wakamoto, Yuichi
2017-01-01
Replicative aging has been demonstrated in asymmetrically dividing unicellular organisms, seemingly caused by unequal damage partitioning. Although asymmetric segregation and inheritance of potential aging factors also occur in symmetrically dividing species, it nevertheless remains controversial whether this results in aging. Based on large-scale single-cell lineage data obtained by time-lapse microscopy with a microfluidic device, in this report, we demonstrate the absence of replicative aging in old-pole cell lineages of Schizosaccharomyces pombe cultured under constant favorable conditions. By monitoring more than 1,500 cell lineages in 7 different culture conditions, we showed that both cell division and death rates are remarkably constant for at least 50–80 generations. Our measurements revealed that the death rate per cellular generation increases with the division rate, pointing to a physiological trade-off with fast growth under balanced growth conditions. We also observed the formation and inheritance of Hsp104-associated protein aggregates, which are a potential aging factor in old-pole cell lineages, and found that these aggregates exhibited a tendency to preferentially remain at the old poles for several generations. However, the aggregates were eventually segregated from old-pole cells upon cell division and probabilistically allocated to new-pole cells. We found that cell deaths were typically preceded by sudden acceleration of protein aggregation; thus, a relatively large amount of protein aggregates existed at the very ends of the dead cell lineages. Our lineage tracking analyses, however, revealed that the quantity and inheritance of protein aggregates increased neither cellular generation time nor cell death initiation rates. Furthermore, our results demonstrated that unusually large amounts of protein aggregates induced by oxidative stress exposure did not result in aging; old-pole cells resumed normal growth upon stress removal, despite the fact that most of them inherited significant quantities of aggregates. These results collectively indicate that protein aggregates are not a major determinant of triggering cell death in S. pombe and thus cannot be an appropriate molecular marker or index for replicative aging under both favorable and stressful environmental conditions. PMID:28632741
Shinde, Surendra; Kim, Dae-Young; Saratale, Rijuta Ganesh; Syed, Asad; Ameen, Fuad; Ghodake, Gajanan
2017-09-22
A simple green route has been developed for the synthesis of casein peptide functionalized gold nanoparticles (AuNPs), in which casein peptide acts as a reducing as well as the stabilizing agent. In this report, AuNPs have been characterized on the basis of spectroscopic and microscopic results; which showed selective and sensitive response toward Al 3+ in aqueous media, and Al 3+ induces aggregation of AuNPs. The sensing study performed for Al 3+ revealed that the color change from red to blue was due to a red-shift in the surface plasmon resonance (SPR) band and the formation of aggregated species of AuNPs. The calibration curve determines the detection limit (LOD) for Al 3+ about 20 ppb (0.067 μM) is presented using both decrease and increase in absorbance at 530 and 700 nm, respectively. This value is considerably lower than the higher limit allowed for Al 3+ in drinking water by the world health organization (WHO) (7.41 μM), representing enough sensitivity to protect water quality. The intensity of the red-shifted band increases with linear pattern upon the interaction with different concentrations of Al 3+ , thus the possibility of producing unstable AuNPs aggregates. The method is successfully used for the detection of Al 3+ in water samples collected from various sources, human urine and ionic drink. The actual response time required for AuNPs is about 1 min, this probe also have several advantages, such as ease of synthesis, functionalization and its use, high sensitivity, and enabling on-site monitoring.
Effect of erythrocyte aggregation on optical transmission of blood
NASA Astrophysics Data System (ADS)
Shvartsman, L. D.; Fine, I.
2007-02-01
We present here a bird-eye view of time-dependent optical transmission of blood in red-near infrared spectral range. This issue is of the key importance both for fundamental understanding and for various applications connected with non-invasive optical blood analysis. A number of experiments measuring kinetics of blood transmission in the case of natural heart pulsations and of artificial kinetics following over-systolic occlusion is reviewed. The comprehensive theoretical approach has to consider scattering-associated mechanism rather than the widely accepted absorption-associated one. Light scattering occurs on RBC aggregates. The size of aggregates and their shape change in time due to blood flow variations. It results in the corresponding changes of optical transmission.
Protein aggregation as a cellular response to oxidative stress induced by heme and iron
Vasconcellos, Luiz R. C.; Dutra, Fabianno F.; Siqueira, Mariana S.; Paula-Neto, Heitor A.; Dahan, Jennifer; Kiarely, Ellen; Carneiro, Leticia A. M.; Bozza, Marcelo T.; Travassos, Leonardo H.
2016-01-01
Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis. PMID:27821769
Yau, Tsz Wai; Kuchel, Rhiannon P; Koh, Jennifer M S; Szekely, David; Mirtschin, Peter J; Kuchel, Philip W
2012-01-01
RBCs (red blood cells) circulating through narrow blood capillaries withstand major deformation. The mechanical and chemical stresses commonly exerted on RBCs continue to attract interest for the study of membrane structure and function. Snake venoms are lethal biochemical 'cocktails' that often contain haemotoxins, metalloproteinases, myotoxins, neurotoxins, phosphodiesterases, phospholipases and proteases. We have monitored the effects of 4 snake venoms (Pseudechis guttatus, Oxyuranus scutellatus, Notechis scutatus and Naja kaouthia) on human RBCs using NMR spectroscopy, DIC (differential interference contrast) and confocal light microscopy. RBCs underwent reproducible stomatocytosis, with unusual geographical-like indentations, spherocytosis, followed by rapid lysis. Confocal micrographs using a fluorescent dye linked to phalloidin showed that the change in morphology was associated with the aggregation of actin in the cytoskeleton. (31)P NMR saturation transfer experiments recorded transport of the univalent anion HPA (hypophosphite) on a subsecond time scale, thereby reporting on the function of capnophorin or Band 3 linked to the cytoskeleton; anion-exchange activity was substantially reduced by venom treatment. We propose a molecular-cytological hypothesis for the shape and functional changes that is different from, or supplementary to, the more 'traditional' bilayer-couple hypothesis more often used to account for similar morphological changes invoked by other reagents. © The Author(s) Journal compilation © 2012 Portland Press Limited
Alkaptonuria is a novel human secondary amyloidogenic disease
Millucci, Lia; Spreafico, Adriano; Tinti, Laura; Braconi, Daniela; Ghezzi, Lorenzo; Paccagnini, Eugenio; Bernardini, Giulia; Amato, Loredana; Laschi, Marcella; Selvi, Enrico; Galeazzi, Mauro; Mannoni, Alessandro; Benucci, Maurizio; Lupetti, Pietro; Chellini, Federico; Orlandini, Maurizio; Santucci, Annalisa
2012-01-01
Alkaptonuria (AKU) is an ultra-rare disease developed from the lack of homogentisic acid oxidase activity, causing homogentisic acid (HGA) accumulation that produces a HGA-melanin ochronotic pigment, of unknown composition. There is no therapy for AKU. Our aim was to verify if AKU implied a secondary amyloidosis. Congo Red, Thioflavin-T staining and TEM were performed to assess amyloid presence in AKU specimens (cartilage, synovia, periumbelical fat, salivary gland) and in HGA-treated human chondrocytes and cartilage. SAA and SAP deposition was examined using immunofluorescence and their levels were evaluated in the patients' plasma by ELISA. 2D electrophoresis was undertaken in AKU cells to evaluate the levels of proteins involved in amyloidogenesis. AKU osteoarticular tissues contained SAA-amyloid in 7/7 patients. Ochronotic pigment and amyloid co-localized in AKU osteoarticular tissues. SAA and SAP composition of the deposits assessed secondary type of amyloidosis. High levels of SAA and SAP were found in AKU patients' plasma. Systemic amyloidosis was assessed by Congo Red staining of patients' abdominal fat and salivary gland. AKU is the second pathology after Parkinson's disease where amyloid is associated with a form of melanin. Aberrant expression of proteins involved in amyloidogenesis has been found in AKU cells. Our findings on alkaptonuria as a novel type II AA amyloidosis open new important perspectives for its therapy, since methotrexate treatment proved to significantly reduce in vitro HGA-induced A-amyloid aggregates. PMID:22850426
Proper cytoskeletal architecture beneath the plasma membrane of red blood cells requires Ttll4
Ijaz, Faryal; Hatanaka, Yasue; Hatanaka, Takahiro; Tsutsumi, Koji; Iwaki, Takayuki; Umemura, Kazuo; Ikegami, Koji; Setou, Mitsutoshi
2017-01-01
Mammalian red blood cells (RBCs) circulate through blood vessels, including capillaries, for tens of days under high mechanical stress. RBCs tolerate this mechanical stress while maintaining their shape because of their elastic membrane skeleton. This membrane skeleton consists of spectrin-actin lattices arranged as quasi-hexagonal units beneath the plasma membrane. In this study, we found that the organization of the RBC cytoskeleton requires tubulin tyrosine ligase–like 4 (Ttll4). RBCs from Ttll4-knockout mice showed larger average diameters in smear test. Based on the rate of hemolysis, Ttll4-knockout RBCs showed greater vulnerability to phenylhydrazine-induced oxidative stress than did wild-type RBCs. Ultrastructural analyses revealed the macromolecular aggregation of cytoskeletal components in RBCs of Ttll4-knockout mice. Immunoprecipitation using the anti-glutamylation antibody GT335 revealed nucleosome assembly protein 1 (NAP1) to be the sole target of TTLL4 in the RBCs, and NAP1 glutamylation was completely lost in Ttll4-knockout RBCs. In wild-type RBCs, the amount of glutamylated NAP1 in the membrane was nearly double that in the cytosol. Furthermore, the absence of TTLL4-dependent glutamylation of NAP1 weakened the binding of NAP1 to the RBC membrane. Taken together, these data demonstrate that Ttll4 is required for proper cytoskeletal organization in RBCs. PMID:27974641
Effect of reconstructive vascular surgery on red cell deformability--preliminary results.
Irwin, S T; Rocks, M J; McGuigan, J A; Patterson, C C; Morris, T C; O'Reilly, M J
1983-01-01
Using a simple filtration method, red cell deformability was measured in healthy control subjects and in patients with peripheral vascular disease. Impaired red cell deformability was demonstrated in patients with rest pain or gangrene and in patients with intermittent claudication. An improvement in red cell deformability was demonstrated after successful reconstructive vascular surgery in both patient groups. An improvement in red cell deformability was demonstrated in patients undergoing major limb amputation. PMID:6619311
Kelbauskas, L; Dietel, W
2002-12-01
Amphiphilic sensitizers self-associate in aqueous environments and form aggregated species that exhibit no or only negligible photodynamic activity. However, amphiphilic photosensitizers number among the most potent agents of photodynamic therapy. The processes by which these sensitizers are internalized into tumor cells have yet to be fully elucidated and thus remain the subject of debate. In this study the uptake of photosensitizer aggregates into tumor cells was examined directly using subcellular time-resolved fluorescence spectroscopy with a high temporal resolution (20-30 ps) and high sensitivity (time-correlated single-photon counting). The investigations were performed on selected sensitizers that exhibit short fluorescence decay times (< 50 ps) in aggregated form. Derivatives of pyropheophorbide-a ether and chlorin e6 with varying lipophilicity were used for the study. The characteristic fluorescence decay times and spectroscopic features of the sensitizer aggregates measured in aqueous solution also could be observed in A431 human endothelial carcinoma cells administered with these photosensitizers. This shows that tumor cells can internalize sensitizers in aggregated form. Uptake of aggregates and their monomerization inside cells were demonstrated directly for the first time by means of fluorescence lifetime imaging with a high temporal resolution. Internalization of the aggregates seems to be endocytosis mediated. The degree of their monomerization in tumor cells is strongly influenced by the lipophilicity of the compounds.
