Science.gov

Sample records for red river fault

  1. Alluvial deposits from the strike-slip fault Lo River Basin (Oligocene/Miocene), Red River Fault Zone, north-western Vietnam

    NASA Astrophysics Data System (ADS)

    Wysocka, Anna; Swierczewska, Anna

    2003-08-01

    The Lo River Basin (LRB) is one of several narrow sedimentary basins associated with the main faults of the Red River Fault Zone separating the South China and Indochina microplates. The basin is located on the NE boundary of the high-grade metamorphic Con Voi Massif and the sedimentary and metasedimentary Viet Bac fold zone in north-eastern Vietnam. The LRB is filled with over 6000 m of Oligocene/Miocene alluvial deposits. The source area was probably located on the NE margin of the basin and was composed mostly of low-grade metamorphic rocks with a minor component of sedimentary rocks. Three alluvial systems are recognised. The oldest system was a proximal braided river system, with the minor occurrence of alluvial fans. The younger systems record changes in clast composition and lithofacies, which suggests a transition from a distal braided river to a distal braidplain system. The LRB fill shows a range of features characteristic of strike-slip fault basins. The origin of the LRB is correlated with the left-lateral transtensional regime. The present shape of the basin is a result of post-sedimentation tectonic activity.

  2. Formation mechanism of the Qiongdongnan basin northwest of the South China Sea-dating the sinistral slip of the Red River Fault Zone

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Jiang, J.; Xie, W.

    2010-12-01

    Locating on the northwestern margin of the South China Sea, the Qiongdongnan basin is a NE-trending rift zone in general. Bounding with the NW-trending Yinggehai basin and the Red River- East Vietnam Fault Zone to the west, the evolution of the Qiongdongnan basin bears large amounts of information about the slip of the Red River Fault zone. Combined the geological analysis with analogue modeling experiments, we suggest that the evolution of the Qiongdongnan is controlled not only by the southeastward to south southeastward extension, but also by the sinistral slip of the Red River Fault zone. The central depression of the Qiongdongnan basin is controlled mainly by the southeastward to south southeastward extension, while the southern depression developed under the combined stress filed of southeastward extension and the dextral slip along the NNW-trending Red River fault zone. The northern depression was formed by the combined effect of the sinistral slip along the Red River Fault Zone and the southeastward extension. According to the age of the shear fault starting to develop in the southwest of the Qiongdongnan basin, as well as the age for the northwestern part to develop, the sinistral slip of the Red River Fault zone began around early oligocene, later than the rifting of the Qiongdongnan basin. The sinistral slip rate of the Red River Fault zone during early Oligocene may be smaller than the displacement rate of the Qiongdongnan basin, but become reversed thereafter, which in turn caused tectonic inversion and folding along the western segment of the Qiongdongnan basin, and NW- to NNW-trending Rediel faults from late Oligocene to middle Miocene. Through the deformation history of the Qiongdongnan basin, we defined the sinistral slip stage Indochina along the Red River Fault zone from about 36Ma to 16Ma, and further a rapid slip occurring after 30Ma.

  3. Extensional step-over between the Zhongdian and Red River faults: kinematics of the Daju normal fault constrained by cosmogenic dating of the Yangtze terraces (Yulong Shan, Yunnan)

    NASA Astrophysics Data System (ADS)

    van der Woerd, J.; Perrineau, A.; Gaudemer, Y.; Leloup, P.-H.; Liu-Zeng, J.; Barrier, L.; Thuizat, R.

    2012-04-01

    Extension in western Yunnan, southeastern Tibet, is limited by two dextral strike-slip faults, the Zhongdian and Red River faults, to the north and south, respectively, and is characterized by N-S directed normal faults and basins. In the northwestern corner of this large extensional step-over, the Yangtze River crosses the Daju normal fault at the foot of the Yulong Shan. Due to uplift of the Yulong Shan, the Yangtze carved the huge Huxiao Jia (Tiger Leap) Gorges (˜3500 m deep) and abandoned sets of fluvial terraces across the fault zone and in the Daju basin to the north. Cosmogenic dating of blocks sampled on top of the terraces provide ages ranging from 8 to 30 ka. In the hanging wall basin to the north, the terraces may have been abandoned after the breach of a natural dam formed in the river (moraine or landslide) during the last glacial period. The average incision rate of the river in the basin is about 5.9 mm/yr, the vertical slip-rate on the Daju fault is 4.9±1.3 mm/yr, thus implying an incision rate of the river inside the gorge reaching about 11 mm/year. These rates may explain the exceptional size and steepness of the gorge. These results show that active faulting plays a major role in shaping the present relief of this region and that recent strain changes involve movement along the largest strike-slip faults of the region, in accordance with models implying large-scale block extrusion.

  4. Potassic magma genesis and the Ailao Shan-Red River fault

    NASA Astrophysics Data System (ADS)

    Flower, Martin F. J.; Hoàng, Nguyễn; Lo, Chinh-hua; Chí, Cung Thu'ọ'ng; Cu'ò'ng, Nguyễn Quốc; Liu, Fu-tian; Deng, Jin-fu; Mo, Xuan-xue

    2013-09-01

    Two types of K-rich magma of Eocene to Early Oligocene (ca. 40-30) and Plio-Pleistocene (ca. 5-0.1 Ma) age were emplaced prior to and following left-lateral slip on the Ailao Shan-Red River (ASRR) fault, a regional shear zone extending between southwest China and the Tonkin Gulf (South China Sea) that accommodated 'escape' of the Indochina block. The first type is exposed in the Dali-Lijiang and adjacent regions of western Yunnan and Sichuan and comprises ultramafic potassic to ultrapotassic 'absarokites' and their shoshonite, banakite, and SiO2-rich derivatives which were emplaced immediately prior to activation of the ASRR fault. They are characterized by high Mg.-nos, and low contents of fusible oxides (FeO*, CaO, Al2O3), for equivalent MgO content, and pronounced primitive mantle-normalized high-field strength element (HFSE) depletions. In contrast, 'post-escape' K-rich magmas were erupted in the Puer, Maguan-Pingbian regions of south and southeast Yunnan. Apart from their relative enrichments in potassium they show typical HFSE-rich intra-plate compositional affinity. Geological and geomorphic evidence, and thermochronologic age dating of metamorphisc events, suggest that left-lateral shearing occurred between ca. 30 and 17 Ma; thereby accommodating the southeastward 'escape' of Indochina and (possibly) two episodes of spreading in the South China Sea. The southwestern part of Dali-Lijiang magmatic products was detached and offset by ca. 600 km and are now located in Phan Xi Pang in northern Viet Nam. The same is true for the Permo-Triassic Emeishan flood basalts, whose western exposures were likewise displaced by the same amount and are now represented by the Song Da complex, also in northern Viet Nam. Here, we report geochemical, isotopic, and 40Ar/39Ar age data for samples from both the 'pre-escape' Dali-Lijiang magmas and the 'post-escape' K-rich Puer, Maguan-Pingbian basalts and basanites, with a view to comparing and contrasting their interpolated source

  5. Tectonic and climatic impacts on the biota within the Red River Fault, evidence from phylogeography of Cycas dolichophylla (Cycadaceae)

    PubMed Central

    Zheng, Ying; Liu, Jian; Gong, Xun

    2016-01-01

    Dramatic crustal deformation and river incision in Southwest China induced by the Indo-Asian collision have long been argued to contribute to the complicated landscapes, heterogeneous environment and abundant biodiversity in this region. However, biological impacts in promoting intraspecific phylogeographical subdivision and divergence along the Red River Fault zone (RRF) remain poorly understood. To investigate the possible biological effects of tectonic movements and environment variations within the RRF, the phylogeography of Cycas dolichophylla-an endemic but widely distributed Cycas in Southwest China and North Vietnam along the RRF were carried out based on four chloroplast DNA intergenic spacers (cpDNA), three nuclear DNA sequences (nDNA) and 16 simple sequence repeat variations (SSR). Two different phylogeographical patterns were detected: a Southwest-Northeast break across the RRF disclosed by chlorotypes and a China-Vietnam separation revealed by SSR. A Bayesian skyline plot from cpDNA data demonstrated a historical increasing, but a recent declining, dynamic in population size during the Pleistocene. Consequently, we infer it is the local environmental variation during Cenozoic that contributed to the complex landscape and microclimate mosaics, facilitating speciation and divergence of C. dolichophylla. Subsequently, the Quaternary climatic fluctuations coupled with human activities profoundly influenced the genetic structure and demographic history of this species. PMID:27629063

  6. Late Cenozoic tectonic evolution of the Ailao Shan-Red River fault (SE Tibet): Implications for kinematic change during plateau growth

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Bo; Schoenbohm, Lindsay M.; Zhang, Jinjiang; Zhou, Renjie; Hou, Jianjun; Ai, Sheng

    2016-08-01

    Surface uplift, river incision, shear zone exhumation, and displacement along active faults have all interacted to shape the modern landscape in the southeastern margin of the Tibetan Plateau. The Ailao Shan-Red River fault, a major structure in the tectonic evolution of southeastern Asia, is an excellent recorder of these processes. We present new stratigraphic, structural, and low-temperature thermochronologic data to explore its late Cenozoic tectonic and geomorphic evolution. The stratigraphic and structural observations indicate that the major bend in the fault was a releasing bend with significant Miocene sedimentation in the early-middle Miocene but became a restraining bend with abundant shortening structures developed after the late Miocene reversal of displacement. We also document exhumation of the shear zone from two low-temperature thermochronologic transects. New apatite (U-Th)/He(AHe) data and published thermochronologic results reveal two accelerated cooling episodes, backed by stratigraphic and geomorphic observations. The first rapid cooling phase occurred from ca. 27 to 17 Ma with removal of cover rocks and exhumation of the shear zone. The second accelerated cooling episode revealed by our AHe data commenced at 14-13 Ma, lasting 2-3 Myr. The Ailao Shan range may have risen to its modern elevation with high-relief topography developing due to river incision. We interpret the onset of this rapid exhumation to reflect renewed plateau growth associated with lower crustal flow.

  7. Late Neogene structural inversion around the northern Gulf of Tonkin, Vietnam: Effects from right-lateral displacement across the Red River fault zone

    NASA Astrophysics Data System (ADS)

    Fyhn, Michael B. W.; Phach, Phung V.

    2015-02-01

    Continental extrusion may take up much of the deformation involved in continental collisions. Major strike-slip zones accommodate the relative extrusion displacement and transfer deformation away from the collision front. The Red River fault zone (RRFZ) accommodated left- and right-lateral displacements when Indochina and South China were extruded during the Indian-Eurasian collision. The northern Song Hong basin onshore and offshore in the Gulf of Tonkin delineates the direct extension of the RRFZ and thus records detailed information on the collision-induced continental extrusion. We assess the rapidly evolving kinematics of the fault zone buried within the basin based on seismic analysis. Contrary to previous studies, we do not identify indications for latest Miocene left-lateral motion across the RRFZ. We tentatively consider the shift from left- to right-lateral motion to have occurred already during the middle Late Miocene as indicated by inversion of NE-SW-striking faults in the Bach Long Vi area. Right-lateral displacement terminated around the end of the Miocene in the Song Hong basin. However, continued inversion in the Bach Long Vi area and NNW-SSE-striking normal faulting suggests a stress regime compatible with right-lateral motion across the onshore part of the RRFZ continuing to the present. Inversion around the Bach Long Vi Island may have accommodated up to a few kilometers of right-lateral displacement between the Indochina and South China blocks. Comparable NE-SW-striking fault zones onshore may have accommodated a larger fraction of the right-lateral slip across the RRFZ, thus accounting for the restricted transfer of lateral displacement to the offshore basins.

  8. How crustal-scale strike-slip faults initiate and further develop: The Red River fault and the East Himalaya Syntaxis as a result of the two-stage

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2014-05-01

    One major question of tectonics is how and where major intracontinental transcurrent strike-slip faults initiate. Models assume an important rheological contrast between rheologically weak and strong lithologies, e.g. at margins of a stiff craton and juxtaposed mobile belts (Molnar & Dayem, 2010 and references therein). Several models assume weakening of the lithosphere by uprise of magma, e.g., formed by subduction or break off of the previously subducted lithosphere or as K-granites at the bases of a metasomatized lithosphere. In the case of slab break-off following oblique convergence, orogen-parallel strike-slip accommodation has been documented. Especially, the spatiotemporal relationships between synkinematic plutons and crustal-scale strike-slip faults have been documented worldwide. It is a matter of continuous debate whether strike-slip faults nucleate where melts have previously weakened the crust/lithosphere or whether pre-existing faults represent the preferred pathways for the ascending melt. A few further models document the role of lateral boundaries of metamorphic core complexes. The significance of some of these processes could be studied along the Red River (RR) fault, SE, Asia. Here we propose a model, how the development of RR fault evolved in response to the two-stage India-Asia collision that recently was proposed by van Hinsbergen et al., (2012 and references therein) and the interaction of the northeastern corner of the East Himalayan Syntaxis with Himalayan-Burman/Indochina collision belt. We propose a four-phase tectonic evolution for the RR fault. During the Eocene accretion of the Tethyan block to Asia, the Sichuan foreland subducted and Eocene K-granites evolved, which started to vertically extrude and introduced, causing a zone of weakness within the crust (Phase 1) along the future RR fault. Another consequence of continuing shortening after the Tethyan block-Asia collision (Stage 1 collision) is lateral extrusion of blocks, and the

  9. Red River of the North Reconnaissance Report: Red Lake River.

    DTIC Science & Technology

    1980-12-01

    The two lakes are remnants of glacial Lake Agassiz and together comprise the largest lake area wholly contained in Minnesota. Biology The principal...Red River Valley Laku Plain, Glacial Lake Agassiz Beachlines, Aspen Parklands, Glacial Lake Agassiz Lowlands, Border-Prairie Transition, and North...Areas of particular aesthetic appeal include Agassiz National Wildlife Refuge, seven state forests, Upper and Lower Red Lakes, and the natural wooded

  10. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  11. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  12. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  13. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  14. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  15. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  16. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  17. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  18. 33 CFR 117.135 - Red River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Red River. 117.135 Section 117.135 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.135 Red River. The draws of the bridges...

  19. 33 CFR 117.491 - Red River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Red River. 117.491 Section 117.491 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.491 Red River. (a) The draw of the Union...

  20. Hairpin river loops and slip-sense inversion on southeast Asian strike-slip faults

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Replumaz, Anne; Hervé Leloup, P.

    1998-08-01

    In the Golden Triangle region of southeast Asia (northern Thailand, Laos and Burma, southern Yunnan), the Mekong, Salween, and neighboring rivers show hairpin geometries where they cross active strike-slip faults. Restoration of young, left-lateral offsets of these rivers leaves residual right-lateral bends of many kilometers. We interpret these hairpins as evidence of late Cenozoic slip-sense inversion on these faults, about 5 to 20 Ma. Near the Red River fault, stress field and slip-sense inversion occurred ca. 5 Ma. This implies that the present course of these large rivers has existed for at least several million years. Pliocene Quaternary slip rates, possibly on the order of 1 mm/yr, are inferred on each of the strike-slip faults of the Golden Triangle.

  1. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    SciTech Connect

    Cumbest, R.J.

    2000-11-14

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion.

  2. Red River of the North, Reconnaissance Report: Main Stem Subbasin.

    DTIC Science & Technology

    1980-12-01

    different from Report) IS. SUPPLEMENTARY NOTES Bois de Sious-Mustinka Rivers; Buffalo River; Devils Lake; Elm River ; Forest River; Goose River; Maple River...corridor for animals moving north and south along the Red River . Forests afford breeding and nesting areas for birds and rank second only 2to wetlands

  3. 33 CFR 207.380 - Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. 207.380 Section 207.380 Navigation and Navigable... Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. (a)...

  4. Red River of the North Reconnaissance Report: Two Rivers Subbasin.

    DTIC Science & Technology

    1980-12-01

    glacial Lake Agassiz . Although the -. land is flat, in the eastern portion of the subbasin there is a fall toward the west of 12 to 15 feet per mile...Several recessional beaches of Lake Agassiz cross the subbasin. The most prominent 4" C.~ is Campbell Beach, which crosses extreme southwestern Kittson...Four major wetland zones are found in the subbasin: Red River Valley Lake Plain, Glacial Lake Agassiz Beachlines, Aspen Parklands, and Glacial Lake

  5. Water resources of Red River Parish, Louisiana

    USGS Publications Warehouse

    Newcome, Roy; Page, Leland Vernon

    1963-01-01

    Red River Parish is on the eastern flank of the Sabine uplift in northwestern Louisiana. The 'area is underlain by lignitic clay and sand of Paleocene and Eocene age which dip to the east at the rate of about 30 feet per mile. The Red River is entrenched in these rocks in the western part of the parish. Alternating valley filling and erosion during the Quaternary period have resulted in the present lowland with flanking terraces. In the flood-plain area moderate to large quantities of very hard, iron-bearing water, suitable for irrigation, are available to wells in the alluvial sand and gravel of Quaternary age. The aquifer ranges in thickness from 20 to slightly more than 100 feet. It is recharged by downward seepage of rainfall through overlying clay and silt, by inflow from older sands adjacent to and beneath the entrenched valley, and by infiltration from the streams where the water table is below stream level during flood stages or as a result of pumping. Water levels are highest in the middle of the valley. Ground water moves mainly toward the Red River on the east and Bayou Pierre on the west, but small amounts move down the valley. Computations based on water-level and aquifer-test data indicate that the Quaternary alluvium contains more than 330 billion gallons of ground water in storage and that the maximum discharge of ground water to the streams is slightly more than 30 mgd (million gallons per day). At times of high river stage, surface water flows into the aquifer at a rate that depends in part upon the height and duration of the river stage. Moderate supplies of soft, iron-bearing water may be obtained from dissected Pleistocene terrace deposits that flank the flood plains of the Red River and Black Lake Bayou. However, the quantity of water that can be pumped from these deposits varies widely from place to place because of differences in the areal extent and saturated thickness of the segments of the deposits; this extent and thickness are governed

  6. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan Fault, Iran

    NASA Astrophysics Data System (ADS)

    Walker, Faye; Allen, Mark B.

    2012-03-01

    This study concerns the ways in which rivers can record part, but not necessarily all, of strike-slip fault offset. The focus is the active right-lateral Kuh Banan Fault in eastern Iran, within the Arabia-Eurasia collision. Plate convergence has caused thrust and strike-slip faulting across SW Asia. The active slip rate of the Kuh Banan Fault is ~ 1-2 mm/yr. Total displacement is ~ 5-7 km, as determined from offset geological markers and the length of a pull-apart basin. A component of thrusting has generated ~ 1 km of relief, which preserves the offset of rivers displaced laterally by the strike-slip motion. Ridge half-widths (W), and river outlet spacings along the fault (S) are related by the drainage spacing parameter R, where R = W/S. Published data for older, larger mountain ranges have extremely characteristic drainage spacing (R = 2.1). Drainage spacing along the Kuh Banan Fault has a mean value of 1.8 and is much more variable (R = 1.1-3.1), due to local structural complexities which have influenced river courses. Most river offsets along the Kuh Banan Fault are small (< 100 m); the maximum observed offset (~ 3.5 km) is smaller than the total fault displacement of at least ~ 5 km. The most likely explanation for this discrepancy is stream capture, whereby reaches of rivers downstream of the fault are juxtaposed by fault slip against rivers upstream of the fault. In this way, offset of individual rivers is repeatedly reset to zero. Stream capture is influenced by outlet spacing such that the largest rivers can accumulate large offsets, while smaller, closely spaced rivers are captured more often, inhibiting large offsets. The mean offset of the main rivers along the Kuh Banan Fault is one-third their mean drainage spacing, indicating that the spacing of smaller rivers controls the size of the maximum offset.

  7. Red Lake and Clearwater Rivers, Red Lake County, Minnesota. Reconnaissance Report for Red Lake and Clearwater Rivers

    DTIC Science & Technology

    1991-08-01

    the -stbbasin. These are the result of efforts by the U.S. Fish and Wildlife Service (e.g., Agassiz Lake Project and Goose Lake Project), U.S. Soil...by glacial Lake Agassiz . Upper and Lower Red Lakes are remnants of this glacial lake. The topography of the subbasin ranges from 800 feet above mean...glacial Lake Agassiz and together comprise thelargest lake area wholly contained in Minnesota. The watershed drained by the Red Lake River lies within

  8. 33 CFR 117.129 - Little Red River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Little Red River. 117.129 Section 117.129 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Arkansas § 117.129 Little Red River. The draws of...

  9. 33 CFR 207.380 - Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wishing to run logs on Red Lake River must provide storage booms near the head of the river to take care of said logs. (b) No one will be permitted to turn into the river at any time more logs than he can receive at his storage boom. (c) Tows arriving at the head of the river shall turn their logs into...

  10. 75 FR 16010 - Safety Zone; Red River, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... across latitude 46 20'00'' N, including those portions of the river in Wilkin, Clay, Norman, Polk... navigable waters of the Red River in the State of Minnesota north of a line drawn across latitude 46 20'00... of Minnesota north of a line drawn across latitude 46 20'00'' N, including those portions of...

  11. Deep-fault connection characterization from combined field and geochemical methodology; examples from Green River and Haiti fault systems

    NASA Astrophysics Data System (ADS)

    Nadine, E. Z.; Frery, E.; Leroy, S.; Mercier De Lepinay, B. F.; Momplaisir, R.

    2011-12-01

    Fault transfer properties are depending on different parameters, such as fault plane geometry, regional to local offset guiding the morphology through time, but are also very sensitive on other factors which may vary through time and space. Detailed along-strike observations and analyses of the Green River Fault system (Utah) outline the strong impact of several parameters; pre-existing structures or basement heterogeneities, lateral variation of the host-rock mechanical properties, the change of paleostress field through time which creates complex fault intersections. This last parameter, is often associated either with along-and-across fluid drainage (fault leaking) or with abnormal sealing deformation and uplifts corresponding to the locked fault segments. Along the Green River anticline, which is dissected by Salt wash and Little Grand wash major faults, several leaking segments are distributed. They have been analysed for geochemical characterization. In fact, carbon dioxide rich waters expelled from natural or artificial (well-driven geyser) springs, are located preferentially at structural intersection points. Changes in fault transfer properties has been proved as discontinuous from detailed datings (U/Th datings: see Frery et al AGU 2011 this meeting) on the top-fault travertines precipitation. The correlation with fault mineralisation at depth is still under investigation. In this area, not considered as very seismic one compared to the adjacent Basin and Ranges area, fault activity relates both on slow processes indicating a long seismic recurrence time, and on local reservoir short-time de-pressurisation processes. The same methods of investigation will be used on the very active Haitian fault system. The new constraints applied on the Enriquillo-Plantain-garden Fault (EPGF) responsible for the initial deep tectonic stress release (12 January 2010), have not been expressed by a clear surface fault rupture (surface locked segment), but by a northward

  12. Red River of the North, Reconnaissance Report: Wild Rice River.

    DTIC Science & Technology

    1980-12-01

    Stations Along the Wild Rice River, October, 1977 to September, 1977 ... 30 7 Groundwater Quality of Eight Communities Within the Wild Rice River Subbasin...impair fish propagation (Upper Mississippi River Basin Commission, 1977; North Dakota Statewide 208 Water Quality Management Plan, 1978). The groundwater ...given to this reach not because of its stream fisheries, which only provide moderate amounts of northern pike, yellow perch , crappie, and several

  13. Earthquake relocation near the Leech River Fault, southern Vancouver Island

    NASA Astrophysics Data System (ADS)

    Li, G.; Liu, Y.; Regalla, C.

    2015-12-01

    The Leech River Fault (LRF), a northeast dipping thrust, extends across the southern tip of Vancouver Island in Southwest British Columbia, where local tectonic regime is dominated by the subduction of the Juan de Fuca plate beneath the North American plate at the present rate of 40-50 mm/year. British Columbia geologic map (Geoscience Map 2009-1A) shows that this area also consists of many crosscutting minor faults in addition to the San Juan Fault north of the LRF. To investigate the seismic evidence of the subsurface structures of these minor faults and of possible hidden active structures in this area, precise earthquake locations are required. In this study, we relocate 941 earthquakes reported by Canadian National Seismograph Network (CNSN) catalog from 2000 to 2015 within a 100km x 55km study area surrounding the LRF. We use HypoDD [Waldhauser, F., 2001] double-difference relocation method by combining P/S phase arrivals provided by the CNSN at 169 stations and waveform data with correlation coefficient values greater than 0.7 at 50 common stations and event separation less than 10km. A total of 900 out of the 931 events satisfy the above relocation criteria. Velocity model used is a 1-D model extracted from the Ramachandran et al. (2005) model. Average relative location errors estimated by the bootstrap method are 546.5m (horizontal) and 1128.6m (in depth). Absolute errors reported by SVD method for individual clusters are ~100m in both dimensions. We select 5 clusters visually according to their epicenters (see figure). Cluster 1 is parallel to the LRF and a thrust FID #60. Clusters 2 and 3 are bounded by two faults: FID #75, a northeast dipping thrust marking the southwestern boundary of the Wrangellia terrane, and FID #2 marking the northern boundary. Clusters 4 and 5, to the northeast and northwest of Victoria respectively, however, do not represent the surface traces of any mapped faults. The depth profile of Cluster 5 depicts a hidden northeast

  14. Quantifying Morphologic Changes in a Low Gradient River Crossing Southeast Louisiana Fault Zones

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Gasparini, N. M.; Dawers, N. H.

    2011-12-01

    This study investigates the signature of faulting in low gradient, alluvial rivers crossing the Baton Rouge fault zone (BRFZ) and Denham Springs-Scotlandville fault zone (DSSFZ), which encompass a set of East-West striking normal faults in southeast Louisiana. These faults exhibit surface expressions associated with up to a few meters of vertical displacement of Late Pleistocene sediments, but little is known about their activity during the Holocene. Our study aims to quantify geomorphic changes in a number of rivers that cross these fault zones and to use these changes to gain insight into the history of faulting in the region. We hypothesize that fault movement will be evident in patterns of river sinuosity, slope, and width to depth ratio. We focus on four subparallel channels of various discharges that cross either or both the BRFZ and the DSSFZ. Information on local fault scarp heights and channel reaches are extracted by GIS analysis of the LA LiDAR 5 m DEM, as well as flow modeling using the HEC-RAS software program. On the Tickfaw River, we conducted field surveys using differential GPS to record contemporary water surface slopes and channel location. Historic channel features on the Tickfaw are characterized using a series of aerial photographs dating back to 1952. Over the past 50 years, the Tickfaw River has shortened its course through the study area significantly (~4.9%) by means of meander cutoffs. Since 1952, sinuosity (P) has decreased in all of the Tickfaw channel reaches that cross fault segments. Currently, the sinuosity is extremely low (average P = 1.14) where the river crosses the DSSFZ and slightly higher where the river crosses the BRFZ (average P = 1.9). We use the LiDAR data to quantify offset on the faults that the river crosses. These values will be compared with the average lateral migration rate of the river in order to better understand the time scales over which both processes operate. If the faults appear to have little morphologic

  15. Reconnaissance of the Red Lake River, Minnesota

    USGS Publications Warehouse

    Ropes, Lev; Brown, Richmond F.; Wheat, D.E.

    1969-01-01

    This report is intended to serve a wide range of people including educators, scientists, planners, and those who wish to enjoy travel on the river. the data-summary charts, graphs, and tables are intended to be specific enough so that users who require precise information need not resynthesise the original numerical data.

  16. 76 FR 23485 - Safety Zone; Red River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... across latitude 46 20'00'' N, extending the entire width of the river. This safety zone is needed to... in Minnesota South of a line drawn across latitude 46 20'00'' N, extending the entire width of the... those in Minnesota South of a line drawn across latitude 46 20'00'' N, extending the entire width of...

  17. Red River of the North Reconnaissance Report: Turtle River Subbasin.

    DTIC Science & Technology

    1980-12-01

    formed by glacial Lake Agassiz . The major streamwater features are the Turtle River and its two branches: the North Branch and the South Branch. The...spread out over the nearly level, south-sloping Elk River delta (formed in glacial Lake Agassiz ). The area around Manvel is an essentially flat...transected by a series of elevated geological features called beach ridges, or strandlines, which are associated with the formation of glacial Lake Agassiz

  18. Red River Depot Operations Center Design Simulation Analysis

    DTIC Science & Technology

    1993-07-01

    prcepallets) (pilfts) (second) in i (21) 99.8% 1.4 25.2 itdal Acaumulating Cnvyr (17) 1.2 palets 0.0 0.0 P&P/Stow Accumulating... dispensed early in the pickers’ 8-hour shift. Similarly, most material from outside the DOC arrives early in each work day. 48 Defense Depot Red River

  19. Red River of the North Reconnaissance Report: Ottertail River Subbasin.

    DTIC Science & Technology

    1980-12-01

    32 8 Possible Sediment and Nutrient Source Types in the Ottertail River Subbasin ...... .................. ... 34 9 Groundwater ... groundwater quality, high iron and manganese concentrations have bea reported in certain areas (Minnesota Pollution Control Agency, 1975; Minnesota Water...contains 1.5 million acre feet of water in storage; however, only a relatively small amount is economically recoverable. Some groundwater supplies are

  20. Red River of the North Reconnaissance Report: Buffalo River Subbasin.

    DTIC Science & Technology

    1980-12-01

    October 1977 and April 1978 .... .............. . . . 35 10 Groundwater Quality Data from Comuunities in the Buffalo River Subbasin...weed and insect control. Groundwater quality problems are related to high concentrations of iron and manganese, dissolved solids, and sulfate (Upper...unable to meet water supply needs g(because of inadequate storage potentials). Communities in the subbasin 14 use groundwater for all municipal needs

  1. Red River of the North Reconnaissance Report: Pembina River.

    DTIC Science & Technology

    1980-12-01

    lakes in the upper valley, in effect , absorb runoff from the area above their outlets so that flood peaks downstream are reduced. Two separate types of...to protect, conserve, and enhance where possible these sensitive ecosystems in the subbasin (U.S. Fish and Wildlife Service, 1979). i ’d. Low flows...natural ecosystems are found in the Pembina River Valley: 1. Bottomland hardwood forests. This community extends into the valley along the floodplain and on

  2. South Fork Clearwater River Habitat Enhancement, Crooked and Red Rivers : Annual Report, 1989.

    SciTech Connect

    Baer, William H.

    1990-01-01

    In 1983, the Nez Perce National Forest and the Bonneville Power Administration entered into an interagency agreement to enhance and improve habitat for two anadromous fish species, spring chinook salmon (Oncorhynchus tshawyscha) and summer steelhead trout (Onchorhyncus mykiss), in the South Fork Clearwater River tributaries. The South Fork Clearwater River was dammed in 1927 for hydroelectric development. Anadromous fish runs were virtually eliminated until the dam was removed in 1962. To complicate the problem, upstream spawning and rearing habitats were severely impacted by dredge and hydraulic mining, road building, timber harvest, and over-grazing. Fish habitat improvement projects under the above contract are being carried out in two major tributaries to the South Fork Clearwater River. Both the Red River and the Crooked River projects began in 1983 and will be completed in 1990. 12 figures., 1 tab.

  3. 76 FR 22033 - Safety Zone; Red River Safety Zone, Red River, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... latitude 46 20'00'' N, including those portions of the river in Wilkin, Clay, Norman, Polk, Marshall and... of Minnesota north of a line drawn across latitude 46 20'00'' N, including those portions of...

  4. Red River Waterway, Louisiana, Texas, Arkansas, and Oklahoma, Mississippi River to Shreveport, Louisiana. General Reevaluation Report.

    DTIC Science & Technology

    1982-12-01

    dating to circa A.D. 1760. Surface-collected material included French faience and Mexican Puebla wares. Also in the project area is Fort Selden (16NA235...great interest for years. I cheered for the successes of those early Red River men of vision who started things happening in the valley. I have felt

  5. A History of Flooding in the Red River Basin

    USGS Publications Warehouse

    Ryberg, Karen R.; Macek-Rowland, Kathleen M.; Banse, Tara A.; Wiche, Gregg J.; Martin, Cathy R.

    2007-01-01

    The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, local, tribal, and academic entities to ensure that accurate and timely data are available for making decisions regarding public welfare and property during natural disasters and to increase public awareness of the hazards that occur with such disasters. The Red River of the North Basin has a history of flooding and this poster is designed to increase public awareness of that history and of the factors that contribute to flooding.

  6. Quaternary faulting of basalt flows on the Melones and Almanor fault zones, North Fork Feather River, northeastern California

    SciTech Connect

    Wakabayashi, J. , Hayward, CA ); Page, W.D. . Geosciences Dept.)

    1993-04-01

    Field relations indicate multiple sequences of late Cenozoic basalt flowed down the canyon of the North Fork Feather River from the Modoc Plateau during the Pliocene and early Quaternary. Remnants of at least three flow sequences are exposed in the canyon, the intermediate one yielding a K/Ar plagioclase date of 1.8 Ma. Topographic profiling of the remnants allows identification of Quaternary tectonic deformation along the northern Plumas trench, which separates the Sierra Nevada from the Diamond Mountains. The authors have identified several vertical displacements of the 1.8-Ma unit in the North Fork canyon and the area NE of Lake Almanor. NE of the lake, three NW-striking faults, each having down-to-the-west displacements of up to 35 m, are related to faulting along the east side of the Almanor tectonic depression. Analysis of the displaced basalt flows suggests that uplift of the Sierra Nevada occurred with canyon development prior to 2 Ma, and has continued coincident with several subsequent episodes of basalt deposition. Quaternary faulting of the basalt is associated with the Melones fault zone and the Plumas trench where they extend northward from the northern Sierra Nevada into the Modoc Plateau and southern Cascades. In contrast to the Mohawk Valley area, where the Plumas trench forms a 5-km-wide graben, faulting in the Almanor region is distributed over a 15-km-wide zone. A change in the strike of faulting occurs at Lake Almanor, from N50W along the Plumas trench to N20W north of the lake. The right-slip component on the fault of the Plums trench may result in a releasing bend at the change in strike and explain the origin of the Almanor depression.

  7. River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam

    NASA Astrophysics Data System (ADS)

    Stahl, Mason O.; Harvey, Charles F.; van Geen, Alexander; Sun, Jing; Thi Kim Trang, Pham; Mai Lan, Vi; Mai Phuong, Thao; Hung Viet, Pham; Bostick, Benjamin C.

    2016-08-01

    Many aquifers that are highly contaminated by arsenic in South and Southeast Asia are in the floodplains of large river networks. Under natural conditions, these aquifers would discharge into nearby rivers; however, large-scale groundwater pumping has reversed the flow in some areas so that rivers now recharge aquifers. At a field site near Hanoi Vietnam, we find river water recharging the aquifer becomes high in arsenic, reaching concentrations above 1000 µg/L, within the upper meter of recently (< ˜10 years) deposited riverbed sediments as it is drawn into a heavily pumped aquifer along the Red River. Groundwater arsenic concentrations in aquifers adjacent to the river are largely controlled by river geomorphology. High (>50 µg/L) aqueous arsenic concentrations are found in aquifer regions adjacent to zones where the river has recently deposited sediment and low arsenic concentrations are found in aquifer regions adjacent to erosional zones. High arsenic concentrations are even found adjacent to a depositional river reach in a Pleistocene aquifer, a type of aquifer sediment which generally hosts low arsenic water. Using geochemical and isotopic data, we estimate the in situ rate of arsenic release from riverbed sediments to be up to 1000 times the rates calculated on inland aquifer sediments in Vietnam. Geochemical data for riverbed porewater conditions indicate that the reduction of reactive, poorly crystalline iron oxides controls arsenic release. We suggest that aquifers in these regions may be susceptible to further arsenic contamination where riverine recharge drawn into aquifers by extensive groundwater pumping flows through recently deposited river sediments before entering the aquifer.

  8. Overview of the Proposed Mississippi Headwaters - Red River Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Schwartz, F. W.; Gerla, P. J.; Kucera, P. A.

    2004-12-01

    A consortium of universities, led by The Ohio State University and the University of North Dakota, in collaboration with The Nature Conservancy - Minnesota and the Dakotas Chapter, are proposing to develop the Mississippi Headwaters - Red River (MHRR) Hydrologic Observatory (HO). The region encompassed by the observatory includes the Red River watershed, the Upper Crow Wing River, the headwaters of the Mississippi River above Leech Lake, the closed Devils Lake basin and the central portion of the Prairie Pothole Region (PPR). The MHRR HO covers about 101,000 km2 and straddles the continental divide. The large size will permit the study of unique science problems and will provide a large contiguous region suitable for coupled large-scale climatic/hydrologic/ecological investigations. Although not part of this proposal, we are also organizing a consortium of primarily Canadian universities interested in carrying out complementary studies on the large Assiniboine basin in Manitoba and Saskatchewan with funding from Canadian sources. The combined study areas will facilitate climate/hydrologic/ecological studies on a broad scale, together with much more focused local scale studies. The research plan focuses on (i) climate variability and future climate change, (ii) wetland dynamics, restoration, and policy considerations associated with global climate change, (iii) carbon, nutrient, and contaminant cycling in complex systems, (iv) assessment and modeling of large, coupled climate/water systems, and (v) new and emerging technologies for near real-time monitoring and assessment. The science themes focus explicitly on exploring the interfaces among traditional science disciplines (hydrology, ecology, climatology) and implicitly on the atmosphere/land surface/subsurface interfaces that are part of the hydrologic cycle. The location of the MHRR HO was purposely selected as one of the most promising areas to pursue these science and technology themes. The region is

  9. 75 FR 17106 - Safety Zone; Red Bull Air Race, Detroit River, Detroit, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Red Bull Air Race, Detroit River, Detroit... vessels from portions of the Detroit River during the Red Bull Air Race. This temporary safety zone is... on the water could easily result in serious injuries or fatalities. Establishing a safety zone...

  10. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fork Red River, Okla. 208.26 Section 208.26 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork Red River, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Altus... of runoff from the area above the dam exceeds the volume of water necessary to raise the...

  11. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fork Red River, Okla. 208.26 Section 208.26 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork Red River, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Altus... of runoff from the area above the dam exceeds the volume of water necessary to raise the...

  12. Tectonic history and setting of a seismogenic intraplate fault system that lacks microseismicity: The Saline River fault system, southern United States

    NASA Astrophysics Data System (ADS)

    Cox, Randel Tom; Hall, J. Luke; Gardner, Chris S.

    2013-11-01

    Although the northwest-striking Saline River fault system of southeastern Arkansas is not defined by microseismicity, it is associated with sand blows and shows evidence of Pleistocene and Holocene surface ruptures, suggesting a significant seismogenic potential. This fault system is within the northern Gulf of Mexico interior coastal plain, a region only recently recognized as containing seismogenic faults. To better characterize this active fault system, we reconstructed its post-Paleozoic history using petroleum and coal industry wire-line well log and seismic reflection subsurface data. The Saline river fault system initiated as a series of northwest-striking grabens during Triassic/Jurassic uplift and incipient Gulf of Mexico rifting along the basement Alabama-Oklahoma transform margin of the North American Proterozoic craton. During post-rift subsidence, these grabens were buried by Gulf sediments until mid-Cretaceous uplift and igneous activity resulted in minor extensional reactivation of graben faults. Faulting style changed from extension to transpression during the Late Cretaceous due to compression of eastern North America as the North Atlantic rapidly widened and due to thermal weakening of the Alabama-Oklahoma transform lithospheric discontinuity as it obliquely crossed a mantle hot spot. In the Late Cretaceous, graben faults experienced contractional reactivation and steep, deeply-rooted transpressional faults developed within and parallel to the graben system. These transpressional faults locally displace Eocene, Pleistocene, and Holocene sediments. Fault activity continues on the Saline River fault system due to thin crust along the Alabama-Oklahoma transform and to high heat flow, which act together to weaken the crust and promote seismogenic tectonism. The fault system may lack appreciable microseismicity because the aftershock sequence of the last large earthquake has had time to dissipate.

  13. Seismic Reflection Project Near the Southern Terminations of the Lost River and Lemhi Faults, Eastern Snake River Plain, Idaho

    SciTech Connect

    S. M. Jackson; G. S. Carpenter; R. P. Smith; J. L. Casper

    2006-10-01

    Thirteen seismic reflection lines were processed and interpreted to determine the southern terminations of the Lost River and Lemhi faults along the northwest boundary of the eastern Snake River Plain (ESRP). The southernmost terminations of the Arco and Howe segments were determined to support characterization of the Lost River and Lemhi fault sources, respectively, for the INL probabilistic seismic hazard analysis. Keywords:Keywords are required forExternal Release Review*Keywords  Keywords *Contacts (Type and Name are required for each row) Type ofContactContact Name  POC Editor RecordFour commercial seismic reflection lines (Arco lines 81-1 and 81-2; Howe lines 81-3 and 82-2) were obtained from the Montana Power Company. The seismic data were collected in the early 1980’s using a Vibroseis source with station and shot point locations that resulted in 12-fold data. Arco lines 81?1 and 81?2 and Howe lines 81?3 and 82?2 are located within the basins adjacent to the Arco and Howe segments, respectively. Seven seismic lines (Arco lines A1, A2, A3, and A4 and Howe lines H1, H2, and H3) were acquired by EG&G Idaho, Inc. Geosciences for this study using multiple impacts with an accelerated weight drop source. Station and shot point locations yielded 12-fold data. The seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. Two seismic lines (Arco line S2 and Howe line S4) were obtained from Sierra Geophysics. In 1984, they acquired seismic reflection data using an accelerated weight drop source with station and shot point locations that yielded 6-fold data. The two seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. In 1992 for this study, Geotrace Technologies Inc. processed all of the seismic reflection data using industry standard processing techniques. The

  14. Statistical Correlation between Red Wood Ant Sites and Neotectonic Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Berberich, G.; Klimetzek, D.; Wöhler, C.; Grumpe, A.

    2012-04-01

    Recent research in the West Eifel (West Germany) has demonstrated the correlation of soil gas anomalies and spatial distribution of red wood ant (RWA) mounds along strike-slip faults. RWA can be used as biological indicators for the identification of neotectonic fault systems (Berberich 2010, Schreiber & Berberich 2011). For myrmecologists, the causes and stringency of such a linkage are paramount, since linear patterns have been mostly associated with edge effects of forest stands and/or roads (Klimetzek 1970, Klimetzek & Kaiser 1995, Wellenstein 1990). Therefore, geostatistical techniques were applied in the West Eifel and the Bodanrück (South West Germany) to distribution data of approx. 3,000 resp. 2,300 mounds of RWA (Formica spp., Hymenoptera: Formicidae) in correlation with known neotectonic fault systems Both study areas are located in areas with a complex tectonic history. Commenced during the Neogene and persisted during the Quaternary, the uplift of both, the Rhenoherzynikum and the Black Forest, affects the dynamics of the study areas and reactivates pre-existing Palaeozoic crustal discontinuities. The West Eifel (Rhenoherzynikum) was tectonically sheared in Mesozoic and Cenozoic times. The current NW-SE-trending main stress direction opens pathways for geogenic gases. At the same time, Variscan faults as part of a conjugated shear system, are reactivated. At the Bodanrück, the compressional stress field (NNW-SSE) leads to a WSW-ENE extensional regime, in which faults cut through the entire crust (Ziegler & Dèzes 2007, Nagra 1992). The prominent large-scale neotectonic structure is the NW-SE to WNW-ESE trending "Freiburg-Bonndorf-Hegau-Bodensee-Graben" that consists of several sub-trenches (Müller et al. 2002). Field surveys indicate a possible existence of a NNE-SSW trending strike-slip fault extending east of Stein am Rhein (Büchi & Müller 2003) possibly reactivated in the Quaternary (Birkhäuser et al. 2001). Available focal mechanism solutions

  15. Establishing river basin organisations inVietnam: Red River, Dong Nai River and Lower Mekong Delta.

    PubMed

    Taylor, P; Wright, G

    2001-01-01

    River basin management is receiving considerable attention at present. Part of the debate, now occurring worldwide, concerns the nature of the organisations that are required to manage river basins successfully, and whether special-purpose river basin organisations (RBOs) are always necessary and in what circumstance they are likely to (i) add to the management of the water resources and (ii) be successful. The development of river basin management requires a number of important elements to be developed to a point where the river basin can be managed successfully. These include the relevant laws, the public and non-government institutions, the technical capabilities of the people, the understanding and motivation of people, and the technical capacity and systems, including information. A river basin organisation (or RBO) is taken to mean a special-purpose organisation charged with some part of the management of the water resources of a particular river basin. Generally speaking, such organisations are responsible for various functions related to the supply, distribution, protection and allocation of water, and their boundaries follow the watershed of the river in question. However, the same functions can be carried out by various organisations, which are not configured on the geographical boundaries of a river basin. This paper outlines recent work on river basin organisation in Vietnam, and makes some comparisons with the situation in Australia.

  16. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel

  17. Basement Surface Faulting and Topography for Savannah River Site and Vicinity

    SciTech Connect

    Cumbest, R.J.

    1998-12-17

    This report integrates the data from more than 60 basement borings and over 100 miles of seismic reflection profiling acquired on the Savannah River Site to map the topography of the basement (unweathered rock) surface and faulting recorded on this surface.

  18. Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California

    USGS Publications Warehouse

    Rosenberg, Lewis I.; Clark, Joseph C.

    2009-01-01

    The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports

  19. Borderline science: expert testimony and the Red River boundary dispute.

    PubMed

    Cittadino, Eugene

    2004-06-01

    The 1918 discovery of oil in the bed of the Red River, which forms the border between Texas and Oklahoma, led to a U.S. Supreme Court case that involved the extensive use of expert witnesses in fields such as geology, geography, and ecology. What began as a dispute between the two states soon became a multisided controversy involving those states, the federal government, Native Americans, and individual placer-mining claimants. After the federal attorneys introduced scientific experts into the dispute, including the plant ecologist Henry Chandler Cowles and the geographer Isaiah Bowman, fresh from negotiations at the Paris Peace Conference, Texas attorneys fielded their own team of opposing experts. Charged with the task of determining the location of the border, defined as the south bank of the river at the time of the 1819 treaty with Spain, the scientific experts presented the court with volumes of evidence and elaborate arguments, much of it contradictory and involving creative interpretations of existing theories. The case exhibited all the now-familiar features of a trial using expert witnesses, for which it represents an early, overlooked, and particularly complex example.

  20. 77 FR 24949 - Red River Lock & Dam No. 4 Hydroelectric Project; BOST4 Hydroelectric LLC; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Energy Regulatory Commission Red River Lock & Dam No. 4 Hydroelectric Project; BOST4 Hydroelectric LLC... affected by issuance of a license for the proposed Red River Lock & Dam No. 4 Hydroelectric Project No... Hydroelectric LLC, as applicant for the proposed Red River Lock & Dam No. 4 Project No. 12757, is invited...

  1. Feedback between deformation and magmatism in the Lloyds River Fault Zone: An example of episodic fault reactivation in an accretionary setting, Newfoundland Appalachians

    NASA Astrophysics Data System (ADS)

    Lissenberg, C. Johan; van Staal, Cees R.

    2006-08-01

    The Lloyds River Fault Zone is a 10-15 km wide amphibolite-grade shear zone that formed during the Ordovician Taconic Orogeny. It separates ophiolites and arc-back-arc complexes formed in Iapetus from a peri-Laurentian microcontinent (Dashwoods microcontinent). The Lloyds River Fault Zone comprises three high-strain zones, dominantly composed of mylonitic amphibolites, separated by less deformed plutonic rocks. Structural, age and metamorphic data suggest the Lloyds River Fault Zone accommodated sinistral-oblique underthrusting of ophiolites underneath the Dashwoods microcontinent prior to 471 ± 5 Ma at 800°C and 6 kbar. Plutonic rocks within the Lloyds River Fault Zone comprise two suites dated at 464 ± 2 plus 462 ± 2 and 459 ± 3 Ma, respectively. The younger age of the plutons with respect to some of the amphibolites, evidence for magmatic deformation, and the elongate nature of the plutons parallel to the Lloyds River Fault Zone suggest they were emplaced within the fault zone during deformation. Both intrusive episodes triggered renewed deformation at high temperatures (770-750°C), illustrating the positive feedback between deformation and magmatism. Offshoots of the plutons intruded undeformed ophiolitic gabbros outside the Lloyds River Fault Zone. Deformation localized within the intrusive sheets, coeval with static contact metamorphism of the host gabbros, leading to the development of new, small-scale shear zones. This illustrates that channeling of plutons into shear zones and nucleation of shear zones in melt-rich zones may occur simultaneously within the same fault system.

  2. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately.

  3. Acoustical facies analysis at the Ba Lat delta front (Red River Delta, North Vietnam)

    NASA Astrophysics Data System (ADS)

    van den Bergh, G. D.; van Weering, Tj. C. E.; Boels, J. F.; Duc, D. M.; Nhuan, M. T.

    2007-02-01

    A shallow penetrating, high-resolution acoustic study was performed in the Ba Lat delta, the major distributary of the Red River System in Northern Vietnam. An acoustic facies map was constructed and the various facies types were validated through analysis of bottom sediments, by a study of gravity cores collected at 22 stations. Analysis of the acoustic profiles and gravity cores revealed the presence of an asymmetrical, S to SW prograding prodelta lobe, in accordance with the prevailing longshore currents to the S. The southern part of this prodelta is detached from the protruding Ba Lat delta front. The prodelta is dominated by muddy sediments with minor thin (<5 cm) sandy and silty layers. The coarser-grained layers decrease in abundance away from the Ba Lat river mouth. Offshore, the modern delta deposits are characterized by an off-lapping contact over a semi-prolonged bottom reflector lacking any sub-bottom reflectors. This semi-prolonged bottom reflector is correlated with sandy deposits of presumably Early Holocene age. Bottom and coastal erosion is restricted to two areas N and SW of the Ba Lat. Erosion in the North is inferred to be due to reduced sediment supply as a result of shifting in 1971 of the main outlet to its present, more southern location. The erosional area along the Hai Hau coast SW of the Ba Lat also has experienced a reduction in sediment supply in the course of the 20th century, when the local Song Vop distributary channel became less active and was completely dammed in the 1970s. Most sediment supplied by the Ba Lat at present bypasses the Hai Hau erosional coastal zone, as the active part of the Ba Lat prodelta is detached from the coast SW of the Ba Lat. An active, NNE-SSW trending fault system with surface expression is located along the offshore edge of the prodelta, and is linked to deeper fault structures in this active neotectonic region. Subsurface reflectors are folded in the vicinity of the fault.

  4. Red River Stream Improvement Final Design Nez Perce National Forest.

    SciTech Connect

    Watershed Consulting, LLC

    2007-03-15

    This report details the final stream improvement design along the reach of Red River between the bridge below Dawson Creek, upstream for approximately 2 miles, Idaho County, Idaho. Geomorphic mapping, hydrologic profiles and cross-sections were presented along with existing fish habitat maps in the conceptual design report. This information is used to develop a stream improvement design intended to improve aquatic habitat and restore riparian health in the reach. The area was placer mined using large bucket dredges between 1938 and 1957. This activity removed most of the riparian vegetation in the stream corridor and obliterated the channel bed and banks. The reach was also cut-off from most valley margin tributaries. In the 50 years since large-scale dredging ceased, the channel has been re-established and parts of the riparian zone have grown in. However, the recruitment of large woody debris to the stream has been extremely low and overhead cover is poor. Pool habitat makes up more than 37% of the reach, and habitat diversity is much better than the project reach on Crooked River. There is little large woody debris in the stream to provide cover for spawning and juvenile rearing, because the majority of the woody debris does not span a significant part of the channel, but is mainly on the side slopes of the stream. Most of the riparian zone has very little soil or subsoil left after the mining and so now consists primarily of unconsolidated cobble tailings or heavily compacted gravel tailings. Knapweed and lodgepole pine are the most successful colonizers of these post mining landforms. Tributary fans which add complexity to many other streams in the region, have been isolated from the main reach due to placer mining and road building.

  5. The Eastern Lower Tagus Valley Fault Zone in central Portugal: Active faulting in a low-deformation region within a major river environment

    NASA Astrophysics Data System (ADS)

    Canora, Carolina; Vilanova, Susana P.; Besana-Ostman, Glenda M.; Carvalho, João; Heleno, Sandra; Fonseca, Joao

    2015-10-01

    Active faulting in the Lower Tagus Valley, Central Portugal, poses a significant seismic hazard that is not well understood. Although the area has been affected by damaging earthquakes during historical times, only recently has definitive evidence of Quaternary surface faulting been found along the western side of the Tagus River. The location, geometry and kinematics of active faults along the eastern side of the Tagus valley have not been previously studied. We present the first results of mapping and paleoseismic analysis of the eastern strand of the Lower Tagus Valley Fault Zone (LTVFZ). Geomorphological, paleoseismological, and seismic reflection studies indicate that the Eastern LTVFZ is a left-lateral strike-slip fault. The detailed mapping of geomorphic features and studies in two paleoseismic trenches show that surface fault rupture has occurred at least six times during the past 10 ka. The river offsets indicate a minimum slip rate on the order of 0.14-0.24 mm/yr for the fault zone. Fault trace mapping, geomorphic analysis, and paleoseismic studies suggest a maximum magnitude for the Eastern LTVFZ of Mw ~ 7.3 with a recurrence interval for surface ruptures ~ 1.7 ka. At least two events occurred after 1175 ± 95 cal yr BP. Single-event displacements are unlikely to be resolved in the paleoseismic trenches, thus our observations most probably represent the minimum number of events identified in the trenches.

  6. Stream monitoring and educational program in the Red River Basin, Texas, 1996-97

    USGS Publications Warehouse

    Baldys, Stanley; Phillips, D. Grant

    1998-01-01

    This fact sheet presents the 1996–97 stream monitoring and outreach activities of the U.S. Geological Survey (USGS), the Red River Authority of Texas, the U.S. Army Corps of Engineers, the City of Wichita Falls, the Wichita County Water Improvement District No. 2, and the Texas Water Development Board. The fact sheet was prepared by the USGS in cooperation with the Red River Authority of Texas.

  7. Fan-delta and interdeltaic shoreline sediments of Middle Devonian Granite Wash and Keg River clastics, Red Earth field, north Alberta basin, Canada

    SciTech Connect

    Sabry, H.

    1989-03-01

    A detailed sedimentological investigation of over 4000 ft of core and 500 well logs of the Middle Devonian granite wash and Keg River clastics in the Red Earth field, North Alberta basin, Canada, has led to the recognition of a granite wash subaerial fan-delta system that is laterally continuous with a Keg River subaqueous delta component along an eastern shoreline of the ancestral Peace River arch. The subaerial fan delta includes alluvial fan facies, sheet wash and mud flows, and playa lakes. The subaqueous delta component includes lower shoreface, upper shoreface, beach-foreshore, eolian sand dunes, lagoon, washover sands, tidal channels and flats, and supratidal carbonates and anhydrites. Within this system, six mappable units are defined. A conceptual depositional model for the sequence depicts four main events. (1) Erosion of Peach River arch uplifted fault blocks, which produced coarse-grained fan-delta sediments in an adjacent fault-bounded margin. Subsequent fluvial reworking resulted in the deposition of thick, lenticular, wedge-shaped alluvial fans of granite wash. (2) Progradation of alluvial fans seaward into the Keg River Sea. (3) Transgression by Middle Devonian seas from the east, which reworked alluvial fans and led to deposition of discontinuous linear sand bodies represented by the Keg River regressive shoreline sediments. (4) Restriction of the sea by the Presqu'ile barrier reef to the north, which deposited evaporites of the Muskeg Formation over the whole sequence. Modern analog to this fan-delta system is the coastal fans of the Gulf of Aqaba, Red Sea. Red Earth field contains over 27 million bbl of recoverable oil, related to a combination structural-stratigraphic trap.

