Science.gov

Sample records for red sea urchin

  1. Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus.

    PubMed

    Ebert, Thomas A

    2008-08-01

    The red sea urchin Strongylocentrotus franciscanus is a long-lived species and may live in excess of 100 years based on tagging studies in the field and corroboration from radiocarbon analyses as reported in the literature. Size-specific survival estimates reported here show no change in annual survival probability across the 6 largest 0.5 cm size classes from 14.6 to 18.1cm. In addition to no change in survival probability there is no reduction in reproductive capacity with size. Red sea urchins show no evidence of senescence and so do not fit well within the context of the disposable soma theory of the evolution of longevity.

  2. Ecological role of purple sea urchins.

    PubMed

    Pearse, John S

    2006-11-10

    Sea urchins are major components of marine communities. Their grazing limits algal biomass, and they are preyed upon by many predators. Purple sea urchins (Strongylocentrotus purpuratus) are among the best studied species. They live in environments that alternate between two stable states: luxuriant, species-rich kelp forests and sea urchin-dominated "barrens." The transition from one state to the other can be initiated by several factors, including the abundance of algal food, predators, storm intensities, and incidence of disease. Purple sea urchins compete with other grazers, some of which are important fishery resources (such as abalones and red sea urchins), and they are harvested for scientific research. Revelations from their genome will lead to a better understanding of how they maintain their ecological importance, and may in turn enhance their economic potential.

  3. Sea Urchin Morphogenesis.

    PubMed

    McClay, David R

    2016-01-01

    In the sea urchin morphogenesis follows extensive molecular specification. The specification controls the many morphogenetic events and these, in turn, precede patterning steps that establish the larval body plan. To understand how the embryo is built it was necessary to understand those series of molecular steps. Here an example of the historical sequence of those discoveries is presented as it unfolded over the last 50 years, the years during which major progress in understanding development of many animals and plants was documented by CTDB. In sea urchin development a rich series of experimental studies first established many of the phenomenological components of skeletal morphogenesis and patterning without knowledge of the molecular components. The many discoveries of transcription factors, signals, and structural proteins that contribute to the shape of the endoskeleton of the sea urchin larva then followed as molecular tools became available. A number of transcription factors and signals were discovered that were necessary for specification, morphogenesis, and patterning. Perturbation of the transcription factors and signals provided the means for assembling models of the gene regulatory networks used for specification and controlled the subsequent morphogenetic events. The earlier experimental information informed perturbation experiments that asked how patterning worked. As a consequence it was learned that ectoderm provides a series of patterning signals to the skeletogenic cells and as a consequence the skeletogenic cells secrete a highly patterned skeleton based on their ability to genotypically decode the localized reception of several signals. We still do not understand the complexity of the signals received by the skeletogenic cells, nor do we understand in detail how the genotypic information shapes the secreted skeletal biomineral, but the current knowledge at least outlines the sequence of events and provides a useful template for future

  4. Photoperiod, temperature, and food availability as drivers of the annual reproductive cycle of the sea urchin Echinometra sp. from the Gulf of Aqaba (Red Sea)

    NASA Astrophysics Data System (ADS)

    Bronstein, Omri; Loya, Yossi

    2015-03-01

    In spite of the efforts invested in the search for the environmental factors that regulate discrete breeding periods in marine invertebrates, they remain poorly understood. Here, we present the first account of the annual reproductive cycle of the pantropical sea urchin Echinometra sp. from the Gulf of Aqaba/Eilat (Red Sea) and explore some of the main environmental variables that drive echinoid reproduction. Monthly measurements of gonado-somatic indexes and histological observations of 20 specimens revealed a single seasonal reproductive cycle, with gametogenesis in males and females being highly synchronized. Gametogenesis commenced in June and peak spawning occurred between September and October. Gonado-somatic indexes were significantly correlated with seawater temperatures but not with photoperiod. The latter cycle lagged behind the gonado-somatic cycle by two months, suggesting that the onset of gametogenesis corresponds to shortening day length, while spawning may be driven by warming seawater temperatures. Gonads remained quiescent throughout the winter and spring (January through May) when temperatures were at their lowest. Chlorophyll- a concentrations increased significantly in the months following spawning (October through January). These high concentrations are indicative of high phytoplankton abundance and may reflect the increase in food availability for the developing larvae. Of the external test dimensions, length presented the highest correlation to body weight, indicating length as the best predictor for body size in Echinometra. Neither sexual dimorphism nor size differences between males and females were detected, and the sex ratios were approximately 1:1 in three distant Echinometra populations. Environmentally regulated reproduction, as occurs in sea urchins, might face severe outcomes due to anthropogenic disturbances to the marine environment. Consequently, there is a need to deepen our understanding of the mechanisms that drive and

  5. Traditional Chinese medicine--sea urchin.

    PubMed

    Shang, Xiao-Hui; Liu, Xiao-Yu; Zhang, Jian-Peng; Gao, Yun; Jiao, Bing-Hua; Zheng, Heng; Lu, Xiao-Ling

    2014-01-01

    The sea urchin is an ancient, common, seafloor-dwelling marine invertebrate that belongs to the phylum Echinodermata. There are multiple species of sea urchin with resources that are widely distributed in China, where they were used in ancient times as Traditional Chinese Medicine for treating a variety of diseases. At present, it is known that the shell, spine and gonad of the sea urchin have many medicinal values determined through modern research. In this paper, we summarized the major chemical constituents and medicinal value of the sea urchin.

  6. Micromechanics of Sea Urchin spines.

    PubMed

    Tsafnat, Naomi; Fitz Gerald, John D; Le, Hai N; Stachurski, Zbigniew H

    2012-01-01

    The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT) and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine's architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material.

  7. Aquatic antagonists: cutaneous sea urchin spine injury.

    PubMed

    Hsieh, Clifford; Aronson, Erica R; Ruiz de Luzuriaga, Arlene M

    2016-11-01

    Injuries from sea urchin spines are commonly seen in coastal regions with high levels of participation in water activities. Although these injuries may seem minor, the consequences vary based on the location of the injury. Sea urchin spine injuries may cause arthritis and synovitis from spines in the joints. Nonjoint injuries have been reported, and dermatologic aspects of sea urchin spine injuries rarely have been discussed. We present a case of a patient with sea urchin spines embedded in the thigh who subsequently developed painful skin nodules. Tissue from the site of the injury demonstrated foreign-body type granulomas. Following the removal of the spines and granulomatous tissue, the patient experienced resolution of the nodules and associated pain. Extraction of sea urchin spines can attenuate the pain and decrease the likelihood of granuloma formation, infection, and long-term sequelae.

  8. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of ... 2000 - The Red Sea between the East Africa coast and Saudi Arabian peninsula. project:  MISR category:  ...

  9. Phylogenomics of strongylocentrotid sea urchins

    PubMed Central

    2013-01-01

    Background Strongylocentrotid sea urchins have a long tradition as model organisms for studying many fundamental processes in biology including fertilization, embryology, development and genome regulation but the phylogenetic relationships of the group remain largely unresolved. Although the differing isolating mechanisms of vicariance and rapidly evolving gamete recognition proteins have been proposed, a stable and robust phylogeny is unavailable. Results We used a phylogenomic approach with mitochondrial and nuclear genes taking advantage of the whole-genome sequencing of nine species in the group to establish a stable (i.e. concordance in tree topology among multiple lies of evidence) and robust (i.e. high nodal support) phylogenetic hypothesis for the family Strongylocentrotidae. We generated eight draft mitochondrial genome assemblies and obtained 13 complete mitochondrial genes for each species. Consistent with previous studies, mitochondrial sequences failed to provide a reliable phylogeny. In contrast, we obtained a very well-supported phylogeny from 2301 nuclear genes without evidence of positive Darwinian selection both from the majority of most-likely gene trees and the concatenated fourfold degenerate sites: ((P. depressus, (M. nudus, M. franciscanus), (H. pulcherrimus, (S. purpuratus, (S. fragilis, (S. pallidus, (S. droebachiensis, S. intermedius)). This phylogeny was consistent with a single invasion of deep-water environments followed by a holarctic expansion by Strongylocentrotus. Divergence times for each species estimated with reference to the divergence times between the two major clades of the group suggest a correspondence in the timing with the opening of the Bering Strait and the invasion of the holarctic regions. Conclusions Nuclear genome data contains phylogenetic signal informative for understanding the evolutionary history of this group. However, mitochondrial genome data does not. Vicariance can explain major patterns observed in the

  10. Sea urchin egg fertilization and development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    The effects of subgravity (much less than unit gravity) on fertilization, cell division, differentiation, and growth of a relatively simple biological system (eggs of the sea urchin Arbacia punctulata) were considered. The experiment was flown on Gemini 3 and recovered as scheduled. However, the experiment objectives were not achieved, primarily for mechanical reasons.

  11. Zinc effect on the sea urchin Paracentrotus lividus immunological competence.

    PubMed

    Pagliara, Patrizia; Stabili, Loredana

    2012-10-01

    Pollution by heavy metals has become one of the most important problems in marine coastal areas as a consequence of anthropogenic inputs. Among metal contaminants, zinc, being considered not very toxic, is sometimes released into the sea in appreciable quantities and its concentration is loosely regulated. In this work we analyzed the effects of a high zinc concentration on the sea urchin Paracentrotus lividus immune system. In particular, after 24 h of zinc treatment, we evaluated coelomocytes morphology and composition as well as the zinc influence on some humoral parameters such as hemolysis, lysozyme-like activity and antibacterial activity on Vibrio alginolyticus. Our results evidenced that the presence of zinc affected both cellular and acellular components of the sea urchin immune system. The P. lividus coelomocytes changed in morphology and number; moreover, the amebocytes changed from a petaloid to a filipodial-like shape and the red spherula cells increased in number. Among the considered humoral effectors lysozyme-like activity and antibacterial activity on V. alginolyticus decreased in short-term to zinc treatment. The modifications in the sea urchin immunological competence might give an early indication of disease susceptibility thus suggesting to consider the examined defence mechanisms as potential biological indicators of metal pollution.

  12. A Rapid Colorimetric Method Reveals Fraudulent Substitutions in Sea Urchin Roe Marketed in Sardinia (Italy).

    PubMed

    Meloni, Domenico; Spina, Antonio; Satta, Gianluca; Chessa, Vittorio

    2016-06-25

    In recent years, besides the consumption of fresh sea urchin specimens, the demand of minimally-processed roe has grown considerably. This product has made frequent consumption in restaurants possible and frauds are becoming widespread with the partial replacement of sea urchin roe with surrogates that are similar in colour. One of the main factors that determines the quality of the roe is its colour and small differences in colour scale cannot be easily discerned by the consumers. In this study we have applied a rapid colorimetric method for reveal the fraudulent partial substitution of semi-solid sea urchin roe with liquid egg yolk. Objective assessment of whiteness (L*), redness (a*), yellowness (b*), hue (h*), and chroma (C*) was carried out with a digital spectrophotometer using the CIE L*a*b* colour measurement system. The colorimetric method highlighted statistically significant differences among sea urchin roe and liquid egg yolk that could be easily discerned quantitatively.

  13. A Rapid Colorimetric Method Reveals Fraudulent Substitutions in Sea Urchin Roe Marketed in Sardinia (Italy)

    PubMed Central

    Meloni, Domenico; Spina, Antonio; Satta, Gianluca; Chessa, Vittorio

    2016-01-01

    In recent years, besides the consumption of fresh sea urchin specimens, the demand of minimally-processed roe has grown considerably. This product has made frequent consumption in restaurants possible and frauds are becoming widespread with the partial replacement of sea urchin roe with surrogates that are similar in colour. One of the main factors that determines the quality of the roe is its colour and small differences in colour scale cannot be easily discerned by the consumers. In this study we have applied a rapid colorimetric method for reveal the fraudulent partial substitution of semi-solid sea urchin roe with liquid egg yolk. Objective assessment of whiteness (L*), redness (a*), yellowness (b*), hue (h*), and chroma (C*) was carried out with a digital spectrophotometer using the CIE L*a*b* colour measurement system. The colorimetric method highlighted statistically significant differences among sea urchin roe and liquid egg yolk that could be easily discerned quantitatively. PMID:28231142

  14. Evolutionary crossroads in developmental biology: sea urchins

    PubMed Central

    McClay, David R.

    2011-01-01

    Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo. PMID:21652646

  15. Diel patterns in sea urchin activity and predation on sea urchins on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Young, M. A. L.; Bellwood, D. R.

    2011-09-01

    Understanding diel patterns in sea urchin activity is important when assessing sea urchin populations and when interpreting their interactions with predators. Here we employ a combination of surveys and a non-invasive tethering technique to examine these patterns in an intact coral reef system on the Great Barrier Reef (GBR). We also assess local scale variation in relative diurnal predation pressure. Surveys revealed that sea urchins were active and exposed at night. Echinometra mathaei and Echinothrix calamaris were the most abundant species with significantly higher night densities (0.21 and 0.03 ind. m-2, respectively), than daytime densities (0.05 and 0.001, respectively). Bioassays revealed that exposed adult E. mathaei (the most abundant sea urchin species) were 30.8 times more likely to be eaten during the day than at night when controlling for sites. This observation concurs with widely held assumptions that nocturnal activity is a risk-related adaptive response to diurnal predation pressure. Despite relatively intact predator communities on the GBR, potential predation pressure on diurnally exposed E. mathaei assays was variable at a local scale and the biomass of potential fish predators at each site was a poor predictive measure of this variation. Patterns in predation appear to be more complex and variable than we may have assumed.

  16. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes

    PubMed Central

    Matranga, Valeria; Toia, Giuseppe; Bonaventura, Rosa; Müller, Werner E.G.

    2000-01-01

    Coelomocytes are considered to be immune effectors of sea urchins. Subpopulations of coelomocytes can be purified from a total cell suspension. The proportion of each cell type can vary not only among species, but also between individuals of the same species, according to their size and physiological conditions. We tested the hypothesis that coelomocytes play a role in defense mechanisms activated by adverse external conditions. Total coelomocytes from control and stressed (temperature, pollution, and injuries) sea urchins were analyzed for their expression of the 70 kDa heat shock protein (hsp70), a well recognized stress marker. Further analysis was performed by separation of coelomocytes into subpopulations by step gradients. We demonstrated that sea urchin coelomocytes respond to temperature shock and to polluted seawater by the upregulation of hsp70. Among coelomocytes certain cells, known as red spherula cells, showed a great increase in number in animals collected from polluted seawaters or subjected to “accidental” injury. The present study confirms the immunological function of sea urchin coelomocytes, as indicated by the upregulation of the hsp70 molecular marker, and suggests that sea urchin coelomocytes can be utilized as sensitive bio-indicators of environmental stress. PMID:11147962

  17. Can sea urchins beat the heat? Sea urchins, thermal tolerance and climate change

    PubMed Central

    2015-01-01

    The massive die-off of the long-spined sea urchin, Diadema antillarum, a significant reef grazer, in the mid 1980s was followed by phase shifts from coral dominated to macroalgae dominated reefs in the Caribbean. While Diadema populations have recovered in some reefs with concomitant increases in coral cover, the additional threat of increasing temperatures due to global climate change has not been investigated in adult sea urchins. In this study, I measured acute thermal tolerance of D. antillarum and that of a sympatric sea urchin not associated with coral cover, Echinometra lucunter, over winter, spring, and summer, thus exposing them to substantial natural thermal variation. Animals were taken from the wild and placed in laboratory tanks in room temperature water (∼22 °C) that was then heated at 0.16–0.3 °C min−1 and the righting behavior of individual sea urchins was recorded. I measured both the temperature at which the animal could no longer right itself (TLoR) and the righting time at temperatures below the TLoR. In all seasons, D. antillarum exhibited a higher mean TLoR than E. lucunter. The mean TLoR of each species increased with increasing environmental temperature revealing that both species acclimatize to seasonal changes in temperatures. The righting times of D. antillarum were much shorter than those of E. lucunter. The longer relative spine length of Diadema compared to that of Echinometra may contribute to their shorter righting times, but does not explain their higher TLoR. The thermal safety margin (the difference between the mean collection temperature and the mean TLoR) was between 3.07–3.66 °C for Echinometra and 3.79–5.67 °C for Diadema. While these thermal safety margins exceed present day temperatures, they are modest compared to those of temperate marine invertebrates. If sea temperatures increase more rapidly than can be accommodated by the sea urchins (either by genetic adaptation, phenotypic plasticity, or both), this

  18. For the Classroom: The Sea Urchin Fertilization and Embryology Lab.

    ERIC Educational Resources Information Center

    Brevoort, Douglas

    1984-01-01

    The sea urchin provides an ideal embryology laboratory because it is visually representative of the fertilization process in higher animals. Procedures for conducting such a laboratory (including methods for securing specimens) are provided. (JN)

  19. The Sea Urchin Embryo: A Remarkable Classroom Tool.

    ERIC Educational Resources Information Center

    Oppenheimer, Steven B.

    1989-01-01

    Discussed are the uses of sea urchins in research and their usefulness and advantages in the classroom investigation of embryology. Ideas for classroom activities and student research are presented. Lists 25 references. (CW)

  20. The transcriptome of the sea urchin embryo.

    PubMed

    Samanta, Manoj P; Tongprasit, Waraporn; Istrail, Sorin; Cameron, R Andrew; Tu, Qiang; Davidson, Eric H; Stolc, Viktor

    2006-11-10

    The sea urchin Strongylocentrotus purpuratus is a model organism for study of the genomic control circuitry underlying embryonic development. We examined the complete repertoire of genes expressed in the S. purpuratus embryo, up to late gastrula stage, by means of high-resolution custom tiling arrays covering the whole genome. We detected complete spliced structures even for genes known to be expressed at low levels in only a few cells. At least 11,000 to 12,000 genes are used in embryogenesis. These include most of the genes encoding transcription factors and signaling proteins, as well as some classes of general cytoskeletal and metabolic proteins, but only a minor fraction of genes encoding immune functions and sensory receptors. Thousands of small asymmetric transcripts of unknown function were also detected in intergenic regions throughout the genome. The tiling array data were used to correct and authenticate several thousand gene models during the genome annotation process.

  1. Effects of five southern California macroalgal diets on consumption, growth, and gonad weight, in the purple sea urchin Strongylocentrotus purpuratus.

    PubMed

    Foster, Matthew C; Byrnes, Jarrett E K; Reed, Daniel C

    2015-01-01

    Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time, and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus)) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight, while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis, at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests that the availability of the former could could sustain growth and reproduction of purple sea urchins during times of low Macrocystis abundance as is common following

  2. Effects of five southern California macroalgal diets on consumption, growth, and gonad weight, in the purple sea urchin Strongylocentrotus purpuratus

    PubMed Central

    Byrnes, Jarrett E.K.; Reed, Daniel C.

    2015-01-01

    Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time, and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus)) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight, while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis, at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests that the availability of the former could could sustain growth and reproduction of purple sea urchins during times of low Macrocystis abundance as is common following

  3. Motility and centrosomal organization during sea urchin and mouse fertilization

    NASA Technical Reports Server (NTRS)

    Schatten, Heide; Schatten, Gerald

    1986-01-01

    It is noted that microfilaments are essential for incorporation of sperm in sea urchins and for pronuclear apposition in mice. The ability of sea urchin sperm to fertilize eggs is lowered by latrunculin, giving evidence that acrosomal microfilaments are of importance to the process of fertilization. Due to the uncertainty regarding the presence of microfilaments in various mammalian sperm, it is interesting that latrunculin does not noticeably affect the ability of mouse sperm to fertilize oocytes. The movements of the sperm and egg nuclei at the time of sea urchin fertilization are dependent on microtubules arranged into a radial monastral array (the sperm aster). In the mouse egg, microtubule activity is also required during pronuclear apposition, but they are arranged by a number of egg cytoplasmic sites. Results of the investigations show that both microtubules and microfilaments are necessary for the successful completion of fertilization in both mice and sea urchins, but at different stages. Also, it is demonstrated that centrosomes are contributed by the sperm in the process of sea urchin fertilization, but in mammals they may be inherited maternally.

  4. Rho-kinase in sea urchin eggs and embryos.

    PubMed

    Aguirre-Armenta, Beatriz; López-Godínez, Juana; Martínez-Cadena, Guadalupe; García-Soto, Jesús

    2011-06-01

    The activation of sea urchin eggs at fertilization provides an ideal system for studying the molecular events involved in cellular activation. Rho GTPases, which are key signaling enzymes in eukaryotes, are involved in sustaining the activation of sea urchin eggs; however, their downstream effectors have not yet been characterized. In somatic cells, RhoA regulates a serine/threonine kinase known as Rho-kinase (ROCK). The activity of ROCK in early sea urchin development has been inferred, but not tested directly. A ROCK gene was identified in the sea urchin (Strongylocentrotus purpuratus) genome and the sequence of its cDNA determined. The sea urchin ROCK (SpROCK) sequence predicts a protein of 158 kDa with >72% and 45% identities with different protein orthologues of the kinase catalytic domain and the complete protein sequence, respectively. SpROCK mRNA levels are high in unfertilized eggs and decrease to 35% after 15 min postfertilization and remain low up to the 4 cell stage. Antibodies to the human ROCK-I kinase domain revealed SpROCK to be concentrated in the cortex of eggs and early embryos. Co-immunoprecipitation assays indicate that RhoA and SpROCK are physically associated. This association is destroyed by treatment with the C3 exoenzyme and with the ROCK antagonist H-1152. H-1152 also inhibited DNA synthesis in embryos. We conclude that the Rho-dependent signaling pathway, via SpROCK, is essential for early embryonic development.

  5. Sea urchin spine arthritis in the foot.

    PubMed

    Schefflein, Javin; Umans, Hilary; Ellenbogen, David; Abadi, Maria

    2012-09-01

    We present a case of sea urchin spine arthritis (SUSA) in a 33-year-old woman who sustained penetrating trauma to the interphalangeal (IP) joint of the hallux while snorkeling in Japan. Serial radiographs and MRI were obtained over a period from 7 weeks to 10 months following injury. At 7 weeks radiographs revealed periarticular osteopenia and subtle marginal erosion, similar to the appearance of tuberculous arthritis. Over the ensuing months, radiographs and MRI documented progressive marginal and periarticular erosions with synovitis, despite preservation of cartilage space and restoration of bone mineral density. Delayed radiographs and imaging features mimic gouty arthropathy. Only the history points to the proper diagnosis, which was confirmed by histopathology, demonstrating necrobiotic granuloma with central fibrinoid necrosis following synovectomy and arthrodesis. The majority of previous case reports affected the hand, with few cases in the feet. In all, radiographic illustrations were limited and demonstrated only minimal osteolysis and periosteal reaction. No other report included MRI or serial radiographs over a long period to illustrate the natural progression of the disease.

  6. Skeletogenesis in sea urchin interordinal hybrid embryos.

    PubMed

    Brandhorst, B P; Davenport, R

    2001-07-01

    Reciprocal interordinal crosses were made between the sea urchins Strongylocentrotus purpuratus and Lytechinus pictus. Previous research indicated that the expression of many L. pictus genes is reduced in the hybrid embryos. The S. purpuratus gene encoding the spicule matrix protein SM50 and the L. pictus gene encoding its orthologue LSM34 were both expressed at normal levels per gene copy in hybrid embryos, and in about 32 skeletogenic primary mesenchyme cells (PMCs) in hybrid and natural gastrulae. In many embryos of all crosses, 16 PMCs initially ingressed, while 32-64 PMCs were present in gastrulae. The skeletal spicules of most hybrid plutei were predominantly like those of S. purpuratus, consistent with the predominance of expression of S. purpuratus genes in hybrid embryos. The spicules of some hybrid plutei showed features characteristic of L. pictus, such as recurrent rods, branched body rod tips, or convergent ventral transverse rods; a few hybrid spicules were predominantly like those of L. pictus. Based on our observations and the literature, we propose the following. Cues from the ectodermal epithelium position the PMCs as they elaborate the initial triradiate spicules. Their orientation and outgrowth appears to be responsible for the convergence of the tips of body rods in most S. purpuratus and hybrid embryos, unlike in most L. pictus embryos. Variations among hybrid and natural embryos in skeletal branching pattern reflect differences in interpretation by PMCs of patterning cues produced by the ectodermal epithelium that probably have similar spatial distributions in the two species.

  7. Unique system of photoreceptors in sea urchin tube feet

    PubMed Central

    Ullrich-Lüter, Esther M; Dupont, Sam; Arboleda, Enrique; Hausen, Harald; Arnone, Maria Ina

    2011-01-01

    Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animal's numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin–expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye. PMID:21536888

  8. Targeted mutagenesis in sea urchin embryos using TALENs.

    PubMed

    Hosoi, Sayaka; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi

    2014-01-01

    Genome editing with engineered nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) has been reported in various animals. We previously described ZFN-mediated targeted mutagenesis and insertion of reporter genes in sea urchin embryos. In this study, we demonstrate that TALENs can induce mutagenesis at specific genomic loci of sea urchin embryos. Injection of TALEN mRNAs targeting the HpEts transcription factor into fertilized eggs resulted in the impairment of skeletogenesis. Sequence analyses of the mutations showed that deletions and/or insertions occurred at the HpEts target site in the TALEN mRNAs-injected embryos. The results suggest that targeted gene disruption using TALENs is feasible in sea urchin embryos.

  9. External and internal tags for the green sea urchin.

    PubMed

    Duggan, R E.; Miller, R J.

    2001-03-30

    Two internal and three external tags were tested on the green sea urchin. Desirable qualities of a tag were high sea urchin survival, retention for at least a few months, detection on the sea floor by divers, identification of individuals, quick application, and low cost. These objectives were met by an external nylon screw tag visible to divers and two internal aluminum tags detectable with an underwater metal detector. Successful tags were inserted through a hole drilled in the test and were tested in the laboratory and field. All internal tags were retained for the full duration of the 4-month trial and did not retard growth or affect survival. Divers could identify individual urchins with nylon screw tags, but the tag retention rate was lower.

  10. Translational control genes in the sea urchin genome.

    PubMed

    Morales, Julia; Mulner-Lorillon, Odile; Cosson, Bertrand; Morin, Emmanuelle; Bellé, Robert; Bradham, Cynthia A; Beane, Wendy S; Cormier, Patrick

    2006-12-01

    Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies. In this paper, we focus on translation factors that have been shown or suggested to play crucial role in cell cycle and development of sea urchin embryos. Addressing the cap-binding translational control, three closely related eIF4E genes (class I, II, III) are present, whereas its repressor 4E-BP and its activator eIF4G are both encoded by one gene. Analysis of the class III eIF4E proteins in various phyla shows an echinoderm-specific amino acid substitution. Furthermore, an interaction site between eIF4G and poly(A)-binding protein is uncovered in the sea urchin eIF4G proteins and is conserved in metazoan evolution. In silico screening of the sea urchin genome has uncovered potential new regulators of eIF4E sharing the common eIF4E recognition motif. Taking together, these data provide new insights regarding the strong requirement of cap-dependent translation following fertilization. The genome analysis gives insights on the complexity of eEF1B structure and motifs of functional relevance, involved in the translational control of gene expression at the level of elongation. Finally, because deregulation of translation process can lead to diseases and tumor formation in humans, the sea urchin orthologs of human genes implicated in human diseases and signaling pathways regulating translation were also discussed.

  11. Different routes lead to apoptosis in unfertilized sea urchin eggs.

    PubMed

    Philippe, Laetitia; Tosca, Lucie; Zhang, Wen Ling; Piquemal, Marion; Ciapa, Brigitte

    2014-03-01

    Results obtained in various species, from mammals to invertebrates, show that arrest in the cell cycle of mature oocytes is due to a high ERK activity. Apoptosis is stimulated in these oocytes if fertilization does not occur. Our previous data suggest that apoptosis of unfertilized sea urchin eggs is the consequence of an aberrant short attempt of development that occurs if ERK is inactivated. They contradict those obtained in starfish, another echinoderm, where inactivation of ERK delays apoptosis of aging mature oocytes that are nevertheless arrested at G1 of the cell cycle as in the sea urchin. This suggests that the cell death pathway that can be activated in unfertilized eggs is not the same in sea urchin and in starfish. In the present study, we find that protein synthesis is necessary for the survival of unfertilized sea urchin eggs, contrary to starfish. We also compare the effects induced by Emetine, an inhibitor of protein synthesis, with those triggered by Staurosporine, a non specific inhibitor of protein kinase that is widely used to induce apoptosis in many types of cells. Our results indicate that the unfertilized sea urchin egg contain different mechanisms capable of leading to apoptosis and that rely or not on changes in ERK activity, acidity of intracellular organelles or intracellular Ca and pH. We discuss the validity of some methods to investigate cell death such as measurements of caspase activation with the fluorescent caspase indicator FITC-VAD-fmk or acidification of intracellular organelles, methods that may lead to erroneous conclusions at least in the sea urchin model.

  12. Fish predation on sea urchins on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Young, M. A. L.; Bellwood, D. R.

    2012-09-01

    Predators are important for regulating adult sea urchin densities. Here, we employ remote underwater video cameras to record diurnal predation on tethered sea urchins at Lizard Island on the Great Barrier Reef (GBR). We identified four fish predators of adult sea urchins ( Balistoides viridescens, Balistapus undulatus, Lethrinus atkinsoni and Choerodon schoenleinii). Predator activity appeared to be site-specific. Balistoides viridescens and B. undulatus (f: Balistidae) were the two most important predators of Echinometra mathaei with the former handling E. mathaei significantly faster (mean 0.7 min) than B. undulatus (5.2 min). Balistoides viridescens also successfully preyed on 70 % of detections, while C. schoenleinii, B. undulatus and L. atkinsoni preyed on just 33, 17 and <1 %, respectively. Additionally, B. viridescens were behaviourally dominant among predator species and were observed as aggressors in 30 encounters with B. undulatus and 8 encounters with L. atkinsoni. In only one encounter was B. viridescens the recipient of any aggression (from B. undulatus). In terms of relative vulnerability, of the three sea urchin species examined, E. mathaei were more vulnerable to predation than Diadema setosum or Echinothrix calamaris, with mean handling times of 1.2, 4.8 and 10.3 min, respectively. Balistoides viridescens and B. undulatus both appear to be able to play an important role as predators of sea urchins on the relatively intact coral reefs of Lizard Island. However, B. viridescens emerge as the most efficient predator in terms of handling speed and the proportion of detections preyed upon. They were also the behaviourally dominant predator. This preliminary study of the predators of sea urchins on the GBR highlights the potential significance of relatively scarce but functionally important species.