The response of aggregated Pseudomonas putida CP1 cells to UV-C and UV-A/B disinfection.
Maganha de Almeida, Ana C; Quilty, Bríd
2016-11-01
UV radiation is a spread method used worldwide for the disinfection of water. However, much of the research on the disinfection of bacterial cells by UV has focused on planktonic cells. Many bacterial cells in nature are present in clumps or aggregates, and these aggregates, which are more resistant to disinfection than their planktonic counterparts, can be problematic in engineered water systems. The current research used Pseudomonas putida (P. putida) CP1, an environmental and non-pathogenic microorganism which autoaggregates when grown under certain conditions, as a model organism to simulate aggregated cells. The study investigated the response of both the planktonic and the aggregated forms of the bacterium to UV-C (λ = 253.7 nm) and UV-A/B (λ > 300 nm) disinfection at laboratory scale in a minimal medium. The planktonic cells of P. putida CP1 were inactivated within 60 s by UV-C and in 60 min by UV-A/B; however, the aggregated cells required 120 min of UV-C treatment and 240 min of UV-A/B radiation to become inactive. The size of the aggregate was reduced following UV treatment. Although all the cells had lost culturability, viability as measured by the LIVE/DEAD ® stain and epifluorescence microscopy was not completely lost and the cells all demonstrated regrowth after overnight incubation in the dark.
Cell Aggregation-induced FGF8 Elevation Is Essential for P19 Cell Neural Differentiation
Wang, Chen; Xia, Caihong; Bian, Wei; Liu, Li; Lin, Wei; Chen, Ye-Guang; Ang, Siew-Lan
2006-01-01
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition–independent role in P19 cell neural differentiation. PMID:16641368
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, V.V.; Stearner, S.P.; Dimitrievich, G.S.
1977-04-01
Cell aggregates in increased numbers appear along blood vessel walls within a few days after local x irradiation of the tissue within rabbit ear chambers. At 7 days after irradiation with 400 or 700 rad of 250 kVp of x rays, electron microscopic studies of the microvasculature were carried out to determine the morphological characteristics of the cell types involved in the aggregates and the relation of these cells to vascular repair. The cell aggregates usually occur in the interstitial region subjacent to the endothelium. The cells that make up the aggregates show morphological characteristics of relatively undifferentiated mesenchymal cells;more » they have an irregularly rounded shape and contain large amounts of rough endoplasmic reticulum, Golgi vesicles, and mitochondria. In a few instances, cells of similar morphology also occur as part of the lining of the blood vessels. The perivascular cell aggregates may originate from the pericyte population or from undifferentiated mesenchymal cells that occur in the interstitial region surrounding blood vessels; it is improbable that they are dedifferentiated smooth muscle cells. It is suggested that the cells that make up these aggregates contribute to the repair of the microvasculation after radiation injury. The radiosensitivity of vascular endothelium reported by previous investigators seems to preclude endothelial proliferation as the principal repair mechanism at higher radiation doses.« less
A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells
NASA Astrophysics Data System (ADS)
Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Acharya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J. S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; Degrado, William F.
2017-09-01
The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fibre diffraction, hydrogen-deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide.
Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures.
Wu, Jincheng; Rostami, Mahboubeh Rahmati; Cadavid Olaya, Diana P; Tzanakakis, Emmanuel S
2014-01-01
Stirred-suspension bioreactors are a promising modality for large-scale culture of 3D aggregates of pluripotent stem cells and their progeny. Yet, cells within these clusters experience limitations in the transfer of factors and particularly O2 which is characterized by low solubility in aqueous media. Cultured stem cells under different O2 levels may exhibit significantly different proliferation, viability and differentiation potential. Here, a transient diffusion-reaction model was built encompassing the size distribution and ultrastructural characteristics of embryonic stem cell (ESC) aggregates. The model was coupled to experimental data from bioreactor and static cultures for extracting the effective diffusivity and kinetics of consumption of O2 within mouse (mESC) and human ESC (hESC) clusters. Under agitation, mESC aggregates exhibited a higher maximum consumption rate than hESC aggregates. Moreover, the reaction-diffusion model was integrated with a population balance equation (PBE) for the temporal distribution of ESC clusters changing due to aggregation and cell proliferation. Hypoxia was found to be negligible for ESCs with a smaller radius than 100 µm but became appreciable for aggregates larger than 300 µm. The integrated model not only captured the O2 profile both in the bioreactor bulk and inside ESC aggregates but also led to the calculation of the duration that fractions of cells experience a certain range of O2 concentrations. The approach described in this study can be employed for gaining a deeper understanding of the effects of O2 on the physiology of stem cells organized in 3D structures. Such frameworks can be extended to encompass the spatial and temporal availability of nutrients and differentiation factors and facilitate the design and control of relevant bioprocesses for the production of stem cell therapeutics.
Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel
2013-01-01
Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli. PMID:23633942
Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer’s and Parkinson’s Disease
Caruana, Mario; Cauchi, Ruben; Vassallo, Neville
2016-01-01
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common age-related neurodegenerative disorders and hence pose remarkable socio-economical burdens to both families and state. Although AD and PD have different clinical and neuropathological features, they share common molecular mechanisms that appear to be triggered by multi-factorial events, such as protein aggregation, mitochondrial dysfunction, oxidative stress (OS), and neuroinflammation, ultimately leading to neuronal cell death. Currently, there are no established and validated disease-modifying strategies for either AD or PD. Among the various lifestyle factors that may prevent or slow age-related neurodegenerative diseases, epidemiological studies on moderate consumption of red wine, especially as part of a holistic Mediterranean diet, have attracted increasing interest. Red wine is particularly rich in specific polyphenolic compounds that appear to affect the biological processes of AD and PD, such as quercetin, myricetin, catechins, tannins, anthocyanidins, resveratrol, and ferulic acid. Indeed, there is now a consistent body of in vitro and in vivo data on the neuroprotective effects of red wine polyphenols (RWP) showing that they do not merely possess antioxidant properties, but may additionally act upon, in a multi-target manner, the underlying key mechanisms featuring in both AD and PD. Furthermore, it is important that bioavailability issues are addressed in order for neuroprotection to be relevant in a clinical study scenario. This review summarizes the current knowledge about the major classes of RWP and places into perspective their potential to be considered as nutraceuticals to target neuropathology in AD and PD. PMID:27570766
Caruana, Mario; Cauchi, Ruben; Vassallo, Neville
2016-01-01
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common age-related neurodegenerative disorders and hence pose remarkable socio-economical burdens to both families and state. Although AD and PD have different clinical and neuropathological features, they share common molecular mechanisms that appear to be triggered by multi-factorial events, such as protein aggregation, mitochondrial dysfunction, oxidative stress (OS), and neuroinflammation, ultimately leading to neuronal cell death. Currently, there are no established and validated disease-modifying strategies for either AD or PD. Among the various lifestyle factors that may prevent or slow age-related neurodegenerative diseases, epidemiological studies on moderate consumption of red wine, especially as part of a holistic Mediterranean diet, have attracted increasing interest. Red wine is particularly rich in specific polyphenolic compounds that appear to affect the biological processes of AD and PD, such as quercetin, myricetin, catechins, tannins, anthocyanidins, resveratrol, and ferulic acid. Indeed, there is now a consistent body of in vitro and in vivo data on the neuroprotective effects of red wine polyphenols (RWP) showing that they do not merely possess antioxidant properties, but may additionally act upon, in a multi-target manner, the underlying key mechanisms featuring in both AD and PD. Furthermore, it is important that bioavailability issues are addressed in order for neuroprotection to be relevant in a clinical study scenario. This review summarizes the current knowledge about the major classes of RWP and places into perspective their potential to be considered as nutraceuticals to target neuropathology in AD and PD.
Polyglutamine aggregation in Huntington and related diseases.
Polling, Saskia; Hill, Andrew F; Hatters, Danny M
2012-01-01
Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.
Genipin-crosslinked microcarriers mediating hepatocellular aggregates formation and functionalities.
Lau, Ting Ting; Wang, Chunming; Png, Sze Wei; Su, Kai; Wang, Dong-An
2011-01-01
In engineered regenerative medicine, various types of scaffolds have been customized to pursue the optimal environment for different types of therapeutic cells. In liver therapeutic research, hepatocytes require attachment to solid anchors for survival and proliferation before they could grow into cellular aggregates with enhanced functionalities. Among the various biomaterials scaffolds and vehicles, microspherical cell carriers are suited to these requirements. Individual spheres may provide two-dimensional (2D) cell-affinitive surfaces for cell adhesion and spreading; whereas multiple microcarriers may form three-dimensional (3D) matrices with inter-spherical space for cell expansion and multicellular aggregation. In this study, we culture human liver carcinoma cell line (HepG2) cells on genipin-crosslinked gelatin microspheres of two different sizes. Results suggest that both microcarriers support cell adhesion, proliferation, and spontaneous formation of hepatocellular aggregates, among which the spheres with bigger size (200-300 μm) seem more favorable than the smaller ones in terms of aggregate formation and liver specific functionalities. These findings suggest that the genipin-crosslinked microcarrier is a competent vehicle for liver cell delivery. Copyright © 2010 Wiley Periodicals, Inc.
Blood volume and red cell life span (M113), part C
NASA Technical Reports Server (NTRS)
Johnson, P. C., Jr.
1973-01-01
Prechamber, in-chamber, and postchamber blood samples taken from Skylab simulation crewmembers did not indicate significant shortening of the red cell life span during the mission. This does not suggest that the space simulation environment could not be associated with red cell enzyme changes. It does show that any changes in enzymes were not sufficiently great to significantly shorten red cell survival. There was no evidence of bone marrow erythropoetic suppression nor was there any evidence of increased red cell destruction.
Bazou, D; Santos-Martinez, M J; Medina, C; Radomski, M W
2011-04-01
Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster-platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate-cancer cell clusters may be an important strategy to control metastasis. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Nakamura, Kenta; Tsonis, Panagiotis A.
2014-01-01
Adult newts (Notophthalmus viridescens) are capable of complete lens regeneration that is mediated through dorsal iris pigment epithelial (IPE) cells transdifferentiation. In contrast, higher vertebrates such as mice demonstrate only limited lens regeneration in the presence of an intact lens capsule with remaining lens epithelial cells. To compare the intrinsic lens regeneration potential of newt IPE versus mouse lens epithelial cells (MLE), we have established a novel culture method that uses cell aggregation before culture in growth factor-reduced Matrigel™. Dorsal newt IPE aggregates demonstrated complete lens formation within 1 to 2 weeks of Matrigel culture without basic fibroblast growth factor (bFGF) supplementation, including the establishment of a peripheral cuboidal epithelial cell layer, and the appearance of central lens fibers that were positive for αA-crystallin. In contrast, the lens-forming potential of MLE cell aggregates cultured in Matrigel was incomplete and resulted in the formation of defined-size lentoids with partial optical transparency. While the peripheral cell layers of MLE aggregates were nucleated, cells in the center of aggregates demonstrated a nonapoptotic nuclear loss over a time period of 3 weeks that was representative of lens fiber formation. Matrigel culture supplementation with bFGF resulted in higher transparent bigger-size MLE aggregates that demonstrated increased appearance of βB1-crystallin expression. Our study demonstrates that bFGF is not required for induction of newt IPE aggregate-dependent lens formation in Matrigel, while the addition of bFGF seems to be beneficial for the formation of MLE aggregate-derived lens-like structures. In conclusion, the three-dimensional aggregate culture of IPE and MLE in Matrigel allows to a higher extent than older models the indepth study of the intrinsic lens-forming potential and the corresponding identification of lentogenic factors. PMID:23672748
Zegeye, A; Mustin, C; Jorand, F
2010-06-01
In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.