  8. Deep seated landslides along the Meilungshan fault in Laonung River Waterdhed, southern Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Dia-Jie; Lin, Ching-Weei; Tseng, Chih-Ming

    2013-04-01

    Landslides in Taiwan represent one of most relevant natural hazards for the society. In particular, the large scaled deep-seated landslides deserve attention, because they can be reactivated during intense events and can evolve into destructive failures. For example, one deep seated landslide, the Hsiaolin landslide, with an area of about 250 ha, buried the entire village of Hsiaolin in Kaohsiung County causing 397 causalities, the disappearance of 53 others, and buried over 100 houses during the Typhoon Morakot in 2009. The Laonung River watershed which covered 1367 km2 is selected as our study area. The study area is mainly compose of Miocene slate and sedimentary rocks that are separated by a major fault, the Meilungshan fault. The Meilungshan fault is part of the boundary fault separating the Central Range and Western Foothill in southern Taiwan. The fault is a west verging, high angle NNE trending thrust. Some outcrops show the fault zone is over one hundred and fifty meters thick, and it is mainly composed of gouge and fault breccias of slate. Within the study area, 361 sites with an area greater than 10 ha and with sliding topographic features of deep seated landslide such as crown main escarpment, down slope scarp, up slope scarps, and lateral cracks are recognized from LiDAR derived 1 m resolution DEM. Among these, 16 sites are selected for field investigation and all of them are confirmed as deep seated landslides. This implies the reliability of interpretation results from LiDAR derived DEM even in heavy forest region such as Taiwan. In order to know the influence of the Meilungshan fault in the development of deep seated landslides, landslide density are calculated. The landslide density is 7.7% when whole watershed is considered. However, the landslide density significantly increases to 19.3% when only an area 223km2 that contains the Meilungshan fault with a 2km buffer zone is in the calculation. This result indicates that deformation zone associated

  9. BLOOMING MECHANISM OF FRESHWATER RED-TIDE IN EUTRORHIC ABOLISHED-RIVER

    NASA Astrophysics Data System (ADS)

    Nagabayashi, Hisao; Hirayama, Kazuo; Horikawa, Kunihiko

    This paper analyzes blooming mechanism of freshwater red-tide in an abolished-river which eutrophicated by seventy-years. Outbreaks of red tide of the river is depend on two phenomenon; the first one is the effect of secondary current generated by the wind along with the temperature rise, the second is the flow for the downstream by the release discharge from the power generation-dam in the downstream. Euglena spp. in euglena and Uroglena spp. in yellow-zooxanthellas is clarified to be the dominant species of the freshwater red-tide.

  10. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany).

    PubMed

    Berberich, Gabriele; Schreiber, Ulrich

    2013-05-17

    In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  11. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    SciTech Connect

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  12. Hydrology of the lower Little Red River, Arkansas, and a procedure for estimating available streamflow

    USGS Publications Warehouse

    Grosz, G.D.; Terry, J.E.; Hall, A.P.

    1988-01-01

    The U.S. Geological Survey, in cooperation with the Arkansas Soil and Water Conservation Commission, conducted a hydrologic investigation of the lower Little Red River from near Searcy, Arkansas (mi 31.7), to the river 's mouth at its confluence with the White River. During 1983 and 1984, data were collected on streamflow, stream altitude, groundwater altitude and diversion pumping from the Little Red River. Flow in the Little Red River near Searcy is computed by using a modified stage/fall/discharge relation and stage data collected at Searcy and at Judsonia 6.5 mi downstream. This procedure uses a family of 12 rating curves that can be selected by stage records at Searcy and fall records between Searcy and Judsonia. A comparison of water levels in the river to water levels in selected alluvial wells near the river indicates that the Little Red is a gaining stream during summer and fall low periods and is a losing stream during periods of high flow. Flows in the lower Little Red River are also significantly affected by releases from Greers Ferry Reservoir at mi 78.8 and by varying backwater conditions resulting from high stages on the White River. To meet the expressed needs of the Arkansas Soil and Water Conservation Commission, a mass balance procedure was developed to be used for estimating the amount of streamflow available along a reach of stream, given a minimum instream flow requirement set by the regulating authority. This procedure was coded into a computer program that can be invoked interactively as an aid in making streamflow allocation decisions and in maintaining related data bases. (USGS)

  13. River Gain and Loss Studies for the Red River of the North Basin, North Dakota and Minnesota

    USGS Publications Warehouse

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act passed by the U.S. Congress in 2000 authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and -quality needs of the Red River of the North (Red River) Basin in North Dakota and of possible options to meet those water needs. To obtain the river gain and loss information needed to properly account for available streamflow within the basin, available river gain and loss studies for the Sheyenne, Turtle, Forest, and Park Rivers in North Dakota and the Wild Rice, Sand Hill, Clearwater, South Branch Buffalo, and Otter Tail Rivers in Minnesota were reviewed. Ground-water discharges for the Sheyenne River in a reach between Lisbon and Kindred, N. Dak., were about 28.8 cubic feet per second in 1963 and about 45.0 cubic feet per second in 1986. Estimated monthly net evaporation losses for additional flows to the Sheyenne River from the Missouri River ranged from 1.4 cubic feet per second in 1963 to 51.0 cubic feet per second in 1976. Maximum water losses for a reach between Harvey and West Fargo, N. Dak., for 1956-96 ranged from about 161 cubic feet per second for 1976 to about 248 cubic feet per second for 1977. Streamflow gains of 1 to 1.5 cubic feet per second per mile were estimated for the Wild Rice, Sand Hill, and Clearwater Rivers in Minnesota. The average ground-water discharge for a 5.2-mile reach of the Otter Tail River in Minnesota was about 14.1 cubic feet per second in August 1994. The same reach lost about 14.1 cubic feet per second between February 1994 and June 1994 and about 21.2 cubic feet per second between August 1994 and August 1995.

  14. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina

    SciTech Connect

    Berkman, E. )

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  15. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina. Final report

    SciTech Connect

    Berkman, E.

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  16. A newly discovered fault in West Virginia and Virginia related to the location of the narrows of New River

    SciTech Connect

    Dennison, J.M. . Dept. of Geology)

    1994-03-01

    Stratigraphic measurements of the outcrop belt just northwest of the St. Clair fault near Lindside and on both sides of the New River valley reveal major omission of Upper Devonian and Lower Mississippian strata. About 1,000 feet of Brallier and Foreknobs Formations and up to 700 feet of Price (Pocono) formation are missing thee when compared with wells in flat-lying appalachian Plateau a few miles north of the proposed new fault, and when compared nearby along this Allegheny Front outcrop belt. The strata in the outcrop study area are in an overturned succession with dips generally 24--58[degree] and involving rocks from Huntersville chert at the St. Clair fault to Greenbrier Limestone on the southeast limb of the Glen Lyn syncline. The best exposure of the new fault is near Lindside, where it dips 79[degree]SE, and brings locally nearly flat, gently folded Brallier Formation in fault contact with the upper Price (Pocono) Formation only 9 stratigraphic feet beneath the Merrimac coal dipping 35[degree]SE overturned. This suggests a normal fault with about 2,600 feet dip-slip. If these age relationships are correct, the new fault is post-orogenic and may be relaxational. The effect of the new fault is to reduce the amount of resistant strata that New River had to cut through near the Narrows, and this is probably why New River crosses the 85 miles long trend of East River-Peters Mountain where it does. The new high-angle fault is also near the Giles County earthquake swarm.

  17. Evidence of a Large-Magnitude Recent Prehistoric Earthquake on the Bear River Fault, Wyoming and Utah: Implications for Recurrence

    NASA Astrophysics Data System (ADS)

    Hecker, S.; Schwartz, D. P.

    2015-12-01

    Trenching across the antithetic strand of the Bear River normal fault in Utah has exposed evidence of a very young surface rupture. AMS radiocarbon analysis of three samples comprising pine-cone scales and needles from a 5-cm-thick faulted layer of organic detritus indicates the earthquake occurred post-320 CAL yr. BP (after A.D. 1630). The dated layer is buried beneath topsoil and a 15-cm-high scarp on the forest floor. Prior to this study, the entire surface-rupturing history of this nascent normal fault was thought to consist of two large events in the late Holocene (West, 1994; Schwartz et al., 2012). The discovery of a third, barely pre-historic, event led us to take a fresh look at geomorphically youthful depressions on the floodplain of the Bear River that we had interpreted as possible evidence of liquefaction. The appearance of these features is remarkably similar to sand-blow craters formed in the near-field of the M6.9 1983 Borah Peak earthquake. We have also identified steep scarps (<2 m high) and a still-forming coarse colluvial wedge near the north end of the fault in Wyoming, indicating that the most recent event ruptured most or all of the 40-km length of the fault. Since first rupturing to the surface about 4500 years ago, the Bear River fault has generated large-magnitude earthquakes at intervals of about 2000 years, more frequently than most active faults in the region. The sudden initiation of normal faulting in an area of no prior late Cenozoic extension provides a basis for seismic hazard estimates of the maximum-magnitude background earthquake (earthquake not associated with a known fault) for normal faults in the Intermountain West.

  18. Questa Baseline and Premining Ground-Water Quality Investigation 18. Characterization of Brittle Structures in the Questa Caldera and Their Potential Influence on Bedrock Ground-Water Flow, Red River Valley, New Mexico

    USGS Publications Warehouse

    Caine, Jonathan Saul

    2006-01-01

    This report presents a field-based characterization of fractured and faulted crystalline bedrock in the southern portion of the Questa caldera and its margin. The focus is (1) the identification and description of brittle geological structures and (2) speculation on the potential effects and controls that these structures might have on the potential fluxes of paleo to present-day ground water in relation to natural or mining-related metal and acid loads to surface and ground water. The entire study area is pervasively jointed with a few distinctive patterns such as orthogonal, oblique orthogonal, and conjugate joint sets. Joint intensity, the number of joints measured per unit line length, is high to extreme. Three types of fault zones are present that include partially silicified, low- and high-angle faults with well-developed damage zones and clay-rich cores and high-angle, unsilicified open faults. Conceptually, the joint networks can be thought of as providing the background porosity and permeability structure of the bedrock aquifer system. This background is cut by discrete entities such as the faults with clay-rich cores and open faults that may act as important hydrologic heterogeneities. The southern caldera margin runs parallel to the course of the Red River Valley, whose incision has left an extreme topographic gradient at high angles to the river. Many of the faults and fault intersections run parallel to this assumed hydraulic gradient; thus, these structures have great potential to provide paleo and present-day, discrete and anisotropic pathways for solute transport within the otherwise relatively low porosity and permeability bedrock background aquifer system. Although brittle fracture networks and faults are pervasive and complex, simple Darcy calculations are used to estimate the hydraulic conductivity and potential ground-water discharges of the bedrock aquifer, caldera margin, and other faults in order to gain insight into the potential

  19. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    SciTech Connect

    Bransford, Stephanie

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  20. Analysis of change of red tide species in Yodo River estuary by the numerical ecosystem model.

    PubMed

    Hayashi, Mitsuru; Yanagi, Tetsuo

    2008-01-01

    Occurrence number of red tides in Osaka Bay in Japan is more than 20 cases every year. Diatom red tide was dominant in Osaka Bay, but the non-diatom red tide was dominant in early 1990s. Therefore, the material cycling in Yodo River estuary in Osaka Bay during August from 1991 to 2000 was analyzed by using the numerical ecosystem model and field observation data to clarify the reasons of change in red tide species. Year-to-year variation in calculated concentration ratio of diatom to non-diatom corresponds to the variation in observed ratio of red tide days of diatom to non-diatom. Limiting nutrient of primary production is phosphate over the period. Diatom dominated from 1991 to 1993, but it was difficult for non-diatom to grow due to the limitation by physical condition. Non-diatom was able to grow because of good physical and nutrient conditions from 1994 to 1996. And diatom dominated again under the good physical condition, and phosphorus supply was not enough for non-diatom to grow from 1998 to 2000. Phosphate concentration in the lower layer of Yodo River estuary was important to the variation in red tide species in the upper layer of Yodo River estuary.

  1. Distributions of median nutrient and chlorophyll concentrations across the Red River Basin, USA.

    PubMed

    Longing, D; Haggard, B E

    2010-01-01

    Acquisition and compilation of water-quality data for an 11-yr time period (1996-2006) from 589 stream and river stations were conducted to support nutrient criteria development for the multistate Red River Basin shared by Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. Ten water-quality parameters were collected from six data sources (USGS, Arkansas Department of Environmental Quality, Louisiana Department of Environmental Quality, Oklahoma Conservation Commission, Oklahoma Water Resources Board, and Texas Commission on Environmental Quality), and an additional 13 parameters were acquired from at least one source. Median concentrations of water-quality parameters were calculated at each individual station and frequency distributions (minimum, 10th, 25th, 50th, 75th, 90th percentiles, and maximum) of the median concentrations were calculated. Across the Red River Basin, median values for total nitrogen (TN), total phosphorus (TP), and sestonic chlorophyll-a (chl-a) ranged from < 0.02 to 20.2 mg L(-1), < 0.01 to 6.66 mg L(-1), and 0.10 to 262 microg L(-1), respectively. Overall, the 25th percentiles of TN data specific to the Red River Basin were generally similar to the USEPA-recommended ecoregion nutrient criteria of 0.31 to 0.88 mg L(-1), whereas median TP and chl-a data specific to the Red River Basin showed 25th percentiles higher than the USEPA-recommended criteria (0.010-0.067 mg TP L(-1); 0.93-3.00 microg chl-a L(-1)). The unique location of the Red River Basin in the south-central United States places it near the boundaries of several aggregate ecoregions; therefore, the development of ecoregion nutrient criteria likely requires using data specific to the Red River Basin, as shown in these analyses. This study provided basin-specific frequency distribution of median concentrations of water-quality parameters as the first step to support states in developing nutrient criteria to protect designated uses in the multijurisdictional Red River Basin.

  2. Diversions from Red River to Lake Dallas, Texas; and related channel losses, February and March 1954

    USGS Publications Warehouse

    Holland, Pat H.

    1954-01-01

    During the period Feb. 10 to Mar. 3, 19541 the City of Dallas pumped 1,363 acre-feet of water from its Red River plant into Pecan Creek (a tributary of Elm Fork Trinity River) 3.5 miles above Gainesville; 1,272 acre-feet of this diversion reached the head of Lake Dallas. Discharge records were obtained at four points along the channels. This water was transported down the channels of Pecan Creek and Elm Fork Trinity River to Lake Dallas, a distance of about 31 miles.

  3. Magnetic minerals in three Asian rivers draining into the South China Sea: Pearl, Red, and Mekong Rivers

    NASA Astrophysics Data System (ADS)

    Kissel, Catherine; Liu, Zhifei; Li, Jinhua; Wandres, Camille

    2016-05-01

    The use of the marine sedimentary magnetic properties, as tracers for changes in precipitation rate and in oceanic water masses transport and exchanges, implies to identify and to characterize the different sources of the detrital fraction. This is of particular importance in closed and/or marginal seas such as the South China Sea. We report on the magnetic properties of sedimentary samples collected in three main Asian rivers draining into the South China Sea: the Pearl, Red, and Mekong Rivers. The geological formations as well as the present climatic conditions are different from one catchment to another. The entire set of performed magnetic analyses (low-field magnetic susceptibility, ARM acquisition and decay, IRM acquisition and decay, back-field acquisition, thermal demagnetization of three-axes IRM, hysteresis parameters, FORC diagrams, and low-temperature magnetic measurements) allow us to identify the magnetic mineralogy and the grain-size distribution when magnetite is dominant. Some degree of variability is observed in each basin, illustrating different parent rocks and degree of weathering. On average it appears that the Pearl River is rich in magnetite along the main stream while the Mekong River is rich in hematite. The Red River is a mixture of the two. Compared to clay mineral assemblages and major element contents previously determined on the same samples, these new findings indicate that the magnetic fraction brings complementary information of great interest for environmental reconstructions based on marine sediments from the South China Sea.

  4. 78 FR 62359 - Red River Hydro LLC; Notice of Availability of Final Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Red River Hydro LLC; Notice of Availability of Final Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy...

  5. 78 FR 36767 - Red River Hydro LLC; Notice of Availability of Draft Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Red River Hydro LLC; Notice of Availability of Draft Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy...

  6. Pesticides detected in surface waters and fish of the Red River of the North drainage basin

    USGS Publications Warehouse

    Brigham, Mark E.

    1994-01-01

    Pesticide data have been collected in the Red River Basin by various Federal, State, and local agencies. Tornes and Brigham (1994) recently summarized many of these historical data. This paper summarizes selected data collected as part of the NAWQA program during 1992-93, and briefly compares these data to historical data and to pesticide usage.

  7. RED SHINER INVASION OF THE UPPER COOSA RIVER SYSTEM: DYNAMICS AND ECOLOGICAL CONSEQUENCES

    EPA Science Inventory

    The red shiner (Cyprinella lutrensis) has been widely introduced across 11 states outside its native range, presumably through bait-bucket and aquarium releases. Its native range includes Great Plain and Central Lowland tributaries of the Mississippi River and western Coastal Pla...

  8. A study of ecological red-line area partitioning in the Chishui River Basin in Guizhou

    NASA Astrophysics Data System (ADS)

    Yang, S. F.; An, Y. L.

    2016-08-01

    Maintaining ecosystem balance and realizing the strategic goal of sustainable development are key objectives in the field of environmental sciences. Accordingly, drawing ecological red lines in sensitive and vulnerable environmental areas and important ecological function areas, determining the distribution range of ecological red-line areas, providing scientific guidance for developmental activities, and effectively managing the ecological environment are significant work tasks supported by policy guidance from the State Council and from knowledge gained in educational circles. Taking the Chishui River Basin in Guizhou as the study object, this research selected water and soil loss sensitivity, as well as assessments of karst rocky desertification sensitivity as background assessments of the eco-environment. Furthermore, the functions of soil conservation, water conservation, and biodiversity protection were integrated with exploitation-prohibited areas, and an organic combination of ecological needs and social service functions was created. Spatial comprehensive overlay analysis and processing revealed that the combination marked nine major ecological red-line areas in a total area of 5,030.58 km2, which occupied 44.16% of the total basin area. By combining the current eco-environmental situation of the Chishui River Basin with the marked out red-line areas, this research proposed corresponding ecological red-line area management suggestions. These suggestions are expected to provide a scientific foundation for eco-environmental protection and subsequent scientific research in Chishui River Basin.

  9. Red River of the North Reconnaissance Report: Sand Hill River Subbasin.

    DTIC Science & Technology

    1980-12-01

    River Subbasin. . . . 28 7 Groundwater Quality Data From Cmunities in the Sand Hill River Subbasin. . . . . . .................. .. 30 8 Comparison of...be significant. Groundwater quality problems are related to excessive concentrations of iron, manganese, sulfates, and total dissolved solids (Upper...is little natural storage potential for surface water supplies in the subbasin. Groundwater contributions to the river are minimal in the western

  10. Preconstruction and simulated postconstruction ground-water levels at urban centers in the Red River Navigation Project area, Louisiana

    USGS Publications Warehouse

    Rogers, J.E.

    1984-01-01

    The Red River Valley in Louisiana is 3 to 10 miles wide and is underlain by the Red River alluvial aquifer. This aquifer is in hydraulic connection with the Red River. Precipitation infiltrates the aquifer and water discharges from the aquifer at the Red River and major tributaries. Construction of locks and dams along the Red River will cause new, higher minimum stages for the river for each of the pools. Water levels will rise and outflow from the alluvial aquifer to the river after construction of the locks and dams will be at higher elevations because of the new river stages. Mathematical models of the stream-aquifer system simulate the effects of the lock and dam system for plan B-3, modified. Water-level changes in the aquifer in response to the changes imposed by the system are greatest near the river and are progressively smaller away from the river. The saturated zone in the fine-grained material overlying the aquifer provides the principal potential impact on structures and vegetation in urban areas. As water levels in the aquifer rise, the saturated zone above the aquifer will decrease the thickness. The soil zone in low areas in some communities will be waterlogged. (USGS)

  11. Preconstruction and postconstruction ground-water levels, Lock and Dam 2, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 1 at mile 44 (kilometer 71) above the mouth of the Red River call for a pool elevation of 40 feet (12.2 meters) and will cause an average increase in river stage of 9 feet (2.7 meters). As a result, ground-water levels will be raised 1 foot (0.3 meter) or more within 4 miles (6.4 kilometers) of the river. The potentiometric surface may be near land surface in low-lying areas, and above land surface along the course of drainage features near the dam. The magnitude of ground-water-level fluctuations near the river will be reduced. (Woodard-USGS)

  12. Red shiner invasion and hybridization with blacktail shiner in the upper Coosa River, USA

    USGS Publications Warehouse

    Walters, D.M.; Blum, M.J.; Rashleigh, B.; Freeman, B.J.; Porter, B.A.; Burkhead, N.M.

    2008-01-01

    Human disturbance increases the invasibility of lotic ecosystems and the likelihood of hybridization between invasive and native species. We investigated whether disturbance contributed to the invasion of red shiner (Cyprinella lutrensis) and their hybridization with native blacktail shiner (C. venusta stigmatura) in the Upper Coosa River System (UCRS). Historical records indicated that red shiners and hybrids rapidly dispersed in the UCRS via large, mainstem rivers since the mid to late 1990s. We measured the occurrence and abundance of parental species and hybrids near tributary-mainstem confluences and characterized populations at these incipient contact zones by examining variation across morphological traits and molecular markers. Red shiners represented only 1.2% of total catch in tributaries yet introgression was widespread with hybrids accounting for 34% of total catch. Occurrence of red shiners and hybrids was highly correlated with occurrence of blacktail shiners, indicating that streams with native populations are preferentially colonized early in the invasion and that hybridization is a key process in the establishment of red shiners and their genome in new habitats. Tributary invasion was driven by post-F1 hybrids with proportionately greater genomic contributions from blacktail shiner. Occurrence of red shiners and hybrids and the relative abundance of hybrids significantly increased with measures of human disturbance including turbidity, catchment agricultural land use, and low dissolved oxygen concentration. Red shiners are a significant threat to Southeast Cyprinella diversity, given that 41% of these species hybridize with red shiner, that five southeastern drainages are invaded, and that these drainages are increasingly disturbed by urbanization. ?? 2007 Springer Science+Business Media B.V.

  13. Red River of the North, Reconnaissance Report: Bois de Sioux-Mustinka Rivers Subbasin.

    DTIC Science & Technology

    1980-12-01

    price levels or by using October, 1979 unit construction costs. Capital cost estimates for levee measures include the cost of pumping facilities. It...the Bois de Sious River, the Mustinka River, and the 1ubbit River. Lake Traverse and the associated smaller Mud Lake were constructed by the Corps of...the perimeters of the subbasin that form an excellent habitat for wildlife. 3 Breckeniridge Rod 0$ I-T River -N- V1’ ~~i4 ’ ,...4(- a El ow

  14. Spatial/temporal patterns of Quaternary faulting in the southern limb of the Yellowstone-Snake River Plain seismic parabola, northeastern Basin and Range margin

    SciTech Connect

    McCalpin, J.P. )

    1993-04-01

    During the period 1986--1991, 11 backhoe trenches were excavated across six Quaternary faults on the northeastern margin of the Basin and Range province. These faults comprise the southern limb of a parabola of Quaternary faults and historic moderate-magnitude earthquakes which is roughly symmetrical about the Snake River Plain, and heads at the Yellowstone hot spot. Fifteen Holocene paleoseismic events have been bracketed by radiocarbon or thermoluminescence ages. On the six central faults, the latest rupture event occurred in a relatively short time interval between 3 ka and 6 ka. The period between 6 ka and the end of the latest glaciation (ca. 15 ka) was a period of relative tectonic quiescence on the central faults, but not on the two end faults with higher slip rates (Wasatch and Teton faults). Southward-younging of events in the 3--6 ka period may indicate that temporally-clustered faulting was initiated at the Yellowstone hot spot. Faults at the same latitude, such as the Star Valley-Grey's River pair of faults, or the East Cache-Bear Lake-Rock Creek system of faults, show nearly identical timing of latest rupture events within the pairs or systems. Faults at common latitudes probably sole into the same master decollement, and thus are linked mechanically like dominoes. The timing of latest ruptures indicates that faulting on the westernmost fault preceded faulting on successively more eastern faults by a few hundred years. This timing suggests that slip on the westernmost faults mechanically unloaded the system, causing tectonic instabilities farther east.

  15. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Carter, Andrew; Campbell, Ian H.; Pringle, Malcolm S.; van Lap, Nguyen; Allen, Charlotte M.; Hodges, Kip V.; Tan, Mai Thanh

    2006-10-01

    Sand samples from the mouths of the Red and Mekong Rivers were analyzed to determine the provenance and exhumation history of their source regions. U-Pb dating of detrital zircon grains shows that the main sources comprise crust formed within the Yangtze Craton and during the Triassic Indosinian Orogeny. Indosinian grains in the Mekong are younger (210-240 Ma) than those in the Red River (230-290 Ma), suggesting preferential erosion of the Qiangtang Block of Tibet into the Mekong. The Red River has a higher proportion of 700-800 Ma grains originally derived from the Yangtze Craton. 40Ar/39Ar dating of muscovite grains demonstrates that rocks cooled during the Indosinian Orogeny are dominant in both rivers, although the Mekong also shows a grain population cooling at 150-200 Ma that is not seen in the Red River and which is probably of original Qiangtang Block origin. Conversely, the Red River contains a significant mica population (350-500 Ma) eroded from the Yangtze Craton. High-grade metamorphic rocks exposed in the Cenozoic shear zones of southeast Tibet-Yunnan are minority sources to the rivers. However, apatite and zircon fission track ages show evidence for the dominant sources, especially in the Red River, only being exhumed through the shallowest 5-3 km of the crust since ˜25 Ma. The thermochronology data are consistent with erosion of recycled sediment from the inverted Simao and Chuxiong Basins, from gorges that incise the eastern flank of the plateau. Average Neogene exhumation rates are 104-191 m/Myr in the Red River basin, which is within error of the 178 ± 35 m/Myr estimated from Pleistocene sediment volumes. Sparse fission track data from the Mekong River support the Ar-Ar and U-Pb ages in favoring tectonically driven rock uplift and gorge incision as the dominant control on erosion, with precipitation being an important secondary influence.

  16. Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States

    NASA Astrophysics Data System (ADS)

    Wells, Michael L.

    2001-08-01

    The strain, exhumation history, and field orientation of a well-exposed shear zone and detachment fault in the Raft River Mountains of northwestern Utah, a Cordilleran metamorphic core complex, have been studied to determine the kinematics of ductile shearing and initial orientations of the shear zone and detachment fault. Mapping and strain and kinematic analysis indicate that the top-to-the-east Raft River shear zone initially developed parallel to an unconformity separating Archean rocks from overlying Proterozoic quartzite and schist for at least 24 km in the shear direction. Experimental rock deformation data from lithologies similar to the Archean and Proterozoic rocks suggest the unconformity represented a significant rheological boundary at the deformation temperatures; the base of the shear zone was localized along the boundary between relatively weak quartzite above and stronger monzogranite below. An extensive thermochronological database is used to reconstruct the position of the basement unconformity in temperature-lateral distance coordinates. The initial average dip of the shear zone and basement unconformity is estimated between 7° and 30°, assuming subhorizontal isotherms and geothermal gradients of 20°-40°C/km. The east dip of the unconformity at the onset of Miocene extension is interpreted to have resulted from late Eocene unroofing and flexure beneath a top-to-the-WNW extensional shear zone in the western Raft River, Grouse Creek, and Albion Mountains. The observations from the Raft River shear zone suggest that the orientation of some midcrustal shear zones may not reflect the predicted orientation for ductile faults according to ductile failure criteria but, rather, the orientation of rheological boundaries along which deformation is localized. Furthermore, detachment faults that are superimposed on mylonite during progressive displacement and footwall unroofing may use an inherited mechanical anisotropy from the mylonite, and their

  17. Bathymetry of the Hong and Luoc River Junction, Red River Delta, Vietnam, 2010

    USGS Publications Warehouse

    Kinzel, Paul J.; Nelson, Jonathan M.; Toan, Duong Duc; Thanh, Mung Dinh; Shimizu, Yasuyuki

    2012-01-01

    The U.S. Geological Survey, in collaboration with the Water Resources University in Hanoi, Vietnam, conducted a bathymetric survey of the junction of the Hong and Luoc Rivers. The survey was done to characterize the channel morphology of this delta distributary network and provide input for hydrodynamic and sediment transport models. The survey was carried out in December 2010 using a boat-mounted multibeam echo sounder integrated with a global positioning system. A bathymetric map of the Hong and Luoc River junction was produced which was referenced to the datum of the Trieu Duong tide gage on the Luoc River.

  18. Development of the 1997 Red River Flood: New Insight from Water Isotope Data

    NASA Astrophysics Data System (ADS)

    Birks, S. J.; Edwards, T. W.

    2004-05-01

    During the spring of 1997 near record winter snowfall on the Red River basin combined with frozen soils and a rapid spring melt resulted in extensive flooding in North Dakota and Manitoba. Floodwaters were sampled from the Red River at four locations around Winnipeg and analysed for major and minor ions, and organic contaminants. Here we present new oxygen and hydrogen data for floodwaters sampled in the vicinity of Winnipeg prior, during and after the main peak of the 1997 flood and review the geochemical data in light of the information the isotopic composition of the water can provide about the source and history of the water. The depleted delta values, and relatively high d-excess measured in Red River samples from the ascending arm of the 1997 seasonal hydrograph support the interpretation from the very dilute geochemistry that the waters at the beginning of the flood originated as winter precipitation. As the main peak of the flood reached Winnipeg the isotopic composition of floodwaters remained within the range of winter precipitation while concentrations of some organochlorine and pesticides reached maxima. After the main peak of the hydrograph the specific conductivity of the floodwaters increased, with minor increases in dissolved major ions typical of groundwater, decreases in nitrate and nitrite, and increased potassium concentrations. During the falling limb of the snowmelt hydrograph the geochemical and isotopic composition of the floodwaters both indicate a greater proportion of groundwater. Combining geochemical indicators of surface water history with isotopic indicators of water source and history allows for qualitative interpretation of the evolution of floodwaters in the Red River. In this area of extremely flat topography and low permeability sediments the isotopic composition of floodwaters generated after spring melt are consistent with meltwater inputs dominating through the rising limb and peak of the flood hydrograph.

  19. Commanders Responsibilities in the Operations Process During the 1864 Red River Expedition

    DTIC Science & Technology

    2015-05-21

    ABSTRACT A commander has the responsibility to understand, visualize, describe, direct, lead, and assess his forces during the operations process...complete mission failure. In 1864, Union Major General Nathaniel P. Banks led his Army of the Gulf and all attachments to a political and military...defeat in the Red River Valley. Ordered by President Abraham Lincoln to secure cotton and votes in Louisiana, Banks led his men on a two- month, ill

  20. Commanders’ Responsibilities in the Operations Process During the 1864 Red River Expedition

    DTIC Science & Technology

    2015-05-21

    ABSTRACT A commander has the responsibility to understand, visualize, describe, direct, lead, and assess his forces during the operations process...complete mission failure. In 1864, Union Major General Nathaniel P. Banks led his Army of the Gulf and all attachments to a political and military...defeat in the Red River Valley. Ordered by President Abraham Lincoln to secure cotton and votes in Louisiana, Banks led his men on a two- month, ill

  1. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    SciTech Connect

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  2. Assessment of Climate Change Impact on Flood Risk in the Red River Basin

    NASA Astrophysics Data System (ADS)

    Rasmussen, P. F.

    2015-12-01

    In recent years, there have been a number of large spring floods in the Red River basin in the states of North Dakota and Minnesota, and in the Province of Manitoba. These recent floods have led to speculation that increased greenhouse gas concentrations may be changing precipitation patterns and impacting the frequency of floods. In this study, we investigate whether this is a reasonable assumption based on global climate model output. A regression model is developed to predict spring peak discharge on the Red River at a streamflow gage located at the border of the US and Canada. The predictor variables include antecedent fall precipitation used as a proxy for soil moisture at freeze-up, winter snow accumulation, and spring precipitation during the period of melt. Data from the North American Regional Reanalysis (NARR) have been used to calibrate the model. Bias-corrected projections from the CMIP5 GCM model ensemble are then used to predict floods in future years. The predicted floods are modeled using non-stationary frequency analysis. The use of multiple GCMs and multiple Representative Concentration Pathways (RCPs) allow for an estimate of uncertainty to be associated with the results. It is concluded that climate change will likely have an impact on floods in the Red River basin, but the uncertainty surrounding this assessment is rather large.

  3. Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    NASA Technical Reports Server (NTRS)

    John, B. E.; Howard, K. A.

    1985-01-01

    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.

  4. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam

    PubMed Central

    2016-01-01

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium–helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO2 (PCO2) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L. PMID:27958705

  5. Surface rupture on the Denali Fault interpreted from tree damage during the 1912 Delta river Mw 7.2-7.4 earthquake: Implications for the 2002 Denali Fault earthquake slip distribution

    USGS Publications Warehouse

    Carver, G.; Plafker, G.; Metz, M.; Cluff, L.; Slemmons, B.; Johnson, E.; Roddick, J.; Sorensen, S.

    2004-01-01

    During the 3 November 2002 Denali fault earthquake, surface rupture propagated through a small, old-growth forest in the Delta River valley and damaged many trees growing on the fault. Damage was principally the result of fault offset of tree roots and tilting of trees. Some trees were split by surface faults that intersected the base of their trunks or large taproots. A few trees appear to have been damaged by strong shaking. Many of the older trees damaged in 2002 were deformed and scarred. Some of these scarred trees exhibit past damage indicative of surface faulting and have abrupt changes in their annual ring patterns that coincide with the past damage. Annual ring counts from several of these older scarred trees indicate the damage was caused by surface rupture on the Denali fault in 1912. The only earthquake of sufficient magnitude that fits the requirements for timing and general location as recorded by the damaged trees is a widely felt Ms 7.2-7.4 earthquake on 6 July 1912 informally referred to as the 1912 Delta River earthquake. Seismologic data and intensity distribution for the 1912 Delta River earthquake indicate that its epicenter was within 60-90 km of the Delta River and that rupture probably propagated toward the west. Inferred fault length, displacement, and rupture direction suggest the 1912 rupture was probably largely coincident with the western, lower slip section of the 2002 rupture.

  6. Establishment of a viable population of red-cockaded woodpeckers at the Savannah River Site

    SciTech Connect

    Allen, D.H.

    1989-01-01

    In 1985 the Southeastern Forest Experiment Station in cooperation with the Department of Energy (DOE), the Savannah River Forest Station (SRFS) and the Savannah River Ecology Laboratory (SREL) initiated a research/management program to restore a viable population of red-cockaded woodpeckers (RCW) to the Savannah River Site (SRS). The program has progresses in two phases. The first phase (1985-1987) focused on stabilizing the declining RCW population at SRS. The second phase (1988-present) has focused on facilitating population expansion. In 1989 we have focused our efforts on development of techniques for excavating new RCW cavities, identification of old-growth stands with the potential of providing new nesting habitat to support population expansion, continued flying squirrel control, continued translocations of RCW's as needed, and monitoring clan composition and reproduction.

  7. Fault control of channel sandstones in Dakota Formation, southwest Powder River basin, Wyoming

    SciTech Connect

    Moore, W.R.

    1983-08-01

    The Dakota Formation is an important oil reservoir in the southwestern Powder River basin and adjoining Casper arch. Two fields, Burke Ranch and South Cole Creek, are used as examples to show the depositional environments of the Dakota and to indicate the influence of tectonic control on the distribution of the environments. Burke Ranch field is a stratigraphic trap which produces oil from the upper bench of the Dakota. The environment of deposition of the reservoir, determined by subsurface analysis, is a channel sandstone. South Cole Creek field is a structural-stratigraphic trap which produces from the lower bench of the Dakota. Two distinct facies, a channel and channel margin sandstone, exist at South Cole Creek. At both Burke Ranch and South Cole Creek it can be shown that the Dakota channels were deposited on the downthrown side of faults, which were present during Dakota time and which now are reflected on the surface by drainage patterns. An understanding of the environments of deposition of the Dakota and control of the environments by paleotectonics is necessary for exploration for these prolific reservoirs.

  8. 33 CFR 207.380 - Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sufficient force of log drivers to keep their logs in motion throughout the section of river above mentioned... quantity of logs running at any time. (f) This section shall remain in force until modified or rescinded....

  9. 33 CFR 207.380 - Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sufficient force of log drivers to keep their logs in motion throughout the section of river above mentioned... quantity of logs running at any time. (f) This section shall remain in force until modified or rescinded....

  10. 33 CFR 207.380 - Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sufficient force of log drivers to keep their logs in motion throughout the section of river above mentioned... quantity of logs running at any time. (f) This section shall remain in force until modified or rescinded....

  11. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA

    SciTech Connect

    Jager, Henriette I.; Baskaran, Latha M.; Schweizer, Peter E.; Turhollow, Anthony F.; Brandt, Craig C.; Srinivasan, Raghavan

    2014-05-15

    We study that the mid-section of the Arkansas-White-Red (AWR) river basin near the 100th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implications remain a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.

  12. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA

    DOE PAGES

    Jager, Henriette I.; Baskaran, Latha M.; Schweizer, Peter E.; ...

    2014-05-15

    We study that the mid-section of the Arkansas-White-Red (AWR) river basin near the 100th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implications remainmore » a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.« less

  13. Assessment of selected water-quality data collected in the lower Red River (main stem) basin, Texas, 1997-98

    USGS Publications Warehouse

    Baldys, Stanley; Hamilton, Danna K.

    2003-01-01

    The Texas part of the Red River Basin has been divided into five reaches or subbasins (fig. 1) to facilitate improved planning, monitoring, geographical analysis, and dissemination of information. The U.S. Geological Survey (USGS), in cooperation with the Red River Authority of Texas, is studying the five subbasins, each for a period of about 1 year. Baldys and Phillips (1998) discuss various components and the associated scope of study of each of the five reaches. Data from the first reach studied—reach 2, the Wichita River Basin—were presented in a fact sheet by Baldys and Phillips (2000). This fact sheet presents an assessment of data collected at 11 sites during 1997–98 for reach 1—the lower Red River (main stem) Basin from the confluence of Cache Creek downstream to the Texas-Arkansas State Line (fig. 1).

  14. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Long, Hoang Van; Hinton, Richard; Ellam, Robert M.; Hannigan, Robyn; Tan, Mai Thanh; Blusztajn, Jerzy; Duc, Nguyen Anh

    2008-04-01

    Rivers in east Asia have been recognized as having unusual geometries, suggestive of drainage reorganization linked to Tibetan Plateau surface uplift. In this study we applied a series of major and trace element proxies, together with bulk Nd and single K-feldspar grain Pb isotope ion probe isotope analyses, to understand the sediment budget of the modern Red River. We also investigate how this may have evolved during the Cenozoic. We show that while most of the modern sediment is generated by physical erosion in the upper reaches in Yunnan there is significant additional flux from the Song Lo, draining Cathaysia and the SW Yangtze Block. Nd isotope data suggest that 40% of the modern delta sediment comes from the Song Lo. Carbonates in the Song Lo basin make this a major control on the Red River Sr budget. Erosion is not a simple function of monsoon precipitation. Active rock uplift is also required to drive strong erosion. Single grain Pb data show a connection in the Eocene between the middle Yangtze and the Red River, and probably with rivers draining the Songpan Garze terrane. However, the isotope data do not support a former connection with the upper Yangtze, Mekong, or Salween rivers. Drainage capture appears to have occurred throughout the Cenozoic, consistent with surface uplift propagating gradually to the southeast. The middle Yangtze was lost from the Red River prior to 24 Ma, while the connection to the Songpan Garze was cut prior to 12 Ma. The Song Lo joined the Red River after 9 Ma. Bulk sample Pb analyses have limited provenance use compared to single grain data, and detailed provenance is only possible with a matrix of different proxies.

  15. Lanzavecchia mangrovi sp. n. (Nematoda, Dorylaimida) from mangroves of Red River Estuary, Vietnam.

    PubMed

    Gagarin, Vladimir G

    2014-02-12

    A new nematode species found in the Red River Estuary of Vietnam is described. Lanzavecchia mangrovi sp. n. is morphologically close to L. coomansi Nicholas, Stewart, 1984, but differs in its longer body (L = 2.71-3.76 µm versus L = 2.2-2.9 µm), shorter spicules (63-65 mm versus 72-88), longer prerectum (500-675 mm versus 262-310 µm) and shorter distal portion of tail in relation to the proximal portion (0.6-0.8 versus 0.9-2.3).

  16. Red River of the North Basin, Minnesota, North Dakota, and South Dakota

    USGS Publications Warehouse

    Stoner, Jeffrey D.; Lorenz, David L.; Wiche, Gregg J.; Goldstein, Robert M.

    1993-01-01

    This report describes the physical, chemical, and aquatic-biological characteristics that could affect regional water quality in the Red River of the North study unit. These characteristics define the overall environmental setting of the study unit. This report provides base line and historical information for future reports that will address specific water-quality issues and processes controlling and affecting water quality in the study unit, and for reports for the national-synthesis component of the NAWQA program that will integrate the results of the study-unit investigations.

  17. Evidence for synsedimentary coseismic hydraulic fracturing in the Middle Devonian Cedar Valley Group, Plum River Fault Zone of Iowa

    SciTech Connect

    Ludvigson, G.A.; Gonzalez, L.A.; Faulds, J.E. )

    1993-03-01

    Correspondence between the Plum River Fault Zone and stratigraphic asymmetry the Middle Devonian Wapsipinicon and Cedar Valley groups in eastern Iowa have long been considered to record probable paleotectonism. Mesoscopic evidence for Devonian paleotectonism is exposed in strata of the Rapid Mbr of the Little Cedar Fm (Givetian) at the Silver Creek Graben, a 150 m-wide fault block within the Plum River Fault zone in southern Jackson county, Iowa. Little Cedar limestones are cut by multiple generations of brittle microstructures including compound sediment/spar-filled veins, tectonic stylolites that cut bedding at high angles, and late calcite veins coupled with stylolites. Internal sediments filling compound veins are preserved as unfossiliferous early gray and late olive-colored inclusion-rich microspars, both with mottled luminescence. Inclusions in the microspars consist of detrital illite and diagenetic microdolomite. Spars enclosing the internal sediments have a constructional oscillatory luminescent-nonluminescent zonation. Internal sediments in compound veins at Silver Creek Graben apparently were drawn downward through 15--30 m of overlying Cedar Valley carbonates to fill dilational fractures opened by coseismic hydraulic fracturing during the late Givetian erosional episode that followed deposition of the Coralville Fm. Preliminary sampling of cements and gray microspars from compound veins have [delta][sup 18]O values ranging from [minus]6 to [minus]5 [per thousand] and [delta][sup 13]C values ranging from [minus]6.5 to [minus]3 [per thousand]. These components are interpreted to record diagenesis in a meteoric phreatic environment.

  18. Origin and geometry of Red River Dolomite Reservoirs, Western Williston Basin

    SciTech Connect

    Longman, M.W.; Fertal, T.G.; Glennie, J.S.

    1983-05-01

    Remarkably uniform distribution of limestone, laminated dolomite, and anhydrite as determined from compensated neutron-density logs suggests that the entire Ordovician Red River Formation of the central Williston Basin was deposited in subtidal ''brining-upward'' sequences. Study of cores and thin sections verifies this locally dolomitized fossiliferous wackestones and packstones, laminated to evenly bedded unfossiliferous mudstones (dolomitized in many wells), and bedded anhydrite. No evidence of subaerial exposure was observed in these rock units. Dolomitization in the Red River ''C'' zone is highly localized. An empirical study of dolomite distribution using data from well logs reveals the presence of dozens of pods of dolomite immediately beneath the ''C'' anhydrite. The pods are up to 200 ft (60 m) thick and 1 mi (1.6 km) in diameter and consist of concentered lenses of (1) tight (locally anhydritic) cryptocrystalline dolomite up to 40 ft (12.2 m) thick and 3,300 ft (1,000 m) in diameter, (2) fine to medium-grained porous dolomite that forms the reservoirs, and (3), still farther from the cryptocrystalline dolomite, relatively tight partly dolomitized limestones. could have been found through application of this model and others could be more efficiently developed.

  19. Structural evolution of the Day Nui Con Voi metamorphic complex: Implications on the development of the Red River Shear Zone, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Wan; Lee, Tung-Yi; Lo, Ching-Hua; Chung, Sun-Lin; Lan, Ching-Ying; Anh, Tran Tuan

    2008-12-01

    The Day Nui Con Voi (DNCV) metamorphic complex in North Vietnam is the southernmost high-grade metamorphic zone along the NW-SE trending Red River Shear Zone (RRSZ) in Indochina. The RRSZ was considered as a classical large-scale continental strike-slip fault that had played a significant role in the continental extrusion of Southeast Asia since the collision of India and Eurasia. Earlier ideas determined the RRSZ as a steep shear zone that penetrated the entire lithosphere. Both metamorphism and structures within rocks along the DNCV metamorphic complex have been previously thought to be formed syn-tectonically by left-lateral shearing of the RRSZ during the Oligocene-Miocene continental escape tectonics. However, our meso- and microstructural re-examination of this region shows that these metamorphic rocks were formed during earlier tectonic episodes unrelated to strike-slip shearing. High angle to near orthogonal overprinting fabrics indicated that this region recorded three episodes of ductile deformation followed by brittle faulting events with different intensity spanning from the Triassic to the Tertiary. D 1 is preserved as NW-SE striking upright folds under garnet grade regional metamorphism during the Triassic Indosinian orogeny as South China block amalgamated with the Indochina block. The large-scale horizontal D 2 folds with a dominant top to N-NW bottom to S-SW sense of shear, and sub-horizontal fold axial planes suggest that the DNCV metamorphic complex remained at midcrustal depths since the Indosinian orogeny. The youngest ductile deformation event, D 3, refolded D 2 recumbent folds into a dome, and uplifted the DNCV as lower-temperature fabrics, S 3, indicated. Steep mylonite zones with left-lateral kinematic indicators and brittle faulting were developed on both limbs of the dome along the steep Song Hong and Song Chay faults during left-lateral movement of the RRSZ. Our new spatial, temporal and kinematic correlations of metamorphic fabrics

  20. Lidar and Luminescence Dating Analysis of Latest Pleistocene-Holocene Slip Rates on the Awatere fault at Saxton River, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Zinke, R. W.; Dolan, J. F.; Van Dissen, R. J.; McGuire, C. P.; Rhodes, E. J.; Hatem, A. E.; Grenader, J.; Langridge, R.

    2015-12-01

    We use high-resolution lidar imagery and luminescence dating to constrain incremental Holocene-late Pleistocene slip rates at the well-known Saxton River site along the Awatere fault, which is a primary fault in the Marlborough Fault System, South Island, New Zealand. Previous studies examining the ages and displacements of offset fluvial terraces and bedrock features at the Saxton River site suggest that slip rates along the Awatere fault have been highly variable since ~16 ka, exhibiting rates as low as ~3 mm/yr and as fast ~13 mm/yr, with an average of ~6 mm/yr (e.g., Mason et al., 2006). Mapping on high-resolution lidar topographic data and additional field surveys yield revised measurements of the five fluvial terrace risers and bedrock ridge that have been offset by the Awatere fault at the Saxton River site. Improved dating of those geomorphic features provided by post-IR50-IRSL225 luminescence ages allows us to more accurately constrain the incremental slip rates recorded at this site. Preliminary results suggest that the slip rate during latest Pleistocene-Holocene time has indeed varied considerably over millennial timescales. This study is part of a broader effort aimed at determining incremental slip rates and paleo-earthquake ages and displacements from all four main Marlborough faults. Collectively, these data will allow us to determine how the Marlborough system faults have worked together during the Holocene-late Pleistocene to accommodate plate-boundary deformation in time and space.

  1. Constructing an Alpine Fault Paleoseismicity Record from Slumped Lacustrine Deposits in the Cascade River Valley, South Westland, New Zealand

    NASA Astrophysics Data System (ADS)

    Coffey, G.; Moy, C. M.; Toy, V. G.; Ohneiser, C.; Howarth, J. D.

    2014-12-01

    The Alpine Fault is a major structure in New Zealand capable of producing earthquakes of magnitude 7 or greater, which delineates the boundary between the Australian and Pacific plates. Paleoseismic records of these earthquakes indicate recurrence intervals of 300 - 400 years over the last 1,300 years. However, there are no pre-Holocene records. Documenting the late Pleistocene record of magnitude, timing, and frequency of earthquakes would significantly reduce uncertainty in hazard analyses. The tectonically complex Cascade River Valley follows the Southern Alpine Fault, where the fault dominantly accommodates strike-slip motion. Two ~7m outcrops of proglacial lacustrine silt are exposed along the river in which, deformed rhythmites bounded by planar laminated rhythmites have been identified. These exhibit a variety of fold geometries in outcrop and x-ray computed tomography (CT) scans, all of which show some degree of asymmetry. Initial radiocarbon ages of 14,400 and 13,300 14C yr BP have been obtained from terrestrial plant material isolated from samples near the base of one outcrop. Given the age range and laminae density, these dates suggest that the rhythmites are varves, but additional radiocarbon dates and CT-scans will be used to confirm this. The deformed horizons are interpreted to be seismites formed by slumping. Earthquake shaking triggers an increase in pore fluid pressure, which destabilises the sublacustrine slope causing failure and the release of silt into the sedimentary system. As silt is transported by downslope shear it is deformed in distinct layers. Displacement of volumes of silt also causes the formation of seiche waves that apply shear stress to lake floor sediments causing further deformation. Deviations in magnetic susceptibility and the declination of magnetic remanence observed underneath and within deformed horizons are interpreted to be a response of earthquake shaking. Data from these different proxies will be presented and

  2. Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam

    NASA Astrophysics Data System (ADS)

    Postma, Dieke; Jessen, Søren; Hue, Nguyen Thi Minh; Duc, Mai Thanh; Koch, Christian Bender; Viet, Pham Hung; Nhan, Pham Quy; Larsen, Flemming

    2010-06-01

    Sediments from the Red River and from an adjacent floodplain aquifer were investigated with respect to the speciation of Fe and As in the solid phase, to trace the diagenetic changes in the river sediment upon burial into young aquifers, and the related mechanisms of arsenic release to the groundwater. Goethite with subordinate amounts of hematite were, using Mössbauer spectroscopy, identified as the iron oxide minerals present in both types of sediment. The release kinetics of Fe, As, Mn and PO 4 from the sediment were investigated in leaching experiments with HCl and 10 mM ascorbic acid, both at pH 3. From the river sediments, most of the Fe and As was mobilized by reductive dissolution with ascorbic acid while HCl released very little Fe and As. This suggests As to be associated with an Fe-oxide phase. For oxidized aquifer sediment most Fe was mobilized by ascorbic acid but here not much As was released. However, the reduced aquifer sediments contained a large pool of Fe(II) and As that is readily leached by HCl, probably derived from an unidentified authigenic Fe(II)-containing mineral which incorporates As as well. Extraction with ascorbic acid indicates that the river sediments contain both As(V) and As(III), while the reduced aquifer sediment almost exclusively releases As(III). The difference in the amount of Fe(II) leached from river and oxidized aquifer sediments by ascorbic acid and HCl, was attributed to reductive dissolution of Fe(III). The reactivity of this pool of Fe(III) was quantified by a rate law and compared to that of synthetic iron oxides. In the river mud, Fe(III) had a reactivity close to that of ferrihydrite, while the river sand and oxidized aquifer sediment exhibited a reactivity ranging from lepidocrocite or poorly crystalline goethite to hematite. Mineralogy by itself appears to be a poor predictor of the iron oxide reactivity in natural samples using the reactivity of synthetic Fe-oxides as a reference. Sediments were incubated, both

  3. Trace elements and organic contaminants in stream sediments from the Red River of the North Basin

    USGS Publications Warehouse

    Brigham, M.E.; Tornes, L.H.

    1996-01-01

    To assess the presence and distribution of a variety of hydro-phobic chemicals in streams in the Red River of the North Basin, bottom sediments were analyzed for trace elements, organochlorines, and polycyclic aromatic hydrocarbons (PAHs). Glaciolacustrine clays and carbonate minerals are common in fine sediments of the region, and can help explain the distribution of many elements. Aluminum (Al), an indicator of glaciolacustrine clay minerals, correlates strongly (r>0.75, p<0.05) with Cr, Co, Fe, La, Li, K, Sc, and Ti; and moderately (0.55River Basin, Eu, Nb, Ce, La, Nd, and Ni also have strong correlations with Al. Al correlates negatively with major elements associated with carbonate minerals (Ca, Mg, and inorganic carbon). No significant correlations with Al, Ca, or Mg were observed for As, Pb, Mn, Hg, Se, or Ag, which implies that these elements have different environmental sources or behaviors than glaciolacustrine clays or carbonate minerals. Reduction-oxidation processes may influence Mn distribution. Lead (Pb) and mercury (Hg) are known to be anthropogenically enriched in the environment--their distribution may indicate environmental enrichment in Red River of the North Basin streams. Organochlorines detected are limited to traces of DDT and its metabolites (mostlyp,p'-DDE). Fourteen PAHs, which are constituents of fossil fuels and of combustion byproducts, were detected in at least halfthe sediment samples; pyrene and fluoranthene were detected in about 90 percent of samples. The contaminants detected in this study were present at low levels, likely indicative of diffuse or remote sources; they occur widely in the environment. 

  4. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    SciTech Connect

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state of dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.

  5. The red-cockaded woodpecker on the Savannah River Site: Aspects of reproductive success.

    SciTech Connect

    Johnston, Peter A; Imm, Donald, W.; Jarvis, William L

    2004-12-31

    Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 5. Status and Trends of Populations. Pp 224-229. Abstract: The red-cockaded woodpecker (Picoides borealis) population on the Savannah River Site has been closely monitored and studied over the last 17 years. In 1985, the USDA Forest Service Southern Research Station was given responsibility to study and manage this population in an effort to prevent its extirpation. In December 1985, there were only 4 individuals on the site: 1 pair and 2 solitary males. The population had increased to a total of 175 individuals in 42 active clusters in 2002. Although this represents a very successful recovery effort, there has been substantial annual variation in nesting survival from banding to fledging. Data were analyzed to more completely understand the factors affecting reproduction. No significant effects of age of the breeding male and female, years paired, number of helpers, habitat quality, number of nestings, and time of nest initiation were found when comparing reproductive success in 117 nesting attempts from 1999 to 2002. However, the number of neighboring groups had a direct effect on mortality rates, possibly demonstrating the importance of cluster spacing.

  6. Modeling regional variation in riverine fish biodiversity in the Arkansas-White-Red River basin

    SciTech Connect

    Schweizer, Peter E; Jager, Yetta

    2011-01-01

    The patterns of biodiversity in freshwater systems are shaped by biogeography, environmental gradients, and human-induced factors. In this study, we developed empirical models to explain fish species richness in subbasins of the Arkansas White Red River basin as a function of discharge, elevation, climate, land cover, water quality, dams, and longitudinal position. We used information-theoretic criteria to compare generalized linear mixed models and identified well-supported models. Subbasin attributes that were retained as predictors included discharge, elevation, number of downstream dams, percent forest, percent shrubland, nitrate, total phosphorus, and sediment. The random component of our models, which assumed a negative binomial distribution, included spatial correlation within larger river basins and overdispersed residual variance. This study differs from previous biodiversity modeling efforts in several ways. First, obtaining likelihoods for negative binomial mixed models, and thereby avoiding reliance on quasi-likelihoods, has only recently become practical. We found the ranking of models based on these likelihood estimates to be more believable than that produced using quasi-likelihoods. Second, because we had access to a regional-scale watershed model for this river basin, we were able to include model-estimated water quality attributes as predictors. Thus, the resulting models have potential value as tools with which to evaluate the benefits of water quality improvements to fish.

  7. Old-growth definition for Red River bottom forests in the eastern United States. Forest Service general technical report

    SciTech Connect

    Shear, T.; Young, M.; Kellison, R.

    1997-05-01

    Our goal was to develop a description of old-growth red river bottom forests of the Southeastern United States. We compared the characteristics of forests described in the scientific literature and forests we examined to various published criteria for old-growth condition. Because red rivers are a relatively new landscape feature (most < 250 years old, resulting from human-induced soil erosion) and because dramatic changes to their floodplains continue to occur, we do not believe that any old-growth red river forests exist. All the stands along these rivers present at European settlement have been cut and/or otherwise severely altered. In the dynamic landscape after settlement, there have been no opportunities for new old-growth forests to develop. Stands older than 50 to 60 years are rare. Therefore, we propose a stand condition called older growth and list the characteristics. With time and stable site conditions, we believe that old-growth and red river forests can develop from older-growth forests.

  8. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China.

    PubMed

    Liu, Lusan; Zhou, Juan; Zheng, Binghui; Cai, Wenqian; Lin, Kuixuan; Tang, Jingliang

    2013-07-15

    Between 1972 and 2009, evidence of red tide outbreaks in the Yangtze River Estuary and adjacent waters was collected. A geographic information system (GIS) was used to analyze the temporal and spatial distribution of these red tides, and it was subsequently used to map the distribution of these events. The results show that the following findings. (1) There were three red tide-prone areas: outside the Yangtze River Estuary and the eastern coast of Sheshan, the Huaniaoshan-Shengshan-Gouqi waters, and the Zhoushan areas and eastern coast of Zhujiajian. In these areas, red tides occurred 174 total times, 25 of which were larger than 1000 km(2) in areal extent. After 2000, the frequency of red tide outbreaks increased significantly. (2) During the months of May and June, the red tide occurrence in these areas was 51% and 20%, respectively. (3) Outbreaks of the dominant red tide plankton species Prorocentrum dong-haiense, Skeletonema costatum, Prorocentrum dantatum, and Noctiluca scientillan occurred 38, 35, 15, and 10 times, respectively, during the study interval.

  9. Integrated and Sustainable Water Management of Red-Thai Binh Rivers System Under Change

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Anghileri, D.; Castelletti, A.; Mason, E.; Micotti, M.; Soncini-Sessa, R.; Weber, E.