  13. Functional studies of regulatory genes in the sea urchin embryo.

    PubMed

    Cavalieri, Vincenzo; Di Bernardo, Maria; Spinelli, Giovanni

    2009-01-01

    Sea urchin embryos are characterized by an extremely simple mode of development, rapid cleavage, high transparency, and well-defined cell lineage. Although they are not suitable for genetic studies, other approaches are successfully used to unravel mechanisms and molecules involved in cell fate specification and morphogenesis. Microinjection is the elective method to study gene function in sea urchin embryos. It is used to deliver precise amounts of DNA, RNA, oligonucleotides, peptides, or antibodies into the eggs or even into blastomeres. Here we describe microinjection as it is currently applied in our laboratory and show how it has been used in gene perturbation analyses and dissection of cis-regulatory DNA elements.

  14. The quest for the sea urchin egg receptor for sperm.

    PubMed

    Vacquier, Victor D

    2012-08-31

    This review discusses identification, isolation and characterization of proteins mediating species-selective sperm-to-egg adhesion during sea urchin fertilization. Bindin is the only sea urchin sperm protein known to mediate species-selective sperm attachment to eggs. Two completely different egg surface proteins, 350-kDa and EBR1, have affinity for bindin and each one meets all the criteria to be a species-selective sperm receptor. Experiments suggest that sperm bindin recognizes both the sulfated O-linked oligosaccharides on the egg 350-kDa glycoprotein, and also the repeated protein sequence modules of EBR1.

  15. Global regime shift dynamics of catastrophic sea urchin overgrazing

    PubMed Central

    Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E.; Garrabou, J.; Cebrian, E.; Zabala, M.; Fujita, D.; Johnson, L. E.

    2015-01-01

    A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.

  16. Diversity of olfactomedin proteins in the sea urchin.

    PubMed

    Hillier, Brian J; Moy, Gary W; Vacquier, Victor D

    2007-06-01

    Olfactomedin (OLF) domain proteins maintain extracellular protein-protein interactions in diverse phyla. Only one OLF family member, amassin-1, has been described from the sea urchin Strongylocentrotus purpuratus, a basal invertebrate deuterostome. Amassin-1 mediates intercellular adhesion of coelomocytes (immunocytes). Here we describe the protein structural features of four additional OLF proteins, the total for the genome being five. Phylogenetically, four of these proteins (the amassins) form a subgroup among previously identified OLF proteins. The fifth OLF protein is within the colmedin subfamily and contains a type II transmembrane domain, collagen repeats, and an OLF domain. Sea urchin OLF proteins represent an intermediate diversification between protostomes and vertebrates. Transcripts of all five OLF family members are in coelomocytes and adult radial nerve tissue. Transcripts for some OLF proteins increase during late larval stages. Transcript levels for amassin-1 increase 1,000,000-fold, coinciding with formation of the adult urchin rudiment within the larval body.

  17. THE MEMBRANE CAPACITANCE OF THE SEA URCHIN EGG

    PubMed Central

    Rothschild, Lord

    1957-01-01

    1. The surface of the unfertilized sea urchin egg is folded and the folds are reversibly eliminated by exposing the egg to hypotonic sea water. If the plasma membrane is outside the layer of cortical granules, unfolding may explain why the membrane capacitance per unit area decreases (and does not increase) when a sea urchin egg is put into hypotonic sea water. 2. The degree of surface folding markedly increases after fertilization, which provides an explanation for the increase in membrane capacitance per unit area observed after fertilization. 3. The percentage reduction in membrane folding in fertilized eggs after immersion in hypotonic sea water is probably sufficient to explain the decrease in membrane capacitance per unit area observed in these conditions. PMID:13416315

  18. Sea urchin immune cells as sentinels of environmental stress.

    PubMed

    Pinsino, Annalisa; Matranga, Valeria

    2015-03-01

    Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing.

  19. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes.

  20. A computational model for BMP movement in sea urchin embryos.

    PubMed

    van Heijster, Peter; Hardway, Heather; Kaper, Tasso J; Bradham, Cynthia A

    2014-12-21

    Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction-diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly.

  1. Structures, structural hierarchy, and function in sea urchin spines

    NASA Astrophysics Data System (ADS)

    Stock, S. R.; Ebert, T. A.; Ignatiev, K.; De Carlo, F.

    2006-08-01

    Sea urchin spines protect the animal's body from predators and from the effect of high energy environments. The spines of urchins from different orders, families and genera have very different sizes, morphologies and microarchitectures, and the different designs of sea urchin spines reveal much about the design space available for functional biogenic calcite-based structures. The 3D microarchitecture of primary spines of a number of sea urchins was studied with synchrotron microCT and reconstructed with 5 μm or smaller voxels (volume elements), and similarities and differences were determined in order to better understand the design space. Hollow spines from different genera of the family Diadematidae, order Diadematoida, are one type of solution, but significant differences were observed within this phylogenic subset. Spines from members of order Echinoidea, family Toxopneustidae, employ a very different strategy, one that emphasizes interconnected trabeculae to a greater degree than do the diadematids. Numerical data for some 3D structural characteristics are presented, data that would be impractical to obtain by methods other than microCT.

  2. Consumers of sea urchins, Paracentrotus lividus and Arbacia lixula, in shallow Mediterranean rocky reefs

    NASA Astrophysics Data System (ADS)

    Guidetti, Paolo

    2004-04-01

    Underwater observations on fish and asteroid consumers (i.e. predators and scavengers) of sea urchins, Paracentrotus lividus and Arbacia lixula, were carried out at several locations in shallow Mediterranean rocky reefs. Observations conducted in the marine reserve of Torre Guaceto (Adriatic Sea) revealed that sparid fishes, Diplodus sargus and D. vulgaris, are the main fish predators of small (<1 cm in test diameter) and medium (1-4 cm) sea urchins, whereas the labrids Coris julis and Thalassoma pavo preyed only upon small sea urchins. Large D. sargus were able to prey upon small and medium, and occasionally large (>4 cm) sea urchins, whereas medium and small Diplodus preyed mainly upon small sea urchins. The number of sea urchins preyed upon by fishes was negatively related to sea urchin size for both species. P. lividus appeared to be subject to higher predation levels than A. lixula. The scavenger guild comprised 11 fish species, with D. sargus, D. vulgaris, Coris julis and Chromis chromis accounting for about 80% of scavenger fishes. Observations performed at several locations in the Mediterranean on the predatory asteroid Marthasterias glacialis revealed that only 3% of the detected individuals were preying upon sea urchins. Due to the importance of sea urchins for assemblage structure and functioning of Mediterranean rocky reef ecosystems, these results may have also important implications for management of fishing activities.

  3. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis).

    PubMed

    Bellas, Juan; Granmo, Ke; Beiras, Ricardo

    2005-11-01

    The effects of the new antifouling compound zinc pyrithione (Zpt) on the embryonic development of sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis) were investigated in laboratory toxicity tests. The median effective concentrations (EC50) were 7.7 nM for sea urchin embryos and 8 nM for mussel embryos. Toxic effects of Zpt on the larval growth of the sea urchin were detected at 0.5 nM. Predicted environmental concentrations of Zpt in pleasure craft harbours are higher than the predicted no effect concentrations for sea urchin and mussel embryos, indicating that Zpt may pose a threat to those species from exposure in the field.

  4. The sea urchin Paracentrotus lividus immunological response to chemical pollution exposure: The case of lindane.

    PubMed

    Stabili, Loredana; Pagliara, Patrizia

    2015-09-01

    In the marine environment organochlorine insecticides can be broadly detected in water, sediments, and biota. These pollutants may have major ecological consequences since they may affect marine organisms and endanger organismal growth, reproduction or survival. In this study we investigated the modification of some sea urchin immunological parameters in response to subchronic lindane (γ-HCH) exposure. Adult specimens of the sea urchin Paracentrotus lividus were exposed to two different concentrations (0.1 and 0.5 mg L(-1)) of lindane. After 24 and 48h of treatment, we examined the lindane influence on coelomocytes vitality and enumeration as well on some humoral parameters. Our results showed that the presence of the pesticide affected both cellular and humoral components of the immune system. In particular, P. lividus coelomocytes vitality did not change but a decrease of the total cell number and an increase of the red cells was recorded. Haemolytic and lysozyme-like activities as well as antibacterial activity on Vibrio alginolyticus of treated animals decreased. Sea urchin immunological competence modifications might represent a tool for monitoring disease susceptibility thus providing biological criteria for the implementation of water quality standards to protect marine organisms.

  5. Microgravity effects of sea urchin fertilization and development

    NASA Technical Reports Server (NTRS)

    Steffen, S.; Simerly, C.; Schatten, H.; Schatten, G.; Fiser, R.

    1992-01-01

    Gravity has been a pervasive influence on all living systems and there is convincing evidence to suggest that it alters fertilization and embryogenesis in several developmental systems. Notwithstanding the global importance of gravity on development, it has only been recently possible to begin to design experiments which might directly investigate the specific effects of this vector. The goal of this research program is to explore and understand the effects of gravity on fertilization and early development using sea urchins as a model system. Sea urchin development has several advantages for this project including the feasibility of maintaining and manipulating these cells during spaceflight, the high percentage of normal fertilization and early development, and the abundant knowledge about molecular, biochemical, and cellular events during embryogenesis which permits detailed insights into the mechanism by which gravity might interfere with development. Furthermore, skeletal calcium is deposited into the embryonic spicules within a day of fertilization permitting studies of the effects of gravity on bone calcium deposition.

  6. Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    PubMed Central

    Coma, Rafel; Serrano, Eduard; Linares, Cristina; Ribes, Marta; Díaz, David; Ballesteros, Enric

    2011-01-01

    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem. PMID:21789204

  7. A genomic view of the sea urchin nervous system.

    PubMed

    Burke, R D; Angerer, L M; Elphick, M R; Humphrey, G W; Yaguchi, S; Kiyama, T; Liang, S; Mu, X; Agca, C; Klein, W H; Brandhorst, B P; Rowe, M; Wilson, K; Churcher, A M; Taylor, J S; Chen, N; Murray, G; Wang, D; Mellott, D; Olinski, R; Hallböök, F; Thorndyke, M C

    2006-12-01

    The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory

  8. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  9. Using Morpholinos to Probe Gene Networks in Sea Urchin.

    PubMed

    Materna, Stefan C

    2017-01-01

    The control processes that underlie the progression of development can be summarized in maps of gene regulatory networks (GRNs). A critical step in their assembly is the systematic perturbation of network candidates. In sea urchins the most important method for interfering with expression in a gene-specific way is application of morpholino antisense oligonucleotides (MOs). MOs act by binding to their sequence complement in transcripts resulting in a block in translation or a change in splicing and thus result in a loss of function. Despite the tremendous success of this technology, recent comparisons to mutants generated by genome editing have led to renewed criticism and challenged its reliability. As with all methods based on sequence recognition, MOs are prone to off-target binding that may result in phenotypes that are erroneously ascribed to the loss of the intended target. However, the slow progression of development in sea urchins has enabled extremely detailed studies of gene activity in the embryo. This wealth of knowledge paired with the simplicity of the sea urchin embryo enables careful analysis of MO phenotypes through a variety of methods that do not rely on terminal phenotypes. This article summarizes the use of MOs in probing GRNs and the steps that should be taken to assure their specificity.

  10. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks.

    PubMed

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.

  11. Using sea urchin gametes and zygotes to investigate centrosome duplication.

    PubMed

    Sluder, Greenfield

    2016-01-01

    Centriole structure and function in the sea urchin zygote parallel those in mammalian somatic cells. Here, I briefly introduce the properties and attributes of the sea urchin system that make it an attractive platform for the study of centrosome and centriole duplication. These attributes apply to all echinoderms readily available from commercial suppliers: sea urchins, sand dollars, and starfish. I list some of the practical aspects of the system that make it a cost- and time-effective system for experimental work and then list properties that are a "tool kit" that can be used to conduct studies that would not be practical, or in some cases not possible, with mammalian somatic cells. Since centrioles organize and localize the pericentriolar material that nucleates the astral arrays of microtubules (Bobinnec et al. in J Cell Biol 143(6):1575-1589, 1998), the pattern of aster duplication over several cell cycles can be used as a reliable measure for centriole duplication (Sluder and Rieder in J Cell Biol 100(3):887-896, 1985). Descriptions of the methods my laboratory has used to handle and image echinoderm zygotes are reviewed in Sluder et al. (Methods Cell Biol 61:439-472, 1999). Also included is a bibliography of papers that describe additional methods.

  12. Skeletogenesis in sea urchin larvae under modified gravity conditions.

    PubMed

    Marthy, H J; Gasset, G; Tixador, R; Eche, B; Schatt, P; Dessommes, A; Marthy, U; Bacchieri, R

    1998-01-01

    From many points of view, skeletogenesis in sea urchins has been well described. Based on this scientific background and considering practical aspects of sea urchin development (i.e. availability of material, size of larvae, etc.), we wanted to know whether orderly skeletogenesis requires the presence of gravity. The objective has been approached by three experiments successfully performed under genuine microgravity conditions (in the STS-65 IML-2 mission of 1994; in the Photon-10 IBIS mission of 1995 and in the STS-76 S/MM-03 mission of 1996). Larvae of the sea urchin Sphaerechinus granularis were allowed to develop in microgravity conditions for several days from blastula stage onwards (onset of skeletogenesis). At the end of the missions, the recovered skeletal structures were studied with respect to their mineral composition, architecture and size. Live larvae were also recovered for post-flight culture. The results obtained clearly show that the process of mineralisation is independent of gravity: that is, the skeletogenic cells differentiate correctly in microgravity. However, abnormal skeleton architectures were encountered, particularly in the IML-2 mission, indicating that the process of positioning of the skeletogenic cells may be affected, directly or indirectly, by environmental factors, including gravity. Larvae exposed to microgravity from blastula to prism/early pluteus stage for about 2 weeks (IBIS mission), developed on the ground over the next 2 months into normal metamorphosing individuals.

  13. Juvenile skeletogenesis in anciently diverged sea urchin clades.

    PubMed

    Gao, Feng; Thompson, Jeffrey R; Petsios, Elizabeth; Erkenbrack, Eric; Moats, Rex A; Bottjer, David J; Davidson, Eric H

    2015-04-01

    Mechanistic understanding of evolutionary divergence in animal body plans devolves from analysis of those developmental processes that, in forms descendant from a common ancestor, are responsible for their morphological differences. The last common ancestor of the two extant subclasses of sea urchins, i.e., euechinoids and cidaroids, existed well before the Permian/Triassic extinction (252 mya). Subsequent evolutionary divergence of these clades offers in principle a rare opportunity to solve the developmental regulatory events underlying a defined evolutionary divergence process. Thus (i) there is an excellent and fairly dense (if yet incompletely analyzed) fossil record; (ii) cladistically confined features of the skeletal structures of modern euechinoid and cidaroid sea urchins are preserved in fossils of ancestral forms; (iii) euechinoids and cidaroids are among current laboratory model systems in molecular developmental biology (here Strongylocentrotus purpuratus [Sp] and Eucidaris tribuloides [Et]); (iv) skeletogenic specification in sea urchins is uncommonly well understood at the causal level of interactions of regulatory genes with one another, and with known skeletogenic effector genes, providing a ready arsenal of available molecular tools. Here we focus on differences in test and perignathic girdle skeletal morphology that distinguish all modern euechinoid from all modern cidaroid sea urchins. We demonstrate distinct canonical test and girdle morphologies in juveniles of both species by use of SEM and X-ray microtomography. Among the sharply distinct morphological features of these clades are the internal skeletal structures of the perignathic girdle to which attach homologous muscles utilized for retraction and protraction of Aristotles׳ lantern and its teeth. We demonstrate that these structures develop de novo between one and four weeks after metamorphosis. In order to study the underlying developmental processes, a method of section whole mount in

  14. PHYSICAL PROPERTIES OF GAMETES IN THREE SEA URCHIN SPECIES

    PubMed

    Thomas

    1994-09-01

    Physical properties (density in kg m-3, viscosity, sinking rates and dispersion rate) of the gametes and associated spawned materials were measured for three species of sea urchin, Tripneustes gratilla, Echinometra mathaei and Colobocentrotus atratus, from habitats that differ in wave exposure. The gametes of all three species are negatively buoyant, highly viscous and exhibit shear-thinning (a decrease in viscosity with increasing shear rate). Female gametes are more viscous than male gametes, and the viscosity of female gametes differs among the three species. The viscosity of female gametes is highest for C. atratus, the species from habitats most exposed to wave action. Within the species T. gratilla, viscosity of female gametes is higher in habitats exposed to wave action than in more protected habitats. Evidence reported in this paper suggests that the shear-thinning of gametes may provide a performance advantage for these sea urchins. High viscosity of gametes at low shear rates may decrease gamete dispersal upon release and, under certain flow conditions, allow gametes to form strings and clumps on the surface of the urchin. Depending upon the morphology of the surface, these clumps or strings may be retained and fertilization may occur within these clumps or strings. Conversely, low viscosity of gametes at high shear rates decreases the power required to extrude gametes through the gonoduct during spawning.

  15. Egypt and Red Sea

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A panaramic view of eastern Egypt, The Red Sea and Saudi Arabia beyond (24.0N, 33.0E). In this desert country, where water is life, the high Aswan Dam and the impounded waters of the Nile River in the foreground assure water availability into the next century. The Red Sea beyond, part of the Suez Canal seaway, serves as a commercial link to the world and separates Egypt from Saudi Arabia.

  16. Red sea drillings.

    PubMed

    Ross, D A; Whitmarsh, R B; Ali, S A; Boudreaux, J E; Coleman, R; Fleisher, R L; Girdler, R; Manheim, F; Matter, A; Nigrini, C; Stoffers, P; Supko, P R

    1973-01-26

    Recent drilling in the Red Sea has shown that much of the basin is underlain by evaporites of a similar age to that of evaporites found in the Mediterranean Sea. These evaporites and their structural positions indicate that other brine areas are present-and, indeed, several others have been discovered.

  17. Using molecular prey detection to quantify rock lobster predation on barrens-forming sea urchins.

    PubMed

    Redd, K S; Ling, S D; Frusher, S D; Jarman, S; Johnson, C R

    2014-08-01

    We apply qPCR molecular techniques to detect in situ rates of consumption of sea urchins (Centrostephanus rodgersii and Heliocidaris erythrogramma) by rock lobsters (Jasus edwardsii). A non-lethal method was used to source faecal samples from trap-caught lobsters over 2 years within two no-take research reserves. There was high variability in the proportion of lobsters with faeces positive for sea urchin DNA across years and seasons dependent on lobster size. Independent estimates of lobster predation rate on sea urchins (determined from observed declines in urchin abundances in the reserves relative to control sites) suggest that rates of molecular prey detection generally overestimated predation rates. Also, small lobsters known to be incapable of directly predating emergent sea urchins showed relatively high rates of positive tests. These results indicate that some lobsters ingest non-predatory sources of sea urchin DNA, which may include (i) ingestion of C. rodgersii DNA from the benthos (urchin DNA is detectable in sediments and some lobsters yield urchin DNA in faeces when fed urchin faeces or sediment); (ii) scavenging; and/or predation by rock lobsters on small pre-emergent urchins that live cryptically within the reef matrix (although this possibility could not be assessed). While the DNA-based approach and direct monitoring of urchin populations both indicate high predation rates of large lobsters on emergent urchins, the study shows that in some cases absolute predation rates and inferences of predator-prey interactions cannot be reliably estimated from molecular signals obtained from the faeces of benthic predators. At a broad semi-quantitative level, the approach is useful to identify relative magnitudes of predation and temporal and spatial variability in predation.

  18. Tailored order: the mesocrystalline nature of sea urchin teeth.

    PubMed

    Goetz, Andreas J; Griesshaber, E; Abel, R; Fehr, Th; Ruthensteiner, B; Schmahl, W W

    2014-09-01

    We investigated the pattern of crystal co-orientation at different length scales, together with variations in chemical composition and nanomechanical properties in the teeth of the modern sea urchin Paracentrotus lividus with electron backscatter diffraction (EBSD), electron probe microanalysis, energy-dispersive X-ray spectroscopy and nanoindentation testing. Modern sea urchin teeth are Mg-dominated calcite composite materials. They are distinctly harder than inorganically precipitated calcite. Some parts exceed even the hardness of dolomite. The teeth show a structuring of their mechanical properties that can be correlated to variations in major element chemical composition, such that their hardness is positively correlated to their magnesium contents. Mg/Ca ratio in Paracentrotus lividus varies between 10 and 26mol.%. Nanohardness of the tooth scatters between 3.5 and >8GPa compared to values of 3.0±0.2, 7.3±0.1 and 9.2±0.9GPa measured on the (104) planes of inorganic calcite, dolomite and magnesite, respectively. High-resolution EBSD shows that major structural units and subunits of the tooth of Paracentrotus lividus are tilted to each other by ∼3-5° and 1-2°, respectively. This indicates that the tooth is not a single crystal. With EBSD we can show that the tooth of the sea urchin Paracentrotus lividus is a hierarchically assembled biological mesocrystal with a mosaic texture. In comparison to the misorientation spread of 0.5° of calcite grown from solution, misorientation in the tooth varies between 2° and 4°. Thus, the self-sharpening feature of the tooth is enabled by a close interplay of its highly evolved micro- to nanostructure, structural unit size variations with a varying degree of crystal orientation, chemical structuring of the mineral component and a gradation of incorporated organic polymers.

  19. Silver nanoparticle toxicity in sea urchin Paracentrotus lividus.

    PubMed

    Siller, Lidija; Lemloh, Marie-Louise; Piticharoenphun, Sunthon; Mendis, Budhika G; Horrocks, Benjamin R; Brümmer, Franz; Medaković, Davorin

    2013-07-01

    Silver nanoparticles (AgNPS) are an important model system for studying potential environmental risks posed by the use of nanomaterials. So far there is no consensus as to whether toxicity is due to AgNPs themselves or Ag(+) ions leaching from their surfaces. In sea urchin Paracentrotus lividus, AgNPs cause dose dependent developmental defects such as delayed development, bodily asymmetry and shortened or irregular arms, as well as behavioural changes, particularly in swimming patterns, at concentration ∼0.3 mg/L AgNPs. It has been observed that AgNPs are more toxic than their equivalent Ag(+) ion dose.

  20. Regeneration of cilia in heavily irradiated sea urchin embryos

    SciTech Connect

    Rustad, R.C.

    1981-12-01

    Cilia were removed from blastulae, gastrulae, and plutei of the sea urchins Arbacia punctulata and Lytechinus variegatus by shaking the embryos in hypertonic media. Exposure to 50 krad (and in some experiments 100 krad) of ..gamma.. radiation either before or after deciliation had no effect on the time of appearance of regenerating cilia. There were no visually obvious differences in the rate of growth of the cilia in control and irradiated embryos. The cilia commenced beating at the same time, but the initial beating sometimes seemed less vigorous following irradiation. The data support the hypothesis that radiation has no major effect on the assembly from mature basal bodies of the microtubules of cilia.

  1. Response to heat shock of different sea urchin species.

    PubMed

    Roccheri, M C; Sconzo, G; La Rosa, M; Oliva, D; Abrignani, A; Giudice, G

    1986-03-01

    It is demonstrated that sea urchin embryos of the species Sphaerechinus granularis are able to respond to heat shock by producing heat shock proteins at the same stage as embryos of Paracentrotus lividus, i.e. after hatching. Arbacia lixula embryos are able to synthesize heat shock proteins already at the stage of 64-128 blastomeres. Embryonic survival is observed if the embryos are heated at the stages at which they can synthesize the heat shock proteins. The inhibition of the bulk protein synthesis after heating at 31 degrees C is never less than 50%.

  2. The genome of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Sodergren, Erica; Weinstock, George M; Davidson, Eric H; Cameron, R Andrew; Gibbs, Richard A; Angerer, Robert C; Angerer, Lynne M; Arnone, Maria Ina; Burgess, David R; Burke, Robert D; Coffman, James A; Dean, Michael; Elphick, Maurice R; Ettensohn, Charles A; Foltz, Kathy R; Hamdoun, Amro; Hynes, Richard O; Klein, William H; Marzluff, William; McClay, David R; Morris, Robert L; Mushegian, Arcady; Rast, Jonathan P; Smith, L Courtney; Thorndyke, Michael C; Vacquier, Victor D; Wessel, Gary M; Wray, Greg; Zhang, Lan; Elsik, Christine G; Ermolaeva, Olga; Hlavina, Wratko; Hofmann, Gretchen; Kitts, Paul; Landrum, Melissa J; Mackey, Aaron J; Maglott, Donna; Panopoulou, Georgia; Poustka, Albert J; Pruitt, Kim; Sapojnikov, Victor; Song, Xingzhi; Souvorov, Alexandre; Solovyev, Victor; Wei, Zheng; Whittaker, Charles A; Worley, Kim; Durbin, K James; Shen, Yufeng; Fedrigo, Olivier; Garfield, David; Haygood, Ralph; Primus, Alexander; Satija, Rahul; Severson, Tonya; Gonzalez-Garay, Manuel L; Jackson, Andrew R; Milosavljevic, Aleksandar; Tong, Mark; Killian, Christopher E; Livingston, Brian T; Wilt, Fred H; Adams, Nikki; Bellé, Robert; Carbonneau, Seth; Cheung, Rocky; Cormier, Patrick; Cosson, Bertrand; Croce, Jenifer; Fernandez-Guerra, Antonio; Genevière, Anne-Marie; Goel, Manisha; Kelkar, Hemant; Morales, Julia; Mulner-Lorillon, Odile; Robertson, Anthony J; Goldstone, Jared V; Cole, Bryan; Epel, David; Gold, Bert; Hahn, Mark E; Howard-Ashby, Meredith; Scally, Mark; Stegeman, John J; Allgood, Erin L; Cool, Jonah; Judkins, Kyle M; McCafferty, Shawn S; Musante, Ashlan M; Obar, Robert A; Rawson, Amanda P; Rossetti, Blair J; Gibbons, Ian R; Hoffman, Matthew P; Leone, Andrew; Istrail, Sorin; Materna, Stefan C; Samanta, Manoj P; Stolc, Viktor; Tongprasit, Waraporn; Tu, Qiang; Bergeron, Karl-Frederik; Brandhorst, Bruce P; Whittle, James; Berney, Kevin; Bottjer, David J; Calestani, Cristina; Peterson, Kevin; Chow, Elly; Yuan, Qiu Autumn; Elhaik, Eran; Graur, Dan; Reese, Justin T; Bosdet, Ian; Heesun, Shin; Marra, Marco A; Schein, Jacqueline; Anderson, Michele K; Brockton, Virginia; Buckley, Katherine M; Cohen, Avis H; Fugmann, Sebastian D; Hibino, Taku; Loza-Coll, Mariano; Majeske, Audrey J; Messier, Cynthia; Nair, Sham V; Pancer, Zeev; Terwilliger, David P; Agca, Cavit; Arboleda, Enrique; Chen, Nansheng; Churcher, Allison M; Hallböök, F; Humphrey, Glen W; Idris, Mohammed M; Kiyama, Takae; Liang, Shuguang; Mellott, Dan; Mu, Xiuqian; Murray, Greg; Olinski, Robert P; Raible, Florian; Rowe, Matthew; Taylor, John S; Tessmar-Raible, Kristin; Wang, D; Wilson, Karen H; Yaguchi, Shunsuke; Gaasterland, Terry; Galindo, Blanca E; Gunaratne, Herath J; Juliano, Celina; Kinukawa, Masashi; Moy, Gary W; Neill, Anna T; Nomura, Mamoru; Raisch, Michael; Reade, Anna; Roux, Michelle M; Song, Jia L; Su, Yi-Hsien; Townley, Ian K; Voronina, Ekaterina; Wong, Julian L; Amore, Gabriele; Branno, Margherita; Brown, Euan R; Cavalieri, Vincenzo; Duboc, Véronique; Duloquin, Louise; Flytzanis, Constantin; Gache, Christian; Lapraz, François; Lepage, Thierry; Locascio, Annamaria; Martinez, Pedro; Matassi, Giorgio; Matranga, Valeria; Range, Ryan; Rizzo, Francesca; Röttinger, Eric; Beane, Wendy; Bradham, Cynthia; Byrum, Christine; Glenn, Tom; Hussain, Sofia; Manning, Gerard; Miranda, Esther; Thomason, Rebecca; Walton, Katherine; Wikramanayke, Athula; Wu, Shu-Yu; Xu, Ronghui; Brown, C Titus; Chen, Lili; Gray, Rachel F; Lee, Pei Yun; Nam, Jongmin; Oliveri, Paola; Smith, Joel; Muzny, Donna; Bell, Stephanie; Chacko, Joseph; Cree, Andrew; Curry, Stacey; Davis, Clay; Dinh, Huyen; Dugan-Rocha, Shannon; Fowler, Jerry; Gill, Rachel; Hamilton, Cerrissa; Hernandez, Judith; Hines, Sandra; Hume, Jennifer; Jackson, Laronda; Jolivet, Angela; Kovar, Christie; Lee, Sandra; Lewis, Lora; Miner, George; Morgan, Margaret; Nazareth, Lynne V; Okwuonu, Geoffrey; Parker, David; Pu, Ling-Ling; Thorn, Rachel; Wright, Rita

    2006-11-10

    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.