Bitensky, M.W.; Yoshida, Tatsuro
1997-04-29
A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.
Rollo, Benjamin N.; Zhang, Dongcheng; Simkin, Johanna E.; Menheniott, Trevelyan R.; Newgreen, Donald F.
2015-01-01
The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca 2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates. This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface. PMID:26064478
NASA Astrophysics Data System (ADS)
Pineda, M.; Eftimie, R.
2017-12-01
The directed motion of cell aggregates toward a chemical source occurs in many relevant biological processes. Understanding the mechanisms that control this complex behavior is of great relevance for our understanding of developmental biological processes and many diseases. In this paper, we consider a self-propelled particle model for the movement of heterogeneous subpopulations of chemically interacting cells towards an imposed stable chemical gradient. Our simulations show explicitly how self-organisation of cell populations (which could lead to engulfment or complete cell segregation) can arise from the heterogeneity of chemotactic responses alone. This new result complements current theoretical and experimental studies that emphasise the role of differential cell-cell adhesion on self-organisation and spatial structure of cellular aggregates. We also investigate how the speed of individual cell aggregations increases with the chemotactic sensitivity of the cells, and decreases with the number of cells inside the aggregates
Controlled Assembly of Biocompatible Metallic Nanoaggregates Using a Small Molecule Crosslinker
Van Haute, Desiree; Longmate, Julia M.; Berlin, Jacob M.
2015-01-01
By introducing a capping step and controlling reaction parameters, the assembly of metallic nanoparticle aggregates can be achieved using a small molecule crosslinker. Aggregates can be assembled from particles of varied size and composition and the size of the aggregates can be systematically adjusted. Following cell uptake of 60 nm aggregates, the aggregates are stable and non-toxic to macrophage cells up to 55mM Au. PMID:26208123
Rizvi, Asim; Furkan, Mohd; Naseem, Imrana
2017-12-15
Malignancies are characterized by several drastic metabolic changes, one of which is a progressive rise in the levels of serum copper. This rise in serum copper is documented across all malignancies and across malignancies in several species. This study aims to explore in vitro the effect of increased copper levels on the structure of the blood protein human serum albumin. Exposure of human serum albumin to physiologically relevant copper concentrations for 21 days resulted in structural modifications in the protein which were evident by changes in the intrinsic florescence. A loss of the predominantly alpha helical structure of human serum albumin was recorded along with a tendency to form protein aggregates. This aggregation was characterized by Thioflavin T and Congo Red assays. Rayleigh light scattering and turbidity assays confirmed aggregation. The aggregates were visually confirmed using transmission electron microscopy. This is the first report implicating increased copper levels as a cause of aggregation of blood proteins in malignancies. The physiological and biochemical implications of this phenomenon are discussed. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Liu, Gang; Xiao, Hai; Liu, Puling
2017-04-01
Soil aggregates, being a key soil structural unit, influence several soil physical properties such as water infiltration, runoff and erosion. The relationship between soil aggregate stability and interrill and rill erodibility is unclear but critical to process-based erosion prediction models. One obvious reason is that it is hard to distinguish between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and rill erosion rates and relates them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth element (REE) were applied as tracers mixed with two cultivated soils derived from the Quaternary red clay soil and the shale soil at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall with three intensities (60, 90 and 120 mm/h) were applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10°, 20° and 30°) with duration of 30 min after runoff initiation. The results indicated that interrill and rill erosion increased with increasing rainfall intensity and slope gradient for both types of soil. Rill and interrill erosion rates of the shale soil were much higher than those of the Quaternary red clay soil. Rill erosion contribution enhanced with increasing rainfall intensity and slope gradient for both soils. Percentage of the downslope area erosion to total erosion was the largest, followed by the mid-slope area and then upslope area. Equations using an aggregate stability index As to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analyzing the relationships between estimated and measured rill and interrill erosion data. It was shown that these equations based on the stability index, As, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for the subtropical Ultisols by using REE tracing method.
Menad, S; Franqueville, L; Haddour, N; Buret, F; Frenea-Robin, M
2015-04-01
Creating cell aggregates of controlled size and shape and patterning cells on substrates using a bottom-up approach constitutes important challenges for tissue-engineering applications and studies of cell-cell interactions. In this paper, we report nDEP (negative dielectrophoresis) driven assembly of cells as compact aggregates or onto defined areas using a new bioelectronic chip. This chip is composed of a quadripolar electrode array obtained using coplanar electrodes partially covered with a thin, micropatterned PDMS membrane. This thin PDMS layer was coated with poly-L-lysine and played the role of adhesive substrate for cell patterning. For the formation of detachable cell aggregates, the PDMS was not pretreated and cells were simply immobilized into assemblies maintained by cell-cell adhesion after the electric field removal. Cell viability after exposition to DEP buffer was also assessed, as well as cell spreading activity following DEP-driven assembly. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
21 CFR 660.30 - Reagent Red Blood Cells.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...
21 CFR 660.30 - Reagent Red Blood Cells.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...
21 CFR 660.30 - Reagent Red Blood Cells.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...
21 CFR 660.30 - Reagent Red Blood Cells.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...
Myxobacteria Fruiting Body Formation
NASA Astrophysics Data System (ADS)
Jiang, Yi
2006-03-01
Myxobacteria are social bacteria that swarm and glide on surfaces, and feed cooperatively. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies, inside which cells differentiate into nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction mediated by diffusing chemicals. However, myxobacteria aggregation is the consequence of direct cell-contact interactions. I will review our recent efforts in modeling the fruiting body formation of Myxobacteria, using lattice gas cellular automata models that are based on local cell-cell contact signaling. These models have reproduced the individual phases in Myxobacteria development such as the rippling, streaming, early aggregation and the final sporulation; the models can be unified to simulate the whole developmental process of Myxobacteria.
Khan, Samiullah; Gul, Aqsa; Noreen, Rabia; Ashraf, Muhammad; Ahmad, Sohail; Awan, Sattar Bakhsh
2018-06-13
Thrombus is composed of two main substances i.e. red blood cells and aggregated platelets which make a web of inter-connected fibrin proteins. During injury it prevents bleeding, so it is very useful but it can be very dangerous if it is produced in healthy blood vessels and block the blood flow through it. Mural thrombi attaches with the blood vessels but in most cases do not block it completely. Venoms are an incredible source of peptides having amazing bioactivities with varying number of amino acid residues. Anticoagulant venom peptides however inhibit the enzyme taking part in coagulation like factor Xa and thrombin. The anticoagulant potential of venom peptides have also been reported by the degradation of the fibrin or fibrinogen related to serine or metalloproteases. Designing and development of numerous therapeutic agents or lead molecules mostly for cardiovascular diseases have been motivated from toxins/proteins from snake venoms. For example, disintegrins, a large family of platelet aggregation inhibitors found in viperid and crotalid snake venoms were the basis for designing of platelet aggregation inhibitors such as eptifibatide and tirofiban. Ancrod isolated from Malayan pit viper venom can cause reduction in level of blood fibrinogen and has been effectively tried in various ischemic conditions, including stroke. In order to search for novel lead molecules, the emphasis should be on isolation and characterization of pharmacologically active snake venoms proteins affecting blood coagulation and platelet aggregation. In this review an attempt has been made to recapitulates and discuss venoms of different animals and arthropod having anticoagulant peptides for their potential use in therapeutics and diagnostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Aggregation of Human Eyelid Adipose-derived Stem Cells by Human Body Fluids
Song, Yeonhwa; Yun, Sujin; Yang, Hye Jin; Yoon, A Young; Kim, Haekwon
2012-01-01
Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was 15.1±0.2×104 as the least for the low density group, and 29.3±2.8×104 as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids. PMID:25949109
SERS as analytical tool for detection of bacteria
NASA Astrophysics Data System (ADS)
Cialla, Dana; Rösch, Petra; Möller, Robert; Popp, Jürgen
2007-07-01
The detection of single bacteria should be improved by lowering the acquisition time via the application of SERS (surface enhanced Raman spectroscopy). Nano structured colloids or surfaces consisting of gold or silver can be used as SERS active substrates. However, for biological applications mostly gold is used as SERS active substrate since silver is toxic for bacterial cells. Furthermore, the application of gold as a SERS-active substrate allows the usage of Raman excitation wavelengths in the red part of the electromagnetic spectrum. For the SERS investigations on bacteria different colloids (purchased and self prepared, preaggregated and non-aggregated) are chosen as SERS active substrates. The application of different gold colloids under gently mixing conditions to prevent the bacterial damage allowed the recording of reproducible SERS spectra of bacteria. The SERS spectra of B. pumilus are dominated by contributions of ingredients of the outer cell wall, e.g. the peptidoglycan layer. SEM images of the coated bacteria demonstrate the incomplete adsorption most probably due to variations within the binding affinities between different outer cell components and the gold colloids.
Rodrigo, Rexan; Allen, Angela; Manampreri, Aresha; Perera, Luxman; Fisher, Christopher A; Allen, Stephen; Weatherall, David J; Premawardhena, Anuja
2018-07-01
Iron deficiency complicates the use of red cell indices to screen for carriers of haemoglobin variants in many populations. In a cross sectional survey of 7526 secondary school students from 25 districts of Sri Lanka, 1963 (26.0%) students had low red cell indices. Iron deficiency, identified by low serum ferritin, was the major identifiable cause occurring in 550/1806 (30.5%) students. Low red cell indices occurred in iron-replete students with alpha-thalassaemia including those with single alpha-globin gene deletions. Anaemia and low red cell indices were also common in beta-thalassaemia trait. An unexpected finding was that low red cell indices occurred in 713 iron-replete students with a normal haemoglobin genotype. It is common practice to prescribe iron supplements to individuals with low red cell indices. Since low red cell indices were a feature of all forms of α thalassaemia and also of iron deficiency, in areas where both conditions are common, such as Sri Lanka, it is imperative to differentiate between the two, to allow targeted administration of iron supplements and avoid the possible deleterious effects of increased iron availability in iron replete individuals with low red cell indices due to other causes such as α thalassaemia. Copyright © 2018 Elsevier Inc. All rights reserved.
Red Dot Basal Cell Carcinoma: An Unusual Variant of a Common Malignancy.
Loh, Tiffany Y; Cohen, Philip R
2016-05-01
Red dot basal cell carcinoma is a distinct but rare subtype of basal cell carcinoma (BCC). It presents as a red macule or papule; therefore, in most cases, it may easily be mistaken for a benign vascular lesion, such as a telangiectasia or angioma.
A red dot BCC in an older woman is described. Clinical and histological differences between red dot BCCs and telangiectasias are described.
A 72-year-old woman initially presented with a painless red macule on her nose. Biopsy of the lesion established the diagnosis of a red dot BCC. Pubmed was searched for the following terms: angioma, basal cell carcinoma, dermoscope, diascopy, red dot, non-melanoma skin cancer, telangiectasia, and vascular. The papers were reviewed for cases of red dot basal cell carcinoma. Clinical and histological characteristics of red dot basal cell carcinoma and telangiectasias were compared.