    2014-12-01

    Vietnam is currently undergoing a rapid economic and demographic development, characterized by internal migrations from the rural areas to the main cities with increasing water demands to guarantee adequate energy and food productions. Hydropower is the primary renewable energy resource in the country, accounting for 33% of the total electric power production, while agriculture contributes for 18% of the national GDP and employs 70% of the population. To cope with this heterogeneous and fast-evolving context, water resources development and management have to be reconsidered by enlarging their scope across sectors and by adopting effective tools to analyze the potential of current and projected infrastructure along with their operating strategies. This work contributes a novel decision-analytic framework based on Multi-Objective Evolutionary Direct Policy Search (MOE-DPS) to support the design of integrated and sustainable water resources management strategies in the Red-Thai Binh River system. The Red River Basin is the second largest basin of Vietnam, with a total area of about 169,000 km2, and comprises three main tributaries and several reservoirs, namely SonLa and HoaBinh on the Da River, ThacBa and TuyenQuang on the Lo River. These reservoirs are regulated for maximizing hydropower production, mitigating flood primarily in Hanoi, and guaranteeing irrigation water supply to the agricultural districts in the delta. The dimensionality of the system and the number of objectives involved increase the complexity of the problem. We address these challenges by combining the MOE-DPS framework with Gaussian radial basis functions policy approximation and the Borg MOEA, which have been demonstrated to guarantee good solutions quality in such many objective policy design problems. Results show that the proposed framework successfully identified alternative management strategies for the system, which explore different tradeoffs among the multi-sector services involved

  10. Preconstruction and postconstruction ground-water levels, Lock and Dam 5 and 6, Red River Valley, Louisiana

    USGS Publications Warehouse

    Ludwig, A.H.; Terry, J.E.

    1979-01-01

    Proposed construction of a series of locks and dams in the Red River in Louisiana will cause a permanent increase in average river stage. The potentiometric surface of the shallow alluvial aquifer and the water table in the fine-grained material confining the aquifer will be affected. The purpose of this study, using digital-modeling techniques, was to predict the average postconstruction potentiometric surface (steady state) and the water table (nonsteady state) so that potential effects of the water-level changes could be evaluated. Plans for lock and dam 5 at mile 243 (kilometer 390) above the mouth of the Red River call for a pool elevation of 145 feet (44 meters) and will cause an average increase in river stage of 23 feet (7.0 meters). As a result, ground-water levels in the pool area will be raised to near land surface in much of the area between the river and Bayou Pierre and as much as 2 miles (3.2 kilometers) east of the river from the dam upstream to realined mile 220 (kilometer 350). Areas of Barksdale Air Force Base where levels are now near land surface would be enlarged and extend downstream along Flat River to near Curtis. The potentiometric surface may be above land surface near Howard, Anderson Island, and Dixie Gardens. (Woodard-USGS)

  11. Millennial Slip Rate of the Longitudinal Valley Fault From River Terraces: Implications for Convergence Across the Active Suture of Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Shyu, J. H.; Sieh, K.; Avouac, J.; Chen, W.; Chen, Y.

    2005-12-01

    Interpreting a geomorphic analysis of fluvial terraces in the hanging-wall block of a major active fault in Taiwan by means of a structural model, we have created a model for the creation of a lithospheric suture that may have broader application. The Longitudinal Valley fault is a key element in the active tectonics of Taiwan. It is the principal structure accommodating convergence across the eastern of the two active sutures of the Taiwan orogeny. To understand more precisely its role in the suturing process, we analyzed fluvial terraces along the Hsiukuluan River, which is the only river that cuts across the Coastal Range of eastern Taiwan, in the hanging-wall block of the Longitudinal Valley fault. This allowed us to determine both the subsurface geometry and the millennial slip rate of the fault. The uplift pattern of the Hsiukuluan River terraces is consistent with a fault-bend fold model. Our analysis yields a listric geometry for the Longitudinal Valley fault in its uppermost 2.5 km, with dips decreasing downdip from about 50° to about 30°. The maximum dip-slip component of the Holocene slip rate of the fault is about 23 mm/yr, which yields a maximum horizontal shortening rate of about 25.6 mm/yr in the direction of plate convergence. This rate is far less than the 40 mm/yr rate of shortening across the Longitudinal Valley derived from GPS measurements. The discrepancy may reflect an actual difference in millennial and decadal rates of convergence. An alternative explanation, however, is that the discrepancy is accommodated by a combination of subsidence of the Longitudinal Valley and slip on the Central Range fault, the other active fault of the suture. The shallow listric geometry of the Longitudinal Valley fault at the Hsiukuluan River valley differs markedly from the deep listric geometry illuminated by earthquake hypocenters near Chihshang, about 45 km to the south. We propose a model whereby this fundamental along-strike difference in geometry of

  12. Community strategies to improve flood risk communication in the Red River Basin, Manitoba, Canada.

    PubMed

    Stewart, Robert M; Rashid, Harun

    2011-07-01

    More than a decade after the 1997 Red River Flood, vulnerability to future flooding exists due to a lack of risk communication. This study identifies risk communication gaps and discusses the creation of strategies to enhance information-sharing, bottom-up activity and partnership development. The objectives were achieved using mixed methods, including interviews, a floodplain-wide survey, and a decision-makers' risk management workshop. The results highlight a number of external pressures exerted by regional floodplain policies and procedures that restrict risk communication and affect social vulnerability in the rural floodplain. The failures of a top-down approach to floodplain management have impacted on communities' abilities to address floodplain risks, have amplified local risks, and have decreased community cooperation in floodplain management initiatives since the 1997 'Flood of the Century'. Recommended policies promote the establishment of community standards to compensate for gaps in risk communication and the development of partnerships between floodplain communities.

  13. Integration of environmental and spectral data for sunflower stress determination. [Red River Valley, Minnesota

    NASA Technical Reports Server (NTRS)

    Lillesand, T.; Seeley, M.

    1983-01-01

    Stress in sunflowers was assessed in western and northwestern Minnesota. Weekly ground observations (acquired in 1980 and 1981) were analyzed in concert with large scale aerial photography and concurrent LANDSAT data. Using multidate supervised and unsupervised classification procedures, it was found that all crops grown in association with sunflowers in the study area are spectrally separable from one another. Under conditions of extreme drought, severely stressed plants were differentiable from those not severely stressed, but between-crop separation was not possible. Initial regression analyses to estimate sunflower seed yield showed a sensitivity to environmental stress during the flowering and seed development stages. One of the most important biological factors related to sunflower production in the Red River Valley area was found to be the extent and severity of insect infestations.

  14. 77 FR 47493 - DMH Trust fbo Martha M. Head-Acquisition of Control Exemption-Red River Valley & Western Railroad...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Surface Transportation Board DMH Trust fbo Martha M. Head--Acquisition of Control Exemption-- Red River Valley & Western Railroad and Rutland Line, Inc. DMH Trust fbo Martha M. Head (the Trust), a noncarrier... subsidiary of RRVW. According to the Trust, Douglas M. Head owned all of the controlling shares of...

  15. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hartig, Caitlin M.

    2016-09-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  16. Simulated effects of the proposed Garrison Diversion Unit on streamflow and dissolved solids in the Sheyenne River and the Red River of the North, North Dakota and Minnesota

    USGS Publications Warehouse

    Guenthner, R. Scott

    1993-01-01

    Future development of the Garrison Diversion Unit in North Dakota could deliver 100 cubic feet per second of water for the cities of Fargo, Grand Forks, and surrounding communities. Missouri River water from the Garrison Diversion Unit Sheyenne River water supply would be delivered to the upper reaches of the Sheyenne River, which would convey the water to the Red River of the North. Potential effects of releasing Missouri River water to the Sheyenne River on the quantity and quality of streamflow in the Sheyenne River and in the Red River of the North are evaluated for two proposed operating plans--year-round operation (12 months each year) and nonwinter operation (April through October each year). The Project Canals, Reservoirs, and River Systems (PROCRRS) and Canals, Rivers, and Reservoirs Salinity Accounting Procedures (CRRSAP) monthly accounting models are used to predict streamflow and dissolved-solids changes that could result from the proposed release of treated Missouri River water into the Sheyenne River and the Red River of the North. For year-round operation of the Garrison Diversion Unit Sheyenne River water supply for the period 1931-84, the maximum quantity of water that must be delivered to the upper reaches of the Sheyenne River so that 100 cubic feet per second of Missouri River water can be delivered to Fargo, N.Dak., and Grand Forks, N.Dak., was estimated to be about 151 cubic feet per second for August 1976. For nonwinter operation the maximum quantity of water was estimated to be about 210 cubic feet per second. Model simulations were used to assess the effects that operation of the Garrison Diversion Unit Sheyenne River water supply could have on streamflow and water quality of the Sheyenne River and the Red River of the North. Effects were assessed by comparing simulated streamflows that include Missouri River water to baseline conditions, which represent hydrologic conditions before addition of Missouri River water. Simulated mean monthly

  17. Using a novel Mg isotope tracer to investigate the dolomitization of the Red River Formation in the Williston Basin

    NASA Astrophysics Data System (ADS)

    Kimmig, S. R.; Holmden, C. E.; Qing, H.

    2015-12-01

    The Williston Basin is a sub-circular intracratonic basin spanning central North America with its center in NW North Dakota. The Late Ordovician Red River Formation is an economically viable unit in the Williston Basin containing large hydrocarbon reserves in Saskatchewan, North Dakota, Manitoba, and Montana. Red River dolomitization contributed to the reservoir-quality porosity and permeability observed today with three types of dolomite (burrow, matrix, and saddle) possibly representing three events. Dolomitization is widely believed to have resulted from downward percolating brines, due to the stratigraphically close association between dolomite deposits and overlying basin-scale evaporites. However, in contrast, Sr isotope evidence suggests an upward fluid migration in the basin. Spatial variation of Mg isotopes (δ26Mg) may serve as a direct tracer of dolomitizing fluid flow. Dolomite sequesters light isotopes of Mg from dolomitizing fluids, therefore, the fluid will evolve with time and distance to heavier δ26Mg values. Accordingly, the δ26Mg values of the Red River dolomite should increase in the direction of fluid flow. We test this hypothesis on Red River burrow dolomite from the Williston Basin; the first event most often attributed to downward infiltration of brines. Burrow δ26Mg values range between -1.89‰ and -1.31‰. Using contouring software, the data are shown to form a pattern of increasing δ26Mg values out from the center of the Williston Basin, indicating an up-dip migration of dolomitizing fluids through the burrow network, rather than down-dip as suggested by the brine reflux model. We conclude that dolomitization of the Red River carbonate is not tied to the spatial and temporal history of evaporite deposition in the Williston Basin, but rather to the thermal history of the basin, suggesting dolomitization likely occurred during a late Paleozoic heating event that drove Mg-rich connate waters ponded in the center of the basin upwards

  18. Revealing fate of CO2 leakage pathways in the Little Grand Wash Fault, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Han, K.; Han, W. S.; Watson, Z. T.; Guyant, E.; Park, E.

    2015-12-01

    To assure long-term security of geologic carbon sequestration site, evaluation of natural CO2 leakage should be preceded before actual construction of the CO2 facility by comparing natural and artificial reservoir systems. The Little Grand Wash fault is located at the northwestern margin of the Paradox Basin and roles on a bypass of deep subsurface CO2 and brine water onto the surface, e.g., cold water geyser, CO2 spring, and surface travertine deposits. CO2 degassed out from brine at the Little Grand Wash fault zone may react with formation water and minerals while migrating through the fault conduit. Leakage observed by soil CO2 flux on the fault trace shows this ongoing transition of CO2, from supersaturated condition in deep subsurface to shallow surface equilibria. The present study aims to investigate the reactions induced by changes in hydrological and mineralogical factors inside of the fault zone. The methodology to develop site-specific geochemical model of the Little Grand Wash Fault combines calculated mechanical movements of each fluid end-member, along with chemical reactions among fluid, free CO2 gas and rock formations. Reactive transport modeling was conducted to simulate these property changes inside of the fault zone, using chemistry dataset based on 86 effluent samples of CO2 geysers, springs and in situ formation water from Entrada, Carmel, and Navajo Sandstone. Meanwhile, one- and two-dimensional models were separately developed to delineate features mentioned above. The results from the 3000-year simulation showed an appearance of self-sealing processes near the surface of the fault conduit. By tracking physicochemical changes at the depth of 15 m on the 2-dimensional model, significant changes induced by fluid mixing were indicated. Calculated rates of precipitation for calcite, illite, and pyrite showed increase in 2.6 x 10-4, 2.25 x 10-5, and 3.0 x 10-6 in mineral volume fraction at the depth of 15m, respectively. Concurrently

  19. Low-flow hydrology of the Sulphur Fork Red River basin, Robertson County, north-central Tennessee

    USGS Publications Warehouse

    Robbins, Clarence H.

    1979-01-01

    The objectives of this study were to define (1) the average 3-day natural low-flow with a 20-year recurrence interval for five low-flow partial-record sites and one continuous record station, (2) losing and gaining reaches of the main stem of the Sulphur Fork Red River and major tributaries, and (3) the quality of water during low-flow. An additional objective was the collection of continuous streamflow and temperature data at selected sites for development of a thermal model for use as a guide in design and management of a small reservoir. The quantity of surface water during low-flow varies considerably throughout the basin. Streamflow during periods of drought is groundwater discharging through numerous springs and seeps. The average 3-day, 20-year low-flow of the six study sites range from 0.1 to 2.2 cubic feet per second. Seepage investigations in October 1976 show that as much as 4.4 cubic feet per second are lost from the Sulphur Fork Red River within a reach of 1.7 miles between river mile 30.8 and 29.1. Seepage investigations in July 1977 show that as much as 3.7 cubic feet per second are gained in the Sulphur Fork Red River within a reach of 0.8 miles between river mile 42.6 and 41.8. Measured discharges from the 12 major springs in the basin ranged from less than 1 to 1660 gallons per minute during low-flow. Water quality of streams varies in time and space. Specific conductance ranged from 200 to 1,800 micromhos per centimeter at 25O centigrade during the 1976 seepage investigation on the Sulphur Fork Red River. During the two-year study the specific conductance of water from the springs ranged from 230 to 675 micromhos per centimeter at 25O centigrade.

  20. Questa baseline and pre-mining ground-water quality investigation. 10. Geologic influences on ground and surface waters in the lower Red River watershed, New Mexico

    USGS Publications Warehouse

    Ludington, Steve; Plumlee, Geoff; Caine, Jonathan; Bove, Dana; Holloway, JoAnn; Livo, Eric

    2005-01-01

    Introduction: This report is one in a series that presents results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River, N. Mex., to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the premining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized-but unmined-Straight Creek drainage (a tributary of the Red River) is being used as an analog for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity in the Red River drainage prior to mining. This report provides an overall geologic framework for the Red River watershed between Red River and Questa, in northern New Mexico, and summarizes key geologic, mineralogic, structural and other characteristics of various mineralized areas (and their associated erosional scars and debris fans) that likely influence ground- and surface-water quality and hydrology. The premining nature of the Sulphur Gulch and Goat Hill Gulch scars on the Molycorp mine site can be inferred through geologic comparisons with other unmined scars in the Red River drainage.

  1. Stratigraphic evidence for millennial-scale temporal clustering of earthquakes on a continental-interior fault: Holocene Mississippi River floodplain deposits, New Madrid seismic zone, USA

    NASA Astrophysics Data System (ADS)

    Holbrook, John; Autin, Whitney J.; Rittenour, Tammy M.; Marshak, Stephen; Goble, Ronald J.

    2006-07-01

    The earthquake cycles that characterize continental-interior areas that are far from active plate boundaries have proven highly cryptic and difficult to resolve. We used a novel paleoseismic proxy to address this issue. Namely, we reconstructed Holocene Mississippi River channels from maps of floodplain strata in order to identify channel perturbations reflective of major displacement events on the high-hazard and mid-plate Reelfoot thrust fault, New Madrid seismic zone, U.S.A. Only three discrete slip events are currently documented for the Reelfoot fault (˜ AD 900, ˜ AD 1450, and AD 1812). This study extends this record and, thus, illustrates the utility of stratigraphic proxies as paleoseismic tools. We concurrently offer here some of the first quantified response times for tectonically induced channel pattern changes in large alluvial rivers. We identified at least two cycles of pervasive meandering that were interrupted by channel-straightening responses occurring upstream of the Reelfoot fault scarp. These straightening responses initiated at 2244 BC +/- 269 to 1620 BC +/- 220 and ˜ AD 900, respectively, and each records initiation of a period of Reelfoot fault slip after millennia of relative tectonic quiescence. The second (or New Madrid) straightening response was triggered by the previously known ˜ AD 900 fault slip event, and this initial low sinuosity has been protracted until the modern day by the latter ˜ AD 1450 and AD 1812 events. The first (or Bondurant) straightening response began a period of several hundred to ˜ 1400 years of low river sinuosity which evidences a similar period of multiple recurrent displacement events on the Reelfoot fault. These Bondurant events predate the existing paleoseismic record for the Reelfoot fault. These data offer initial evidence that slip events on the Reelfoot fault were temporally clustered on millennial scales and, thus, offers the first direct evidence for millennial-scale clustering of earthquakes on a

  2. Aquatic communities and contaminants in fish from streams of the Red River of the North basin, Minnesota and North Dakota

    USGS Publications Warehouse

    Goldstein, R.M.

    1995-01-01

    Available data on the ecology of aquatic organisms in the Red River of the North Basin, a study unit of the U.S. Geological Survey's National Water-Quality Assessment program, were collated from numerous sources. Lack of information for invertebrates and algae precluded a general summary of distribution and ecology throughout the basin. Data on fish species distributions in the major streams of the Red River of the North Basin were analyzed based on the drainage area of the stream and the number of ecoregions the stream flowed through. Species richness increased with both drainage area (log drainage area in square kilometers, R2=0.41, p=0.0055) and the number of ecoregions a river flowed through. However, theses two factors are autocorrelated because the larger the drainage, the more likely that the river will flow through more than one ecoregion. A cluster analysis identified five river groups based on similarity of species within the fish community. Analysis of trophic and taxonomic composition provided justification for the cluster groups. There were significant differences (p=0.05) in the trophic composition of the river cluster groups with respect to the number of predator species, omnivore species, benthic insectivore species, and general insectivore species. Although there were no significant differences in the number of species in the bass and sunfish family or the sucker family, the number of species in the minnow family and the darter subfamily were different (p=0.05) among the groups identified by cluster analysis. Data on contaminant concentrations in fish from the Red River of the North indicated that most trace elements and organochlorine compounds present in tissues were not at levels toxic to fish or humans. Minnesota and North Dakota have issued a fish consumption advisory based on levels of mercury and (or) PCBs found in some species.

  3. Sediment loads in the Red River of the North and selected tributaries near Fargo, North Dakota, 2010--2011

    USGS Publications Warehouse

    Galloway, Joel M.; Nustad, Rochelle A.

    2012-01-01

    Natural-resource agencies are concerned about possible geomorphic effects of a proposed diversion project to reduce the flood risk in the Fargo-Moorhead metropolitan area. The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers collected data in the spring of 2010 and 2011, and from June to November 2011, during rainfall-runoff events and base-flow conditions to provide information on sediment transport. The data were used to examine sediment concentrations, loads, and particle-size distributions at nine selected sites in the Red River and its tributaries near the Fargo-Moorhead metropolitan area. Suspended-sediment concentration varied among sites in 2010 and 2011. The least suspended-sediment concentrations were measured at the Red River (site 1) and the Buffalo River (site 9), and the greatest concentrations were measured at the two Sheyenne River sites (sites 3 and 4). Estimated daily suspended-sediment loads were highly variable in 2010 and 2011 in the Red River and its tributaries, with the greatest loads occurring in the spring and the smallest loads occurring in the winter. For the Red River, daily suspended-sediment loads ranged from 26 to 3,500 tons per day at site 1 and from 30 to 9,010 tons per day at site 2. For the Sheyenne River, daily loads ranged from less than 10 to 10,200 tons per day at site 3 and from less than 10 to 4,530 tons per day at site 4. The mean daily load was 191 tons per day in 2010 and 377 tons per day in 2011 for the Maple River, and 610 tons per day in 2011 for the Wild Rice River (annual loads were not computed for 2010). For the three sites that were only sampled in 2011 (sites 7, 8 and 9), the mean daily suspended-sediment loads ranged from 40 tons per day at the Lower Branch Rush River (site 8) to 118 tons per day at the Buffalo River (site 9). For sites that had estimated loads in 2010 and 2011 (sites 1–5), estimated annual (March–November) suspended-sediment loads were greater in 2011 compared to

  4. Establishment of a Viable Population of Red-Cockaded Woodpeckers at the Savannah River Site

    SciTech Connect

    Johnston, P.A.

    2002-01-14

    Report on program's objective to restore viable population of Red-cockaded woodpecker at SRS. Several management strategies were used to promote population expansion of Red-cockaded woodpecker and reduction of interspecific competition with Red-Cockaded woodpecker.

  5. Shallow electrical resistivity imaging of the Limón fault, Chagres River Watershed, Panama Canal

    NASA Astrophysics Data System (ADS)

    Mojica, Alexis; Pérez, Tatiana; Toral, Jaime; Miranda, Roberto; Franceschi, Pastora; Calderón, Carlos; Vergara, Fidedigna

    2017-03-01

    The aim of this study was the use of electrical resistivity imaging to investigate the geometry of the southwest portion of one of the most important geologic fault zones of the Panama Canal Watershed: the Limón fault. This fault is characterized by its juxtaposition of pre-Tertiary andesitic basalt (Playa Venado Formation) against late Oligocene Tertiary sediments (Caimito Formation). In this zone, four 2D electrical resistivity tomography profiles were conducted perpendicular to the fault trace: T-1, T-2, T-3 and T-4. The T-1, T-3, and T-4 profiles were long profiles (235 m for the first two and 215 m for the last one), with a goal of determining the depth of the geologic boundary between the sedimentary and andesitic deposits. The T-2 profile was a short profile (23.5 m), with the objective of calibrating the results with data provided by the paleoseismic trenching previously developed in the area of interest. For these tests, two electrode arrays of types Wenner-Schlumberger and Dipole-Dipole, were used. For the inversion routine, two regularized least-squares methods were used: the smoothness-constrained method and robust inversion. The long electrical resistivity tomography profiles were able to identify a set of electrical anomalies associated with the andesitic basalt and the Tertiary sediments and with that, the contact geometry between these formations. In these profiles, fault angle measurements ranged from 60° to 80° with respect to the ground surface. In the T-2 profile, the electrical anomalies showed a good association with the results of the paleoseismic study. This allowed identification of the colluvium and alluvium covering the gravel and sand debris that mark the gradual transition to the soils of the Caimito Formation. Finally, a set of 2D synthetic models was developed for each of the T-1, T-3, and T-4 profiles with the objective of optimizing interpretation of the field results.

  6. Questa baseline and pre-mining ground-water quality investigation. 21. Hydrology and water balance of the Red River basin, New Mexico 1930-2004

    USGS Publications Warehouse

    Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.

    2006-01-01

    A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and

  7. Red Planet? Red River!FIELD Works on the Red-Mud Flood Polluted Marcal Riverside: ph Measurements by the HUSAR-5 Nxt-Based Rover Model of the SZÉCHENYI ISTVÁN High School, Sopron, Hungary.

    NASA Astrophysics Data System (ADS)

    Lang, A.; Cserich, D.; Kiss, D.; Erdélyi, S.; Nickl, I.; Bérczi, S.

    2011-10-01

    On October 4, 2010, heavy industrial catastrophe polluted the Marcal river in West-Hungary. The Red-mud sludge, the byproduct of the alumina production, poured from a containment pond because of the broken dike. The environmental pollution first appeared in the creeks and rivers in the vicinity of the alumina plant at Ajka. Earlier our group prepared pH measurement robotics on the HUSAR-5 rover therefore our idea was to carry out - a planetary analog type - field works with the rover on the polluted region. The locality was about 100 kilometrs from our town, Sopron. We visited 3 times the region.

  8. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain

  9. A subsynoptic-scale kinetic energy study of the Red River Valley tornado outbreak (AVE-SESAME 1)

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Fuelberg, H. E.

    1981-01-01

    The subsynoptis-scale kinetic energy balance during the Red River Valley tornado outbreak is presented in order to diagnose storm environment interactions. Area-time averaged energetics indicate that horizontal flux convergence provides the major energy source to the region, while cross contour flow provides the greatest sink. Maximum energy variability is found in the upper levels in association with jet stream activity. Area averaged energetics at individual observation times show that the energy balance near times of maximum storm activity differs considerably from that of the remaining periods. The local kinetic energy balance over Oklahoma during the formation of a limited jet streak receives special attention. Cross contour production of energy is the dominant local source for jet development. Intense convection producing the Red River Valley tornadoes may have contributed to this local development by modifying the surrounding environment.

  10. Understanding Surface water Ground water Interactions in Arkansas-Red River Basin using Coupled Modeling

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Mohanty, B. P.

    2006-12-01

    Subsurface water exists primarily as groundwater and also in small quantity as soil water in the unsaturated zone. This soil water plays a vital role in the hydrologic cycle by supporting plant growth, regulating the amount of water lost to evapo-transpiration and affecting the surface water groundwater interaction to a certain extent. As such, the interaction between surface water and groundwater is complex and little understood. This study aims at investigating the surface water groundwater interaction in the Arkansas-Red river basin, using a coupled modeling platform. For this purpose, an ecohydrological model (SWAP) has been coupled with the groundwater model (MODFLOW). Inputs to this coupled model are collected from NEXRAD precipitation data at a resolution of ~4 km, meteorological forcings from Oklahoma mesonet and NCDC sites, STATSGO soil property data, LAI (Leaf Area Index) data from MODIS at a resolution of ~1 km, and DEM (Digital Elevation Model). For numerical modeling, a spatial resolution of ~1 km and a temporal resolution of one day is used. The modeled base flow and total groundwater storage change would be tested using ground water table observation data. The modeled ground water storage is further improved using GRACE (Gravity Recovery and Climate Experiment) satellite data at a resolution of ~400 km, with the help of appropriate data assimilation technique.

  11. Red River of the North Walsh and Pembina Countries, North Dakota Farmstead Ring Levees.

    DTIC Science & Technology

    1983-12-01

    encompasses the reach of the Red River that flows through Walsh and Pembina Counties. North Dakota. The tQtlr,, y -f r I rw-lprh- inah pn -f. DO 4"m 147l. E...82174 -’ ’a w a ti.~tI(i Ci ILEl 0- -!04 3 A 41 4 4 2b 4 44 Z4 . 0 in~ ULN -60 % 0 r" n 0% k :0 cm- 0 m 3 000 C Aj 0N 2a0 0 0 0. LU I.C NY i𔃾 N~- C- Y 0...8217i 0%-0 00’ c 0 o~~~~~~~ 1 Q 00 0 0 0 ’’ 4 LU 0 a 00 goo 0 00 0M 󈧬 00CL a. 08 - Y 0 o0 0 ~ c i 9Vi- 00 MA’- 010% AS%0 0 L 0 I.~~~~0 toaa ~ a~..11 0

  12. Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004.

    SciTech Connect

    Ashley, Paul

    2004-11-01

    A habitat evaluation procedures (HEP) analysis conducted on the 314-acre Red River Wildlife Management Area (RRWMA) managed by the Idaho Department of Fish and Game resulted in 401.38 habitat units (HUs). Habitat variables from six habitat suitability index (HSI) models, comprised of mink (Mustela vison), mallard (Anas platyrhynchos), common snipe (Capella gallinago), black-capped chickadee (Parus altricapillus), yellow warbler (Dendroica petechia), and white-tailed deer (Odocoileus virginianus), were measured by Regional HEP Team (RHT) members in August 2004. Cover types included wet meadow, riverine, riparian shrub, conifer forest, conifer forest wetland, and urban. HSI model outputs indicate that the shrub component is lacking in riparian shrub and conifer forest cover types and that snag density should be increased in conifer stands. The quality of wet meadow habitat, comprised primarily of introduced grass species and sedges, could be improved through development of ephemeral open water ponds and increasing the amount of persistent wetland herbaceous vegetation e.g. cattails (Typha spp.) and bulrushes (Scirpus spp.).

  13. Spatio-temporal analysis of recent groundwater-level trends in the Red River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Bui, Duong Du; Kawamura, Akira; Tong, Thanh Ngoc; Amaguchi, Hideo; Nakagawa, Naoko

    2012-12-01

    A groundwater-monitoring network has been in operation in the Red River Delta, Vietnam, since 1995. Trends in groundwater level (1995-2009) in 57 wells in the Holocene unconfined aquifer and 63 wells in the Pleistocene confined aquifer were determined by applying the non-parametric Mann-Kendall trend test and Sen's slope estimator. At each well, 17 time series (e.g. annual, seasonal, monthly), computed from the original data, were analyzed. Analysis of the annual groundwater-level means revealed that 35 % of the wells in the unconfined aquifer showed downward trends, while about 21 % showed upward trends. On the other hand, confined-aquifer groundwater levels experienced downward trends in almost all locations. Spatial distributions of trends indicated that the strongly declining trends (>0.3 m/year) were mainly found in urban areas around Hanoi where there is intensive abstraction of groundwater. Although the trend results for most of the 17 time series at a given well were quite similar, different trend patterns were detected in several. The findings reflect unsustainable groundwater development and the importance of maintaining groundwater monitoring and a database in the Delta, particularly in urban areas.

  14. Trace Gas Emissions from Extensive Aquaculture Systems in the Red River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Beman, J.; Seto, K. C.

    2002-12-01

    The Red River Delta of Vietnam is an area undergoing rapid land use change. Aquaculture development is among the most significant of these transformations, with important economic, social and environmental effects. We explored the potential for managed mangrove' and `converted paddy' aquaculture systems in the Delta to produce and/or consume greenhouse gasses. We measured dissolved concentrations of the radiatively-important trace gasses methane (CH4) and nitrous oxide (N2O), as well as associated parameters. All ponds were super-saturated with CH4, with concentrations ranging from 132-1203 nM, (mean 561 nM) in managed mangrove, and 28-521 nM (mean 110 nM) in converted paddy. Surprisingly, none of the ponds was measurably supersaturated with N2O. Methane fluxes were calculated for all ponds using five well-accepted models of gas flux based on wind speed. Mean flux values ranged from 1.04 to 17.09 mg CH4 m-2 d-1 for managed mangrove, falling somewhere between fluxes reported for natural systems and those receiving sewage inputs. Further measurements should be made in more intensive systems to better understand the potential for trace gas production-particularly N2O-in aquaculture systems.

  15. Influence of Organic Agriculture on the Net Greenhouse Effect in the Red River Valley, Minnesota

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.

    2004-12-01

    Fluxes for the suite of biologically-produced greenhouse gases (CH4, N2O and CO2) are strongly influenced by agriculture, yet the influence of organic agriculture on all three gases, which comprise the net greenhouse effect (GHE), is not clear in the context of large-scale agricultural production. Greenhouse gas mitigation potential will depend upon the net balance for all three gases [GHE balance (CO2 equiv.)= CO2 flux+ 23CH4flux + 296N2Oflux]. On-farm, field-scale experiments were performed to test the hypothesis that the net GHE at the soil-atmosphere interface is reduced under organic wheat production, compared with conventional, and that effects vary inter-seasonally. Trace gas fluxes were measured at the soil-atmosphere interface for organic and conventional wheat farms in the Red River Valley, Minnesota, one of the most productive agricultural regions in the US. We utilized 40-60 ha field pairs planted with hard red spring wheat (Triticum aestivum L.). Treatment pairs were located 6km apart and consisted of fields continuously cropped for wheat/soybean/sugar beet production for over 20 yr. Ten random, permanent points were generated for each 8.1 ha sub-plot nested inside each field. Each field pair was similar with respect to crop, climate, cultivation history, tillage, rotation, soil texture, pH, macronutrients, bulk density, and water holding capacity. Differences between treatments for the last five years were soil amendments (compost or urea) and herbicide/fungicide application versus mechanical weed control. We collected gas fluxes at each of the 41 points from April (wheat emergence) until the end of July (maturity) to determine the hourly and seasonally integrated net GHE for each management practice, given similar soil/plant/climatic conditions. Moreover, we analyzed inter-seasonal variability to determine the relationship between wheat phenology and flux under field conditions for soil temperature and moisture (water-filled pore space). The net GHE

  16. Associations Between Macroinvertebrates and Paralemanea mexicana, an Endemic Freshwater Red Alga from a Mountain River in Central Mexico.

    PubMed

    Caro-Borrero, A; Carmona-Jiménez, J

    2016-12-01

    Macrophytes are common inhabitants of lotic environments and, depending on their morphological traits, possess adaptations that provide shelter to aquatic invertebrates against strong river flow and predators. They may also be used as a food source by macroinvertebrates. The main goal of this study was to determine the relationship between the red alga Paralemanea mexicana and its role as a shelter and/or food source for lotic macroinvertebrates. We also conducted research on the role of microhabitat and morphological variations of the alga in determining macroinvertebrate taxon abundance, diversity, and functional group composition in a high-current velocity river. Results showed that changes in cover and morphology of P. mexicana were mostly correlated with river current velocity, irradiance, and seasonal variation. In turn, these were related to changes in abundance and diversity of the associated macroinvertebrate community. In addition, six macroinvertebrate functional feeding groups were evaluated for associations with the red alga: filtering and gathering collectors, piercers, scrapers, herbivore shredders, and predators. The results showed that the Trichoptera Hydroptilidae genera Ochrotrichia and Metrichia use P. mexicana as a food source and case-building material. The Trichoptera Glossosomatidae Mortoniella uses the alga as a substrate. The biotic interactions between P. mexicana and associated macroinvertebrates reveal the importance of macrophytes as purveyors of substrate, as food and shelter for macroinvertebrates, and also as promoters of macroinvertebrate community diversity. In addition, it was shown that macroinvertebrate herbivory likely facilitates vegetative propagation of the red alga through increased release and germination of carpospores and new gametophytes.

  17. Evaluating the Invasion of Red Cedar (Juniperus viriginiana) Downstream of Gavins Point Dam, Missouri National Recreational River

    NASA Astrophysics Data System (ADS)

    Greene, S.; Knox, J. C.

    2013-12-01

    Gavins Point Dam, the final dam on the main-stem Missouri River, alters downstream river form and function. Throughout a 59-mile downstream reach, the dam reduces overbank flooding and lowers the water surface by 1-3 meters. Under the dam-created hydro-geomorphic conditions, native cottonwood trees are unable to regenerate. The limited regeneration of native riparian cottonwoods, the lowered water surface, and the reduced overbank flooding creates a terrace environment within the riparian habitat. Consequently, red cedars, a native upland tree, are invading this new terrace-like riparian environment. To this end, we apply Bayesian statistical models to investigate patterns of red cedar riparian invasion and assess ecosystem function patterns along this flow-regulated reach. We set up plots within cottonwood stands along a 59-km reach downstream of Gavins Point Dam. Within each plot, we collected soil samples, litter samples, stem densities of trees, and collected cores of the largest cottonwood and largest red cedar in each plot. To assess influences of red cedar on soil indicators of ecosystem function and general patterns of ecosystem function within the study area, we measured organic carbon, nitrogen, pH, electrical conductivity, and hydrophobicity. To determine drivers and patterns of invasion and ecosystem function we conducted Bayesian linear regressions and means comparison tests. Red cedars existed along the floodplain prior to regulation. However, according to our tree age data and stem density data red cedars existed at a lower population than today. We found that 2 out of 565 red cedars established before the dam was completed. Also, we found no significant difference in soil properties between soils with established red cedar and soils with established cottonwood. By studying soil texture data, and interpreting fluvial geomorphic surfaces in the field and via aerial photography, we found soil texture generally reflects the type of fluvial surface

  18. Exhumation history of the Red River shear zone in northern Vietnam: New insights from zircon and apatite fission-track analysis

    NASA Astrophysics Data System (ADS)

    Viola, G.; Anczkiewicz, R.

    2008-06-01

    A new set of zircon and apatite fission-track ages from the Ailao Shan and Day Nui Con Voi (DNCV) metamorphic massifs of the Red River shear zone (RRSZ) and neighboring rocks in northern Vietnam is presented. A complex, along-strike diachronous, denudation history is revealed. The southern sector of the DNCV cooled to about 100 °C by the Late Oligocene, whereas its central compartment was affected by the later thermotectonic evolution of the Song Chay dome to the E of the RRSZ, whose final exhumation occurred during the Early Miocene. The northern sector of the RRSZ is characterized by the 35 Ma Phan Si Pang pre- to synkinematic intrusion. Fission-track ages from a vertical section within the Phan Si Pang granite indicate rapid exhumation and cooling. The Paleozoic tectonic block to the west of the RRSZ (fission-track ages between 40 and 30 Ma) was exhumed and cooled earlier than the fault mylonite belt (fission track ages of 30 Ma and younger) and also than the eastern block. Its structural level is consistent with field observations that suggest the RRSZ in northern Vietnam to be a transtensional system, with a regional NE-SW oriented extension component.

  19. Questa baseline and pre-mining ground-water quality investigation 4. Historical surface-water quality for the Red River Valley, New Mexico, 1965 to 2001

    USGS Publications Warehouse

    Maest, Ann S.; Nordstrom, D. Kirk; LoVetere, Sara H.

    2004-01-01

    Historical water-quality samples collected from the Red River over the past 35 years were compiled, reviewed for quality, and evaluated to determine influences on water quality over time. Hydrologic conditions in the Red River were found to have a major effect on water quality. The lowest sulfate concentrations were associated with the highest flow events, especially peak, rising limb, and falling limb conditions. The highest sulfate concentrations were associated with the early part of the rising limb of summer thunderstorm events and early snowmelt runoff, transient events that can be difficult to capture as part of planned sampling programs but were observed in some of the data. The first increase in flows in the spring, or during summer thunderstorm events, causes a flushing of sulfide oxidation products from scars and mine-disturbed areas to the Red River before being diluted by rising river waters. A trend of increasing sulfate concentrations and loads over long time periods also was noted at the Questa Ranger Station gage on the Red River, possibly related to mining activities, because the same trend is not apparent for concentrations upstream. This trend was only apparent when the dynamic events of snowmelt and summer rainstorms were eliminated and only low-flow concentrations were considered. An increase in sulfate concentrations and loads over time was not seen at locations upstream from the Molycorp, Inc., molybdenum mine and downstream from scar areas. Sulfate concentrations and loads and zinc concentrations downstream from the mine were uniformly higher, and alkalinity values were consistently lower, than those upstream from the mine, suggesting that additional sources of sulfate, zinc, and acidity enter the river in the vicinity of the mine. During storm events, alkalinity values decreased both upstream and downstream of the mine, indicating that natural sources, most likely scar areas, can cause short-term changes in the buffering capacity of the Red

  20. 33 CFR 165.T08-0080 - Safety Zone; Cincinnati Reds Fireworks Displays Ohio River, Mile 470.1-470.4, Cincinnati, OH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone; Cincinnati Reds Fireworks Displays Ohio River, Mile 470.1-470.4, Cincinnati, OH. 165.T08-0080 Section 165.T08-0080... Limited Access Areas Eighth Coast Guard District § 165.T08-0080 Safety Zone; Cincinnati Reds...

  1. Streamflow losses along the Balcones Fault Zone, Nueces River basin, Texas

    USGS Publications Warehouse

    Land, L.F.; Boning, C.W.; Harmsen, Lynn; Reeves, R.D.

    1983-01-01

    Statistical evaluations of historical daily flow records for the streams that have gaging stations upstream and downstream from the recharge zone provided mathematical relationships that expressed downstream flow in terms of other significant parameters. For each stream, flow entering the recharge zone is most significant in defining downstream flow; for some streams, antecedent flows at the upstream site and ground-water levels are also significantly related to downstream flow. The analyses also determined the discharges required upstream from the recharge zone to sustain flow downstream from that zone. These discharges ranged from 355 cubic feet per second for the combined Frio and Dry Frio Rivers to 33 cubic feet per second for the Nueces River. The entire flows of lesser magnitude are generally lost to recharge to the aquifer.

  2. Influence of growth faults on coastal fluvial systems: Examples from the late Miocene to Recent Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Armstrong, Christopher; Mohrig, David; Hess, Thomas; George, Terra; Straub, Kyle M.

    2014-03-01

    The details of how fluvial systems respond to spatial changes in land-surface subsidence produced by active faulting remain incompletely understood. Here, we examine the degree to which the positioning of individual channels and channel-belts is affected by local maxima in subsidence associated with the hanging walls of growth faults. The channel forms and faults are imaged using a seismic volume covering 1400 km2 of Breton Sound and Barataria Bay in southern Louisiana, USA. We look at the consequences of interactions between channels, channel-belts, and faults in late Miocene to Recent strata. More than fifty individual channels that crossed the traces of active growth faults were examined. Of these channels, only three appear to have been redirected by the faults. There also appeared to be no systematic change in the cross-sectional geometries of channels or channel-belts associated with crossing a fault, though the orientation of the channel-belts appears to be more influenced by faulting than the orientation of individual channels. Seven out of ten mapped channel-belts appear to have been steered by growth faults. We propose that channel belts are more likely to be influenced by faults than individual channels because channel-belts are longer lived features, unlikely to shift their overall position before experiencing a discrete faulting event. In addition, the style of influence in the few cases where an individual channel is affected by a fault is different from that of larger systems. While downstream of a fault channel-belts generally become oriented perpendicular to fault strike, the individual channels are directed along the hanging wall of the fault, running parallel to the fault trace. We relate this to the ratio of the length-scale of fault rollover relative to the channel or channel-belt width. Fluvial-fault interactions with higher values for this ratio are more likely to be carried parallel to the fault trace than systems with lower ratio values.

  3. Petrology and geochemistry of subbituminous coals from the Red Deer River Valley, Alberta Plains, Canada

    SciTech Connect

    Gentzis, T.; Goodarzi, F.

    1998-11-01

    Coals and associated carbonaceous strata along the Red Deer River Valley in Alberta have a wide variation in boron concentrations (10--628 ppm). Boron concentrations decrease from bottom to top of the coal-bearing succession, closely reflecting changes in depositional environment conditions. These changes range from subaquatic deposition in the delta plain area and influence of brackish waters due to a marine transgression, to deposition in areas removed from any brackish water influence. There is good agreement between boron variation and depositional environment as interpreted from regional geology. However, the relation between boron and sulfur is not clear; samples with high boron concentrations are high in sulfur while low boron samples also have high sulfur. Compared to mean concentrations in world coals, some of the highest elemental concentrations measured in coals of this study are: As (38.0 ppm), Ba (2800 ppm), Cr (91.0 ppm), Mn (232 ppm), and V (209 ppm). There is a similarity in the vertical variation of the elements Th and Hf, while bentonite layers are enriched in Ba and Sr, pointing to the presence of gorceixite. No enrichment of REEs was observed in the bentonite layers. A comparison of elemental concentration to world mean values for coals shows that the RDRV coals are elevated in As (up to 4{times}), Cr (up to 12 {times}), Mn (up to 4 {times}), Mo (up to 12 {times}), Th (up to 5 {times}), V (up to 12 {times}) and Zn (up to 5 {times}). Compared to coals from the eastern Alberta Plains of similar rank, age, and depositional environment, the RDRV coals have higher or similar concentrations of all elements of environmental significance, with the exception of Be and Pb. When compared to coals of similar rank in the western Alberta plains deposited under freshwater conditions, the RDRV coals have higher concentration of As, B, Ba, Sb, and Sr, similar concentrations of Be, Co, Cu, Mn, Pb, Se, Th, and U, and lower concentrations of Ni.

  4. Assessing trends in organochlorine concentrations in Lake Winnipeg fish following the 1997 red river flood

    USGS Publications Warehouse

    Stewart, A.R.; Stern, G.A.; Lockhart, W.L.; Kidd, K.A.; Salki, A.G.; Stainton, M.P.; Koczanski, K.; Rosenberg, G.B.; Savoie, D.A.; Billeck, B.N.; Wilkinson, Philip M.; Muir, D.C.G.

    2003-01-01

    As we move toward the virtual elimination of persistent organic pollutants (POPs) in the environment our understanding of how short-term variability affects long-term trends of POPs in natural populations will become increasingly more important. In this study we report short-term trends in organochlorine (OC) levels in fish from Lake Winnipeg in the months and years following the 1997 100-year flood of the Red River ecosystem. Our goal was to understand the effects of an episodic event on OC levels in benthic and pelagic invertebrates and in fish. Despite elevated loading of OCs into the south basin of Lake Winnipeg during the flood there were no differences in OC levels of surface sediments or emergent mayflies. After adjusting for differences in lipid content and length among sample times, we did find significant increases in total DDT (??DDT) and total polychlorinated biphenyl (??PCB) post-flood (March 1999) in top predators including walleye and burbot. Significant increases were also observed in OC concentrations of zooplankton and yellow perch (> 2 fold in ??PCB, ??DDT, total chlordane (??CHL), total chlorobenzenes (??CBZ)) and walleye (1.4 fold ??PCB) over a 2-month period in the summer following the flood. Analysis of specific congener patterns over time suggest that the major changes in fish OC levels pre- and post-flood did not appear to be linked to transport of new compounds into the Lake during the flood, but to species shifts within the plankton community. Our results indicate that short-term variation (???2 months) in OC distributions within biota may be equal to or greater than those resulting from episodic events such as spring floods.

  5. Using LiDAR datasets to improve HSPF water quality modeling in the Red River of the North Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2013-12-01

    The Red River of the North Basin (RRB), located in the lakebed of ancient glacial Lake Agassiz, comprises one of the flattest landscapes in North America. The topography of the basin, coupled with the Red River's direction of flow from south to north results in a system that is highly susceptible to flooding. The magnitude and frequency of flood events in the RRB has prompted several multijurisdictional projects and mitigation efforts. In response to the devastating 1997 flood, an International Joint Commission sponsored task force established the need for accurate elevation data to help improve flood forecasting and better understand risks. This led to the International Water Institute's Red River Basin Mapping Initiative, and the acquisition LiDAR Data for the entire US portion of the RRB. The resulting 1 meter bare earth digital elevation models have been used to improve hydraulic and hydrologic modeling within the RRB, with focus on flood prediction and mitigation. More recently, these LiDAR datasets have been incorporated into Hydrological Simulation Program-FORTRAN (HSPF) model applications to improve water quality predictions in the MN portion of the RRB. RESPEC is currently building HSPF model applications for five of MN's 8-digit HUC watersheds draining to the Red River, including: the Red Lake River, Clearwater River, Sandhill River, Two Rivers, and Tamarac River watersheds. This work is being conducted for the Minnesota Pollution Control Agency (MPCA) as part of MN's statewide watershed approach to restoring and protecting water. The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and are formulated to provide predictions at points of interest within the watersheds, such as observation gages

  6. Intersection patterns of normal faults in the Lufeng Sag of Pearl River Mouth Basin, China: Insights from 4D physical simulations

    NASA Astrophysics Data System (ADS)

    Yu, Fusheng; Koyi, Hemin; Zhang, Xiangtao

    2016-12-01

    Interpretation of seismic data from the Lufeng Sag of the Pearl River Mouth Basin (PRMB) in the northern part of South China Sea shows that different intersection patterns developed in the cover units above basement normal faults. A series of analogue models are used to investigate the intersection patterns and deformation in the sedimentary cover sequences above a basement horst bounded by two non-parallel faults. Modelling results show that during their upward propagation, the basement faults may intersect within the cover sequences and form a graben above the basement horst. Length and width of the graben increase with cover thickness. The strike and dip intersection points are controlled directly by the thickness of the cover sequences, dip and strike of the basement faults, and width of the basement horst. The intersection point migrates along the axis of the graben toward the wide end of the basement horst, when the cover sequence thickens. In contrast, it migrates toward the narrow end of the basement horst, where both fault dip and angle of strike difference increase. The intersection point moves upward with increasing width of the basement horst crest. Model profiles also indicate that in the presence of a ductile layer between the cover and basement such intersection patterns do not form. Interpretation of seismic data and model results show that the intersection pattern developed in the Lufeng Sag is a result of propagation of basement faults into cover units during different extension stages of the basin. Results of this study can be applied to many other sedimentary basins where such fault intersection patterns are likely to form when non-parallel conjugate basement faults are active during sedimentation.

  7. 33 CFR 165.T09-0260 - Safety zone; Red River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Upper Mississippi River will inform the public through broadcast notice to mariners of any changes to... Mississippi River and Marine Safety Unit Duluth or a designated representative. (2) Persons or vessels... Upper Mississippi River or a designated representative. The Captain of the Port Sector Upper...

  8. Water-surface elevation and discharge measurement data for the Red River of the North and its tributaries near Fargo, North Dakota, water years 2014–15

    USGS Publications Warehouse

    Damschen, William C.; Galloway, Joel M.

    2016-08-25

    The U.S. Geological Survey, in cooperation with the Fargo Diversion Board of Authority, collected water-surface elevations during a range of discharges needed for calibration of hydrologic and hydraulic models for specific reaches of interest in water years 2014–15. These water-surface elevation and discharge measurement data were collected for design planning of diversion structures on the Red River of the North and Wild Rice River and the aqueduct/diversion structures on the Sheyenne and Maple Rivers. The Red River of the North and Sheyenne River reaches were surveyed six times, and discharges ranged from 276 to 6,540 cubic feet per second and from 166 to 2,040 cubic feet per second, respectively. The Wild Rice River reach also was surveyed six times during 2014 and 2015, and discharges ranged from 13 to 1,550 cubic feet per second. The Maple River reach was surveyed four times, and discharges ranged from 16.4 to 633 cubic feet per second. Water-surface elevation differences from upstream to downstream in the reaches ranged from 0.33 feet in the Red River of the North reach to 9.4 feet in the Maple River reach.

  9. Dating of major normal fault systems using thermochronology: An example from the Raft River detachment, Basin and Range, western United States

    USGS Publications Warehouse

    Wells, M.L.; Snee, L.W.; Blythe, A.E.

    2000-01-01

    Application of thermochronological techniques to major normal fault systems can resolve the timing of initiation and duration of extension, rates of motion on detachment faults, timing of ductile mylonite formation and passage of rocks through the crystal-plastic to brittle transition, and multiple events of extensional unroofing. Here we determine the above for the top-to-the-east Raft River detachment fault and shear zone by study of spatial gradients in 40Ar/39Ar and fission track cooling ages of footwall rocks and cooling histories and by comparison of cooling histories with deformation temperatures. Mica 40Ar/39Ar cooling ages indicate that extension-related cooling began at ???25-20 Ma, and apatite fission track ages show that motion on the Raft River detachment proceeded until ???7.4 Ma. Collective cooling curves show acceleration of cooling rates during extension, from 5-10??C/m.y. to rates in excess of 70-100??C/m.y. The apparent slip rate along the Raft River detachment, recorded in spatial gradients of apatite fission track ages, is 7 mm/yr between 13.5 and 7.4 Ma and is interpreted to record the rate of migration of a rolling hinge. Microstructural study of footwall mylonite indicates that deformation conditions were no higher than middle greenschist facies and that deformation occurred during cooling to cataclastic conditions. These data show that the shear zone and detachment fault represent a continuum produced by progressive exhumation and shearing during Miocene extension and preclude the possibility of a Mesozoic age for the ductile shear zone. Moderately rapid cooling in middle Eocene time likely records exhumation resulting from an older, oppositely rooted, extensional shear zone along the west side of the Grouse Creek, Raft River, and Albion Mountains. Copyright 2000 by the American Geophysical Union.

  10. Dating of major normal fault systems using thermochronology: An example from the Raft River detachment, Basin and Range, western United States

    NASA Astrophysics Data System (ADS)

    Wells, Michael L.; Snee, Lawrence W.; Blythe, Ann E.

    2000-07-01

    Application of thermochronological techniques to major normal fault systems can resolve the timing of initiation and duration of extension, rates of motion on detachment faults, timing of ductile mylonite formation and passage of rocks through the crystal-plastic to brittle transition, and multiple events of extensional unroofing. Here we determine the above for the top-to-the-east Raft River detachment fault and shear zone by study of spatial gradients in 40Ar/39Ar and fission track cooling ages of footwall rocks and cooling histories and by comparison of cooling histories with deformation temperatures. Mica 40Ar/39Ar cooling ages indicate that extension-related cooling began at ˜25-20 Ma, and apatite fission track ages show that motion on the Raft River detachment proceeded until ˜7.4 Ma. Collective cooling curves show acceleration of cooling rates during extension, from 5-10°C/m.y. to rates in excess of 70-100°C/m.y. The apparent slip rate along the Raft River detachment, recorded in spatial gradients of apatite fission track ages, is 7 mm/yr between 13.5 and 7.4 Ma and is interpreted to record the rate of migration of a rolling hinge. Microstructural study of footwall mylonite indicates that deformation conditions were no higher than middle greenschist facies and that deformation occurred during cooling to cataclastic conditions. These data show that the shear zone and detachment fault represent a continuum produced by progressive exhumation and shearing during Miocene extension and preclude the possibility of a Mesozoic age for the ductile shear zone. Moderately rapid cooling in middle Eocene time likely records exhumation resulting from an older, oppositely rooted, extensional shear zone along the west side of the Grouse Creek, Raft River, and Albion Mountains.

  11. River profile response to normal fault growth and linkage: an example from the Hellenic forearc of south-central Crete, Greece

    NASA Astrophysics Data System (ADS)

    Gallen, Sean F.; Wegmann, Karl W.

    2017-02-01

    Topography is a reflection of the tectonic and geodynamic processes that act to uplift the Earth's surface and the erosional processes that work to return it to base level. Numerous studies have shown that topography is a sensitive recorder of tectonic signals. A quasi-physical understanding of the relationship between river incision and rock uplift has made the analysis of fluvial topography a popular technique for deciphering relative, and some argue absolute, histories of rock uplift. Here we present results from a study of the fluvial topography from south-central Crete, demonstrating that river longitudinal profiles indeed record the relative history of uplift, but several other processes make it difficult to recover quantitative uplift histories. Prior research demonstrates that the south-central coastline of Crete is bound by a large ( ˜ 100 km long) E-W striking composite normal fault system. Marine terraces reveal that it is uplifting between 0.1 and 1.0 mm yr-1. These studies suggest that two normal fault systems, the offshore Ptolemy and onshore South-Central Crete faults, linked together in the recent geologic past (ca. 0.4-1 My BP). Fault mechanics predict that when adjacent faults link into a single fault the uplift rate in footwalls of the linkage zone will increase rapidly. We use this natural experiment to assess the response of river profiles to a temporal jump in uplift rate and to assess the applicability of the stream power incision model to this setting. Using river profile analysis we show that rivers in south-central Crete record the relative uplift history of fault growth and linkage as theory predicts that they should. Calibration of the commonly used stream power incision model shows that the slope exponent, n, is ˜ 0.5, contrary to most studies that find n ≥ 1. Analysis of fluvial knickpoints shows that migration distances are not proportional to upstream contributing drainage area, as predicted by the stream power incision model

  12. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam

    PubMed Central

    Nguyen, Huong Thi Mai; Le, Quynh Thi Phuong; Garnier, J.; Janeau, J.-L.; Rochelle-Newall, E.

    2016-01-01

    The Red River is the second largest river in Viet Nam and constitutes the main water source for a large percentage of the population of North Viet Nam. Here we present the results of an annual survey of Escherichia coli (EC) and Total Coliforms (TC) in the Red River basin, North Viet Nam. The objective of this work was to obtain information on faecal indicator bacteria (FIB) numbers over an annual cycle and, secondly, to determine the die-off rates of these bacterial indicators. Monthly observations at 10 stations from July 2013–June 2014 showed that TC and EC reached as high as 39100 cfu (colony forming units) 100 ml−1 and 15300 colonies 100 ml−1, respectively. We observed a significant seasonal difference for TC (p < 0.05) with numbers being higher during the wet season. In contrast, no significant seasonal difference was found for EC. The FIB die-off rates ranged from 0.01 d−1 to a maximum of 1.13 d−1 for EC and from 0.17 d−1 to 1.33 d−1 for TC. Die-off rates were significantly higher for free bacteria than for total (free + particle attached) bacteria, suggesting that particle attachment provided a certain level of protection to FIB in this system. PMID:26869451

  13. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam.

    PubMed

    Nguyen, Huong Thi Mai; Le, Quynh Thi Phuong; Garnier, J; Janeau, J-L; Rochelle-Newall, E

    2016-02-12

    The Red River is the second largest river in Viet Nam and constitutes the main water source for a large percentage of the population of North Viet Nam. Here we present the results of an annual survey of Escherichia coli (EC) and Total Coliforms (TC) in the Red River basin, North Viet Nam. The objective of this work was to obtain information on faecal indicator bacteria (FIB) numbers over an annual cycle and, secondly, to determine the die-off rates of these bacterial indicators. Monthly observations at 10 stations from July 2013-June 2014 showed that TC and EC reached as high as 39100 cfu (colony forming units) 100 ml(-1) and 15300 colonies 100 ml(-1), respectively. We observed a significant seasonal difference for TC (p < 0.05) with numbers being higher during the wet season. In contrast, no significant seasonal difference was found for EC. The FIB die-off rates ranged from 0.01 d(-1) to a maximum of 1.13 d(-1) for EC and from 0.17 d(-1) to 1.33 d(-1) for TC. Die-off rates were significantly higher for free bacteria than for total (free + particle attached) bacteria, suggesting that particle attachment provided a certain level of protection to FIB in this system.