  3. Low densities of sea urchins influence the structure of algal assemblages in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Palacín, Cruz; Giribet, Gonzalo; Carner, Susanna; Dantart, Luis; Turon, Xavier

    1998-06-01

    Numerous studies of interactions between urchins and algae in temperate areas have shown an important structuring effect of sea urchin populations. These studies focused almost wholly on the effect of high urchin densities on laminarian forests. In contrast, algal communities below 5-6 m depth in the northwestern Mediterranean are characterised by low sea urchin densities (<5 ind m -2) and the absence of laminarian forests. No previous research has addressed sea urchin/algal interactions in this type of community. To determine the effect of the most abundant echinoid species, Paracentrotus lividus, on well-established algal communities in this area, we performed a removal-reintroduction experiment in rocky patches located between 13 and 16 m depth in the northwestern Mediterranean, where sea urchin densities ranged between 0.9 and 3.4 ind m -2. After 6 months, the cover of non-crustose algae was significantly higher in the plots from which sea urchins had been removed than in control plots (84 vs 67% cover). These removal plots reverted to their original state upon reintroduction of sea urchins. The non-crustose algae consisted of turfing and frondose forms, with the former representing some 70% of the non-crustose algal cover. Change in the cover of turfing algae was responsible for the significant increase in algal development in the sea urchin removal plots. The response of frondose algae to the treatment varied between algal species. It is concluded that grazing by P. lividus exerts a significant effect on habitat structure, even in communities with low sea urchin densities, such as those found in vast areas of the Mediterranean sublittoral.

  4. Macroalgal assemblage type affects predation pressure on sea urchins by altering adhesion strength.

    PubMed

    Gianguzza, P; Bonaviri, C; Milisenda, G; Barcellona, A; Agnetta, D; Vega Fernández, T; Badalamenti, F

    2010-07-01

    In the Mediterranean, sea breams are the most effective Paracentrotus lividus and Arbacia lixula predators. Generally, seabreams dislodge adult urchins from the rocky substrate, turn them upside down and crush their tests. Sea urchins may respond to fish attacks clinging tenaciously to the substratum. This study is the first attempt to investigate sea urchin adhesion strength in two alternative algal assemblages of the rocky infralittoral and valuated its possible implication for fish predation. We hypothesized that (1) sea urchin adhesion strength is higher in rocky shores dominated by encrusting macroalgae (ECA) than in erected macroalgae (EMA); (2) predation rates upon sea urchins are lower in ECA than in EMA; and (3) predation rate on A. lixula is lower than that on P. lividus. We observed that attachment tenacity of both sea urchins was higher in ECA than EMA and that A. lixula exhibited a stronger attachment tenacity than P. lividus in ECA. Results supported the importance of adhesion strength, as efficient defence against sea bream attacks, only for, P. lividus. A. lixula adhesion strength does not seem to be an important factor in avoiding fish predation, possibly because of the low palatability of the species. These patterns may deserve particular interest in understanding the processes responsible for the maintenance of sea urchin barrens that are dominated by ECA assemblage.

  5. Characterization of the lipid fraction of wild sea urchin from the Sardinian Sea (western Mediterranean).

    PubMed

    Angioni, Alberto; Addis, Pierantonio

    2014-02-01

    The fatty acid (FA) composition of Spatangus purpureus, Echinus melo, Sphaerechinus granularis, and Paracentrotus lividus, sea urchins, has been studied. Sea urchins were collected at different depth along Sardinia coast in the Mediterranean sea, and their gonad was measured, separated, and analyzed for FA composition by gas chromatography-mass spectrometry. A total of 53 FAs were detected, 16 saturated (SFA), 10 monounsaturated (MUFA), 9 polyunsaturated (PUFA), and 13 highly unsaturated (HUFA). Moreover, 5 furan FAs (FFAs) were revealed for the first time in sea urchin. The HUFA and PUFA classes were the most represented accounting for almost 80% of total FAs. Among these compounds, C20:4 n6 (19.64, 20.52, 23.37, and 8.48 mg/g, respectively) and C22:6 n3 (19.68, 20.05, 3.83, and 1.78 mg/g, respectively) were the most abundant. The results of principal component analysis indicated that the sea urchin samples could be clearly discriminated with respect to their FAs composition.

  6. Phase-Shift Dynamics of Sea Urchin Overgrazing on Nutrified Reefs.

    PubMed

    Kriegisch, Nina; Reeves, Simon; Johnson, Craig R; Ling, Scott D

    2016-01-01

    Shifts from productive kelp beds to impoverished sea urchin barrens occur globally and represent a wholesale change to the ecology of sub-tidal temperate reefs. Although the theory of shifts between alternative stable states is well advanced, there are few field studies detailing the dynamics of these kinds of transitions. In this study, sea urchin herbivory (a 'top-down' driver of ecosystems) was manipulated over 12 months to estimate (1) the sea urchin density at which kelp beds collapse to sea urchin barrens, and (2) the minimum sea urchin density required to maintain urchin barrens on experimental reefs in the urbanised Port Phillip Bay, Australia. In parallel, the role of one of the 'bottom-up' drivers of ecosystem structure was examined by (3) manipulating local nutrient levels and thus attempting to alter primary production on the experimental reefs. It was found that densities of 8 or more urchins m-2 (≥ 427 g m-2 biomass) lead to complete overgrazing of kelp beds while kelp bed recovery occurred when densities were reduced to ≤ 4 urchins m-2 (≤ 213 g m-2 biomass). This experiment provided further insight into the dynamics of transition between urchin barrens and kelp beds by exploring possible tipping-points which in this system can be found between 4 and 8 urchins m-2 (213 and 427 g m-2 respectively). Local enhancement of nutrient loading did not change the urchin density required for overgrazing or kelp bed recovery, as algal growth was not affected by nutrient enhancement.

  7. Phase-Shift Dynamics of Sea Urchin Overgrazing on Nutrified Reefs

    PubMed Central

    Kriegisch, Nina; Reeves, Simon; Johnson, Craig R.; Ling, Scott D.

    2016-01-01

    Shifts from productive kelp beds to impoverished sea urchin barrens occur globally and represent a wholesale change to the ecology of sub-tidal temperate reefs. Although the theory of shifts between alternative stable states is well advanced, there are few field studies detailing the dynamics of these kinds of transitions. In this study, sea urchin herbivory (a ‘top-down’ driver of ecosystems) was manipulated over 12 months to estimate (1) the sea urchin density at which kelp beds collapse to sea urchin barrens, and (2) the minimum sea urchin density required to maintain urchin barrens on experimental reefs in the urbanised Port Phillip Bay, Australia. In parallel, the role of one of the ‘bottom-up’ drivers of ecosystem structure was examined by (3) manipulating local nutrient levels and thus attempting to alter primary production on the experimental reefs. It was found that densities of 8 or more urchins m-2 (≥ 427 g m-2 biomass) lead to complete overgrazing of kelp beds while kelp bed recovery occurred when densities were reduced to ≤ 4 urchins m-2 (≤ 213 g m-2 biomass). This experiment provided further insight into the dynamics of transition between urchin barrens and kelp beds by exploring possible tipping-points which in this system can be found between 4 and 8 urchins m-2 (213 and 427 g m-2 respectively). Local enhancement of nutrient loading did not change the urchin density required for overgrazing or kelp bed recovery, as algal growth was not affected by nutrient enhancement. PMID:28030596

  8. Toxicity and DNA methylation changes induced by perfluorooctane sulfonate (PFOS) in sea urchin Glyptocidaris crenularis.

    PubMed

    Ding, Guanghui; Wang, Luyan; Zhang, Jing; Wei, Yuanyuan; Wei, Lie; Li, Yang; Shao, Mihua; Xiong, Deqi

    2015-06-01

    Perfluorooctane sulfonate (PFOS) is an ubiquitous persistent organic pollutant, which can be bioaccumulated and cause adverse effects on organisms. However, there is very limited information about the toxic effects of PFOS to marine organisms and its mechanisms. Therefore, in the present study, adult sea urchins Glyptocidaris crenularis were exposed to PFOS for 21 d, followed by a 7-d depuration period, in order to investigate the toxicity of PFOS to sea urchin and its potential epigenetic mechanisms. Sea urchins dropped spines, and lowered down the motor ability and feeding ability after the PFOS exposure. Superoxide dismutase activities in supernatant of coelomic fluid of sea urchin increased firstly and then dropped down, while the change of the catalase activity took an opposite trend during the exposure period. They both approached to the corresponding activity of the control after the depuration period. The DNA methylation polymorphism, methylation rate and demethylation rate in sea urchin gonad all increased following the prolonged exposure time, and then decreased after the depuration period. The demethylation rates were lower than the corresponding methylation rates, therefore methylation events were dominant during the whole experimental period. This might suggest that sea urchin have strong self-protection mechanisms and can survive from the PFOS exposure presented in this study. Further efforts are needed to more precisely investigate the DNA methylation effects of PFOS and the self-protection mechanism of sea urchin.

  9. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.

    PubMed

    Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T

    2017-03-01

    It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.

  10. Dicer is required for the normal development of sea urchin, Hemicentrotus pulcherrimus.

    PubMed

    Okamitsu, Yuka; Yamamoto, Takashi; Fujii, Takayoshi; Ochiai, Hiroshi; Sakamoto, Naoaki

    2010-06-01

    MicroRNAs are single-stranded RNA molecules with a length of 19-25 nucleotides, which play roles in various biological phenomena, including development, differentiation, apoptosis, by regulating target gene expression. Although the presence of microRNA molecules in sea urchin and the expression of genes involved in microRNA biogenesis during sea urchin development have been reported recently, the function of microRNA in sea urchin development remains to be elucidated. In this study, to understand the function of microRNA in the early development of sea urchin, we focused on Dicer, an essential enzyme for biosynthesis of mature microRNA. We determined the nucleotide sequence of cDNA for a Dicer homolog in the sea urchin, Hemicentrotus pulcherrimus, HpDcr, and found that functional domains of Dicer proteins are conserved in HpDcr. Analyses of its pattern of expression showed that HpDcr mRNA is expressed in embryos at all developmental stages analyzed, and seems to distribute asymmetrically at the morula and later stages. Knockdown of HpDcr resulted in anomalous morphogenesis, such as impairment of gastrulation and skeletogenesis at the mesenchyme blastula stage and later stages, and alteration of mRNA levels of cell type-specific genes. Thus, HpDcr plays important roles in morphogenesis in sea urchin embryos, suggesting that miRNA could be involved in the early development of sea urchin by regulating target gene expression.

  11. Chronic toxicity of silver to the sea urchin (Arbacia punctulata).

    PubMed

    Ward, Timothy J; Kramer, James R; Boeri, Robert L; Gorsuch, Joseph W

    2006-06-01

    The chronic toxicity of silver to the sea urchin (Arbacia punctulata) was determined in 30 per thousand salinity seawater during a three-part study: A fertilization test (1-h sperm exposure), a 48-h embryo test, and a 30-d adult test. Combined data from the three tests resulted in a lowest-observed-effect concentration of 19 microg/L, a no-observed-effect concentration of 8.6 microg/L, and a maximum acceptable toxicant concentration of 13 microg/L, based on measured concentrations of dissolved silver. The 96-h median effective concentration was 40 microg/L, and the acute to chronic toxicity ratio was 3.1. During the tests, measured concentrations of free ionic silver (Ag+) were only 0.0027 to 0.0046% of dissolved silver concentrations, as predicted by ion-speciation theory. Some measured Ag+ concentrations were lower than predicted, indicating the presence of other ligands in the seawater test media. These strong sulfide ligands were exuded by the exposed sea urchins into the seawater (where Ag-sulfide complexes formed) in amounts that increased in direct proportion to the silver concentration during the toxicity test. This suggests a toxicity-defense mechanism that functioned by modifying the chemistry of the surrounding external medium.

  12. Isolating specific embryonic cells of the sea urchin by FACS.

    PubMed

    Juliano, Celina; Swartz, S Zachary; Wessel, Gary

    2014-01-01

    Isolating cells based on specific gene expression enables a focused biochemical and molecular analysis. While cultured cells and hematopoietic cells, for example, are routinely isolated by fluorescence activated cell sorting (FACS), early embryonic cells are a relatively untapped source for FACS applications often because the embryos of many animals are quite limiting. Furthermore, many applications require genetic model organisms in which cells can be labeled by fluorescent transgenes, or antibodies against cell surface antigens. Here we define conditions in the sea urchin embryo for isolation of embryonic cells based on expression of specific proteins. We use the sea urchin embryo for which a nearly unlimited supply of embryonic cells is available and demonstrate the conditions for separation of the embryo into single cells, fixation of the cells for antibody penetration into the cells, and conditions for FACS of a rare cell type in the embryo. This protocol may be adapted for analysis of mRNA, chromatin, protein, or carbohydrates and depends only on the probe availability for the cell of interest. We anticipate that this protocol will be broadly applicable to embryos of other species.

  13. SYNTHESIS AND STORAGE OF MICROTUBULE PROTEINS BY SEA URCHIN EMBRYOS

    PubMed Central

    Raff, Rudolf A.; Greenhouse, Gerald; Gross, Kenneth W.; Gross, Paul R.

    1971-01-01

    Studies employing colchicine binding, precipitation with vinblastine sulfate, and acrylamide gel electrophoresis confirm earlier proposals that Arbacia punctulata and Lytechinus pictus eggs and embryos contain a store of microtubule proteins. Treatment of 150,000 g supernatants from sea urchin homogenates with vinblastine sulfate precipitates about 5% of the total soluble protein, and 75% of the colchicine-binding activity. Electrophoretic examination of the precipitate reveals two very prominent bands. These have migration rates identical to those of the A and B microtubule proteins of cilia. These proteins can be made radioactive at the 16 cell stage and at hatching by pulse labeling with tritiated amino acids. By labeling for 1 hr with leucine-3H in early cleavage, then culturing embryos in the presence of unlabeled leucine, removal of newly synthesized microtubule proteins from the soluble pool can be demonstrated. Incorporation of labeled amino acids into microtubule proteins is not affected by culturing embryos continuously in 20 µg/ml of actinomycin D. Microtubule proteins appear, therefore, to be synthesized on "maternal" messenger RNA. This provides the first protein encoded by stored or "masked" mRNA in sea urchin embryos to be identified. PMID:5165266

  14. Neurogenic gene regulatory pathways in the sea urchin embryo.

    PubMed

    Wei, Zheng; Angerer, Lynne M; Angerer, Robert C

    2016-01-15

    During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo.

  15. Sea urchin sperm antigens mediating the acrosome reaction

    SciTech Connect

    Trimmer, J.S.

    1987-01-01

    The study of sea urchin sperm antigens mediating the acrosome reactions (AR) has been undertaken. Monoclonal antibodies (mAbs) have been isolated reacting with a number of sperm surface antigens. These mAbs have been used in functional assays to attempt to infer the roles of these proteins in the induction of the AR. These mAbs have also been used to isolate protein for biochemical characterization and reconstitution studies. mAbs reacting with a 210 kD protein of the sea urchin sperm plasma membrane have been used to identify this protein as playing a role in the regulation of ion fluxes during the induction of the AR. mAbs reacting with certain extracellular regions inhibit the induction of: the AR, the long duration {sup 45}Ca{sup 2+} uptake into the mitochondrion, and H{sup +} efflux. Addition of these same mAbs, however, induces an increase in sperm (Ca{sup 2+}){sub i} to levels much higher than those induced by FSG, as monitored by the fluorescent Ca{sup 2+} indicators fura 2 and indo 1. This (Ca{sup 2+}){sub i} increase occurs without an increase in pH{sub i}, and thus allows for the first time the analysis of the effects of increasing sperm (Ca{sup 2+}){sub i} ion the absence of increased pH{sub i}.

  16. Evaluation of mysids and sea urchins exposed to saxitoxins.

    PubMed

    Bernardi Bif, Mariana; Yunes, João Sarkis; Resgalla, Charrid

    2013-11-01

    Saxitoxins are neurotoxins produced by dinoflagellates and cyanobacteria that form toxic blooms in waters. The impact of saxitoxins to the most vulnerable taxa and environment are not well understood. The experimental model was based on the use of toxic cell extracts containing saxitoxins. This extract was utilized for acute and chronic tests with Mysidopsis juniae. Chronic tests were also done with Lytechinus variegatus and Arbacia lixula larvae. Acute test with mysids had a LC₅₀=2.34 μg/L. The chronic test with sea urchins showed morphological abnormalities resulting in malformation of larval appendices at low concentrations of the toxin (EC₅₀=2.96 μg/L for L. variegatus and 2.06 μg/L for A. lixula). Although saxitoxins are considered neurotoxins, both species of sea urchins showed symptoms not related to nerve cells. A. lixula was more sensitive than L. variegatus, proving that its sensitivity should be taken in consideration to be another option to toxicological tests.

  17. Proteomic responses of sea urchin embryos to stressful ultraviolet radiation.

    PubMed

    Adams, N L; Campanale, J P; Foltz, K R

    2012-11-01

    Solar ultraviolet radiation (UVR, 290-400 nm) penetrates into seawater and can harm shallow-dwelling and planktonic marine organisms. Studies dating back to the 1930s revealed that echinoids, especially sea urchin embryos, are powerful models for deciphering the effects of UVR on embryonic development and how embryos defend themselves against UV-induced damage. In addition to providing a large number of synchronously developing embryos amenable to cellular, biochemical, molecular, and single-cell analyses, the purple sea urchin, Strongylocentrotus purpuratus, also offers an annotated genome. Together, these aspects allow for the in-depth study of molecular and biochemical signatures of UVR stress. Here, we review the effects of UVR on embryonic development, focusing on the early-cleavage stages, and begin to integrate data regarding single-protein responses with comprehensive proteomic assessments. Proteomic studies reveal changes in levels of post-translational modifications to proteins that respond to UVR, and identify proteins that can then be interrogated as putative targets or components of stress-response pathways. These responsive proteins are distributed among systems upon which targeted studies can now begin to be mapped. Post-transcriptional and translational controls may provide early embryos with a rapid, fine-tuned response to stress during early stages, especially during pre-blastula stages that rely primarily on maternally derived defenses rather than on responses through zygotic gene transcription.

  18. Neurogenic gene regulatory pathways in the sea urchin embryo

    PubMed Central

    Wei, Zheng; Angerer, Lynne M.; Angerer, Robert C.

    2016-01-01

    During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo. PMID:26657764

  19. Iodine accumulation in sea urchin larvae is dependent on peroxide.

    PubMed

    Miller, Ashley E M; Heyland, Andreas

    2013-03-01

    Iodine has many important biological functions and its concentrations vary with the environment. Recent research has provided novel insights into iodine uptake mechanisms in marine bacteria and kelp through hydrogen peroxide-dependent diffusion (PDD). This mechanism is distinct from sodium-dependent mechanisms known from vertebrates. In vertebrates, iodine accumulates in the thyroid gland by the action of the apical iodide transporter (AIT) and the sodium/iodide symporter (NIS). Neither of these proteins has, thus far, been identified outside of the chordates, and PDD (as an iodine uptake mechanism) has never been studied in animals. Using (125)I as a marker for total iodine influx, we tested iodine uptake via sodium-dependent transport versus PDD in embryos and larvae of the sea urchin Strongylocentrotus purpuratus. We found that iodine uptake in S. purpuratus is largely independent of NIS/AIT. Instead, we found that uptake is dependent on the presence and production of hydrogen peroxide, indicating that sea urchin larvae use PDD as a mechanism for iodine acquisition. Our data, for the first time, provide conclusive evidence for this mechanism in an animal. Furthermore, our data provide preliminary evidence that sodium-dependent iodine uptake via active transporter proteins is a synapomorphy of vertebrates.

  20. Phylogeny and development of marine model species: strongylocentrotid sea urchins.

    PubMed

    Biermann, Christiane H; Kessing, Bailey D; Palumbi, Stephen R

    2003-01-01

    The phylogenetic relationships of ten strongy-locentrotid sea urchin species were determined using mitochondrial DNA sequences. This phylogeny provides a backdrop for the evolutionary history of one of the most studied groups of sea urchins. Our phylogeny indicates that a major revision of this group is in order. All else remaining unchanged, it supports the inclusion of three additional species into the genus Strongylocentrotus (Hemicentrotus pulcherrimus, Allocentrotus fragilis, and Pseudocentrotus depressus). All were once thought to be closely related to this genus, but subsequent revisions separated them into other taxonomic groupings. Most strongylocentrotid species are the result of a recent burst of speciation in the North Pacific that resulted in an ecological diversification. There has been a steady reduction in the complexity of larval skeletons during the expansion of this group. Gamete attributes like egg size, on the other hand, are not correlated with phylogenetic position. In addition, our results indicate that the rate of replacement substitutions is highly variable among phylogenetic lineages. The branches leading to S. purpuratus and S. franciscanus were three to six times longer than those leading to closely related species.

  1. Ion channels: Key elements in sea urchin sperm physiology

    NASA Astrophysics Data System (ADS)

    Darszon, Alberto; de De Latorre, Lucia; Vargas, Irma; Liévano, Arturo; Beltrán, Carmen; Santi, Celia; Labarca, Pedro; Zapata, Otilia

    1995-08-01

    Ion channels are deeply involved in sea urchin sperm activation, motility, chemotaxis and in the acrosome reaction. Unraveling ion channel function and regulation in sperm behavior has required a combination of complementary approaches since spermatozoa are very tiny cells. Planar bilayer and patch clamp techniques have allowed us to detect, for the first time, the activity of single channels in the plasma membrane of these cells. Unlike intact sperm, swollen sperm can be much more easily patch clamped and single channel activity recorded. These techniques, together with studies of membrane potential, intracellular Ca2+ and pH in whole sperm, have established the presence of K+, Ca2+, and Cl- channels in this cell. The strategies developed to study sea urchin sperm channels are applicable to mammalian spermatozoa. We recently detected a Ca2+ channel resembling one found in S. purpuratus sperm in planar bilayers containing mouse sperm plasma membranes. The presence of this Ca2+ channel in such diverse species suggests it is important in sperm function.

  2. Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient.

    PubMed

    Guidetti, P; Dulcić, J

    2007-03-01

    Previous studies conducted on a local scale emphasised the potential of trophic cascades in Mediterranean rocky reefs (involving predatory fish, sea urchins and macroalgae) in affecting the transition between benthic communities dominated by erected macroalgae and barrens (i.e., bare rock with partial cover of encrusting algae). Distribution patterns of fish predators of sea urchins (Diplodus sargus sargus, Diplodus vulgaris, Coris julis and Thalassoma pavo), sea urchins (Paracentrotus lividus and Arbacia lixula) and barrens, and fish predation rates upon sea urchins, were assessed in shallow (3-6m depth) sublittoral rocky reefs in the northern, central and southern sectors of the eastern Adriatic Sea, i.e., on a large spatial scale of hundreds of kilometres. No dramatic differences were observed in predatory fish density across latitude, except for a lower density of small D. sargus sargus in the northern Adriatic and an increasing density of T. pavo from north to south. P. lividus did not show any significant difference across latitude, whereas A. lixula was more abundant in the southern than in the central Adriatic. Barrens were more extended in the southern than in the central and northern sectors, and were related with sea urchin density. Fish predation upon adult sea urchins did not change on a large scale, whereas it was slightly higher in the southern sector for juveniles when predation rates of both urchins were pooled. Results show that: (1) assemblages of predatory fish and sea urchins, and barren extent change across latitude in the eastern Adriatic Sea, (2) the weak relations between predatory fish density and predation rates on urchins reveal that factors other than top-down control can be important over large scale (with the caveat that the study was conducted in fished areas) and (3) patterns of interaction among strongly interacting taxa could change on large spatial scales and the number of species involved.

  3. Interactions between sea urchin grazing and prey diversity on temperate rocky reef communities.

    PubMed

    Byrnes, Jarrett E K; Cardinale, Bradley J; Reed, Daniel C

    2013-07-01

    While we frequently observe that increasing species richness within a trophic level can increase the rates of predation or herbivory on lower trophic levels, the general impacts of prey diversity on consumption rates by their predators or herbivores remains unclear. Here we report the results of two field experiments that examined how subcanopy sessile species richness affects rates of consumption by sea urchins. We crossed a natural gradient of species richness in a benthic subtidal community of understory macroalgae and sessile invertebrates against two experimental gradients of urchin density (0-50 and 0-14 individuals) in 0.5-m2 fenced plots. We found that the percent cover of macroalgae and invertebrates consumed by urchins was greater at higher levels of sessile prey species richness. However, this positive association between prey richness and sea urchin consumption was only apparent at low urchin densities; at high urchin densities nearly all algal and invertebrate biomass was consumed irrespective of sessile species richness. The positive relationship between prey richness and urchin consumption was also stronger when the abundance of prey species was more even (i.e., higher Simpson's evenness). Collectively, our results show that the consumptive impacts of urchins on kelp forest understory communities increases as a function of species diversity (both prey richness and evenness), but that prey diversity becomes irrelevant when urchins reach high densities.

  4. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities.

    PubMed

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-09-16

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested.

  5. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    PubMed Central

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  6. Pulses of phytoplanktonic productivity may enhance sea urchin abundance and induce state shifts in Mediterranean rocky reefs

    NASA Astrophysics Data System (ADS)

    Cardona, Luis; Moranta, Joan; Reñones, Olga; Hereu, Bernat

    2013-11-01

    This paper tests the hypothesis that increased planktonic primary productivity may enhance sea urchin recruitment and trigger changes in the structure of benthic communities in oligotrophic temperate regions. Underwater surveys were conducted in the marine reserve of northern Minorca (Balearic Archipelago, western Mediterranean) and an adjoining control area in 2005 and 2012 to assess the abundance of fishes and sea urchins and the cover of macroalgae before and after a natural pulse of planktonic primary productivity. The biomass of most fishes, including that of sea urchin predators, increased significantly in the whole area two years after the productivity pulse, without any effect of management or depth. The abundance of sea urchins also increased throughout the whole area two years after the productivity pulse, but the average test diameter decreased, thus revealing improved recruitment. The aggregated cover of erect algae and that of Cystoseira brachycarpa did not change significantly from 2005 to 2012, but the cover of turf-forming algae was negatively correlated with the biomass of sea urchins, whereas the cover of coralline barren was positively correlated with the biomass of sea urchins. The overall evidence indicates that planktonic primary productivity is a key factor in the dynamics of sea urchin populations in oligotrophic regions and that improved sea urchin recruitment after productivity pulses in spring and early summer may result in sea urchin populations sufficiently dense to result in the development of coralline barrens independently on the density of sea urchin predators.

  7. Apoptosis in early development of the sea urchin, Strongylocentrotus purpuratus.

    PubMed

    Vega Thurber, Rebecca; Epel, David

    2007-03-01

    Apoptosis provides metazoans remarkable developmental flexibility by (1) eliminating damaged undifferentiated cells early in development and then (2) sculpting, patterning, and restructuring tissues during successive stages thereafter. We show here that apoptotic programmed cell death is infrequent and not obligatory during early embryogenesis of the purple sea urchin, Strongylocentrotus purpuratus. During the first 30 h of urchin development, fewer than 20% of embryos exhibit any cell death. Cell death during the cleavage stages consists of necrotic or pathological cell death, while cell death during the blastula and gastrula stages is random and predominantly caspase-mediated apoptosis. Apoptosis remains infrequent during the late blastula stage followed by a gradual increase in frequency during gastrulation. Even after prolonged exposure during the cleavage period to chemical stress, apoptosis occurs in less than 50% of embryos and always around the pre-hatching stage. Embryonic suppression of apoptosis through caspase inhibition leads to functionally normal larvae that can survive to metamorphosis, but in the presence of inducers of apoptosis, caspase inhibition leads to deformed larvae and reduced survival. Remarkably, however, pharmacological induction of apoptosis, while reducing overall survival, also significantly accelerates development of the survivors such that metamorphosis occurs up to a week before controls.

  8. Sea urchin prosome: characterization and changes during development.

    PubMed Central

    Akhayat, O; Grossi de Sa, F; Infante, A A

    1987-01-01

    A cytoplasmic particle displaying properties in common with a structure present in duck erythroblasts, termed the prosome, has been isolated from eggs and embryos of two species of sea urchin. This particle was partially purified by sedimentation in sucrose gradients containing 0.5 M KCl, and some of its physical properties and its behavior during early development were determined. The prosome sediments between 16 and 19 S and has a buoyant density of 1.30 g/cm3 in Cs2SO4 gradients. Biochemically, the particle is characterized as 20-25 polypeptides of molecular size 24-35 kDa with about 10 small RNAs. A monoclonal antibody directed against the 27-kDa protein of duck erythroblast prosome recognizes a 27-kDa protein of the sea urchin prosome. We have used this protein, as representative of the prosome, to immunologically determine the level and the subcellular localization of the particle during development. Immunoblotting and cellular fractionation studies show that the 27-kDa prosome polypeptide is present almost entirely in the postribosomal supernatant of unfertilized egg lysates. After fertilization and during early development, the total amount of 27-kDa protein per embryo remains constant, but the amount in the postribosomal supernatant decreases; there is a concomitant increase in the level of the 27-kDa protein in a rapidly sedimenting, particulate fraction containing nuclei. Immunofluorescence studies further show that the 27-kDa protein is located mainly in the cytoplasm of eggs and two-cell embryos. The subcellular location of the prosome, therefore, appears to change during development. In vivo labeling experiments have failed to detect the synthesis of either the prosome proteins or RNAs in eggs and embryos up to 48 hr of development, suggesting that this cytoplasmic particle is not synthesized de novo in early embryogenesis and thus is metabolically stable. The prosome is thus a normal cellular constituent of the sea urchin and is most likely

  9. Genomes of Strongylocentrotus franciscanus and Lytechinus variegatus: are there any genomic explanations for the two order of magnitude difference in the lifespan of sea urchins?