Red dot BCC is an extremely rare variant of BCC that may be confused with benign vascular lesions. Although BCCs rarely metastasize and are associated with low mortality, they have the potential to become locally invasive and destructive if left untreated. Thus, a high index of suspicion for red dot BCC is necessary.
J Drugs Dermatol. 2016;15(5):645-647.
Reduced DIDS-sensitive chloride conductance in Ae1-/- mouse erythrocytes
Alper, Seth L.; Vandorpe, David H.; Peters, Luanne L.; Brugnara, Carlo
2008-01-01
The resting membrane potential of the human erythrocyte is largely determined by a constitutive Cl- conductance ∼100-fold greater than the resting cation conductance. The 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS)-sensitive electroneutral Cl- transport mediated by the human erythroid Cl-/HCO3- exchanger, AE1 (SLC4A1, band 3) is ≥10,000-fold greater than can be accounted for by the Cl- conductance of the red cell. The molecular identities of conductive anion pathways across the red cell membrane remain poorly defined. We have examined red cell Cl- conductance in the Ae1-/- mouse as a genetic test of the hypothesis that Ae1 mediates DIDS-sensitive Cl- conductance in mouse red cells. We report here that wildtype mouse red cell membrane potential resembles that of human red cells in the predominance of its Cl- conductance. We show with four technical approaches that the DIDS-sensitive component of erythroid Cl- conductance is reduced or absent from Ae1-/- red cells. These results are consistent with the hypothesis that the Ae1 anion exchanger polypeptide can operate infrequently in a conductive mode. However, the fragile red cell membrane of the Ae1-/- mouse red cell exhibits reduced abundance or loss of multiple polypeptides. Thus, loss of one or more distinct, DIDS-sensitive anion channel polypeptide(s) from the Ae1-/- red cell membrane cannot be ruled out as an explanation for the reduced DIDS-sensitive anion conductance. PMID:18329299
Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E
2012-08-01
The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.
2012-01-01
Introduction Transplantation of mesenchymal stem cells (MSCs) derived from synovium is a promising therapy for cartilage regeneration. For clinical application, improvement of handling operation, enhancement of chondrogenic potential, and increase of MSCs adhesion efficiency are needed to achieve a more successful cartilage regeneration with a limited number of MSCs without scaffold. The use of aggregated MSCs may be one of the solutions. Here, we investigated the handling, properties and effectiveness of aggregated MSCs for cartilage regeneration. Methods Human and rabbit synovial MSCs were aggregated using the hanging drop technique. The gene expression changes after aggregation of synovial MSCs were analyzed by microarray and real time RT-PCR analyses. In vitro and in vivo chondrogenic potential of aggregates of synovial MSCs was examined. Results Aggregates of MSCs cultured for three days became visible, approximately 1 mm in diameter and solid and durable by manipulation; most of the cells were viable. Microarray analysis revealed up-regulation of chondrogenesis-related, anti-inflammatory and anti-apoptotic genes in aggregates of MSCs. In vitro studies showed higher amounts of cartilage matrix synthesis in pellets derived from aggregates of MSCs compared to pellets derived from MSCs cultured in a monolayer. In in vivo studies in rabbits, aggregates of MSCs could adhere promptly on the osteochondral defects by surface tension, and stay without any loss. Transplantation of aggregates of MSCs at relatively low density achieved successful cartilage regeneration. Contrary to our expectation, transplantation of aggregates of MSCs at high density failed to regenerate cartilage due to cell death and nutrient deprivation of aggregates of MSCs. Conclusions Aggregated synovial MSCs were a useful source for cartilage regeneration considering such factors as easy preparation, higher chondrogenic potential and efficient attachment. PMID:22676383
A phase field approach for multicellular aggregate fusion in biofabrication.
Yang, Xiaofeng; Sun, Yi; Wang, Qi
2013-07-01
We present a modeling and computational approach to study fusion of multicellular aggregates during tissue and organ fabrication, which forms the foundation for the scaffold-less biofabrication of tissues and organs known as bioprinting. It is known as the phase field method, where multicellular aggregates are modeled as mixtures of multiphase complex fluids whose phase mixing or separation is governed by interphase force interactions, mimicking the cell-cell interaction in the multicellular aggregates, and intermediate range interaction mediated by the surrounding hydrogel. The material transport in the mixture is dictated by hydrodynamics as well as forces due to the interphase interactions. In a multicellular aggregate system with fixed number of cells and fixed amount of the hydrogel medium, the effect of cell differentiation, proliferation, and death are neglected in the current model, which can be readily included in the model, and the interaction between different components is dictated by the interaction energy between cell and cell as well as between cell and medium particles, respectively. The modeling approach is applicable to transient simulations of fusion of cellular aggregate systems at the time and length scale appropriate to biofabrication. Numerical experiments are presented to demonstrate fusion and cell sorting during tissue and organ maturation processes in biofabrication.
Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J; Francis, Richard O; Roach, Robert C; Dzieciatkowska, Monika; Rogers, Stephen C; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T; Thomas, Tiffany A; Hansen, Kirk C; Spitalnik, Steven L; Xia, Yang; Zimring, James C; Hod, Eldad A; D'Alessandro, Angelo
2018-02-01
Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13 C 1 -aspartate or 13 C 5 -adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. Copyright© 2018 Ferrata Storti Foundation.
Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A.; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J.; Francis, Richard O.; Roach, Robert C.; Dzieciatkowska, Monika; Rogers, Stephen C.; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T.; Thomas, Tiffany A.; Hansen, Kirk C.; Spitalnik, Steven L.; Xia, Yang; Zimring, James C.; Hod, Eldad A.; D’Alessandro, Angelo
2018-01-01
Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. PMID:29079593
Photoinduced changes in photosystem II pigments
NASA Astrophysics Data System (ADS)
Andreeva, Atanaska S.; Busheva, Mira C.; Stoitchkova, Katerina V.; Tzonova, Iren K.
2010-11-01
The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ß-carotene (ß-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ß-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.
Aleksander-Szymanowicz, P; Marchewka, A; Dabrowski, Z; Teleglow, A; Bac, A; Glodzik, J
2014-10-01
The aim of this study was to evaluate the influence of a six-week aerobic training on peripheral blood in adults with Down syndrome. Fifteen men with Down syndrome (average age 22.4 years ± 0.91) with moderate or severe intellectual disability took part in the study. Patients underwent a training program three times a week for six weeks. Venous blood samples of 10 ml were collected from every examined patient, 24 hours before and after the exercise. The blood samples were submitted to hematological examination (hematocrit, fibrinogen, plasma viscosity, red blood cell (RBC) number, RBC indicators: mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular hemoglobin (MCH)), reduced glutathione (GSH) level and number of macrocytes, polikilocytrometric examination of RBC and rheological blood examination (elongation index (EI), aggregation index (AI), syllectogram amplitude (AMP), aggregation half time (t1/2)) was made by LORCA. Amoderate six-week physical training performed on a cycloergometer resulted in a statistically significant decrease in the MCV value, hematocrit and plasma viscosity. The six-week cycloergometer training caused a statistically significant increase in the GSH level and erythrocyte pliability at a shear stress of 0.58 Pa.
Cohen, Philip R
2017-03-22
Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that of the preoperative cancer was greater than 12:1, demonstrating a significant lateral spread of the tumor beyond the observed clinical margins of the neoplasm. In conclusion, in a patient with a personal history of actinic keratosis or nonmelanoma skin cancer, the appearance of a new red dot in a sun-exposed site should prompt additional evaluation of the skin lesion to exclude or establish the diagnosis of red dot basal cell carcinoma.
2017-01-01
Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that of the preoperative cancer was greater than 12:1, demonstrating a significant lateral spread of the tumor beyond the observed clinical margins of the neoplasm. In conclusion, in a patient with a personal history of actinic keratosis or nonmelanoma skin cancer, the appearance of a new red dot in a sun-exposed site should prompt additional evaluation of the skin lesion to exclude or establish the diagnosis of red dot basal cell carcinoma. PMID:28465868
Quantification of the fraction poorly deformable red blood cells using ektacytometry.
Streekstra, G J; Dobbe, J G G; Hoekstra, A G
2010-06-21
We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a laser beam that is sent through the suspension, is projected on a screen. When measuring a healthy red blood cell population iso-intensity curves are ellipses with an axial ratio equal to that of the average red blood cell. In contrast poorly deformable cells result in circular iso-intensity curves. In this study we show that for mixtures of deformable and poorly deformable red blood cells, iso-intensity curves in the composite intensity pattern are neither elliptical nor circular but obtain cross-like shapes. We propose a method to obtain the fraction of poorly deformable red blood cells from those intensity patterns. Experiments with mixtures of poorly deformable and deformable red blood cells validate the method and demonstrate its accuracy. In a clinical setting our approach is potentially of great value for the detection of the fraction of sickle cells in blood samples of patients with sickle cell disease or to find a measure for the parasitemia in patients infected with malaria.
A facile in vitro model to study rapid mineralization in bone tissues.
Deegan, Anthony J; Aydin, Halil M; Hu, Bin; Konduru, Sandeep; Kuiper, Jan Herman; Yang, Ying
2014-09-16
Mineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required. We developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT). Two size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture. This study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate size determines the mineralization rate. Mineral content depended on aggregate size and culture duration. Thus, our culture system may provide a good model to study regulation factors at different development phases of the osteoblastic lineage.
Integration of red cell genotyping into the blood supply chain: a population-based study.
Flegel, Willy A; Gottschall, Jerome L; Denomme, Gregory A
2015-07-01
When problems with compatibility arise, transfusion services often use time-consuming serological tests to identify antigen-negative red cell units for safe transfusion. New methods have made red cell genotyping possible for all clinically relevant blood group antigens. We did mass-scale genotyping of donor blood and provided hospitals with access to a large red cell database to meet the demand for antigen-negative red cell units beyond ABO and Rh blood typing. We established a red cell genotype database at the BloodCenter of Wisconsin on July 17, 2010. All self-declared African American, Asian, Hispanic, and Native American blood donors were eligible irrespective of their ABO and Rh type or history of donation. Additionally, blood donors who were groups O, A, and B, irrespective of their Rh phenotype, were eligible for inclusion only if they had a history of at least three donations in the previous 3 years, with one donation in the previous 12 months at the BloodCenter of Wisconsin. We did red cell genotyping with a nanofluidic microarray system, using 32 single nucleotide polymorphisms to predict 42 blood group antigens. An additional 14 antigens were identified via serological phenotype. We monitored the ability of the red cell genotype database to meet demand for compatible blood during 3 years. In addition to the central database at the BloodCenter of Wisconsin, we gave seven hospitals online access to a web-based antigen query portal on May 1, 2013, to help them to locate antigen-negative red cell units in their own inventories. We analysed genotype data for 43,066 blood donors. Requests were filled for 5661 (99.8%) of 5672 patient encounters in which antigen-negative red cell units were needed. Red cell genotyping met the demand for antigen-negative blood in 5339 (94.1%) of 5672 patient encounters, and the remaining 333 (5.9%) requests were filled by use of serological data. Using the 42 antigens represented in our red cell genotype database, we were able to fill 14,357 (94.8%) of 15,140 requests for antigen-negative red cell units from hospitals served by the BloodCenter of Wisconsin. In the pilot phase, the seven hospitals identified 71 units from 52 antigen-negative red cell unit requests. Red cell genotyping has the potential to transform the way antigen-negative red cell units are provided. An antigen query portal could reduce the need for transportation of blood and serological screening. If this wealth of genotype data can be made easily accessible online, it will help with the supply of affordable antigen-negative red cell units to ensure patient safety. BloodCenter of Wisconsin Diagnostic Laboratories Strategic Initiative and the NIH Clinical Center Intramural Research Program. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermometry in dielectrophoresis chips for contact-free cell handling
NASA Astrophysics Data System (ADS)
Jaeger, M. S.; Mueller, T.; Schnelle, T.