  14. How Orogen-scale Exhumed Strike-slip Faults Initiate

    NASA Astrophysics Data System (ADS)

    Cao, S.; Neubauer, F.

    2015-12-01

    Orogen-scale strike-slip faults present one the most important geodynamic processes affecting the lithosphere-asthenosphere system. In specific subtypes, faulting is virtually initiated along hot-to-cool boundaries, e.g. at such of hot granite intrusions or metamorphic core complexes to cool country rocks. Such fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust and are stacked within each other ("telescoping"). Exhumation of rocks is, therefore, a common feature of such strike-slip faults implying major transtensive and/or transpressive processes accompanying pure strike-slip motion. The hot-to-cool thermal structure across the fault zone significantly influences the physical fault rock properties. One major question is how and where a major strike-slip initiates and further development. Here, we propose a model in which major continental exhumed strike-slip faults potentially evolve along rheologically weak zones such as plutons or margins of metamorphic complexes. As an example, we propose a model for the Ailao Shan-Red River (ASRR) fault, SE Asia, which initiated along the edge of a plutonic belt and evolved in response to India-Asia collision with four tectonic phases.

  15. Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta

    NASA Astrophysics Data System (ADS)

    Vinh, V. D.; Ouillon, S.; Thanh, T. D.; Chu, L. V.

    2014-10-01

    The Hoa Binh dam (HBD), located on a tributary of the Red River in Vietnam, has a capacity of 9.45 × 109 m3 and was commissioned in December 1988. Although it is important for flood prevention, electricity production and irrigation in northern Vietnam, the Hoa Binh dam has also highly influenced the suspended sediment distribution in the lower Red River basin, in the delta and in the coastal zone. Its impact was analysed from a 50-year data set of water discharge and suspended sediment concentration (1960-2010), and the distribution of water and sediment across the nine mouths of the delta was simulated using the MIKE11 numerical model before and after the dam settlement. Although water discharge at the delta inlet decreased by only 9%, the yearly suspended sediment flux dropped, on average, by 61% at Son Tay near Hanoi (from 119 to 46 × 106 t yr-1). Along the coast, reduced sedimentation rates are coincident with the lower sediment delivery observed since the impoundment of the Hoa Binh dam. Water regulation has led to decreased water discharge in the wet season (-14% in the Red River at Son Tay) and increased water discharge in the dry season (+12% at the same station). The ratios of water and suspended sediment flows, as compared to the total flows in the nine mouths, increased in the northern and southern estuaries and decreased in the central, main Ba Lat mouth. The increasing volume of dredged sediments in the Haiphong harbour is evidence of the silting up of the northern estuary of Cam-Bach Dang. The effect of tidal pumping on enhanced flow occurring in the dry season and resulting from changed water regulation is discussed as a possible cause of the enhanced siltation of the estuary after Hoa Binh dam impoundment.

  16. Kinematics and tectonic implications of the Mae Kuang Fault, northern Thailand

    NASA Astrophysics Data System (ADS)

    Rhodes, Brady P.; Perez, Robert; Lamjuan, Apichard; Kosuwan, Suwith

    2004-10-01

    In order to test the hypothesis that northeast-trending strike-slip faults partially accommodated mid-Tertiary east-west extension in northern Thailand, we investigated a prominent lineament that marks the trace of the Mae Kuang fault. The trace of the this fault follows the linear Mae Kuang Valley for approximately 30 km through the Mae Tho Range northeast of Chiang Mai, where it cuts granitic rocks of the Fang - Mae Suai batholith and roof pendants of Paleozoic terranes. Along the trace of the fault we identified offset contacts, and slickenlines on fault surfaces that suggest a total sinistral slip of 3.5 km and a dip-slip of 600 m. The fault also offsets three north-flowing tributaries to the Mae Kuang River by 400-700 m. At its southwestern end, the Mae Kuang fault is apparently truncated by the right-lateral Mae Tha fault and does not extend to the west side of the Chiang Mai Basin. Therefore, it cannot be accommodating the transfer of extension from basin to basin, however, it may accommodate small amounts of differential rotation between adjacent crustal blocks. The fault probably initiated between 20 and 5 Ma, simultaneous with the slip inversion on the Mae Ping and Red River Faults.

  17. General weather conditions and precipitation contributing to the 2011 flooding in the Mississippi River and Red River of the North Basins, December 2010 through July 2011: Chapter B in 2011 floods of the central United States

    USGS Publications Warehouse

    Vining, Kevin C.; Chase, Katherine J.; Loss, Gina R.

    2013-01-01

    Excessive precipitation produced severe flooding in the Mississippi River and Red River of the North Basins during spring and summer 2011. The 2011 flooding was caused by weather conditions that were affected in part by a La Niña climate pattern. During the 2010–11 climatological winter (December 2010–February 2011), several low pressure troughs from the Rocky Mountains into the Ohio River subbasin produced large amounts of precipitation. Precipitation was above normal to record amounts in parts of the Missouri River, Red River of the North, and upper Mississippi River subbasins, and mostly normal to below normal in the Ohio River and lower Mississippi River subbasins. During the 2011 climatological spring (March–May 2011), a large low pressure trough over the continental States and a high pressure ridge centered in the vicinity of the Gulf of Mexico combined to produce storms with copious precipitation along frontal boundaries across the Central States. Rain totals recorded during the April 18–28, 2011, precipitation event were more than 8 inches at several locations, while an impressive total of 16.15 inches was recorded at Cape Girardeau, Missouri. Several locations in the Missouri River subbasin had rainfall totals that were nearly one-third to one-half of their 1971–2000 normal annual amounts during a May 16–31, 2011, precipitation event. During June and July, thunderstorm development along frontal boundaries resulted in areas of heavy rain across the Missouri River, Red River of the North, and upper Mississippi River subbasins, while rainfall in the lower Mississippi River subbasin was mostly below normal.

  18. Lateral Drilling and Completion Technologies for Shallow-Shelf Carbonates of the Red River and Ratcliffe Formations, Williston Basin

    SciTech Connect

    David Gibbons; Larry A. Carrell; Richard D. George

    1997-07-31

    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius laterals in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and Harding Co., SD.

  19. Test Excavations at the Cedar Grove Site (3LA97): A Late Caddo Farmstead on the Red River.

    DTIC Science & Technology

    1982-09-01

    profiles along this bankline which show point bar deposits were recorded by Pearson and DuCote (1979: Figures 4-21 and 4-22). One of these profiles...edible nuts, fruits, seeds, and tubers for human and animal food use (Meanley 1972; Pearson and DuCote 1979). Prairies on fertile levee soils required...construction projects along the Red River in southwestern Arkansas, by Charles E. Pearson and Gregory J. DuCote . Ms. on file, U.S. Army Corps of

  20. Simulation of Constituent Transport in the Red River of the North Basin, North Dakota and Minnesota, During Unsteady-Flow Conditions, 1977 and 2003-04

    USGS Publications Warehouse

    Nustad, Rochelle A.; Bales, Jerad D.

    2006-01-01

    The Bureau of Reclamation identified eight water-supply alternatives for the Red River Valley Water Supply Project. Of those alternatives, six were considered for this study. Those six alternatives include a no-action alternative, two in-basin alternatives, and three interbasin alternatives. To address concerns of stakeholders and to provide information for an environmental impact statement, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, developed and applied a water-quality model to simulate the transport of total dissolved solids, sulfate, chloride, sodium, and total phosphorus during unsteady-flow conditions and to simulate the effects of the water-supply alternatives on water quality in the Red River and the Sheyenne River. The physical domain of the model, hereinafter referred to as the Red River model, includes the Red River from Wahpeton, North Dakota, to Emerson, Manitoba, and the Sheyenne River from below Baldhill Dam, North Dakota, to the confluence with the Red River. Boundary conditions were specified for May 15 through October 31, 2003, and January 15 through June 30, 2004. Measured streamflow data were available for August 1 through October 31, 2003, and April 1 through June 30, 2004, but water-quality data were available only for September 15 through 16, 2003, and May 10 through 13, 2004. The water-quality boundary conditions were assumed to be time invariant for the entire calibration period and to be equal to the measured value. The average difference between the measured and simulated streamflows was less than 4 percent for both calibration periods, and most differences were less than 2 percent. The average differences are considered to be acceptable because the differences are less than 5 percent, or the same as the error that would be expected in a typical streamflow measurement. Simulated total dissolved solids, sulfate, chloride, and sodium concentrations generally were less than measured concentrations for both

  1. [Distribution of phytoplankton and water dynamical environmental factors in high red tide occurrence area of Changjiang River estuary].

    PubMed

    Zhu, Genhai; Xu, Weiyi; Zhu, Dedi; Shi, Qingsong; Zhang, Jian

    2003-07-01

    Species composition and cell abundance of phytoplankton, and its relations with environmental factors were investigated in the Changjiang River estuary of east China sea (30 degrees 50'-31 degrees 50'N, 121 degrees 50'-123 degrees 00'E). A total of 110 taxa belonging to 45 genera of phytoplankton in the investigation area were identified. The main species of phytoplankton resulted in red tide were Skeletonema costatum and Prorocentrum dentatum, etc. Phytoplankton abundance in the day was higher than that at night. The vertical distribution of phytoplankton in different water bodies was not obvious. The ecological groups of phytoplankton were freshwater group, estuarine and brackish water and low salinity group in the coast, high salinity and warm water group in off-sea, and widely ranging group. The abundance of phytoplankton in the Changjiang River estuary was 1.6 x 10(3)-75.2 x 10(3) ind.dm-3. The species composition and cell abundance of phytoplankton were related to the freshwater pouring into the Changjiang River estuary. The three waters in the area affecting the distribution of phytoplankton were the Changjiang River estuary water, freshwater, and warm water from outsea.

  2. Bromide, Chloride, and Sulfate Concentrations and Loads at U.S. Geological Survey Streamflow-Gaging Stations 07331600 Red River at Denison Dam, 07335500 Red River at Arthur City, and 07336820 Red River near DeKalb, Texas, 2007-09

    USGS Publications Warehouse

    Baldys, Stanley; Churchill, Christopher J.; Mobley, Craig A.; Coffman, David K.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the City of Dallas Water Utilities Division, did a study to characterize bromide, chloride, and sulfate concentrations and loads at three U.S. Geological Survey streamflow-gaging stations on the reach of the Red River from Denison Dam, which impounds Lake Texoma, to the U.S. Highway 259 bridge near DeKalb, Texas. Bromide, chloride, and sulfate concentrations and loads were computed for streamflow-gaging stations on the study reach of the Red River. Continuous streamflow and specific conductance data and discrete samples for bromide, chloride, sulfate, and specific conductance were collected at three main-stem streamflow-gaging stations on the Red River: 07331600 Red River at Denison Dam near Denison, Texas (Denison Dam gage), 07335500 Red River at Arthur City, Texas (Arthur City gage), and 07336820 Red River near DeKalb, Texas (DeKalb gage). At each of these streamflow-gaging stations, discrete water-quality data were collected during January 2007-February 2009; continuous water-quality data were collected during March 2007-February 2009. Two periods of high flow resulted from floods during the study; floods during June-July 2007 resulted in elevated flow during June-September 2007 and smaller floods during March-April 2008 resulted in elevated flow during March-April 2008. Bromide, chloride, and sulfate concentrations in samples collected at the three gages decreased downstream. Median bromide concentrations ranged from 0.32 milligram per liter at the Denison Dam gage to 0.19 milligram per liter at the DeKalb gage. Median chloride concentrations ranged from 176 milligrams per liter at the Denison Dam gage to 108 milligrams per liter at the DeKalb gage, less than the 300-milligrams per liter secondary maximum contaminant level established by the Texas Commission on Environmental Quality. Median sulfate concentrations ranged from 213 milligrams per liter at the Denison Dam gage to 117 milligrams per liter at the De

  3. Slip-rate Estimation of Active Fault by Luminescence Dating on Deformed River Terraces at Tsaotun, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chen, W.; Lee, C.

    2003-12-01

    This study carried out luminescence ages of the deformed terraces located at Tsaotun in central Taiwan. These terraces are considered as a result of crustal deformation caused by recent activity of the Chelungpu fault, 1999 surface rupture. Since this active fault runs through urban area, it is urgently needed to figure out its neotectonic behavior, including slip-rate and recurrence interval. Based on new ages, we also discuss the terrace correlation and its related structures. The study terraces are all strath terraces with only a few meters of veneered fluvial deposits on top. Due to the strong stream-power, nearly all the outcrops are dominated by fluvial cobbles, which is worst condition to preserve the syndepositional carbonaceous materials. Alternatively, optical stimulated luminescence (OSL) dating uses sandy quartz as the material and even has longer dating upper limit (up to several hundreds of years). Fortunately, sandy layer are found intercalated within the fluvial cobbles in studying terraces. We adopted the Single-Aliquot Regenerative (SAR) dose protocol on large aliquots of 90-150μ m quartz, which were cleaned using HCL, H2O2 and HF in the usual way. In case of incomplete bleaching during quick deposition, the OSL/TL ratio was adopted to approach the true De. Dosimetry is derived by ICP-MS and XRF analyses. For ascertainment of the initial bleaching of fluvial sediment, the modern samples collected in river bed of Wuhsi were also measured. Based on the results of modern samples, we believe that the residuals are inevitable in younger sediments, especially along the upper stream. On the contrary, the samples older than 10 kyr are little influenced due to the larger age error than the younger ones. The OSL age of the terrace samples in the hanging wall is dated ca. 13 kyr, which has been corrected for poorly-bleaching problem. Comparing to the ages collected down hole in the footwalls, we found out vertical displacements of ca. 67 and 37 m, has been

  4. Red shiner invasion and hybridization with blacktail shiner in the upper Coosa River, USA

    EPA Science Inventory

    Human disturbance increases the invasibility of lotic ecosystems and the likelihood of hybridization between invasive and native species. We investigated whether disturbance has contributed to the invasion of red shiner (Cyprinella lutrensis) and their hybridization with native b...

  5. Remote Sensing Observations of Snow and Soil Moisture for Snowmelt Flood Predictions in the Red River of the North Basin

    NASA Astrophysics Data System (ADS)

    Tuttle, S. E.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Restrepo, P. J.; Jia, X.; Cosh, M. H.; Deweese, M. M.; Connelly, B.; Buan, S.

    2015-12-01

    The northward-flowing Red River of the North Basin (RRB), located in eastern North Dakota and western Minnesota, is vulnerable to frequent floods due to its flat terrain and low permeability soil. A vast majority of floods in the basin occur during the snowmelt season, when the winter snowpack thaws and spring rains fall onto saturated soils. This causes the Red River to spill over shallow banks and across the floodplain. The region has sparse in situ observations of snow and soil moisture, making flood prediction in the RRB difficult. Remote sensing data can help to capture magnitude, timing, and spatial distribution of watershed scale snow, soil moisture, and snowmelt parameters in the RRB, which will allow for better characterization of the watershed's hydrologic state. This research examines snow water equivalent (SWE; from the AMSR-E, AMSR2, and SSM/I satellite instruments), soil moisture (from AMSR-E, SMOS, and SMAP), and snow covered area (SCA; from MODIS), along with modeled SWE and snow depth from NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) SNOw Data Assimilation System (SNODAS). These data are compared with observations from local and federal snow surveys, NOHRSC Airborne Gamma Radiation Snow Survey Program flights, NOAA National Climate Data Center (NCDC) cooperative network sites, Natural Resource Conservation Service (NRCS) Soil Climate Analysis Network (SCAN) sites, and the North Central River Forecast Center's (NCRFC) model states, in order to determine data quality as well as strengths and weaknesses of satellite observations for RRB flood forecasting. Future analyses will include evaluation of freeze/thaw state information from the Soil Moisture Active-Passive (SMAP) satellite, and explore the potential for flood forecasting improvement by updating state variables of the NOAA National Weather Service (NWS) operational forecasting models with remotely sensed fields.

  6. Impact of the Hoa Binh Dam (Vietnam) on water and sediment budgets in the Red River basin and delta

    NASA Astrophysics Data System (ADS)

    Vu, D. V.; Ouillon, S.; Tran, D. T.; La, V. C.

    2014-01-01

    The Hoa Binh Dam, located on a tributary of the Red River in Vietnam, has a capacity of 9.45 × 109 m3 and was commissioned in December 1988. Although being important for flood prevention, electricity production, and irrigation in northern Vietnam, the Hoa Binh Dam has also highly influenced the suspended sediment distribution in the lower Red River basin, in the delta and in the coastal zone. Its impact was analysed from 50 yr dataset of water discharge and suspended sediment concentration (1960-2010) and the distribution of water and sediment across the nine mouths of the delta was calculated using the MIKE 11 numerical model before and after the dam settlement. Although water discharge at the delta inlet decreased by only 8.8%, the yearly suspended sediment flux dropped, on average from 119 to 43 × 106 t yr-1 at Son Tay near Hanoi, and from 85 to 35 × 106 t yr-1 in the river mouths. Water regulation has led to decreased water discharge in the wet season and increased water discharge in the dry season. Suspended sediment discharge proportionally increased in northern and southern estuaries and decreased through the main and central Ba Lat mouth. Tidal pumping, which causes a net sediment flux from the coast to the estuary at low discharge, is high in the northern delta, as a consequence of the high tidal range (up to 4.5 m in spring tide; diurnal tide). The shifts in the dynamic and characteristics of the turbidity maximum zone in the Cam-Bach Dang estuary are probably the cause of the enhanced sediment deposition in the Haiphong harbor. Along the coast, the reduced sedimentation rates are coincident with the lower sediment delivery that has been observed since the impoundment of the Hoa Binh Dam.

  7. Sacramento River, Chico Landing to Red Bluff, California Bank Protection Project

    DTIC Science & Technology

    1975-01-01

    than on the river channel proper. 10 2.25. The Sacramento River is an essential system for most of the anadromous fishery resource in California...that are free of impoundments and generally inaccessible except by trail, with watersheds or shorelines essentially primitive and waters unpolluted... Lippia nodi flora) Southern California Milk thistle Common-Nationwide X (Silybum marianum) Poi son hemlock Common-Nat i onw i de X

  8. Establishment of a viable population of red-cockaded woodpeckers at the Savannah River Site. Annual report, FY 1990

    SciTech Connect

    Allen, D.H.

    1990-12-31

    In 1985 the Southeastern Forest Experiment Station (SEFES) in cooperation with the Department of Energy, the Savannah River Forest Station (SRFS) and the Savannah River Ecology Laboratory (SREL) initiated a research/management program to restore a viable population of red-cockaded woodpeckers (RCW) to the Savannah River Site (SRS). We managed to stabilize the population in the first couple of years through an intensive flying squirrel removal project as well as augmentation of female RCW`s to the SRS population. We are now in the expansion phase of the project. In 1990 we have focused our efforts on: (1) developing a cavity excavation method and excavating cavities in suitable habitat; (2) flying squirrel control; (3) translocation of RCW`s; (4) monitoring clan composition and reproduction; (5) identification of old-growth stands with the potential of providing new nesting habitat to support population expansion; and (6) surveying lands near SRS where RCW`s were thought to exist. This report summarizes activities for FY 1990 and plans for FY 1991.

  9. Establishment of a viable population of red-cockaded woodpeckers at the Savannah River Site. Annual report, FY1992

    SciTech Connect

    Laves, K.S.

    1992-09-11

    The Southeastern Forest Experiment Station (SEFES) began research on the red-cockaded woodpecker (RCW) on the Savannah River Site (SRS) in 1985 with the objective of restoring a viable population. This Project is conducted in cooperation with the Department of Energy, the Savannah River Forest Station (SRFS) and the Savannah River Ecology Laboratory. The program has consisted of two phases. The stabilization phase (1985--1987) focused on preventing the immediate extirpation of the RCW population. During this phase the number of breeding pairs of RCWs increased from one to three, and the total population increased from five to 14 birds. We are currently in the expansion phase (1987--present). To facilitate the population expansion of the RCW at SRS, SEFES and SRFS have implemented numerous research and management activities. These include: control of mid-story vegetation to improve habitat suitability, installation of artificial cavities for RCWS, translocations of RCWs within the SRS and from other populations, maintenance of cavities by installing metal restrictors to discourage cavity competition, and generic research to ascertain the degree of relatedness between individuals and populations.

  10. Sediment concentrations, loads, and particle-size distributions in the Red River of the North and selected tributaries near Fargo, North Dakota, during the 2011 spring high-flow event

    USGS Publications Warehouse

    Galloway, Joel M.; Blanchard, Robert A.; Ellison, Christopher A.

    2011-01-01

    Most of the bedload samples had particle sizes in the 0.5 to 1 millimeter and 0.25 to 0.5 millimeter ranges from the Maple River, Wild Rice River, Rush River, Buffalo River, and Red River sites. The Rush and Lower Branch Rush Rivers also had a greater portion of larger particle sizes in the 1 to 2 millimeter range. The Sheyenne River sites had a greater portion of smaller particle sizes in the bedload in the 0.125 to 0.5 millimeter range compared to the other sites. The bed material in samples collected during the 2011 spring high-flow event demonstrated a wider distribution of particle sizes than were observed in the bedload; the coarsest material was found at the Red River near Christine and the Lower Branch Rush River and the finest material at the Sheyenne River sites.

  11. Pervasive post-Eocene faulting and folding in unconsolidated sediments of the Mississippi River, Central U.S. as imaged by high-resolution CHIRP seismic data

    NASA Astrophysics Data System (ADS)

    Fave, X. J.; Magnani, M.; Waldron, B. A.; McIntosh, K. D.; Saustrup, S.; Guo, L.

    2010-12-01

    Despite being located in the stable continental interior of the North American plate, in 1811-1812 the New Madrid Seismic Zone (NMSZ) experienced among the largest magnitude historical earthquakes that ever occurred in the U.S. Paleoseismological evidence shows that large earthquakes have been occurring every 500 yr in the region for the past few thousand years, and historical and instrumental seismicity demonstrate that the NMSZ fault system is actively deforming today. By contrast, motion rates emerging from almost twenty years of geodetic observations substantiate a very slow rate of deformation across the NMSZ faults, suggesting that present velocities are not representative of the long-term deformation rate of the NMSZ fault system, and that deformation has likely been accommodated along structures additional to the NMSZ. In the summer of 2010, a high-resolution marine seismic reflection survey was carried out along the Mississippi River as part of a multi-year cooperative effort to investigate the spatial and temporal distribution of deformation in the Mississippi Embayment. Coincident to the seismic reflection profile, the survey also acquired ~300 km of CHIRP (Edgetech SB-512i) data from Cape Girardeau, MO to Caruthersville, MO. The CHIRP used a 0.7-1.2 kHz source pulse and recorded to a depth of 5-50 m sub-bottom. Here we present the preliminary interpretation of part of the CHIRP profile along the Mississippi River north of Hickman, KY, where the survey imaged a highly reflective sedimentary package down to a depth of ~50 m. The sedimentary sequence is about 20 m thick and appears to be bounded at the top and at the bottom by angular unconformities. The package is mildly folded and pervasively faulted, in some cases by extensional faults that exhibit up to 2 m of displacement and that reach the riverbed. Based on exposure of Eocene deposits 7 km to the east of the study area, and on the correlation of electric and gamma logs of nearby oil, gas and water

  12. Nutrient delivery to Lake Winnipeg from the Red-Assiniboine River Basin – A binational application of the SPARROW model

    USGS Publications Warehouse

    Benoy, Glenn A; Jenkinson, R. Wayne; Robertson, Dale; Saad, David A.

    2016-01-01

    Excessive phosphorus (TP) and nitrogen (TN) inputs from the Red–Assiniboine River Basin (RARB) have been linked to eutrophication of Lake Winnipeg; therefore, it is important for the management of water resources to understand where and from what sources these nutrients originate. The RARB straddles the Canada–United States border and includes portions of two provinces and three states. This study represents the first binationally focused application of SPAtially Referenced Regressions on Watershed attributes (SPARROW) models to estimate loads and sources of TP and TN by jurisdiction and basin at multiple spatial scales. Major hurdles overcome to develop these models included: (1) harmonization of geospatial data sets, particularly construction of a contiguous stream network; and (2) use of novel calibration steps to accommodate limitations in spatial variability across the model extent and in the number of calibration sites. Using nutrient inputs for a 2002 base year, a RARB TP SPARROW model was calibrated that included inputs from agriculture, forests and wetlands, wastewater treatment plants (WWTPs) and stream channels, and a TN model was calibrated that included inputs from agriculture, WWTPs and atmospheric deposition. At the RARB outlet, downstream from Winnipeg, Manitoba, the majority of the delivered TP and TN came from the Red River Basin (90%), followed by the Upper Assiniboine River and Souris River basins. Agriculture was the single most important TP and TN source for each major basin, province and state. In general, stream channels (historically deposited nutrients and from bank erosion) were the second most important source of TP. Performance metrics for the RARB SPARROW model are similarly robust compared to other, larger US SPARROW models making it a potentially useful tool to address questions of where nutrients originate and their relative contributions to loads delivered to Lake Winnipeg.

  13. Coupling legacy geomorphic surface facies to riparian vegetation: Assessing red cedar invasion along the Missouri River downstream of Gavins Point dam, South Dakota

    NASA Astrophysics Data System (ADS)

    Greene, Samantha L.; Knox, James C.

    2014-01-01

    Floods increase fluvial complexity by eroding established surfaces and creating new alluvial surfaces. As dams regulate channel flow, fluvial complexity often decreases and the hydro-eco-geomorphology of the riparian habitat changes. Along the Missouri River, flow regulation resulted in channel incision of 1-3 m within the study area and disconnected the pre-dam floodplain from the channel. Evidence of fluvial complexity along the pre-dam Missouri River floodplain can be observed through the diverse depositional environments represented by areas of varying soil texture. This study evaluates the role of flow regulation and depositional environment along the Missouri River in the riparian invasion of red cedar downstream of Gavins Point dam, the final dam on the Missouri River. We determine whether invasion began before or after flow regulation, determine patterns of invasion using Bayesian t-tests, and construct a Bayesian multivariate linear model of invaded surfaces. We surveyed 59 plots from 14 riparian cottonwood stands for tree age, plot composition, plot stem density, and soil texture. Red cedars existed along the floodplain prior to regulation, but at a much lower density than today. We found 2 out of 565 red cedars established prior to regulation. Our interpretation of depositional environments shows that the coarser, sandy soils reflect higher energy depositional pre-dam surfaces that were geomorphically active islands and point bars prior to flow regulation and channel incision. The finer, clayey soils represent lower energy depositional pre-dam surfaces, such as swales or oxbow depressions. When determining patterns of invasion for use in a predictive statistical model, we found that red cedar primarily establishes on the higher energy depositional pre-dam surfaces. In addition, as cottonwood age and density decrease, red cedar density tends to increase. Our findings indicate that flow regulation caused hydrogeomorphic changes within the study area that

  14. Streamflow characteristics of streams in the Upper Red River of the North basin, North Dakota, Minnesota, and South Dakota

    USGS Publications Warehouse

    Wiche, G.J.; Williams-Sether, Tara

    1997-01-01

    Statistical summaries of streamflow data for all active and inactive gaging stations for the Red River Basin upstream of and including Halstad, Minnesota, are presented in this report. The summaries for each streamflow-gaging station include (1) manuscript (station description), (2) graph of the annual mean discharge for the period of record, (3) statistics of monthly and annual mean discharges, (4) graph of the annual flow duration, (5) monthly and annual flow duration, (6) probability of annual high discharges, (7) probability of annual low discharges, (8) probability of seasonal low discharges, (9) annual peak discharge and corresponding gage height for the period of record, and (10) monthly and annual mean discharges for the period of record.

  15. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    USGS Publications Warehouse

    Reppe, Thomas H.C.

    2005-01-01

    On the basis of data and methods presented to evaluate ground-water availability, the Otter Tail and Pineland Sands surficial aquifers and Pelican River sand-plain aquifer have the greatest potential for additional development of ground-water resources in the study area.

  16. 77 FR 43591 - Tri-State Financial Co., LLC, (d/b/a North Country Ethanol), Red River Energy, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... County, South Dakota and Richland County, North Dakota. In addition, Red River requests temporary... the docket number field to access the document. For assistance, please contact FERC Online Support at... miles long pipeline from an interconnect with the interstate pipeline facilities of Alliance Pipeline...

  17. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    USGS Publications Warehouse

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  18. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the North

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to assess if urban environments affect floodwater quality, and to determine the quantity and quality of overbank sediment deposited in an urban environment after floodwaters recede. Water samples during major flooding of the Red River of the North (RR) were taken on...

  19. Hydrogeological restrictions to saline ground-water discharge in the Red River of the North drainage basin, North Dakota

    SciTech Connect

    Strobel, M.L. Univ. of North Dakota, Grand Forks, ND )

    1992-01-01

    Discharge of saline water from bedrock aquifers along the eastern margin of the Williston basin is restricted by surficial glacial till and lacustrine deposits in the Red River of the North drainage basin. Water from these aquifers reaches the surface by (1) diffusion; (2) slow, upward seepage along zones of relatively larger hydraulic conductivity in the till and lacustrine deposits; or (3) flow from artesian wells. Ground-water quality varies near the surface because of mixing of water being discharged from bedrock aquifers with shallower ground water in the surficial deposits. Ground-water quality, hydraulic-gradient, and hydraulic-conductivity data obtained from pumped-well and slug tests indicate that flow in the surficial deposits is eastward, but at slow rates because of small hydraulic conductivities. Base-flow and specific-conductance measurements of water in tributaries to the Red River of the North indicate that focused points of ground-water discharge result in substantial increases in salinity in surface water in the northern part of the basin in North Dakota. Core analyses and drillers' logs were used to generalize hydrogeologic characteristics of the deposits in the basin, and a two-dimensional ground-water-flow model was used to simulate the basin's geohydrologic processes. Model results indicate that the ground-water flow paths in the bedrock aquifers and surficial deposits converge, and that water from the bedrock aquifers contributes to the overall increase in ground-water discharge toward the east. Model results are supported by water-quality data collected along an east-west hydrogeologic section.

  20. Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD

    SciTech Connect

    Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

  1. Growth faulting and syntectonic casting of the Dawson Creek Graben Complex: A North American craton-marginal trough; Carboniferous-Permian Peace River Embayment, western Canada

    SciTech Connect

    Barclay, J.E.; Utting, J. ); Krause, F.F.; Campbell, R.I. )

    1991-06-01

    The Dawson Creek Graben Complex was a 150 {times} 300 km, craton-perpendicular trough near the western North American craton margin. Sedimentary infill spanned 100 million years, and this tectonically controlled basin provides a comparison with other craton-marginal troughs or aulacogens, such as the Big Snowy, Uinta, Delaware, and Southern Oklahoma. The authors suspect that the graben complex was controlled by outboard, Antler-like orogeny and perhaps some strike-slip control. This syntectonic graben infill model provides a basis for developing new structural-stratigraphic plays in this mature basin. This extensional trough rests on a former basement arch and is centered in the broadly downwarped Peace River embayment. Sediment infill records several graben casting stages beginning with westernmost down-dropping, which then extended eastward and was accompanied by an increase in growth-type block faulting. Subsidence and faulting decay was followed by a retreat to western areas and tectonic stabilization. The complex was an arcuate half-graben, steep to the north, that widened asymmetrically and increased in depth to the west through time. The complex contained a principal half-graben with neighboring satellite grabens; throughout the complex are numerous kilometer-scale horst and graben blocks. The horsts subsided slower than neighboring grabens. This differential subsidence along block-bounding syn- and postdepositional growth-type normal faults controlled formation and bed thickness, as did inter- and intraformational unconformities.

  2. Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam

    PubMed Central

    Thi Hoa Mai, Nguyen; Postma, Dieke; Thi Kim Trang, Pham; Jessen, Søren; Hung Viet, Pham; Larsen, Flemming

    2016-01-01

    The adsorption of arsenic onto aquifer sediment from the Red River floodplain, Vietnam, was determined in a series of batch experiments. Due to water supply pumping, river water infiltrates into the aquifer at the field site and has leached the uppermost aquifer sediments. The leached sediments, remain anoxic but contain little reactive arsenic and iron, and are used in our experiments. The adsorption and desorption experiments were carried out by addition or removal of arsenic from the aqueous phase in sediment suspensions under strictly anoxic conditions. Also the effects of HCO3, Fe(II), PO4 and Si on arsenic adsorption were explored. The results show much stronger adsorption of As(V) as compared to As(III), full reversibility for As(III) adsorption and less so for As(V). The presence or absence of HCO3 did not influence arsenic adsorption. Fe(II) enhanced As(V) sorption but did not influence the adsorption of As(III) in any way. During simultaneous adsorption of As(III) and Fe(II), As(III) was found to be fully desorbable while Fe(II) was completely irreversibly adsorbed and clearly the two sorption processes are uncoupled. Phosphate was the only solute that significantly could displace As(III) from the sediment surface. Compiling literature data on arsenic adsorption to aquifer sediment in Vietnam and Bangladesh revealed As(III) isotherms to be almost identical regardless of the nature of the sediment or the site of sampling. In contrast, there was a large variation in As(V) adsorption isotherms between studies. A tentative conclusion is that As(III) and As(V) are not adsorbing onto the same sediment surface sites. The adsorption behavior of arsenic onto aquifer sediments and synthetic Fe-oxides is compared. Particularly, the much stronger adsorption of As(V) than of As(III) onto Red River as well as on most Bangladesh aquifer sediments, indicates that the perception that arsenic, phosphate and other species compete for the same surface sites of iron oxides in

  3. Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam

    NASA Astrophysics Data System (ADS)

    Thi Hoa Mai, Nguyen; Postma, Dieke; Thi Kim Trang, Pham; Jessen, Søren; Hung Viet, Pham; Larsen, Flemming

    2014-10-01

    The adsorption of arsenic onto aquifer sediment from the Red River floodplain, Vietnam, was determined in a series of batch experiments. Due to water supply pumping, river water infiltrates into the aquifer at the field site and has leached the uppermost aquifer sediments. The leached sediments remain anoxic but contain little reactive arsenic and iron, and are used in our experiments. The adsorption and desorption experiments were carried out by addition or removal of arsenic from the aqueous phase in sediment suspensions under strictly anoxic conditions. Also the effects of HCO3, Fe(II), PO4 and Si on arsenic adsorption were explored. The results show much stronger adsorption of As(V) as compared to As(III), full reversibility for As(III) adsorption and less so for As(V). The presence or absence of HCO3 did not influence arsenic adsorption. Fe(II) enhanced As(V) sorption but did not influence the adsorption of As(III) in any way. During simultaneous adsorption of As(III) and Fe(II), As(III) was found to be fully desorbable while Fe(II) was completely irreversibly adsorbed and clearly the two sorption processes are uncoupled. Phosphate was the only solute that significantly could displace As(III) from the sediment surface. Compiling literature data on arsenic adsorption to aquifer sediment in Vietnam and Bangladesh revealed As(III) isotherms to be almost identical regardless of the nature of the sediment or the site of sampling. In contrast, there was a large variation in As(V) adsorption isotherms between studies. A tentative conclusion is that As(III) and As(V) are not adsorbing onto the same sediment surface sites. The adsorption behavior of arsenic onto aquifer sediments and synthetic Fe-oxides is compared. Particularly, the much stronger adsorption of As(V) than of As(III) onto Red River as well as on most Bangladesh aquifer sediments, indicates that the perception that arsenic, phosphate and other species compete for the same surface sites of iron oxides in

  4. Red River of the North Main Stem: Technical Information Report (with Special Emphasis on Agricultural Levees).

    DTIC Science & Technology

    1982-07-01

    18 DISCHARGE-SETBACK CURVE 129 19 DISCHARGE VS. LEVEE HEIGHT CURVE 130 20 SETBACK VS. LEVEE HEIGHT CURVE 131 21 ROTATIONAL LANDSLIDE 135 22 POTENTIAL...ftOO G% F0 OSO -64NDFOK 29L C _z __W- -m-C C -- - -- - - - - :7__ _ __ __ ---- ---- sew -0 n DRY - SL Ir - LV-RA00 3z’ 33~. T-^ = Fiure 2a Naxziumare...bottom and very low river elevation). Landslides of the type in question are usually deep-seated. When the failing earth mass breaks away from the lake

  5. Geologic Setting, Geohydrology, and Ground-Water Quality near the Helendale Fault in the Mojave River Basin, San Bernardino County, California

    USGS Publications Warehouse

    Stamos, Christina L.; Cox, Brett F.; Izbicki, John A.; Mendez, Gregory O.

    2003-01-01

    The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has resulted in rapid population growth and, consequently, an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry--except for periods of flow after intense storms; therefore, the region relies almost entirely on ground water to meet its agricultural and municipal needs. The area where the Helendale Fault intersects the Mojave River is of particular hydrogeologic interest because of its importance as a boundary between two water-management subareas of the Mojave Water Agency. The fault is the boundary between the upper Mojave River Basin (Oeste, Alto, and Este subareas) and the lower Mojave River Basin (Centro and Baja subareas); specifically, the fault is the boundary between the Alto and the Centro subareas. To obtain the information necessary to help better understand the hydrogeology of the area near the fault, multiple-well monitoring sites were installed, the surface geology was mapped in detail, and water-level and water-quality data were collected from wells in the study area. Detailed surficial geologic maps and water-level measurements indicate that the Helendale Fault impedes the flow of ground water in the deeper regional aquifer, but not in the overlying floodplain aquifer. Other faults mapped in the area impede the flow of ground water in both aquifers. Evidence of flowing water in the Mojave River upgradient of the Helendale Fault exists in the historical record, suggesting an upward gradient of ground-water flow. However, water-level data from this study indicate that pumping upstream of the Helendale Fault has reversed the vertical gradient of ground-water flow since predevelopment conditions, and the potential now exists for water to flow downward from the floodplain aquifer to the regional aquifer. Sixty-seven ground-water samples were analyzed for major ions, nutrients, and stable

  6. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan-Ze; Replumaz, Anne; Wang, Guo-Can; Leloup, Philippe Hervé; Gautheron, Cécile; Bernet, Matthias; Beek, Peter; Paquette, Jean Louis; Wang, An; Zhang, Ke-Xin; Chevalier, Marie-Luce; Li, Hai-Bing

    2015-06-01

    The Litang fault system that crosses the Litang Plateau, a low relief surface at high elevation (~4200-4800 m above sea level) that is not affected by regional incision, provides the opportunity to study exhumation related to tectonics in the SE Tibetan Plateau independently of regional erosion. Combining apatite and zircon fission track with apatite (U-Th)/He thermochronologic data, we constrain the cooling history of the Litang fault system footwall along two transects. Apatite fission track ages range from 4 to 16 Ma, AHe ages from 2 to 6 Ma, and one zircon fission track age is ~99 Ma. These data imply a tectonic quiet period sustained since at least 100 Ma with a slow denudation rate of ~0.03 km/Ma, interrupted at 7 to 5 Ma by exhumation at a rate between 0.59 and 0.99 km/Ma. We relate that faster exhumation to the onset of motion along the left-lateral/normal Litang fault system. That onset is linked to a Lower Miocene important kinematic reorganization between the Xianshuihe and the Red River faults, with the eastward propagation of the Xianshuihe fault along the Xiaojiang fault system and the formation of the Zhongdian fault. Such strike-slip faults allow the sliding to the east of a wide continental block, with the Litang fault system accommodating differential motion between rigid blocks. The regional evolution appears to be guided by the strike-slip faults, with different phases of deformation, which appears more in agreement with an "hidden plate-tectonic" model rather than with a "lower channel flow" model.

  7. Planktonic rotifer assemblages of the Danube River at Budapest after the red sludge pollution in Hungary.

    PubMed

    Schöll, Károly; Szövényi, Gergely

    2011-08-01

    In the autumn of 2010 an industrial red sludge spill occurred in Hungary. The toxic chemical waste with high alkalinity (pH 13.5) reached the Danube 2 days later, where no change was expected because of the high level of dilution. The planktonic rotifer assemblages of the Danube were investigated at Budapest during the contamination. The median of community density decreased from 500 ind. 100 L(-1) to zero, the species richness from 3.00 to 0.00, Shannon-Weaver diversity from 1.10 to 0.00 after the arrival of the contamination. The rotifer assemblages seemed to have recovered after 3 weeks, but the initial levels of diversity and density were not reached again.

  8. Possible Impact of climate change on future extreme precipitation of the Oldman, Bow and Red Deer River Basins of Alberta

    NASA Astrophysics Data System (ADS)

    Yew Gan, Thian; Gizaw, Mesgana

    2016-04-01

    The impact of climate change on extreme precipitation events in the Oldman (ORB), Bow, (BRB) and Red Deer (RRB) River Basins of southern Alberta, Canada, was assessed using six extreme climate indices for the rainy period of May-August (MJJA), and 9-km resolution Special Report on Emission Scenarios (SRES) A2 and A1B climate scenarios of four Coupled Model Intercomparison Project Phase 3 (CMIP3) Global Climate Models (GCMs) dynamically downscaled by a regional climate model, MM5. R95p of the three study sites showed an increase of 4% for the 2050s (2041-2070) and 10% for the 2080s (2071-2100) period, whereas R99p increased by 39% (2050s) and 42% (2080s) which suggest a projected increase in the volume of precipitation expected in future very wet and particularly extremely wet days. Similarly, R20mm, P30yr, RX1day and RX5day are also projected to increase by about 15% by the mid- and late 21st century in the three study sites. However, compared to BRB and RRB, ORB located in the southernmost part of the study site is projected to undergo a relatively higher increase in both temperature and precipitation intensity, which is assessed in terms of indices such as P30yr, RX1day and RX5day. On the other hand, RRB and BRB are projected to experience higher increase in R20mm, which suggest a relatively higher increase in the number of very heavy precipitation days projected for these two basins. Overall, these results suggest that in the 2050s and 2080s, southern Alberta will be expected to experience more frequent and severe intensive storm events in the MJJA season that could potentially increase the risk of future flooding in this region. Ref: Gizaw, M., and Gan, T. Y., 2015, Possible Impact of climate change on future extreme precipitation of the Oldman, Bow and Red Deer River Basins of Alberta, Int. Journal Climatology, DOI:10.1002/joc.4338

  9. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley, and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald Edward; Gates, J.S.; Smith, Joe T.; Fry, B.J.

    1978-01-01

    From October 1971 through October 1974, the U.S. Geological Survey collected groundwater data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. The data collection program consisted of an inventory of all major irrigation, municipal-supply, and industrial wells; selected stock and domestic wells; and selected springs. Water samples were collected from representative wells and springs for chemical analyses. (Woodard-USGS)

  10. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald E.; Gates, Joseph S.; Smith, James T.; Fry, Bonnie J.

    1980-01-01

    From October 1971 through October 1974. the U.S. Geological Survey collected ground-water data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. These data, which were collected in cooperation with the Texas Department of Water Resources (formerly Texas Water Development Board), will provide information for a continuing assessment of water availability within the State.

  11. An experimental study of the impact of location on the effectiveness of recruitment clusters for red-cockaded woodpeckers at the Savannah River Site.

    SciTech Connect

    Walters, J., R.; Taylor, T., B.; Daniels, S., J.

    2003-05-29

    This report summarizes results of research on red-cockaded woodpeckers (Picoides borealis) conducted by personnel from Virginia Polytechnic Institute and State University (Virginia Tech) and the Duke Marine Laboratory at the Savannah River Site (SRS), South Carolina, from September 29, 2000 through September 28, 2002. This period represents the first two years of a five-year Cooperative Agreement between Virginia Tech and the USDA Forest Service, Savannah River. This report serves as an Interim Project Report with respect to the Cooperative Agreement (No. OO-CA-ll 083600-010), and a Final Project Report for the initial award to Virginia Tech (FRS No.428911).

  12. Segmentation and the coseismic behavior of Basin and Range normal faults: examples from east-central Idaho and southwestern Montana, U.S.A.

    USGS Publications Warehouse

    Crone, A.J.; Haller, K.M.

    1991-01-01

    The range-front normal faults of the Lost River and Lemhi Ranges, and the Beaverhead and Tendoy Mountains in east-central Idaho and southwestern Montana have well-preserved fault scarps on Quaternary deposits along much of their lengths. Fault-scarp morphology, the age of deposits displaced by the faults, and the morphology of the range fronts provide a basis for dividing the faults into segments that are typically 20-25 km long. The Lost River, Lemhi and Beaverhead fault zones are 141-151 km long, and each has six segments. The 60-km-long Red Rock fault (the range-front fault of the Tendoy Mountains) has two central segments that have been active in late Quaternary time; these two segments span the central 27 km of the fault. We recognize four characteristics that help to identify segment boundaries: (1) major en e??chelon offsets or pronounced gaps in the continuity of fault scarps; (2) distinct, persistent, along-strike changes in fault-scarp morphology that indicate different ages of faulting; (3) major salients in the range front; and (4) transverse bedrock ridges where the cumulative throw is low compared to other places along the fault zone. Only features whose size is measured on the scale of kilometers are regarded as significant enough to represent a segment boundary that could inhibit or halt a propagating rupture. The ability to identify segments of faults that are likely to behave as independent structural entities will improve seismic-hazard assessment. However, one should not assume that the barriers at segment boundaries will completely stop all propagating ruptures. The topographic expression of mountain ranges is evidence that, at times during their history, all barriers fail. Some barriers apparently create 'leaky' segment boundaries that impede propagating ruptures but do not completely prevent faulting on adjacent segments. ?? 1991.

  13. First local seismic tomography for Red River shear zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Xu, Zhen J.; Wu, Yih-Min; Song, Xiaodong; Huang, Bor-Shouh; Nguyen, Le Minh

    2013-01-01

    The 900-km-long Red River shear zone (RRSZ) lends a compelling support to the continental extrusion model for the tectonic evolution of southeastern Asia, but has been challenged by many of views, as some new records mainly from northern Vietnam, suspecting the dimensions of RRSZ neither in depth nor in displacement are as large as we expected before. However, compared to the northwestern half of the RRSZ in Yunnan province better studied by many fields, the southeastern half in northern Vietnam is relatively poorly constrained by seismic study, due to insufficient stations and data in the past. This study, using a newly deployed portable broadband seismic network, obtained the first local seismic tomography with a stepwise inversion using P and Pn phases. Surface geology, major structures, and rock properties are well correlated and identified in our model, suggesting the RRSZ is a lithospheric structure at least penetrating to the uppermost mantle with mantle thermal anomalies. In general, the crust of northern Vietnam appears to be weak and sits on a relatively hot uppermost mantle, showing a long and complex thermo tectonic history. A mid-lower crustal segmentation of RRSZ is also proposed to compromise the discrepancies recently observed between Yunnan province and northern Vietnam.

  14. Hydrogeology and physical characteristics of water samples at the Red River aluminum site, Stamps, Arkansas, April 2001

    USGS Publications Warehouse

    Czarnecki, John B.; Stanton, Gregory P.; Freiwald, David A.

    2001-01-01

    The Red River Aluminum site near Stamps, Arkansas, contains waste piles of salt cake and metal byproducts from the smelting of aluminum. The waste piles are subjected to about 50 inches of rainfall a year, resulting in the dissolution of the salts and metal. To assess the potential threat to underlying ground-water resources at the site, its hydrogeology was characterized by measuring water levels and field parameters of water quality in 23 wells and at 2 surface-water sites. Seventeen of these monitor wells were constructed at various depths for this study to allow for the separate characterization of the shallow and deep ground-water systems, the calculation of vertical gradients, and the collection of water samples at different depths within the flow system. Lithologic descriptions from drill-hole cuttings and geophysical logs indicate the presence of interbedded sands, gravels, silts, and clays to depths of 65 feet. The regionally important Sparta aquifer underlies the site. Water levels in shallow wells indicate radial flow away from the salt-cake pile located near the center of the site. Flow in the deep system is to the west and southwest toward Bodcau Creek. Water-level data from eight piezometer nests indicate a downward hydraulic gradient from the shallow to deep systems across the site. Values of specific conductance (an indicator of dissolved salts) ranged from 215 to 196,200 microsiemens per centimeter and indicate that saline waters are being transported horizontally and vertically downward away from the site

  15. Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish from the Red River of the North

    USGS Publications Warehouse

    Goldstein, Robert M.; Brigham, Mark E.; Stauffer, Joseph C.

    1996-01-01

    Carp (Cyprinus carpio) from four sites and channel catfish (Ictalurus punctatus) from one site in the Red River of the North in 1994 were analyzed for total mercury content. In carp, mercury concentrations differed among liver, muscle, and whole bodies (0.11, 0.31, and 0.18 µg/g wet weight, respectively), between large and small size groups, but not location. Mercury distribution in channel catfish tissues differed from that in carp. Liver and muscle tissue had similar mean concentrations; each was higher than whole-body concentrations (0.16, 0.18, and 0.11 µg/g, respectively). Mercury concentrations were not significantly different between the two size groups of channel catfish. Weighted-mean mercury concentrations from seven individual fish agreed closely (usually within 10%) with concentrations determined on physical composites of the same fish. The ratio of mercury in whole bodies to mercury in muscle was similar for both carp and channel catfish. Historical data indicate that this ratio may be applicable to other species and locations. The ratio of mercury in livers to whole bodies and muscle differed between carp and channel catfish, which may reflect physiological differences between different trophic groups.

  16. Photovoice in the Red River Basin of the north: a systematic evaluation of a community-academic partnership.

    PubMed

    Stedman-Smith, Maggie; McGovern, Patricia M; Peden-McAlpine, Cynthia J; Kingery, Linda R; Draeger, Kathryn J

    2012-09-01

    A community-academic partnership was formed in Minnesota's Red River Basin for a 1-year planning grant preceding a larger intervention to reduce pesticide exposure among children. Photovoice, developed by Dr. Caroline Wang, was used by mothers to document pathways to pesticide exposure for their children along with other health and safety concerns. An evaluation of the partnership was conducted for mothers, and for the research team of local stakeholders and academics. Surveys consisting of structured and open-ended questions elicited information on the perception of the process and short-term outcomes. Questions were created based on objectives of the Photovoice project, satisfaction, and principles of community-based participatory research (CBPR). A high percentage of study participants and researchers indicated that the objectives of the effort had been met, the principles of CBPR had been realized and they were satisfied with the benefits of participation. A need for more thorough planning was identified related to long-term dissemination of knowledge generated. The evaluation provides insight on the strengths and weaknesses of the project, demonstrates to team members and funders that formative and summative outcomes were met, and serves as a model for community-academic partnerships utilizing Photovoice as one CBPR method.

  17. Establishment of a viable population of red-cockaded woodpeckers at the Savannah River Plant: Progress report, 1985 through 1988

    SciTech Connect

    Allen, D.H.; Lennartz, M.R.

    1988-12-06

    In 1985 the Southeastern Forest Experiment Station (SEFES) in cooperation with the Department of Energy began research on the red-cockaded woodpecker (RCW) at the Savannah River Plant (SRP). In early 1986 there were four RCW's on the SRP, including one pair in colony 19 and solitary males in colonies 5 and 16. Because of the decline in past years, it was deemed necessary to bring in birds from outside the plant to augment the local RCW population. In the next two years, translocations and local reproduction increased the population to 14 birds and the number of breeding clans from one to three. Although only two clans bred and fledged young in 1988, the population remains at 14 birds and has expanded to occupy five colony sites. Research and management activities implemented or continued over the past year include: translocations of birds within the SRP and from the Francis Marion National Forest (FMNF) to SRP, herbicide, burning and thinning for hardwood control and increased diameter growth of pines, the removal of flying squirrels from active colonies, and the installation of nest boxes, RCW artificial cavities and metal restrictors to reduce competition from other species.

  18. Nutrients, suspended sediment, and pesticides in streams in the Red River of the North basin, Minnesota, North Dakota, and South Dakota, 1993-95

    USGS Publications Warehouse

    Tornes, L.H.; Brigham, M.E.; Lorenz, D.L.

    1997-01-01

    The most heavily used herbicides, 2,4-D and MCPA, were infrequently detected in stream-water samples. Of the estimated applications of atrazine, triallate, and 2,4-D, about 0.9, 0.06, and 0.02 percent of each of these compounds, respectively, was carried out of the study unit by the Red River of the North during 1993-95.

  19. Final Environmental Assessment, Construct Antenna Parts Storage Facility, Upgrade Perimeter Security Fence and Demolish Camera Shed, Red River Air Force Space Surveillance Station (AFSSS), Lewisville, Arkansas

    DTIC Science & Technology

    2012-11-01

    Substandard”). Condition Code 3 means this facility cannot be raised to meet Class A standard to house the function for which it is currently...and energy goals; • Have sufficient space to house all necessary parts and equipment; • Enhance security for the space surveillance system program...within the Red River AFSSS (NAVFAC, 2003). Radon Radon testing was performed in April 1999 and results indicate radon levels below the threshold

  20. Section 32 Program. Streambank Erosion Control, Evaluation and Demonstration. Work Unit 2. Evaluation of Existing Bank Protection. Field Inspection of Morameal Revetment on the Red River,

    DTIC Science & Technology

    1979-09-01

    INSPECTION OF MORAMEAL REVETMENT ON THE RED RIVER by .0 Malcolm P. Keown, E. A. Dardeau, Jr. Hydraulics Laboratory U. S . Army Engineer Waterways...Engineers, U. S . Army Washington, D. C. 20314 e* 0 v W W .. v W W A-4 . .. . . .. . SECTION 32 PROGRAM STREAM4BANK EROSION CONTROL EVALUATION AND...mile 256.6 (mileage established in 1967 by the Corps of Engineers). The revetment was inspected by the U. S . Army Engineer Waterways Experiment Station

  1. Wide-area estimates of evapotranspiration by red gum (Eucalyptus camaldulensis) and associated vegetation in the Murray-Darling River Basin, Australia

    USGS Publications Warehouse

    Nagler, Pamela L.; Doody, Tanya M.; Glenn, Edward P.; Jarchow, Christopher J; Barreto-Munoz, Armando; Didan, Kamel

    2016-01-01

    Floodplain red gum forests (Eucalyptus camaldulensis plus associated grasses, reeds and sedges) are sites of high biodiversity in otherwise arid regions of southeastern Australia. They depend on periodic floods from rivers, but dams and diversions have reduced flood frequencies and volumes, leading to deterioration of trees and associated biota. There is a need to determine their water requirements so environmental flows can be administered to maintain or restore the forests. Their water requirements include the frequency and extent of overbank flooding, which recharges the floodplain soils with water, as well as the actual amount of water consumed in evapotranspiration (ET). We estimated the flooding requirements and ET for a 38 134 ha area of red gum forest fed by the Murrumbidgee River in Yanga National Park, New South Wales. ET was estimated by three methods: sap flux sensors placed in individual trees; a remote sensing method based on the Enhanced Vegetation Index from MODIS satellite imagery and a water balance method based on differences between river flows into and out of the forest. The methods gave comparable estimates yet covered different spatial and temporal scales. We estimated flood frequency and volume requirements by comparing Normalized Difference Vegetation Index values from Landsat images with flood history from 1995 to 2014, which included both wet periods and dry periods. ET during wet years is about 50% of potential ET but is much less in dry years because of the trees' ability to control stomatal conductance. Based on our analyses plus other studies, red gum trees at this location require environmental flows of 2000 GL yr−1 every other year, with peak flows of 20 000 ML d−1, to produce flooding sufficient to keep them in good condition. However, only about 120–200 GL yr−1 of river water is consumed in ET, with the remainder flowing out of the forest where it enters the Murray River system.

  2. Mortality associated with melarsomine dihydrochloride administration in two North American river otters (Lontra canadensis) and a red panda (Ailurus fulgens fulgens).

    PubMed

    Neiffer, Donald L; Klein, Edwin C; Calle, Paul P; Linn, Michael; Terrell, Scott P; Walker, Rodney L; Todd, Donna; Vice, Carol C; Marks, Steven K

    2002-09-01

    Two adult North American river otters (Lontra canadensis) and an adult red panda (Ailurus fulgens fulgens) at three separate institutions died within 22 hr after receiving single 2.5- to 2.7-mg/kg doses of melarsomine dihydrochloride administered in the epaxial musculature as a treatment for filarid nematodes. One otter had a suspected Dirofilaria immitis infection, the other had a confirmed D. lutrae infection, and the red panda had a confirmed Dirofilaria sp. infection, presumably with D. immitis. Postmortem examinations revealed similar gross lesions, although they were less severe in the red panda. The trachea and primary bronchi contained abundant foamy fluid, the lungs were mottled with areas of consolidation, and the pulmonary parenchyma exuded abundant fluid at the cut section. Histologic evaluation revealed acute pulmonary edema, which resulted in respiratory failure and death. There may have been direct pulmonary cellular toxicity of melarsomine dihydrochloride or a severe systemic anaphylactic reaction to antigens released after parasite death. An idiosyncratic drug reaction or a low therapeutic index of melarsomine probably caused the death of the three individuals. Melarsomine dihydrochloride use should be avoided in North American river otters and red pandas.