    PubMed

    Sergiev, Petr V; Artemov, Artem A; Prokhortchouk, Egor B; Dontsova, Olga A; Berezkin, Grigory V

    2016-02-01

    Sea urchins are marine invertebrates of extreme diversity of life span. Red sea urchin S. franciscanus is among the longest living creatures of the Ocean. Its lifetime is estimated to exceed a century, while the green sea urchin L. variegatus hardly survives more than four years. We sequenced and compared the genomes of these animals aiming at determination of the genetic basis of their longevity difference. List of genes related to the longevity of other animal species was created and used for homology search among the genomic data obtained in this study. Amino acid sequences of longevity related proteins of S. fransciscanus and L. variegatus as well as from a set of model species, were aligned and grouped on the basis of the species lifespan. Amino acid residues specific for a longevity group were identified. Proteins containing amino acids whose identity correlated with the lifespan were clustered on the basis of their function.

  10. Genomes of Strongylocentrotus franciscanus and Lytechinus variegatus: are there any genomic explanations for the two order of magnitude difference in the lifespan of sea urchins?

    PubMed Central

    Sergiev, Petr V.; Artemov, Artem A.; Prokhortchouk, Egor B.; Dontsova, Olga A.; Berezkin, Grigory V.

    2016-01-01

    Sea urchins are marine invertebrates of extreme diversity of life span. Red sea urchin S. franciscanus is among the longest living creatures of the Ocean. Its lifetime is estimated to exceed a century, while the green sea urchin L. variegatus hardly survives more than four years. We sequenced and compared the genomes of these animals aiming at determination of the genetic basis of their longevity difference. List of genes related to the longevity of other animal species was created and used for homology search among the genomic data obtained in this study. Aminoacid sequences of longevity related proteins of S. franciscanus and L. variegatus as well as from a set of model species, were aligned and grouped on the basis of the species lifespan. Aminoacid residues specific for a longevity group were identified. Proteins containing aminoacids whose identity correlated with the lifespan were clustered on the basis of their function. PMID:26851889

  11. Community-level destruction of hard corals by the sea urchin Diadema setosum.

    PubMed

    Qiu, Jian-Wen; Lau, Dickey C C; Cheang, Chi-chiu; Chow, Wing-kuen

    2014-08-30

    Sea urchins are common herbivores and bioeroders of coral ecosystems, but rarely have they been reported as corallivores. We determined the spatial pattern of hard coral damage due to corallivory and bioerosion by the sea urchin Diadema setosum Leske in Hong Kong waters. Coral damage was common at the northeastern sites, with 23.7 - 90.3% colonies being either collapsed or severely damaged with >25% tissue loss. Many genera of corals were impacted by the sea urchin but the damage was most obvious for the structure forming genus Platygyra. The percentage of severely damaged and collapsed coral had significant positive correlation with the abundance of D. setosum, which ranged from 0.01 to 5.2 individuals per coral head or 0.1 - 21.1 individuals m(-2) across the study sites. Remedial management actions such as sea urchin removal are urgently needed to save these fringing coral communities.

  12. SpBase: the sea urchin genome database and web site.

    PubMed

    Cameron, R Andrew; Samanta, Manoj; Yuan, Autumn; He, Dong; Davidson, Eric

    2009-01-01

    SpBase is a system of databases focused on the genomic information from sea urchins and related echinoderms. It is exposed to the public through a web site served with open source software (http://spbase.org/). The enterprise was undertaken to provide an easily used collection of information to directly support experimental work on these useful research models in cell and developmental biology. The information served from the databases emerges from the draft genomic sequence of the purple sea urchin, Strongylocentrotus purpuratus and includes sequence data and genomic resource descriptions for other members of the echinoderm clade which in total span 540 million years of evolutionary time. This version of the system contains two assemblies of the purple sea urchin genome, associated expressed sequences, gene annotations and accessory resources. Search mechanisms for the sequences and the gene annotations are provided. Because the system is maintained along with the Sea Urchin Genome resource, a database of sequenced clones is also provided.

  13. Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius

    PubMed Central

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Odintsova, Nelly A.

    2011-01-01

    One of the polyketide compounds, the naphthoquinone pigment echinochrome, is synthesized in sea urchin pigment cells. We analyzed polyketide synthase (pks) and sulfotransferase (sult) gene expression in embryos and larvae of the sea urchin Strongylocentrotus intermedius from various stages of development and in specific tissues of the adults. We observed the highest level of expression of the pks and sult genes at the gastrula stage. In unfertilized eggs, only trace amounts of the pks and sult transcripts were detected, whereas no transcripts of these genes were observed in spermatozoids. The addition of shikimic acid, a precursor of naphthoquinone pigments, to zygotes and embryos increased the expression of the pks and sult genes. Our findings, including the development of specific conditions to promote pigment cell differentiation of embryonic sea urchin cells in culture, represent a definitive study on the molecular signaling pathways that are involved in the biosynthesis of pigments during sea urchin development. PMID:21804858

  14. Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins.

    PubMed

    Johnson, Amy S; Ellers, Olaf; Lemire, Jim; Minor, Melissa; Leddy, Holly A

    2002-02-07

    The shape of sea urchins may be determined mechanically by patterns of force analogous to those that determine the shape of a water droplet. This mechanical analogy implies skeletal flexibility at the time of growth. Although comprised of many rigid calcite plates, sutural collagenous ligaments could confer such flexibility if the sutures between plates loosened and acted as joints at the time of growth. We present experimental evidence of such flexibility associated with weight gain and growth. Over 13-, 4-, and 2-week periods, fed urchins (Strongylocentrotus droebachiensis) gained weight and developed looser sutures than unfed urchins that maintained or lost weight. Further, skeletons of fed urchins force-relaxed more than did those of unfed urchins and urchins with loose sutures force-relaxed more than those with tight sutures. Urchins (Strongylocentrotus franciscanus) fed for two and a half weeks, gained weight, also had looser skeletons and deposited calcite at sutural margins, whereas unfed ones did not. In field populations of S. droebachiensis the percentage having loose sutures varied with urchin diameter and reflected their size-specific growth rate. The association between feeding, weight gain, calcite deposition, force relaxation and sutural looseness supports the hypothesis that urchins deform flexibly while growing, thus determining their drop-like shapes.

  15. Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins.

    PubMed Central

    Johnson, Amy S; Ellers, Olaf; Lemire, Jim; Minor, Melissa; Leddy, Holly A

    2002-01-01

    The shape of sea urchins may be determined mechanically by patterns of force analogous to those that determine the shape of a water droplet. This mechanical analogy implies skeletal flexibility at the time of growth. Although comprised of many rigid calcite plates, sutural collagenous ligaments could confer such flexibility if the sutures between plates loosened and acted as joints at the time of growth. We present experimental evidence of such flexibility associated with weight gain and growth. Over 13-, 4-, and 2-week periods, fed urchins (Strongylocentrotus droebachiensis) gained weight and developed looser sutures than unfed urchins that maintained or lost weight. Further, skeletons of fed urchins force-relaxed more than did those of unfed urchins and urchins with loose sutures force-relaxed more than those with tight sutures. Urchins (Strongylocentrotus franciscanus) fed for two and a half weeks, gained weight, also had looser skeletons and deposited calcite at sutural margins, whereas unfed ones did not. In field populations of S. droebachiensis the percentage having loose sutures varied with urchin diameter and reflected their size-specific growth rate. The association between feeding, weight gain, calcite deposition, force relaxation and sutural looseness supports the hypothesis that urchins deform flexibly while growing, thus determining their drop-like shapes. PMID:11839189

  16. Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus

    PubMed Central

    Tu, Qiang; Cameron, R. Andrew; Davidson, Eric H.

    2014-01-01

    Development depends on the precise control of gene expression in time and space. A critical step towards understanding the global gene regulatory networks underlying development is to obtain comprehensive information on gene expression. In this study, we measured expression profiles for the entire expressed gene set during sea urchin embryonic development. We confirmed the reliability of these profiles by comparison with NanoString measurements for a subset of genes and with literature values. The data show that ~16,500 genes have been activated by the end of embryogenesis, and for half of them the transcript abundance changes more than 10-fold during development. From this genome scale expression survey, we show that complex patterns of expression by many genes underlie embryonic development, particularly during the early stages before gastrulation. An intuitive web application for data query and visualization is presented to facilitate use of this large dataset. PMID:24291147

  17. Digestion in sea urchin larvae impaired under ocean acidification

    NASA Astrophysics Data System (ADS)

    Stumpp, Meike; Hu, Marian; Casties, Isabel; Saborowski, Reinhard; Bleich, Markus; Melzner, Frank; Dupont, Sam

    2013-12-01

    Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.

  18. Influence of 60-Hz magnetic fields on sea urchin development

    SciTech Connect

    Zimmerman, S.; Zimmerman, A.M.; Winters, W.D.; Cameron, I.L. )

    1990-01-01

    Continuous exposure of sea urchin (Strongylocentrotus purpuratus) embryos at 18 degrees C to a cyclic 60-Hz magnetic field at 0.1 mT rms beginning 4 min after insemination caused a significant developmental delay during the subsequent 23 hours. No delay in development was recorded for periods up to 18 hours after fertilization. At 18 h, most embryos were in the mesenchyme blastula stage. At 23 h, most control embryos were in mid-gastrula whereas most magnetic-field-exposed embryos were in the early gastrula stage. Thus an estimated 1-h delay occurred between these developmental stages. The results are discussed in terms of possible magnetic-field modification of transcription as well as interference with cell migration during gastrulation. The present study extends and supports the growing body of information about potential effects of exposures to extremely-low-frequency (ELF) magnetic fields on developing organisms.

  19. Alterations in chromatin structure during early sea urchin embryogenesis.

    PubMed Central

    Savić, A; Richman, P; Williamson, P; Poccia, D

    1981-01-01

    Sea urchin sperm before fertilization possess the longest nucleosome repeat length yet determined for any chromatin. By the time the fertilized egg gives rise to a blastula or gastrula embryo, the chromatin has a considerably shorter repeat length and, in addition, a sequence of different histone variants of H1, H2A, and H2B has appeared. We have investigated the relationship between these variations in histone composition and concomitant alterations in chromatin structure during the earliest stages of embryogenesis in two species of sea urchin. In contrast to the long repeat distance in sperm, chromatin loaded with cleavage stage histones has a much smaller repeat. Later stages containing predominantly alpha histones display an intermediate spacing. More detailed analysis of the events in the first cell cycle was carried out with polyspermically fertilized eggs. During the first 30 min after fertilization, in which sperm-specific H1 is completely replaced by cleavage-stage H1, the male pronuclear repeat remains unchanged. The decrease toward the repeat length of cleavage stages begins at about the time of DNA synthesis. Higher degrees of polyspermy extend the length of the cell cycle, including the duration of S phase and the length of time to reach the first chromosome condensation. At these higher degrees of polyspermy, the decrease in repeat length is also slowed. We conclude that the adjustment of the arrangement of nucleosomes in embryonic chromatin from that found in sperm can occur within the first cell cycle and that its timing is cell-cycle dependent. The adjustment is separable from a corresponding change in H1 composition. Images PMID:6943576

  20. Activation of maternal centrosomes in unfertilized sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Walter, M.; Biessmann, H.; Schatten, G.

    1992-01-01

    Centrosomes are undetectable in unfertilized sea urchin eggs, and normally the sperm introduces the cell's microtubule-organizing center (MTOC) at fertilization. However, artificial activation or parthenogenesis triggers microtubule assembly in the unfertilized egg, and this study explores the reappearance and behavior of the maternal centrosome. During activation with A23187 or ammonia, microtubules appear first at the cortex; centrosomal antigen is detected diffusely throughout the entire cytoplasm. Later, the centrosome becomes more distinct and organizes a radial microtubule shell, and eventually a compact centrosome at the egg center organizes a monaster. In these activated eggs, centrosomes undergo cycles of compaction and decompaction in synchrony with the chromatin, which also undergoes cycles of condensation and decondensation. Parthenogenetic activation with heavy water (50% D2O) or the microtubule-stabilizing drug taxol (10 microM) induces numerous centrosomal foci in the unfertilized sea urchin egg. Within 15 min after incubation in D2O, numerous fine centrosomal foci are detected, and they organize a connected network of numerous asters which fill the entire egg. Taxol induces over 100 centrosomal foci by 15 min after treatment, which organize a corresponding number of asters. The centrosomal material in either D2O- or taxol-treated eggs aggregates with time to form fewer but denser foci, resulting in fewer and larger asters. Fertilization of eggs pretreated with either D2O or taxol shows that the paternal centrosome is dominant over the maternal centrosome. The centrosomal material gradually becomes associated with the enlarged sperm aster. These experiments demonstrate that maternal centrosomal material is present in the unfertilized egg, likely as dispersed undetectable material, which can be activated without paternal contributions. At fertilization, paternal centrosomes become dominant over the maternal centrosomal material.

  1. Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay

    USGS Publications Warehouse

    Rose, C.D.; Sharp, W.C.; Kenworthy, W.J.; Hunt, J.H.; Lyons, W.G.; Prager, E.J.; Valentine, J.F.; Hall, M.O.; Whitfield, P.E.; Fourqurean, J.W.

    1999-01-01

    Unusually dense aggregations of the sea urchin Lytechinus variegatus overgrazed at least 0.81 km2 of seagrass habitat in Outer Florida Bay (USA) between August 1997 and May 1998. Initially, sea-urchin densities were as high as 364 sea urchins m-2, but they steadily declined to within a range of 20 to 50 sea urchins m-2 by December 1998. Prior to this event, sea-urchin densities were 95% of the short-shoot apical meristems were removed by sea-urchin grazing in our study area. Such extensive loss may severely limit recovery of this seagrass community by vegetative reproduction. Effects of the removal of seagrass biomass have already resulted in the depletion of epifaunal-infaunal mollusk assemblages and resuspension of fine-grained (<64 ??m) surface sediments - which have caused significant changes in community structure and in the physical properties of the sediments. These changes, coupled with the loss of essential fishery habitat, reductions in primary and secondary production, and degradation of water quality, may lead to additional, longer-term, indirect effects that may extend beyond the boundaries of the grazed areas and into adjacent coastal ecosystems.

  2. Micropredation on sea urchins as a potential stabilizing process for rocky reefs

    NASA Astrophysics Data System (ADS)

    Bonaviri, Chiara; Gianguzza, Paola; Pipitone, Carlo; Hereu, Bernat

    2012-10-01

    Rocky reefs can shift from forest, a state dominated by erect algae with high biodiversity, to barren, an impoverished state dominated by encrusting algae. Sea urchins, abundant in barrens, are usually held responsible for the maintenance of this state. Predation by large fish can revert the barren state to forest by controlling sea urchin populations. However, the persistence of a community state sometimes seems to be independent from the presence of such large predators, suggesting the existence of other unknown mechanisms ensuring their stability. Theoretical studies suggest that the settler stage of sea urchins is determinant for maintaining a given rocky reef state. In this study, we have identified several potential invertebrate micropredators of settlers of the sea urchin Paracentrotus lividus and measured their predation activity. Predation rates showed marked differences among species, possibly due to morphological and/or behavioral traits. Micropredators were more abundant in the forest than in barren, and their potential impact on the sea urchin community differed between the two states by two orders of magnitude. These findings suggest a novel self-perpetuating mechanism stabilizing rocky reef systems, where the abundance of micropredators may contribute to shape the sea urchin population, which in turn is responsible for the persistence of the state.

  3. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.

    PubMed

    Pace, Douglas A; Manahan, Donal T

    2007-04-01

    Cold environments represent a substantial volume of the biosphere. To study developmental physiology in subzero seawater temperatures typically found in the Southern Ocean, rates and costs of protein synthesis were measured in embryos and larvae of Sterechinus neumayeri, the Antarctic sea urchin. Our analysis of the "cost of living" in extreme cold for this species shows (1) that cost of protein synthesis is strikingly low during development, at 0.41 +/- 0.05 J (mg protein synthesized)(-1) (n = 16); (2) that synthesis cost is fixed and independent of synthesis rate; and (3) that a low synthesis cost permits high rates of protein turnover at -1 degrees C, at rates comparable to those of temperate species of sea urchin embryos developing at 15 degrees C. With a low synthesis cost, even at the highest synthesis rates measured (gastrulae), the proportion of total metabolism accounted for by protein synthesis in the Antarctic sea urchin was 54%-a value similar to that of temperate sea urchin embryos. In the Antarctic sea urchin, up to 87% of metabolic rate can be accounted for by the combined energy costs of protein synthesis and the sodium pump. We conclude that, in Antarctic sea urchin embryos, high rates of protein synthesis can be supported in extreme-cold environments while still maintaining low rates of respiration.

  4. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador.

    PubMed

    Cabanillas-Terán, Nancy; Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation.

  5. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador

    PubMed Central

    Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation. PMID:26839748

  6. A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes.

    PubMed Central

    Gagnon, C; White, D; Huitorel, P; Cosson, J

    1994-01-01

    To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes. Images PMID:7841521

  7. Fishing for lobsters indirectly increases epidemics in sea urchins

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2004-01-01

    Two ecological paradigms, the trophic cascade and the host-density threshold in disease, interact in the kelp-forest ecosystem to structure the community. To investigate what happens when a trophic cascade pushes a host population over a host-threshold density, I analyzed a 20-year data set of kelp forest communities at 16 sites in the region of the Channel Islands National Park, California, USA. Historically, lobsters, and perhaps other predators, kept urchin populations at low levels and kelp forests developed a community-level trophic cascade. In geographic areas where the main predators on urchins were fished, urchin populations increased to the extent that they overgrazed algae and starvation eventually limited urchin-population growth. Despite the limitation of urchin population size by food availability, urchin densities, at times, well exceeded the host-density threshold for epidemics. An urchin-specific bacterial disease entered the region after 1992 and acted as a density-dependent mortality source. Dense populations were more likely to experience epidemics and suffer higher mortality. Disease did not reduce the urchin population at a site to the density that predators previously did. Therefore, disease did not fully replace predators in the trophic cascade. These results indicate how fishing top predators can indirectly favor disease transmission in prey populations.

  8. TRICAINE METHANESULFONATE (MS-222) SEDATION AND ANESTHESIA IN THE PURPLE-SPINED SEA URCHIN (ARBACIA PUNCTULATA).

    PubMed

    Applegate, Jeffrey R; Dombrowski, Daniel S; Christian, Larry Shane; Bayer, Meredith P; Harms, Craig A; Lewbart, Gregory A

    2016-12-01

    The purple-spined sea urchin ( Arbacia punctulata ) is commonly found in shallow waters of the western Atlantic Ocean from the New England area of the United States to the Caribbean. Sea urchins play a major role in ocean ecology, echinoculture, and biomedical research. Additionally, sea urchins are commonly displayed in public aquaria. Baseline parameters were developed in unanesthetized urchins for righting reflex (time to regain oral recumbency) and spine response time to tactile stimulus. Tricaine methanesulfonate (MS-222) was used to sedate and anesthetize purple-spined sea urchins and assess sedation and anesthetic parameters, including adhesion to and release from a vertical surface, times to loss of response to tactile stimulus and recovery of righting reflex, and qualitative observations of induction of spawning and position of spines and pseudopodia. Sedation and anesthetic parameters were evaluated in 11 individuals in three circumstances: unaltered aquarium water for baseline behaviors, 0.4 g/L MS-222, and 0.8 g/L MS-222. Induction was defined as the release from a vertical surface with the loss of righting reflex, sedation as loss of righting reflex with retained tactile spine response, anesthesia as loss of righting reflex and loss of tactile spine response, and recovery as voluntary return to oral recumbency. MS-222 proved to be an effective sedative and anesthetic for the purple-spined sea urchin at 0.4 and 0.8 g/L, respectively. Sodium bicarbonate used to buffer MS-222 had no measurable sedative effects when used alone. Anesthesia was quickly reversed with transfer of each individual to anesthesia-free seawater, and no anesthetic-related mortality occurred. The parameters assessed in this study provide a baseline for sea urchin anesthesia and may provide helpful comparisons to similar species and populations that are in need of anesthesia for surgical procedures or research.

  9. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    SciTech Connect

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G.G.; Chaly, N.

    1985-07-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase. 32 references.

  10. Influence of potentially confounding factors on sea urchin porewater toxicity tests

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Nipper, M.

    2006-01-01

    The influence of potentially confounding factors has been identified as a concern for interpreting sea urchin porewater toxicity test data. The results from >40 sediment-quality assessment surveys using early-life stages of the sea urchin Arbacia punctulata were compiled and examined to determine acceptable ranges of natural variables such as pH, ammonia, and dissolved organic carbon on the fertilization and embryological development endpoints. In addition, laboratory experiments were also conducted with A. punctulata and compared with information from the literature. Pore water with pH as low as 6.9 is an unlikely contributor to toxicity for the fertilization and embryological development tests with A. punctulata. Other species of sea urchin have narrower pH tolerance ranges. Ammonia is rarely a contributing factor in pore water toxicity tests using the fertilization endpoint, but the embryological development endpoint may be influenced by ammonia concentrations commonly found in porewater samples. Therefore, ammonia needs to be considered when interpreting results for the embryological development test. Humic acid does not affect sea urchin fertilization at saturation concentrations, but it could have an effect on the embryological development endpoint at near-saturation concentrations. There was no correlation between sediment total organic carbon concentrations and porewater dissolved organic carbon concentrations. Because of the potential for many varying substances to activate parthenogenesis in sea urchin eggs, it is recommended that a no-sperm control be included with every fertilization test treatment. ?? 2006 Springer Science+Business Media, Inc.

  11. Neoparamoeba branchiphila infections in moribund sea urchins Diadema aff. antillarum in Tenerife, Canary Islands, Spain.

    PubMed

    Dyková, Iva; Lorenzo-Morales, Jacob; Kostka, Martin; Valladares, Basilio; Pecková, Hana

    2011-07-12

    A total of 109 sea urchins from 3 species collected in 2 localities off the coast of Tenerife Island, Spain, were examined for the presence of free-living amoebae in their coelomic fluid. Amoeba trophozoites were isolated exclusively from moribund individuals of long-spined sea urchins Diadema aff. antillarum (Philippi) (Echinoidea, Echinodermata) that manifested lesions related to sea urchin bald disease on their tests (16 out of 56 examined). No amoebae were detected in Arbacia lixula (L.) and Paracentrotus lividus (Lamarck). From the former sea urchin species, 8 strains, established from 10 primary isolates, were identified as Neoparamoeba branchiphila Dyková et al., 2005 using morphological and molecular methods. Results of this study (limited to the screening for free-living amoebae) together with data on agents of sea urchin mortalities reported to date justify the hypothesis that free-living amoebae play an opportunistic role in D. aff. antillarum mortality. The enlargement of the dataset of SSU rDNA sequences brought new insight into the phylogeny of Neoparamoeba species.

  12. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.

    1985-01-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.

  13. Characterization of sea urchin unconventional myosins and analysis of their patterns of expression during early embryogenesis.

    PubMed

    Sirotkin, V; Seipel, S; Krendel, M; Bonder, E M

    2000-10-01

    Early sea urchin development requires a dynamic reorganization of both the actin cytoskeleton and cytoskeletal interactions with cellular membranes. These events may involve the activities of multiple members of the superfamily of myosin motor proteins. Using RT-PCR with degenerate myosin primers, we identified 11 myosin mRNAs expressed in unfertilized eggs and coelomocytes of the sea urchin Strongylocentrotus purpuratus. Seven of these sea urchin myosins belonged to myosin classes Igamma, II, V, VI, VII, IX, and amoeboid-type I, and the remaining four may be from novel classes. Sea urchin myosins-V, -VI, -VII, and amoeboid-type-I were either completely or partially cloned and their molecular structures characterized. Sea urchin myosins-V, -VI, -VII, and amoeboid-type-I shared a high degree of sequence identity with their respective family members from vertebrates and they retained their class-specific structure and domain organization. Analysis of expression of myosin-V, -VI, -VII, and amoeboid-type-I mRNAs during development revealed that each myosin mRNA displayed a distinct temporal pattern of expression, suggesting that myosins might be involved in specific events of early embryogenesis. Interestingly, the onset of gastrulation appeared to be a pivotal point in modulation of myosin mRNA expression. The presence of multiple myosin mRNAs in eggs and embryos provides insight into the potential involvement of multiple specific motor proteins in the actin-dependent events of embryo development.

  14. Regulation of protein synthesis during sea urchin early development

    SciTech Connect

    Kelso, L.C.

    1989-01-01

    Fertilization of the sea urchin egg results in a 20-40 fold increase in the rate of protein synthesis. The masked message hypothesis proposes that mRNAs are masked or unavailable for translation in the egg. We devised an in vivo assay to test this hypothesis. Our results show that masked mRNAs limit protein synthesis in the unfertilized egg. In addition, we show that protein synthesis is also regulated at the level of translational machinery. Following fertilization is a period of rapid cell divisions. This period, known as the rapid cleavage stage, is characterized by the transient synthesis of a novel set of proteins. The synthesis of these proteins is programmed by maternal mRNAs stored in the unfertilized egg. To study the behavior of these mRNAs, we prepared a cDNA library from polysomal poly (A+) RNA from 2-hour embryos. ({sup 32}P) labeled probes, prepared from the cDNA library, were used to monitor the levels of individual mRNAs in polysomes at fertilization and during early development.

  15. The dynamics of secretion during sea urchin embryonic skeleton formation

    SciTech Connect

    Wilt, Fred H.

    2008-05-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.

  16. Turbulent shear spurs settlement in larval sea urchins.

    PubMed

    Gaylord, Brian; Hodin, Jason; Ferner, Matthew C

    2013-04-23

    Marine invertebrates commonly produce larvae that disperse in ocean waters before settling into adult shoreline habitat. Chemical and other seafloor-associated cues often facilitate this latter transition. However, the range of effectiveness of such cues is limited to small spatial scales, creating challenges for larvae in finding suitable sites at which to settle, especially given that they may be carried many kilometers by currents during their planktonic phase. One possible solution is for larvae to use additional, broader-scale environmental signposts to first narrow their search to the general vicinity of a candidate settlement location. Here we demonstrate strong effects of just such a habitat-scale cue, one with the potential to signal larvae that they have arrived in appropriate coastal areas. Larvae of the purple sea urchin (Strongylocentrotus purpuratus) exhibit dramatic enhancement in settlement following stimulation by turbulent shear typical of wave-swept shores where adults of this species live. This response manifests in an unprecedented fashion relative to previously identified cues. Turbulent shear does not boost settlement by itself. Instead, it drives a marked developmental acceleration that causes "precompetent" larvae refractory to chemical settlement inducers to immediately become "competent" and thereby reactive to such inducers. These findings reveal an unrecognized ability of larval invertebrates to shift the trajectory of a major life history event in response to fluid-dynamic attributes of a target environment. Such an ability may improve performance and survival in marine organisms by encouraging completion of their life cycle in advantageous locations.

  17. SM30 protein function during sea urchin larval spicule formation.

    PubMed

    Wilt, Fred; Killian, Christopher E; Croker, Lindsay; Hamilton, Patricia

    2013-08-01

    A central issue in better understanding the process of biomineralization is to elucidate the function of occluded matrix proteins present in mineralized tissues. A potent approach to addressing this issue utilizes specific inhibitors of expression of known genes. Application of antisense oligonucleotides that specifically suppress translation of a given mRNA are capable of causing aberrant biomineralization, thereby revealing, at least in part, a likely function of the protein and gene under investigation. We have applied this approach to study the possible function(s) of the SM30 family of proteins, which are found in spicules, teeth, spines, and tests of Strongylocentrotus purpuratus as well as other euechinoid sea urchins. It is possible using the anti-SM30 morpholino-oligonucleotides (MO's) to reduce the level of these proteins to very low levels, yet the development of skeletal spicules in the embryo shows little or no aberration. This surprising result requires re-thinking about the role of these, and possibly other occluded matrix proteins.

  18. Actin, microvilli, and the fertilization cone of sea urchin eggs

    PubMed Central

    1980-01-01

    Sea urchin eggs and oocytes at the germinal vesicle stage were fixed at various times after insemination, and thin sections were examined. Actin filaments can first be found in the cortical cytoplasm 1 min after insemination, and by 2 min enormous numbers of filaments are present. At these early stages, the filaments are only occasionally organized into bundles, but one end of many filaments contacts the plasma membrane. By 3 min, and even more dramatically by 5 min after insemination, the filaments become progressively more often found in bundles that lie parallel to the long axis of the microvilli and the fertilization cones. By 7 min, the bundles of filaments in the cone are maximally pronounced, with virtually all the filaments lying parallel to one another. Decoration of the filaments with subfragment 1 of myosin shows that, in both the microvilli and the cones, the filaments are unidirectionally polarized with the arrowheads pointing towards the cell center. The efflux of H+ from the eggs was measured as a function of time after insemination. The rapid phase of H+ efflux occurs at the same time as actin polymerization. From these results it appears that the formation of bundles of actin filaments in microvilli and in cones is a two-step process, involving actin polymerization to form filaments, randomly oriented but in most cases having one end in contact with the plasma membrane, followed by the zippering together of the filaments by macromolecular bridges. PMID:6893988

  19. Refertilization in eggs of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Kubota, L F; Carroll, E J

    1988-09-01

    To determine the role of the sea urchin egg plasma membrane in the species-specificity of fertilization, the ability of denuded activated eggs to be heterospecifically refertilized was determined. Our initial studies included evaluating the effectiveness of three commonly used methods of vitelline envelope (VE) removal using indirect immunofluorescence microscopy with antibodies directed against the VE. Unfertilized Strongylocentrotus purpuratus eggs were extracted with 0.01 M dithiothreitol (DTT) for 3 min or digested with 1.0 mg/ml pronase for 1 hr. Eggs were also fertilized, then diluted into a divalent-free medium to produce thin, elevated envelopes (VE*s) that were mechanically removed by sieving the eggs through nylon mesh. We found that both DTT extraction and pronase digestion were not completely effective in VE removal, and mechanical removal methods gave rise to a mixed population of eggs, those that had their VEs removed and those with a collapsed envelope that was not detectable at the light microscope level. Therefore, a new method of VE removal was developed. Eggs with VE*s were prepared followed by treatment with 0.01 M DTT to solubilize the envelopes. Nearly 100% of the denuded activated eggs incorporated one or more homologous and heterologous sperm, suggesting that the egg plasma membrane does not function in determining the species-specificity of fertilization.