2007-01-01
Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.
Ex vivo isolation protocols differentially affect the phenotype of human CD4+ T cells.
Bernard, Frédéric; Jaleco, Sara; Dardalhon, Valérie; Steinberg, Marcos; Yssel, Hans; Noraz, Nelly; Taylor, Naomi; Kinet, Sandrina
2002-12-20
Leukemic T cell lines have facilitated signal transduction studies but their physiological relevance is restricted. The use of primary T lymphocytes overcomes this limitation but it has long been speculated that methodological aspects of blood collection and the isolation procedure modify the phenotype of the cell. Here we demonstrate that several characteristics of human peripheral T cells are affected by the selection conditions. A significantly higher induction of the chemokine receptor CXCR4 was observed on CD4+ lymphocytes isolated by sheep red blood cell (SRBC) rosetting and CD4 MicroBeads as compared with positively selected CD4+ cells where the antibody/bead complex was immediately detached. These latter cells expressed CXCR4 at levels equivalent to that observed on CD4+ lymphocytes obtained by negative antibody-mediated selection. Furthermore, CD4+ cells isolated by SRBC rosetting and CD4 MicroBeads formed aggregates upon in vitro culture. CD4+ lymphocytes obtained by SRBC rosetting as well as those isolated following positive selection demonstrated basal phosphorylation of the extracellular signal-regulated kinase (ERK)-2. Altogether these data suggest that certain discrepancies concerning signal transduction in primary human T cells can be attributed to the selection conditions. Thus, it is essential to establish the parameters influenced by the isolation protocol in order to fully interpret T cell responses to antigens, chemokines, and cytokines.
Alcohol and the risk of myocardial infarction.
Flesch, M; Rosenkranz, S; Erdmann, E; Böhm, M
2001-04-01
Epidemiological studies have repeatedly demonstrated a beneficial effect of moderate alcohol consumption on the incidence of coronary heart disease, myocardial infarction and overall mortality. The latter increases with excessive alcohol consumption. Although most epidemiological studies demonstrate a beneficial effect of alcohol consumption independent from the specific kind of alcoholic beverage, there is increasing evidence that wine and in particular red wine might contain pharmacological substances, which prevent atherosclerosis and myocardial infarction independent from the wine ethanol. Pathophysiological mechanisms mediating these beneficial effects include effects of wine phenols and tannins on LDL-cholesterol oxidation status, thrombocyte aggregation, endothelial function and smooth muscle cell proliferation. Identification and characterization of the pharmacologically active substances might provide the stage for the development of new substances to be used in the prevention of coronary artery disease and myocardial infarction.
In vitro immunomodulatory activity of plants used by the Tacana ethnic group in Bolivia.
Deharo, E; Baelmans, R; Gimenez, A; Quenevo, C; Bourdy, G
2004-09-01
One hundred and seventy-eight ethanolic plant extracts from the pharmacopoeia of the Tacana, an ethnic group from Bolivia, were screened for immunomodulatory activity using complement cascade inhibition and ADP-induced platelet aggregation inhibition assays. Six impaired both complement pathways (classical and alternative): stem bark from Astronium urundeuvea (Anacardiaceae), Cochlospermum vitifolium (Cochlospermaceae), Terminalia amazonica (Combretaceae), Triplaris americana (Polygonaceae), Uncaria tomentosa (Rubiaceae) and Euterpe precatoria (Arecaceae) roots. Inhibition of complement cascade was independent of essential ion complexation, and was not due to direct hemolytic activity on target red blood cells. For A. urundeuvea, C. vitifolium, and T. amazonica, anti-inflammatory activity relied on cyclo-oxygenase inhibition. Four of these species (A. urundeuva, T. americana, U. tomentosa and E. precatoria) are used traditionally to treat inflammatory processes.
Sickle red cell-endothelium interactions.
Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A
2009-01-01
Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.
Enomoto, Gen; Ni-Ni-Win; Narikawa, Rei; Ikeuchi, Masahiko
2015-06-30
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that have diverse spectral properties and domain compositions. Although large numbers of CBCR genes exist in cyanobacterial genomes, no studies have assessed whether multiple CBCRs work together. We recently showed that the diguanylate cyclase (DGC) activity of the CBCR SesA from Thermosynechococcus elongatus is activated by blue-light irradiation and that, when irradiated, SesA, via its product cyclic dimeric GMP (c-di-GMP), induces aggregation of Thermosynechococcus vulcanus cells at a temperature that is suboptimum for single-cell viability. For this report, we first characterize the photobiochemical properties of two additional CBCRs, SesB and SesC. Blue/teal light-responsive SesB has only c-di-GMP phosphodiesterase (PDE) activity, which is up-regulated by teal light and GTP. Blue/green light-responsive SesC has DGC and PDE activities. Its DGC activity is enhanced by blue light, whereas its PDE activity is enhanced by green light. A ΔsesB mutant cannot suppress cell aggregation under teal-green light. A ΔsesC mutant shows a less sensitive cell-aggregation response to ambient light. ΔsesA/ΔsesB/ΔsesC shows partial cell aggregation, which is accompanied by the loss of color dependency, implying that a nonphotoresponsive DGC(s) producing c-di-GMP can also induce the aggregation. The results suggest that SesB enhances the light color dependency of cell aggregation by degrading c-di-GMP, is particularly effective under teal light, and, therefore, seems to counteract the induction of cell aggregation by SesA. In addition, SesC seems to improve signaling specificity as an auxiliary backup to SesA/SesB activities. The coordinated action of these three CBCRs highlights why so many different CBCRs exist.
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects...
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2014 CFR
2014-04-01
... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...
42 CFR 410.161 - Part B blood deductible.
Code of Federal Regulations, 2013 CFR
2013-10-01
... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2013 CFR
2013-04-01
... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...
42 CFR 410.161 - Part B blood deductible.
Code of Federal Regulations, 2012 CFR
2012-10-01
... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...
42 CFR 410.161 - Part B blood deductible.
Code of Federal Regulations, 2014 CFR
2014-10-01
... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...
42 CFR 410.161 - Part B blood deductible.
Code of Federal Regulations, 2011 CFR
2011-10-01
... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2012 CFR
2012-04-01
... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...
21 CFR 864.7100 - Red blood cell enzyme assay.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in...
Red blood cell sedimentation of Apheresis Granulocytes.
Lodermeier, Michelle A; Byrne, Karen M; Flegel, Willy A
2017-10-01
Sedimentation of Apheresis Granulocyte components removes red blood cells. It is used to increase the blood donor pool when blood group-compatible donors cannot be recruited for a patient because of a major ABO incompatibility or incompatible red blood cell antibodies in the recipient. Because granulocytes have little ABO and few other red blood cell antigens on their membrane, such incompatibility lies mostly with the contaminating red blood cells. Video Clip S1 shows the process of red blood cell sedimentation of an Apheresis Granulocyte component. This video was filmed with a single smart phone attached to a commercial tripod and was edited on a tablet computer with free software by an amateur videographer without prior video experience. © 2017 AABB.
Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.
2010-01-01
Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164
Bansode, Rishipal R; Plundrich, Nathalie J; Randolph, Priscilla D; Lila, Mary Ann; Williams, Leonard L
2018-10-15
This study investigates the anti-allergic properties of peanut skin polyphenols (PSP)-enriched peanut (PN) protein aggregates. PSP was blended with PN flour at concentrations of 5, 10, 15, 30, and 40% (w/w). Rat basophil leukemia cells (RBL-2H3) were sensitized with either anti-DNP-IgE or PN-allergic plasma followed by co-exposure to unmodified PN flour (control) or PSP-PN protein aggregates and Ca 2+ ionophore, ionomycin. Immunoblotting and staining were performed to measure the IgE binding capacity of PSP-PN aggregates. Results showed that 30% PSP-PN aggregate significantly reduced β-hexosaminidase and histamine levels by 54.2% and 49.2%, respectively compared with control. Immunoblotting results revealed 40% PSP-PN aggregates significantly decreased IgE binding by 19%. The phosphorylation of p44/42 MAPK was significantly reduced while phosphorylation of p38 MAPK and SAPK/JNK increased upon PSP-PN protein aggregate exposure to the cells. Our results show that aggregation of PSP to PN proteins reduces allergic response by inhibiting Ca 2+ -induced MAPK-dependent cell degranulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
The effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients.
Bakirdogen, Serkan; Eren, Necmi; Bek, Sibel Gokcay; Mehtap, Ozgur; Cekmen, Mustafa Baki
2016-01-01
Serum leptin levels of chronic kidney disease patients have been detected higher than normal population. The aim of this study was to investigate the effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients. Fourty three peritoneal dialysis patients were included in the study. Thrombocyte aggregation was calculated from the whole blood subsequently the effects of different concentrations of human recombinant leptin on thrombocyte aggregations were investigated. Four test cells were used for this process. While leptin was not added into the first test cell, increasing amounts of leptin was added into the second, third and fourth test cells to attain the concentrations of 25, 50 and 100 ng/ml respectively. Thrombocyte aggregation was inhibited by recombinant leptin in peritoneal dialysis patients. Thrombocyte aggregation mean values were found statistically significantly higher in first test cell when compared to leptin groups in peritoneal dialysis patients. For leptin groups we could not find any statistically significant differences for thrombocyte aggregation mean values between any of the groups. Further studies with larger number of peritoneal dialysis patients are required to prove the action of leptin on thrombocyte aggregation.
The effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients
Bakirdogen, Serkan; Eren, Necmi; Bek, Sibel Gokcay; Mehtap, Ozgur; Cekmen, Mustafa Baki
2016-01-01
Objective: Serum leptin levels of chronic kidney disease patients have been detected higher than normal population. The aim of this study was to investigate the effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients. Methods: Fourty three peritoneal dialysis patients were included in the study. Thrombocyte aggregation was calculated from the whole blood subsequently the effects of different concentrations of human recombinant leptin on thrombocyte aggregations were investigated. Four test cells were used for this process. While leptin was not added into the first test cell, increasing amounts of leptin was added into the second, third and fourth test cells to attain the concentrations of 25, 50 and 100 ng/ml respectively. Results: Thrombocyte aggregation was inhibited by recombinant leptin in peritoneal dialysis patients. Thrombocyte aggregation mean values were found statistically significantly higher in first test cell when compared to leptin groups in peritoneal dialysis patients. For leptin groups we could not find any statistically significant differences for thrombocyte aggregation mean values between any of the groups. Conclusion: Further studies with larger number of peritoneal dialysis patients are required to prove the action of leptin on thrombocyte aggregation. PMID:28083046
Rollins-Raval, Marian A; Marafioti, Teresa; Swerdlow, Steven H; Roth, Christine G
2013-06-01
Plasmacytoid dendritic cells, which play a fundamental role in the innate immune response, are best known for their presence in hyaline-vascular Castleman disease and histiocytic necrotizing lymphadenitis. The relative number and distribution in many reactive entities as detected using more sensitive methods are uncertain, and their diagnostic implications are unknown. Immunohistochemical studies for plasmacytoid dendritic cell-associated markers CD123 and CD2AP were performed on 42 lymph nodes with hyaline-vascular Castleman disease, histiocytic necrotizing lymphadenitis, sarcoidosis, necrotizing granulomatous inflammation, viral infection, dermatopathic lymphadenopathy, autoimmune disease, and a histologic pattern compatible with toxoplasmosis. The overall plasmacytoid dendritic cell numbers and growth patterns (tight aggregates, loose aggregates/clusters, scattered single cells) were assessed. Plasmacytoid dendritic cells were present in all cases and were predominantly distributed in loose aggregates/clusters or singly. They were most numerous in granulomatous inflammation and histiocytic necrotizing lymphadenitis, whereas viral infections showed the fewest overall numbers and a predominant pattern of scattered single cells. Tight aggregates of plasmacytoid dendritic cells were most numerous in hyaline-vascular Castleman disease (100% sensitive, 68% specific). Plasmacytoid dendritic cells are not limited to a small number of reactive lymphadenopathies but are found in many reactive processes, often with a predominant pattern of loose aggregates/clusters and scattered single cells. However, tight aggregates were a characteristic feature of hyaline-vascular Castleman disease, and viral infections typically showed only few scattered cells distributed singly. Copyright © 2013 Elsevier Inc. All rights reserved.
Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.
Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck
2013-01-01
Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.
Letson, Hayley; Dobson, Geoffrey
2017-01-01
Systemic inflammation and coagulopathy are major drivers of injury progression following hemorrhagic trauma. Our aim was to examine the effect of small-volume 3% NaCl adenosine, lidocaine and Mg2+ (ALM) bolus and 0.9% NaCl/ALM 'drip' on inflammation and coagulation in a rat model of hemorrhagic shock. Sprague-Dawley rats (429±4 g) were randomly assigned to: 1) shams, 2) no-treatment, 3) saline-controls, 4) ALM-therapy, and 5) Hextend®. Hemorrhage was induced in anesthetized-ventilated animals by liver resection (60% left lateral lobe and 50% medial lobe). After 15 min, a bolus of 3% NaCl ± ALM (0.7 ml/kg) was administered intravenously (Phase 1) followed 60 min later by 4 hour infusion of 0.9% NaCl ± ALM (0.5 ml/kg/hour) with 1-hour monitoring (Phase 2). Plasma cytokines were measured on Magpix® and coagulation using Stago/Rotational Thromboelastometry. After Phase 1, saline-controls, no-treatment and Hextend® groups showed significant falls in white and red cells, hemoglobin and hematocrit (up to 30%), whereas ALM animals had similar values to shams (9-15% losses). After Phase 2, these deficits in non-ALM groups were accompanied by profound systemic inflammation. In contrast, after Phase 1 ALM-treated animals had undetectable plasma levels of IL-1α and IL-1β, and IL-2, IL-6 and TNF-α were below baseline, and after Phase 2 they were less or similar to shams. Non-ALM groups (except shams) also lost their ability to aggregate platelets, had lower plasma fibrinogen levels, and were hypocoagulable. ALM-treated animals had 50-fold higher ADP-induced platelet aggregation, and 9.3-times higher collagen-induced aggregation compared to saline-controls, and had little or no coagulopathy with significantly higher fibrinogen shifting towards baseline. Hextend® had poor outcomes. Small-volume ALM bolus/drip mounted a frontline defense against non-compressible traumatic hemorrhage by defending immune cell numbers, suppressing systemic inflammation, improving platelet aggregation and correcting coagulopathy. Saline-controls were equivalent to no-treatment. Possible mechanisms of ALM's immune-bolstering effect are discussed.
Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation.
Feng, Ying; Wang, Xiao-ping; Yang, Shi-gao; Wang, Yu-jiong; Zhang, Xi; Du, Xue-ting; Sun, Xiao-xia; Zhao, Min; Huang, Lei; Liu, Rui-tian
2009-11-01
Beta-amyloid (Abeta) aggregation has been strongly associated with the neurodegenerative pathology and a cascade of harmful event rated to Alzheimer's disease (AD). Inhibition of Abeta assembly, destabilization of preformed Abeta aggregates and attenuation of the cytotoxicity of Abeta oligomers and fibrils could be valuable therapeutics of patients with AD. Recent studies suggested that moderate consumption of red wine and intake of dietary polyphenols, such as resveratrol, may benefit AD phenotypes in animal models and reduce the relative risk for AD clinical dementia. To understand the mechanism of this neuroprotection, we studied the effects of resveratrol, an active ingredient of polyphenols in wine and many plants, on the polymerization of Abeta42 monomer, the destabilization of Abeta42 fibril and the cell toxicity of Abeta42 in vitro using fluorescence spectroscopic analysis with thioflavin T (ThT), transmission electron microscope (TEM), circular dichroism (CD) and MTT assay. The results showed that resveratrol could dose-dependently inhibit Abeta42 fibril formation and cytotoxicity but could not prevent Abeta42 oligomerization. The studies by Western-blot, dot-blot and ELISA confirmed that the addition of resveratrol resulted in numerous Abeta42 oligomer formation. In conjunction with the concept that Abeta oligomers are linked to Abeta toxicity, we speculate that aside from potential antioxidant activities, resveratrol may directly bind to Abeta42, interfere in Abeta42 aggregation, change the Abeta42 oligomer conformation and attenuate Abeta42 oligomeric cytotoxicity.
MedlinePlus Videos and Cool Tools
... body's tissues in exchange for carbon dioxide, which is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow ... 2 days. The body makes about two million red blood cells every second. Blood is made up of both cellular and liquid components. ...
Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten.
Feriotto, G; Calza, R; Bergamini, C M; Griffin, M; Wang, Z; Beninati, S; Ferretti, V; Marzola, E; Guerrini, R; Pagnoni, A; Cavazzini, A; Casciano, F; Mischiati, C
2017-03-01
Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.
Jameson, Laramie P; Smith, Nicholas W; Dzyuba, Sergei V
2012-11-21
Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors' potential toward Aβ peptides, species involved in Alzheimer's disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays.
2012-01-01
Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors’ potential toward Aβ peptides, species involved in Alzheimer’s disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays. PMID:23173064
Egger, Dominik; Schwedhelm, Ivo; Hansmann, Jan; Kasper, Cornelia
2017-05-23
Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.
Antimicrobial and anticancer activity of AgNPs coated with Alphonsea sclerocarpa extract.
Doddapaneni, Suman Joshi D S; Amgoth, Chander; Kalle, Arunasree M; Suryadevara, Surya Narayana; Alapati, Krishna Satya
2018-03-01
The synthesis and characterization of an aggregate of AgNPs coated with plant extract (PE) from Alphonsea sclerocarpa and its significant antimicrobial activity and inhibition on K562 (blood cancer) cells have been appended in the article. Synthesis of aggregate [(AgNPs)-(PE)] has been followed by a facile eco-friendly approach without using any harmful chemicals. The morphology of an aggregate [(AgNPs)-(PE)] was confirmed by TEM and SEM microscopic characterizations. Properties like solid state, the presence of functional groups, and elemental composition have been characterized through the XRD, FTIR, and EDAX. The biocompatibility of synthesized aggregate of [(AgNPs)-(PE)] was confirmed by the MTT assay. An in vitro cell (HEK293)-based studies were performed for the biocompatibility tests and it is found that the aggregate [(AgNPs)-(PE)] is not harmful to normal/healthy cells. Even though A. sclerocarpa show the antimicrobial (antibacterial and antifungal) activity, it has been further enhanced with the developed aggregate of [(AgNPs)-(PE)]. Furthermore, it has been extended to examine the cellular inhibition on K562 cells and obtained > 75% cell inhibition for 24 h treated cells.
A 31-residue peptide induces aggregation of tau’s microtubule-binding region in cells
Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Achyraya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J.S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; DeGrado, William F.
2018-01-01
The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer’s disease. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behavior of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show here that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fiber diffraction, hydrogen-deuterium exchange and solids NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide. PMID:28837163
Stably Fluorescent Cell Line of Human Ovarian Epithelial Cancer Cells SK-OV-3ip-red.
Konovalova, E V; Shulga, A A; Chumakov, S P; Khodarovich, Yu M; Woo, Eui-Jeon; Deev, S M
2017-11-01
Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.
Cardona, P-J; Soto, C Y; Martín, C; Giquel, B; Agustí, G; Andreu, Núria; Guirado, E; Sirakova, T; Kolattukudy, P; Julián, E; Luquin, M
2006-01-01
Searching for virulence marking tests for Mycobacterium tuberculosis, Dubos and Middlebrook reported in 1948 that in an alkaline aqueous solution of neutral-red, the cells of the virulent H37Rv M. tuberculosis strain fixed the dye and became red in color, whereas the cells of the avirulent H37Ra M. tuberculosis strain remained unstained. In the 1950 and 1960s, fresh isolates of M. tuberculosis were tested for this neutral-red cytochemical reaction and it was reported that they were neutral-red positive, whereas other mycobacteria of diverse environmental origins that were non-pathogenic for guinea pigs were neutral-red negative. However, neutral-red has not really been proven to be a virulence marker. To test if virulence is in fact correlated to neutral-red, we studied a clinical isolate of M. tuberculosis that was originally neutral-red positive but, after more than 1 year passing through culture mediums, turned neutral-red negative. We found that, in comparison to the original neutral-red positive strain, this neutral-red negative variant was attenuated in two murine models of experimental tuberculosis. Lipid analysis showed that this neutral-red negative natural mutant lost the capacity to synthesize pthiocerol dimycocerosates, a cell wall methyl-branched lipid that has been related to virulence in M. tuberculosis. We also studied the neutral-red of different gene-targeted M. tuberculosis mutants unable to produce pthiocerol dimycocerosates or other cell wall methyl-branched lipids such as sulfolipids, and polyacyltrehaloses. We found a negative neutral-red reaction in mutants that were deficient in more than one type of methyl-branched lipids. We conclude that neutral-red is indeed a marker of virulence and it indicates important perturbations in the external surface of M. tuberculosis cells.
Morabito, Caterina; Steimberg, Nathalie; Mazzoleni, Giovanna; Guarnieri, Simone; Fanò-Illic, Giorgio; Mariggiò, Maria A
2015-01-01
We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions.
Mazzoleni, Giovanna; Fanò-Illic, Giorgio; Mariggiò, Maria A.
2015-01-01
We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions. PMID:25654124
Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G.; Lievens, Caroline; van der Meer, Freek
2017-01-01
Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing–thawing cycles are the cause of soil aggregate breakdown. PMID:28556803
Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G; Lievens, Caroline; van der Meer, Freek
2017-05-30
Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing-thawing cycles are the cause of soil aggregate breakdown.
2014-09-01
hybrid mice show a large population of cells that fluoresce with Tomato Red and few cells that fluoresce with GFP only or GFP/ Tomato Red double positive...percent of total cells Double Negative GFP Tomato Red Double Positive 15 Figure 3. Fluorescent activated cell sorting (FACS) shows slight...Negative Tomato Red Double Positive 17 Figure 5. Fluorescent activated cell sorting (FACS) shows no K14-GFP expressing cells and slight expression of
Red blood cell decreases of microgravity
NASA Technical Reports Server (NTRS)
Johnson, P. C.
1985-01-01
Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.
Combinatorial Screening Of Inorganic And Organometallic Materials
Li, Yi , Li, Jing , Britton, Ted W.