  3. Red waters of Myrionecta rubra are biogeochemical hotspots for the Columbia River estuary with impacts on primary/secondary productions and nutrient cycles

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; Prahl, Fredrick G.; McCue, Lee Ann; Needoba, Joe A.; Crump, Byron C.; Roegner, G. Curtis; Campbell, Victoria; Zuber, Peter A.

    2012-02-29

    The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007-2010 was evaluated with biogeochemical, light microscopy, physiological and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas of the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and enhanced microbial secondary production. Taken together these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.

  4. Chlorinated hydrocarbons and mercury in sediments, red-winged blackbirds (Agelaius phoeniceus) and tree swallows (Tachycineta bicolor) from wetlands in the Great Lakes-St. Lawrence River basin

    SciTech Connect

    Bishop, C.A.; Koster, M.D.; Chek, A.A.; Hussell, D.J.T.; Jock, K.

    1995-03-01

    In 1991, the authors collected red-winged blackbird (Agelauis phoeniceus) eggs and tree swallow (Tachycineta bicolor) eggs and nestlings, and sediment samples from 2 wetland sites in the Great lakes and St. Lawrence River basin. They analyzed for chlorinated hydrocarbons and total mercury and found that biota contained contaminant concentrations which were one to two orders of magnitude above those in sediments. Maximum concentrations of contaminants were found in Akwesasne, St. Lawrence river (PCBs = 18,558.8 ng/g in red-winged blackbird eggs, oxychlordane = 58.8/g and mirex = 40.1 ng/g in tree swallow eggs); Mud Creek, Lake Erie and Cootes Paradise. Despite the migratory habits of red-winged blackbirds and tree swallows, agreement among biota and sediment in geographic variation of contaminant concentrations supports the use of these animals as biomonitors of persistent chemicals. Although chlorinated hydrocarbon concentrations in red-winged blackbird eggs were significantly correlated with sediment contamination, the local nature of the tree swallow chick diet suggests that nestlings would be the best indicator of local contaminant trends.

  5. Simultaneous and continuous measurements of dissolved CO2, CH4, N2O and CO in rivers using Fourier-Transform-InfraRed (FTIR) spectrometry

    NASA Astrophysics Data System (ADS)

    Warneke, Thorsten; Müller, Denise; Caldow, Christopher; Rixen, Tim; Notholt, Justus

    2015-04-01

    We have coupled a Fourier-Transform InfraRed (FTIR) trace gas analyser to an equilibrator, which allows the simultaneous and continuous measurement of dissolved CO2, CH4, N2O and CO in water. The FTIR-technique has a high precision over a wide range of concentrations, making it very suitable for the measurement of these gases in freshwater systems. We have employed this measurement system on a commercial river barge on the Elbe river (Czech Republic, Germany) and on a fisher boat in the coastal area of Sarawak (Malaysia). In addition we have performed stationary continuous measurements at a small river in Northern Germany over the duration of 3 months. The presentation will outline the advantages and disadvantages of the FTIR-technique for freshwater measurements and will present results from the measurement campaigns.

  6. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  7. Water quality of streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1970-2001

    USGS Publications Warehouse

    Tornes, Lan H.

    2005-01-01

    Data for the Red River of the North (Red River) Basin in Minnesota, North Dakota, and South Dakota were analyzed to determine whether the water quality of streams in the basin is adequate to meet future needs. For the Red River at Emerson, Manitoba, site, pH values, water temperatures, and dissolved-oxygen concentrations generally were within the criteria established for the protection of aquatic life. Dissolved-solids concentrations ranged from 245 to 1,100 milligrams per liter. Maximum sulfate and chloride concentrations were near, but did not exceed, the established secondary maximum contaminant level. The trace elements considered potentially harmful generally were at concentrations that were less than the established guidelines, standards, and criteria. The concentrations of lead that were detected may have occurred as a result of sample contamination. For the Red River upstream from Emerson, Manitoba, sites, pH and other field values rarely exceeded the criteria established for the protection of aquatic life. Many constituent concentrations for the Red River below Fargo, N. site exceeded water-quality guidelines, standards, and criteria. However, the trace-element exceedances could be natural or could be related to pollution or sample contamination. Many of the tributaries in the western part of the Red River Basin had median specific-conductance values that were greater than 1,000 microsiemens per centimeter. Sulfate concentrations occasionally exceeded the established drinking-water standard. Median arsenic concentrations were 6 micrograms per liter or less, and maximum concentrations rarely exceeded the 10-microgram-per-liter drinking-water standard that is scheduled to take effect in 2006. The small concentrations of lead, mercury, and selenium that occasionally were detected may have been a result of sample contamination or other factors. The tributaries in the eastern part of the Red River Basin had median specific-conductance values that were less than

  8. Genesis of economic relevant fresh groundwater resources in Pleistocene/ Neogene aquifers in Nam Dinh (Red River Delta, Vietnam).

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Ludwig, R. R.; Noell, U.; Hoang, H. V.; Pham, N. Q.; Larsen, F.; Lindenmaier, F.

    2012-04-01

    In the Southern Red River Delta (Nam Dinh Province, Vietnam), a local lens of low saline pore water of high quality has been identified in unconsolidated Pleistocene and Neogene aquifers, which are regionally known to contain brackish and saline pore waters. Since the 1990ies, ongoing overexploitation of the fresh groundwater results in decreasing GW heads up to 0.6 m/a and the development of a regional abstraction cone. The presented study focuses on distribution and genesis of fresh and saline pore waters and reflects the results in frame of the regional hydrogeological context. Observations of the geological structure and groundwater dynamics combined with hydrochemical and isotopic studies suggest adjacent Triassic hard rock aquifers as the major source for fresh Pleistocene and Neogene groundwater. Salinization status in the economically most relevant Pleistocene aquifer has been studied based on archive and new hydrochemical and geophysical data. Own hydrochemical field studies as well as laboratory measurements of the specific resistivity of dry sediment samples allow the translation of induction logging data from existing monitoring wells into vertical pore water salinity profiles. This approach suggests the regional occurrence of saline pore water in shallow Holocene sediments in the working area, as confirmed by pore water studies in Hoan et al. (2010). Interpretation of induction logging and stable isotope data suggest vertical diffusion of saline pore water in shallow Holocene sediments as a source for high saline pore water in deeper aquifers. Analytical diffusion modeling for a period of 3000 years confirms that vertical diffusion of Holocene paleo-sea water can explain saline pore water in Pleistocene and Neogene aquifers in a stagnant environment. The constant influx of fresh groundwater from adjacent Triassic hard rocks results in flushing of the primary Pleistocene and Neogene pore water and inhibits the infiltration of saline water from marine

  9. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam.

    PubMed

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2009-04-15

    To elucidate the role of genetic factors in arsenic (As) metabolism, we studied associations of single nucleotide polymorphisms (SNPs) in As (+3 oxidation state) methyltransferase (AS3MT) with the As concentrations in hair and urine, and urinary As profile in residents in the Red River Delta, Vietnam. Concentrations of total As in groundwater were 0.7-502 mug/l. Total As levels in groundwater drastically decreased by using sand filter, indicating that the filter could be effective to remove As from raw groundwater. Concentrations of inorganic As (IAs) in urine and total As in hair of males were higher than those of females. A significant positive correlation between monomethylarsonic acid (MMA)/IAs and age in females indicates that older females have higher methylation capacity from IAs to MMA. Body mass index negatively correlated with urinary As concentrations in males. Homozygote for SNPs 4602AA, 35991GG, and 37853GG, which showed strong linkage disequilibrium (LD), had higher percentage (%) of dimethylarsinic acid (DMA) in urine. SNPs 4740 and 12590 had strong LD and associated with urinary %DMA. Although SNPs 6144, 12390, 14215, and 35587 comprised LD cluster, homozygotes in SNPs 12390GG and 35587CC had lower DMA/MMA in urine, suggesting low methylation capacity from MMA to DMA in homo types for these SNPs. SNPs 5913 and 8973 correlated with %MMA and %DMA, respectively. Heterozygote for SNP 14458TC had higher MMA/IAs in urine than TT homozygote, indicating that the heterozygote may have stronger methylation ability of IAs. To our knowledge, this is the first study on the association of genetic factors with As metabolism in Vietnamese.

  10. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam.

    PubMed

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As(V) than the wild homo type. Higher percentage of DMA(V) in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As(V) to As(III). Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  11. Midcrustal shearing and doming in a Cenozoic compressive setting along the Ailao Shan-Red River shear zone

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Yin, C. Y.; Zhang, J. J.; Wang, J. M.; Zhong, D. L.; Wang, Y.; Lai, Q. Z.; Yue, Y. H.; Zhou, Q. Y.

    2017-01-01

    The Cenozoic Xuelong Shan antiformal dome is located along the northern segment of the Ailao Shan-Red River shear zone in Yunnan, China. Subhorizontal foliation in the gneiss core is recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagating into greenschist facies in the mantling schist and strike-slip shear zone. Microfabrics of crystallographic-preferred orientations (CPOs) in quartz suggest that the deformation temperatures increased with increasing structural depth from the upper crust (300-500°C) in the mantling schist to the midcrust (15 km or more, ≥650°C) in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which range from garnet + amphibole + biotite + sillimanite + rutile + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. The dome experienced the following deformation history: (1) a broad top-to-NE shear in the subhorizontal foliation of the gneiss core during the first stage of deformation (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The structural-thermal patterns suggest the antiformal dome formation was roughly coeval with top-to-NE ductile shearing in the midcrust of Tibet at 32 Ma or earlier. A major implication is that there was a phase of contractional ductile deformation in the region prior to the initiation of strike-slip deformation.

  12. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    PubMed

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  13. Application of discrete choice experiment to assess farmers' willingness to report swine diseases in the Red River Delta region, Vietnam.

    PubMed

    Pham, Hoa T T; Peyre, Marisa; Trinh, Tuyen Quang; Nguyen, Oanh Cong; Vu, Ton Dinh; Rukkwamsuk, Theera; Antoine-Moussiaux, Nicolas

    2017-03-01

    A discrete choice experiment (DCE) is carried out to value socio-economic factors influencing the farmer's decision to report swine diseases and to assess the willingness of farmers to report swine diseases. Data were collected between March and July 2015 in two provinces in the Red River Delta, Northern Vietnam, from 196 pig producers by face-to face interview. A conditional logit model is used to measure the relative importance of the socio-economic factors and calculate the expected probability of disease reporting under changes of levels of these factors. Results of the study indicated that the likelihood of compensation and the type of culling implemented (all or only unrecovered pigs) are the two most important factors influencing farmer reporting. Compensation level, movement restriction and delay in compensation payment also have significant impacts on farmer's decision to report animal disease but they are not as important as the above factors. Three different scenarios including changes in six different factors (attributes) are tested to predict probability of animal disease reporting. Under the current situation (uncertainty of being compensated), only 4% of the farmers would report swine disease outbreak to the official surveillance system if the culling policy involves all pigs in affected farms. This number is increased to 26% if culling in affected farms is restricted to unrecovered pigs only. Ensuring certainty of compensation increases reporting probability by up to 50% and 90% if all or only unrecovered pigs are destroyed, respectively. The results of this study are important for improving the performance and sustainability of swine disease surveillance system in Vietnam.

  14. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam

    SciTech Connect

    Agusa, Tetsuro; Iwata, Hisato Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Minh, Tu Binh; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke

    2009-04-15

    To elucidate the role of genetic factors in arsenic (As) metabolism, we studied associations of single nucleotide polymorphisms (SNPs) in As (+ 3 oxidation state) methyltransferase (AS3MT) with the As concentrations in hair and urine, and urinary As profile in residents in the Red River Delta, Vietnam. Concentrations of total As in groundwater were 0.7-502 {mu}g/l. Total As levels in groundwater drastically decreased by using sand filter, indicating that the filter could be effective to remove As from raw groundwater. Concentrations of inorganic As (IAs) in urine and total As in hair of males were higher than those of females. A significant positive correlation between monomethylarsonic acid (MMA)/IAs and age in females indicates that older females have higher methylation capacity from IAs to MMA. Body mass index negatively correlated with urinary As concentrations in males. Homozygote for SNPs 4602AA, 35991GG, and 37853GG, which showed strong linkage disequilibrium (LD), had higher percentage (%) of dimethylarsinic acid (DMA) in urine. SNPs 4740 and 12590 had strong LD and associated with urinary %DMA. Although SNPs 6144, 12390, 14215, and 35587 comprised LD cluster, homozygotes in SNPs 12390GG and 35587CC had lower DMA/MMA in urine, suggesting low methylation capacity from MMA to DMA in homo types for these SNPs. SNPs 5913 and 8973 correlated with %MMA and %DMA, respectively. Heterozygote for SNP 14458TC had higher MMA/IAs in urine than TT homozygote, indicating that the heterozygote may have stronger methylation ability of IAs. To our knowledge, this is the first study on the association of genetic factors with As metabolism in Vietnamese.

  15. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam

    SciTech Connect

    Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Tu Binh Minh; Pham Thi Kim Trang; Pham Hung Viet; Tanabe, Shinsuke

    2010-02-01

    To elucidate the role of genetic factors in arsenic metabolism, we investigated associations of genetic polymorphisms in the members of glutathione S-transferase (GST) superfamily with the arsenic concentrations in hair and urine, and urinary arsenic profile in residents in the Red River Delta, Vietnam. Genotyping was conducted for GST omega1 (GSTO1) Ala140Asp, Glu155del, Glu208Lys, Thr217Asn, and Ala236Val, GST omega2 (GSTO2) Asn142Asp, GST pi1 (GSTP1) Ile105Val, GST mu1 (GSTM1) wild/null, and GST theta1 (GSTT1) wild/null. There were no mutation alleles for GSTO1 Glu208Lys, Thr217Asn, and Ala236Val in this population. GSTO1 Glu155del hetero type showed higher urinary concentration of As{sup V} than the wild homo type. Higher percentage of DMA{sup V} in urine of GSTM1 wild type was observed compared with that of the null type. Strong correlations between GSTP1 Ile105Val and arsenic exposure level and profile were observed in this study. Especially, heterozygote of GSTP1 Ile105Val had a higher metabolic capacity from inorganic arsenic to monomethyl arsenic, while the opposite trend was observed for ability of metabolism from As{sup V} to As{sup III}. Furthermore, other factors including sex, age, body mass index, arsenic level in drinking water, and genotypes of As (+ 3 oxidation state) methyltransferase (AS3MT) were also significantly co-associated with arsenic level and profile in the Vietnamese. To our knowledge, this is the first study indicating the associations of genetic factors of GST superfamily with arsenic metabolism in a Vietnamese population.

  16. Interacting faults

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2017-04-01

    The way that faults interact with each other controls fault geometries, displacements and strains. Faults rarely occur individually but as sets or networks, with the arrangement of these faults producing a variety of different fault interactions. Fault interactions are characterised in terms of the following: 1) Geometry - the spatial arrangement of the faults. Interacting faults may or may not be geometrically linked (i.e. physically connected), when fault planes share an intersection line. 2) Kinematics - the displacement distributions of the interacting faults and whether the displacement directions are parallel, perpendicular or oblique to the intersection line. Interacting faults may or may not be kinematically linked, where the displacements, stresses and strains of one fault influences those of the other. 3) Displacement and strain in the interaction zone - whether the faults have the same or opposite displacement directions, and if extension or contraction dominates in the acute bisector between the faults. 4) Chronology - the relative ages of the faults. This characterisation scheme is used to suggest a classification for interacting faults. Different types of interaction are illustrated using metre-scale faults from the Mesozoic rocks of Somerset and examples from the literature.

  17. Pen Branch Fault Program

    SciTech Connect

    Price, V.; Stieve, A.L.; Aadland, R.

    1990-09-28

    Evidence from subsurface mapping and seismic reflection surveys at Savannah River Site (SRS) suggests the presence of a fault which displaces Cretaceous through Tertiary (90--35 million years ago) sediments. This feature has been described and named the Pen Branch fault (PBF) in a recent Savannah River Laboratory (SRL) paper (DP-MS-88-219). Because the fault is located near operating nuclear facilities, public perception and federal regulations require a thorough investigation of the fault to determine whether any seismic hazard exists. A phased program with various elements has been established to investigate the PBF to address the Nuclear Regulatory Commission regulatory guidelines represented in 10 CFR 100 Appendix A. The objective of the PBF program is to fully characterize the nature of the PBF (ESS-SRL-89-395). This report briefly presents current understanding of the Pen Branch fault based on shallow drilling activities completed the fall of 1989 (PBF well series) and subsequent core analyses (SRL-ESS-90-145). The results are preliminary and ongoing: however, investigations indicate that the fault is not capable. In conjunction with the shallow drilling, other activities are planned or in progress. 7 refs., 8 figs., 1 tab.

  18. Effects of fault-controlled CO2 alteration on mineralogical and geomechanical properties of reservoir and seal rocks, Crystal Geyser, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Eichhubl, P.; Urquhart, A.; Dewers, T. A.

    2012-12-01

    An understanding of the coupled chemical and mechanical properties of reservoir and seal units undergoing CO2 injection is critical for modeling reservoir behavior in response to the introduction of CO2. The implementation of CO2 sequestration as a mitigation strategy for climate change requires extensive risk assessment that relies heavily on computer models of subsurface reservoirs. Numerical models are fundamentally limited by the quality and validity of their input parameters. Existing models generally lack constraints on diagenesis, failing to account for the coupled geochemical or geomechanical processes that affect reservoir and seal unit properties during and after CO2 injection. For example, carbonate dissolution or precipitation after injection of CO2 into subsurface brines may significantly alter the geomechanical properties of reservoir and seal units and thus lead to solution-enhancement or self-sealing of fractures. Acidified brines may erode and breach sealing units. In addition, subcritical fracture growth enhanced by the presence of CO2 could ultimately compromise the integrity of sealing units, or enhance permeability and porosity of the reservoir itself. Such unknown responses to the introduction of CO2 can be addressed by laboratory and field-based observations and measurements. Studies of natural analogs like Crystal Geyser, Utah are thus a critical part of CO2 sequestration research. The Little Grand Wash and Salt Wash fault systems near Green River, Utah, host many fossil and active CO2 seeps, including Crystal Geyser, serving as a faulted anticline CO2 reservoir analog. The site has been extensively studied for sequestration and reservoir applications, but less attention has been paid to the diagenetic and geomechanical aspects of the fault zone. XRD analysis of reservoir and sealing rocks collected along transects across the Little Grand Wash Fault reveal mineralogical trends in the Summerville Fm (a siltstone seal unit) with calcite and

  19. Data mining of external and internal forcing of fluvial systems for catchment management: A case study on the Red River (Song Hong), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, Rafael; Bizzi, Simone; Castelletti, Andrea

    2013-04-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since interactions of natural and anthropogenic forces within the catchment drives fluvial geomorphic processes, which shape physical habitat, affect river infrastructures and influence freshwater ecological processes. The characterization of river hydromorphological features is commonly location and time specific and highly resource demanding. Therefore, its routine application at regional or national scales and the assessment of spatio-temporal changes as reaction to internal and external disturbances is rarely feasible at present. Information ranging from recently available high-resolution remote-sensing data (such as DEM), historic data such as land use maps or aerial photographs and monitoring networks of flow and rainfall, open up novel and promising capacity for basin-wide understanding of dominant hydromorphological drivers. Analysing the resulting multiparametric data sets in their temporal and spatial dimensions requires sophisticated data mining tools to exploit the potential of this information. We propose a novel framework that allows for the quantitative assessment of multiparametric data sets to identify classes of channel reaches characterized by similar geomorphic drivers using remote-sensing data and monitoring networks available in the catchment. This generic framework was applied to the Red River (Song Hong) basin, the second largest basin (87,800 sq.km) in Vietnam. Besides its economic importance, the river is experiencing severe river bed incisions due to recent construction of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high development rate, current efforts to increase water productivity and minimize impacts on the fluvial systems by means of focused infrastructure and management measures require a

  20. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  1. Water-quality trend analysis and sampling design for streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1970-2001

    USGS Publications Warehouse

    Vecchia, Aldo V.

    2005-01-01

    The Bureau of Reclamation is considering several alternatives to meet the future municipal, rural, and industrial water-supply needs in the Red River of the North (Red River) Basin, and an environmental impact statement is being prepared to evaluate the potential effects of the various alternatives on the water quality and aquatic health in the basin in relation to the historical variability of streamflow and constituent concentration. Therefore, a water-quality trend analysis was needed to determine the amount of natural water-quality variability that can be expected to occur in the basin, to determine if significant water-quality changes have occurred as a result of human activities, to explore potential causal mechanisms for water-quality changes, and to establish a baseline from which to monitor future water-quality trends. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, to analyze historical water-quality trends in two dissolved major ions, dissolved solids, three nutrients, and two dissolved trace metals for nine streamflow-gaging stations in the basin. Annual variability in streamflow in the Red River Basin was high during the trend-analysis period (1970-2001). The annual variability affects constituent concentrations in individual tributaries to the Red River and, in turn, affects constituent concentrations in the main stem of the Red River because of the relative streamflow contribution from the tributaries to the main stem. Therefore, an annual concentration anomaly, which is an estimate of the interannual variability in concentration that can be attributed to long-term variability in streamflow, was used to analyze annual streamflow-related variability in constituent concentrations. The concentration trend is an estimate of the long-term systematic changes in concentration that are unrelated to seasonal or long-term variability in streamflow. Concentrations that have both

  2. Exploration of Wadi Zerka Ma'in rotational fault and its drainage pattern, Eastern of Dead Sea, by means of remote sensing, GIS and 3D geological modeling

    NASA Astrophysics Data System (ADS)

    Odeh, Taleb; Gloaguen, Richard; Schirmer, Mario; Geyer, Stefan; Rödiger, Tino; Siebert, Christian

    2009-09-01

    The Wadi Zerka Ma'in catchment area is located in the North East of the Dead Sea. It contains a confined river of about 23 km length. The region is characterized by a recent sharp base level drop and a strong orographic control on climatic parameters such as temperature and precipitation. It is controlled by three regional structural systems as follow: 1) the anticline - syncline system (late Cretaceous - end of Miocene) which is a part of Syrian fold arc system; 2) NW - SE faults system which were generated simultaneously and parallel to the Red Sea spreading; 3) NWW - SSE faults system which are perpendicular to the Dead Sea and younger than the Red Sea fault system; 4) NNW - SSE faults system (middle Miocene - until now) which were generated simultaneously and parallel to the active Dead Sea transform fault. The structural setting of the study area was evaluated by means of a three-dimensional (3D) geological model, a digital elevation model (DEM) with resolutions 15 meters and stream profile analysis. DEM generation was performed using ASTER data. We found that the Wadi is located at the junction of two main fault systems. The major feature is a trans-tensional fault displacement which changes from 0 to 200 m. We showed that the catchment area is a result of a rotational fault while the river changes its flow direction according to the different fault system directions. The lower portion of the basin is affected by the major base level drops and display contributing rivers in exceptional non-equilibrium. Thus this catchment allows observing the rapid adaptation of the drainage system to both climatic and tectonic forcing.

  3. Greenhouse gas fluxes and budget for an annual cropping system in the Red River Valley, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Glenn, Aaron James

    Agriculture contributes significantly to national and global greenhouse gas (GHG) inventories but there is considerable control over management decisions and changes in production methods could lead to a significant reduction and possible mitigation of emissions from the sector. For example, conservation tillage practices have been suggested as a method of sequestering atmospheric carbon dioxide (CO2), however, many questions remain unanswered regarding the short-term efficacy of the production method and knowledge gaps exist regarding possible interactions with essential nutrient cycles, and the production of non-CO2 GHGs, such as nitrous oxide (N2O). Between autumn 2005 and 2009, a micrometeorological flux system was used to determine net CO2 and (N2O exchange from an annual cropping system situated on clay soil in the Red River Valley of southern Manitoba. Four plots (4-ha each) were independently evaluated and planted to corn in 2006 and faba bean in 2007; in 2008, two spring wheat plots were monitored. As well, during the non-growing season in 2006-2007 following corn harvest, a second micrometeorological flux system capable of simultaneously measuring stable C isotopologue (12CO2 and 13CO 2) fluxes was operated at the site. Tillage intensity and crop management practices were examined for their influence on GHG emissions. Significant inter-annual variability in CO2 and (N2O fluxes as a function of crop and related management activities was observed. Tillage intensity did not affect GHG emissions from the site. After accounting for harvest removals, the net ecosystem C budgets were 510 (source), 3140 (source) and -480 (sink) kg C/ha/year for the three respective crop years, summing to a three-year loss of 3170 kg C/ha. Stable C isotope flux measurements during the non-growing season following corn harvest indicated that approximately 70 % and 20 -- 30 % of the total respiration flux originated from crop residue C during the fall of 2006 and spring of 2007

  4. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    USGS Publications Warehouse

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time

  5. Des Moines Recreational River and Greenbelt Project. Multi-Purpose Trail, Red Rock, Segment 1. Feature Design Memorandum Number 3 with Environmental Assessment

    DTIC Science & Technology

    1989-05-31

    34Engineering and Design Stability of Earth and Rockfill Dam ." Therefore, no stability problems are expected. A slope stability analysis for rapid drawn...stability was analyzed in accordance with EM 1110-2-1902, "Engineering Design Stability of Earth and Rock fill Dams ," dated 1 April 1970. The maximum height...and along, the Des Moines River from U.S. Highway 20 in Fort Dodge, Iowa, downstream to relocated U.S. Highway 92 in the vicinity of the Red Rock Dam . B

  6. Nutrients, suspended sediment, and pesticides in water of the Red River of the North Basin, Minnesota and North Dakota, 1990-2004

    USGS Publications Warehouse

    Christensen, V.G.

    2007-01-01

    Nutrient, suspended sediment, and pesticide data from 1990 through 2004 in the Red River of the North Basin were compiled, summarized, and compared to historical data. Streamflow varied widely throughout the basin during the 1990-2004 study period. For 19 of 22 streamflow sites, median annual streamflow during the study period exceeded the long-term average streamflow. High streamflow can have a substantial effect on water quality. In water samples from selected surface-water sites, nitrite plus nitrate concentrations ranged from less than 0.005 to 7.7 milligrams per liter; total Kjeldahl nitrogen concentrations ranged from 0.1 to 7.5 milligrams per liter; total phosphorus concentrations ranged from less than 0.005 to 4.14 milligrams per liter; and dissolved phosphorus concentrations ranged from 0.003 to 4.13 milligrams per liter. Surface-water samples from the Pembina River basin generally had higher nitrite plus nitrate, total phosphorus, and suspended sediment concentrations compared to samples from other Red River Basin sites. Historical data from 1970 through 1990 showed relatively high nitrite plus nitrate and suspended sediment concentrations in samples from some Pembina River sites; in contrast to the 1990-2004 period, total phosphorus concentrations from the 1970-90 period generally were highest at Red River of the North sites. Nitrate concentrations in ground-water samples for the 1990-2004 period were highest in Sheridan County, North Dakota and Marshall and Otter Tail Counties in Minnesota. Concentrations of nitrate in ground water in Marshall and Otter Tail Counties corresponded to relatively high reported fertilizer applications during 2002; however, Sheridan County did not have the high fertilizer applications in 2002 compared to other North Dakota and Minnesota counties. The most frequently detected pesticides or pesticide metabolites were 2, 4-D, bentazon, de-ethylatrazine, metolachlor, picloram, and triallate in surface water and alachlor

  7. Rivers

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1962-01-01

    Rivers are both the means and the routes by which the products of continental weathering are carried to the oceans of the world. Except in the most arid areas more water falls as precipitation than is lost by evaporation and transpiration from the land surface to the atmosphere. Thus there is an excess of water, which must flow to the ocean. Rivers, then, are the routes by which this excess water flows to the ultimate base level. The excess of precipitation over evaporation and transpiration provides the flow of rivers and springs, recharges ground-water storage, and is the supply from which man draws water for his needs.

  8. Focus on the Future: Water Resource Strategies for the Upper Mississippi and Red River of the North Basins.

    DTIC Science & Technology

    1987-03-01

    La Farge on the Kickapoo River. Construction was initiated in 1971, but was suspended in 1975 due to alleged water quality problems and lack of State...Coulee, Portage, and along the Kickapoo River, where feasible. In addition, the District will insure that information is available on Corps programs and

  9. Calibration, verification, and use of a water-quality model to simulate effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota

    USGS Publications Warehouse

    Wesolowski, E.A.

    1994-01-01

    A 30.8-mile reach of the Red River of the North receives treated wastewater from plants at Fargo, North Dakota, and Moorhead, Minnesota, and streamflows from the Sheyenne River. A one-dimensional, steady-state, stream water-quality model, the Enhanced Stream Water Quality Model (QUAL2E), was calibrated and verified for summer stream flow conditions to simulate some of the biochemical processes that result from discharging treated wastewater into this reach of the river. Data obtained to define the river's transport conditions are measurements of channel geometry, streamflow, traveltime, specific conductance, and temperature. Data obtained to define the river's water-quality conditions are measurements of concentrations of selected water-quality constituents and estimates of various reaction coefficients. Most of the water-quality data used to calibrate and verify the model were obtained during two synoptic samplings in August 1989 and August 1990. The water-quality model simulates specific conductance, water temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand, total nitrite plus nitrate as nitrogen, total ammonia as nitrogen, total organic nitrogen as nitrogen, total phosphorus as phosphorus, and algal biomass as chlorophyll a. Of the nine properties and constituents that the calibrated model simulates, all except algae were verified. When increases in dissolved-oxygen concentration are considered, model sensitivity analyses indicate that dissolved-oxygen concentration is most sensitive to maximum specific algal growth rate. When decreases in dissolved-oxygen concentration are considered, model sensitivity analyses indicate that dissolved-oxygen concentration is most sensitive to point-source ammonia. Model simulations indicate nitrification and sediment oxygen demand consume most of the dissolved oxygen in the study reach. The Red River at Fargo Water-Quality Model and the verification data set, including associated reaction

  10. River channel monitoring of the Red River of the Texas and Oklahoma state boundary, U.S.A., using remote sensing techniques and the legal implications on riparian boundaries

    NASA Astrophysics Data System (ADS)

    Edwards, William David

    The study focuses on the Red River, partially forming the border of Arkansas, Oklahoma, and Texas in the United States of America. This river was chosen because of its volatility in migration and its impact on land value. The river can be relatively wide in areas, where the gradient is low, forming braided streams up to a mile wide. As land becomes more valuable, having a more readily and accurately defined boundary will become more important. Rivers serve as a natural boundary. Early in American cadastral systems, many descriptions used these natural features to make it easy to recognize by the public. Natural river boundaries migrate and change courses causing difficulties with land management. Riparian boundaries move with the changing channel of the river. Due to hydrogeological processes which contribute to accretion, erosion, reliction, and sometimes avulsion makes describing the sinuosity of riparian boundaries difficult. Riparian boundary descriptions usually are the product of a terrestrial land survey. The value of the land usually dictated the precision used by the land surveyor during the field data acquisition. Technological advances in the instrumentation used by the land surveyor have enabled both higher precision and accuracy in surveying data along with computers and software advancement to calculate the area of the land and more accurate management of the land. With the ability to provide specific analysis of land features through the development of geographic information system (GIS) software incorporating accurate terrain models, riparian boundaries can be easier to manage. Boundary definitions become more reliable with improved terrain information and numerical models. This research uses GIS software tools to delineate the gradient boundary along the river from elevation models derived from remote sensing instruments, also evaluate possible areas where potential avulsionary cut-off by the river using the same remote sensing data. If an area has

  11. Water-Quality Data for Water- and Wastewater-Treatment Plants Along the Red River of the North, North Dakota and Minnesota, January through October 2006

    USGS Publications Warehouse

    Damschen, William C.; Hansel, John A.; Nustad, Rochelle A.

    2008-01-01

    From January through October 2006, six sets of water-quality samples were collected at 28 sites, which included inflow and outflow from seven major municipal water-treatment plants (14 sites) and influent and effluent samples from seven major municipal wastewater treatment plants (14 sites) along the Red River of the North in North Dakota and Minnesota. Samples were collected in cooperation with the Bureau of Reclamation for use in the development of return-flow boundary conditions in a 2006 water-quality model for the Red River of the North. All samples were analyzed for nutrients and major ions. For one set of effluent samples from each of the wastewater-treatment plants, water was analyzed for Eschirichia coli, fecal coliform, 20-day biochemical oxygen demand, 20-day nitrogenous biochemical oxygen demand, total organic carbon, and dissolved organic carbon. In general, results from the field equipment blank and replicate samples indicate that the overall process of sample collection, processing, and analysis did not introduce substantial contamination and that consistent results were obtained.

  12. A new red-eyed treefrog of Agalychnis (Anura: Hylidae: Phyllomedusinae) from middle Magdalena River valley of Colombia with comments on its phylogenetic position.

    PubMed

    Rivera-Correa, Mauricio; Duarte-Cubides, Felipe; Rueda-Almonacid, José Vicente; Daza, Juan M

    2013-01-01

    We describe a new species of the charismatic red-eyed treefrogs (genus Agalychnis) from middle Magdalena River valley of Colombia (05°50'8.04"N, 74°50'16.55"W, 380 m a.s.l.). The new species is readily distinguished from all species members of the group by having orange flanks with small white warts. Phylogenetic analysis of DNA sequences of 16S rRNA gene recovered the new species as a member of the Agalychnis callidryas group. The presence of a red hue in the iris and a golden reticulated palpebral membrane, putative synapomorphies of the clade, support this hypothesis. Our analysis suggests that Agalychnis terranova sp. nov is closely related to A. callidryas from Central America and is proposed as its sister species with an uncorrected genetic distance of 5.69% between these taxa. The phylogenetic position and the geographic distribution of the new taxon add new lights to the presence of a biogeographic disjunction between Middle America lowlands, the Pacific region and Magdalena River valley of Colombia.

  13. Extent and effect of fault-controlled CO2 alteration on reservoir and seal rocks and implications for geomechanical failure at Crystal Geyser, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Eichhubl, P.; Dewers, T. A.

    2013-12-01

    A structural diagenesis approach involving the coupled chemical and mechanical properties of reservoir and seal rocks is necessary for assessing the short and long term security of sequestered CO2. Current numerical models used to model subsurface CO2 reservoirs do not account for such processes, and typically these use only linear-elastic geomechanical properties, ignoring failure parameters such as fracture toughness. In addition, numerical models normally lack constraints on long-term, geologic time scales. Study of fossil and active CO2 seeps found at Little Grand Wash and Salt Wash fault systems near Green River, Utah are invaluable to assess long-term storage and leakage behavior in natural systems. Observations from the site and geomechanical testing also indicate that fracture systems play a crucial role in leakage, and the extent of fracturing and CO2-related alteration extends from tens to over one-hundred meters. Failure parameters of reservoir and seal rocks under variable environmental conditions, such as fracture toughness should also be quantified as they likely play a role in fracturing and leakage. Subcritical fracture growth may also be involved. Transects across the Little Grand Wash fault show distinct mineralogical and isotopic trends related to alteration by CO2-rich fluids. Calcite is the dominant precipitated mineral, both in reservoir (sandstone) and seal (siltstone & mudrock) lithologies. Precipitated calcite is isotopically distinct and observed in bulk rock isotopic trends. Fracture toughness testing using the short rod method indicates that CO2-related alteration of rocks exposed at the field site has weakened one reservoir lithology by half (0.57 versus 0.27 MPa√m). A full suite of lithologies are being tested and compared with the double torsion test method under ambient air conditions. These same samples are also being tested in environmental conditions more like those encountered in a CO2 sequestration scenario. These data can and

  14. Simulation of streamflow and water quality in the Red Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    USGS Publications Warehouse

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    (mi2) in Pennsylvania and Delaware and includes the major subbasins of Red Clay Creek, White Clay Creek, Brandywine Creek, and Christina River. The Red Clay Creek is the smallest of the subbasins and drains an area of 54 mi2. Streams in the Christina River Basin are used for recreation, drinking-water supply, and to support aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency, waterquality management strategy included a modeling component to evaluate the effects of point and nonpointsource contributions of nutrients and suspended sediment on stream water quality. To assist in nonpointsource evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at 1 site in the Red Clay Creek subbasin and at 10 sites elsewhere in the Christina River Basin. The HSPF model for the Red Clay Creek subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 1.7 to 10 mi2. One of the reaches contains a regulated reservoir. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Red Clay Creek subbasin are agricultural, forested, residential

  15. Uncertainty analysis of the simulations of effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota

    USGS Publications Warehouse

    Wesolowski, E.A.

    1996-01-01

    Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for ice-free conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions. To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen. The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwater-source specific- conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total

  16. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 24. Seismic Refraction Tomography for Volume Analysis of Saturated Alluvium in the Straight Creek Drainage and Its Confluence With Red River, Taos County, New Mexico

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2007-01-01

    As part of a research effort directed by the New Mexico Environment Department to determine pre-mining water quality of the Red River at a molybdenum mining site in northern New Mexico, we used seismic refraction tomography to create subsurface compressional-wave velocity images along six lines that crossed the Straight Creek drainage and three that crossed the valley of Red River. Field work was performed in June 2002 (lines 1-4) and September 2003 (lines 5-9). We interpreted the images to determine depths to the water table and to the top of bedrock. Depths to water and bedrock in boreholes near the lines correlate well with our interpretations based on seismic data. In general, the images suggest that the alluvium in this area has a trapezoidal cross section. Using a U.S. Geological Survey digital elevation model grid of surface elevations of this region and the interpreted elevations to water table and bedrock obtained from the seismic data, we generated new models of the shape of the buried bedrock surface and the water table through surface interpolation and extrapolation. Then, using elevation differences between the two grids, we calculated volumes of dry and wet alluvium in the two drainages. The Red River alluvium is about 51 percent saturated, whereas the much smaller volume of alluvium in the tributary Straight Creek is only about 18 percent saturated. When combined with average ground-water velocity values, the information we present can be used to determine discharge of Straight Creek into Red River relative to the total discharge of Red River moving past Straight Creek. This information will contribute to more accurate models of ground-water flow, which are needed to determine the pre-mining water quality in the Red River.

  17. Records of bulk organic matter and plant pigments in sediment of the "red-tide zone" adjacent to the Changjiang River estuary

    NASA Astrophysics Data System (ADS)

    Kang, Zhenjun; Yu, Rencheng; Kong, Fanzhou; Wang, Yunfeng; Gao, Yan; Chen, Jianhua; Guo, Wei; Zhou, Mingjiang

    2016-09-01

    Cultural eutrophication caused by nutrient over-enrichment in coastal waters will lead to a cascading set of ecosystem changes and deleterious ecological consequences, such as harmful algal blooms (HABs) and hypoxia. During the past two decades since the late 1990s, recurrent large-scale HABs (red tides) and an extensive hypoxic zone have been reported in the coastal waters adjacent to the Changjiang River estuary. To retrieve the history of eutrophication and its associated ecosystem changes, a sediment core was collected from the "red-tide zone" adjacent to the Changjiang River estuary. The core was dated using the 210Pb radioisotope and examined for multiple proxies, including organic carbon (OC), total nitrogen (TN), stable isotopes of C and N, and plant pigments. An apparent up-core increase of OC content was observed after the 1970s, accompanied by a rapid increase of TN. The concurrent enrichment of δ13C and increase of the C/N ratio suggested the accumulation of organic matter derived from marine primary production during this stage. The accumulation of OC after the 1970s well reflected the significant increase of primary production in the red-tide zone and probably the intensification of hypoxia as well. Plant pigments, including chlorophyll a, β-carotene, and diatoxanthin, showed similar patterns of variation to OC throughout the core, which further confirmed the important contribution of microalgae, particularly diatoms, to the deposited organic matter. Based on the variant profiles of the pigments representative of different microalgal groups, the potential changes of the phytoplankton community since the 1970s were discussed.

  18. 76 FR 49462 - Red River Hydro LLC; Notice of Application Tendered For Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... cutoffs to shorten the river. The existing Overton dam is a concrete gravity structure that is 104 feet in... transmission line; (6) three turbine-generator units for a combined installed capacity of 78 megawatts; and...

  19. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization Along the Red River, New Mexico: Implications for Ground- and Surface-Water Quality

    USGS Publications Warehouse

    Plumlee, Geoff; Lowers, Heather; Ludington, Steve; Koenig, Alan; Briggs, Paul

    2005-01-01

    This report is one in a series presenting results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the pre-mining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized but unmined Straight Creek drainage is being used as an analogue for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity at the mine site prior to mining. This report summarizes results of reconnaissance mineralogical and chemical characterization studies of rock samples collected from the various scars and the Molycorp open pit, and of drill cuttings or drill core from bedrock beneath the scars and adjacent debris fans.

  20. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  1. Hayward Fault, California Interferogram

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of California's Hayward fault is an interferogram created using a pair of images taken by Synthetic Aperture Radar(SAR) combined to measure changes in the surface that may have occurred between the time the two images were taken.

    The images were collected by the European Space Agency's Remote Sensing satellites ERS-1 and ERS-2 in June 1992 and September 1997 over the central San Francisco Bay in California.

    The radar image data are shown as a gray-scale image, with the interferometric measurements that show the changes rendered in color. Only the urbanized area could be mapped with these data. The color changes from orange tones to blue tones across the Hayward fault (marked by a thin red line) show about 2-3centimeters (0.8-1.1 inches) of gradual displacement or movement of the southwest side of the fault. The block west of the fault moved horizontally toward the northwest during the 63 months between the acquisition of the two SAR images. This fault movement is called a seismic creep because the fault moved slowly without generating an earthquake.

    Scientists are using the SAR interferometry along with other data collected on the ground to monitor this fault motion in an attempt to estimate the probability of earthquake on the Hayward fault, which last had a major earthquake of magnitude 7 in 1868. This analysis indicates that the northern part of the Hayward fault is creeping all the way from the surface to a depth of 12 kilometers (7.5 miles). This suggests that the potential for a large earthquake on the northern Hayward fault might be less than previously thought. The blue area to the west (lower left) of the fault near the center of the image seemed to move upward relative to the yellow and orange areas nearby by about 2 centimeters (0.8 inches). The cause of this apparent motion is not yet confirmed, but the rise of groundwater levels during the time between the images may have caused the reversal of a small portion of the subsidence that

  2. Fault tectonics and earthquake hazards in the Peninsular Ranges, Southern California. [including San Diego River, Otay Mts., Japatul Valley, Barrett Lake, Horsethief Canyon, Pine Valley Creek, Pine Creek, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.

  3. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, SW China

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Wang, Xinsong; Xu, Yue

    2015-04-01

    The Jinshajiang-Red River alkaline igneous belt in the eastern Indian-Asian collision zone, of southwestern China, hosts abundant, economically important Cu-Mo-Au mineralization of Cenozoic age. Major- and trace-element compositions of titanites from representative Cu-mineralized intrusions determined by LA-ICP-MS show higher values for Fe2O3/Al2O3, ΣREE + Y, LREE/HREE, Ce/Ce*, (Ce/Ce*)/(Eu/Eu*), U, Th, Ta, Nb and Ga, and lower values for Al2O3, CaO, Eu/Eu*, Zr/Hf, Nb/Ta and Sr than those for titanites from barren intrusions. Different ΣREE + Y, LREE/HREE, U, Th, Ta and Nb values of titanites between Cu-mineralized and barren intrusions were controlled mainly by the coexisting melt compositions. However, different Sr concentrations and negative Eu anomalies of titanites between Cu-mineralized and barren intrusions were most probably caused by different degrees of crystallization of feldspar from melts. In addition, different Ga concentrations and positive Ce anomalies of titanites between Cu-mineralized and barren intrusions were most likely caused by different magmatic fO2 conditions. Pronounced compositional differences of titanites between Cu-mineralized and barren intrusions can provide a useful tool to help discriminate between ore-bearing and barren intrusions at an early stage of exploration, and, thus, have a potential application in exploration for porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, and to other areas.

  4. Trace elements and organic chemicals in stream-bottom sediments and fish tissues, Red River of the North basin, Minnesota, North Dakota, and South Dakota, 1992-95

    USGS Publications Warehouse

    Brigham, M.E.; Goldstein, R.M.; Tornes, L.H.

    1998-01-01

    Stream-bottom sediment and fish-tissue samples from the Red River of the North Basin, were analyzed for a large suite of chemical elements and organic chemicals. Cadmium, lead, and mercury were widespread in sediments, at concentrations not indicative of acute contamination. Mercury, the element of greatest health concern in the region, was detected at low concentrations in 38 of 43 sediment samples (<0.02-0.13 micrograms per gram) and all of eleven fish-liver samples (0.03-0.6 micrograms per gram dry weight, or 0.0066-0.13 micrograms per gram wet weight). Concentrations of many elements appeared to be controlled by mineral rather than anthropogenic sources. DDT and its metabolites were the most frequently detected synthetic organochlorines: p,p'-DDE was detected in 9 of 38 sediment samples (concentration range: <1-16 nanograms per gram) and also frequently in whole-fish samples. Total DDT (the sum of DDT and its metabolites) concentrations ranged from <5 to 217 nanograms per gram, and at least one component of total DDT was detected in 19 of 23 fish samples. Concentrations of DDT and its metabolites in stream sediments were significantly higher in the intensively cropped Red River Valley Lake Plain, compared to upland areas, probably because of greater historical DDT usage in the lake plain. Several polycyclic aromatic hydrocarbons were detected in stream-bottom sediments. Although the potentially toxic chemicals measured in this study were at low levels, relative to more contaminated areas of the Nation, maximum concentrations of some chemicals are of concern because of their possible effects on aquatic biota and human health.

  5. FOXO3 variants are beneficial for longevity in Southern Chinese living in the Red River Basin: A case-control study and meta-analysis.

    PubMed

    Sun, Liang; Hu, Caiyou; Zheng, Chenguang; Qian, Yu; Liang, Qinghua; Lv, Zeping; Huang, Zezhi; Qi, KeYan; Gong, Huan; Zhang, Zheng; Huang, Jin; Zhou, Qin; Yang, Ze

    2015-04-27

    Forkhead box class O (FOXO) transcription factors play a crucial role in longevity across species. Several polymorphisms in FOXO3 were previously reported to be associated with human longevity. However, only one Chinese replication study has been performed so far. To verify the role of FOXO3 in southern Chinese in the Red River Basin, a community-based case-control study was conducted, and seven polymorphisms were genotyped in 1336 participants, followed by a meta-analysis of eight case-control studies that included 5327 longevity cases and 4608 controls. In our case-control study, we found rs2802288*A and rs2802292*G were beneficial to longevity after Bonferroni correction (pallele = 0.005, OR = 1.266; pallele = 0.026, OR = 1.207). In addition, in the longevity group, carriers with rs2802288*A and rs2802292*G presented reduced HbA1c (p = 0.001), and homozygotes of rs2802292*GG presented improved HOMA-IR (p = 0.014). The meta-analysis further revealed the overall contribution of rs2802288*A and rs2802292*G to longevity. However, our stratified analysis revealed that rs2802292*G might act more strongly in Asians than Europeans, for enhancement of longevity. In conclusion, our study provides convincing evidence for a significant association between the rs2802288*A and rs2802292*G gene variants in FOXO3 and human longevity, and adds the Southern Chinese in the Red River Basin to the growing number of human replication populations.

  6. Questa baseline and pre-mining ground-water quality investigation. 23. Quantification of mass loading from mined and unmined areas along the Red River, New Mexico

    USGS Publications Warehouse

    Kimball, Briant A.; Nordstrom, D. Kirk; Runkel, Robert L.; Vincent, Kirk R.; Verplanck, Phillip L.

    2006-01-01

    Along the course of the Red River, between the town of Red River, New Mexico, and the U.S. Geological Survey streamflow-gaging station near Questa, New Mexico, there are several catchments that contain hydrothermally altered bedrock. Some of these alteration zones have been mined and others have not, presenting an opportunity to evaluate differences that may exist in the mass loading of metals from mined and unmined sections. Such differences may help to define pre-mining conditions. Spatially detailed chemical sampling at stream and inflow sites occurred during low-flow conditions in 2001 and 2002, and during the synoptic sampling, stream discharge was calculated by tracer dilution. Discharge from most catchments, particularly those with alteration scars, occurred as ground water in large debris fans, which generally traveled downstream in an alluvial aquifer until geomorphic constraints caused it to discharge at several locations along the study reach. Locations of discharge zones were indicated by the occurrence of numerous inflows as seeps and springs. Inflows were classified into four groups, based on differences in chemical character, which ranged from near-neutral water showing no influence of mining or alteration weathering to acidic water with high concentrations of metals and sulfate. Acidic, metal-rich inflows occurred from mined and unmined areas, but the most-acidic inflow water that had the highest concentrations of metals and sulfate only occurred downstream from the mine. Locations of ground-water inflow also corresponded to substantial changes in stream chemistry and mass loading of metals and sulfate. The greatest loading occurred in the Cabin Springs, Thunder Bridge, and Capulin Canyon sections, which all occur downstream from the mine. A distinct chemical character and substantially greater loading in water downstream from the mine suggest that there could be impacts from mining that can be distinguished from the water draining from unmined

  7. Genetic diversity among red swamp crayfish (Procambarus clarkii) populations in the middle and lower reaches of the Yangtze River based on AFLP markers.

    PubMed

    Zhu, B F; Huang, Y; Dai, Y G; Bi, C W; Hu, C Y

    2013-03-13

    The red swamp crayfish has become one of the most important freshwater aquaculture species in China. At present, although it is widely distributed in the middle and lower reaches of the Yangze River basin, little is known about its population genetics and geographic distribution in China. We estimated the genetic diversity among 6 crayfish populations from 4 lakes (Hongze Lake, Poyang Lake, Dongting Lake, and Yue Lake) using AFLPs. A total of 129 loci were generated with 5 EcoRI-MseI primer combinations and scored as binary data in 139 individuals. These data were analyzed by cluster methods with the NTSYSpc software package. The 6 populations were separated into 3 major clusters by principal coordinate analysis and cluster analysis. Among the 6 populations, the highest gene diversity was found within the Nanjing population. Analysis of molecular variance demonstrated that most variation occurred within populations (91.20%). The estimated average GST value across all loci was 0.4186, suggesting (very) low gene flow among the different localities. We conclude that there is high genetic differentiation among crayfish in the middle and lower reaches of the Yangze River. This information will help in the selection of high-quality individuals for artificial reproduction.

  8. Active Features of Guguan-Guizhen Fault at the Northeast Margin of Qinghai-Tibet Block since Late Quaternary

    NASA Astrophysics Data System (ADS)

    Shi, Yaqin; Feng, Xijie; Li, Gaoyang; Ma, Ji; Li, Miao; Zhang, Yi

    2015-04-01

    Guguan-Guizhen fault is located at the northeast margin of Qinghai-Tibet Block and northwest margin of Ordos Block; it is the boundary of the two blocks, and one of the multiple faults of northwest Haiyuan-Liupanshan-Baoji fault zone. Guguan-Guizhen fault starts from Putuo Village, Huating County, Gansu Province, and goes through Badu Town, Long County in Shaanxi Province ends in Guozhen Town in Baoji City, Shaanxi Province. The fault has a full length of about 130km with the strike of 310-330°, the dip of SW and the rake of 50-60°, which is a sinistral slip reverse fault in the north part, and a sinistral slip normal fault in the southeast part. Guguan-Guizhen fault has a clear liner structure in satellite images and significant landform elevation difference with a maximum difference of 80m, and is higher in the east lower in the west. The northwest side of Guguan-Guizhen fault is composed of purplish-red Lower Cretaceous sandstones and river terrace; the northeast side is composed of Ordovician Limestone. Shigou, Piliang, Songjiashan, Tianjiagou and Chenjiagou fault profiles are found to the south of Badu Village. After 14C and optically stimulated luminescence dating, the fault does not dislocate the stratum since late Pleistocene (90.5±4.4ka) in Shigou, Piliang and Songjiashan fault profiles, and does not dislocate the cobble layer of Holocene first terrace and recent sliderock (3180±30 BP). But the fault dislocated the stratum of middle Pleistocene in some of the fault profiles. All the evidences above indicate that the fault is active in middle Pleistocene, and being silence since late Pleistocene. It might be active in Holocene to the north of Badu Village due to collapses are found in a certain area. The cause of these collapses is Qinlong M6-7 earthquake in 600 A.D., and might be relevant with Guguan-Guizhen fault after analysis of the scale, feature and age determination of the collapse. If any seismic surface rupture and ancient earthquake traces

  9. Fault Branching

    NASA Astrophysics Data System (ADS)

    Dmowska, R.; Rice, J. R.; Poliakov, A. N.

    2001-12-01

    Theoretical stress analysis for a propagating shear rupture suggests that the propensity of the rupture path to branch is determined by rupture speed and by the preexisting stress state. See Poliakov, Dmowska and Rice (JGR, submitted April 2001, URL below). Deviatoric stresses near a mode II rupture tip are found to be much higher to both sides of the fault plane than directly ahead, when rupture speed becomes close to the Rayleigh speed. However, the actual pattern of predicted Coulomb failure on secondary faults is strongly dependent on the angle between the fault and the direction of maximum compression Smax in the pre-stress field. Steep Smax angles lead to more extensive failure on the extensional side, whereas shallow angles give comparable failure regions on both. Here we test such concepts against natural examples. For crustal thrust faults we may assume that Smax is horizontal. Thus nucleation on a steeply dipping plane, like the 53 ° dip for the 1971 San Fernando earthquake, is consistent with rupture path kinking to the extensional side, as inferred. Nucleation on a shallow dip, like for the 12 ° -18 ° of the 1985 Kettleman Hills event, should activate both sides, as seems consistent with aftershock patterns. Similarly, in a strike slip example, Smax is inferred to be at approximately 60 ° with the Johnson Valley fault where it branched to the extensional side onto the Landers-Kickapoo fault in the 1992 event, and this too is consistent. Further, geological examination of the activation of secondary fault features along the Johnson Valley fault and the Homestead Valley fault consistently shows that most activity occurs on the extensional side. Another strike-slip example is the Imperial Valley 1979 earthquake. The approximate Smax direction is north-south, at around 35 ° with the main fault, where it branched, on the extensional side, onto Brawley fault, again interpretable with the concepts developed.

  10. Myrionecta Rubra Population Genetic Diversity and Its Cryptophyte Chloroplast Specificity in Recurrent Red Tides in the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Crump, Byron C.; Prahl, Fredrick G.; Baptista, Antonio M.; Campbell, Victoria; Warnick, Rachel; Selby, Mikaela; Roegner, G. Curtis; Zuber, Peter A.

    2011-01-04

    For at least a decade, annually recurring blooms of the photosynthetic ciliate, Myrionecta rubra have been observed in the Columbia River estuary in late summer. In an effort to understand the dynamics of these blooms, we investigated the genetic variability of M. rubra and its cryptophyte plastids within three large estuarine blooms formed in consecutive years (2007-2009), and conducted a broader spatial survey along the coasts of Oregon/Washington. Analysis of the ‘18S-28S’ sequences specific for Mesodiniidae uncovered at least 7 variants of M. rubra within the Columbia River coastal margin in spring and summer, but only one of these M. rubra variants was implicated in estuary bloom formation. Using a multigene approach, we show that the bloom-forming variant of M. rubra appears to harbor the same cryptophyte chloroplast in recurring blooms. Analyses of chloroplast 16S rRNA, cryptophyte RuBisCO and Photosystem II D2 genes together suggest that the plastid is derived from Teleaulax amphioxeia. Free-living cells of this species and of other cryptophytes were practically absent from the bloom patches in the estuary main channels based on 18S rDNA sequence analyses. The respectively low and high proportions of T. amphioxeia nuclei and chloroplasts signals found in the M. rubra bloom of the Columbia River estuary in successive years supports the notion of a transient association between T. amphioxeia and the bloom-forming M. rubra variant, with loss of cryptophyte nuclei. The genetic variability of M. rubra uncovered here is relevant to the controversy in the literature regarding the cryptophyte /M. rubra association.