  20. Mitochondrial DNA detection and copy number determination in the spermatozoa of the sea urchin Arbacia lixula.

    PubMed

    De Giorgi, C; D'Alessandro, A; Saccone, C

    1992-02-14

    The Polymerase Chain reaction technique has been used in order to detect and amplify a specific region of mtDNA, in a total DNA preparation extracted from the sperm of the sea urchin Arbacia lixula. The amplified fragment is the D-loop region which hybridizes with the homologous region extracted from the egg mtDNA. The results demonstrate that mtDNA is present in sperm cell, and, since the replication origin is present it is potentially able to replicate in the zygote. Furthermore, the technique used allowed us to estimate mtDNA copy number in sea urchin sperm, which has never been done before. Our results are that sea urchin sperm cell contains between 4 and 28 mtDNA molecules.

  1. Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo.

    PubMed

    Benink, H; Wray, G; Hardin, J

    1997-09-01

    Local cell-cell signals play a crucial role in establishing major tissue territories in early embryos. The sea urchin embryo is a useful model system for studying these interactions in deuterostomes. Previous studies showed that ectopically implanted micromeres from the 16-cell embryo can induce ectopic guts and additional skeletal elements in sea urchin embryos. Using a chimeric embryo approach, we show that implanted archenteron precursors differentiate autonomously to produce a correctly proportioned and patterned gut. In addition, the ectopically implanted presumptive archenteron tissue induces ectopic skeletal patterning sites within the ectoderm. The ectopic skeletal elements are bilaterally symmetric, and flank the ectopic archenteron, in some cases resulting in mirror-image, symmetric skeletal elements. Since the induced patterned ectoderm and supernumerary skeletal elements are derived from the host, the ectopic presumptive archenteron tissue can act to 'organize' ectopic axial structures in the sea urchin embryo.

  2. Effects of Light and Covering Behavior on PAX6 Expression in the Sea Urchin Strongylocentrotus intermedius

    PubMed Central

    Zhao, Chong; Ji, Nanjing; Sun, Ping; Feng, Wenping; Wei, Jing; Chang, Yaqing

    2014-01-01

    We studied the diel expression pattern of PAX6 (a structural gene that is commonly involved in the eye development and photoreception of eye forming animals) and the effects of light and covering behavior on PAX6 expression in the sea urchin Strongylocentrotus intermedius. We confirmed that aphotic condition significantly reduced covering behavior in S. intermedius. The diel expression pattern of PAX6 was significantly different in S. intermedius under photic and aphotic conditions. The gene expression of PAX6 significantly deceased in covered S. intermedius both under natural light and in darkness. The present finding provides valuable insight into the probable link between covering and PAX6 expression of sea urchins. Further studies are required to investigate the detailed expression network of light detection involved genes in order to fully reveal the molecular mechanism of the light-induced covering behavior of sea urchins. PMID:25333874

  3. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    PubMed

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination.

  4. Streamlining behaviour of the red urchin Strongylocentrotus franciscanus in response to flow.

    PubMed

    Stewart, Hannah L; Britton-Simmons, Kevin H

    2011-08-15

    This work was motivated by subtidal observations of red urchins (Strongylocentrotus franciscanus) moving their spines into streamlined positions as water current increased in the field. Trials in a flume across flow speeds from 0 to 65 cm s(-1) enabled us to observe the change in overall shape of the urchins and quantify the decrease in spine angle that occurred as flow speeds increased. The effect of this behaviour on drag and lift was measured with physical models made from urchin tests with spines in the `up' position (typical in stagnant and slow velocities) and in the `down' position (typical of posture in high velocities). Streamlining spines decreased the drag, but increased the lift experienced by urchin models at flow speeds between 10 and 40 cm s(-1), current velocities that are commonly encountered by these animals in the field in Washington, USA. Total force (combination of drag and lift) was similar for `up' and `down' models at all flow speeds, lift comprising the majority of the force for `down' models, and drag slightly higher for `up' models. Live urchins in the field routinely adopt a streamlined `down' posture in flow, suggesting that they may be better able to cope with lift than drag. This behaviour, although affecting hydrodynamic forces and enabling S. franciscanus to remain attached to the substratum in high currents, may lead to reduced capture of drift kelp, which is entrapped on upright spines and then eaten, delivery of which is positively related to flow speed. Urchins living in deep subtidal habitats rely on drift kelp capture but must stay attached to the substratum to be successful in a habitat. Therefore, this streamlining behaviour may be an important factor enabling S. franciscanus to persist in deep, high-current areas.

  5. [Expression of transmitter receptor genes in early development of sea urchin Paracentrotus lividus].

    PubMed

    Nikishin, D A; Semenova, M N; Shmukler, Iu B

    2012-01-01

    Neurotransmitters (including serotonin and acetylcholine) perform a number of prenervous functions in early sea urchin development. To detect the particular receptor components involved in these processes, we carried out a database search and nucleotide sequences homologous to serotonin receptor type 4, and the alpha6- and alpha10-subunits of nicotinic acetylcholine receptor were found among EST-clones from early Paracentrotus lividus embryos. Expression of these transcripts during early development was demonstrated using RT-PCR. These results are the first molecular biology evidence ofserotonin and acetylcholine receptor expression in sea urchin early embryogenesis.

  6. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, Heide; Schatten, Gerald; Balczon, Ron; Simerly, Calvin; Mazia, Daniel

    1986-01-01

    The behavior of centrosomes during the stages of fertilization and cell division in mouse oocytes and in sea urchin eggs was monitored in an immunofluorescence microscope, using autoimmune centrosomal antiserum derived from a patient with scleroderma to label the centrosomal material. These observations showed that centrosomes reproduce during the interphase and aggregate and separate during cell mitosis. Results supported the hypothesis of Mazia (1984), who proposed that centrosomes are 'flexible bodies'. It was also found that, while the sea urchin centrosomes are paternally inherited as was initially proposed by Bovery (1904), the mouse centrosomes are of maternal origin.

  7. Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins

    SciTech Connect

    Falugi, C.; Grattarola, M.; Prestipino, G.

    1987-06-01

    The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities.

  8. Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos.

    PubMed

    Sonnenholzner, Jorge I; Lafferty, Kevin D; Ladah, Lydia B

    2011-12-01

    In the Galápagos Islands, two eulimid snails parasitize the common pencil sea urchin, Eucidaris galapagensis. Past work in the Galápagos suggests that fishing reduces lobster and fish densities and, due to this relaxation of predation pressure, indirectly increases urchin densities, creating the potential for complex indirect interactions between fishing and parasitic snails. To measure indirect effects of fishing on these parasitic snails, we investigated the spatial relationships among urchins, parasitic snails, commensal crabs, and large urchin predators (hogfish and lobsters). Parasitic snails had higher densities at sites where urchins were abundant, probably due to increased resource availability. Commensal crabs that shelter under urchin spines, particularly the endemic Mithrax nodosus, preyed on the parasitic snails in aquaria, and snails were less abundant at field sites where these crabs were common. In aquaria, hogfish and lobsters readily ate crabs, but crabs were protected from predation under urchin spines, leading to a facultative mutualism between commensal crabs and urchins. In the field, fishing appeared to indirectly increase the abundance of urchins and their commensal crabs by reducing predation pressure from fish and lobsters. Fished sites had fewer snails per urchin, probably due to increased predation from commensal crabs. However, because fished sites also tended to have more urchins, there was no significant net effect of fishing on the number of snails per square meter. These results suggest that fishing can have complex indirect effects on parasites by altering food webs.

  9. Matrix and mineral in the sea urchin larval skeleton.

    PubMed

    Wilt, F H

    1999-06-30

    The endoskeletal spicules of sea urchin larvae are composed of calcite, a surrounding extracellular matrix, and small amounts of occluded matrix proteins. The spicules are formed by primary mesenchyme cells (PMCs) in the blastocoel of the embryo, where they adopt stereotypical locations, thereby specifying where spicules will form. PMCs also fuse to form cytoplasmic cords connecting the cell bodies, and it is within the cords that spicules arise. The mineral phase contains 5% Mg as well as Ca, and about 0.1% of the mass is protein. The matrix and mineral form concentric plies, and the composite has different physical properties than those of pure calcite. The calcite diffracts as a single crystal and is composed of well-ordered, but not perfectly ordered, microdomains. There is evidence for adsorption of matrix proteins to specific crystal faces at domain boundaries, which may help regulate crystal growth and texture. Immature spicules contain considerable precipitated amorphous CaCO3, and PMCs also have vesicles that contain amorphous CaCO3. This suggests the hypothesis that the cellular precursor to the spicules is actually amorphous CaCO3 stabilized in the cell by protein. The spicule s enveloped by the PMC cord, but is topologically exterior to the cell. The PMC plasmalemma is tightly applied to the developing spicules, except perhaps at the elongating tip. The characteristics, localization, and possible function of the four identified matrix proteins are discussed. SM50, SM37, and PM27 all primarily enclose the mineral, though small amounts are occluded. SM30 is found in cellular vesicles and is probably the principal occluded protein of the spicule.

  10. Isolation and characterization of sea urchin egg cortical granules

    PubMed Central

    1982-01-01

    A method has been developed to isolate cortical granules (CG) free in suspension. It involves the mechanical disruption of the CG from CG lawns (CGL; Dev. Biol. 43:62-74, 1975) and concentration of the CG by low speed centrifugation. The isolated CG are intact and are a relatively pure population as judged by electron microscopy. Granule integrity is confirmed by the fact that isolated intact CG are radioiodinated to only 0.05% of the specific activity of hypotonically lysed CG. Purity of the CG preparation is assessed by the enrichment (four- to sevenfold) of CG marker enzymes and the absence or low activity of plasma membrane, mitochondrial, cytoplasmic, and yolk platelet marker enzyme activities. CG isolated from 125I-surface- labeled eggs have a very low specific radioactivity, demonstrating that CG contamination by the plasma membrane-vitelline layer (PM-VL) is minimal. CG yield is approximately 1% of the starting egg protein. The CG isolation method is simple and rapid, 4 mg of CG protein being obtained in 1 h. Isolated CG and PM-VL display distinct electrophoretic patterns on SDS gels. Actin is localized to the PM-VL, and all bands present in the CGL are accounted for in the CG and PM-VL. Calmodulin is associated with the CGL, CG, and PM-VL fractions, but is not specifically enriched in these fractions as compared with whole egg homogenates. This method of isolating intact CG from unfertilized sea urchin eggs may be useful for exploring the mechanism of Ca2+-mediated CG exocytosis. PMID:6891382

  11. Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea)

    PubMed Central

    2010-01-01

    Background The digestive tract of many metazoan invertebrates is characterized by the presence of caeca or diverticula that serve secretory and/or absorptive functions. With the development of various feeding habits, distinctive digestive organs may be present in certain taxa. This also holds true for sea urchins (Echinodermata: Echinoidea), in which a highly specialized gastric caecum can be found in members of a derived subgroup, the Irregularia (cake urchins, sea biscuits, sand dollars, heart urchins, and related forms). As such a specialized caecum has not been reported from "regular" sea urchin taxa, the aim of this study was to elucidate its evolutionary origin. Results Using morphological data derived from dissection, magnetic resonance imaging, and extensive literature studies, we compare the digestive tract of 168 echinoid species belonging to 51 extant families. Based on a number of characters such as topography, general morphology, mesenterial suspension, and integration into the haemal system, we homologize the gastric caecum with the more or less pronounced dilation of the anterior stomach that is observed in most "regular" sea urchin taxa. In the Irregularia, a gastric caecum can be found in all taxa except in the Laganina and Scutellina. It is also undeveloped in certain spatangoid species. Conclusions According to our findings, the sea urchin gastric caecum most likely constitutes a synapomorphy of the Euechinoidea. Its occurrence in "regular" euechinoids is linked to the presence of an additional festoon of the anterior stomach in ambulacrum III. Both structures, the additional festoon and the gastric caecum, are absent in the sister taxon to the Euechinoidea, the Cidaroida. Since the degree of specialization of the gastric caecum is most pronounced in the predominantly sediment-burrowing irregular taxa, we hypothesize that its evolution is closely linked to the development of more elaborate infaunal lifestyles. We provide a comprehensive study of

  12. Distribution and abundance of sea urchins in Singapore reefs and their potential ecological impacts on macroalgae and coral communities

    NASA Astrophysics Data System (ADS)

    Goh, Beverly P. L.; Lim, Dawn Y. F.

    2015-06-01

    The sea urchin Diadema setosum is often encountered in the coral reefs in the Southern Islands of Singapore. While sea urchins have been known to play a role in regulating algal communities and influencing coral recruitment in other parts of the world, their role in Singapore reefs has not been determined. This study was conducted to determine the distribution and abundance of sea urchins in Singapore reefs, to examine algal cover, algal biomass, algal species and live coral cover, and to determine any interactions between urchin density and algal communities that may impact coral cover. Several reefs in Singapore were surveyed using belt transects measuring 20 m by 2 m, laid down on the reef crest. Abundance of urchins, algal species, biomass, and live coral cover were determined by the use of quadrats within each belt transect. This study revealed an increasing abundance of the sea urchin Diadema setosum in reefs progressing southwards away from mainland Singapore with low density of urchins occurring in Sisters' Island, St John's Island, Pulau Tekukor, and Kusu Island, and the highest density observed at Raffles Lighthouse. A significant negative linear relationship between algal cover and live coral cover (P < 0.05) was established. The results of this study indicate that sea urchins may not be an important component of the herbivore guild in Singapore.

  13. Effects of protracted cadmium exposure on gametes of the purple sea urchin, Arbacia punctulata

    SciTech Connect

    Bowen, W.J. III; Engel, D.W.

    1996-03-01

    Gametes and larvae of sea urchins and more specifically Arbacia punctulata have been used extensively in embryological studies and toxicity bioassay testing. Most of the experiments and bioassays have used the fertilized eggs of different sea urchin species and measured abnormal growth, malformations, or changes in the rates of growth as a function of contaminant exposure. Guida demonstrated that cupric ion activities of <10{sup -10.5} M caused reductions in the rates of growth of Arbacia Punctulata larvae and caused incomplete or malformed pluteal skeletons. These effects occurred at cupric ion concentrations that were in the same ranges as some measured in the more contaminated estuaries in the northeastern U.S. Sunda and coworkers also used sea urchin embryonic development to test potential trace metal toxicity in water samples collected from those same estuaries, and demonstrated toxicity potentially attributable to dissolved trace metals in the water column. The purpose of these experiments was to determine if protracted sublethal exposure of sexually mature sea urchins to dissolved cadmium in sea water would affect the viability of eggs and sperm, and whether it would affect fertilization and embryonic development and ultimately the larvae. The results of the experiments support the hypothesis that spermatogenesis and oogenesis were affected by cadmium exposure.

  14. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-11-01

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of

  15. Changes in sea urchins and kelp following a reduction in sea otter density as a result of the Exxon Valdez oil spill

    USGS Publications Warehouse

    Dean, T.A.; Bodkin, J.L.; Jewett, S.C.; Monson, D.H.; Jung, D.

    2000-01-01

    Interactions between sea otters Enhydra lutris, sea urchins Strongylocentrotus droebachiensis, and kelp were investigated following the reduction in sea otter density in Prince William Sound, Alaska, after the Exxon Valdez oil spill in 1989. At northern Knight Island, a heavily oiled portion of the sound, sea otter abundance was reduced by a minimum of 50% by the oil spill, and from 1995 through 1998 remained at an estimated 66% lower than in 1973. Where sea otter densities were reduced, there were proportionally more large sea urchins. However, except in some widely scattered aggregations, both density and biomass of sea urchins were similar in an area of reduced sea otter density compared with an area where sea otters remained about 10 times more abundant. Furthermore, there was no change in kelp abundance in the area of reduced sea otter density. This is in contrast to greatly increased biomass of sea urchins and greatly reduced kelp density observed following an approximate 90% decline in sea otter abundance in the western Aleutian Islands. The variation in community response to a reduction in sea otters may be related to the magnitude of the reduction and the non-linear response by sea urchins to changes in predator abundance. The number of surviving sea otters may have been high enough to suppress sea urchin populations in Prince William Sound, but not in the Aleutians. Alternatively, differences in response may have been due to differences in the frequency or magnitude of sea urchin recruitment. Densities of small sea urchins were much higher in the Aleutian system even prior to the reduction in sea otters, suggesting a higher rate of recruitment.

  16. Solvothermal synthesis and high optical performance of three-dimensional sea-urchin-like TiO{sub 2}

    SciTech Connect

    Zhou, Yi Wang, Yutang; Li, Mengyao; Li, Xuzhi; Yi, Qin; Deng, Pan; Wu, Hongyan

    2015-06-15

    Graphical abstract: I–V characteristics of different TiO{sub 2} microspheres based DSSCs (a) 3D sphere-like, (b) 3D flower-like, (c) 3D sea-urchin-like. - Highlights: • 3D sea-urchin-like TiO{sub 2} was synthesized by solvothermal method. • The effects of preparation parameters on the microstructure of the microspheres were investigated. • The photoelectric properties of 3D sea-urchin-like TiO{sub 2} were studied upon DSSCs. • The PCE of the 3D sea-urchin-like TiO{sub 2} was higher than that of other morphologies. - Abstract: Three-dimensional (3D) sea-urchin-like TiO{sub 2} microspheres were successfully synthesised by solvothermal method. The effects of preparation parameters including reaction temperature, concentration and mass fraction of precursor, and solvent volume on the microstructure of the microspheres were investigated. Results of scanning electron microscopy showed that the preparation parameters played a critical role in the morphology of 3D sea-urchin-like TiO{sub 2}. In addition, when the sea-urchin-like TiO{sub 2} nanostructures were used as the dye-sensitized solar cells (DSSCs) anode, the power-conversion efficiency was higher than that of other morphologies, which was due to the special 3D hierarchical nanostructure, large specific surface area, and enhanced absorption of UV–vis of the TiO{sub 2} nanostructures.

  17. Effects of oil pollution on the development of sex cells in sea urchins

    NASA Astrophysics Data System (ADS)

    Vashchenko, M. A.

    1980-03-01

    The sea urchin Strongylocentrotus nudus is highly sensitive to oil pollution. Experiments were performed in winter, spring and summer over periods of 15 to 45 days. Experimental urchins were kept in water with hydrocarbon concentrations of 10 to 30 mg l-1, and control urchins in pure sea water. Thermal stimulation by Evdokimov's method was applied to obtain mature sexual products during winter and spring tests. Summer investigations were conducted at temperatures of 17 to 18 °C. The gonads were studied histologically and morphometrically, and the sexual cells obtained were analyzed at the embryological level. No histological and morphometrical differences were recorded between sexual cells of controls and experimentals. However, marked hydrocarbon effects were observed in the embryonic development of artificially fertilized cells from experimental urchins. Control embryos developed normally. Embryogenesis of artificially fertilized gametes from control females and experimental males, and vice versa, was found to be distinctly abnormal. Many abnormalities were identified at the first cleavage stage, as well as in blastula, gastrula and pluteus. Fertilization of experimental eggs with experimental sperm resulted in serious disturbances of embryos, followed by the development of non-viable larvae. On the whole, embryogenesis of sexual cells from experimental urchins was characterized by prominent delay, asynchronism and presence of abnormal non-viable larvae. Consequently, long-term effects of sublethal hydrocarbon concentrations resulted in the formation of defective sex cells and high larval mortality.

  18. Identification of purple sea urchin telomerase RNA using a next-generation sequencing based approach.

    PubMed

    Li, Yang; Podlevsky, Joshua D; Marz, Manja; Qi, Xiaodong; Hoffmann, Steve; Stadler, Peter F; Chen, Julian J-L

    2013-06-01

    Telomerase is a ribonucleoprotein (RNP) enzyme essential for telomere maintenance and chromosome stability. While the catalytic telomerase reverse transcriptase (TERT) protein is well conserved across eukaryotes, telomerase RNA (TR) is extensively divergent in size, sequence, and structure. This diversity prohibits TR identification from many important organisms. Here we report a novel approach for TR discovery that combines in vitro TR enrichment from total RNA, next-generation sequencing, and a computational screening pipeline. With this approach, we have successfully identified TR from Strongylocentrotus purpuratus (purple sea urchin) from the phylum Echinodermata. Reconstitution of activity in vitro confirmed that this RNA is an integral component of sea urchin telomerase. Comparative phylogenetic analysis against vertebrate TR sequences revealed that the purple sea urchin TR contains vertebrate-like template-pseudoknot and H/ACA domains. While lacking a vertebrate-like CR4/5 domain, sea urchin TR has a unique central domain critical for telomerase activity. This is the first TR identified from the previously unexplored invertebrate clade and provides the first glimpse of TR evolution in the deuterostome lineage. Moreover, our TR discovery approach is a significant step toward the comprehensive understanding of telomerase RNP evolution.

  19. Determinants of Paracentrotus lividus sea urchin recruitment under oligotrophic conditions: Implications for conservation management.

    PubMed

    Oliva, Silvia; Farina, Simone; Pinna, Stefania; Guala, Ivan; Agnetta, Davide; Ariotti, Pierre Antoine; Mura, Francesco; Ceccherelli, Giulia

    2016-06-01

    Sea urchins may deeply shape the structure of macrophyte-dominated communities and require the implementation of sustainable management strategies. In the Mediterranean, the identification of the major recruitment determinants of the keystone sea urchin species Paracentrotus lividus is required, so that source areas of the populations can be identified and exploitation or programmed harvesting can be spatially managed. In this study a collection of eight possible determinants, these encompassing both the biotic (larvae, adult sea urchins, fish, encrusting coralline algae, habitat type and spatial arrangement of habitats) and abiotic (substrate complexity and nutritional status) realms was considered at different spatial scales (site, area, transect and quadrat). Data from a survey including sites subject to different levels of human influence (i.e. from urbanized to protected areas), but all corresponding to an oligotrophic and low-populated region were fitted by means of a generalized linear mixed model. Despite the extensive sampling effort of benthic quadrats, an overall paucity of recruits was found, recruits being aggregated in a very small number of quadrats and in few areas. The analysis of data detected substrate complexity, and adult sea urchin and predatory fish abundances as the momentous determinants of Paracentrotus lividus recruitment. Possible mechanisms of influence are discussed beyond the implications of conservation management.

  20. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.

    PubMed

    Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro

    2016-06-01

    The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals.

  1. Involvement of l(-)-rhamnose in sea urchin gastrulation. Part II: α-l-Rhamnosidase.

    PubMed

    Liang, Jing; Aleksanyan, Heghush; Metzenberg, Stan; Oppenheimer, Steven B

    2016-06-01

    The sea urchin embryo is recognized as a model system to reveal developmental mechanisms involved in human health and disease. In Part I of this series, six carbohydrates were tested for their effects on gastrulation in embryos of the sea urchin Lytechinus pictus. Only l-rhamnose caused dramatic increases in the numbers of unattached archenterons and exogastrulated archenterons in living, swimming embryos. It was found that at 30 h post-fertilization the l-rhamnose had an unusual inverse dose-dependent effect, with low concentrations (1-3 mM) interfering with development and higher concentrations (30 mM) having little to no effect on normal development. In this study, embryos were examined for inhibition of archenteron development after treatment with α-l-rhamnosidase, an endoglycosidase that removes terminal l-rhamnose sugars from glycans. It was observed that the enzyme had profound effects on gastrulation, an effect that could be suppressed by addition of l-rhamnose as a competitive inhibitor. The involvement of l-rhamnose-containing glycans in sea urchin gastrulation was unexpected, since there are no characterized biosynthetic pathways for rhamnose utilization in animals. It is possible there exists a novel l-rhamnose-containing glycan in sea urchins, or that the enzyme and sugar interfere with the function of rhamnose-binding lectins, which are components of the innate immune system in many vertebrate and invertebrate species.

  2. Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation.

    PubMed

    Bonaventura, Rosa; Matranga, Valeria

    2016-05-24

    The sea urchin embryo is a well-recognized developmental biology model and its use in toxicological studies has been widely appreciated. Many studies have focused on the evaluation of the effects of chemical stressors and their mixture in marine ecosystems using sea urchin embryos. These are well equipped with defense genes used to cope with chemical stressors. Recently, ultraviolet radiation (UVR), particularly UVB (280-315 nm), received more attention as a physical stressor. Mainly in the Polar Regions, but also at temperate latitudes, the penetration of UVB into the oceans increases as a consequence of the reduction of the Earth's ozone layer. In general, UVR induces oxidative stress in marine organisms affecting molecular targets such as DNA, proteins, and lipids. Depending on the UVR dose, developing sea urchin embryos show morphological perturbations affecting mainly the skeleton formation and patterning. Nevertheless, embryos are able to protect themselves against excessive UVR, using mechanisms acting at different levels: transcriptional, translational and post-translational. In this review, we recommend the sea urchin embryo as a suitable model for testing physical stressors such as UVR and summarize the mechanisms adopted to deal with UVR. Moreover, we review UV-induced apoptotic events and the combined effects of UVR and other stressors.

  3. Sea urchin spines in the stratum corneum: an early finding related to trauma.

    PubMed

    Short, Jack H; Sulit, Daryl J

    2014-03-01

    Penetrating trauma from sea urchin (Echinoidea) spines has been shown to cause numerous cutaneous reactions, ranging from initial pain that rapidly dissipates and resolves to chronic inflammation and formation of characteristic sea urchin granulomas. Many of these skin-colored or violaceous papules and nodules form weeks to months after injury, and may be surgically excised. Histopathologic examination commonly shows well-defined granulomas, the majority of which represent sarcoidal-type granulomas. Other microscopic patterns, such as foreign body reactions and chronic inflammation, have also been shown. Retained spine fragments are birefringent on polarized microscopic examination and are most likely found in the dermal layer. Herein, we describe a case of traumatic sea urchin cutaneous injury with a unique early cutaneous trauma reaction in a young male who lived in Hawaii. Histopathologic exam was significant for retained spines in the layer of the stratum corneum, but no signs of granulomatous inflammation were observed. This case report emphasizes the unique features of our case and reviews the common clinical and histopathologic features of sea urchin cutaneous reactions.

  4. Rapid aquatic toxicity assay utilizing labeled thymidine incorporation in sea urchin embryos

    SciTech Connect

    Jackim, E.; Nacci, D.

    1984-01-01

    Aquatic toxicity was evaluated in the sea urchin embryo (Arbacea punctulata) by the inhibition of tritiated thymidine incorporation after a brief exposure to toxic chemicals. Arbacia is a useful surrogate species for assay: well-studied, easily cultured and fertile virtually year round. The simplicity and speed of this test system lends itself to screening large numbers of compounds, mixtures or water samples.

  5. Ribosomal analysis of rapid rates of protein synthesis in the Antarctic sea urchin Sterechinus neumayeri.

    PubMed

    Pace, Douglas A; Maxson, Robert; Manahan, Donal T

    2010-02-01

    Previous research has shown that developing stages of the Antarctic sea urchin Sterechinus neumayeri have high rates of protein synthesis that are comparable to those of similar species living in much warmer waters. Direct measurements of the biosynthetic capacities of isolated ribosomes have not been reported for marine organisms living in the extreme-cold environment of Antarctica. Such measurements are required for a mechanistic understanding of how the critical and highly complex processes involved in protein synthesis are regulated in animals living in the coldest marine environment on Earth (< -1 degrees C). We tested the hypothesis that high rates of protein synthesis in the cold are a direct result of high biosynthetic capacities of ribosomes engaged in protein synthesis. Our results show that the rate at which ribosomes manufacture proteins (i.e., the peptide elongation rate) at -1 degrees C is surprisingly similar to rates measured in other sea urchin species at temperatures that are over 15 degrees C warmer. Average peptide elongation rates for a range of developmental stages of the Antarctic sea urchin were 0.36 codons s(-1) (+/- 0.05, SE). On the basis of subcellular rate determinations of ribosomal activity, we calculated stage-specific rates of protein synthesis for blastulae and gastrulae to be 3.7 and 6.5 ng protein h(-1), respectively. These findings support the conclusion that the high rates of biosynthesis previously reported for the Antarctic sea urchin are an outcome of high ribosomal activities.

  6. Functional traits of two co-occurring sea urchins across a barren/forest patch system

    NASA Astrophysics Data System (ADS)

    Agnetta, D.; Bonaviri, C.; Badalamenti, F.; Scianna, C.; Vizzini, S.; Gianguzza, P.

    2013-02-01

    Temperate rocky reefs may occur in two alternative states (coralline barrens and erect algal forests), whose formation and maintenance are often determined by sea urchin grazing. The two sea urchin species Paracentrotus lividus and Arbacia lixula are considered to play a similar ecological role despite their differing morphological traits and diets. The patchy mosaic areas of Ustica Island, Italy, offer an ideal environment in which to study differences in the performance of P. lividus and A. lixula in barren versus forest states. Results show that the two sea urchin species differ in diet, trophic position, grazing adaptation, movement ability and fitness in both barren and forest patches. We confirmed herbivory in P. lividus and omnivory with a strong tendency to carnivory in A. lixula. When the sea urchin escape response to a predator was triggered, P. lividus responded faster in barren and forest patches. Forest patch restricted movement, especially in A. lixula (velocity in barren ≈ 10-fold greater than in forest). A large Aristotle's lantern, indicative of durophagy, confirmed adaptation of A. lixula to barren state.

  7. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus).