2002-06-25
A method for differentiating and enumerating nucleated red blood cells in a blood sample is described. The method includes the steps of lysing red blood cells of a blood sample with a lytic reagent, measuring nucleated blood cells by DC impedance measurement in a non-focused flow aperture, differentiating nucleated red blood cells from other cell types, and reporting nucleated red blood cells in the blood sample. The method further includes subtracting nucleated red blood cells and other interference materials from the count of remaining blood cells, and reporting a corrected white blood cell count of the blood sample. Additionally, the method further includes measuring spectrophotometric absorbance of the sample mixture at a predetermined wavelength of a hemoglobin chromogen formed upon lysing the blood sample, and reporting hemoglobin concentration of the blood sample.
Sickle red cell adhesion: many issues and some answers.
Kaul, D K
2008-01-01
Among multiple pathologies associated with sickle cell disease, sickle red cell-endothelial interaction has been implicated as a potential initiating mechanism in vaso-occlusive events that characterize this disease. Vast literature exists on various aspects of sickle red cell adhesion, but many issues remain unresolved, especially pertaining to the role of sickle red cell heterogeneity, the relative role of multiple adhesion mechanisms and targets of antiadhesive therapy. This review briefly analyzes these issues.
Experimental splenosis in the liver and lung spread through the vasculature.
Seguchi, S; Yue, F; Asanuma, K; Sasaki, K
2015-05-01
To demonstrate that intra-organ splenosis can engraft and develop after being distributed through the vasculature, tiny fragments of splenic tissues were injected into the inferior vena cava or the portal vein to induce intrapulmonary and intrahepatic splenosis in rats. After 1 month, splenic autograft structures in the lung and liver were assessed for structure by histology, for immunologic compartments by immunohistochemistry, for phagocytic function by carbon uptake and for vascular formation by Microfil (a silicon rubber compound) injection. Intrapulmonary and intrahepatic splenoses were indeed able to spread through the vasculature. The intrapulmonary splenic autografts were trapped and spread out in the interstitium, without forming a capsule. White pulp was markedly developed, showing lymphocyte aggregations that consisted in B cells surrounding the dilated vessel. Splenic sinuses were not definitively observed. Although macrophages were detected by immunohistochemistry, they showed no indication of having phagocytized carbon particles from the vessels, implying a closed circulation. In contrast, intrahepatic splenic autografts formed well-developed capsules, trabeculae and red pulp with splenic sinuses. Macrophages detected by immunohistochemistry were observed capturing carbon particles, which clearly revealed an open system circulation, as seen in normal rat spleen. The development of white pulp was poor and lymphocytes consisting in B cells aggregated in the peripheral margins. These results demonstrate that intra-organ splenosis can spread through the vasculature and that the morphologic and immunologic structures formed in these regenerated autografts are influenced by the organ vasculature and extracellular matrix wherein the tissue fragments settled.
21 CFR 640.17 - Modifications for specific products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.17 Modifications for specific products. Red Blood Cells Frozen: A cryophylactic substance may be added to the Red... safety, purity, and potency for Red Blood Cells, and that the frozen product will maintain those...
21 CFR 640.17 - Modifications for specific products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.17 Modifications for specific products. Red Blood Cells Frozen: A cryophylactic substance may be added to the Red... safety, purity, and potency for Red Blood Cells, and that the frozen product will maintain those...
21 CFR 640.17 - Modifications for specific products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.17 Modifications for specific products. Red Blood Cells Frozen: A cryophylactic substance may be added to the Red... safety, purity, and potency for Red Blood Cells, and that the frozen product will maintain those...
Density increment and decreased survival of rat red blood cells induced by cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimoto, M.; Miura, T.
1986-01-01
Male Wistar rats were injected with CdCl/sub 2/ subcutaneously to examine in vivo effects of Cd on density and survival of red blood cells. During the 7 days after administration of 1.0 mg Cd/kg, the following sequence of events occurred: (1) a progressive increase in the amount of more dense red blood cells concomitant with a decrease in that of light red blood cells from the first to the third day; (2) an increase in the spleen weight at the third day; (3) a decrease in the hematocrit value and an increase in the amount of light red blood cellsmore » at the fifth day; and (4) a recovery of the hematocrit value at the seventh day. Five days after administration, the hematocrit value decreased in a dose-dependent mode and the decrease was significant at the 1% level at 1.0 and 1.5 mg Cd/kg. A highly significant splenomegaly was also observed at 0.5 to 1.5 mg Cd/kg. In order to label red blood cells in vivo, (/sup 3/H) diisopropylfluorophosphate ((/sup 3/H)DFP) was injected into rats. At Day 11, Cd at either 0.5 or 1.0 mg/kg was administered to (/sup 3/H)DFP-prelabeled animals. Cd administration accelerated /sup 3/H-labeled red cell clearance from the blood. Six days after Cd administration, the radioactivity of red blood cells was 76 and 68% of the control at 0.5 and 1.0 mg Cd/kg, respectively. In vitro treatment of rat red density and accelerated in vivo clearance of red blood cells from the recipient circulation. These results show that Cd at low dose can cause anemia by increasing red cell density and by accelerating red cell sequestration, presumably in the spleen.« less
A red tide of Alexandrium fundyense in the Gulf of Maine
McGillicuddy, D.J.; Brosnahan, M.L.; Couture, D.A.; He, R.; Keafer, B.A.; Manning, J.P.; Martin, J.L.; Pilskaln, C.H.; Townsend, D.W.; Anderson, D.M.
2013-01-01
In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense. PMID:25170191
Connell, Jodi L; Kim, Jiyeon; Shear, Jason B; Bard, Allen J; Whiteley, Marvin
2014-12-23
Microbes frequently live in nature as small, densely packed aggregates containing ∼10(1)-10(5) cells. These aggregates not only display distinct phenotypes, including resistance to antibiotics, but also, serve as building blocks for larger biofilm communities. Aggregates within these larger communities display nonrandom spatial organization, and recent evidence indicates that this spatial organization is critical for fitness. Studying single aggregates as well as spatially organized aggregates remains challenging because of the technical difficulties associated with manipulating small populations. Micro-3D printing is a lithographic technique capable of creating aggregates in situ by printing protein-based walls around individual cells or small populations. This 3D-printing strategy can organize bacteria in complex arrangements to investigate how spatial and environmental parameters influence social behaviors. Here, we combined micro-3D printing and scanning electrochemical microscopy (SECM) to probe quorum sensing (QS)-mediated communication in the bacterium Pseudomonas aeruginosa. Our results reveal that QS-dependent behaviors are observed within aggregates as small as 500 cells; however, aggregates larger than 2,000 bacteria are required to stimulate QS in neighboring aggregates positioned 8 μm away. These studies provide a powerful system to analyze the impact of spatial organization and aggregate size on microbial behaviors.
Wang, Chenyin; Saar, Valeria; Leung, Ka Lai; Chen, Liang; Wong, Garry
2018-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of extracellular amyloid plaques consisting of Amyloid-β peptide (Aβ) aggregates and neurofibrillary tangles formed by aggregation of hyperphosphorylated microtubule-associated protein tau. We generated a novel invertebrate model of AD by crossing Aβ1-42 (strain CL2355) with either pro-aggregating tau (strain BR5270) or anti-aggregating tau (strain BR5271) pan-neuronal expressing transgenic Caenorhabditis elegans. The lifespan and progeny viability of the double transgenic strains were significantly decreased compared with wild type N2 (P<0.0001). In addition, co-expression of these transgenes interfered with neurotransmitter signaling pathways, caused deficits in chemotaxis associative learning, increased protein aggregation visualized by Congo red staining, and increased neuronal loss. Global transcriptomic RNA-seq analysis revealed 248 up- and 805 down-regulated genes in N2 wild type versus Aβ1-42+pro-aggregating tau animals, compared to 293 up- and 295 down-regulated genes in N2 wild type versus Aβ1-42+anti-aggregating tau animals. Gene set enrichment analysis of Aβ1-42+pro-aggregating tau animals uncovered up-regulated annotation clusters UDP-glucuronosyltransferase (5 genes, P<4.2E-4), protein phosphorylation (5 genes, P<2.60E-02), and aging (5 genes, P<8.1E-2) while the down-regulated clusters included nematode cuticle collagen (36 genes, P<1.5E-21). RNA interference of 13 available top up-regulated genes in Aβ1-42+pro-aggregating tau animals revealed that F-box family genes and nep-4 could enhance life span deficits and chemotaxis deficits while Y39G8C.2 (TTBK2) could suppress these behaviors. Comparing the list of regulated genes from C. elegans to the top 60 genes related to human AD confirmed an overlap of 8 genes: patched homolog 1, PTCH1 (ptc-3), the Rab GTPase activating protein, TBC1D16 (tbc-16), the WD repeat and FYVE domain-containing protein 3, WDFY3 (wdfy-3), ADP-ribosylation factor guanine nucleotide exchange factor 2, ARFGEF2 (agef-1), Early B-cell Factor, EBF1 (unc-3), d-amino-acid oxidase, DAO (daao-1), glutamate receptor, metabotropic 1, GRM1 (mgl-2), prolyl 4-hydroxylase subunit alpha 2, P4HA2 (dpy-18 and phy-2). Taken together, our C. elegans double transgenic model provides insight on the fundamental neurobiologic processes underlying human AD and recapitulates selected transcriptomic changes observed in human AD brains. Copyright © 2017 Elsevier Inc. All rights reserved.
Escobar, Carlos; Moniz, Marta; Nunes, Pedro; Abadesso, Clara; Ferreira, Teresa; Barra, António; Lichtner, Anabela; Loureiro, Helena; Dias, Alexandra; Almeida, Helena
2017-10-31
The benefits of manual versus automated red blood cell exchange have rarely been documented and studies in young sickle cell disease patients are scarce. We aim to describe and compare our experience in these two procedures. Young patients (≤ 21 years old) who underwent manual- or automated-red blood cell exchange for prevention or treatment of sickle cell disease complications were included. Clinical, technical and hematological data were prospectively recorded and analyzed. Ninety-four red blood cell exchange sessions were performed over a period of 68 months, including 57 manual and 37 automated, 63 for chronic complications prevention, 30 for acute complications and one in the pre-operative setting. Mean decrease in sickle hemoglobin levels was higher in automated-red blood cell exchange (p < 0.001) and permitted a higher sickle hemoglobin level decrease per volume removed (p < 0.001), while hemoglobin and hematocrit remained stable. Ferritin levels on chronic patients decreased 54%. Most frequent concern was catheter outflow obstruction on manual-red blood cell exchange and access alarm on automated-red blood cell exchange. No major complication or alloimunization was recorded. Automated-red blood cell exchange decreased sickle hemoglobin levels more efficiently than manual procedure in the setting of acute and chronic complications of sickle cell disease, with minor technical concerns mainly due to vascular access. The threshold of sickle hemoglobin should be individualized for clinical and hematological goals. In our cohort of young patients, the need for an acceptable venous access was a limiting factor, but iron-overload was avoided. Automated red blood cell exchange is safe and well tolerated. It permits a higher sickle hemoglobin removal efficacy, better volume status control and iron-overload avoidance.
Polymorph-Dependent Green, Yellow, and Red Emissions of Organic Crystals for Laser Applications.