  11. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico, and Influence on Ground-Water Flow in the Shallow Alluvial Aquifer

    USGS Publications Warehouse

    Vincent, Kirk R.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley of north-central New Mexico. This report is one in a series of reports that can be used to determine pre-mining ground-water conditions at the mine site. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The bedrock of the Taos Range surrounding the Red River is composed of Proterozoic rocks of various types, which are intruded and overlain by Oligocene volcanic rocks associated with the Questa caldera. Locally, these rocks were altered by hydrothermal activity. The alteration zones that contain sulfide minerals are particularly important because they constitute the commercial ore bodies of the region and, where exposed to weathering, form sites of rapid erosion referred to as alteration scars. Over the past thousand years, if not over the entire Holocene, erosion rates were spatially variable. Forested hillslopes eroded at about 0.04 millimeter per year, whereas alteration scars eroded at about 2.7 millimeters per year. The erosion rate of the alteration scars is unusually rapid for naturally occurring sites that have not been disturbed by humans. Watersheds containing large alteration scars delivered more sediment to the Red River Valley than the Red River could remove. Consequently, large debris fans, as much as 80 meters thick, developed within the valley. The geomorphology of the Red River Valley has had several large influences on the hydrology of the shallow alluvial aquifer, and those influences were in effect before the onset of mining within the watershed. Several reaches where alluvial ground water emerges to become Red River streamflow were observed by a tracer dilution study conducted in 2001. The aquifer narrows

  12. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  13. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    NASA Astrophysics Data System (ADS)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming; Nhan, Pham Quy; Hoa, Le Quynh; Trang, Pham Thi Kim; Long, Tran Vu; Viet, Pham Hung; Jakobsen, Rasmus

    2012-12-01

    Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer along the Red River, Vietnam. The SCMs for ferrihydrite and goethite yielded very different results. The ferrihydrite SCM favors As(III) over As(V) and has carbonate and silica species as the main competitors for surface sites. In contrast, the goethite SCM has a greater affinity for As(V) over As(III) while PO43- and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment, suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed. The concentrations of As (<0.013 μM) and major ions in the channel water are low compared to those in the pristine groundwater in the adjacent bank aquifer, which had an As concentration of ˜3 μM. Calculations for conservative mixing of channel and groundwater could explain the observed variation in concentration for most elements. However, the mixed waters did contain an excess of As(III), PO43- and Si which is attributed to desorption from the aquifer sediment. The three SCMs were tested on their ability to model the desorption of As(III), PO43- and Si. Qualitatively, the ferrihydrite SCM correctly predicts desorption for As(III) but for Si and PO43- it predicts an increased adsorption instead of desorption. The goethite SCM correctly predicts desorption of both As(III) and PO43

  14. A Multi-Scale Approach to Investigating the Red-Crowned Crane-Habitat Relationship in the Yellow River Delta Nature Reserve, China: Implications for Conservation.

    PubMed

    Cao, Mingchang; Xu, Haigen; Le, Zhifang; Zhu, Mingchang; Cao, Yun

    2015-01-01

    The red-crowned crane (Grus japonensis (Statius Müller, 1776)) is a rare and endangered species that lives in wetlands. In this study, we used variance partitioning and hierarchical partitioning methods to explore the red-crowned crane-habitat relationship at multiple scales in the Yellow River Delta Nature Reserve (YRDNR). In addition, we used habitat modeling to identify the cranes' habitat distribution pattern and protection gaps in the YRDNR. The variance partitioning results showed that habitat variables accounted for a substantially larger total and pure variation in crane occupancy than the variation accounted for by spatial variables at the first level. Landscape factors had the largest total (45.13%) and independent effects (17.42%) at the second level. The hierarchical partitioning results showed that the percentage of seepweed tidal flats were the main limiting factor at the landscape scale. Vegetation coverage contributed the greatest independent explanatory power at the plot scale, and patch area was the predominant factor at the patch scale. Our habitat modeling results showed that crane suitable habitat covered more than 26% of the reserve area and that there remained a large protection gap with an area of 20,455 ha, which accounted for 69.51% of the total suitable habitat of cranes. Our study indicates that landscape and plot factors make a relatively large contribution to crane occupancy and that the focus of conservation effects should be directed toward landscape- and plot-level factors by enhancing the protection of seepweed tidal flats, tamarisk-seepweed tidal flats, reed marshes and other natural wetlands. We propose that efforts should be made to strengthen wetland restoration, adjust functional zoning maps, and improve the management of human disturbance in the YRDNR.

  15. A Multi-Scale Approach to Investigating the Red-Crowned Crane–Habitat Relationship in the Yellow River Delta Nature Reserve, China: Implications for Conservation

    PubMed Central

    Cao, Mingchang; Xu, Haigen; Le, Zhifang; Zhu, Mingchang; Cao, Yun

    2015-01-01

    The red-crowned crane (Grus japonensis (Statius Müller, 1776)) is a rare and endangered species that lives in wetlands. In this study, we used variance partitioning and hierarchical partitioning methods to explore the red-crowned crane–habitat relationship at multiple scales in the Yellow River Delta Nature Reserve (YRDNR). In addition, we used habitat modeling to identify the cranes’ habitat distribution pattern and protection gaps in the YRDNR. The variance partitioning results showed that habitat variables accounted for a substantially larger total and pure variation in crane occupancy than the variation accounted for by spatial variables at the first level. Landscape factors had the largest total (45.13%) and independent effects (17.42%) at the second level. The hierarchical partitioning results showed that the percentage of seepweed tidal flats were the main limiting factor at the landscape scale. Vegetation coverage contributed the greatest independent explanatory power at the plot scale, and patch area was the predominant factor at the patch scale. Our habitat modeling results showed that crane suitable habitat covered more than 26% of the reserve area and that there remained a large protection gap with an area of 20,455 ha, which accounted for 69.51% of the total suitable habitat of cranes. Our study indicates that landscape and plot factors make a relatively large contribution to crane occupancy and that the focus of conservation effects should be directed toward landscape- and plot-level factors by enhancing the protection of seepweed tidal flats, tamarisk-seepweed tidal flats, reed marshes and other natural wetlands. We propose that efforts should be made to strengthen wetland restoration, adjust functional zoning maps, and improve the management of human disturbance in the YRDNR. PMID:26065417

  16. Natural and anthropogenic influences on a red-crowned crane habitat in the Yellow River Delta Natural Reserve, 1992-2008.

    PubMed

    Wang, Hong; Gao, Jay; Pu, Ruiliang; Ren, Liliang; Kong, Yan; Li, He; Li, Ling

    2014-07-01

    This study aims to assess the relative importance of natural and anthropogenic variables on the change of the red-crowned crane habitat in the Yellow River Nature Reserve, East China using multitempopral remote sensing and geographic information system. Satellite images were used to detect the change in potential crane habitat, from which suitable crane habitat was determined by excluding fragmented habitat. In this study, a principal component analysis (PCA) with seven variables (channel flow, rainfall, temperature, sediment discharge, number of oil wells, total length of roads, and area of settlements) and linear regression analyses of potential and suitable habitat against the retained principal components were applied to explore the influences of natural and anthropogenic factors on the change of the red-crowned crane habitat. The experimental results indicate that suitable habitat decreased by 5,935 ha despite an increase of 1,409 ha in potential habitat from 1992 to 2008. The area of crane habitat changed caused by natural drivers such as progressive succession, retrogressive succession, and physical fragmentation is almost the same as that caused by anthropogenic forces such as land use change and behavioral fragmentation. The PCA and regression analyses revealed that natural factors (e.g., channel flow, rainfall, temperature, and sediment discharge) play an important role in the crane potential habitat change and human disturbances (e.g., oil wells, roads, and settlements) jointly explain 51.8 % of the variations in suitable habitat area, higher than 48.2 % contributed by natural factors. Thus, it is vital to reduce anthropogenic influences within the reserve in order to reverse the decline in the suitable crane habitat.

  17. Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray-Darling Basin, Australia: Implications for the management of environmental flows

    USGS Publications Warehouse

    Doody, Tanya M.; Colloff, Matthew J.; Davies, Micah; Koul, Vijay; Benyon, Richard G.; Nagler, Pamela L.

    2015-01-01

    Water resource development and drought have altered river flow regimes, increasing average flood return intervals across floodplains in the Murray-Darling Basin, Australia, causing health declines in riparian river red gum (Eucalyptus camaldulensis) forests and woodlands. Environmental flow allocations helped to alleviate water stress during the recent Millennium Drought (1997–2010), however, quantification of the flood frequency required to support healthy E. camaldulensis communities is still needed. We quantified water requirements of E. camaldulensis for two years across a flood gradient (trees inundated at frequencies of 1:2, 1:5 and 1:10 years) at Yanga National Park, New South Wales to help inform management decision-making and design of environmental flows. Sap flow, evaporative losses and soil moisture measurements were used to determine transpiration, evapotranspiration and plant-available soil water before and after flooding. A formula was developed using plant-available soil water post-flooding and average annual rainfall, to estimate maintenance time of soil water reserves in each flood frequency zone. Results indicated that soil water reserves could sustain 1:2 and 1:5 trees for 15 months and six years, respectively. Trees regulated their transpiration rates, allowing them to persist within their flood frequency zone, and showed reduction in active sapwood area and transpiration rates when flood frequencies exceeded 1:2 years. A leaf area index of 0.5 was identified as a potential threshold indicator of severe drought stress. Our results suggest environmental water managers may have greater flexibility to adaptively manage floodplains in order to sustain E. camaldulensis forests and woodlands than has been appreciated hitherto.

  18. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  19. Petrology and Bulk Chemistry of Modern Bed Load Sediments From Rivers Draining the Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Borges, J. B.

    2003-12-01

    We studied river bed load petrology and bulk sediment chemistry of the headwaters of the Changjiang, Huang He and Red rivers in China and Vietnam. These rivers drain the eastern and southeastern parts of the Tibetan Plateau which includes part of the Indian-Eurasian suture zone. The eastern Tibetan Plateau is dominated by marine sedimentary rocks with a few scattered intrusive igneous outcrops, while the suture zone is characterized by a mixture of high-grade metamorphic, ultramafic, granitic, volcanic arc and marine sedimentary rocks. The arithmetic average for Qt: Ft: Rft along the suture zone varies from 56:2:42 along the Red River Fault (RRF) zone to 38:6:56 in the interior of the continent, while sands from rivers draining the plateau average 32:8:60. The sands analyzed in this study are relatively immature compared to most data available from most rivers in the tropics. The average Chemical Index of Alteration (CIA) for samples from the RRF suture zone (0.62) is similar to that of rivers draining other tropical regions like the Niger, Chao Phraya, Mekong, Ganges, Amazon and Brahmaputra. The CIA values from the RRF zone are also significantly different from the rest of the suture zone (0.36) and the plateau area (0.38). The difference can be attributed to the combined effect of relief and precipitation. The RRF lies in the Red River drainage and receives ˜1820 mm of precipitation annually, while the plateau area averages ˜620 mm annually. In the case of the Red River drainage, the relief combined with higher humidity can increase physical weathering and reduce the residence time of sediment in the river drainage, therefore, continuously replacing the sediment transported out of the drainage by freshly weathered immature materials. In the plateau area, lower precipitation and runoff may limit sediment transport and chemical weathering leading to sediment immaturity.

  20. 3D Discrete Element Simulation of Large-scale Faulting and Crustal Thickening in the India-Asia Collision Zone

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Tapponnier, P.; Donze, F. V.; Scholtes, L.; Gaudemer, Y.; Huang, Z.

    2015-12-01

    Understanding the discontinuous nucleation, growth, and interaction of large faults within continental collision zones remains a challenge. Previous analog experiments simulating the India-Asia collision successfully modeled the development and kinematics of large strike-slip faults within the Eurasian plate. However, these 2D experiments were dynamically unscaled with gravity and did not allow the development of topographic relief. We use the YADE discrete element (DEM) code to alleviate these problems, producing a suite of 3D models. These 3D DEM models also involve the extrusion and rotation of coherent blocks by generating two large strike-slip faults. The location, size and offsets of these faults are consistent with those of the Red River and Altyn Tagh mega-faults. In addition, concurrently with strike-slip movement, the large scale deformation includes the successive formation, from South to North, of thrust faults that bound a growing plateau which may be considered analogous to the Tibet-Qinghai plateau. While based on very simplified boundary conditions and mechanical properties, such modeling results are therefore consistent with the topographic, tectonic and geological evolution of Eastern Asia in the last ~50 million years.

  1. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 1. Depth to Bedrock Determinations Using Shallow Seismic Data Acquired in the Straight Creek Drainage Near Red River, New Mexico

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2004-01-01

    In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.

  2. Complementing data-driven and physically-based approaches for predictive morphologic modeling: Results and implication from the Red River Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J.; Bernardi, D.; Bizzi, S.; Castelletti, A.; Soncini-Sessa, R.

    2013-12-01

    During the last 30 years, the delta of the Red River (Song Hong) in northern Vietnam experienced grave morphologic degradation processes which severely impact economic activities and endanger region-wide livelihoods. Rapidly progressing river bed incision, for example, threatens the irrigation of the delta's paddy rice crops which constitute 20% of Vietnam's annual rice production. Morphologic alteration is related to a drastically changed sediment balance due to major upstream impoundments, sediment mining and land use changes, further aggravated by changing hydro-meteorological conditions. Despite the severe impacts, river morphology was so far not included into the current efforts to optimize basin wide water resource planning for a lack of suitable, not overly resource demanding modeling strategies. This paper assesses the suitability of data-driven models to provide insights into complex hydromorphologic processes and to complement and enrich physically-based modeling strategies. Hence, to identify key drivers of morphological change while evaluating impacts of future socio-economic, management and climate scenarios on river morphology and the resulting effects on key social needs (e.g. water supply, energy production and flood mitigation). Most relevant drivers and time-scales for the considered processes (e.g. incision) - from days to decades - were identified from hydrologic and sedimentologic time-series using a feature ranking algorithm based on random trees. The feature ranking pointed out bimodal response characteristics, with important contributions of long-to-medium (5 - 15 yrs.) and rather short (10d - 6 months) timescales. An artificial neural network (ANN), built from identified variables, subsequently quantified in detail how these temporal components control long term trends, inter-seasonal fluctuations and day to day variations in morphologic processes. Whereas the general trajectory of incision relates, for example, to the overall regional

  3. Relation of physical and chemical characteristics of streams to fish communities in the Red River of the North basin, Minnesota and North Dakota, 1993-95

    USGS Publications Warehouse

    Goldstein, R.M.; Stauffer, J.C.; Larson, P.R.; Lorenz, D.L.

    1996-01-01

    Within the instream habitat data set, measures of habitat volume (channel width and depth) and habitat diversity were most significant in explaining the variability of the fish communities. The amount of nonagricultural land and riparian zone integrity from the terrestrial habitat data set were also useful in explaining fish community composition. Variability of mean monthly discharge and the frequency of high and low discharge events during the three years prior to fish sampling were the most influential of the hydrologic variables.The first two axes of the canonical correspondence analysis accounted for 43.3 percent of the variation in the fish community and 52.5 percent of the variation in the environmental-species relation. Water-quality indicators such as the percent of fine material in suspended sediment, minimum dissolved oxygen concentrations, minimum concentrations of dissolved organic carbon, and the range of concentrations of major ions and nutrients were the variables that were most important in the canonical correspondence analysis of water-quality data with fish. No single environmental variable or data set appeared to be more important than another in explaining variation in the fish community. The environmental factors affecting the fish communities of the Red River of the North are interrelated. For the most part, instream environmental conditions (instream habitat, hydrology, and water chemistry) appear to be more important in explaining variability in fish community composition than factors related to the agricultural nature of the basin.

  4. Hydrogeology and sources of recharge to the Buffalo and Wahpeton aquifers in the southern part of the Red River of the North drainage basin, west-central Minnesota and southeastern North Dakota

    USGS Publications Warehouse

    Schoenberg, Michael

    1998-01-01

    The potential sources of recharge to the Wahpeton aquifers investigated were the Red River of the North, and adjacent hydro geologic units. The volume of ground water pumped from the Wahpeton aquifers provides an estimate of the upper limit for the volume of recharge to the aquifer. Based on pumpage from all of the Wapheton aquifers from 1990 to 1993, the upper limit is about 580 million gallons per year (2.4 x 105 cubic feet per day).

  5. Questa baseline and pre-mining ground-water quality investigation. 2. Low-flow (2001) and snowmelt (2002) synoptic/tracer water chemistry for the Red River, New Mexico

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Steiger, Judy I.; Kimball, Briant A.; Verplanck, Philip L.

    2003-01-01

    Water analyses are reported for 259 samples collected from the Red River, New Mexico, and its tributaries during low-flow(2001) and spring snowmelt (2002) tracer studies. Water samples were collected along a 20-kilometer reach of the Red River beginning just east of the town of Red River and ending at the U.S. Geological Survey streamflow-gaging station located east of Questa, New Mexico. The study area was divided into three sections where separate injections and synoptic sampling events were performed during the low-flow tracer study. During the spring snowmelt tracer study, three tracer injections and synoptic sampling events were performed bracketing the areas with the greatest metal loading into the Red River as determined from the low-flow tracer study. The lowflow tracer synoptic sampling events were August 17, 20, and 24, 2001. The synoptic sampling events for the spring snowmelt tracer were March 30, 31, and April 1, 2002. Stream and large inflow water samples were sampled using equal-width and depth-integrated sampling methods and composited into half-gallon bottles. Grab water samples were collected from smaller inflows. Stream temperatures were measured at the time of sample collection. Samples were transported to a nearby central processing location where pH and specific conductance were measured and the samples processed for chemical analyses. Cations, trace metals, iron redox species, and fluoride were analyzed at the U.S. Geological Survey laboratory in Boulder, Colorado. Cations and trace metal concentrations were determined using inductively coupled plasma-optical emission spectrometry and graphite furnace atomic absorption spectrometry. Arsenic concentrations were determined using hydride generation atomic absorption spectrometry, iron redox species were measured using ultraviolet-visible spectrometry, and fluoride concentrations were determined using an ion-selective electrode. Alkalinity was measured by automated titration, and sulfate

  6. Regression Equations for Estimating Concentrations of Selected Water-Quality Constituents for Selected Gaging Stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota

    USGS Publications Warehouse

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act, passed by the U.S. Congress on December 15, 2000, authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and quality needs of the Red River of the North Basin in North Dakota and possible options to meet those water needs. Previous Red River of the North Basin studies conducted by the Bureau of Reclamation used streamflow and water-quality data bases developed by the U.S. Geological Survey that included data for 1931-84. As a result of the recent congressional authorization and results of previous studies by the Bureau of Reclamation, redevelopment of the streamflow and water-quality data bases with current data through 1999 are needed in order to evaluate and predict the water-quantity and quality effects within the Red River of the North Basin. This report provides updated statistical summaries of selected water-quality constituents and streamflow and the regression relations between them. Available data for 1931-99 were used to develop regression equations between 5 selected water-quality constituents and streamflow for 38 gaging stations in the Red River of the North Basin. The water-quality constituents that were regressed against streamflow were hardness (as CaCO3), sodium, chloride, sulfate, and dissolved solids. Statistical summaries of the selected water-quality constituents and streamflow for the gaging stations used in the regression equations development and the applications and limitations of the regression equations are presented in this report.

  7. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  8. Technical and economic feasibility of salt-gradient solar ponds at the Truscott Brine Lake of the Red River Chloride Control Project. A report to the House-Senate Committee on Appropriations of the Ninety-Seventh Congress

    SciTech Connect

    Not Available

    1982-09-01

    The Truscott Brine Lake is being constructed to impound highly brackish water from a number of sources which would normally flow into the Wichita River, a tributary of the Red River in Knox County, Texas. A 35.4-km (22-mile) pipeline is being constructed to carry the brines from their primary source to the Truscott Brine Lake site. The reservoir is designed to contain 100 years of brine emissions from three chloride emission areas in the Wichita River Basin. The solar ponds and power generating facilities would be located in the Bluff Creek Arm of Truscott Brine Lake. The Truscott Brine Lake study includes: survey of suitability of Truscott Lake site, review of solar pond technology, preconceptual design of solar salt pond power plant, and economic evaluation.

  9. Egypt and Red Sea

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A panaramic view of eastern Egypt, The Red Sea and Saudi Arabia beyond (24.0N, 33.0E). In this desert country, where water is life, the high Aswan Dam and the impounded waters of the Nile River in the foreground assure water availability into the next century. The Red Sea beyond, part of the Suez Canal seaway, serves as a commercial link to the world and separates Egypt from Saudi Arabia.

  10. Verification of water-quality model to simulate effects of discharging treated wastewater during ice-cover conditions to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota

    USGS Publications Warehouse

    Wesolowski, E.A.

    1995-01-01

    The Red River at Fargo Water-Quality (RRatFGO QW) Model, which used the Enhanced Stream Water Quality Model (QUAL2E) computer program, was calibrated and verified for ice-free conditions. The purpose of this study was to verify the model for ice-cover conditions using the same Red River of the North study reach that was used for ice-free conditions. The study reach begins about 0.1 mile downstream of the 12th Avenue North bridge in Fargo, North Dakota, and extends 30.8 miles downstream to a site 0.8 mile upstream of the confluence of the Buffalo River and the Red River of the North. The study reach receives treated wastewater outflow from municipal wastewater-treatment plants at Fargo, North Dakota, and Moorhead, Minnesota, and inflow from the Sheyenne River. For simulations conducted for ice-cover conditions, the RRatFGO QW Model will be referred to as the Red River at Fargo Ice-Cover Water-Quality (RRatFGOIC QW) Model. Streamflow measurements were made at 10 sites during February 21-24, 1995, and water-quality samples were collected and field properties were measured at 12 sites during February 23-24, 1995. Properties and constituents analyzed for include specific conductance, water temperature, dissolved oxygen, 5-day carbonaceous biochemical oxygen demand, total nitrite (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), total ammonia (reported as nitrogen), total organic nitrogen (reported as nitrogen), total phosphorus (reported as phosphorus), chlorophyll a, and algal biomass. The RRatFGOIC QW Model simulated streamflow, specific conductance, total organic nitrogen, total ammonia, total nitrite, total nitrite plus nitrate, 5-day carbonaceous biochemical oxygen demand, and dissolved oxygen. The model was considered verified for ice-cover conditions for all of the values or concentrations simulated except for the total organic nitrogen concentrations. Based on the results of this study, the QUAL2E Model computer program that was

  11. Questa baseline and pre-mining ground-water quality investigation. 20. Water chemistry of the Red River and selected seeps, tributaries, and precipitation, Taos County, New Mexico, 2000-2004

    USGS Publications Warehouse

    Verplanck, P.L.; McCleskey, R.B.; Nordstrom, D.K.

    2006-01-01

    As part of a multi-year project to infer the pre-mining ground-water quality at Molycorp's Questa mine site, surface-water samples of the Red River, some of its tributaries, seeps, and snow samples were collected for analysis of inorganic solutes and of water and sulfate stable isotopes in selected samples. The primary aim of this study was to document diel, storm event, and seasonal variations in water chemistry for the Red River and similar variations in water chemistry for Straight Creek, a natural analog site similar in topography, hydrology, and geology to the mine site for inferring pre-mining water-quality conditions. Red River water samples collected between 2000 and 2004 show that the largest variations in water chemistry occur during late summer rainstorms, often monsoonal in nature. Within hours, discharge of the Red River increased from 8 to 102 cubic feet per second and pH decreased from 7.80 to 4.83. The highest concentrations of metals (iron, aluminum, zinc, manganese) and sulfate also occur during such events. Low-pH and high-solute concentrations during rainstorm runoff are derived primarily from alteration 'scar' areas of naturally high mineralization combined with steep topography that exposes continually altered rock because erosion is too rapid for vegetative growth. The year 2002 was one of the driest on record, and Red River discharge reflected the low seasonal snow pack. No snowmelt peak appeared in the hydrograph record, and a late summer storm produced the highest flow for the year. Snowmelt was closer to normal during 2003 and demonstrated the dilution effect of snowmelt on water chemistry. Two diel sampling events were conducted for the Red River, one during low flow and the other during high flow, at two locations, at the Red River gaging station and just upstream from Molycorp's mill site. No discernible diel trends were observed except for dissolved zinc and manganese at the upstream site during low flow. Straight Creek drainage water

  12. Questa baseline and pre-mining ground-water quality investigation. 12. Geochemical and reactive-transport modeling based on tracer injection-synoptic sampling studies for the Red River, New Mexico, 2001-2002

    USGS Publications Warehouse

    Ball, James W.; Runkel, Robert L.; Nordstrom, D. Kirk

    2005-01-01

    Reactive-transport processes in the Red River, downstream from the town of Red River in north-central New Mexico, were simulated using the OTEQ reactive-transport model. The simulations were calibrated using physical and chemical data from synoptic studies conducted during low-flow conditions in August 2001 and during March/April 2002. Discharge over the 20-km reach from the town of Red River to the USGS streamflow-gaging station near the town of Questa ranged from 395 to 1,180 L/s during the 2001 tracer and from 234 to 421 L/s during the 2002 tracer. The pH of the Red River ranged from 7.4 to 8.5 during the 2001 tracer and from 7.1 to 8.7 during the 2002 tracer, and seep and tributary samples had pH values of 2.8 to 9.0 during the 2001 tracer and 3.8 to 7.2 during the 2002 tracer. Mass-loading calculations allowed identification of several specific locations where elevated concentrations of potential contaminants entered the Red River . These locations, characterized by features on the north side of the Red River that are known to be sources of low-pH water containing elevated metal and sulfate concentrations, are: the initial 2.4 km of the study reach, including Bitter Creek, the stream section from 6.2 to 7.8 km, encompassing La Bobita well and the Hansen debris fan, Sulphur Gulch, at about 10.5 km, the area near Portal Springs, from 12.2 to 12.6 km, and the largest contributors of mass loading, the 13.7 to 13.9 km stream section near Cabin Springs and the 14.7 to 17.5 km stream section from Shaft Spring to Thunder Bridge, Goathill Gulch, and Capulin Canyon. Speciation and saturation index calculations indicated that although solubility limits the concentration of aluminum above pH 5.0, at pH values above 7 and aluminum concentrations below 0.3 mg/L inorganic speciation and mineral solubility controls no longer dominate and aluminum-organic complexing may occur. The August 2001 reactive-transport simulations included dissolved iron(II) oxidation, constrained

  13. Seismic and gravity investigations of the shallow (upper 1 km) hanging wall of the Alpine Fault in the vicinity of the Whataroa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Kovacs, A.; Gorman, A. R.; Lay, V.; Buske, S.

    2013-12-01

    Paleoseismic evidence from the vicinity of the plate-bounding Alpine Fault on New Zealand's South Island suggests that earthquakes of magnitude 7.9 occur every 200-400 years, with the last earthquake occurring in AD 1717. No human observations of this event are recorded. Therefore, the Deep Fault Drilling Project 2 (DFDP-2) drill hole, which is planned for 2014 on the hanging wall of the Alpine Fault in the Whataroa Valley, provides a critical opportunity to study the behavior of this transpressive plate boundary late in its seismogenic cycle. New seismic and gravity data collected since 2011 have been analyzed to assist with the positioning of the drill hole in this glacial valley that provides rare low-elevation access to the hanging wall of the Alpine Fault. The WhataDUSIE controlled-source seismic project, led by researchers from the University of Otago (New Zealand), TU Bergakademie Freiberg (Germany) and the University of Alberta (Canada), provided relatively high-resolution coverage (4-8 m geophone spacing, 25-100 m shot spacing) along a 5-km-long profile across the Alpine Fault in the Whataroa Valley. This work has been supplemented by focused hammer-seismic studies and gravity data collection in the valley. The former targets surface layer properties, whereas the latter targets the depth to the base of the glacially carved paleovalley. In positioning DFDP-2, an understanding of the nature of overburden and valley-fill sediments is critical for drilling design. A velocity model has been developed for the valley based on refraction analysis of the WhataDUSIE and hammer-seismic data combined with a ray-theoretical travel-time tomography (RAYINVR) image of the shallow (uppermost 1 km or so) part of the hanging wall of the Alpine Fault. The model shows that the glacial valley, which presumably was last scoured by ice at the Last Glacial Maximum, has been filled with 200-350 m of post-glacial sediments and outwash gravels. The hanging-wall rocks into which the

  14. Lateral drilling and completion technologies for shallow-shelf carbonates of the Red River and Ratcliffe Formations, Williston Basin. Topical report, July 1997

    SciTech Connect

    Carrell, L.A.; George, R.D.; Gibbons, D.

    1998-07-01

    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil-well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius lateral in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2,590 to 2,890 m in Richland County, MT; Bowman County, ND; and Harding County, SD. In theory, all of the horizontal drilling techniques explored in this project have merit for application fitting specific criteria. From a realistic point of view, the only relatively trouble-free, adequately-proven technology employed was the medium-radius steered motor/MWD technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but appears to still be significantly in developmental stages. This technology will probably always be more troublesome than the technology used to drill new wells because the smaller diameter required for the tools contributes to both design and operational complexities. Although limited mechanical success has been achieved with some of the lateral jetting technologies and the Amoco tools, their predictability and reliability is unproven. Additionally, they appear to be limited to shallow depths and certain rock types. The Amoco technology probably has the most potential to be successfully developed for routinely reliable, field applications. A comparison of the various horizontal drilling technologies investigated is presented.

  15. Weather and Management Effects over Nine Years of Net Ecosystem Direct Greenhouse Gas Emissions from a Cropping System in the Red River Valley, Manitoba

    NASA Astrophysics Data System (ADS)

    Tenuta, M.; Amiro, B. D.

    2014-12-01

    Variation in weather and crop management practices strongly determines direct greenhouse gas emissions (CO2 and N2O) from agricultural crop land. Thus a long-term study was established to relate weather and management variations to direct emissions in the Northern Great Plains of Canada. Continuously emission determinations of CO2 and N2O were established at the Trace Gas Manitoba (TGAS-MAN) Long Term Greenhouse Gas Monitoring Site at Glenlea, Manitoba, using the flux gradient micrometeorlogical technique with a tunable diode laser analyzer. The soil is poorly drained clay in the Red River Valley. The field experiment consisted of four 4-hectare plots planted to corn in 2006 and faba bean in 2007. In 2008, grass-alfalfa forage was introduced to two plots (annual - perennial) and grown until 2011 whereas the other two plots (annual) were planted to annual crops: spring wheat, rapeseed, barley and spring wheat in 2008, 2009, 2010 and 2011, respectively. In late September of 2011 the grass-alfalfa forage was killed and in 2012, 2013 and 2014 all four plots were planted with corn, soybean and spring wheat, respectively. Management decisions increased emissions such as fertilizer N addition, and hay, straw and silage crop removal greatly increased emissions while choosing legume grain and perennial crops reduced emissions. Weather variation affecting seasonal and daily soil moisture, length of spring freeze-thaw period, and crop yield served to increase or decrease emissions. The variation in management and weather will be discussed in regards to impact on net emissions over the nine year study and answer if development of greenhouse gas neutral cropping systems is possible.

  16. The Historical Demography and Genetic Variation of the Endangered Cycas multipinnata (Cycadaceae) in the Red River Region, Examined by Chloroplast DNA Sequences and Microsatellite Markers

    PubMed Central

    Gong, Yi-Qing; Zhan, Qing-Qing; Nguyen, Khang Sinh; Nguyen, Hiep Tien; Wang, Yue-Hua; Gong, Xun

    2015-01-01

    Cycas multipinnata C.J. Chen & S.Y. Yang is a cycad endemic to the Red River drainage region that occurs under evergreen forest on steep limestone slopes in Southwest China and northern Vietnam. It is listed as endangered due to habitat loss and over-collecting for the ornamental plant trade, and only several populations remain. In this study, we assess the genetic variation, population structure, and phylogeography of C. multipinnata populations to help develop strategies for the conservation of the species. 60 individuals from six populations were used for chloroplast DNA (cpDNA) sequencing and 100 individuals from five populations were genotyped using 17 nuclear microsatellites. High genetic differentiation among populations was detected, suggesting that pollen or seed dispersal was restricted within populations. Two main genetic clusters were observed in both the cpDNA and microsatellite loci, corresponding to Yunnan China and northern Vietnam. These clusters indicated low levels of gene flow between the regions since their divergence in the late Pleistocene, which was inferred from both Bayesian and coalescent analysis. In addition, the result of a Bayesian skyline plot based on cpDNA portrayed a long history of constant population size followed by a decline in the last 50,000 years of C. multipinnata that was perhaps affected by the Quaternary glaciations, a finding that was also supported by the Garza-Williamson index calculated from the microsatellite data. The genetic consequences produced by climatic oscillations and anthropogenic disturbances are considered key pressures on C. multipinnata. To establish a conservation management plan, each population of C. multipinnata should be recognized as a Management Unit (MU). In situ and ex situ actions, such as controlling overexploitation and creating a germplasm bank with high genetic diversity, should be urgently implemented to preserve this species. PMID:25689828

  17. Changes in streamflow and summary of major-ion chemistry and loads in the North Fork Red River basin upstream from Lake Altus, northwestern Texas and western Oklahoma, 1945-1999

    USGS Publications Warehouse

    Smith, S. Jerrod; Wahl, Kenneth L.

    2003-01-01

    Upstream from Lake Altus, the North Fork Red River drains an area of 2,515 square miles. The quantity and quality of surface water are major concerns at Lake Altus, and water-resource managers and consumers need historical information to make informed decisions about future development. The Lugert-Altus Irrigation District relies on withdrawals from the lake to sustain nearly 46,000 acres of agricultural land. Kendall's tau tests of precipitation data indicated no statistically significant trend over the entire 100 years of available record. However, a significant increase in precipitation occurred in the last 51 years. Four streamflow-gaging stations with more than 10 years of record were maintained in the basin. These stations recorded no significant trends in annual streamflow volume. Two stations, however, had significant increasing trends in the base-flow index, and three had significant decreasing trends in annual peak flows. Major-ion chemistry in the North Fork Red River is closely related to the chemical composition of the underlying bedrock. Two main lithologies are represented in the basin upstream from Lake Altus. In the upper reaches, young and poorly consolidated sediments include a range of sizes from coarse gravel to silt and clay. Nearsurface horizons commonly are cemented as calcium carbonate caliche. Finer-grained gypsiferous sandstones and shales dominate the lower reaches of the basin. A distinct increase in dissolved solids, specifically sodium, chloride, calcium, and sulfate, occurs as the river flows over rocks that contain substantial quantities of gypsum, anhydrite, and dolomite. These natural salts are the major dissolved constituents in the North Fork Red River.

  18. Timing of initiation of left-lateral shearing along the Ailao Shan-Red River shear zone: microstructural and geochronological constraints from high temperature mylonites in Diancang Shan, SW China

    NASA Astrophysics Data System (ADS)

    Cao, S.; Liu, J.; Leiss, B.; Neubauer, F.; Genser, J.

    2009-04-01

    The high grade metamorphic massifs (e.g. Xuelong Shan, Diancang Shan, Ailao Shan in China and Day Nui Con Voi metamorphic massif in Vietnam) along the Ailao Shan-Red River shear zone in Southwestern China bear much information on the large-scale left-lateral strike-slip shearing in eastern Tibet during Indian-Eurasian plate collision and post-collisional accommodation process in late Oligocene-early Miocene. The metamorphic massifs are narrow zones bounded by brittle faults. Low-grade metamorphic rocks are lying on the west and sedimentary rocks to the east. Rocks in these massifs are partly sheared with widespread occurrence of high temperature mylonites that have subhorizontal stretching lineations. Left-lateral shearing is indicated by mesoscale and microscale shear indicators in the mylonites. Debates exist on the timing of initiation and duration of left-lateral shearing, and mechanism of exhumation of the high grade metamorphic rocks along Ailao Shan Red River shear zone. The Diancang Shan complex, a typical metamorphic massif, is constituted by three units, i.e. a central high strain shear zone, a western low-grade metamorphic volcanic-sedimentary sequence in the Lanping basin, and an eastern superimposed retrograde metamorphic belt. The central high grade metamorphic complex consists of metamorphic rocks of amphibolite facies conditions. High-grade metamorphic mineral assemblages and structural elements indicate a deep level crustal metamorphism and deformation of the rocks. L-tectonites are typical indicators of high-temperature deformation in the highly sheared granitic mylonites. Widespread occurrence of different shear criteria (e.g. sheared veins, sigmoid and delta -porphyroclasts) suggests that these gneisses experienced very intensive high-temperature progressive left-lateral strike-slip shearing. A large synkinematic augen monzogranitic intrusion is recognized in the central belt by the present work. The intrusion has an obvious porphyritic texture

  19. The July 11, 1995 Myanmar-China earthquake: A representative event in the bookshelf faulting system of southeastern Asia observed from JERS-1 SAR images

    NASA Astrophysics Data System (ADS)

    Ji, Lingyun; Wang, Qingliang; Xu, Jing; Ji, Cunwei

    2017-03-01

    On July 11, 1995, an Mw 6.8 earthquake struck eastern Myanmar near the Chinese border; hereafter referred to as the 1995 Myanmar-China earthquake. Coseismic surface displacements associated with this event are identified from JERS-1 (Japanese Earth Resources Satellite-1) SAR (Synthetic Aperture Radar) images. The largest relative displacement reached 60 cm in the line-of-sight direction. We speculate that a previously unrecognized dextral strike-slip subvertical fault striking NW-SE was responsible for this event. The coseismic slip distribution on the fault planes is inverted based on the InSAR-derived deformation. The results indicate that the fault slip was confined to two lobes. The maximum slip reached approximately 2.5 m at a depth of 5 km in the northwestern part of the focal region. The inverted geodetic moment was approximately Mw = 6.69, which is consistent with seismological results. The 1995 Myanmar-China earthquake is one of the largest recorded earthquakes that has occurred around the "bookshelf faulting" system between the Sagaing fault in Myanmar and the Red River fault in southwestern China.

  20. New thermochronological constraints on the timing of shear from the Khlong Marui and Ranong faults, Peninsular Thailand: implications for Himalayan lateral extrusion.

    NASA Astrophysics Data System (ADS)

    Watkinson, I.; Elders, C.; Hall, R.

    2009-04-01

    New Ar-Ar data from the strike-slip faults of Peninsular Thailand indicate rapid uplift of mid-crustal ductile shear zones during the Eocene. The cooling ages are consistent with a northwards younging pattern of Ar-Ar cooling ages from the NW-trending Three Pagodas and Mae Ping faults in Northern Thailand, to the Ailao Shan-Red River fault in Vietnam and Yunnan, taken to reflect the northwards movement of India during the Cenozoic. The peninsular structures: the Khlong Marui fault (KMF) and Ranong fault (RF), are major NNE trending strike-slip faults of respectively 220 km and 420 km length. Exposed mylonitic rocks bear consistently dextral kinematic indicators, unlike the sinistral mylonites of the NW-trending structures to the north. Brittle strike-slip and dip-slip faults overprint all the shear zones. Rocks ranging from low grade mylonites to syn-kinematic amphibolite facies migmatites from the RF and KMF yield similar biotite Ar-Ar cooling ages, suggesting that uplift from all depths in the shear zone was rapid. Retrograde shear fabrics in places show that dextral shear may have continued during uplift. While the new thermochronological data show that the peninsular mylonites cooled during the Eocene, constraint from pre- and post-kinematic granitoids strongly suggests that ductile shear occurred during the Late-Cretaceous to Paleocene. Since this is well before the onset of India-Eurasia collision, much of the ductile shear must pre-date that orogeny, and therefore cannot be related to Himalayan lateral extrusion, as has been speculated. The regional cooling pattern, however, shows that Indian indentation may have triggered progressive northward exhumation of mylonitic rocks. If the model of the peninsular faults is applied to the NW-trending faults in northern Thailand, then a pre-Himalayan history may also be recorded by those mylonites, rather than a simple, lateral extrusion-related history.

  1. Quaternary faults of west Texas

    SciTech Connect

    Collins, E.W.; Raney, J.A. . Bureau of Economic Geology)

    1993-04-01

    North- and northwest-striking intermontane basins and associated normal faults in West Texas and adjacent Chihuahua, Mexico, formed in response to Basin and Range tectonism that began about 24 Ma ago. Data on the precise ages of faulted and unfaulted Quaternary deposits are sparse. However, age estimates made on the basis of field stratigraphic relationships and the degree of calcic soil development have helped determine that many of the faults that bound the basin margins ruptured since the middle Pleistocene and that some faults probably ruptured during the Holocene. Average recurrence intervals between surface ruptures since the middle Pleistocene appear to be relatively long, about 10,000 to 100,000 yr. Maximum throw during single rupture events have been between 1 and 3 m. Historic seismicity in West Texas is low compared to seismicity in many parts of the Basin and Range province. The largest historic earthquake, the 1931 Valentine earthquake in Ryan Flat/Lobo Valley, had a magnitude of 6.4 and no reported surface rupture. The most active Quaternary faults occur within the 120-km-long Hueco Bolson, the 70-km-long Red Light Bolson, and the > 200-km-long Salt Basins/Wild Horse Flat/Lobo Valley/Ryan Flat.

  2. Calibration of a Water-Quality Model for Low-Flow Conditions on the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, 2003

    USGS Publications Warehouse

    Lundgren, Robert F.; Nustad, Rochelle A.

    2008-01-01

    A time-of-travel and reaeration-rate study was conducted by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, the Minnesota Pollution Control Agency, and the cities of Fargo, North Dakota, and Moorhead, Minnesota, to provide information to calibrate a water-quality model for streamflows of less than 150 cubic feet per second. Data collected from September 24 through 27, 2003, were used to develop and calibrate the U.S. Environmental Protection Agency Water Quality Analysis Simulation Program model (hereinafter referred to as the Fargo WASP water-quality model) for a 19.2-mile reach of the Red River of the North. The Fargo WASP water-quality model was calibrated for the transport of dye by fitting simulated time-concentration dye curves to measured time-concentration dye curves. Simulated peak concentrations were within 10 percent of measured concentrations. Simulated traveltimes of the dye cloud centroid were within 7 percent of measured traveltimes. The variances of the simulated dye concentrations were similar to the variances of the measured dye concentrations, indicating dispersion was reproduced reasonably well. Average simulated dissolved-oxygen concentrations were within 6 percent of average measured concentrations. Average simulated ammonia concentrations were within the range of measured concentrations. Simulated dissolved-oxygen and ammonia concentrations were affected by the specification of a single nitrification rate in the Fargo WASP water-quality model. Data sets from August 1989 and August 1990 were used to test traveltime and simulation of dissolved oxygen and ammonia. For streamflows that ranged from 60 to 407 cubic feet per second, simulated traveltimes were within 7 percent of measured traveltimes. Measured dissolved-oxygen concentrations were underpredicted by less than 15 percent for both data sets. Results for ammonia were poor; measured ammonia concentrations were underpredicted by as much as 70 percent

  3. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China.

    PubMed

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into "Yuanjiang-Nanhun" basin and "Ejia-Jiepai" basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation

  4. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China

    PubMed Central

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into “Yuanjiang-Nanhun” basin and “Ejia-Jiepai” basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the

  5. Greenhouse Gas Emissions Increase Following the Termination of a Perennial Legume Phase of an Annual Crop Rotation within the Red River Valley, Manitoba

    NASA Astrophysics Data System (ADS)

    Hanis, K. L.; Tenuta, M.; Amiro, B. D.; Glenn, A. J.; Maas, S.; Gervais, M.

    2013-12-01

    Perennial legume forages may have the potential to increase soil carbon sequestration and decrease nitrous oxide (N2O) emissions to the atmosphere when introduced into annual cropping systems. However, little is known about what short-term effect the return to annual cropping following termination of perennial legume forage would have on carbon dioxide (CO2) and N2O emissions. Furthermore, there are few quantitative measurements about this impact on the Canadian Prairies. A long-term field experiment to continuously measure CO2 and N2O fluxes was established at the Trace Gas Manitoba (TGAS-MAN) Long Term Greenhouse Gas Monitoring Site at Glenlea, Manitoba using the flux gradient micrometeorlogical technique with a tunable diode laser analyzer. The soil is poorly drained clay in the Red River Valley. The field experiment consisted of four 4-hectare plots planted to corn in 2006 and faba bean in 2007. In 2008, grass-alfalfa forage was introduced to two plots (annual - perennial) and grown until 2011 whereas the other two plots (annual) were planted to annual crops: spring wheat, rapeseed, barley and spring wheat in 2008, 2009, 2010 and 2011, respectively. In late September of 2011 the grass-alfalfa forage was killed and in 2012 all four plots were planted with corn. Termination of the grass-alfalfa forage resulted in greater fall CO2 emissions in 2011, greater spring melt CO2 emissions and net annual N2O emissions in 2012 from the annual-perennial plots when compared to the annual plots. Over seven crop years (2006-2012), the annual - perennial system increased carbon uptake by 3.4 Mg C ha-1 and reduced N2O emissions by 3.0 Mg CO2-eq ha-1 compared to the annual system. However after accounting for harvest removals both the annual and annual-perennial systems were net carbon sources of 5.7 and 2.5 Mg C ha-1 and net GHG sources of 38 and 24 Mg CO2-eq ha-1 respectively. We are currently following the long-term impacts of inclusion of perennial forages in an annual

  6. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam

    NASA Astrophysics Data System (ADS)

    Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus

    2016-12-01

    Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the

  7. Possible Extent and Depth of Salt Contamination in Ground Water Using Geophysical Techniques, Red River Aluminum Site, Stamps, Arkansas, April 2003

    USGS Publications Warehouse

    Stanton, Gregory P.; Kress, Wade; Hobza, Christopher M.; Czarnecki, John B.

    2003-01-01

    A surface-geophysical investigation of the Red River Aluminum site at Stamps, Arkansas, was conducted in cooperation with the Arkansas Department of Environmental Quality to determine the possible extent and depth of saltwater contamination. Water-level measurements indicate the distance to water level below land surface ranges from about 1.2 to 3.9 feet (0.37 to 1.19 meters) in shallow monitor wells and about 10.5 to 17.1 feet (3.20 to 5.21 meters) in deeper monitoring wells. The two-dimensional, direct-current resistivity method identified resistivities less than 5 ohm-meters which indicated possible areas of salt contamination occurring in near-surface or deep subsurface ground water along four resistivity lines within the site. One line located east of the site yielded data that demonstrated no effect of salt contamination. Sections from two of the five data sets were modeled. The input model grids were created on the basis of the known geology and the results and interpretations of borehole geophysical data. The clay-rich Cook Mountain Formation is modeled as 25 ohm-meters and extends from 21 meters (68.9 feet) below land surface to the bottom of the model (about 52 meters (170.6 feet)). The models were used to refine interpretation of the resistivity data and to determine extent of saltwater contamination and depth to the Cook Mountain Formation. Data from the resistivity lines indicate both near-surface and subsurface saltwater contamination. The near-surface contamination appears as low resistivity (less than 5 ohm-meters) on four of the five resistivity lines, extending up to 775 meters (2,542.8 feet) horizontally in a line that traverses the entire site south to north. Model resistivity data indicate that the total depth of saltwater contamination is about 18 meters (59 feet) below land surface. Data from four resistivity lines identified areas containing low resistivity anomalies interpreted as possible salt contamination. A fifth line located just east

  8. Continuous Water-Quality Monitoring and Regression Analysis to Estimate Constituent Concentrations and Loads in the Red River of the North, Fargo, North Dakota, 2003-05

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for

  9. Analysis of the influence of tectonics on the evolution valley network based on the SRTM DEM and the relationship of automatically extracted lineaments and the tectonic faults, Jemma River basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Kusák, Michal

    2016-04-01

    The Ethiopian Highland is good example of high plateau landscape formed by combination of tectonic uplift and episodic volcanism (Kazmin, 1975; Pik et al., 2003; Gani et al., 2009). Deeply incised gorges indicate active fluvial erosion which leads to instabilities of over-steepened slopes. In this study we focus on Jemma River basin which is a left tributary of Abay - Blue Nile to assess the influence of neotectonics on the evolution of its river and valley network. Tectonic lineaments, shape of valley networks, direction of river courses and intensity of fluvial erosion were compared in six subregions which were delineate beforehand by means of morphometric analysis. The influence of tectonics on the valley network is low in the older deep and wide canyons and in the and on the high plateau covered with Tertiary lava flows while younger upper part of the canyons it is high. Furthermore, the coincidence of the valley network with the tectonic lineaments differs in the subregions. The fluvial erosion along the main tectonic zones (NE-SW) direction made the way for backward erosion possible to reach far distant areas in E for the fluvial erosion. This tectonic zone also separates older areas in the W from the youngest landscape evolution subregions in the E, next to the Rift Valley. We studied the functions that can automatically extract lineaments in programs ArcGIS 10.1 and PCI Geomatica. The values of input parameters and their influence of the final shape and number of lineaments. A map of automated extracted lineaments was created and compared with 1) the tectonic faults by Geology Survey of Ethiopia (1996); and 2) the lineaments based on visual interpretation of by the author. The comparation of lineaments by automated visualization in GIS and visual interpretation of lineaments by the author proves that both sets of lineaments are in the same azimuth (NE-SW) - the same direction as the orientation of the rift. But it the mapping of lineaments by automated

  10. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  11. 33 CFR 125.06 - Western rivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VESSELS § 125.06 Western rivers. The term western rivers as used in the regulations in this subchapter shall include only the Red River of the North, the Mississippi River and its tributaries above the Huey... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Western rivers. 125.06...

  12. 33 CFR 125.06 - Western rivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VESSELS § 125.06 Western rivers. The term western rivers as used in the regulations in this subchapter shall include only the Red River of the North, the Mississippi River and its tributaries above the Huey... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Western rivers. 125.06...

  13. 33 CFR 125.06 - Western rivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VESSELS § 125.06 Western rivers. The term western rivers as used in the regulations in this subchapter shall include only the Red River of the North, the Mississippi River and its tributaries above the Huey... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Western rivers. 125.06...

  14. 33 CFR 125.06 - Western rivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VESSELS § 125.06 Western rivers. The term western rivers as used in the regulations in this subchapter shall include only the Red River of the North, the Mississippi River and its tributaries above the Huey... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Western rivers. 125.06...

  15. 33 CFR 125.06 - Western rivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VESSELS § 125.06 Western rivers. The term western rivers as used in the regulations in this subchapter shall include only the Red River of the North, the Mississippi River and its tributaries above the Huey... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Western rivers. 125.06...

  16. Geometry of miocene extensional deformation, lower Colorado River Region, Southeastern California and Southwestern Arizona: Evidence for the presence of a regional low-angle normal fault

    NASA Technical Reports Server (NTRS)

    Tosdal, R. M.; Sherrod, D. R.

    1985-01-01

    The geometry of Miocene extensional deformation, which changes along a 120 km-long, northeast-trending transect from the southestern Chocolate Mountains, southeastern California, to the Trigo and southern Dome Rock Mountains, southwestern Arizona is discussed. Based upon regional differences in the structural response to extension and estimated extensional strain, the transet can be divided into three northwesterly-trending structural domains. From southwest to northeast, these domains are: (1) southestern Chocolate-southernmost Trigo Mountains; (2) central to northern Trigo Mountains; and (3) Trigo Peaks-southern Dome Rock Mountains. All structures formed during the deformation are brittle in style; fault rocks are composed of gouge, cohesive gouge, and local microbreccia. In each structural domain, exposed lithologic units are composed of Mesozoic crystalline rocks unconformably overlain by Oligocene to Early Miocene volcanic and minor interbedded sedimentary rocks. Breccia, conglomerate, and sandstone deposited synchronously with regional extension locally overlie the volcanic rocks. Extensional deformation largely postdated the main phase of volcanic activity, but rare rhyolitic tuff and flows interbedded with the syndeformational clastic rocks suggest that deformation began during the waning stages of valcanism. K-Ar isotopic ages indicate that deformation occurred in Miocene time, between about 22 and m.y. ago.

  17. Alteration Map Showing Major Faults and Veins and Associated Water-Quality Signatures of the Animas River Watershed Headwaters Near Silverton, Southwest Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Yager, Douglas B.; Mast, M. Alisa; Dalton, J. Brad

    2007-01-01

    This map was produced to provide hard-copy and digital data for alteration assemblages in the historical mining area centered on the Tertiary San Juan and Silverton calderas. The data have direct application to geoenvironmental and mineral exploration objectives. This dataset represents alteration mapping for the upper Animas River watershed near Silverton, Colorado. The map is based on detailed 1:12,000-scale field mapping, X-ray diffraction (XRD) analysis, mineral mapping by remote sensing (AVIRIS) data, and 1:24,000-scale aerial photographic interpretation. Geologic structures were compiled and generalized from multiple published and unpublished sources (Burbank and Luedke, 1964; Steven and others, 1974; Luedke and Burbank 1975a, b; Lipman, 1976; Luedke and Burbank, 1987; Luedke, 1996) (see Index Map). Unpublished mapping of the Ironton quadrangle by D.J. Bove and J.P. Kurtz in 1997-1999 was included.

  18. Characterization of slow slip rate faults in humid areas: Cimandiri fault zone, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, J. R.; Whipple, K. X.

    2016-12-01

    In areas where regional tectonic strain is accommodated by broad zones of short and low slip rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments or soils; their geomorphic expression subdued and sometimes undetectable until the next earthquake. In Java, active faults are diffused, and their characterization is challenging. Among them is the ENE striking Cimandiri fault zone. Cumulative displacement produces prominent ENE oriented ranges with the southeast side moving relatively upward and to the northeast. The fault zone is expressed in the bedrock by numerous NE, west, and NW trending thrust- and strike-slip faults and folds. However, it is unclear which of these structures are active. We performed a morphometric analysis of the fault zone using 30 m resolution Shuttle Radar Topography Mission digital elevation model. We constructed longitudinal profiles of 601 bedrock rivers along the upthrown ranges along the fault zone, calculated the normalized channel steepness index, identified knickpoints and use their distribution to infer relative magnitudes of rock uplift and locate boundaries that may indicate active fault traces. We compare the rock uplift distribution to surface displacement predicted by elastic dislocation model to determine the plausible fault kinematics. The active Cimandiri fault zone consists of six segments with predominant sense of reverse motion. Our analysis reveals considerable geometric complexity, strongly suggesting segmentation of the fault, and thus smaller maximum earthquakes, consistent with the limited historical record of upper plate earthquakes in Java.

  19. Minerals Anomalies and Their Significances in Fault Rocks along the Front Longmenshan Fault

    NASA Astrophysics Data System (ADS)

    Si, J.; Li, H.; Song, S.; Kuo, L.; Pei, J.; Chen, P.; Hsiao, H.; Wang, H.

    2012-12-01

    Anxian-Guanxian fault is the front fault of the Longmenshan fault system. In the Wenchuan earthquake (Ms8.0) of 12 May 2008, the surface rupture zone developed along the Anxian-Guanxian fault was also named as Hanwang rupture zone, which was approximately pure thrust, about 80km long accompanied with the vertical displacement of 0.5~4m averaged about 2m, and the maximum 4.2m occurred in the fifth villager group of Shaba village belonging to the Jiulong Town of Mianzhu City. We made several trenches cutting through the Anxian-Guanxian rupture zone. In the trenches near the Qingquan village of Jiulong town, three different colored strata including black, gray green and red layers developed from west to east. The black segment is carbonaceous mudstone and fault gouge, the gray green part is fault gouge, cataclasite and siltstone, and the purple red section is mainly mudstone with a few thin gouge layers at the top. Two continuous U-channel samples collected from the trench have been prepared for the synchrotron X-ray diffraction measurements. Viewing from the data, clay minerals including illite, mica, kaolinite and chlorite are more abundant in fine and black gouge than the coarse rocks and purple red mudstone. Moreover, there are significant graphite occur at and near the slip plane. Considering the low friction coefficient and the distinct different features different from the Yingxiu-Beichuan fault, the carbon matter might have acted as lubrication and played certain significant role in the faulting process of the slow angle Anxian-Guanxian fault.

  20. Trends in Streamflow and Nutrient and Suspended-Sediment Concentrations and Loads in the Upper Mississippi, Ohio, Red, and Great Lakes River Basins, 1975-2004

    USGS Publications Warehouse

    Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.

    2009-01-01

    Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern

  1. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  2. Structure and sediment budget of Yinggehai-Song Hong basin, South China Sea: Implications for Cenozoic tectonics and river basin reorganization in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lei, Chao; Ren, Jianye; Sternai, Pietro; Fox, Matthew; Willett, Sean; Xie, Xinong; Clift, Peter D.; Liao, Jihua; Wang, Zhengfeng

    2015-08-01

    The temporal link between offshore stratigraphy and onshore topography is of key importance for understanding the long-term surface evolution of continental margins. Here we present a grid of regional, high-quality reflection seismic and well data to characterize the basin structure. We identify fast subsidence of the basin basement and a lack of brittle faulting of the offshore Red River fault in the Yinggehai-Song Hong basin since 5.5 Ma, despite dextral strike-slip movement on the onshore Red River fault. We calculate the upper-crustal, whole-crustal, and whole-lithospheric stretching factors for the Yinggehai-Song Hong basin, which show that the overall extension observed in the upper crust is substantially less than that observed for the whole crust or whole lithosphere. We suggest that fast basement subsidence after 5.5 Ma may arise from crustal to lithospheric stretching by the regional dynamic lower crustal/mantle flow originated by collision between India-Eurasia and Indian oceanic subduction below the Eurasian margin. In addition, we present a basin wide sediment budget in the Yinggehai-Song Hong basin to reconstruct the sedimentary flux from the Red River drainage constrained by high-resolution age and seismic stratigraphic data. The sediment accumulation rates show a sharp increase at 5.5 Ma, which suggests enhanced onshore erosion rates despite a slowing of tectonic processes. This high sediment supply filled the accommodation space produced by the fast subsidence since 5.5 Ma. Our data further highlight two prominent sharp decreases of the sediment accumulation at 23.3 Ma and 12.5 Ma, which could reflect a loss of drainage area following headwater capture from the Paleo-Red River. However, the low accumulation rate at 12.5 Ma also correlates with drier and therefore less erosive climatic conditions.