    PubMed

    Rizzo, Francesca; Fernandez-Serra, Montserrat; Squarzoni, Paola; Archimandritis, Aristea; Arnone, Maria I

    2006-12-01

    A systematic search in the available scaffolds of the Strongylocentrotus purpuratus genome has revealed that this sea urchin has 11 members of the ets gene family. A phylogenetic analysis of these genes showed that almost all vertebrate ets subfamilies, with the exception of one, so far found only in mammals, are each represented by one orthologous sea urchin gene. The temporal and spatial expression of the identified ETS factors was also analyzed during embryogenesis. Five ets genes (Sp-Ets1/2, Sp-Tel, Sp-Pea, Sp-Ets4, Sp-Erf) are also maternally expressed. Three genes (Sp-Elk, Sp-Elf, Sp-Erf) are ubiquitously expressed during embryogenesis, while two others (Sp-Gabp, Sp-Pu.1) are not transcribed until late larval stages. Remarkably, five of the nine sea urchin ets genes expressed during embryogenesis are exclusively (Sp-Ets1/2, Sp-Erg, Sp-Ese) or additionally (Sp-Tel, Sp-Pea) expressed in mesenchyme cells and/or their progenitors. Functional analysis of Sp-Ets1/2 has previously demonstrated an essential role of this gene in the specification of the skeletogenic mesenchyme lineage. The dynamic, and in some cases overlapping and/or unique, developmental expression pattern of the latter five genes suggests a complex, non-redundant function for ETS factors in sea urchin mesenchyme formation and differentiation.

  8. Expression pattern of vascular endothelial growth factor 2 during sea urchin development.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Kulakova, Milana A; Odintsova, Nelly A

    2013-12-01

    The VEGF family in the sea urchin is comprised of three members designated Vegf1 through Vegf3. In this study, we found a high level of similarity between the PDGF/VEGF domain of the predicted gene Sp-Vegf2 in the sea urchin Strongylocentrotus purpuratus and the same domain of a gene that we found in a closely related sea urchin, Strongylocentrotus intermedius. The sequence of the Si-Vegf2 cDNA was determined, and the expression of the Si-Vegf2 mRNA throughout early sea urchin development was studied by RT-PCR and in situ hybridization. Also we analyzed phylogenetic relationships of Si-Vegf2 and other members of the PDGF and VEGF families. We have found that the Si-Vegf2 present during the time span from the egg to the 4-arm pluteus stage. This mRNA is uniformly distributed in eggs, cleaving embryos and early blastulae. At the gastrula stage, the Si-Vegf2 transcripts are localized in the ventrolateral clusters of primary mesenchyme cells, and later, at the prism stage, they are detected in the forming apex. At the early pluteus stage, Si-Vegf2 mRNAs are found in two groups of mesenchyme cells in the scheitel region on the apical pole. We have determined that Si-Vegf2 is a mesenchyme-expressed factor but its developmental function is unknown.

  9. Molecular and Cell Biological Studies on Biomineralization by Primary Mesenchyme Cells of the Sea Urchin.

    DTIC Science & Technology

    1995-02-28

    We are currently examining the developmental expression of the suBMP protein, its function in the developing sea urchin embryo, and its putative...stage, then decays to a lower but persistent level throughout the rest of embryonic development . Using an affinity purified polyclonal antibody to

  10. Mechanical constraint converts planar waves into helices on tunicate and sea urchin sperm flagella.

    PubMed

    Ishijima, Sumio

    2012-01-01

    The change in the flagellar waves of spermatozoa from a tunicate and sea urchins was examined using high-speed video microscopy to clarify the regulation of localized sliding between doublet microtubules in the axoneme. When the tunicate Ciona spermatozoa attached to a coverslip surface by their heads in seawater or they moved in seawater with increased viscosity, the planar waves of the sperm flagella were converted into left-handed helical waves. On the other hand, conversion of the planar waves into helical waves in the sea urchin Hemicentrotus spermatozoa was not seen in seawater with an increased viscosity as well as in ordinary seawater. However, the sea urchin Clypeaster spermatozoa showed the conversion, albeit infrequently, when they thrust their heads into seawater with an increased viscosity. The chirality of the helical waves of the Clypeaster spermatozoa was right-handed. When Ciona spermatozoa swam freely near a glass surface, they moved in relatively large circular paths (yawing motion). There was no difference in the proportion of spermatozoa yawing in either a clockwise or counterclockwise direction when viewed from above, which was also different from that of the sea urchin spermatozoa. These observations suggest that the planar waves generally observed on the sperm flagella are mechanically regulated, although their stability must depend on the Ca(2+) concentration in the cell. Furthermore, the chirality of the helical waves may be determined by the intracellular Ca(2+) concentration and changed by transmitting the localized active sliding between the doublet microtubules around the axoneme in an alternative direction.

  11. In vivo exposure to northern diatoms arrests sea urchin embryonic development.

    PubMed

    Gudimova, Elena; Eilertsen, Hans C; Jørgensen, Trond Ø; Hansen, Espen

    2016-01-01

    There are numerous reports indicating that marine diatoms may act harmful to early developmental stages of invertebrates. It is believed that the compounds responsible for these detrimental effects are oxylipins resulting from oxidized polyunsaturated fatty acids, and that they may function as grazing deterrents. Most studies reporting these effects have exposed test organisms to diatom extracts or purified toxins, but data from in vivo exposure to intact diatoms are scarce. We have conducted sea urchin egg incubation and plutei feeding experiments to test if intact diatom cells affected sea urchin embryo development and survival. This was done by exposing the common northern sea urchins Strongylocentrotus droebachiensis and Echinus acutus to northern strains of the diatoms Chaetoceros socialis, Skeletonema marinoi, Chaetoceros furcellatus, Attheya longicornis, Thalassiosira gravida and Porosira glacialis. The intact diatom cell suspensions were found to inhibit sea urchin egg hatching and embryogenesis. S. marinoi was the most potent one as it caused acute mortality in S. droebachiensis eggs after only four hours exposure to high (50 μg/L Chla) diatom concentrations, as well as 24 h exposure to normal (20 μg/L Chla) and high diatom concentrations. The second most potent species was T. gravida that caused acute mortality after 24 h exposure to both diatom concentrations. A. longicornis was the least harmful of the diatom species in terms of embryo development arrestment, and it was the species that was most actively ingested by S. droebachiensis plutei.

  12. Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins.

    PubMed

    Alves, A P; Mulloy, B; Diniz, J A; Mourão, P A

    1997-03-14

    We have characterized the fine structure of sulfated polysaccharides from the egg jelly layer of three species of sea urchins and tested the ability of these purified polysaccharides to induce the acrosome reaction in spermatozoa. The sea urchin Echinometra lucunter contains a homopolymer of 2-sulfated, 3-linked alpha-L-galactan. The species Arbacia lixula and Lytechinus variegatus contain linear sulfated alpha-L-fucans with regular tetrasaccharide repeating units. Each of these sulfated polysaccharides induces the acrosome reaction in conspecific but not in heterospecific spermatozoa. These results demonstrate that species specificity of fertilization in sea urchins depends in part on the fine structure of egg jelly sulfated polysaccharide.

  13. Substratum cavities affect growth-plasticity, allometry, movement and feeding rates in the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Hernández, J C; Russell, M P

    2010-02-01

    We assessed the influence of rock cavities, or pits, on the growth dynamics and behavior of the purple sea urchin, Strongylocentrotus purpuratus. In a paired-designed, laboratory experiment, sea urchins were assigned to sandstone blocks that were either 'Flat' or had a 'Pit' drilled into the center. At the start, both groups were approximately the same shape and size. In just 2 months, the shapes of the tests were significantly different between the two treatments, with the Pit urchins having an increased height:diameter profile. This result demonstrates the plastic nature of the sea urchin test and that, despite its apparent rigidity, it is capable of deforming during growth. In addition, the presence of pits modified behavior and food consumption as well as allometric growth of the test and Aristotle's lantern. Sea urchins on Pit sandstone blocks tended to stay in the cavities and not move about the flat areas, whereas individuals on Flat blocks changed position. Sea urchins in the Pit treatment consumed less food and had relatively larger demipyramids (the 'jaw' ossicle in Aristotle's lantern). These morphological and allometric changes occurred over a short time-period (8-20 weeks). We conclude that microhabitat is an important factor in controlling the behavior and growth dynamics of the bioeroding sea urchin S. purpuratus.

  14. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  15. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  16. Modifications to the translational apparatus which affect the regulation of protein synthesis in sea urchin embryos

    SciTech Connect

    Scalise, F.W.

    1988-01-01

    Protein synthesis can be regulated at a number of cellular levels. I have examined how modifications to specific components of the protein synthetic machinery are involved in regulating the efficiency of initiation of translation during early sea urchin embryogenesis. It is demonstrated that Ca{sup 2+} concentrations exceeding 500 uM cause the inhibition of protein synthesis in cell-free translation lysates prepared from sea urchin embryos. Specific changes in the state of phosphorylation of at least 8 proteins occur during this Ca{sup 2+}-mediated repression of translation. Analysis of these proteins has indicated that, unlike mammalian systems, there is no detectable level of Ca{sup 2+}-dependent phosphorylation of the {alpha}subunit eIF-2. Two of the proteins which do become phosphorylated in response to Ca{sup 2+} are calmodulin and an isoelectric form of sea urchin eIF-4D. In addition, 2 proteins which share similarities with kinases involved in the regulation of protein synthesis in mammalian cells, also become phosphorylated. I have investigated the consequences of changes in eIF-4D during sea urchin embryogenesis because it has been proposed that a polyamine-mediated conversion of lysine to hypusine in this factor may enhance translational activity. It is demonstrated that ({sup 3}H) spermidine-derived radioactivity is incorporated into a number of proteins when sea urchin embryos are labeled in vivo, and that the pattern of individual proteins that become labeled changes over the course of the first 30 hr of development.

  17. Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles.

    PubMed

    Cappello, Tiziana; Vitale, Valeria; Oliva, Sabrina; Villari, Valentina; Mauceri, Angela; Fasulo, Salvatore; Maisano, Maria

    2017-02-07

    The extensive use of copper oxide nanoparticles (CuO NPs) in many applications has raised concerns over their toxicity on environment and human health. Herein, the embryotoxicity of CuO NPs was assessed in the black sea urchin Arbacia lixula, an intertidal species commonly present in the Mediterranean. Fertilized eggs were exposed to 0.7, 10 and 20ppb of CuO NPs, until pluteus stage. Interferences with the normal neurotransmission pathways were observed in sea urchin embryos. In detail, evidence of cholinergic and serotoninergic systems affection was revealed by dose-dependent decreased levels of choline and N-acetyl serotonin, respectively, measured by nuclear magnetic resonance (NMR)-based metabolomics, applied for the first time to our knowledge on sea urchin embryos. The metabolic profile also highlighted a significant CuO NP dose-dependent increase of glycine, a component of matrix proteins involved in the biomineralization process, suggesting perturbed skeletogenesis accordingly to skeletal defects in spicule patterning observed previously in the same sea urchin embryos. However, the expression of skeletogenic genes, i.e. SM30 and msp130, did not differ among groups, and therefore altered primary mesenchyme cell (PMC) migration was hypothesized. Other unknown metabolites were detected from the NMR spectra, and their concentrations found to be reflective of the CuO NP exposure levels. Overall, these findings demonstrate the toxic potential of CuO NPs to interfere with neurotransmission and skeletogenesis of sea urchin embryos. The integrated use of embryotoxicity tests and metabolomics represents a highly sensitive and effective tool for assessing the impact of NPs on aquatic biota.

  18. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.

    PubMed

    Lin, Che-Yi; Su, Yi-Hsien

    2016-01-15

    Sea urchin embryos are a useful model system for investigating early developmental processes and the underlying gene regulatory networks. Most functional studies using sea urchin embryos rely on antisense morpholino oligonucleotides to knockdown gene functions. However, major concerns related to this technique include off-target effects, variations in morpholino efficiency, and potential morpholino toxicity; furthermore, such problems are difficult to discern. Recent advances in genome editing technologies have introduced the prospect of not only generating sequence-specific knockouts, but also providing genome-engineering applications. Two genome editing tools, zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs), have been utilized in sea urchin embryos, but the resulting efficiencies are far from satisfactory. The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system serves as an easy and efficient method with which to edit the genomes of several established and emerging model organisms in the field of developmental biology. Here, we apply the CRISPR/Cas9 system to the sea urchin embryo. We designed six guide RNAs (gRNAs) against the well-studied nodal gene and discovered that five of the gRNAs induced the expected phenotype in 60-80% of the injected embryos. In addition, we developed a simple method for isolating genomic DNA from individual embryos, enabling phenotype to be precisely linked to genotype, and revealed that the mutation rates were 67-100% among the sequenced clones. Of the two potential off-target sites we examined, no off-target effects were observed. The detailed procedures described herein promise to accelerate the usage of CRISPR/Cas9 system for genome editing in sea urchin embryos.

  19. Sea urchin coelomocytes are resistant to a variety of DNA damaging agents.

    PubMed

    Loram, Jeannette; Raudonis, Renee; Chapman, Jecar; Lortie, Mae; Bodnar, Andrea

    2012-11-15

    Increasing anthropogenic activities are creating environmental pressures that threaten marine ecosystems. Effective environmental health assessment requires the development of rapid, sensitive, and cost-effective tools to predict negative impacts at the individual and ecosystem levels. To this end, a number of biological assays using a variety of cells and organisms measuring different end points have been developed for biomonitoring programs. The sea urchin fertilization/development test has been useful for evaluating environmental toxicology and it has been proposed that sea urchin coelomocytes represent a novel cellular biosensor of environmental stress. In this study we investigated the sensitivity of coelomocytes from the sea urchin Lytechinus variegatus to a variety of DNA-damaging agents including ultraviolet (UV) radiation, hydrogen peroxide (H(2)O(2)), methylmethane sulfonate (MMS) and benzo[a]pyrene (BaP). LD(50) values determined for coelomocytes after 24h of exposure to these DNA damaging agents indicated a high level of resistance to all treatments. Significant increases in the formation of apurinic/apyrimidinic (AP or abasic) sites in DNA were only detected using high doses of H(2)O(2), MMS and UV radiation. Comparison of sea urchin coelomocytes with hemocytes from the gastropod mollusk Aplysia dactylomela and the decapod crustacean Panulirus argus indicated that sensitivity to different DNA damaging agents varies between species. The high level of resistance to genotoxic agents suggests that DNA damage may not be an informative end point for environmental health assessment using sea urchin coelomocytes however, natural resistance to DNA damaging agents may have implications for the occurrence of neoplastic disease in these animals.

  20. [Sea urchin spine injury--a case report of chronic synovitis of the foot].

    PubMed

    Keren, Yaniv; Feldman, Oren; Soudry, Michael; Eidelman, Mark

    2011-06-01

    Sea urchin spine injuries can range from minimal local trauma to chronic synovitis and arthritis, with long term morbidity. The abundance of these marine creatures in shallow sea water exposes the potential for injury of the extremities, especially the foot, knees, and hands. Early treatment is crucial to avoid future consequences of these injuries. We report a case of chronic synovitis of the foot in an adolescent, treated surgically two years after the initial insult, with complete resolution of symptoms.

  1. Habitat-dependent growth in a Caribbean sea urchin Tripneustes ventricosus: the importance of food type

    NASA Astrophysics Data System (ADS)

    Maciá, Silvia; Robinson, Michael P.

    2008-12-01

    The sea urchin Tripneustes ventricosus is a common, yet relatively poorly known, grazer of seagrass beds and coral reefs throughout the Caribbean. We compared the size and abundance of urchins between adjacent seagrass and coral reef habitats (where macroalgae are the dominant primary producers). We also conducted a laboratory experiment comparing the growth rate of juvenile urchins fed a diet of either macroalgae or seagrass. Reef urchins had significantly larger test diameter than those in the seagrass on some sampling dates. This size difference may be at least partially explained by diet, because laboratory-reared urchins fed macroalgae grew significantly faster than those fed seagrass. The seagrass population, however, was stable over time, whereas the reef population exhibited strong fluctuations in abundance. Overall, our study indicates that both the seagrass and coral reef habitats are capable of supporting healthy, reproductive populations of T. ventricosus. Each, however, appears to offer a distinct advantage: faster growth on the reef and greater population stability in the seagrass.

  2. Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios

    PubMed Central

    Albright, Rebecca; Bland, Charnelle; Gillette, Phillip; Serafy, Joseph E.; Langdon, Chris; Capo, Thomas R.

    2012-01-01

    To evaluate the effect of elevated pCO2 exposure on the juvenile growth of the sea urchin Lytechinus variegatus, we reared individuals for three months in one of three target pCO2 levels: ambient seawater (380 µatm) and two scenarios that are projected to occur by the middle (560 µatm) and end (800 µatm) of this century. At the end of 89 days, urchins reared at ambient pCO2 weighed 12% more than those reared at 560 µatm and 28% more than those reared at 800 µatm. Skeletons were analyzed using scanning electron miscroscopy, revealing degradation of spines in urchins reared at elevated pCO2 (800 µatm). Our results indicate that elevated pCO2 levels projected to occur this century may adversely affect the development of juvenile sea urchins. Acidification-induced changes to juvenile urchin development would likely impair performance and functioning of juvenile stages with implications for adult populations. PMID:22833691

  3. Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios.

    PubMed

    Albright, Rebecca; Bland, Charnelle; Gillette, Phillip; Serafy, Joseph E; Langdon, Chris; Capo, Thomas R

    2012-09-01

    To evaluate the effect of elevated pCO(2) exposure on the juvenile growth of the sea urchin Lytechinus variegatus, we reared individuals for three months in one of three target pCO(2) levels: ambient seawater (380 µatm) and two scenarios that are projected to occur by the middle (560 µatm) and end (800 µatm) of this century. At the end of 89 days, urchins reared at ambient pCO(2) weighed 12% more than those reared at 560 µatm and 28% more than those reared at 800 µatm. Skeletons were analyzed using scanning electron miscroscopy, revealing degradation of spines in urchins reared at elevated pCO(2) (800 µatm). Our results indicate that elevated pCO(2) levels projected to occur this century may adversely affect the development of juvenile sea urchins. Acidification-induced changes to juvenile urchin development would likely impair performance and functioning of juvenile stages with implications for adult populations.

  4. Acetylcholinesterase Inhibitory Activity of Pigment Echinochrome A from Sea Urchin Scaphechinus mirabilis

    PubMed Central

    Lee, Sung Ryul; Pronto, Julius Ryan D.; Sarankhuu, Bolor-Erdene; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (EchA) is a dark-red pigment of the polyhydroxynaphthoquinone class isolated from sea urchin Scaphechinus mirabilis. Acetylcholinesterase (AChE) inhibitors are used in the treatment of various neuromuscular disorders, and are considered as strong therapeutic agents for the treatment of Alzheimer’s disease (AD). Although EchA is clinically used to treat ophthalmic diseases and limit infarct formation during ischemia/reperfusion injury, anti-AChE effect of EchA is still unknown. In this study, we investigated the anti-AChE effect of EchA in vitro. EchA and its exhausted form which lost anti-oxidant capacity did not show any significant cytotoxicy on the H9c2 and A7r5 cells. EchA inhibited AChE with an irreversible and uncompetitive mode. In addition, EchA showed reactive oxygen species scavenging activity, particularly with nitric oxide. These findings indicate new therapeutic potential for EchA in treating reduced acetylcholine-related diseases including AD and provide an insight into developing new AChE inhibitors. PMID:24918454

  5. Ca2+-transport in sea urchin unfertilized eggs: regulation by endogenous sulfated polysaccharides and K+.

    PubMed

    Landeira-Fernandez, Ana M; Aquino, Rafael S; Mourão, Paulo A S; de Meis, Leopoldo

    2006-10-01

    Previous data from our laboratory showed that the reticulum of the sea cucumber smooth muscle body wall retains both a sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and a sulfated polysaccharide. In this invertebrate, the transport of Ca(2+) by the SERCA is naturally inhibited by these endogenous sulfated polysaccharides. The inhibition is reverted by K(+) leading to an enhancement of the Ca(2+) transport rate. We now show that vesicles derived from the endoplasmic reticulum of unfertilized eggs from the sea urchin Arbacia lixula retain a SERCA that is able to transport Ca(2+) at the expense of ATP hydrolysis. As described for the sea cucumber SERCA isoform, the enzyme from the sea urchin is activated by K(+) but not by Li(+) and is inhibited by thapsigargin, a specific inhibitor of SERCA. A new sulfated polysaccharide was identified in the sea urchin eggs reticulum composed mainly by galactose, glucose, hexosamine and manose. After extraction and purification, this sulfated polysaccharide was able to inhibit the mammal SERCA isoform found in rabbit skeletal muscle and the inhibition is reversed by K(+). These data suggest that the regulation of the SERCA pump by K(+) and sulfated polysaccharides is not restricted to few marine invertebrates but is widespread.

  6. Effects of food origin and availability on sea urchin condition and feeding behaviour

    NASA Astrophysics Data System (ADS)

    Livore, Juan P.; Connell, Sean D.

    2012-02-01

    The origin of food is recognised to be an important trait for sedentary consumers that have little control over the source of their food. Elevated herbivory in sea urchins is often linked to poor gonad condition as provoked by reduced food availability, but there is little recognition of the possibility that the origin of food may contribute to their poor condition and elevated feeding. This study assesses the possibility that variation in food availability and origin may together affect urchin condition and feeding rates such that they account for more intensive grazing (by Heliocidaris erythrogramma) on sheltered than exposed coasts (South Australia). We experimentally tested the hypothesis that reduced food availability from sheltered coasts would result in poor gonad condition and greater feeding rate; whilst enhanced food availability from exposed coasts would result in better condition and reduced feeding rates. We found that reduced food had negative effects on condition and positive effects on feeding rates independently of coastal source. Greater food availability did not equate to better condition, rather it was the delivery of more food from exposed than sheltered coasts that translated into the better gonad condition and lower feeding rates. These results suggest that plant origin and availability could help explain the greater impacts of these urchins on sheltered coasts. Whilst other factors such as water energy and sea urchin density may contribute to variation in herbivory our results suggest that origin of food may also play a role in sea urchin condition and behaviour. Understanding how such traits link to large scale features of the environment may improve models that account for variation in strength of consumer effects across landscapes.

  7. Identification and characterization of PlAlix, the Alix homologue from the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Romancino, Daniele P; Anello, Letizia; Morici, Giovanni; d'Azzo, Alessandra; Bongiovanni, Antonella; Di Bernardo, Maria

    2013-02-01

    The sea urchin provides a relatively simple and tractable system for analyzing the early stages of embryo development. Here, we use the sea urchin species, Paracentrotus lividus, to investigate the role of Alix in key stages of embryogenesis, namely the egg fertilization and the first cleavage division. Alix is a multifunctional protein involved in different cellular processes including endocytic membrane trafficking, filamentous (F)-actin remodeling, and cytokinesis. Alix homologues have been identified in different metazoans; in these organisms, Alix is involved in oogenesis and in determination/differentiation events during embryo development. Herein, we describe the identification of the sea urchin homologue of Alix, PlAlix. The deduced amino acid sequence shows that Alix is highly conserved in sea urchins. Accordingly, we detect the PlAlix protein cross-reacting with monoclonal Alix antibodies in extracts from P. lividus, at different developmental stages. Focusing on the role of PlAlix during early embryogenesis we found that PlAlix is a maternal protein that is expressed at increasingly higher levels from fertilization to the 2-cell stage embryo. In sea urchin eggs, PlAlix localizes throughout the cytoplasm with a punctuated pattern and, soon after fertilization, accumulates in larger puncta in the cytosol, and in microvilli-like protrusions. Together our data show that PlAlix is structurally conserved from sea urchin to mammals and may open new lines of inquiry into the role of Alix during the early stages of embryo development.

  8. Identification of nickel response genes in abnormal early developments of sea urchin by differential display polymerase chain reaction.

    PubMed

    Ryu, Tae Kwon; Lee, Gunsup; Rhee, Yong; Park, Heung-Sik; Chang, Man; Lee, Sukchan; Lee, Jaean; Lee, Taek-Kyun

    2012-10-01

    Bioassays and biomarkers have been previously developed to assess the effects of heavy metal contaminants on the early life stages of the sea urchin. In this study, malformation in the early developmental processes was observed in sea urchin (Strongylocentrotus intermedius) larvae exposed to 10 ppm Ni for over 30 h. The most critical stage at which the triggering of nickel effects takes place is thought to be the blastula stage, which occurs after fertilization in larval development. To investigate the molecular-level responses of sea urchin exposed to heavy metal stress and to explore the differentially expressed genes that are induced or repressed by nickel, differential display polymerase chain reaction (DD-PCR) was used with sea urchin mRNAs. The malformation-related genes expressed in the early life stages of the sea urchin were cloned from larvae exposed to 10 ppm of nickel for 15 h, and accessed via DD-PCR. Sequence analysis results revealed that each of the genes evidenced high homology with EGF2, PCSK9, serine/threonine protein kinase, apolipophorin precursor protein, and MGC80921 protein/transcript variant 2. This result may prove useful in the development of novel biomarkers for the assessment of heavy metal stresses on sea urchin embryos.

  9. Complete sequence of the mitochondrial DNA in the sea urchin Arbacia lixula: conserved features of the echinoid mitochondrial genome.

    PubMed

    De Giorgi, C; Martiradonna, A; Lanave, C; Saccone, C

    1996-04-01

    The complete nucleotide sequence (15,719 nucleotides) of the mitochondrial DNA (mtDNA) from the sea urchin Arbacia lixula is presented. The comparison of gene arrangement between different echinoderm orders of the same class provides evidence that the gene organization is conserved within the same echinoderm class. The peculiarities of sea urchin mtDNA features, already described, are confirmed by the A. lixula mtDNA sequence. The comparison of the entire sequences of mtDNA among A. lixula, Paracentrotus lividus, and Strongylocentrotus purpuratus allowed us to detect peculiar features, common to the three sea urchin species, that can represent the molecular signature of the mt genome in the sea urchin group. Analysis of the nucleotide composition indicates that A. lixula mtDNA, in contrast with the mtDNA of other sea urchins, shows a bias in the use of T and tends to avoid the use of C, most evident in the neutral part of the molecule, such as the third codon positions. This observation indicates that the three sea urchin mtDNAs evolve under different mutation pressure. Analysis of the sequence evolution allowed us to confirm the phylogenetic tree. However, the absolute divergence time, calculated on the basis of paleontological estimates, largely diverged from the expected one.

  10. The effects of sea urchin grazing and drift algal blooms on a subtropical seagrass bed community.

    PubMed

    Maciá

    2000-03-30

    Subtropical seagrass beds can be subject to relatively high levels of direct herbivory and large blooms of drift algae, both of which can have important effects on the floral and faunal components of the community. Caging experiments were used to investigate these factors in a Thalassia testudinum bed in Biscayne Bay, Florida. Abundance of sea urchins, Lytechinus variegatus, and drift algae was manipulated within the cages. Naturally occurring levels of urchin grazing do not appear to affect the T. testudinum population. With experimentally increased urchin densities in the winter, seagrass shoot density and aboveground biomass decreased significantly. Similar effects were not detected in the summer, indicating that the impact of grazing on T. testudinum is lessened during this time of year. Shoot density was more vulnerable to grazing than aboveground biomass. This may be a result of grazing-induced increases in seagrass productivity, in which the remaining shoots produce more or longer leaves. In the winter, drift algal blooms form large mats that cover the seagrass canopy. Under the normal grazing regime these algal blooms do not have significant negative effects on the seagrass. With increased grazing pressure, however, there is a synergistic effect of grazing and drift algae on seagrass shoot density. At intermediate urchin density (10 per m(-2)), cages without algae did not undergo significant decreases in shoot density, while those with algae did. At the high density of urchins, the number of seagrass shoots in cages both with and without algae decreased, but the effect was more pronounced for cages with algae. Invertebrate abundance at the field site was low relative to other seagrass beds. There were no discernible effects, either positive or negative, of urchin and algae manipulations on the sampled invertebrate community.

  11. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    PubMed

    Kadri, Sabah; Hinman, Veronica F; Benos, Panayiotis V

    2011-01-01

    microRNAs (miRNAs) are small (20-23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html.

  12. Involvement of L(-)-rhamnose in sea urchin gastrulation: a live embryo assay.

    PubMed

    Smith, Tiffany N; Oppenheimer, Steven B

    2015-04-01

    The sea urchin embryo is a National Institutes of Health model system that has provided major developments, and is important in human health and disease. To obtain initial insights to identify glycans that mediate cellular interactions, Lytechinus pictus sea urchin embryos were incubated at 24 or 30 h post-fertilization with 0.0009-0.03 M alpha-cyclodextrin, melibiose, L(-)-rhamnose, trehalose, D(+)-xylose or L(-)-xylose in lower-calcium artificial sea water (pH 8.0, 15°C), which speeds the entry of molecules into the interior of the embryos. While α-cyclodextrin killed the embryos, and L(-)-xylose had small effects at one concentration tested, L(-)-rhamnose caused substantially increased numbers of unattached archenterons and exogastrulated embryos at low glycan concentrations after 18-24 h incubation with the sugar. The results were statistically significant compared with the control embryos in the absence of sugar (P < 0.05). The other sugars (melibiose, trehalose, D(+)-xylose) had no statistically significant effects whatsoever at any of the concentrations tested. In total, in the current study, 39,369 embryos were examined. This study is the first demonstration that uses a live embryo assay for a likely role for L(-)-rhamnose in sea urchin gastrula cellular interactions, which have interested investigators for over a century.