Xu, Zhenzhen; Zhang, Zhiwei; Jin, Xue; Liao, Qing; Fu, Hongbing
2017-12-05
Color tuning of organic solid-state luminescent materials remains difficult and time-consuming through conventional chemical synthesis. Herein, we reported highly efficient polymorph-dependent green (P1), yellow (P2), and red (P3) emissions of organic crystals made by the same molecular building blocks of 4-(2-{4-[2-(4-diphenylamino-phenyl)-vinyl]-phenyl}-vinyl)-benzonitrile (DOPVB). Single-crystal X-ray diffraction (XRD) and spectroscopic data reveal that all three polymorphs follow the herringbone packing motif in H-type aggregations. On the one hand, from P1, P2 to P3, the reduced pitch translation along π stacks increases the intermolecular interactions between adjacent molecules, therefore leading to gradually red-shifted emissions from 540, 570 to 614 nm. On the other hand, the edge-to-face arrangement and large roll translations avoid strong π-π overlap, making P1, P2 and P3 highly emissive with record-high solid-state fluorescence quantum yields of 0.60, 0.98, and 0.68, respectively. Furthermore, the optically allowed 0-1 transitions of herringbone H-aggregates of P1, P2 and P3 naturally provide a four-level scheme, enabling green and yellow amplified spontaneous emissions (ASE) with very low thresholds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parallel Microchannel-Based Measurements of Individual Erythrocyte Areas and Volumes
Gifford, Sean C.; Frank, Michael G.; Derganc, Jure; Gabel, Christopher; Austin, Robert H.; Yoshida, Tatsuro; Bitensky, Mark W.
2003-01-01
We describe a microchannel device which utilizes a novel approach to obtain area and volume measurements on many individual red blood cells. Red cells are aspirated into the microchannels much as a single red blood cell is aspirated into a micropipette. Inasmuch as there are thousands of identical microchannels with defined geometry, data for many individual red cells can be rapidly acquired, and the fundamental heterogeneity of cell membrane biophysics can be analyzed. Fluorescent labels can be used to quantify red cell surface and cytosolic features of interest simultaneously with the measurement of area and volume for a given cell. Experiments that demonstrate and evaluate the microchannel measuring capabilities are presented and potential improvements and extensions are discussed. PMID:12524315
Ding, Zhongfen; Sanchez, Timothy; Labouriau, Andrea; Iyer, Srinivas; Larson, Toti; Currier, Robert; Zhao, Yusheng; Yang, Dali
2010-08-19
Aggregates of reaction intermediates form during the early stages of aniline oxidative polymerization whenever the initial mole ratio of proton concentration to aniline monomer concentration is low ([H(+)](0)/[An](0)
Irani, Mehraboon S; Karafin, Matthew S; Ernster, Luke
2017-02-01
A red cell exchange was performed to prevent a potentially fatal hemolytic transfusion reaction in a patient with anti-e who was transfused with e-antigen unscreened red blood cells during liver transplant surgery. A 64-year-old woman with cirrhosis due to hepatitis C was scheduled to receive a liver transplant. She had a previously documented anti-e, an antibody to the Rh(e)-antigen that is known to cause delayed hemolytic transfusion reactions. Pre-operatively and intra-operatively, she had massive hemorrhage which required transfusion of 34 e-antigen unscreened red blood cells (RBCs) most of which were incompatible. The hemoglobin dropped from 9.1 g/dL on post-operative day (POD)1 to 6.6 g/dL on POD6, with no evidence of blood loss. The bilirubin also increased from 5.0 mg/dL on POD 1 to 11.0 mg/dL on POD 6. As she was also becoming more hemodynamically unstable, a red cell exchange with 10 units of e-negative RBCs was performed on POD 6. She improved clinically and was extubated the following day. A few residual transfused e-positive red cells were detected after the red cell exchange until POD 13. This case illustrates how a red cell exchange can mitigate the potentially harmful effects of a delayed hemolytic transfusion reaction caused by red cell antibodies. With massive intraoperative blood loss it may not be possible to have antigen-negative RBCs immediately available, particularly for the e-antigen, which is present in 98% of the donor population. The ability to perform such a procedure may be life-saving in such patients. J. Clin. Apheresis 32:59-61, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Effects of helicopter transport on red blood cell components.
Otani, Taiichi; Oki, Ken-ichi; Akino, Mitsuaki; Tamura, Satoru; Naito, Yuki; Homma, Chihiro; Ikeda, Hisami; Sumita, Shinzou
2012-01-01
There are no reported studies on whether a helicopter flight affects the quality and shelf-life of red blood cells stored in mannitol-adenine-phosphate. Seven days after donation, five aliquots of red blood cells from five donors were packed into an SS-BOX-110 container which can maintain the temperature inside the container between 2 °C and 6 °C with two frozen coolants. The temperature of an included dummy blood bag was monitored. After the box had been transported in a helicopter for 4 hours, the red blood cells were stored again and their quality evaluated at day 7 (just after the flight), 14, 21 and 42 after donation. Red blood cell quality was evaluated by measuring adenosine triphosphate, 2,3-diphosphoglycerate, and supernatant potassium, as well as haematocrit, intracellular pH, glucose, supernatant haemoglobin, and haemolysis rate at the various time points. During the experiment the recorded temperature remained between 2 and 6 °C. All data from the red blood cells that had undergone helicopter transportation were the same as those from a control group of red blood cell samples 7 (just after the flight), 14, 21, and 42 days after the donation. Only supernatant Hb and haemolysis rate 42 days after the donation were slightly increased in the helicopter-transported group of red blood cell samples. All other parameters at 42 days after donation were the same in the two groups of red blood cells. These results suggest that red blood cells stored in mannitol-adenine-phosphate are not significantly affected by helicopter transportation. The differences in haemolysis by the end of storage were small and probably not of clinical significance.
Effects of helicopter transport on red blood cell components
Otani, Taiichi; Oki, Ken-ichi; Akino, Mitsuaki; Tamura, Satoru; Naito, Yuki; Homma, Chihiro; Ikeda, Hisami; Sumita, Shinzou
2012-01-01
Background There are no reported studies on whether a helicopter flight affects the quality and shelf-life of red blood cells stored in mannitol-adenine-phosphate. Materials and methods Seven days after donation, five aliquots of red blood cells from five donors were packed into an SS-BOX-110 container which can maintain the temperature inside the container between 2 °C and 6 °C with two frozen coolants. The temperature of an included dummy blood bag was monitored. After the box had been transported in a helicopter for 4 hours, the red blood cells were stored again and their quality evaluated at day 7 (just after the flight), 14, 21 and 42 after donation. Red blood cell quality was evaluated by measuring adenosine triphosphate, 2,3-diphosphoglycerate, and supernatant potassium, as well as haematocrit, intracellular pH, glucose, supernatant haemoglobin, and haemolysis rate at the various time points. Results During the experiment the recorded temperature remained between 2 and 6 °C. All data from the red blood cells that had undergone helicopter transportation were the same as those from a control group of red blood cell samples 7 (just after the flight), 14, 21, and 42 days after the donation. Only supernatant Hb and haemolysis rate 42 days after the donation were slightly increased in the helicopter-transported group of red blood cell samples. All other parameters at 42 days after donation were the same in the two groups of red blood cells. Discussion These results suggest that red blood cells stored in mannitol-adenine-phosphate are not significantly affected by helicopter transportation. The differences in haemolysis by the end of storage were small and probably not of clinical significance. PMID:22153688
Effects of acute hypoxic exposure on oxygen affinity of human red blood cells.
Chowdhury, Aniket; Dasgupta, Raktim
2017-01-20
Adaptation of red blood cells subjected to acute hypoxia, crucial for managing high altitude syndrome and pulmonary diseases, has been investigated. For this, red blood cells were exposed to the acute hypoxic condition by purging nitrogen over increasing time periods from 15 to 60 min and thereafter equilibrated with atmospheric oxygen for 10 min. Raman spectra of these red blood cells were then recorded and analyzed to look for changes in the level of oxygenation compared to unexposed cells. A decreasing oxygen affinity for the cells was observed with increasing time of exposure to the hypoxic condition. This change in oxygen affinity for the red blood cells may result from metabolic adjustment of the cells under the hypoxic condition to promote increased concentration of intracellular 2, 3-diphosphoglycerate.
Sánchez-Corrionero, Álvaro; Sánchez-Vicente, Inmaculada; González-Pérez, Sergio; Corrales, Ascensión; Krieger-Liszkay, Anja; Lorenzo, Óscar; Arellano, Juan B
2017-09-01
The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen ( 1 O 2 ) and activating 1 O 2 -mediated cell death. Thylakoids of aba1 produced twice as much 1 O 2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. 1 O 2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of 1 O 2 generation in aba1. Up-regulation of the 1 O 2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct 1 O 2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of 1 O 2 -mediated cell death. In conclusion, aba1 may serve as an alternative model to other 1 O 2 -overproducing mutants of Arabidopsis for investigating 1 O 2 -mediated cell death. Copyright © 2017 Elsevier GmbH. All rights reserved.
Udani, M; Zen, Q; Cottman, M; Leonard, N; Jefferson, S; Daymont, C; Truskey, G; Telen, M J
1998-01-01
Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors. PMID:9616226
Ishiguro, E E; Ainsworth, T; Trust, T J; Kay, W W
1985-01-01
Strains of the fish pathogen Aeromonas salmonicida which possess the cell surface protein array known as the A-layer (A+) involved in virulence formed deep red colonies on tryptic soy agar containing 30 micrograms of Congo red per ml. These were readily distinguished from colorless or light orange colonies of avirulent mutants lacking A-layer (A-). The utility of Congo red agar for quantifying A+ and A- cells in the routine assessment of culture virulence was demonstrated. Intact A+ cells adsorbed Congo red, whereas A- mutants did not bind Congo red unless first permeabilized with EDTA. The dye-binding component of A+ cells was shown to be the 50,000-Mr A-protein component of the surface array. Purified A-protein avidly bound Congo red at a dye-to-protein molar ratio of about 30 by a nonspecific hydrophobic mechanism enhanced by high salt concentrations. Neither A+ nor A- cells adsorbed to Congo red-Sepharose columns at low salt concentrations. On the other hand, A+ (but not A-) cells were avidly bound at high salt concentrations. Images PMID:3934141
Sang, Fuming; Liu, Jia; Zhang, Xue; Pan, Jianxin
2018-04-25
A colorimetric method is described for the determination of Pt(II). It is based on the use of gold nanoparticles (AuNPs) which are known to aggregate in the presence of a cationic polymer such as poly(diallyldimethylammonium chloride) (PDDA). If, however, a mismatched aptamer (AA) electrostatically binds to PDDA, aggregation is prevented. Upon the addition of Pt(II), it will bind to the aptamer and induce the formation of a hairpin structure. Hence, interaction between aptamer and PDDA is suppressed and PDDA will induce the aggregation of the AuNPs. This is accompanied by a color change from red to blue. The effect can be observed with bare eyes and quantified by colorimetry via measurement of the ratio of absorbances at 610 nm and 520 nm. Response is linear in the 0.24-2 μM Pt(II) concentration range, and the detection limit is 58 nM. The assay is completed within 15 min and selective for Pt(II) even in the presence of other metal ions. It was successfully applied to the rapid determination of Pt(II) in spiked soil samples. Graphical abstract Schematic representation of the method for detection of Pt(II) based on the use of a cationic polymer and gold nanoparticles. In the presence of Pt(II), aptamer interacts with the Pt(II) and prevents the interaction between aptamer and cationic polymer. Hence, cationic polymer induce the aggregation of the AuNPs and lead to the color change from red to blue.