  3. Eye redness

    MedlinePlus

    Bloodshot eyes; Red eyes; Scleral injection; Conjunctival injection ... There are many causes of a red eye or eyes. Some are medical emergencies. Others are a cause for concern, but not an emergency. Many are nothing to worry about. Eye ...

  4. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  5. Active Fault Characterization in the Urban Area of Vienna

    NASA Astrophysics Data System (ADS)

    Decker, Kurt; Grupe, Sabine; Hintersberger, Esther

    2016-04-01

    The identification of active faults that lie beneath a city is of key importance for seismic hazard assessment. Fault mapping and characterization in built-up areas with strong anthropogenic overprint is, however, a challenging task. Our study of Quaternary faults in the city of Vienna starts from the re-assessment of a borehole database of the municipality containing several tens of thousands of shallow boreholes. Data provide tight constraints on the geometry of Quaternary deposits and highlight several locations with fault-delimited Middle to Late Pleistocene terrace sediments of the Danube River. Additional information is obtained from geological descriptions of historical outcrops which partly date back to about 1900. The latter were found to be particularly valuable by providing unprejudiced descriptions of Quaternary faults, sometimes with stunning detail. The along-strike continuations of some of the identified faults are further imaged by industrial 2D/3D seismic acquired outside the city limits. The interpretation and the assessment of faults identified within the city benefit from a very well constrained tectonic model of the active Vienna Basin fault system which derived from data obtained outside the city limits. This data suggests that the urban faults are part of a system of normal faults compensating fault-normal extension at a releasing bend of the sinistral Vienna Basin Transfer Fault. Slip rates estimated for the faults in the city are in the range of several hundredths of millimetres per year and match the slip rates of normal faults that were trenched outside the city. The lengths/areas of individual faults estimated from maps and seismic reach up to almost 700 km² suggesting that all of the identified faults are capable of producing earthquakes with magnitudes M>6, some with magnitudes up to M~6.7.

  6. The San Andreas Fault System, California

    USGS Publications Warehouse

    Wallace, Robert E.

    1990-01-01

    Maps of northern and southern California printed on flyleaf inside front cover and on adjacent pages show faults that have had displacement within the past 2 million years. Those that have had displacement within historical time are shown in red. Bands of red tint emphasize zones of historical displacement; bands of orange tint emphasize major faults that have had Quaternary displacement before historical time. Faults are dashed where uncertain, dotted where covered by sedimentary deposits, and queried when doubtful. Arrows indicate direction of relative movement; sawteeth on upper plate of thrust fault. These maps are reproductions, in major part, of selected plates from the "Fault Map of California," published in 1975 by the California Division of Mines and Geology at a scale of 1:750,000; the State map was compiled and data interpreted by Charles W. Jennings. New data about faults, not shown on the 1975 edition, required modest revisions, primarily additions however, most of the map was left unchanged because the California Division of Mines and Geology is currently engaged in a major revision and update of the 1975 edition. Because of the reduced scale here, names of faults and places were redrafted or omitted. Faults added to the reduced map are not as precise as on the original State map, and the editor of this volume selected certain faults and omitted others. Principal regions for which new information was added are the region north of the San Francisco Bay area and the offshore regions.Many people have contributed to the present map, but the editor is solely responsible for any errors and omissions. Among those contributing informally, but extensively, and the regions to which each contributed were G.A. Carver, onland region north of lat 40°N.; S.H. Clarke, offshore region north of Cape Mendocino; R.J. McLaughlin, onland region between lat 40°00' and 40°30' N. and long 123°30' and 124°30' W.; D.S. McCulloch offshore region between lat 35° and 40° N

  7. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of ... 2000 - The Red Sea between the East Africa coast and Saudi Arabian peninsula. project:  MISR category:  ...

  8. Origin and model of transform faults in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Sanzhong; Jiang, Suhua; Suo, Yanhui; Guo, Lingli; Wang, Yongming; Zhang, Huixuan

    2017-03-01

    Transform faults in back-arc basins are the key to revealing the opening and development of marginal seas. The Okinawa Trough (OT) represents an incipient and active back-arc or marginal sea basin oriented in a general NE-SW direction. To determine the strikes and spatial distribution of transform faults in the OT, this paper dissects the NW- and NNE-SN-trending fault patterns on the basis of seismic profiles, gravity anomalies and region geological data. There are three main NW-trending transpressional faults in the OT, which are the seaward propagation of NW-trending faults in the East China Continent. The NNE-SN-trending faults with right-stepping distribution behave as right-lateral shearing. The strike-slip pull-apart process or transtensional faulting triggered the back-arc rifting or extension, and these faults evolved into transform faults with the emergence of oceanic crust. Thus, the transform fault patterns are inherited from pre-existing oblique transtensional faults at the offsets between rifting segments. Therefore, the OT performs the oblique spreading mechanism similar to nascent oceans such as the Red Sea and Gulf of Aden.

  9. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  10. Known and suggested quaternary faulting in the midcontinent United States

    USGS Publications Warehouse

    Wheeler, R.L.; Crone, A.J.

    2001-01-01

    The midcontinent United States between the Appalachian and Rocky Mountains contains 40 known faults or other potentially tectonic features for which published geologic information shows or suggests Quaternary tectonic faulting. We report results of a systematic evaluation of published and other publicly available geologic evidence of Quaternary faulting. These results benefit seismic-hazard assessments by (1) providing some constraints on the recurrence intervals and magnitudes of large, prehistoric earthquakes, and (2) identifying features that warrant additional study. For some features, suggested Quaternary tectonic faulting has been disproved, whereas, for others, the suggested faulting remains questionable. Of the 40 features, nine have clear geologic evidence of Quaternary tectonic faulting associated with prehistoric earthquakes, and another six features have evidence of nontectonic origins. An additional 12 faults, uplifts, or historical seismic zones lack reported paleoseismological evidence of large. Quaternary earthquakes. The remaining 13 features require further paleoseismological study to determine if they have had Quaternary earthquakes that were larger than any known from local historical records; seven of these 13 features are in or near urbanized areas where their study could affect urban hazard estimates. These seven are: (1) the belt of normal faults that rings the Gulf of Mexico from Florida to Texas. (2) the Northeast Ohio seismic zone, (3) the Valmont and (4) Goodpasture faults of Colorado. (5) the Champlain lowlands normal faults of New York State and Vermont, and (6) the Lexington and (7) Kentucky River fault systems of eastern Kentucky. Published by Elsevier Science B.V.

  11. Ductile and Brittle Neogene Deformation of Late Permian Orthogneiss in the Northern Ailao Shan-Red River Shear Zone: View from the Xuelong Shan Block

    NASA Astrophysics Data System (ADS)

    Wintsch, R. P.; Yi, D.; Yi, K.; Wang, Q. F.; Wang, G. H.

    2014-12-01

    The orthogneisses in the core of the Xuelong Shan block are surrounded by ductile and then brittle fault rocks. This lens-shape block is in fault contact with Triassic marbles on the eastern margin and Jurassic-Cretaceous mudstones on the western margin. The rocks in the core of the Xuelong Shan block contain multiply foliated feldspathic orthogneisses with local amphibolites, largely overprinted by protomylonitic deformation. Foliation strengthens to the east to become mylonites and ultramylonites, with a 30 m wide zone of loosely cemented fault breccia adjacent to brittlely faulted Triassic marbles. In contrast, the rocks to the west are dominated by brittle deformation, with mylonites becoming cataclasites and then breccias facing the mudstones to the east. Well-foliated phyllonites are locally present within the cataclasites. Early S1 gneissosity striking ENE are recognized only in the interior protomylonite. In the east, the dominate mylonitic S2 foliation strikes 340° with a moderate dip to the east, and an L2 mineral stretching lineation plunges gently north. However, in the west S2 cleavage is transposed into a NNW trending schistosity that dips steeply to the ENE, with down-dip mineral stretching lineations. Whole rock chemistry indicates a granitic to granodioritic protolith for all the rocks including the ultramylonites, but also suggests the progressive loss of alkalis with increasing deformation. Trace element compositions show these rocks lie in the volcanic arc/syn-collisional granite field. U-Pb SHRIMP ages show an Early Triassic age for these granite, with possible Middle Permian inheritance in some cores. These ages are consistent with the period of the closure of the northern Paleo-Tethys ocean. Metamorphic rim ages of ~ 30 Ma record a small amount of zircon dissolution/precipitation probably associated with the Oligocene ductile deformation that produced the upper greenschist facies mylonites. These results support the geologic history of the

  12. Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas

    USGS Publications Warehouse

    Ward, P.E.

    1963-01-01

    The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride

  13. Episodes of brittle deformation within the Dien Bien Phu Fault zone, Vietnam: Evidence from K-Ar age dating of authigenic illite

    NASA Astrophysics Data System (ADS)

    Bui, Hoang Bac; Ngo, Xuan Thanh; Khuong, The Hung; Golonka, Jan; Nguyen, Tien Dung; Song, Yungoo; Itaya, Tetsumaru; Yagi, Koshi

    2017-01-01

    Constraining the timing of fault zone origin and movement history is of fundamental geotectonic importance to understand the evolution and processes of the brittle fault structures. The authors present in this paper authigenic illite K-Ar age data from the fault gouge samples, collected from the Dien Bien Phu Fault (DBPF) in the Dien Bien province, Vietnam as well as in a major strike-slip fault zone in South-East Asia; all of which played important roles in the structural formation and geotectonic development of northwestern Vietnam. The gouge fault samples were separated into four grain-size fractions (< 0.1 μm, 0.1-0.4 μm, 0.4-1.0 μm and 1.0-2.0 μm). The K-Ar ages of the fractions were divided into two age groups, from 26 to 29 Ma and 130 Ma. The timing of the fault movements is defined at 26 ± 0.24 Ma, 29 ± 0.61 Ma, 130.1 ± 1.27 Ma and 130.7 ± 1.29 Ma. This indicates that the Dien Bien Phu Fault underwent two movements, first in the Early Cretaceous, with an age of about 130 Ma and second in the Oligocene (Paleogene), with an age of about 26-29 Ma. The ductile deformation of the DBPF terminated during the Early Cretaceous. These studies also indicate slow exhumation of the Dien Bien granitoid complex during the Cretaceous times. The Oligocene ages indicate that the DBPF had been reactivated by the SE extrusion and clock-wise rotation of the Indochina block, caused by the collision of the Indian and Eurasian plates. This tectonic event led to the DBPF brittle-sinistral movement, causing the exhumation phase along the fault. This movement period (ca. 26-29 Ma) is coexistent with 600-700 km sinistral shearing along the Red River-Ailao Shan fault. This is the first report determining the absolute age constraints of multi-activated tectonic events, affecting the Dien Bien Phu Fault using the K-Ar dating method for the gouge samples.

  14. Embankment Criteria and Performance Report. Cheyenne River Basin, South Dakota, Red Dale Gulch Area, Cedar Canyon Dam, Rapid City, South Dakota.

    DTIC Science & Technology

    1983-01-01

    yards 3. SPILLWAY. Type Uncontrolled-excavated in Minnekahta Limestone Bedrock Location Right abutment of dam Crest Elevation 3554.0 feet m.s.l. Width...embankment in the valley consists of 4 to 10 feet of red clay overburden underlain by Minnekahta lime- stone bedrock. This overburden soil contains a...Protection. Both faces of the dam are protected by rock slope protection to elevation 3554.0 (Crest of Dam). The rock used was excavated Minnekahta limestone

  15. The Lower Tagus Valley (LTV) Fault System

    NASA Astrophysics Data System (ADS)

    Besana-Ostman, G. M.; Fereira, H.; Pinheiro, A.; Falcao Flor, A. P.; Nemser, E.; Villanova, S. P.; Fonseca, J. D.

    2010-05-01

    The LTV fault and its associated historical seismic activity have been the focus of several scientific studies in Portugal. There are at least three historical earthquakes associated with the LTV fault, in 1344, 1531, and 1909. Magnitude estimates for these earthquakes range from 6.5 to 7.0. They caused widespread damage throughout the Lower Tagus Valley region with intensities ranging from VIII to X from Lisbon to Entroncamento. During the great 1755 earthquake, the LTV fault was likewise proposed to have ruptured coseismically. The Azambuja fault or the Vila Franca de Xira fault are suggested origins of the 1909 earthquake. Trenching activities together with borehole data analyses, geophysical investigations, and seismic hazard assessments were undertaken in the LTV in the recent years. Complex trench features along the excavated sections were argued to be either fault- or erosion-related phenomena. Borehole data and seismic profiles indicate subsurface structures within the Lower Tagus Valley and adjacent areas. Furthermore, recent attempts to improve seismic hazard assessment indicate that the highest values in Portugal for 10% probability of exceedance in 50 years correspond with the greater Lisbon area, with the LTV fault as the most probable source. Considering the above, efforts are being made to acquire more information about the location of the LTV seismic source taking into account the presence of extensive erosion and/or deposition processes within the valley, densely populated urban areas, heavily forested regions, and flooded sections such as the Tagus estuary. Results from recent mapping along the LTV reveal surface faulting that left-laterally displaced numerous geomorphic landforms within the Lower Tagus River valley. The mapped trace shows clear evidence of left-lateral displacement and deformation within the valley transecting the river, its tributaries, and innumerable young terraces. The trace has been mapped by analyzing topographic maps

  16. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  17. Field and Laboratory Data From an Earthquake History Study of Scarps of the Lake Creek-Boundary Creek Fault Between the Elwha River and Siebert Creek, Clallam County, Washington

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen F.; Buck, Jason; Bradley, Lee-Ann; Wells, Ray E.; Schermer, Elizabeth R.

    2007-01-01

    Fault scarps recently discovered on Airborne Laser Swath Mapping (ALSM; also known as LiDAR) imagery show Holocene movement on the Lake Creek-Boundary Creek fault on the north flank of the Olympic Mountains of northwestern Washington State. Such recent movement suggests the fault is a potential source of large earthquakes. As part of the effort to assess seismic hazard in the Puget Sound region, we map scarps on ALSM imagery and show primary field and laboratory data from backhoe trenches across scarps that are being used to develop a latest Pleistocene and Holocene history of large earthquakes on the fault. Although some scarp segments 0.5-2 km long along the fault are remarkably straight and distinct on shaded ASLM imagery, most scarps displace the ground surface <1 m, and, therefore, are difficult to locate in dense brush and forest. We are confident of a surface-faulting or folding origin and a latest Pleistocene to Holocene age only for scarps between Lake Aldwell and the easternmost fork of Siebert Creek, a distance of 22 km. Stratigraphy in five trenches at four sites help determine the history of surface-deforming earthquakes since glacier recession and alluvial deposition 11-17 ka. Although the trend and plunge of indicators of fault slip were measured only in the weathered basalt exposed in one trench, upward-splaying fault patterns and inconsistent displacement of successive beds along faults in three of the five trenches suggest significant lateral as well as vertical slip during the surface-faulting or folding earthquakes that produced the scarps. Radiocarbon ages on fragments of wood charcoal from two wedges of scarp-derived colluvium in a graben-fault trench suggest two surface-faulting earthquakes between 2,000 and 700 years ago. The three youngest of nine radiocarbon ages on charcoal fragments from probable scarp-derived colluvum in a fold-scarp trench 1.2 km to the west suggest a possible earlier surface-faulting earthquake less than 5,000 years

  18. The San Andreas Fault

    USGS Publications Warehouse

    Schulz, Sandra S.; Wallace, Robert E.

    1993-01-01

    The presence of the San Andreas fault was brought dramatically to world attention on April 18, 1906, when sudden displacement along the fault produced the great San Francisco earthquake and fire. This earthquake, however, was but one of many that have resulted from episodic displacement along the fault throughout its life of about 15-20 million years.

  19. Analysis of high-resolution lidar digital topographic data along the Marlborough Fault System: The Awatere and Clarence faults, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Zinke, R. W.; Dolan, J. F.; Rhodes, E. J.; Van Dissen, R. J.; Langridge, R.; Grenader, J.; McGuire, C. P.; Nicol, A.

    2014-12-01

    We analyze newly acquired lidar high-resolution digital topographic data to measure offset geomorphic markers along the Awatere and Clarence faults in the Marlborough Fault System, northern South Island, New Zealand. With an average shot density of ≥ 12 shots/m2, these lidar data, which were acquired for us by the US National Center for Airborne Laser Mapping (NCALM) and New Zealand Aerial Mapping, offer a uniquely detailed view of the topography along ~90 km of the Awatere fault and ~160 km of the Clarence fault, allowing us to measure geomorphic offsets ranging in size from ~1 m to 100s of meters. In this specific study, we examine offset river terraces at the well-known Saxton River site on the Awatere fault, and at Tophouse Road on the Clarence fault. By constraining the ages of those river terraces using post-IR IRSL (225 °C) single-grain K-feldspar dating protocols, we determine latest Pleistocene to late-Holocene slip histories of the Awatere and Clarence faults at those locations. This project is part of a broader effort to generate incremental slip rates and paleoearthquake ages from the four main faults that comprise the Marlborough Fault System with the goal of further understanding how mechanically complementary faults work together to accommodate relative plate motions.

  20. Structure of the Red Dog District, western Brooks Range, Alaska

    USGS Publications Warehouse

    de Vera, Jean-Pierre P.; McClay, K. R.

    2004-01-01

    The Red Dog district of the western Brooks Range of northern Alaska, which includes the sediment-hosted Zn-Pb-Ag ± Ba deposits at Red Dog, Su-Lik, and Anarraaq, contains one of the world's largest reserves of zinc. This paper presents a new model for the structural development of the area and shows that understanding the structure is crucial for future exploration efforts and new mineral discoveries in the district. In the Red Dog district, a telescoped Late Devonian through Jurassic continental passive margin is exposed in a series of subhorizontally stacked, internally imbricated, and regionally folded thrust sheets. These sheets were emplaced during the Middle Jurassic to Late Cretaceous Brookian orogeny and subsequently were uplifted by late tectonic activity in the Tertiary. The thrust sheet stack comprises seven tectonostratigraphically distinct allochthonous sheets, three of which have been subject to regional and detailed structural analysis. The lowermost of these is the Endicott Mountains allochthon, which is overlain by the structurally higher Picnic Creek and Kelly River allochthons. Each individual allochthon is itself internally imbricated into a series of tectonostratigraphically coherent and distinct thrust plates and subplates. This structural style gives rise to duplex development and imbrication at a range of scales, from a few meters to tens of kilometers. The variable mechanical properties of the lithologic units of the ancient passive margin resulted in changes in structural styles and scales of structures across allochthon boundaries. Structural mapping and analysis of the district indicate a dominant northwest to west-northwest direction of regional tectonic transport. Local north to north-northeast transport of thrust sheets is interpreted to reflect the influence of underlying lateral and/or oblique ramps, which may have been controlled by inherited basin margin structures. Some thrust-sheet stacking patterns suggest out

  1. Fault-Tree Compiler

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  2. Trishear for curved faults

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. P.

    2013-08-01

    Fault-propagation folds form an important trapping element in both onshore and offshore fold-thrust belts, and as such benefit from reliable interpretation. Building an accurate geologic interpretation of such structures requires palinspastic restorations, which are made more challenging by the interplay between folding and faulting. Trishear (Erslev, 1991; Allmendinger, 1998) is a useful tool to unravel this relationship kinematically, but is limited by a restriction to planar fault geometries, or at least planar fault segments. Here, new methods are presented for trishear along continuously curved reverse faults defining a flat-ramp transition. In these methods, rotation of the hanging wall above a curved fault is coupled to translation along a horizontal detachment. Including hanging wall rotation allows for investigation of structures with progressive backlimb rotation. Application of the new algorithms are shown for two fault-propagation fold structures: the Turner Valley Anticline in Southwestern Alberta, and the Alpha Structure in the Niger Delta.

  3. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  4. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  5. Red Sky with Red Mesa

    ScienceCinema

    None

    2016-07-12

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  6. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  7. Reservoir-Seal-Fault Systems Leakage Evolution Though Time and Space

    NASA Astrophysics Data System (ADS)

    Frery, E.; Ellouz, N.; Gratier, J.; Deschamps, P.

    2011-12-01

    Thanks to the study of natural CO2 reservoirs, tools are developed in order to understand the CO2 storage efficiency and long-term evolution. The Colorado Plateau red sandstones, in southern Utah, are marked by fluid driven mineralization and alteration along joints, fractures and faults. These traces are considered as evidences for paleo and present-day migration pathways of the exotic fluids coming from reservoirs (located at different depths) to the surface across or along the transfer faulted zones. Understanding these mechanisms through time is crucial not only in the determination of the fault activity, for identifying the transient and permanent processes along this fault system, but also in the long-term paleo-sequestration calibration, and finally in the evaluation of hydrocarbon, gas, water and CO2 migration. In order to investigate the nature and the origin of the different leaking fluids or gas, we conducted a study along Moab and Green River Fault systems, from Moab to the western side of the San Raphael Swell, in Utah. A geological fieldwork highlights several former and current transfer and leakage processes, evidenced by (1) chemical bleaching, (2) gypsum, (3) different kinds of oxides, (4) carbonate precipitations, and (5) present day CO2 expulsion located all along the faults traces from Jurassic units to the present-day surface. Due to the different erosion pattern in the area, access to several reservoir and seals was possible for observation and sampling. This first step allowed to characterize the orientation and position of each leaky fluid family, and to analyze the fluids and carbonate precipitation with respect to the structural context. For instance, the strong impact of salt tectonics implies that some of the faults are probably rooted within this decollement, and that a system of small wavelength syncline/anticline is added a significant variability to the drainage pattern of these faults. In order to define the nature and the origin of

  8. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  9. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were

  10. Strike-slip faulting in a foreland fold-thrust belt: The Kalabaugh fault and western Salt range, Pakistan

    NASA Astrophysics Data System (ADS)

    McDougall, James W.; Khan, Shahid Hasan

    1990-10-01

    The 120-km-long Kalabagh fault zone is formed by transpressive right-lateral strike-slip along the western Salt Range-Potwar Plateau allochthon in northern Pakistan. Lateral ramping from a decollement thrust along an Eocambrian evaporite layer produced NNW- to NW-trending folds and NE- to N-dipping thrust faults in a topographically emergent zone up to 10 km wide. Piercing points along the main Kalabagh fault indicate 12-14 km of middle to late Quaternary right-lateral offset. The older right-lateral Surghar fault displaced axes of frontal folds of the eastern Surghar Range by 4-5 km. Total displacement is reduced northward in the Kalabagh fault zone where north-dipping thrust faults splay to the west. Cumulative right-slip offset in the Kalabagh fault zone is comparable to displacement along the Salt Range frontal thrust, at a minimum average displacement rate of 7-10 mm/year near the Indus River since 2 Ma. In the basement, which dips 2-3° north along the Kalabagh fault, a NNW-trending discontinuous ridge beneath the lateral ramp is interpreted from residual gravity anomalies. The eastern flank of this basement ridge probably ramped allochthonous strata upward from a depth of over 5 km in the Kalabagh fault zone. Kalabagh faulting displaced and uplifted Holocene terrace deposits and shifted the course of the Indus River eastward. A high slip rate and associated seismicity indicate that the Kalabagh fault zone should be considered active and capable of earthquakes.

  11. Isolability of faults in sensor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2011-10-01

    A major concern with fault detection and isolation (FDI) methods is their robustness with respect to noise and modeling uncertainties. With this in mind, several approaches have been proposed to minimize the vulnerability of FDI methods to these uncertainties. But, apart from the algorithm used, there is a theoretical limit on the minimum effect of noise on detectability and isolability. This limit has been quantified in this paper for the problem of sensor fault diagnosis based on direct redundancies. In this study, first a geometric approach to sensor fault detection is proposed. The sensor fault is isolated based on the direction of residuals found from a residual generator. This residual generator can be constructed from an input-output or a Principal Component Analysis (PCA) based model. The simplicity of this technique, compared to the existing methods of sensor fault diagnosis, allows for more rational formulation of the isolability concepts in linear systems. Using this residual generator and the assumption of Gaussian noise, the effect of noise on isolability is studied, and the minimum magnitude of isolable fault in each sensor is found based on the distribution of noise in the measurement system. Finally, some numerical examples are presented to clarify this approach.

  12. Late Quaternary faulting on the Manas and Hutubi reverse faults in the northern foreland basin of Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Gong, Zhijun; Li, Sheng-Hua; Li, Bo

    2015-08-01

    The Tian Shan Range lies in the actively deforming part of the India-Asia collision zone. In the northern foreland basin of Tian Shan, the strata were intensively deformed by Cenozoic folding and faulting. Slip rate studies along these faults are important for understanding the dynamics of crustal deformation and evaluating the seismic hazards in the region. Two reverse faults (the Manas and Hutubi faults) in the northern foreland basin were investigated. Due to past faulting events along these faults, the terrace treads along the Manas River were ruptured, forming fault scarps several meters in height. Loess deposits were trapped and preserved at the surface ruptures along these scarps. The thickness of the trapped loess is dependent on the size of the ruptures. The minimum and maximum ages of these scarps are constrained by dating the loess preserved at the surface ruptures and the terrace treads, respectively, using the quartz optically stimulated luminescence (OSL) dating technique. Our dating results suggest that the loess trapped at the ruptures was deposited from the early to mid-Holocene at the Hutubi Fault, and from the mid- to late-Holocene at the Manas Fault. The vertical displacements of the faults were evaluated by measuring the topographic profiles across the investigated fault scarps using the differential global position system (DGPS). Our results suggest that, during the late Quaternary in the studied region, the vertical slip rates of the Manas Fault were between ˜ 0.74 mm /yr and ˜ 1.6 mm /yr, while the Hutubi Fault had a much lower vertical slip rate between ˜ 0.34 mm /yr and ˜ 0.40 mm /yr. The tectonic implications of our results are discussed.

  13. Red Hill

    EPA Pesticide Factsheets

    Information about the Red Hill Bulk Fuel Storage Facility in Hawaii Administrative Order on Consent (AOC), an enforceable agreement of the Hawaii Department of Health, the Environmental Protection Agency, and the U.S. Navy -- Defense Logistics Agency.

  14. How Faults Shape the Earth.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  15. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  16. Fault geometry and cumulative offsets in the central Coast Ranges, California: Evidence for northward increasing slip along the San Gregorio-San Simeon-Hosgri fault

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Graymer, R.W.; Colgan, J.P.; Wentworth, C.M.; Stanley, R.G.

    2012-01-01

    Estimates of the dip, depth extent, and amount of cumulative displacement along the major faults in the central California Coast Ranges are controversial. We use detailed aeromagnetic data to estimate these parameters for the San Gregorio–San Simeon–Hosgri and other faults. The recently acquired aeromagnetic data provide an areally consistent data set that crosses the onshore-offshore transition without disruption, which is particularly important for the mostly offshore San Gregorio–San Simeon–Hosgri fault. Our modeling, constrained by exposed geology and in some cases, drill-hole and seismic-reflection data, indicates that the San Gregorio–San Simeon–Hosgri and Reliz-Rinconada faults dip steeply throughout the seismogenic crust. Deviations from steep dips may result from local fault interactions, transfer of slip between faults, or overprinting by transpression since the late Miocene. Given that such faults are consistent with predominantly strike-slip displacement, we correlate geophysical anomalies offset by these faults to estimate cumulative displacements. We find a northward increase in right-lateral displacement along the San Gregorio–San Simeon–Hosgri fault that is mimicked by Quaternary slip rates. Although overall slip rates have decreased over the lifetime of the fault, the pattern of slip has not changed. Northward increase in right-lateral displacement is balanced in part by slip added by faults, such as the Reliz-Rinconada, Oceanic–West Huasna, and (speculatively) Santa Ynez River faults to the east.

  17. Association of the 1886 Charleston, South Carolina, earthquake and seismicity near Summervile with a 12º bend in the East Coast fault system and triple-fault junctions

    USGS Publications Warehouse

    Marple, R.; Miller, R.

    2006-01-01

    Seismic-reflection data were integrated with other geophysical, geologic, and seismicity data to better determine the location and nature of buried faults in the Charleston, South Carolina, region. Our results indicate that the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville are related to local stresses caused by a 12?? bend in the East Coast fault system (ECFS) and two triple-fault junctions. One triple junction is formed by the intersection of the northwest-trending Ashley River fault with the two segments of the ECFS north and south of the bend. The other triple junction is formed by the intersection of the northeast-trending Summerville fault and a newly discovered northwest-trending Berkeley fault with the ECFS about 10 km north of the bend. The Summerville fault is a northwest-dipping border fault of the Triassic-age Jedburg basin that is undergoing reverse-style reactivation. This reverse-style reactivation is unusual because the Summerville fault parallels the regional stress field axis, suggesting that the reactivation is from stresses applied by dextral motion on the ECFS. The southwest-dip and reverse-type motion of the Berkeley fault are interpreted from seismicity data and a seismic-reflection profile in the western part of the study area. Our results also indicate that the East Coast fault system is a Paleozoic basement fault and that its reactivation since early Mesozoic time has fractured through the overlying allochthonous terranes.

  18. Acoustic fault injection tool (AFIT)

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  19. Estimating Water Storage Capacity of Existing and Potentially Restorable Wetland Depressions in a Subbasin of the Red River of the North

    USGS Publications Warehouse

    Gleason, Robert A.; Tangen, Brian A.; Laubhan, Murray K.; Kermes, Kevin E.; Euliss, Ned H.

    2007-01-01

    Executive Summary Concern over flooding along rivers in the Prairie Pothole Region has stimulated interest in developing spatially distributed hydrologic models to simulate the effects of wetland water storage on peak river flows. Such models require spatial data on the storage volume and interception area of existing and restorable wetlands in the watershed of interest. In most cases, information on these model inputs is lacking because resolution of existing topographic maps is inadequate to estimate volume and areas of existing and restorable wetlands. Consequently, most studies have relied on wetland area to volume or interception area relationships to estimate wetland basin storage characteristics by using available surface area data obtained as a product from remotely sensed data (e.g., National Wetlands Inventory). Though application of areal input data to estimate volume and interception areas is widely used, a drawback is that there is little information available to provide guidance regarding the application, limitations, and biases associated with such approaches. Another limitation of previous modeling efforts is that water stored by wetlands within a watershed is treated as a simple lump storage component that is filled prior to routing overflow to a pour point or gaging station. This approach does not account for dynamic wetland processes that influence water stored in prairie wetlands. Further, most models have not considered the influence of human-induced hydrologic changes, such as land use, that greatly influence quantity of surface water inputs and, ultimately, the rate that a wetland basin fills and spills. The goals of this study were to (1) develop and improve methodologies for estimating and spatially depicting wetland storage volumes and interceptions areas and (2) develop models and approaches for estimating/simulating the water storage capacity of potentially restorable and existing wetlands under various restoration, land use, and

  20. An Expert System Approach to Global Fault Detection and Isolation Design

    DTIC Science & Technology

    1990-01-01

    Fault Detection and Isolation Design S. M. Allen and A. K. Cagavan Charles River...ELEMENT 90. no, no PCW o WAB1945433-6553 65502P 3005 40 1 50 11. TITLE Odo ~~ v~~n An Expert System Approach to Global Fault Detection and isolation Design...identify by bkod number) FIELD GROUP SUB-GROUP Fault Detection and Isolation , Global PDI, Erpert Systems 01 03 Neural Networks, Computer-Aided Design

  1. Characterization of leaky faults

    SciTech Connect

    Shan, Chao

    1990-05-01

    Leaky faults provide a flow path for fluids to move underground. It is very important to characterize such faults in various engineering projects. The purpose of this work is to develop mathematical solutions for this characterization. The flow of water in an aquifer system and the flow of air in the unsaturated fault-rock system were studied. If the leaky fault cuts through two aquifers, characterization of the fault can be achieved by pumping water from one of the aquifers, which are assumed to be horizontal and of uniform thickness. Analytical solutions have been developed for two cases of either a negligibly small or a significantly large drawdown in the unpumped aquifer. Some practical methods for using these solutions are presented. 45 refs., 72 figs., 11 tabs.

  2. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  3. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  4. Evidence for early Pennsylvanian faulting in eastern Kentucky coalfield

    SciTech Connect

    Greb, S.F.; Chesnut, D.R. Jr.; Davidson, O.B.; Rodriguez, R. )

    1989-08-01

    A series of sedimentary features including a mass-flow deposit and contorted pseudo-nodule layers at approximately the same stratigraphic horizon on the eastern, downthrown block of a normal fault system along the Rockcastle River in the Eastern Kentucky coalfield indicate that the fault was active during deposition of the Lee sandstone. The rarity of mass flows in this part of the section, a change in paleocurrents compared with surrounding units, the abundant shale clasts indicating short transport distance, and the detrital siderite clasts within the flow that are abundant on the upthrown block of the fault and not in underlying sandstones on the downthrown block of the fault indicate that movement along the fault provided an upthrown source of sideritic shales and may have triggered the mass flow. Several areas of slumping and contorted bedding also occur on the downthrown side of the fault. Of particular interest are two shaly units containing isolated and contorted sandstone pseudonodules or pillows. The sandstones are tightly folded but exhibit no apparent preferred orientation of folding or horizontal translation. These deposits are also unique to this area in the coalfield and coupled with their location near the fault may indicate that liquefaction of sand and shale layers was the result of seismic energy from the nearby fault.

  5. Rough faults, distributed weakening, and off-fault deformation

    NASA Astrophysics Data System (ADS)

    Griffith, W. Ashley; Nielsen, Stefan; di Toro, Giulio; Smith, Steven A. F.

    2010-08-01

    We report systematic spatial variations in fault rocks along nonplanar strike-slip faults cross-cutting the Lake Edison Granodiorite, Sierra Nevada, California (Sierran wavy fault) and Lobbia outcrops of the Adamello Batholith in the Italian Alps (Lobbia wavy fault). In the case of the Sierran fault, pseudotachylyte formed at contractional fault bends, where it is found as thin (1-2 mm) fault-parallel veins. Epidote and chlorite developed in the same seismic context as the pseudotachylyte and are especially abundant in extensional fault bends. We argue that the presence of fluids, as illustrated by this example, does not necessarily preclude the development of frictional melt. In the case of the Lobbia fault, pseudotachylyte thickness varies along the length of the fault, but the pseudotachylyte veins thicken and pool in extensional bends. We conduct a quantitative analysis of fault roughness, microcrack distribution, stress, and friction along the Lobbia fault. Numerical modeling results show that opening in extensional bends and localized thermal weakening in contractional bends counteract resistance encountered by fault waviness, resulting in an overall weaker fault than suggested by the corresponding static friction coefficient. The models also predict static stress redistribution around bends in the faults which is consistent with distribution of microcracks, indicating significant elastic and inelastic strain energy is dissipated into the wall rocks due to nonplanar fault geometry. Together these observations suggest that damage and energy dissipation occurs along the entire nonplanar fault during slip, rather than being confined to the region close to the dynamically propagating crack tip.

  6. How do we identify big rivers? And how big is big?

    NASA Astrophysics Data System (ADS)

    Miall, Andrew D.

    2006-04-01

    . Many large rivers in SE Asia flow along structural trends generated during the Himalayan orogeny (e.g., Brahmaputra/Jamuna, Irrawaddy, Mekong, Red), but evidence for large channel systems is not always present where it might be expected. For example, in the Gulf of Thailand, up to 8 km of Cenozoic nonmarine sediments have been recorded in fault-bounded basins, but seismic time-slice images of the Pliocene-Holocene section indicate rivers of modest dimensions. The existing major trunk river, the Chao Phraya, which empties into the gulf at Bangkok, may be but a remnant of the Mekong, which was tectonically diverted to its present course at some point during the late Cenozoic.

  7. Fault segment linkage and growth of the Polopos transpressive fault zone and its influence on Pleistocene drainage captures (southeastern Betics).

    NASA Astrophysics Data System (ADS)

    Giaconia, F.; Booth-Rea, G.; Martínez-Martínez, J. M.; Azañón, J. M.; Villegas, I.

    2012-04-01

    The Polopos fault zoneis a dextral-reverse fault-system that developed under Neogene to Quaternary N/S to NNW/SSE convergence between Africa and Iberia. This fault zone is formed by three main fault segments, the North and South Gafarillos dextral strike-slip faults, and the North Alhamilla reverse fault. The whole fault zone with an approximate length of 30 km has an E/W to ESE/WNW orientation and helicoidal geometry that permits the transfer of oblique SE-directed shortening in Sierra Cabrera to NW-directed shortening along the North Alhamilla reverse fault via vertical dextral Gafarillos fault segments, in between. The north Alhamilla reverse fault to the west of the system produces a fault-propagation fold in the hangingwall and an overturned fold in the footwall cutting through early Tortonian turbidites and folded Quaternary alluvial fans at the north Alhamilla mountain front. The Quaternary paleo-topographic surface formed by the alluvial fan has been displaced approximately 100 m by reverse faulting after 400 - 70 ky with a slip rate ranging between 0.25 and 1.4 mm yr-1. The South Gafarillos fault includes several N90°-110°E-striking segments with dextral and reverse-dextral kinematics. This fault cuts through the southeastern limb of the Alhamilla anticline by a fault segment that separates the basement from Messinian sediments, meanwhile other segments in the Nijar basin further south cut through Pleistocene river strath-terraces.. During the late Miocene the locus of dextral displacement occurred along the North Gafarillos fault segment that linked to a reverse fault segment at the northeast of the Sierra Alhamilla . The North Gafarillos fault segment and its associated mountain front was sealed by Messinian reefs. Since the Messinian, recent fault activity migrated towards the south forming the South Gafarillos fault segments. Fault segment migration displaced the active oblique strike-slip-related mountain fronts from the north towards the southeast

  8. Evolution of the Puente Hills Thrust Fault

    NASA Astrophysics Data System (ADS)

    Bergen, K. J.; Shaw, J. H.; Dolan, J. F.

    2013-12-01

    This study aims to assess the evolution of the blind Puente Hills thrust fault system (PHT) by determining its age of initiation, lateral propagation history, and changes in slip rate over time. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. The PHT is comprised of three fault segments: the Los Angeles (LA), Santa Fe Springs (SFS), and Coyote Hills (CH). The LA and SFS segments are characterized by growth stratigraphy where folds formed by uplift on the fault segments have been continually buried by sediment from the Los Angeles and San Gabriel rivers. The CH segment has developed topography and is characterized by onlapping growth stratigraphy. This depositional setting gives us the unique opportunity to measure uplift on the LA and SFS fault segments, and minimum uplift on the CH fault segment, as the difference in sediment thicknesses across the buried folds. We utilize depth converted oil industry seismic reflection data to image the fold geometries. Identifying time-correlative stratigraphic markers for slip rate determination in the basin has been a problem for researchers in the past, however, as the faunal assemblages observed in wells are time-transgressive by nature. To overcome this, we utilize the sequence stratigraphic model and well picks of Ponti et al. (2007) as a basis for mapping time-correlative sequence boundaries throughout our industry seismic reflection data from the present to the Pleistocene. From the Pleistocene to Miocene we identify additional sequence boundaries in our seismic reflection data from imaged sequence geometries and by correlating industry well formation tops. The sequence and formation top picks are then used to build 3-dimensional surfaces in the modeling program Gocad. From these surfaces we measure the change in thicknesses across the folds to obtain uplift rates between each sequence boundary. Our results show three distinct phases of

  9. Shoreline and Oceano Fault Zones' Intersection Geometry, San Luis Obispo Bay, Offshore South Central Coastal California

    NASA Astrophysics Data System (ADS)

    Hogan, P. J.; Nishenko, S. P.; Greene, H. G.; Bergkamp, B.

    2015-12-01

    As part of the Central Coastal California Seismic Imaging Project, high-resolution 3D low energy marine seismic-reflection data were acquired within San Luis Obispo Bay in 2011 and 2012. Mapping of the sediment-buried bedrock surface using 2D and 3D data clearly reveals that the trace of the Shoreline fault zone bifurcates at Souza Rock. The eastern strand is a reverse fault that trends toward the east-southeast, connecting with the Oceano fault zone onshore. The Shoreline fault is a vertical dextral fault with a very linear geometry that continues south to near the Santa Maria river mouth, and may intersect the Casmalia fault onshore. Both of these fault strands are crossed by Pleistocene low-stand paleochannels eroded into bedrock, and are buried by marine and non-marine sediment. The 3D data show that both the Oceano and Shoreline faults are narrow, well defined fault zones. The reverse slip rate for the Oceano fault (~0.1 mm/y.) falls within published slip rate estimates for the Oceano fault onshore (0.01-0.20 mm/y). The dextral slip rate for the Shoreline fault southeast of Souza Rock is estimated to be 0.06 mm/y. Souza Rock is located on the hanging wall of the Oceano Fault, north of the point of intersection between the Shoreline and Oceano faults. Water depths shoal from 60 m on the surrounding seafloor to 5 m on top of Souza Rock. This structure is interpreted as a structural popup in a restraining bend where the N65°W-trending Oceano fault intersects the N25°W-trending Shoreline fault. The structural geometry near the point of intersection has several minor secondary fault strands, but is remarkably simple.

  10. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    NASA Astrophysics Data System (ADS)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 10 4-10 5 year timescales. At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year - 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/-0.1 mm year - 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/-0.3 mm year - 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year - 1 ). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection

  11. Spatiotemporal Patterns of Fault Slip Rates Across the Central Sierra Nevada Frontal Fault Zone

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D.; Finkel, R. C.

    2010-12-01

    We examine patterns in fault slip rates through time and space across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38-39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and Be-10 surface exposure dating, we define mean fault slip rates, and by utilizing markers of different ages (generally, ~20 ka and ~150 ka), we examine rates through time and interactions among multiple faults over 10-100 ky timescales. At each site for which data are available for the last ~150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~20 ky and ~150 ky timescales): 0.3 ± 0.1 mm/yr (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 +0.3/-0.1 mm/yr along the West Fork of the Carson River at Woodfords. Our data permit that rates are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~20 km between the northern Mono Basin (1.3 +0.6/-0.3 mm/yr at Lundy Canyon site) and the Bridgeport Basin (0.3 ± 0.1 mm/yr). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin reflects a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveal that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection, extension is accommodated within a diffuse zone of

  12. Fault Management Metrics

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  13. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  14. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1993-01-01

    Erroneous measurements in multisensor navigation systems must be detected and isolated. A recursive estimator can find fast growing errors; a least squares batch estimator can find slow growing errors. This process is called fault detection. A protection radius can be calculated as a function of time for a given location. This protection radius can be used to guarantee the integrity of the navigation data. Fault isolation can be accomplished using either a snapshot method or by examining the history of the fault detection statistics.

  15. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  16. The Dead Sea transform fault system

    NASA Astrophysics Data System (ADS)

    Girdler, R. W.

    1990-08-01

    A new map showing the major features of the Dead Sea transform fault system based on seismicity, satellite imagery, geological maps and bathymetric charts is presented. Special attention is given to the possible northward continuation of the transform system beneath the Mediterranean Sea near Ed Damur, south of Beirut. The map shows the Dead Sea transform system to be a series of offset, overlapping, left-lateral transform faults with a rhombochasm between each pair. The system has similarities with the equatorial fracture zones in the Atlantic Ocean. Throughout, the Dead Sea transform system is considered in its regional setting, i.e. as extending from the Red Sea spreading centre in the south to the Eurasian collision zone in the north. It is suggested that it may intersect the latter somewhere east of Cyprus making that area the northernmost termination of the Dead Sea transform system.

  17. Fault zone structure of the Wildcat fault in Berkeley, California - Field survey and fault model test -

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Onishi, C. T.; Karasaki, K.; Tanaka, S.; Hamada, T.; Sasaki, T.; Ito, H.; Tsukuda, K.; Ichikawa, K.; Goto, J.; Moriya, T.

    2010-12-01

    In order to develop hydrologic characterization technology of fault zones, it is desirable to clarify the relationship between the geologic structure and hydrologic properties of fault zones. To this end, we are performing surface-based geologic and trench investigations, geophysical surveys and borehole-based hydrologic investigations along the Wildcat fault in Berkeley,California to investigate the effect of fault zone structure on regional hydrology. The present paper outlines the fault zone structure of the Wildcat fault in Berkeley on the basis of results from trench excavation surveys. The approximately 20 - 25 km long Wildcat fault is located within the Berkeley Hills and extends northwest-southeast from Richmond to Oakland, subparallel to the Hayward fault. The Wildcat fault, which is a predominantly right-lateral strike-slip fault, steps right in a releasing bend at the Berkeley Hills region. A total of five trenches have been excavated across the fault to investigate the deformation structure of the fault zone in the bedrock. Along the Wildcat fault, multiple fault surfaces are branched, bent, paralleled, forming a complicated shear zone. The shear zone is ~ 300 m in width, and the fault surfaces may be classified under the following two groups: 1) Fault surfaces offsetting middle Miocene Claremont Chert on the east against late Miocene Orinda formation and/or San Pablo Group on the west. These NNW-SSE trending fault surfaces dip 50 - 60° to the southwest. Along the fault surfaces, fault gouge of up to 1 cm wide and foliated cataclasite of up to 60 cm wide can be observed. S-C fabrics of the fault gouge and foliated cataclasite show normal right-slip shear sense. 2) Fault surfaces forming a positive flower structure in Claremont Chert. These NW-SE trending fault surfaces are sub-vertical or steeply dipping. Along the fault surfaces, fault gouge of up to 3 cm wide and foliated cataclasite of up to 200 cm wide can be observed. S-C fabrics of the fault

  18. OpenStudio - Fault Modeling

    SciTech Connect

    Frank, Stephen; Robertson, Joseph; Cheung, Howard; Horsey, Henry

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  19. Seismic site characterization for the Deep-Fault-Drilling-Project Alpine Fault

    NASA Astrophysics Data System (ADS)

    Glomb, Vera; Buske, Stefan; Kovacs, Adrienn; Gorman, Andrew

    2013-04-01

    The Alpine Fault in New Zealand (South Island) is one of the largest active plate-bounding continental fault zones on earth with earthquakes of magnitude 7.9 occuring every 200-400 years. Due to the surface exposure and the shallow depth of mechanical and chemical transitions it is a globally significant natural laboratory. Within the ICDP Deep-Fault-Drilling-Project Alpine Fault (DFDP-AF; https://wiki.gns.cri.nz/DFDP) a drill hole shall give insight into the geological structure of the fault zone and its evolution to understand the related deformation and earthquake processes. With the help of advanced seismic imaging techniques the shallow structure of the Alpine Fault is imaged to find the most suitable drill site location. A new seismic reflection profile has been acquired in 2011 by the WhataDUSIE project team consisting of partners from the University of Otago (New Zealand), TU Bergakademie Freiberg (Germany) and the University of Alberta (Canada). The reflection profile, located in the Whataroa river valley, has a total length of about 5 km. Up to 643 geophones with spacings between 4-8 m recorded the approximately 100 shot points along the profile line. Single shot gathers as well as preliminary imaging results will be presented. The high-quality data show various indicators of the Alpine Fault such as strong reflections and distorted first-arrival wavefields which are clearly visible already in single shot gathers. With the help of high resolution seismic images we can study the shallow structures of the subsurface thus gaining information about the location and dip of reflectors. Further detailed processing and intensive interpretative work will enable a seismic site characterization providing important information for the selection of the borehole location. Additionally the high resolution seismic images themselves allow a better understanding of the tectonic and geodynamic settings.

  20. American Red Cross

    MedlinePlus

    ... Espanol Local Red Cross ( ) Change Chapter Edit Zip Code Edit Zip Code Shop the Red Cross Store Toggle Navigation Menu ... Espanol Local Red Cross ( ) Change Chapter Edit Zip Code Edit Zip Code Shop the Red Cross Store ...

  1. Testing simple models of brittle normal faulting: slip rate, spacing, and segmentation

    NASA Astrophysics Data System (ADS)

    Connolly, J.; Dawers, N. H.

    2005-05-01

    Fault growth and evolution is a complex process, however any predictable pattern will yield important information for assessing seismic hazard and clues to what controls fault behavior. Models of slip rate variation along strike, spacing of active faults, and scaling of segment length are investigated using data from faults located within the parabola of seismicity around the Yellowstone hotspot. Based on displacement-length relations and segment size, Cowie and Roberts used fault geometry to estimate along-strike slip rate variation in their 2001 paper (JSG,23,1901-1915). Following their model, along-strike slip rate profiles were calculated for three active normal faults: the Beaverhead, Lemhi, and Lost River faults. Though the method yields estimated slip rates, the results roughly mirror along-strike variation in total displacement, because the three faults are similar in size and age. The profiles indicate that the Beaverhead is underdisplaced, i.e. having a low slip rate relative to its length. This suggests that segment linkage occurred later in the development of the Beaverhead than in the others. Cowie and Roberts also proposed a model for fault spacing based on initial fault length and spacing, and maximum length and spacing of fully developed fault systems. Fault spacing is important in determining incidence and magnitude of fault movement. If the distance between faults is too small, strain becomes localized along one while the other exhibits a decrease in seismicity until no activity occurs. In practice it is impossible to know if the distance between the largest faults represents maximum fault spacing, because the fault population is still active and evolving; thus, it is difficult to test or implement the method. A relationship was found among faults within the study area, where spacing of adjacent active faults is proportional to the sums of their lengths. It was also observed that average segment length increases with increasing total fault length

  2. Late Tertiary faulting along the coastal plain of Israel

    NASA Astrophysics Data System (ADS)

    Steinberg, J.; Gvirtzman, Z.; Gvirtzman, H.; Ben-Gai, Y.

    2008-08-01

    This study documents a 70-km long and 200-400 m high step at the base of the Pliocene section in the Israeli coastal plain. Depositional explanations for this lineament, such as a buried shelf edge or reef front, are very unlikely; whereas a fault scarp explanation is supported by seismic profiles and geological cross sections. The eastern elevated side of the fault was eroded before its burial, though a quantitive distinction between this erosion, earlier truncations, and original hiatuses, is not possible at this stage. Sediments covering the fault scarp constrain its age to Late Miocene and/or Early Pliocene. The presence of such a fault along the Israeli coastal plain may also shed light on numerous post-Mid-Cretaceous faults previously documented along the coastal plain, but never explained. In a wider perspective, the fault described here along with other documented processes indicate that in the Late Tertiary tectonism along the Levant continental margin resumed after a long passive history. This renewed activity is coeval with the Africa-Arabian breakup and the Red Sea- Suez rifting. In particular, the fault described here is coeval with plate reorganization and vertical motions along the Dead Sea transform and possibly along the Cypriot Arc during the Late Miocene-Early Pliocene.

  3. Fault tolerant magnetic bearings

    SciTech Connect

    Maslen, E.H.; Sortore, C.K.; Gillies, G.T.; Williams, R.D.; Fedigan, S.J.; Aimone, R.J.

    1999-07-01

    A fault tolerant magnetic bearing system was developed and demonstrated on a large flexible-rotor test rig. The bearing system comprises a high speed, fault tolerant digital controller, three high capacity radial magnetic bearings, one thrust bearing, conventional variable reluctance position sensors, and an array of commercial switching amplifiers. Controller fault tolerance is achieved through a very high speed voting mechanism which implements triple modular redundancy with a powered spare CPU, thereby permitting failure of up to three CPU modules without system failure. Amplifier/cabling/coil fault tolerance is achieved by using a separate power amplifier for each bearing coil and permitting amplifier reconfiguration by the controller upon detection of faults. This allows hot replacement of failed amplifiers without any system degradation and without providing any excess amplifier kVA capacity over the nominal system requirement. Implemented on a large (2440 mm in length) flexible rotor, the system shows excellent rejection of faults including the failure of three CPUs as well as failure of two adjacent amplifiers (or cabling) controlling an entire stator quadrant.

  4. Questa Baseline and Pre-Mining Ground-Water Quality Investigation 15.-Methods of Phase II and III Well Installation and Development and Results of Well Logging, Hydraulic Testing, and Water-Level Measurements in the Red River Valley, New Mexico, 2002-04

    USGS Publications Warehouse

    Blanchard, Paul J.; Bartolino, James R.; Donohoe, Lisa C.; McAda, Douglas P.; Naus, Cheryl A.; Morin, Roger H.

    2007-01-01

    In April 2001, the U.S. Geological Survey and the New Mexico Environment Department began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley of north- central New Mexico. This report is one in a series of reports that can be used to determine pre-mining ground-water conditions at the mine site. Weathering of hydrothermally altered bedrock in the study area has resulted in steep, highly erosive, and sparsely vegetated scar areas that are clearly visible from the ground and in aerial photographs. Runoff from intense summer rainfall over tributary drainages containing scar areas can transport large quantities of sediment and form debris fans where these tributaries join the Red River. Twenty-nine observation wells were installed in three phases as part of this study in the Red River Valley and tributary drainages. Eight Phase II observation wells were drilled using an air-rotary/hammer rig. Three Phase II and 10 phase III small-diameter wells were installed using a direct-push rig. Lithologic logs were recorded for all eight Phase II drilled wells. Borehole geophysical logging (including natural gamma, induction, and single-detector neutron) was conducted in three Phase II wells. Aquifer tests conducted during 2003 to estimate the hydraulic properties of debris-flow and Red River alluvial deposits in and near Straight Creek included a flow-meter survey, slug tests, and a pumping test. Results of a flow-meter survey in well SC-7A indicated that about 77 percent of the water entered the well from a 10-foot-thick zone near the top of the screened interval and about 23 percent of the water entered the well from a 15-foot-thick zone near the bottom of the screened interval. Slug tests, performed in 11 wells during June 3-5, 2003, indicated that the mean and median estimated hydraulic conductivities for debris-flow deposits were 15.25 and 15.35 feet per day, respectively, for bedrock were 0.12 and

  5. Distributed deformation around the eastern tip of the Kunlun fault

    NASA Astrophysics Data System (ADS)

    Kirby, Eric; Harkins, Nathan

    2013-03-01

    Whether active strain within the Indo-Asian collision zone is primarily localized along major strike-slip fault systems or is distributed throughout the intervening crust between faults remains uncertain. Despite refined estimates of slip rates along many of the major fault zones, relatively little is known about how displacement along these structures is accommodated at fault terminations. Here, we show that a systematic decrease in left-lateral slip rates along the eastern ~200 km of the Kunlun fault, from >10 mm/year to <1 mm/year, is coincident with high topography in the Anyemaqen Shan and with a broad zone of distributed shear and clockwise vorticity within the Tibetan Plateau. Geomorphic analysis of river longitudinal profiles, coupled with inventories of cosmogenic radionuclides in fluvial sediment, reveal correlated variations in fluvial relief and erosion rate across the Anyemaqen Shan that reflect ongoing differential rock uplift across the range. Our results imply that the termination of the Kunlun fault system is accommodated by a combination of distributed crustal thickening and by clockwise rotation of the eastern fault segments.

  6. INVASION DYNAMICS OF RED SHINERS (CYPRINELLA LUTRENSIS) IN SOUTHEASTERN STREAMS

    EPA Science Inventory

    Red shiners have invaded a range of North American ecosystems, including several southeastern U.S. river drainages. A principle consequence of these invasions is extirpation of native congeners, either through competition or hydridization. We are conducting research to identify...

  7. 6. WORKERS COLLECTING SAGO PONDWEED, RED TOP GRASS, LEAFY PONDWEED, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. WORKERS COLLECTING SAGO PONDWEED, RED TOP GRASS, LEAFY PONDWEED, WATER MILFOIL, AND OTHER AQUATIC PLANTS FOR TRANSPLANTING FROM A COULEE SIX MILES AWAY FROM THE REFUGE - Upper Souris National Wildlife Refuge Dams, Souris River Basin, Foxholm, Surrey (England), ND

  8. Fault Roughness Records Strength

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Candela, T.; Kirkpatrick, J. D.