  13. Nickel and Copper Toxicity to Embryos of the Long-Spined Sea Urchin, Diadema savignyi.

    PubMed

    Rosen, G; Rivera-Duarte, I; Colvin, M A; Dolecal, R E; Raymundo, L J; Earley, P J

    2015-07-01

    The sensitivity of long-spined sea urchins (Diadema savignyi) collected from Guam (Northern Marianas Islands), USA, to nickel and copper in seawater was explored using 48-h embryo-larval development toxicity tests. The median effective concentrations (EC50) averaged 94 µg L(-1) for nickel, and 19 µg L(-1) from a single exposure to copper, and suggest relatively high sensitivity of this species to nickel compared with other sea urchin genera, but similar sensitivity to copper. Ambient nickel and copper concentrations concurrently sampled from 16 near-shore locations around Guam were one to two orders of magnitude lower than those that would be expected to result in adverse effects to D. savignyi embryos. Although nationally recommended chronic ambient water quality criteria, currently 8.2 and 3.1 µg L(-1) for nickel and copper, respectively, were not exceeded, recently derived qualifying toxicity data should be considered for updating these criteria to ensure protectiveness of sensitive tropical species.

  14. Developmental gene regulatory networks in sea urchins and what we can learn from them

    PubMed Central

    Martik, Megan L.; Lyons, Deirdre C.; McClay, David R.

    2016-01-01

    Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized.  Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation.  Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model.  That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource.  Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development.  We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work. PMID:26962438

  15. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus.

    PubMed

    Manno, Daniela; Carata, Elisabetta; Tenuzzo, Bernadetta A; Panzarini, Elisa; Buccolieri, Alessandro; Filippo, Emanuela; Rossi, Marco; Serra, Antonio; Dini, Luciana

    2012-12-14

    A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.

  16. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus

    NASA Astrophysics Data System (ADS)

    Manno, Daniela; Carata, Elisabetta; Tenuzzo, Bernadetta A.; Panzarini, Elisa; Buccolieri, Alessandro; Filippo, Emanuela; Rossi, Marco; Serra, Antonio; Dini, Luciana

    2012-12-01

    A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.

  17. Effects of metal ions and CCl/sub 4/ on sea urchin embryo (Paracentrotus lividus)

    SciTech Connect

    Congiu, A.M.; Calendi, E.; Ugazio, G.

    1984-02-01

    The determination of embryotoxicity is an experimental tool for detecting the risks of environmental pollutants. In this study, fertilized eggs of sea urchin have been observed morphologically during exposure to heavy metal salts or carbon tetrachloride, with the purpose of testing possible differences in toxicity of various classes of poisons. Mercuric chloride is the most active salt, still harmful at 0.25 x 10(-6) M, while potassium dichromate, cadmium chloride and lead nitrate block embryo development at concentrations ranging between 0.25 x 10(-4) and 0.25 x 10(-5) M. Carbon tetrachloride per se does not affect the gastrulation at concentrations up to 3,520 ppm, and fails in potentiating the toxicity of the studied metal salts. The selective susceptibility of the development phases of sea urchin embryos to different compounds renders this simple morphological study a sensitive and reliable model for predicting the toxicity of environmental pollutants.

  18. Swimming speed alteration in the early developmental stages of Paracentrotus lividus sea urchin as ecotoxicological endpoint.

    PubMed

    Morgana, Silvia; Gambardella, Chiara; Falugi, Carla; Pronzato, Roberto; Garaventa, Francesca; Faimali, Marco

    2016-04-01

    Behavioral endpoints have been used for decades to assess chemical impacts at concentrations unlikely to cause mortality. With recently developed techniques, it is possible to investigate the swimming behavior of several organisms under laboratory conditions. The aims of this study were: i) assessing for the first time the feasibility of swimming speed analysis of the early developmental stage sea urchin Paracentrotus lividus by an automatic recording system ii) investigating any Swimming Speed Alteration (SSA) on P. lividus early stages exposed to a chemical reference; iii) identifying the most suitable stage for SSA test. Results show that the swimming speed of all the developmental stages was easily recorded. The swimming speed was inhibited as a function of toxicant concentration. Pluteus were the most appropriate stage for evaluating SSA in P. lividus as ecotoxicological endpoint. Finally, swimming of sea urchin early stages represents a sensitive endpoint to be considered in ecotoxicological investigations.

  19. Spermidine is bound to a unique protein in early sea urchin embryos

    SciTech Connect

    Canellakis, Z.N.; Bondy, P.K.; Infante, A.A.

    1985-11-01

    Spermidine is rapidly taken up and becomes bound to protein during the very early hours of sea urchin embryogenesis. During the first 6 hr after fertilization of freshly obtained sea urchin eggs (Strongylocentrotus purpuratus), which are incubated in the presence of exogenous (/sup 3/H)-spermidine, up to 7% of the total cell-associated spermidine appears uniquely as spermidine bound in macromolecular form. This unique protein containing spermidine migrates as a single radioactive band in gel electrophoresis. It has a Mr of approximately equal to 30,000 and is readily distinguishable from the protein initiation factor eIF-4D, which has a Mr of 18,000, the only other identifiable protein known to date to be posttranslationally modified by polyamines.

  20. Characteristics of palindromic sequences in DNA of the sea urchin Stronglyocentrotus intermedius

    SciTech Connect

    Brykov, V.A.; Kukhlevskii, A.D.

    1986-03-20

    The fraction of palindromic sequences in the nuclear DNA of the sea urchin S. intermedius was characterized. Using chromatography on hydroxyapatite and treatment with S1 nuclease, it was shown that the fraction of palindromic sequences more than doubles when the sodium concentration in solution is increased or the temperature of reassociation is lowered. The increase is due to the involvement of inverted repeats in reassociation, which are characterized by a substantial nonhomologous character and/or the presence of an extended intervening DNA sequence. It was found by the method of reassociation of a nicked palindrome fraction with an excess of total homologous DNA that most of the inverted repeats in the sea urchin genome are unique sequences. The complexity of the palindrome fraction was estimated at 8.2 x 10/sup 7/ nucleotide pairs, and the number of palindromes per haploid genome approx. 500,000.

  1. Functional characterization of toposomes from sea urchin blastula embryos by a morphogenetic cell aggregation assay.

    PubMed Central

    Matranga, V; Kuwasaki, B; Noll, H

    1986-01-01

    This paper documents the evidence that the large oligomeric glycoprotein complexes of unknown function first isolated as 22S particles from sea urchin embryos are the sole agents responsible for the adhesive integrity of sea urchin blastula embryos. The conclusion rests on the demonstration that polyclonal IgG (as serum or monovalent Fab) against whole membranes or butanol-solubilized components of membranes, as well as against the purified particle itself, completely blocks reaggregation of dissociated blastula cells and that this inhibition is reversed by neutralization of the inhibitory antibodies with purified 22S antigen. An essential aspect of the evidence is the combination of quantitative endpoint titrations in microtiter wells with the qualitative parameters of morphogenesis. The new data complement previous evidence that morphogenesis is mediated by a general class of particles, toposomes, responsible for mechanical linkage between cells and their positional guidance in embryogenesis. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3816756

  2. Species specificity and individual variability of sea urchin sperm H2B histones.

    PubMed

    de Petrocellis, B; de Petrocellis, L; Lancieri, M; Geraci, G

    1980-01-01

    Total histones from the sperms and embryos of the sea urchins Paracentrotus lividus, Arbacia lixula, Psammechinus microtuberculatus and Sphaerechinus granularis hae been fractionated into the component molecules by electrophoretic analyses in SDS, in urea-acetic acid and in Triton-urea-acetic acid. Sperm H2B histones are in all cases different from those of the corresponding embryonic chromatins. Each sea urchin species has distinctive variants of the sperm H2B histones that are fractionated by electrophoresis in SDS acrylamide gel into two to four components forming a new class of lower mobility. This analytical method shows that individuals of the same species have different assortments of the H2B components. Electrophoretic analyses in Triton-urea also show multiple components for H2B but the patterns are similar in the different individuals.

  3. Extraction and analysis of carotenoids from the New Zealand sea urchin Evechinus chloroticus gonads.

    PubMed

    Garama, Daniel; Bremer, Phil; Carne, Alan

    2012-01-01

    Sea urchin gonad (roe) is a highly valued food in Japan and North America. Gonad price is strongly influenced by quality, with appearance, especially colour being a major determinant. Previous attempts to extract a carotenoid profile from the New Zealand sea urchin species Evechinus chloroticus have been challenging due to the large amount of lipid present in the gonad. A carotenoid extraction and high performance liquid chromatography (HPLC) analysis method was developed to reduce lipid contamination by incorporating a saponification and lipid cold precipitation in the extraction procedure. This method enabled greater carotenoid purity and enhanced analysis by HPLC. Echinenone was found to be the main carotenoid present in all E. chloroticus gonads. Dark coloured gonads contained higher levels of fucoxanthin/fucoxanthinol, β-carotene and xanthophylls such as astaxanthin and canthaxanthin. This information on the modification and deposition of carotenoids will help in the development of diets to enhance gonad colour.

  4. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.

    PubMed Central

    Livingston, B T; Wilt, F H

    1989-01-01

    The mechanism of determination of early embryonic cells has been investigated using sea urchin embryos. An efficacious method of isolating blastomere pairs from the animal or vegetal half of sea urchin embryos was developed. The overt differentiation of separated animal and vegetal blastomere pairs resembles that of separated animal and vegetal hemispheres isolated by manual dissection. Treatment of animal blastomeres with LiCl caused them to display a morphology resembling that of isolated vegetal blastomeres. The effects of separation of animal and vegetal blastomeres and of treatment of animal blastomeres with LiCl were examined at the molecular level using gut alkaline phosphatase and a spicule matrix protein RNA as markers of differentiation. Histochemical staining and in situ hybridization studies showed that these markers are normally only expressed in vegetal blastomeres but that their expression can be evoked in animal blastomeres by treatment with LiCl. Images PMID:2726745

  5. High regulatory gene use in sea urchin embryogenesis: Implications for bilaterian development and evolution.

    PubMed

    Howard-Ashby, Meredith; Materna, Stefan C; Brown, C Titus; Tu, Qiang; Oliveri, Paola; Cameron, R Andrew; Davidson, Eric H

    2006-12-01

    A global scan of transcription factor usage in the sea urchin embryo was carried out in the context of the Strongylocentrotus purpuratus genome sequencing project, and results from six individual studies are here considered. Transcript prevalence data were obtained for over 280 regulatory genes encoding sequence-specific transcription factors of every known family, but excluding genes encoding zinc finger proteins. This is a statistically inclusive proxy for the total "regulome" of the sea urchin genome. Close to 80% of the regulome is expressed at significant levels by the late gastrula stage. Most regulatory genes must be used repeatedly for different functions as development progresses. An evolutionary implication is that animal complexity at the stage when the regulome first evolved was far simpler than even the last common bilaterian ancestor, and is thus of deep antiquity.

  6. Expression of Nox genes in rat organs, mouse oocytes, and sea urchin eggs.

    PubMed

    Maru, Yoshiro; Nishino, Takeshi; Kakinuma, Katsuko

    2005-04-01

    Degenerate primers were designed to isolate new homologs of Nox family genes in rat organs and sea urchin eggs. The primers were capable of amplifying Nox1, Nox2, Nox3, Nox4, Duox1 and Duox2 but not Nox5, and failed to isolate novel homologs in rat. However, a novel homolog (named as Nox-U1) was identified in sea urchin eggs. In the most conserved region (amino acid 336--417 in human Nox2) Nox-U1 has the highest identity with Nox2, which appears to be abundant in mouse oocytes. However, phylogenetic analysis of the entire sequence has revealed that Nox-U1 is closer to Nox4 or Nox5 than Nox2 or Nox3. Histidine residues assumed to be responsible for heme ligation, motifs for FAD- and NADPH-binding, and two asparagine-linked glycosylation sites are conserved.

  7. Cytotoxic Activity of Six Samples of Brazilian Propolis on Sea Urchin (Lytechinus variegatus) Eggs

    PubMed Central

    Fernandes-Silva, C. C.; Freitas, J. C.; Salatino, A.; Salatino, M. L. F.

    2013-01-01

    The cytotoxic activities of extracts of four samples of propolis from the state of Minas Gerais (Southeast Brazil) and two from the state of Paraná (South Brazil) were evaluated using sea urchin (Lytechinus variegatus) eggs. Cytotoxic activity was observed, characterized mainly by the inhibition of the first cleavage of newly fertilized eggs. Methanol extracts at 32 µg mL−1 of all samples were highly active (97–100%). Extracts were also prepared by successive treatments of the samples with hexane, chloroform, ethyl acetate, and methanol. High activity was observed using the ethyl acetate fractions of all samples, but hexane and chloroform fractions of some samples also had high activity. Based on the chemical composition of the extracts and fractions (published previously), it is hypothesized that the cytotoxic activities observed are due mainly to artepillin C, p-coumaric acid, and kaempferide. The results suggest that caffeoylquinic acids have no cytotoxic activity in sea urchin eggs. PMID:23662146

  8. Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen.

    PubMed

    Exposito, J Y; D'Alessio, M; Solursh, M; Ramirez, F

    1992-08-05

    We isolated several overlapping cDNA clones covering the 4242 nucleotides of a Strongylocentrotus purpuratus transcript that codes for a fibrillar procollagen chain. The sea urchin polypeptide includes a 124-amino acid long amino pre-propeptide, a 1064-amino acid alpha-chain inclusive of 338 uninterrupted Gly-X-Y repeats, and a 226-residue carboxyl-propeptide. The distribution of the highly conserved cysteines within the last domain together with the structural configuration of the amino-propeptide and the organization of the corresponding coding region, strongly suggest that the sea urchin gene is evolutionarily related to the vertebrate pro-alpha 2(I) collagen. This work, therefore, represents the first report of the complete primary structure of an invertebrate fibrillar procollagen chain. It also provides a new insight into the evolution of the amino-propeptide, the most divergent among the major protein domains of fibrillar procollagen chains.

  9. New N-acyl taurine from the sea urchin Glyptocidaris crenularis.

    PubMed

    Zhou, Xuefeng; Xu, Tunhai; Wen, Kewei; Yang, Xian-Wen; Xu, Shi-Hai; Liu, Yonghong

    2010-01-01

    A new N-acyl taurine (1), together with a new natural product, l-(beta-D-ribofuranosyl)-1,2,4-triazole (4), and two known compounds (2 and 3), were isolated from the sea urchin, Glyptocidaris crenularis. The new N-acyl taurine was elucidated as 2-(5R,15S-dihydroxyeicosanoylamino) ethanesulfonic acid on the basis of spectroscopic (NMR, MS) analyses and the modified Mosher ester method. Compound 2 showed significant toxicity against brine shrimp larvae.

  10. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development.

    PubMed

    Gambardella, Chiara; Morgana, Silvia; Bari, Gaetano Di; Ramoino, Paola; Bramini, Mattia; Diaspro, Alberto; Falugi, Carla; Faimali, Marco

    2015-11-01

    The aim of this study was to investigate the potential toxicity of Silica nanoparticles (SiO2 NPs) in seawater by using the sea urchin Paracentrotus lividus as biological model. SiO2 NPs exposure effects were identified on the sperm of the sea urchin through a multidisciplinary approach, combining developmental biology, ecotoxicology, biochemistry, and microscopy analyses. The following responses were measured: (i) percentage of eggs fertilized by exposed sperm; (ii) percentage of anomalies and undeveloped embryos and larvae; (iii) enzyme activity alterations (acetylcholinesterase, AChE) in the early developmental stages, namely gastrula and pluteus. Sperms were exposed to seawater containing SiO2 NPs suspensions ranging from 0.0001mg/L to 50mg/L. Fertilization ability was not affected at any concentration, whereas a significant percentage of anomalies in the offspring were observed and quantified by means of EC50 at gastrula stage, including undeveloped and anomalous embryos (EC50=0.06mg/L), and at pluteus stage, including skeletal anomalies and delayed larvae (EC50=0.27mg/L). Moreover, morphological anomalies were observed in larvae at pluteus stage, by immunolocalizing molecules involved in larval development and neurotoxicity effects - such as acetylated tubulin and choline acetyltransferase (ChAT) - and measuring AChE activity. Exposure of sea urchins to SiO2 NPs caused neurotoxic damage and a decrease of AChE expression in a non-dose-dependent manner. In conclusion, through the multidisciplinary approach used in this study SiO2 NPs toxicity in sea urchin offspring could be assessed. Therefore, the measured responses are suitable for detecting embryo- and larval- toxicity induced by these NPs.

  11. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.

    PubMed

    Range, Ryan C; Wei, Zheng

    2016-05-01

    Anterior signaling centers help specify and pattern the early anterior neuroectoderm (ANE) in many deuterostomes. In sea urchin the ANE is restricted to the anterior of the late blastula stage embryo, where it forms a simple neural territory comprising several types of neurons as well as the apical tuft. Here, we show that during early development, the sea urchin ANE territory separates into inner and outer regulatory domains that express the cardinal ANE transcriptional regulators FoxQ2 and Six3, respectively. FoxQ2 drives this patterning process, which is required to eliminate six3 expression from the inner domain and activate the expression of Dkk3 and sFRP1/5, two secreted Wnt modulators. Dkk3 and low expression levels of sFRP1/5 act additively to potentiate the Wnt/JNK signaling pathway governing the positioning of the ANE territory around the anterior pole, whereas high expression levels of sFRP1/5 antagonize Wnt/JNK signaling. sFRP1/5 and Dkk3 levels are rigidly maintained via autorepressive and cross-repressive interactions with Wnt signaling components and additional ANE transcription factors. Together, these data support a model in which FoxQ2 initiates an anterior patterning center that implements correct size and positions of ANE structures. Comparisons of functional and expression studies in sea urchin, hemichordate and chordate embryos reveal striking similarities among deuterostome ANE regulatory networks and the molecular mechanism that positions and defines ANE borders. These data strongly support the idea that the sea urchin embryo uses an ancient anterior patterning system that was present in the common ambulacrarian/chordate ancestor.

  12. [Characteristic reaction of early sea urchin embryos to cytostatic analogs of transmitter substances].

    PubMed

    Buznikov, G A; Zvezdina, N D; Rogac, L; Rakic, L; Iurovskaia, M A

    1987-01-01

    Early embryos of Arbacia lixula sea urchin, obtained from eggs pretreated with KYR-12 serotonin analog or A-83 dopamine analog, develop quite normally. At the same time they have a sharply decreased supersensitivity to cytostatic analogs of "prenervous" transmitters; usual sensitivity to this analogs does not change. Besides, both the supersensitivity and the usual sensitivity stop decreasing upon an increase in the density of density of experimental embryos in the incubation medium.

  13. Kenyan coral reef lagoon fish: effects of fishing, substrate complexity, and sea urchins

    NASA Astrophysics Data System (ADS)

    McClanahan, T. R.

    1994-11-01

    Population density, number of species, diversity, and species-area relationships of fish species in eight common coral reef-associated families were studied in three marine parks receiving total protection from fishing, four sites with unregulated fishing, and one reef which recently received protection from fishing (referred to as a transition reef). Data on coral cover, reef topographic complexity, and sea urchin abundance were collected and correlated with fish abundance and species richness. The most striking result of this survey is a consistent and large reduction in the population density and species richness of 5 families (surgeonfish, triggerfish, butterflyfish, angelfish, and parrotfish). Poor recovery of parrotfish in the transition reef, relative to other fish families, is interpreted as evidence for competitive exclusion of parrotfish by sea urchins. Reef substrate complexity is significantly associated with fish abundance and diversity, but data suggest different responses for protected versus fished reefs, protected reefs having higher species richness and numbers of individuals than unprotected reefs for the same reef complexity. Sea urchin abundance is negatively associated with numbers of fish and fish species but the interrelationship between sea urchins, substrate complexity, coral cover, and management make it difficult to attribute a set percent of variance to each factor-although fishing versus no fishing appears to be the strongest variable in predicting numbers of individuals and species of fish, and their community similarity. Localized species extirpation is evident for many species on fished reefs (for the sampled area of 1.0 ha). Fifty-two of 110 species found on protected reefs were not found on unprotected reefs.

  14. A dataset comprising 141 magnetic resonance imaging scans of 98 extant sea urchin species

    PubMed Central

    2014-01-01

    Background Apart from its application in human diagnostics, magnetic resonance imaging (MRI) can also be used to study the internal anatomy of zoological specimens. As a non-invasive imaging technique, MRI has several advantages, such as rapid data acquisition, output of true three-dimensional imagery, and provision of digital data right from the onset of a study. Of particular importance for comparative zoological studies is the capacity of MRI to conduct high-throughput analyses of multiple specimens. In this study, MRI was applied to systematically document the internal anatomy of 98 representative species of sea urchins (Echinodermata: Echinoidea). Findings The dataset includes raw and derived image data from 141 MRI scans. Most of the whole sea urchin specimens analyzed were obtained from museum collections. The attained scan resolutions permit differentiation of various internal organs, including the digestive tract, reproductive system, coelomic compartments, and lantern musculature. All data deposited in the GigaDB repository can be accessed using open source software. Potential uses of the dataset include interactive exploration of sea urchin anatomy, morphometric and volumetric analyses of internal organs observed in their natural context, as well as correlation of hard and soft tissue structures. Conclusions The dataset covers a broad taxonomical and morphological spectrum of the Echinoidea, focusing on ‘regular’ sea urchin taxa. The deposited files significantly expand the amount of morphological data on echinoids that are electronically available. The approach chosen here can be extended to various other vertebrate and invertebrate taxa. We argue that publicly available digital anatomical and morphological data gathered during experiments involving non-invasive imaging techniques constitute one of the prerequisites for future large-scale genotype—phenotype correlations. PMID:25356198

  15. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.

  16. Functional studies of MP62 during male chromatin decondensation in sea urchins.

    PubMed

    Iribarren, Claudio; Hermosilla, Viviana; Morin, Violeta; Puchi, Marcia

    2013-08-01

    In amphibians, sperm histone transition post-fertilization during male pronucleus formation is commanded by histone chaperone Nucleoplasmin (NPM). Here, we report the first studies to analyze the participation of a Nucleoplasmin-like protein on male chromatin remodeling in sea urchins. In this report, we present the molecular characterization of a nucleoplasmin-like protein that is present in non fertilized eggs and early zygotes in sea urchin specie Tetrapygus niger. This protein, named MP62 can interact with sperm histones in vitro. By male chromatin decondensation assays and immunodepletion experiments in vitro, we have demonstrated that this protein is responsible for sperm nucleosome disorganization. Furthermore, as amphibian nucleoplasmin MP62 is phosphorylated in vivo immediately post-fertilization and this phosphorylation is dependent on CDK-cyclin activities found after fertilization. As we shown, olomoucine and roscovitine inhibits male nucleosome decondensation, sperm histone replacement in vitro and MP62 phosphorylation in vivo. This is the first report of a nucleoplasmin-like activity in sea urchins participating during male pronucleus formation post-fecundation.

  17. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    PubMed Central

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  18. Excision and transposition activity of Tc1/mariner superfamily transposons in sea urchin embryos.

    PubMed

    Sasakura, Yasunori; Yaguchi, Junko; Yaguchi, Shunsuke; Yajima, Mamiko

    2010-03-01

    Tc1/mariner superfamily transposons are used as transformation vectors in various model organisms. The utility of this transposon family is evidenced by the fact that Tc1/mariner transposons have loose host specificity. However, the activity of these transposons has been observed in only a few organisms, and a recent study in the ascidian Ciona intestinalis suggests that not all Tc1/ mariner transposons show loose host specificity. To understand host specificity, we used sea urchins, since they have a long history as materials of embryology and developmental biology. Transposon techniques have not been reported in this organism, despite the likelihood that these techniques would open up many experimental possibilities. Here we tested the activity of three Tc1/ mariner transposons (Minos, Sleeping Beauty, and Frog Prince) in the sea urchin Hemicentrotus pulcherrimus. Minos has both excision and transposition activity in H. pulcherrimus embryos, whereas no excision activity was detected for Sleeping Beauty or Frog Prince. This study suggests that Minos is active in a broad range of non-host organisms and can be used as a transformation tool in sea urchin embryos.

  19. Different migration patterns of sea urchin and mouse sperm revealed by a microfluidic chemotaxis device.

    PubMed

    Chang, Haixin; Kim, Beum Jun; Kim, Yoon Soo; Suarez, Susan S; Wu, Mingming

    2013-01-01

    Chemotaxis refers to a process whereby cells move up or down a chemical gradient. Sperm chemotaxis is known to be a strategy exploited by marine invertebrates such as sea urchins to reach eggs efficiently in moving water. Less is understood about how or whether chemotaxis is used by mammalian sperm to reach eggs, where fertilization takes place within the confinement of a reproductive tract. In this report, we quantitatively assessed sea urchin and mouse sperm chemotaxis using a recently developed microfluidic model and high-speed imaging. Results demonstrated that sea urchin Arbacia punctulata sperm were chemotactic toward the peptide resact with high chemotactic sensitivity, with an average velocity Vx up the chemical gradient as high as 20% of its average speed (238 μm/s), while mouse sperm displayed no statistically significant chemotactic behavior in progesterone gradients, which had been proposed to guide mammalian sperm toward eggs. This work demonstrates the validity of a microfluidic model for quantitative sperm chemotaxis studies, and reveals a biological insight that chemotaxis up a progesterone gradient may not be a universal strategy for mammalian sperm to reach eggs.

  20. Defensome against Toxic Diatom Aldehydes in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Marrone, Vincenzo; Ianora, Adrianna; Palumbo, Anna; Costantini, Maria

    2012-01-01

    Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants. PMID:22363721

  1. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    PubMed

    Marrone, Vincenzo; Piscopo, Marina; Romano, Giovanna; Ianora, Adrianna; Palumbo, Anna; Costantini, Maria

    2012-01-01

    Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  2. Identification of aquaporins in eggs and early embryogenesis of the sea urchin Paracentrotus lividus.

    PubMed

    Amaroli, Andrea; Ferrando, Sara; Gagliani, Maria Cristina; Gallus, Lorenzo; Masini, Maria Angela

    2013-04-01

    Sea urchins are echinoderms, marine invertebrates found at the base of the deutorostome lineage, which show separate sexes and are external spawners. In the sea urchin, efficient regulation of water homeostasis is essential for many biological processes such as cellular respiration, normal fertilization and correct embryo growth. In order to clarify some of these processes, the present study reports on the identification and function of aquaporin proteins in the sea urchin. Our results show, by immunoblot, immunoelectron microscopy and immunofluorescence analysis, the presence of aquaporin1- and aquaporin3-like proteins in virgin eggs and in early embryogenesis of Paracentrotus lividus and, by using known inhibitors of aquaporin functions, the functional and relevant role of aquaporin-3 in the fertilization process. AQP3 in particular seems to play a crucial role in high velocity water flux formations involved in the detachment of the vitelline layer during the slow block of polyspermy, while the presence of AQP1 and the increase of AQP3 in the first phase of the P. lividus developmental cycle, suggest their involvement in the appropriate homeostasis for embryo development.

  3. The use of cryopreserved sea urchin embryos (Paracentrotus lividus) in marine quality assessment.

    PubMed

    Paredes, E; Bellas, J

    2015-06-01

    We have established for first time an ecotoxicological bioassay using cryopreserved sea urchin embryos (Paracentotus lividus) and provided a comparison to the already standardized sea urchin embryo-larval bioassay, using selected (organic and inorganic) pollutants and sediment elutriates from 4 different locations from Ria de Vigo harbour (Galicia, NW Iberian Peninsula). A cryopreservation protocol was designed in order to enable the successful cryopreservation and cryobanking of gametes and embryos to be used for marine quality assessment and ensure the accessibility to high quality reproductive material all year round, as an option to conditioning adults for out of season reproduction. The calculated EC50 using the cryopreserved blastula was 53.7 μg L(-1) for copper, 81.0 μg L(-1) for lead, 300.6 μg L(-1) for BP-3 and 300.6 μg L(-1) for 4-MBC. The sensitivity of the classic sea urchin embryo-larval bioassay was compared with the bioassay conducted with cryopreserved blastula. The results showed that the use of cryopreserved blastula bioassay allows detecting lower concentrations of pollutants in comparison with the classic bioassay.

  4. Mitochondrial permeability transition pore (MPTP) desensitization increases sea urchin spermatozoa fertilization rate.

    PubMed

    Torrezan-Nitao, Elis; Boni, Raianna; Marques-Santos, Luis Fernando

    2016-10-01

    Mitochondrial permeability transition pore (MPTP) is a protein complex whose opening promotes an abrupt increase in mitochondrial inner membrane permeability. Calcium signaling pathways are described in gametes and are involved in the fertilization process. Although mitochondria may act as Ca(2+) store and have a fast calcium-releasing mechanism through MPTP, its contribution to fertilization remains unclear. The work aimed to investigate the MPTP phenomenon in sea urchin spermatozoa and its role on the fertilization. Several pharmacological tools were used to evaluate the MPTP's physiology. Our results demonstrated that MPTP occurs in male gametes in a Ca(2+) - and voltage-dependent manner and it is sensitive to cyclosporine A. Additionally, our data show that MPTP opening does not alter ROS generation in sperm cells. Inhibition of MPTP in spermatozoa strongly improved the fertilization rate, which may involve mechanisms that increase the spermatozoa lifespan. The present work is the first report of the presence of a voltage- and Ca(2+) -dependent MPTP in gametes of invertebrates and indicates MPTP opening as another evolutionary feature shared by sea urchins and mammals. Studies about MPTP in sea urchin male gametes may contribute to the elucidation of several mechanisms involved in sperm infertility.

  5. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation.