    2014-12-01

    Fault roughness is commonly ~0.1-1% at the outcrop exposure scale. More mature faults are smoother than less mature ones, but the overall range of roughness is surprisingly limited which suggests dynamic control. In addition, the power spectra of many exposed fault surfaces follow a single power law over scales from millimeters to 10's of meters. This is another surprising observation as distinct structures such as slickenlines and mullions are clearly visible on the same surfaces at well-defined scales. We can reconcile both observations by suggesting that the roughness of fault surfaces is controlled by the maximum strain that can be supported elastically in the wallrock. If the fault surface topography requires more than 0.1-1% strain, it fails. Invoking wallrock strength explains two additional observations on the Corona Heights fault for which we have extensive roughness data. Firstly, the surface is isotropic below a scale of 30 microns and has grooves at larger scales. Samples from at least three other faults (Dixie Valley, Mount St. Helens and San Andreas) also are isotropic at scales below 10's of microns. If grooves can only persist when the walls of the grooves have a sufficiently low slope to maintain the shape, this scale of isotropy can be predicted based on the measured slip perpendicular roughness data. The observed 30 micron scale at Corona Heights is consistent with an elastic strain of 0.01 estimated from the observed slip perpendicular roughness with a Hurst exponent of 0.8. The second observation at Corona Heights is that slickenlines are not deflected around meter-scale mullions. Yielding of these mullions at centimeter to meter scale is predicted from the slip parallel roughness as measured here. The success of the strain criterion for Corona Heights supports it as the appropriate control on fault roughness. Micromechanically, the criterion implies that failure of the fault surface is a continual process during slip. Macroscopically, the

  9. Rough Faults, Distributed Weakening, and Off-Fault Deformation

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Nielsen, S. B.; di Toro, G.; Smith, S. A.; Niemeijer, A. R.

    2009-12-01

    We report systematic spatial variations of fault rocks along non-planar strike-slip faults cross-cutting the Lake Edison Granodiorite, Sierra Nevada, California (Sierran Wavy Fault) and the Lobbia outcrops of the Adamello Batholith in the Italian Alps (Lobbia Wavy Fault). In the case of the Sierran fault, pseudotachylyte formed at contractional fault bends, where it is found as thin (1-2 mm) fault-parallel veins. Epidote and chlorite developed in the same seismic context as the pseudotachylyte and are especially abundant in extensional fault bends. We argue that the presence of fluids, as illustrated by this example, does not necessarily preclude the development of frictional melt. In the case of the Lobbia fault, pseudotachylyte is present in variable thickness along the length of the fault, but the pseudotachylyte veins thicken and pool in extensional bends. The Lobbia fault surface is self-affine, and we conduct a quantitative analysis of microcrack distribution, stress, and friction along the fault. Numerical modeling results show that opening in extensional bends and localized thermal weakening in contractional bends counteract resistance encountered by fault waviness, resulting in an overall weaker fault than suggested by the corresponding static friction coefficient. Models also predict stress redistribution around bends in the faults which mirror microcrack distributions, indicating significant elastic and anelastic strain energy is dissipated into the wall rocks due to non-planar fault geometry. Together these observations suggest that, along non-planar faults, damage and energy dissipation occurs along the entire fault during slip, rather than being confined to the region close to the crack tip as predicted by classical fracture mechanics.

  10. ANALYSIS OF BANK STABILITY AND POTENTIAL LOADINGS FROM STREAMBANKS ALONG THE SOUTH BRANCH OF THE BUFFALO RIVER, MN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The South Branch of the Buffalo River is part of the larger Red River Basin, MN. In 1996 the Minnesota Pollution Control Agency (MPCA) performed water quality assessments for selected rivers and lakes in the Red River Basin, with impairment of streams primarily being found to be caused by high level...

  11. Evolution and dynamics of active faults in southeastern Egyptian Western Desert

    NASA Astrophysics Data System (ADS)

    Abdeen, Mamdouh

    2016-07-01

    Remote sensing data processing and analysis together with interpretation of earthquake data that are followed by extensive field studies on some of the prevailing NS and EW striking faults indicate that these faults have an intimate relationship and were formed synchronously as a conjugate Riedel shears. Parallel to the NS and the EW faults open fractures filled with blown sand dominate the area of study. The Quaternary terraces adjacent to these faults are offset by the faults. Kinematic indicators on the NS striking faults indicate major sinistral (left-lateral) strike slip and minor dip-slip (normal) movement. On the other hand, kinematic indicators on the EW striking faults indicate major dextral (right-lateral) strike slip and minor dip-slip (normal) movement. Paleo-stress analysis of the fault striae measured on the NS and EW faults indicate that these faults were formed under NNE-SSW oriented extension. Instrumental earthquake data analysis shows a comparable extension direction to that derived from field measurements of slickenlineation. These observations indicate that the NS- and EW-striking faults are contemporaneous and are related to the Red Sea rifting that is currently active.

  12. Diagnosable systems for intermittent faults

    NASA Technical Reports Server (NTRS)

    Mallela, S.; Masson, G. M.

    1978-01-01

    The fault diagnosis capabilities of systems composed of interconnected units capable of testing each other are studied for the case of systems with intermittent faults. A central role is played by the concept of t(i)-fault diagnosability. A system is said to be t(i)-fault diagnosable when it is such that if no more than t(i) units are intermittently faulty then a fault-free unit will never be diagnosed as faulty and the diagnosis at any time is at worst incomplete. Necessary and sufficient conditions for t(i)-fault diagnosability are proved, and bounds for t(i) are established. The conditions are in general more restrictive than those for permanent-fault diagnosability. For intermittent faults there is only one testing strategy (repetitive testing), and consequently only one type of intermittent-fault diagnosable system.

  13. Creeping Faults and Seismicity: Lessons From The Hayward Fault, California

    NASA Astrophysics Data System (ADS)

    Malservisi, R.; Furlong, K. P.; Gans, C.

    While faults remain mostly locked between large strain releasing events, they can dissipate some of the accumulating elastic strain through creep. One such fault that releases a significant fraction of accumulating strain by creep is the Hayward fault in the San Francisco Bay region of California. The seismic risk associated with creeping faults such as the Hayward fault will depend in part on the net rate of moment accu- mulation (slip deficit) on the fault. Using a visco-elastic finite-element model driven by far field plate motions, we have investigated how the specific geometry of locked and free portions of the fault, and the interactions between the fault zone and the sur- rounding lithosphere influence creep on the fault plane and thus the seismic risk. In contrast to previous studies of the effects of the geometry of locked patches on the surface creep rate that specified rates on those patches, we specify only "creepable" regions and allow the system to adjust the creep rate. With our approach, we can infer fault zone geometries and physical properties that can produce the observed surface creep on the Hayward fault letting the rheology, geometry, and mechanics of sys- tem determine patterns of creep on the fault plane. Our results show that the creep rate decreases smoothly moving toward the locked patches. This leads to "creepable" (low friction) areas that accumulate a high slip deficit as compared to other low fric- tion segments of the fault. A comparison of the creep pattern from our results with Hayward fault micro-seismicity indicates that events cluster in the "creepable" re- gions with a creeping-velocity gradient that leads to a significant strain accumulation rate in the elastic material surrounding the creeping fault. This correlation provides an additional tool to map deformation patterns and strain accumulation on the fault. Micro-seismicity, surface deformation, and geodynamic modeling combine to allow us to refine our estimation of net

  14. Changes in fault length distributions due to fault linkage

    NASA Astrophysics Data System (ADS)

    Xu, Shunshan; Nieto-Samaniego, A. F.; Alaniz-Álvarez, S. A.; Velasquillo-Martínez, L. G.; Grajales-Nishimura, J. M.; García-Hernández, J.; Murillo-Muñetón, G.

    2010-01-01

    Fault linkage plays an important role in the growth of faults. In this paper we analyze a published synthetic model to simulate fault linkage. The results of the simulation indicate that fault linkage is the cause of the shallower local slopes on the length-frequency plots. The shallower local slopes lead to two effects. First, the curves of log cumulative number against log length exhibit fluctuating shapes as reported in literature. Second, for a given fault population, the power-law exponents after linkage are negatively related to the linked length scales. Also, we present datasets of fault length measured from four structural maps at the Cantarell oilfield in the southern Gulf of Mexico (offshore Campeche). The results demonstrate that the fault length data, corrected by seismic resolution at the tip fault zone, also exhibit fluctuating curves of log cumulative frequency vs. log length. The steps (shallower slopes) on the curves imply the scale positions of fault linkage. We conclude that fault linkage is the main reason for the fluctuating shapes of log cumulative frequency vs. log length. On the other hand, our data show that the two-tip faults are better for linear analysis between maximum displacement ( D) and length ( L). Evidently, two-tip faults underwent fewer fault linkages and interactions.

  15. Red River chloride remote sensing study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Side looking radar, infrared thermal imagery and color photography, together with a few examples of black and white panoramic photos, are used to supplement information on the natural saline pollution problem that is hydrologically and geologically oriented. The study area was explored concurrently by ground methods and a reasonably good understanding of hydrogeological conditions has been achieved. Examples of the products acquired, their interpretation, and use techniques are included.

  16. Public Water Supply, Red River Parish, Louisiana.

    DTIC Science & Technology

    1982-04-01

    as woodlands . No forest management or agricultural practices are being applied. The future land use plan for this area includes the construction of the...Clair A. 1972. Wildflowers of Louisiana and Adjoining States. Louisiana State University Press, Baton Rouge, Louisiana. 247 pp. Brown, Clair A. and D.S...How to Know the Freshwater Fishes. W.C. Brown Co., Dubuque, Iowa . 286 pp. Edmondson, W. T. 1959. Freshwater Biology, edited by W.T. Edmondson. John

  17. Public Water Supply, Red River Parish, Louisiana.

    DTIC Science & Technology

    1981-03-01

    immediate area is used only as woodlands . No forest management or agricultural practices are being applied. The future land use plan for this area includes...Claitor’s Book Store, 1965. Baton Rouge, Louisiana. Brown, Clair A. 1972. Wildflowers of Louisiana and Adjoining States. Louisiana State University Press...Mifflin Co., Boston and New York. 287 pp. Eddy, Sammuel. 1969. How to Know the Freshwater Fishes. W.C. Brown Co., Dubuque, Iowa . 286 pp. Edmondson, W. T

  18. Red River Private Property Protection Act

    THOMAS, 113th Congress

    Sen. Cornyn, John [R-TX

    2014-06-26

    06/26/2014 Read twice and referred to the Committee on Energy and Natural Resources. (text of measure as introduced: CR S4156) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Cooper River Rediversion Project. Lake Moultrie and Santee River, South Carolina. Intake and Tailrace Canals.

    DTIC Science & Technology

    1976-06-01

    approximately 40 miles southeast of the project in an area bet.,een the Edisto and Ashley Rivers . Due to the limitations of the investigations, they... River basin . A larger ditch would collect runoff for the remainder of the intake canal beginning at approxi- mate canal station 233+00 draining...between the Edisto and Ashley Rivers . Due to the limitations of the in- vestigations, they were not able to delineate a strike trend for the fault. No

  20. Source Fault and Rupture Process of the 2006 Yogyakarta Earthquake

    NASA Astrophysics Data System (ADS)

    Kawazoe, Y.; Koketsu, K.

    2010-12-01

    The Yogyakarta earthquake with a moment magnitude of 6.3 occurred in the central part of Java, Indonesia on 26 May 2006 at 22:54 UTC, causing severe damage to the densely populated area of the Yogyakarta region. About 6,000 people were killed, and 50,000 were injured. At first, the Opak River fault, located along the damage area, was thought to be a possible source fault of the event. However, the aftershock distribution suggests that the source fault is located 10 - 20 km east of the Opak River fault (Walter et al., 2007). This new fault was not known at that time, and its geometry and rupture process is little understood even now. Therefore, to overcome these difficulties, we performed teleseismic body-wave inversions. We chose the stations at epicentral distances between 30°and 100°. We retrieved 24 vertical components of broadband P-wave seismograms for these stations from the Data Management Center of IRIS. In order to perform an inversion for the rupture process, it is necessary to set up the source fault plane in advance. We first determined the focal mechanism using the inversion method of Kikuchi and Kanamori (1991). For calculating theoretical waveforms, we used near-source and near-receiver structures derived from CRUST 2.0. We obtained two different types of mechanism, that are left-lateral strike-slip faulting and reverse dip-slip faulting. Based on the obtained focal mechanisms and aftershock distribution, a fault plane is set up as follows: strike= 40°,dip= 85°,length =28km, width =20km , depth of rupture initiation point = 10km. We placed 7×5 grid points with a spacing of 4 km. We then inverted the waveforms for a spatio-temporal distribution of slip on this fault plane (Kikuchi and Kanamori,2003). In the inversion result, we obtained a total seismic moment Mo = 3.8×1013 Nm (Mw = 6.3), rupture front velocity = 2.5 km/s, rupture duration = 10 s, maximum slip = 0.34 m. The resultant slip distribution has two asperities (areas of large slip

  1. Characterizing the Iron Wash fault: A fault line scarp in Utah

    NASA Astrophysics Data System (ADS)

    Kozaci, O.; Ostenaa, D.; Goodman, J.; Zellman, M.; Hoeft, J.; Sowers, J. M.; Retson, T.

    2015-12-01

    The Iron Wash fault (IWF) is an approximately 30 mile-long, NW-SE trending structure, oriented perpendicular to the San Rafael Monocline near Green River in Utah. IWF exhibits well-expressed geomorphic features such as a linear escarpment with consistently north side down displacement. The fault coincides with an abrupt change in San Rafael Monocline dip angle along its eastern margin. The IWF is exposed in incised drainages where Jurassic Navajo sandstone (oldest) and Lower Carmel Formation (old), are juxtaposed against Jurassic Entrada sandstone (younger) and Quaternary alluvium (youngest). To assess the recency of activity of the IWF we performed detailed geomorphic mapping and a paleoseismic trenching investigation. A benched trench was excavated across a Quaternary fluvial terrace remnant across the mapped trace of the IWF. The uppermost gravel units and overlying colluvium are exposed in the trench across the projection of the fault. In addition, we mapped the basal contact of the Quaternary gravel deposit in relation to the adjacent fault exposures in detail to show the geometry of the basal contact near and across the fault. We find no evidence of vertical displacement of these Quaternary gravels. A preliminary U-series date of calcite cementing unfaulted fluvial gravels and OSL dating of a sand lens within the unfaulted fluvial gravels yielded approximately 304,000 years and 78,000 years, respectively. These preliminary results of independent dating methods constrains the timing of last activity of the IWF to greater than 78,000 years before present suggesting that IWF not an active structure. Its distinct geomorphic expression is most likely the result of differential erosion, forming a fault-line scarp.

  2. Seismicity and faulting attributable to fluid extraction

    USGS Publications Warehouse

    Yerkes, R.F.; Castle, R.O.

    1976-01-01

    The association between fluid injection and seismicity has been well documented and widely publicized. Less well known, but probably equally widespread are faulting and shallow seismicity attributable solely to fluid extraction, particularly in association with petroleum production. Two unequivocable examples of seismicity and faulting associated with fluid extraction in the United States are: The Goose Creek, Texas oil field event of 1925 (involving surface rupture); and the Wilmington, California oil field events (involving subsurface rupture) of 1947, 1949, 1951 (2), 1955, and 1961. Six additional cases of intensity I-VII earthquakes (M < 4.6) without reported faulting may be attributable to shallow production from other large oil and gas fields. In addition to these examples are thirteen cases of apparently aseismic surface rupture associated with production from California and Texas oil fields. Small earthquakes in the Eloy-Picacho area of Arizona may be attributable to withdrawal of groundwater, but their relation to widespread fissuring is enigmatic. The clearest example of extraction-induced seismicity outside of North America is the 1951 series of earthquakes associated with gas production from the Po River delta near Caviga, Italy. Faulting and seismicity associated with fluid extraction are attributed to differential compaction at depth caused by reduction of reservoir fluid pressure and attendant increase in effective stress. Surface and subsurface measurements and theoretical and model studies show that differential compaction leads not only to differential subsidence and centripetally-directed horizontal displacements, but to changes in both vertical- and horizontal-strain regimes. Study of well-documented examples indicates that the occurrence and nature of faulting and seismicity associated with compaction are functions chiefly of: (1) the pre-exploitation strain regime, and (2) the magnitude of contractional horizontal strain centered over the

  3. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  4. Fault displacement hazard for strike-slip faults

    USGS Publications Warehouse

    Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D.

    2011-01-01

    In this paper we present a methodology, data, and regression equations for calculating the fault rupture hazard at sites near steeply dipping, strike-slip faults. We collected and digitized on-fault and off-fault displacement data for 9 global strikeslip earthquakes ranging from moment magnitude M 6.5 to M 7.6 and supplemented these with displacements from 13 global earthquakes compiled byWesnousky (2008), who considers events up to M 7.9. Displacements on the primary fault fall off at the rupture ends and are often measured in meters, while displacements on secondary (offfault) or distributed faults may measure a few centimeters up to more than a meter and decay with distance from the rupture. Probability of earthquake rupture is less than 15% for cells 200 m??200 m and is less than 2% for 25 m??25 m cells at distances greater than 200mfrom the primary-fault rupture. Therefore, the hazard for off-fault ruptures is much lower than the hazard near the fault. Our data indicate that rupture displacements up to 35cm can be triggered on adjacent faults at distances out to 10kmor more from the primary-fault rupture. An example calculation shows that, for an active fault which has repeated large earthquakes every few hundred years, fault rupture hazard analysis should be an important consideration in the design of structures or lifelines that are located near the principal fault, within about 150 m of well-mapped active faults with a simple trace and within 300 m of faults with poorly defined or complex traces.

  5. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOEpatents

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  6. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  7. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  8. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  9. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    SciTech Connect

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig; Wells, Ray E.; Rohay, Alan C.

    2013-11-13

    Magnetic and gravity data, collected in south-central Washington near the Yakima Fold and Thrust Belt (YFTB) are used to model upper crustal structure, the extent of the late Columbia River Basalt flow named the Ice Harbor member, the vertical conduits (dikes) that the Ice Harbor erupted from, and whether the dikes are offset or affected by faulting on the Wallula Fault zone.

  10. Fault diagnosis of analog circuits

    NASA Astrophysics Data System (ADS)

    Bandler, J. W.; Salama, A. E.

    1985-08-01

    Theory and algorithms associated with four main categories of modern techniques used to locate faults in analog circuits are presented. These four general approaches are: the fault dictionary (FDA), the parameter identification (PIA), the fault verification (FVA), and the approximation (AA) approaches. The preliminaries and problems associated with the FDA, such as fault dictionary construction, the methods of optimum measurement selection, fault isolation criteria, and efficient methods of fault simulation, are discussed. The PIA techniques that utilize either linear or nonlinear systems of equations for identification of network elements are examined. Description of the FVA includes node-fault diagnosis, branch-fault diagnosis, subnetwork testability conditions, as well as combinatorial techniques, the failure-bound technique, and the network decomposition technique. In the AA, probabilistic methods and optimization-based methods are considered. In addition, the artificial intelligence technique and the different measures of testability are presented. A series of block diagrams is included.

  11. Maple River Subbasin, Red River of the North Reconnaissance Report.

    DTIC Science & Technology

    1980-12-01

    8217:: .former glacial Lake Agassiz . Glacial deposits include till and out- wash areas in the west and clay and silt lake deposits in the eastern...in the subbasin is included in the flat, featureless ..P plain of former Lake Agassiz . Only a small portion of the area west of the escarpment is...9000-7000 B.P. Prior to this date, much of the glacial Lake Agassiz plain remained poorly drained, _~ -" perhaps swampy, and certainly inhospitable to

  12. River Rats: A History of the Red River Valley Association

    DTIC Science & Technology

    1985-04-01

    do things in a big way, parades, marching bands , and lovely Thai hostesses were to be part of the occasion. Elephants carried the distin- guished...rented for the sum of twenty dollars each. Also on hand was the 13th Air Force Band and a band from a school in, or near, Korat. Together, they...friends and families and, indeed, all patriotic Americans. As the band entertained with its version of "Tie a Yellow Ribbon ’Round the Old Oak Tree

  13. Red River of the North Reconnaissance Report: Park River Subbasin.

    DTIC Science & Technology

    1980-12-01

    wintering range. Neither currently breeds in the area. Both have received adverse effects from pesticide pollution (especially DDT and its derivatives...structural measures for flood damage reduction did not produce an economically feasible alternitive plan for the watershed. In April 1980, the Soil

  14. Roseau River Subbasin, Red River of the North Reconnaissance Report.

    DTIC Science & Technology

    1980-12-01

    the economy is heavily dependent on agriculture. In general, small grains such as .4heat, barley , oats, and flax are grown in the subbasin. Large...acreages are devoted to hay, and some corn and potatoes are grown. Corn is usually cut before it matures and is fed to livestock. There is some dairying...leading crop, accounting for almost 40 percent of the harvested : ,’acreage, followed by hay, oats, and barley , which collectively account ,o .f r 44

  15. Seeing Red

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This New Horizons image of Jupiter's volcanic moon Io was taken at 13:05 Universal Time during the spacecraft's Jupiter flyby on February 28, 2007. It shows the reddish color of the deposits from the giant volcanic eruption at the volcano Tvashtar, near the top of the sunlit crescent, as well as the bluish plume itself and the orange glow of the hot lava at its source. The relatively unprocessed image on the left provides the best view of the volcanic glow and the plume deposits, while the version on the right has been brightened to show the much fainter plume, and the Jupiter-lit night side of Io.

    New Horizons' color imaging of Io's sunlit side was generally overexposed because the spacecraft's color camera, the super-sensitive Multispectral Visible Imaging Camera (MVIC), was designed for the much dimmer illumination at Pluto. However, two of MVIC's four color filters, the blue and 'methane' filter (a special filter designed to map methane frost on the surface of Pluto at an infrared wavelength of 0.89 microns), are less sensitive than the others, and thus obtained some well-exposed views of the surface when illumination conditions were favorable. Because only two color filters are used, rather than the usual three, and because one filter uses infrared light, the color is only a rough approximation to what the human eye would see.

    The red color of the Tvashtar plume fallout is typical of Io's largest volcanic plumes, including the previous eruption of Tvashtar seen by the Galileo and Cassini spacecraft in 2000, and the long-lived Pele plume on the opposite side of Io. The color likely results from the creation of reddish three-atom and four-atom sulfur molecules (S3 and S4) from plume gases rich in two-atom sulfur molecules (S2 After a few months or years, the S3 and S4 molecules recombine into the more stable and familiar yellowish form of sulfur consisting of eight-atom molecules (S8), so these red deposits are only seen around recently-active Io

  16. Paleoseismology of the Hluboká Fault in the near-region of the NPP Temelin

    NASA Astrophysics Data System (ADS)

    Tschegg, Dana; Popotnig, Ankelika; Porpaczy, Clemens; Lomax, Johanna; Decker, Kurt

    2015-04-01

    Temelin is located in the Bohemian Massif, a Variscan basement unit characterized by very low historical/instrumental seismicity. Previous seismic hazard assessments for the site revealed very low hazard (PGA<0.1g) for a non-exceedance probability of 10-4 per year. The assessments are based on historical/instrumental earthquake data of the Bohemian Massif that cover the time period since about 1800 and 1903, respectively. In this study we assess the late Variscan Hluboká fault in the vicinity of the site, which was repeatedly re-activated in Mesozoic, Miocene and Pliocene times. The fault is part of the several tens of kilometres long NW-striking Jáchymov (Joachimsthal) Fault zone. It is located about 10 to 20 km south of the NPP. Geological, geophysical, and structural data characterize the fault as a dextral strike-slip fault system. Reflection seismic shows an up to a few hundred meters wide zone with steeply dipping faults that are supposed to merge into a common master fault at depth. The fault is characterized by fault bends defining a restraining and a releasing segment. The latter coincides with a pronounced morphological scarp. Recent uplift of the footwall of the fault at this releasing bend is indicated by previously published geodetic data (P. Vyskočil, 1973) and geomorphological data comparing the tectonic morphology of the fault scarp near Hluboká nad Vltavou with slopes, which are not fault controlled. All analysed geomorphological indices characterize the Hluboká scarp as a unique morphological feature, which results from Quaternary uplift of the footwall of the Hluboká Fault with respect to its hanging wall. The assessment of the youngest tectonic history of the fault further uses correlations of Quaternary terraces of the Vltava River across the fault. We established a new Late Pleistocene stratigraphy of fluvial terraces using field and borehole data combined with OSL/IRSL age dating. The results show terrace staircases in the hanging wall

  17. Wrench faulting in selected areas of Permian Basin

    SciTech Connect

    Bolden, G.P.

    1984-01-01

    Landsat and NASA High Altitude Special Mission Aircraft imagery have made it possible to define at least six separate lineament trends between the Amarillo-Wichita uplift (N62/sup 0/W) and the Texas lineament (N54/sup 0/W) that are 200 to 330 mi (320 to 530 km) long and oriented N54/sup 0/W to N62/sup 0/W. These long lineaments are thought to be P shears and are left-lateral wrench faults by definition. This left-lateral wrench fault system has been demonstrated at the Carta Valley fault zone. The Permian surface between Brown-Bassett and JM field of Terrell, Crockett, and Val Verde Counties along the Pecos River has a fracture system that is compatible with wrench faulting. In Garza and Borden Counties, the elements of left-lateral wrench faulting can be demonstrated from high altitude aircraft imagery and demonstrated on the surface and in the subsurface with seismic support. Surface lineaments are observed on Landsat imagery throughout the Permian basin and lead to the belief that the very long N54/sup 0/ to 62/sup 0/W lineaments are P shears. The set oriented N86/sup 0/ +/- E are the Riedel shears and the N36/sup 0/E are conjugate Riedel shears. These for high angle en echelon faults at the surface in Borden and Garza Counties, and with the surface alignments being documented on CDP seismic lines in the subsurface.

  18. Dynamic Fault Detection Chassis

    SciTech Connect

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

  19. Fault-Mechanism Simulator

    ERIC Educational Resources Information Center

    Guyton, J. W.

    1972-01-01

    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  20. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  1. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  2. Row fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  3. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  4. Fault-Related Sanctuaries

    NASA Astrophysics Data System (ADS)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  5. Flooding on Russia's Lena River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nearly every year in the late spring, ice blocks the flow of water at the mouth of the Lena River in northeastern Russia and gives rise to floods across the Siberian plains. This year's floods can be seen in this image taken on June 2, 2002, by the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra satellite. The river runs down the left side of the image, and its delta is shrouded in ice (red) at the top of the image. Normally, the river would resemble a thin black line in MODIS imagery. The river, which is Russia's longest, flows 2,641 miles (4,250 kilometers) south to north through Siberia and into the Laptev Sea. In the winter, the river becomes nearly frozen. In the spring, however, water upstream thaws earlier than water at the mouth of the river. As the southern end of the river begins to melt, blocks of ice travel downstream to the still frozen delta, pile up, and often obstruct the flow of water. Flooding doesn't always occur on the same parts of the river. The floods hit further south last year. If the flooding grows severe enough, explosive charges are typically used to break up the ice jams. In these false-color images land areas are a dull, light green or tan, and water is black. Clouds appear pink, and ice comes across as bright red. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  6. Microstructural, textural and thermal evolution of an exhumed strike-slip fault and insights into localization and rheological transition

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann

    2016-04-01

    The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological

  7. Neotectonics of the offshore Oak Ridge fault near Ventura, southern California

    USGS Publications Warehouse

    Fisher, M.A.; Greene, H. Gary; Normark, W.R.; Sliter, R.W.

    2005-01-01

    The Oak Ridge fault is a large-offset, south-dipping reverse fault that forms the south boundary of the Ventura Basin in southern California. Previous research indicates that the Oak Ridge fault south of the town of Ventura has been inactive since 200-400 ka ago and that the fault tip is buried by ??? 1 km of Quaternary sediment. However, very high-resolution and medium-resolution seismic reflection data presented here show a south-dipping fault, on strike with the Oak Ridge fault, that is truncated at 80 m depth by an unconformity that is probably at the base of late Pleistocene and Holocene sediment. Furthermore, if vertically aligned features in seismic reflection data are eroded remnants of fault scarps, then a subsidiary fault within the Oak Ridge system deforms the shallowest imaged sediment layers. We propose that this subsidiary fault has mainly left-slip offset. These observations of Holocene slip on the Oak Ridge fault system suggest that revision of the earthquake hazard for the densely populated Santa Clara River valley and the Oxnard coastal plain may be needed.

  8. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  9. Earthquakes and fault creep on the northern San Andreas fault

    USGS Publications Warehouse

    Nason, R.

    1979-01-01

    At present there is an absence of both fault creep and small earthquakes on the northern San Andreas fault, which had a magnitude 8 earthquake with 5 m of slip in 1906. The fault has apparently been dormant after the 1906 earthquake. One possibility is that the fault is 'locked' in some way and only produces great earthquakes. An alternative possibility, presented here, is that the lack of current activity on the northern San Andreas fault is because of a lack of sufficient elastic strain after the 1906 earthquake. This is indicated by geodetic measurements at Fort Ross in 1874, 1906 (post-earthquake), and 1969, which show that the strain accumulation in 1969 (69 ?? 10-6 engineering strain) was only about one-third of the strain release (rebound) in the 1906 earthquake (200 ?? 10-6 engineering strain). The large difference in seismicity before and after 1906, with many strong local earthquakes from 1836 to 1906, but only a few strong earthquakes from 1906 to 1976, also indicates a difference of elastic strain. The geologic characteristics (serpentine, fault straightness) of most of the northern San Andreas fault are very similar to the characteristics of the fault south of Hollister, where fault creep is occurring. Thus, the current absence of fault creep on the northern fault segment is probably due to a lack of sufficient elastic strain at the present time. ?? 1979.

  10. Geomorphological and Paleoseismological Studies of the Malatya Fault (Malatya-Ovacık Fault Zone, Turkey)

    NASA Astrophysics Data System (ADS)

    Sançar, Taylan; Zabcı, Cengiz; Karabacak, Volkan; Akyüz, Hüsnü Serdar

    2016-04-01

    The Malatya-Ovacık Fault Zone (MOFZ is about 240 km-long sinistral strike-slip tectonic structure within the Anatolian Scholle. Although the MOFZ is claimed to be an inactive structure since 3 Ma (Westaway and Arger, 2001), recent GPS measurements, morphotectonic studies and micro seismicity strongly suggest considerable amount of strain accumulation along this tectonic feature. The GPS-based elastic block model results yield horizontal slip rates of about 1.2 and 1.6 mm/a, for the northeastern and southwestern sections of this fault zone, respectively (Aktuǧ et al., 2013). In order to understand the seismic potential of the southwestern section, Malatya Fault (MF), of the MOFZ, we carried out paleoseismological trenching and morphometric analyses in the frame of the TÜBİTAK project no. 114Y580. The preliminary results of morphometric analyses, including the hypsometric curve and channel longitudinal profiles, suggest that the northernmost part of the MF accommodate more deformation than the southern part, where the fault zone bifurcates into several discrete segments. Relatively high values of hypsometric integral and the shape of hypsometric curves and the longitudinal channel profiles, indicate youthful topography at northern part of the MF. In the northern section of the MF, Kızık Basin is one of the most remarkable fault-related landforms, which is 9 km long and 2 km wide, and is directly controlled by the extensional step-over of the fault segments. On the northern parts of this relatively narrow depression, a linear scarp prolongs between Kızık and Ahlas villages for about 150 m. In summer 2015, we excavated a single trench on this straight lineament, where mostly braided river-related gravels and sands were exposed. Although we could not observe any evidence of surface faulting inside the erosional channel systems, the bedrock has very well-developed shear fabric at the toe of the observed scarp. We sampled the most bottom section of the undeformed

  11. Effect of surrounding fault on distributed fault of blind reverse fault in sedimentary basin - Uemachi Faults, Osaka Basin, Southwest Japan -

    NASA Astrophysics Data System (ADS)

    Inoue, N.

    2012-12-01

    Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin, which has been filled by the Pleistocene Osaka group and the later sediments. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The various geological, geophysical surveys, such as seismic reflection, micro tremor, gravity surveys and deep boreholes, revealed the complex basement configuration along the Uemachi faults. The depth of the basement is shallow in the central part of the Osaka plain. The Uemachi faults are locates on the western side of the basement upland. In the central part of the Uemachi faults, the displacement decreases. The fault model of the Uemachi faults consists of the two parts, the north and south parts. The NE-SW trending branch faults, Suminoe and Sakuragawa flexures, are also recognized based on various surveys around the central part. Kusumoto et al. (2001) reported that surrounding faults enable to form the basement configuration without the Uemachi faults model based on a dislocation model. Inoue et al. (2011) performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted of 7 faults including the Uemachi faults. In this study, the Osaka-wan fault was considered for the dislocation model. The results show the basement configuration including NE-SW branch faults. The basement configuration differs from the subsurface structure derived from the investigation of abundance geotechnical borehole data around the central part of the Uemachi faults. The tectonic developing process including the erosion and sea level change are require to understanding the structure from the basement to the surface of the Uemachi Fault Zone. This research is partly funded by the Comprehensive

  12. River meanders

    USGS Publications Warehouse

    Leopold, Luna Bergere; Langbein, Walter Basil

    1966-01-01

    The striking geometric regularity of a winding river is no accident. Meanders appear to be the form in which a river does the least work in turning; hence they are the most probable form a river can take

  13. Late Cenozoic strike-slip faulting in the NE Mojave Block: Deformation at the southwest boundary of the Walker Lane belt

    SciTech Connect

    Schermer, E.R. . Geology Dept.)

    1993-04-01

    New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformed together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).

  14. Plate tectonics of the Red Sea and East Africa.

    PubMed

    McKenzie, D P; Davies, D; Molnar, P

    1970-04-18

    The relative motion between the plates on each side of the East African Rift Valley can be obtained from the opening of the Red Sea and the Gulf of Aden. The calculated direction of relative motion agrees well with fault plane solutions for earthquakes north of the equator.

  15. Fault Imaging with High-Resolution Seismic Reflection for Earthquake Hazard and Geothermal Resource Assessment in Reno, Nevada

    SciTech Connect

    Frary, Roxanna

    2012-05-05

    The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault was previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.

  16. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  17. Fault intersections along the Hosgri Fault Zone, Central California

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Johnson, S. Y.; Langenheim, V. E.

    2011-12-01

    It is well-established that stresses concentrate at fault intersections or bends when subjected to tectonic loading, making focused studies of these areas particularly important for seismic hazard analysis. In addition, detailed fault models can be used to investigate how slip on one fault might transfer to another during an earthquake. We combine potential-field, high-resolution seismic-reflection, and multibeam bathymetry data with existing geologic and seismicity data to investigate the fault geometry and connectivity of the Hosgri, Los Osos, and Shoreline faults offshore of San Luis Obispo, California. The intersection of the Hosgri and Los Osos faults in Estero Bay is complex. The offshore extension of the Los Osos fault, as imaged with multibeam and high-resolution seismic data, is characterized by a west-northwest-trending zone (1-3 km wide) of near vertical faulting. Three distinct strands (northern, central, and southern) are visible on shallow seismic reflection profiles. The steep dip combined with dramatic changes in reflection character across mapped faults within this zone suggests horizontal offset of rock units and argues for predominantly strike-slip motion, however, the present orientation of the fault zone suggests oblique slip. As the Los Osos fault zone approaches the Hosgri fault, the northern and central strands become progressively more northwest-trending in line with the Hosgri fault. The northern strand runs subparallel to the Hosgri fault along the edge of a long-wavelength magnetic anomaly, intersecting the Hosgri fault southwest of Point Estero. Geophysical modeling suggests the northern strand dips 70° to the northeast, which is in agreement with earthquake focal mechanisms that parallel this strand. The central strand bends northward and intersects the Hosgri fault directly west of Morro Rock, corresponding to an area of compressional deformation visible in shallow seismic-reflection profiles. The southern strand of the Los Osos

  18. Active faults in Lebanon : kinematics and interseismic behavior measured from radar interferometry (InSAR)

    NASA Astrophysics Data System (ADS)

    Lasserre, C.; Pinel-Puysségur, B.; Vergnolle, M.; Klinger, Y.; Pathier, E.

    2012-12-01

    The Levant fault system, more than 1000 km-long, marks the limit between the Arabian and Sinaï tectonic plates, extending from the Aqaba gulf in the Red Sea to Turkey. Mostly left-lateral, it forms a transpression zone in Lebanon, associating strike-slip faults such as the Yammouneh fault and thrust faults such as the Mount Lebanon thrust. This fault system in Lebanon is at the origin of large historical earthquakes during the past two thousand years (551 AD on the thrust offshore and 1837 along the Roum fault inland, 1759 along the Rashaia and Sergaya faults). We aim at characterizing the present-day behavior of active faults in Lebanon, in particular the Yammouneh fault which did not break since 1202, to contribute to a better assessment of the seismic hazard in this region. Space geodesy techniques (GPS, InSAR) allow to quantify the present-day displacements across faults (a few mm/yr during the interseismic period), and to model stress loading and relaxation processes during the seismic cycle, at the fault scale and at the regional scale. GPS campaign measurements have been made along profiles perpendicular to the Yammouneh fault. In addition, an important archive of radar images covering Lebanon (acquired by the ERS and Envisat satellites, along descending and ascending orbits) is also available. We process ERS and Envisat radar data to obtain the average interseismic velocity field across faults over the past 15-20 years. Techniques of interferograms networks processing (MuLSAR), atmospheric phase delays correction from global atmospherical models, DEM correction and time series inversion (NSBAS) are used to overcome the main remaining limitations in the measurements accuracy (low coherence, strong atmospheric delays, long wavelength deformation signal). The final goal is to propose a modelling of the surface displacement field to quantify the present-day kinematics of active fauts in Lebanon, taking into account GPS data as well as tectonic and

  19. Micro-geomorphology Surveying and Analysis of Xiadian Fault Scarp, China

    NASA Astrophysics Data System (ADS)

    Ding, R.

    2014-12-01

    Historic records and field investigations reveal that the Mw 8.0 Sanhe-Pinggu (China) earthquake of 1679 produced a 10 to 18 km-long surface rupture zone, with dominantly dip-slip accompanied by a right-lateral component along the Xiadian fault, resulting in extensive damage throughout north China. The fault scarp that was coursed by the co-seismic ruptures from Dongliuhetun to Pangezhang is about 1 to 3 meters high, and the biggest vertical displacement locates in Pangezhuang, it is easily to be seen in the flat alluvial plain. But the 10 to 18 km-long surface rupture couldn't match the Mw 8.0 earthquake scale. After more than 300 years land leveling, the fault scarps in the meizoseismal zone which is farmland are retreat at different degree, some small scarps are becoming disappeared, so it is hard to identify by visual observation in the field investigations. The meizoseismal zone is located in the alluvial plain of the Chaobai river and Jiyun river, and the fault is perpendicular to the river. It is easy to distinguish fault scarps from erosion scarps. Land leveling just changes the slope of the fault scarp, but it can't eliminate the height difference between two side of the fault. So it is possible to recover the location and height of the fault scarp by using Digital Elevation Model (DEM) analysis and landform surveying which is constrained by 3D centimeter-precision RTK GPS surveying method in large scale crossing the fault zone. On the base of the high-precision DEM landform analysis, we carried out 15 GPS surveying lines which extends at least 10km for each crossing the meizoseismal zone. Our findings demonstrate that 1) we recover the complete rupture zone of the Sanhe-Pinggu earthquake in 1679, and survey the co-seismic displacement at 15 sites; 2) we conform that the Xiadian fault scarp is consist of three branches with left stepping. Height of the scarp is from 0.5 to 4.0 meters, and the total length of the scarp is at least 50km; 3) Combined with the

  20. Paleoseismic results of the east strand of the Lower Tagus Valley Fault Zone, Central Portugal.

    NASA Astrophysics Data System (ADS)

    Canora, Carolina; Vilanova, Susana; Besana-Ostman, Glenda; Heleno, Sandra; Fonseca, Joao; Domingues, Ana; Pinheiro, Patricia; Pinto, Luis

    2014-05-01

    The Lower Tagus Valley Fault Zone (LTVFZ) is a northeast-southwest trending tectonic structure located within the Lower Tagus Valley (LTV), in central Portugal associated with at least two historical events: the 1909 Mw 6.0-6.2 Benavente earthquake and the 1531 Mw 6.9 earthquake. Recent investigations indicate that the relatively linear valley associated with the Lower Tagus River is controlled by active faults in varying geometry and slip rates. Based on mapped traces, LTVFZ is about 80 kilometers long and transects Miocene to Holocene deposit. The east and west strands of the fault zone may have different level of activity based on the variable clarity of mapped morphological expressions. In recent studies new fault strands were identified using aerial photos and field survey on eastern side of LTV. These eastern faults have a trend that almost parallel those active traces previously mapped by Besana-Ostman et al., 2012 on the western side of the valley. Quaternary activity of this fault deforms fluvial terraces and produces morphological features related to left-lateral strike-slip movement like river offsets. In this work we present the results of the first paleoseismic analysis carried out on this strand of the fault. Trenching studies shows that surface rupture events have occurred affecting Tagus fluvial terraces. The geometry of faulting exposed in the trench provides valuable insights into the kinematics of the fault, and provides a preliminary minimum net slip rate. New relative ages of the deformation are established on preliminary trenching results, and recurrence intervals will be determined upon receipt of results of sample processing for C14 dating. The aim of this work is to contribute with new data to parameterize the paleoseismic activity of this active fault in order to be included in the future seismic hazard assessments. Further studies are proposed and underway to characterize the LTVFZ, including high-resolution LIDAR images analysis, more

  1. Holocene faulting on the Mission fault, northwest Montana

    SciTech Connect

    Ostenaa, D.A.; Klinger, R.E.; Levish, D.R. )

    1993-04-01

    South of Flathead Lake, fault scarps on late Quaternary surfaces are nearly continuous for 45 km along the western flank of the Mission Range. On late Pleistocene alpine lateral moraines, scarp heights reach a maximum of 17 m. Scarp heights on post glacial Lake Missoula surfaces range from 2.6--7.2 m and maximum scarp angles range from 10[degree]--24[degree]. The stratigraphy exposed in seven trenches across the fault demonstrates that the post glacial Lake Missoula scarps resulted from at least two surface-faulting events. Larger scarp heights on late Pleistocene moraines suggests a possible third event. This yields an estimated recurrence of 4--8 kyr. Analyses of scarp profiles show that the age of the most surface faulting is middle Holocene, consistent with stratigraphic evidence found in the trenches. Rupture length and displacement imply earthquake magnitudes of 7 to 7.5. Previous studies have not identified geologic evidence of late Quaternary surface faulting in the Rocky Mountain Trench or on faults north of the Lewis and Clark line despite abundant historic seismicity in the Flathead Lake area. In addition to the Mission fault, reconnaissance studies have located late Quaternary fault scarps along portions of faults bordering Jocko and Thompson Valleys. These are the first documented late Pleistocene/Holocene faults north of the Lewis and Clark line in Montana and should greatly revise estimates of earthquake hazards in this region.

  2. Lidar-Based Mapping of Late Quaternary Faulting Along the Grizzly Valley Fault, Walker Lane Seismic Belt, California

    NASA Astrophysics Data System (ADS)

    Hitchcock, C. S.; Hoirup, D. F.; Barry, G.; Pearce, J.; Glick, F.

    2012-12-01

    The Grizzly Valley fault (GVF) is located within the northern Walker Lane, a zone of right-lateral shear between the Sierra Nevada and the Basin and Range in Plumas County. The GVF extends southeasterly from near Mt. Ingalls along the eastern side of Lake Davis. It may partially connect with the Hot Creek fault within Sierra Valley and extend south to Loyalton with an overall approximate length of 50 km. Comparison of high-resolution topography developed from LiDAR data with published bedrock geologic mapping documents the presence of geomorphic features that provide information on fault activity of the GVF. Field mapping verified tectonically deformed and offset late Quaternary surfaces identified on bare-earth LiDAR imagery across the GVF within glacial deposits on the eastern margin of Lake Davis, and alluvial deposits in Sierra Valley. Along the GVF, conspicuous geomorphic and hydrologic features include scarps in alluvial surfaces, elongated depressions aligned with adjacent linear escarpments, truncated bedrock spurs, closed depressions, linear swales, right-lateral deflections of creeks and river courses, and shutter ridges, as well as springs and linear seeps consistent with right-lateral strike-slip faulting. The discontinuous nature of observed fault traces combined with the apparent down-to-the-west offset of alluvial surfaces at the southern and northern ends of the eastern margin of Lake Davis are consistent with a broad bend or step over in the fault. Scarp profiles of apparently faulted surfaces extracted from LiDAR data document vertical offsets of up to 14 m. Our study suggest that the GVF is an oblique, right-lateral fault that has been active in the late Quaternary. This study complements on-going investigations by DWR to assess the impact of seismic hazards on State Water Project infrastructure.

  3. Managing Fault Management Development

    NASA Technical Reports Server (NTRS)

    McDougal, John M.

    2010-01-01

    As the complexity of space missions grows, development of Fault Management (FM) capabilities is an increasingly common driver for significant cost overruns late in the development cycle. FM issues and the resulting cost overruns are rarely caused by a lack of technology, but rather by a lack of planning and emphasis by project management. A recent NASA FM Workshop brought together FM practitioners from a broad spectrum of institutions, mission types, and functional roles to identify the drivers underlying FM overruns and recommend solutions. They identified a number of areas in which increased program and project management focus can be used to control FM development cost growth. These include up-front planning for FM as a distinct engineering discipline; managing different, conflicting, and changing institutional goals and risk postures; ensuring the necessary resources for a disciplined, coordinated approach to end-to-end fault management engineering; and monitoring FM coordination across all mission systems.

  4. The Nile River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the northern portion of the Nile River was captured by MISR's nadir camera on January 30, 2001 (Terra orbit 5956). The Nile is the longest river in the world, extending for about 6700 kilometers from its headwaters in the highlands of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to the east. Also visible in this image is the Suez Canal, a shipping waterway connecting Port Said on the Mediterranean Sea with the Gulf of Suez. The Gulf is an arm of the Red Sea, and is located on the righthand side of the picture. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  5. Logs of Paleoseismic Excavations Across the Central Range Fault, Trinidad

    USGS Publications Warehouse

    Crosby, Christopher J.; Prentice, Carol S.; Weber, John; Ragona, Daniel

    2009-01-01

    Table 1 are shown in red on the trench logs. All radiocarbon ages are calibrated and given with 2 standard deviation age ranges. Our studies suggest that the Central Range Fault is a Holocene fault capable of producing damaging earthquakes in Trinidad

  6. Fault tolerant control laws

    NASA Technical Reports Server (NTRS)

    Ly, U. L.; Ho, J. K.

    1986-01-01

    A systematic procedure for the synthesis of fault tolerant control laws to actuator failure has been presented. Two design methods were used to synthesize fault tolerant controllers: the conventional LQ design method and a direct feedback controller design method SANDY. The latter method is used primarily to streamline the full-state Q feedback design into a practical implementable output feedback controller structure. To achieve robustness to control actuator failure, the redundant surfaces are properly balanced according to their control effectiveness. A simple gain schedule based on the landing gear up/down logic involving only three gains was developed to handle three design flight conditions: Mach .25 and Mach .60 at 5000 ft and Mach .90 at 20,000 ft. The fault tolerant control law developed in this study provides good stability augmentation and performance for the relaxed static stability aircraft. The augmented aircraft responses are found to be invariant to the presence of a failure. Furthermore, single-loop stability margins of +6 dB in gain and +30 deg in phase were achieved along with -40 dB/decade rolloff at high frequency.

  7. The San Andreas Fault and a Strike-slip Fault on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay.

    The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left).

    A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements.

    Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled

  8. Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

    USGS Publications Warehouse

    Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.

    2004-01-01

    The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.

  9. Active faulting on the Wallula fault within the Olympic-Wallowa Lineament (OWL), eastern Washington State

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Lasher, J. P.; Barnett, E. A.

    2013-12-01

    Several studies over the last 40 years focused on a segment of the Wallula fault exposed in a quarry at Finley, Washington. The Wallula fault is important because it is part of the Olympic-Wallowa lineament (OWL), a ~500-km-long topographic and structural lineament extending from Vancouver Island, British Columbia to Walla Walla, Washington that accommodates Basin and Range extension. The origin and nature of the OWL is of interest because it contains potentially active faults that are within 50 km of high-level nuclear waste facilities at the Hanford Site. Mapping in the 1970's and 1980's suggested the Wallula fault did not offset Holocene and late Pleistocene deposits and is therefore inactive. New exposures of the Finley quarry wall studied here suggest otherwise. We map three main packages of rocks and sediments in a ~10 m high quarry exposure. The oldest rocks are very fine grained basalts of the Columbia River Basalt Group (~13.5 Ma). The next youngest deposits include a thin layer of vesicular basalt, white volcaniclastic deposits, colluvium containing clasts of vesicular basalt, and indurated paleosols. A distinct angular unconformity separates these vesicular basalt-bearing units from overlying late Pleistocene flood deposits, two colluvium layers containing angular clasts of basalt, and Holocene tephra-bearing loess. A tephra within the loess likely correlates to nearby outcrops of Mazama ash. We recognize three styles of faults: 1) a near vertical master reverse or oblique fault juxtaposing very fine grained basalt against late Tertiary-Holocene deposits, and marked by a thick (~40 cm) vertical seam of carbonate cemented breccia; 2) subvertical faults that flatten upwards and displace late Tertiary(?) to Quaternary(?) soils, colluvium, and volcaniclastic deposits; and 3) flexural slip faults along bedding planes in folded deposits in the footwall. We infer at least two Holocene earthquakes from the quarry exposure. The first Holocene earthquake deformed

  10. Mechanical stratigraphy and normal faulting

    NASA Astrophysics Data System (ADS)

    Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.; Smart, Kevin J.; Wigginton, Sarah S.; Hill, Nicola J.

    2017-01-01

    Mechanical stratigraphy encompasses the mechanical properties, thicknesses, and interface properties of rock units. Although mechanical stratigraphy often relates directly to lithostratigraphy, lithologic description alone does not adequately describe mechanical behavior. Analyses of normal faults with displacements of millimeters to 10's of kilometers in mechanically layered rocks reveal that mechanical stratigraphy influences nucleation, failure mode, fault geometry, displacement gradient, displacement distribution, fault core and damage zone characteristics, and fault zone deformation processes. The relationship between normal faulting and mechanical stratigraphy can be used either to predict structural style using knowledge of mechanical stratigraphy, or conversely to interpret mechanical stratigraphy based on characterization of the structural style. This review paper explores a range of mechanical stratigraphic controls on normal faulting illustrated by natural and modeled examples.

  11. Fault management for data systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann

    1993-01-01

    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  12. Neotectonic and paleoseismicity studies on the Urumaco Fault, northern Falcón Basin, northwestern Venezuela

    NASA Astrophysics Data System (ADS)

    Audemard, Franck A.; Bousquet, Jean-Claude; Rodríguez, José A.

    1999-07-01

    The northern Falcón Basin in northwestern Venezuela is affected by several small active faults, subordinated to the major right-lateral east-west-trending Oca-Ancón Fault System. A set of prominent NW-SE right-lateral faults — synthetic shears — such as the Urumaco, Rı´o Seco, Lagarto and La Soledad faults, stands out among those. The Urumaco Fault, located between the Lagarto and Mitare rivers (in the Urumaco Trough, west of Coro), presents a rather complex active fault trace that comprises two NW-SE fault segments linked by an ENE-WSW reverse echelon, all showing a restraining stepover geometry. Its western segment seems to continue to the north at sea. Conversely, the eastern one dies out on land and its northern tip ends in a transtensive horse-tail structure, that disrupts an Early Pleistocene conglomerate. This same unit is flexed and upheaved some 30 m at the restraining overlap. The kinematics and present stress tensor, the latest activity and the seismogenic potential of the eastern segment of the Urumaco Fault, have been assessed at a set of three river cuts of an ephemeral tributary stream of the Urumaco River, 3 km north of the Urumaco village, where the Urumaco Formation is truncated by a Late Pleistocene terrace ( 14C date of 20,700±950 yr BP at the base) of the Urumaco River. On the one hand, one of these outcrops features the Urumaco Fault affecting the Late Miocene Urumaco Formation, which comprises two prominent fault planes disposed as a wedge. The southwestern bounding plane juxtaposes two different sequences whereas the northeastern one does not, implying different slip behavior. In fact, the northeastern plane shows oblique-slip striations (29°N, normal-dextral), whereas the other one shows perfectly horizontal striations (right-lateral). On the other hand, both updip plane prolongations in the overlying alluvial unit are not so sharp, if the 17-cm throw of the erosive bottom of such terrace measured at the lowermost part of the

  13. Raft River geoscience case study

    SciTech Connect

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  14. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  15. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  16. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  17. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  18. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  19. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  20. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Sibson, R. H.; Renner, J.; Toy, V. G.; di Toro, G.; Smith, S. A.

    2010-12-01

    In this study, we introduce work which aims assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ1 - σ3) and σ3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ3', versus load-weakening (equivalent to a normal fault) with reducing σ3' under constant σ1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ1 , ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we also experimentally explore the reshear of natural pseudotachylytes (PSTs) from two different fault zones; the Gole Larghe Fault, Adamello, Italy in which the PSTs are in relatively isotropic Tonalite (at lab sample scale) and the Alpine Fault, New Zealand in which the PSTs are in highly anisotropic foliated shist. We test whether PSTs will reshear in both rock types under the right conditions, or whether new fractures in the wall rock will form in preference to reactivating the PST (PST shear strength is higher than that of the host rock). Are PSTs representative of one slip event?

  1. Displacement rates on the Toroweap and Hurricane faults: implications for Quaternary downcutting in the Grand Canyon, Arizona

    USGS Publications Warehouse

    Fenton, Cassandra R.; Webb, Robert H.; Pearthree, Philip A.; Cerling, Thure E.; Poreda, Robert J.

    2001-01-01

    The Toroweap and Hurricane faults, considered to be the most active in Arizona, cross the Uinkaret volcanic field in the western Grand Canyon. These normal faults are downthrown to the west, and the Colorado River crosses these faults as it flows west in the Grand Canyon. Cosmogenic 3He (3Hec) dates on basalt flows and related landforms are used to calculate vertical displacement rates for these faults. The two faults cross unruptured alluvial fans dated as 3 ka (Toroweap) and 8 ka (Hurricane), and 10 other landforms that range in age from 30 to 400 ka are displaced. Middle and late Quaternary displacement rates of the Toroweap and Hurricane faults are 70–180 and 70–170 m/m.y., respectively. On the basis of these rates, the combined displacement of 580 m on these faults could have occurred in the past 3 to 5 m.y. All 3Hec dates are younger than existing K- Ar dates and are consistent with new 40Ar/39Ar dates and existing thermoluminescence (TL) dates on basalt flows. These different dating techniques may be combined in an analysis of displacement rates. Downcutting rates for the Colorado River in the eastern Grand Canyon (400 m/m.y.) are at least double the downcutting rates west of the faults (70–160 m/m.y.). Faulting probably increased downcutting in the eastern Grand Canyon relative to downcutting in the western Grand Canyon during the late Quaternary.

  2. Fault trees and sequence dependencies

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Boyd, Mark A.; Bavuso, Salvatore J.

    1990-01-01

    One of the frequently cited shortcomings of fault-tree models, their inability to model so-called sequence dependencies, is discussed. Several sources of such sequence dependencies are discussed, and new fault-tree gates to capture this behavior are defined. These complex behaviors can be included in present fault-tree models because they utilize a Markov solution. The utility of the new gates is demonstrated by presenting several models of the fault-tolerant parallel processor, which include both hot and cold spares.

  3. SEISMOLOGY: Watching the Hayward Fault.

    PubMed

    Simpson, R W

    2000-08-18

    The Hayward fault, located on the east side of the San Francisco Bay, represents a natural laboratory for seismologists, because it does not sleep silently between major earthquakes. In his Perspective, Simpson discusses the study by Bürgmann et al., who have used powerful new techniques to study the fault. The results indicate that major earthquakes cannot originate in the northern part of the fault. However, surface-rupturing earthquakes have occurred in the area, suggesting that they originated to the north or south of the segment studied by Bürgmann et al. Fundamental questions remain regarding the mechanism by which plate tectonic stresses are transferred to the Hayward fault.

  4. Fault-Tree Compiler Program

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Martensen, Anna L.

    1992-01-01

    FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.

  5. Cross-Cutting Faults

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows cross-cutting fault scarps among graben features in northern Tempe Terra. Graben form in regions where the crust of the planet has been extended; such features are common in the regions surrounding the vast 'Tharsis Bulge' on Mars.

    Location near: 43.7oN, 90.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  6. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  7. Nonlinear Fault Diagnosis,

    DTIC Science & Technology

    1981-05-01

    Systems, New York, Marcel Dekker, (to appear). 3. Desoer , C.A. and S.E. Kuh, Basic Circuit Theory, McGraw-Hill, New York, 1969, pp. 423-425. 130 NONLINEAR...DIAGNOSIS A 7*ssior For 1 MU3 CRA&T IY’IC TAB Ju-st i.cat IC- P.U A: CONTENTS Fault Diagnosis in Electronic Circuits , R. Saeks and R.-w. Liu...Vincentelli and R. Saeks .............. 61 Multitest Diagnosibility of Nonlinear Circuits and Systems, A. Sangiovanni-Vincentelli and R. Saeks

  8. Perspective View, Garlock Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast

  9. Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers

    NASA Astrophysics Data System (ADS)

    Jia, Qingxian; Chen, Wen; Zhang