  6. Characterization of the sea urchin mitochondrial transcription factor A reveals unusual features.

    PubMed

    Deceglie, Stefania; Lionetti, Claudia; Stewart, James B; Habermann, Bianca; Roberti, Marina; Cantatore, Palmiro; Loguercio Polosa, Paola

    2014-01-01

    Sea urchin mtDNA is transcribed via a different mechanism compared to vertebrates. To gain information on the apparatus of sea urchin mitochondrial transcription we have characterized the DNA binding properties of the mitochondrial transcription factor A (TFAM). The protein contains two HMG box domains but, differently from vertebrates, displays a very short C-terminal tail. Phylogenetic analysis showed that the distribution of tail length is mixed in the different lineages, indicating that it is a trait that undergoes rapid changes during evolution. Homology modeling suggests that the protein adopts the same configuration of the human counterpart and possibly a similar mode of binding to DNA. DNase I footprinting showed that TFAM specifically contacts mtDNA at a fixed distance from three AT-rich consensus sequences that were supposed to act as transcriptional initiation sites. Bound sequences are homologous and contain an inverted repeat motif, which resembles that involved in the intercalation of human TFAM in LSP DNA. The here reported data indicate that sea urchin TFAM specifically binds mtDNA. The protein could intercalate residues at the DNA inverted motif and, despite its short tail, might have a role in mitochondrial transcription.

  7. Echinometrin: a novel mast cell degranulating peptide from the coelomic liquid of Echinometra lucunter sea urchin.

    PubMed

    Sciani, Juliana Mozer; Sampaio, Marlos Cortez; Zychar, Bianca Cestari; Gonçalves, Luis Roberto de Camargo; Giorgi, Renata; Nogueira, Thiago de Oliveira; de Melo, Robson Lopes; Teixeira, Catarina de Fátima Pereira; Pimenta, Daniel Carvalho

    2014-03-01

    Echinometra lucunter is an abundant sea urchin found in Brazilian waters. Accidents caused by this animal are common and are characterized by the penetration of the spines in the skin, which raises an inflammatory reaction through mechanical trauma as well as by the presumable action of toxins. Additionally, there have been reports of inflammatory reaction after the consumption of raw sea urchin eggs. In this work, we have isolated a peptide from E. lucunter coelomic fluid that could elicit inflammatory reactions, such as paw edema, leukocyte recruitment and diminishment of the pain threshold. This peptide was termed Echinometrin. Moreover, the peptide administration was able to produce in vivo degranulation of mouse mast cells, in a dose-response manner. The peptide was 'de novo' sequenced by mass spectrometry and its synthetic analog could reproduce all the observed effects. Sequence alignment indicates that this peptide is comprised in vitellogenin, an abundant nutrient protein present in the gametogenic cells of sea urchins, making it possible that echinometrin would be a cryptide with pro-inflammatory effects.

  8. Molecular cloning and characterization of the mRNA for cyclin from sea urchin eggs.

    PubMed Central

    Pines, J; Hunt, T

    1987-01-01

    We have isolated a cDNA clone encoding sea urchin cyclin and determined its sequence. It contains a single open reading frame of 409 amino acids which shows homology with clam cyclins. RNA transcribed in vitro from this sequence was efficiently translated in reticulocyte lysates, yielding full-length cyclin. Injection of nanogram amounts of this synthetic mRNA into Xenopus oocytes caused them to mature more rapidly than with progesterone treatment. The sea urchin cyclin underwent two posttranslational modifications in the Xenopus oocytes during maturation. The first occurred at about the time that maturation became cycloheximide-resistant, when a small apparent increase in the molecular weight of cyclin was observed. The second modification involved destruction of the cyclin at about the time of white spot appearance, just as would have occurred at the metaphase/anaphase transition in the natural environment of a cleaving sea urchin embryo. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. Fig. 9. PMID:2826125

  9. Biochemical and immunological relationships among fibronectin-like proteins from different sea urchin species.

    PubMed

    Matranga, V; Zito, F; Tesoro, V; Yokota, Y; Nakano, E

    1995-08-01

    Fibronectin-like proteins were purified from ovaries of the sea urchin species, Paracentrotus lividus (PI), Sphaerechinus granularis (Sg), Arbacia lixula (Al), Pseudocentrotus depressus (Pd), and Anthocidaris crassispina (Ac), by gelatin-Sepharose affinity chromatography. The major component had a molecular mass of 180 kDa and was eluted by 1 M NaCl or 8 M urea, depending on the species used. By substrate adhesion assay, we tested the biological activity of the 180 kDa protein purified from Paracentrotus lividus (P1-180K) and showed that it promotes the adhesion of homologous embryonic cells to the substrate. An antiserum, developed against Temnopleurus hardwickii fibronectin-like protein (Th-180K), was used in Western blots of the proteins purified from the five species. The antibody cross-reacted with Pl-180K, Pd-180K and Ac-180K. A peptide map of P1-180K, obtained by V8 protease partial digestion, was compared with those obtained from the other four proteins and showed an homology between 40 and 56%. This report confirms that fibronectin-like proteins can be purified from sea urchins on the basis of their binding to gelatin-Sepharose; the proteins differ for their binding affinity to gelatin and share different epitopes, suggesting that they are members of a sea urchin fibronectin super family.

  10. A myogenic factor from sea urchin embryos capable of programming muscle differentiation in mammalian cells.

    PubMed Central

    Venuti, J M; Goldberg, L; Chakraborty, T; Olson, E N; Klein, W H

    1991-01-01

    Using the basic helix-loop-helix domain of the myogenic factor myogenin as a probe, we identified a clone from a sea urchin cDNA library with considerable sequence similarity to the vertebrate myogenic factors. This cDNA, sea urchin myogenic factor 1 (SUM-1), transactivated a muscle creatine kinase-chloramphenicol acetyltransferase reporter gene in 10T1/2 fibroblasts to a level comparable to that of the vertebrate myogenic factors. In addition, bacterially expressed beta-galactosidase-SUM-1 fusion protein interacted directly with the kappa E-2 site in the muscle creatine kinase enhancer core as assayed by electrophoretic mobility shift assays. Stably transfected SUM-1 activated the muscle differentiation program and converted 10T1/2 cells from fibroblasts to myotubes. In sea urchin embryos, SUM-1 RNA was not detected before gastrulation. It accumulated to its highest levels during the prism stage when myoblasts were first detected by myosin immunostaining and then diminished as myocytes differentiated. SUM-1 protein was localized in secondary mesenchyme cells when they could first be identified as muscle cells by myosin immunostaining. These results implicate SUM-1 as a regulatory factor involved in the early decision of a pluripotent secondary mesenchyme cell to convert to a myogenic fate. SUM-1 is an example of an invertebrate myogenic factor that is capable of functioning in mammalian cells. Images PMID:2068103

  11. Synaptotagmin I is involved in the regulation of cortical granule exocytosis in the sea urchin.

    PubMed

    Leguia, Mariana; Conner, Sean; Berg, Linnea; Wessel, Gary M

    2006-07-01

    Cortical granules are stimulus-dependent secretory vesicles found in the egg cortex of most vertebrates and many invertebrates. Upon fertilization, an increase in intracellular calcium levels triggers cortical granules to exocytose enzymes and structural proteins that permanently modify the extracellular surface of the egg to prevent polyspermy. Synaptotagmin is postulated to be a calcium sensor important for stimulus-dependent secretion and to test this hypothesis for cortical granule exocytosis, we identified the ortholog in two sea urchin species that is present selectively on cortical granules. Characterization by RT-PCR, in-situ RNA hybridization, Western blot and immunolocalization shows that synaptotagmin I is expressed in a manner consistent with it having a role during cortical granule secretion. We specifically tested synaptotagmin function during cortical granule exocytosis using a microinjected antibody raised against the entire cytoplasmic domain of sea urchin synaptotagmin I. The results show that synaptotagmin I is essential for normal cortical granule dynamics at fertilization in the sea urchin egg. Identification of this same protein in other developmental stages also shown here will be important for interpreting stimulus-dependent secretory events for signaling throughout embryogenesis.

  12. Primary cell cultures from sea urchin ovaries: a new experimental tool.

    PubMed

    Mercurio, Silvia; Di Benedetto, Cristiano; Sugni, Michela; Candia Carnevali, M Daniela

    2014-02-01

    In the present work, primary cell cultures from ovaries of the edible sea urchin Paracentrotus lividus were developed in order to provide a simple and versatile experimental tool for researches in echinoderm reproductive biology. Ovary cell phenotypes were identified and characterized by different microscopic techniques. Although cell cultures could be produced from ovaries at all stages of maturation, the cells appeared healthier and viable, displaying a higher survival rate, when ovaries at early stages of gametogenesis were used. In terms of culture medium, ovarian cells were successfully cultured in modified Leibovitz-15 medium, whereas poor results were obtained in minimum essential medium Eagle and medium 199. Different substrates were tested, but ovarian cells completely adhered only on poly-L-lysine. To improve in vitro conditions and stimulate cell proliferation, different serum-supplements were tested. Fetal calf serum and an originally developed pluteus extract were detrimental to cell survival, apparently accelerating processes of cell death. In contrast, cells cultured with sea urchin egg extract appeared larger and healthier, displaying an increased longevity that allowed maintaining them for up to 1 month. Overall, our study provides new experimental bases and procedures for producing successfully long-term primary cell cultures from sea urchin ovaries offering a good potential to study echinoid oogenesis in a controlled system and to investigate different aspects of echinoderm endocrinology and reproductive biology.

  13. Comparative biochemical analysis of sea urchin peristome and rat tail tendon collagen.

    PubMed

    Robinson, J J

    1997-06-01

    We report here a biochemical comparison between type 1 rat tail tendon collagen and collagen isolated from sea urchin peristome tissue. The sea urchin collagen consisted of two species of apparent mol masses, 140 and 116 kDa. Amino acid compositional analysis of the 140 and 116 kDa species revealed the presence of hydroxyproline and hydroxylysine as well as a glycine content of 28.1 mol.%. In solubility experiments the rat tail tendon collagen was found to precipitate at sodium chloride concentrations between 1 and 2 M while peristome collagen remained soluble at salt concentrations as high as 4 M. Incubation of the peristome and rat tail tendon collagen preparations with a sea urchin collagenase/gelatinase resulted in cleavage of the former but not the latter collagen. Upon heat denaturation at 60 degrees C, however, the rat tail tendon collagen served as a substrate for the gelatinase. Cyanogen bromide cleavage of rat tail and peristome collagens generated largely unique peptide maps. Collectively, these results suggest that structural differences exist between echinoderm and vertebrate type 1 collagens.

  14. The test skeletal matrix of the black sea urchin Arbacia lixula.

    PubMed

    Kanold, Julia M; Immel, Francoise; Broussard, Cédric; Guichard, Nathalie; Plasseraud, Laurent; Corneillat, Marion; Alcaraz, Gérard; Brümmer, Franz; Marin, Frédéric

    2015-03-01

    In the field of biomineralization, the past decade has been marked by the increasing use of high throughput techniques, i.e. proteomics, for identifying in one shot the protein content of complex macromolecular mixtures extracted from mineralized tissues. Although crowned with success, this approach has been restricted so far to a limited set of key-organisms, such as the purple sea urchin Strongylocentrotus purpuratus, the pearl oyster or the abalone, leaving in the shadow non-model organisms. As a consequence, it is still unknown to what extent the calcifying repertoire varies, from group to group, at high (phylum, class), median (order, family) or low (genus, species) taxonomic rank. The present paper shows the first biochemical and proteomic characterization of the test matrix of the Mediterranean black sea urchin Arbacia lixula (Arbacioida). Our work suggests that the skeletal repertoire of A. lixula exhibits some similarities but also several differences with that of the few sea urchin species (S. purpuratus, Paracentrotus lividus), for which molecular data are already available. The differences may be attributable to the taxonomic position of the species considered: A. lixula belongs to an order - Arbacioida - that diverged more than one hundred million years ago from the Camarodonta, which includes the two species S. purpuratus and P. lividus. For the echinoid class, we suggest that large-scale proteomic screening should be performed in order to understand which molecular functions related to calcification are conserved and which ones have been co-opted for biomineralization in particular lineages.

  15. Sea urchin tooth mineralization: Calcite present early in the aboral plumula

    PubMed Central

    Stock, Stuart R.; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D.; Dorvee, Jason R.

    2012-01-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: When and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron x-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. PMID:22940703

  16. Mapping sea urchins tube feet proteome--a unique hydraulic mechano-sensory adhesive organ.

    PubMed

    Santos, Romana; Barreto, Angela; Franco, Catarina; Coelho, Ana Varela

    2013-02-21

    Marine organisms secrete adhesives for substrate attachment that to be effective require functional assembly underwater and displacement of water, ions, and weakly bound polyions that are ubiquitous in seawater. Therefore, understanding the characteristics of these protein/carbohydrate-based marine adhesives is imperative to decipher marine adhesion and also, to accelerate the development of new biomimetic underwater adhesives and anti-fouling agents. The present study, aims at mapping the proteome of the sea urchin Paracentrotus lividus adhesive organs using a combination of complementary protein separation techniques (1-D-nanoLC and 2-DE), databases and search algorithms. This strategy resulted in the identification of 328 non-redundant proteins, constituting the first comprehensive list of sea urchin tube feet proteins. Given the known importance of phosphorylation and glycosylation in marine adhesion, the 2DE proteome was re-analyzed with specific fluorescent stains for these two PTMs, resulting in the identification of 69 non-redundant proteins. The obtained results demonstrate that tube feet are unique mechano-sensory adhesive organs and highlight putative adhesive proteins, that although requiring further confirmation, constitute a step forward in the quest to decipher sea urchins temporary adhesion.

  17. Age-related changes in gene expression in tissues of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Loram, Jeannette; Bodnar, Andrea

    2012-05-01

    The life history of sea urchins is fundamentally different from that of traditional models of aging and therefore they provide the opportunity to gain new insight into this complex process. Sea urchins grow indeterminately, reproduce throughout their life span and some species exhibit negligible senescence. Using a microarray and qRT-PCR, age-related changes in gene expression were examined in three tissues (muscle, esophagus and nerve) of the sea urchin species Strongylocentrotus purpuratus. The results indicate age-related changes in gene expression involving many key cellular functions such as the ubiquitin-proteasome pathway, DNA metabolism, signaling pathways and apoptosis. Although there are tissue-specific differences in the gene expression profiles, there are some characteristics that are shared between tissues providing insight into potential mechanisms that promote lack of senescence in these animals. As an example, there is an increase in expression of genes encoding components of the Notch signaling pathway with age in all three tissues and a decrease in expression of the Wnt1 gene in both muscle and nerve. The interplay between the Notch and Wnt pathways may be one mechanism that ensures continued regeneration of tissues with advancing age contributing to the general lack of age-related decline in these animals.

  18. Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Agca, Cavit; Elhajj, Milad C; Klein, William H; Venuti, Judith M

    2011-12-01

    Several behavioral and electrophysiological studies indicate that all classes of echinoderms, including Echinoidia, the class to which sea urchins belong, are photosensitive and exhibit complex behavioral responses to light or changes in light intensity. However, no discrete photosensitive structure has been identified in sea urchins. The purpose of this study was to provide new insights into eye evolution by determining whether distinct photosensory structures are present in adult sea urchins. Recently, we showed that the Strongylocentrotus purpuratus genome contains orthologs of many mammalian retinal genes and that these genes are expressed in tube feet, suggesting the presence of photoreceptor neurons. To determine whether this is so, we identified several features of tube feet that relate to a possible invertebrate phototransduction system. We show that rhabdomeric opsin is expressed severalfold higher within the disk region of the tube feet and is the most abundant opsin. Immunostaining identified βIII-tubulin-expressing cells at the periphery of disk in the vicinity of the synaptotagmin-expressing nerve fibers. We also showed that Pax6 expression in the disk was restricted to the periphery, where small clusters of putative sensory neurons reside. Our results reveal neuromuscular organization of the tube foot neuromuscular system. They further support earlier studies suggesting the presence of a photosensory system in tube feet.

  19. Microgravity Effecs During Fertilization, Cell Division, Development, and Calcium Metabolism in Sea Urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1999-01-01

    Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. Fundamental occurrences in cell biology which are likely to depend on gravity include cytoskeletal dynamics, chromatin and centrosome cycling, and ion immobilization. These events can be studied during fertilization and embryogenesis within invertebrate systems. We have chosen the sea urchin system to study the effects of microgravity on cytoskeletal processes and calcium metabolism during fertilization, cell division, development, and embryogenesis. Experiments during an aircraft parabolic flight (KC-135) demonstrated: (1) the viability of sea urchin eggs prior to fertilization, (2) the suitability of our specimen containment system, (3) the feasibility of fertilization in a reduced gravity environment (which was achieved during 25 seconds of reduced gravity under parabolic flight conditions). Two newly developed pieces of spaceflight hardware made further investigations possible on a spaceflight (STS-77); (1) the Aquatic Research Facility (ARF), and (2) the Fertilization Syringe Unit (FSU). The Canadian Space Agency developed ARF to conduct aquatic spaceflight experiments requiring controlled conditions of temperature, humidity, illumination, and fixation at predetermined time points. It contained a control centrifuge which simulated the 1 g environment of earth during spaceflight. The FSU was developed at the Kennedy Space Center (KSC) by the Bionetics Corporation specifically to enable the crew to perform sea urchin fertilization operations in space.

  20. The major yolk protein of sea urchins is endocytosed by a dynamin-dependent mechanism.

    PubMed

    Brooks, Jacqueline M; Wessel, Gary M

    2004-09-01

    Sea urchin oocytes grow to 10 times their original size during oogenesis by both synthesizing and importing a specific repertoire of proteins to drive fertilization and early embryogenesis. During the vitellogenic growth period, the major yolk protein (MYP), a transferrin-like protein, is synthesized in the gut, transported into the ovary, and actively endocytosed by the oocytes. Here, we begin to dissect this mechanism by first testing the hypothesis that MYP endocytosis is dynamin-dependent. We have identified a sea urchin dynamin cDNA that is highly similar in amino acid sequence, structure, and size to mammalian dynamin I: it contains an N-terminal GTPase domain, a pleckstrin-homology domain, and a C-terminal proline-rich domain. Sea urchin dynamin is enriched at the cortex of oocytes and colocalizes to MYP endocytic vesicles at the oocyte periphery. To test for a functional relationship between MYP endocytosis and dynamin, we used a dominant-negative human dynamin I mutant protein containing an alteration within the GTPase domain (hDyn(K44A)) to specifically compete for dynamin function. Using a fluorescent MYP construct to follow its endocytosis solely, as well as a general endocytosis marker, we demonstrate that the disruption of dynamin function significantly reduces MYP uptake but does not affect fluid-phase endocytosis. Using this specific biochemical approach, we are able to separate distinct pathways of endocytosis during oogenesis and learn that dynamin-mediated endocytosis is responsible for MYP endocytosis but not fluid-phase uptake.

  1. Experimental evaluation of the anti-attachment effect of microalgal mats on grazing activity of the sea urchin Strongylocentrotus nudus in oscillating flows.

    PubMed

    Kawamata, Shigeru

    2012-05-01

    Algal mats can hinder the adhesion of the tube feet of sea urchins. This leads to the hypothesis that the restriction of sea urchin feeding activity by wave action can potentially be enhanced by the presence of algal mats, which will facilitate the survival of kelp recruits at sites with wave action in urchin barrens. To evaluate the potential anti-attachment effect of algal mats on sea urchins, a laboratory tank experiment was performed on the movement of Strongylocentrotus nudus sea urchins and their grazing on juvenile kelp plants at the center of 30×30 cm flat test substrates with or without a thin-layer microalgal mat at four levels of oscillatory flow (maximum orbital velocity: 10, 20, 30 and 40 cm s(-1)). The grazing loss of kelp slightly increased with increasing velocity up to 30 cm s(-1) in the absence of microalgal mats, while in contrast the loss substantially decreased at 30 cm s(-1) in their presence. Sea urchins were dislodged more frequently at 20 cm s(-1) or higher velocities in the presence of microalgal mats. Mats were frequently abraded by scraping by the adoral spines during urchin movement at high velocities (30 and 40 cm s(-1)) but were subject to no or only slight urchin grazing in most cases. The results indicate that the overall decrease in grazing loss of kelp within the microalgal mats was attributable to the anti-attachment effect on urchins during incursions rather than due to urchins grazing on the mats.

  2. Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors

    PubMed Central

    2013-01-01

    Background In sea urchin larvae the circumesophageal fibers form a prominent muscle system of mesodermal origin. Although the morphology and later development of this muscle system has been well-described, little is known about the molecular signature of these cells or their precise origin in the early embryo. As an invertebrate deuterostome that is more closely related to the vertebrates than other commonly used model systems in myogenesis, the sea urchin fills an important phylogenetic gap and provides a unique perspective on the evolution of muscle cell development. Results Here, we present a comprehensive description of the development of the sea urchin larval circumesophageal muscle lineage beginning with its mesodermal origin using high-resolution localization of the expression of several myogenic transcriptional regulators and differentiation genes. A few myoblasts are bilaterally distributed at the oral vegetal side of the tip of the archenteron and first appear at the late gastrula stage. The expression of the differentiation genes Myosin Heavy Chain, Tropomyosin I and II, as well as the regulatory genes MyoD2, FoxF, FoxC, FoxL1, Myocardin, Twist, and Tbx6 uniquely identify these cells. Interestingly, evolutionarily conserved myogenic factors such as Mef2, MyoR and Six1/2 are not expressed in sea urchin myoblasts but are found in other mesodermal domains of the tip of the archenteron. The regulatory states of these domains were characterized in detail. Moreover, using a combinatorial analysis of gene expression we followed the development of the FoxF/FoxC positive cells from the onset of expression to the end of gastrulation. Our data allowed us to build a complete map of the Non-Skeletogenic Mesoderm at the very early gastrula stage, in which specific molecular signatures identify the precursors of different cell types. Among them, a small group of cells within the FoxY domain, which also express FoxC and SoxE, have been identified as plausible myoblast

  3. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).

    PubMed

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Shamsudin, Mariana Nor; Amin, S M N

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.

  4. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties.

    PubMed

    Stock, Stuart R

    2014-01-01

    Sea urchins possess a set of five teeth which are self-sharpening and which continuously replace material lost through abrasion. The continuous replacement dictates that each tooth consists of the range of developmental states from discrete plates in the plumula, the least mineralized and least mature portion, to plates and needle-prisms separated by cellular syncytia at the beginning of the tooth shaft to a highly dense structure at the incisal end. The microstructures and their development are reviewed prior to a discussion of current understanding of the biomineralization processes operating during tooth formation. For example, the mature portions of each tooth consist of single crystal calcite but the early stages of mineral formation (e.g. solid amorphous calcium carbonate, ions in solution) continue to be investigated. The second stage mineral that cements the disparate plates and prisms together has a much higher Mg content than the first stage prisms and needles and allows the tooth to be self-sharpening. Mechanically, the urchin tooth's calcite performs better than inorganic calcite, and aspects of tooth functionality that are reviewed include the materials properties themselves and the role of the orientations of the plates and prisms relative to the axes of the applied loads. Although the properties and microarchitecture of sea urchin teeth or other mineralized tissues are often described as optimized, this view is inaccurate because these superb solutions to the problem of constructing functional structures are intermediaries not endpoints of evolution.

  5. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties

    PubMed Central

    Stock, Stuart R.

    2015-01-01

    Sea urchins possess a set of five teeth which are self-sharpening and which continuously replace material lost through abrasion. The continuous replacement dictates that each tooth consists of the range of developmental states from discrete plates in the plumula, the least mineralized and least mature portion, to plates and needle-prisms separated by cellular syncytia at the beginning of the tooth shaft to a highly dense structure at the incisal end. The microstructures and their development are reviewed prior to a discussion of current understanding of the biomineralization processes operating during tooth formation. For example, the mature portions of each tooth consist of single crystal calcite but the early stages of mineral formation (e.g. solid amorphous calcium carbonate, ions in solution) continue to be investigated. The second stage mineral that cements the disparate plates and prisms together has a much higher Mg content than the first stage prisms and needles and allows the tooth to be self-sharpening. Mechanically, the urchin tooth’s calcite performs better than inorganic calcite, and aspects of tooth functionality that are reviewed include the materials properties themselves and the role of the orientations of the plates and prisms relative to the axes of the applied loads. Although the properties and microarchitecture of sea urchin teeth or other mineralized tissues are often described as optimized, this view is inaccurate because these superb solutions to the problem of constructing functional structures are intermediaries not endpoints of evolution. PMID:24437604

  6. Contemporary evolution of sea urchin gamete-recognition proteins: experimental evidence of density-dependent gamete performance predicts shifts in allele frequencies over time.

    PubMed

    Levitan, Don R

    2012-06-01

    Species whose reproductive strategies evolved at one density regime might be poorly adapted to other regimes. Field and laboratory experiments on the sea urchin Strongylocentrotus franciscanus examined the influences of the two most common sperm-bindin alleles, which differ at two amino acid sites, on fertilization success. In the field experiment, the arginine/glycine (RG) genotype performed best at low densities and the glycine/arginine (GR) genotype at high densities. In the laboratory experiment, the RG genotype had a higher affinity with available eggs, whereas the GR genotype was less likely to induce polyspermy. These sea urchins can reach 200 years of age. The RG allele dominates in larger/old sea urchins, whereas smaller/younger sea urchins have near-equal RG and GR allele frequencies. A latitudinal cline in RG and GR genotypes is consistent with longer survival of sea urchins in the north and with predominance of RG genotypes in older individuals. The largest/oldest sea urchins were likely conceived at low densities, before sea-urchin predators, such as sea otters, were overharvested and sea-urchin densities exploded off the west coast of North America. Contemporary evolution of gamete-recognition proteins might allow species to adapt to shifts in abundances and reduces the risk of reproductive failure in altered populations.

  7. Sea urchin overgrazing of seagrasses: A review of current knowledge on causes, consequences, and management

    NASA Astrophysics Data System (ADS)

    Eklöf, J. S.; de la Torre-Castro, M.; Gullström, M.; Uku, J.; Muthiga, N.; Lyimo, T.; Bandeira, S. O.

    2008-09-01

    Sea urchins are one of the most common seagrass macro-grazers in contemporary seagrass systems. Occasionally their grazing rates exceed seagrass growth rates, a phenomenon sometimes referred to as overgrazing. Because of a reported increasing frequency of overgrazing events, concomitant with loss of seagrass-associated ecosystem services, it has been suggested that overgrazing is one of the key threats to tropical and subtropical seagrasses. In light of this, we review the current knowledge on causes, consequences, and management of sea urchin overgrazing of seagrasses. Initially we argue that the definition of overgrazing must include scale and impairment of ecosystem services, since this is the de facto definition used in the literature, and will highlight the potential societal costs of seagrass overgrazing. A review of 16 identified cases suggests that urchin overgrazing is a global phenomenon, ranging from temperate to tropical coastal waters and involving at least 11 seagrass and 7 urchin species. Even though most overgrazing events seem to affect areas of <0.5 km 2, and recovery often occurs within a few years, overgrazing can have a range of large, long-term indirect effects such as loss of associated fauna and decreased sediment stabilization. A range of drivers behind overgrazing have been suggested, including bottom-up (nutrient enrichment), top-down (reduced predation control due to e.g. overfishing), "side-in" mechanisms (e.g. changes in water temperature) and natural population fluctuations. Based on recent studies, there seems to be fairly strong support for the top-down and bottom-up hypotheses. However, many potential drivers often co-occur and interact, especially in areas with high anthropogenic pressure, suggesting that multiple disturbances—by simultaneously reducing predation control, increasing urchin recruitment and reducing the resistance of seagrasses—could pave the way for overgrazing. In management, the most common response to

  8. MicroRaman, PXRD, EDS and microscopic investigation of magnesium calcite biomineral phases. The case of sea urchin biominerals

    NASA Astrophysics Data System (ADS)

    Borzęcka-Prokop, B.; Wesełucha-Birczyńska, A.; Koszowska, E.

    2007-02-01

    This study concerns Mg-calcite characterization (and in particular molecular structure and microstructural studies of mineral phases) of a sea urchin mineralised test and spines. Sea urchins are spiny sea animals (kingdom Animalia, phylum Echinodermata, class Echinoidea). Microscopic observations, SEM, EDS, PXRD and spectroscopic microRaman methods have been applied to characterize the biomineral parts of the sea urchin. The latter technique is very useful in research of biological systems and especially suitable for monitoring differences within biomineral phases exhibiting varieties of morphological forms. Crystalline magnesium calcium carbonate, Mg xCa 1- xCO 3 (magnesian calcite; space group R-3 cH; a = 4.9594(8) Å, c = 16.886(6) Å), has been identified as the predominant biomineral component.

  9. Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos.

    PubMed

    Pinsino, Annalisa; Bergami, Elisa; Della Torre, Camilla; Vannuccini, Maria Luisa; Addis, Piero; Secci, Marco; Dawson, Kenneth A; Matranga, Valeria; Corsi, Ilaria

    2017-03-01

    Polystyrene nanoparticles have been shown to pose serious risk to marine organisms including sea urchin embryos based on their surface properties and consequently behaviour in natural sea water. The aim of this study is to investigate the toxicity pathways of amino polystyrene nanoparticles (PS-NH2, 50 nm) in Paracentrotus lividus embryos in terms of development and signalling at both protein and gene levels. Two sub-lethal concentrations of 3 and 4 μg/mL of PS-NH2 were used to expose sea urchin embryos in natural sea water (PS-NH2 as aggregates of 143 ± 5 nm). At 24 and 48 h post-fertilisation (hpf) embryonic development was monitored and variations in the levels of key proteins involved in stress response and development (Hsp70, Hsp60, MnSOD, Phospho-p38 Mapk) as well as the modulation of target genes (Pl-Hsp70, Pl-Hsp60, Pl-Cytochrome b, Pl-p38 Mapk, Pl-Caspase 8, Pl-Univin) were measured. At 48 hpf various striking teratogenic effects were observed such as the occurrence of cells/masses randomly distributed, severe skeletal defects and delayed development. At 24 hpf a significant up-regulation of Pl-Hsp70, Pl-p38 Mapk, Pl-Univin and Pl-Cas8 genes was found, while at 48 hpf only for Pl-Univin was observed. Protein profile showed different patterns as a significant increase of Hsp70 and Hsp60 only after 48 hpf compared to controls. Conversely, P-p38 Mapk protein significantly increased at 24 hpf and decreased at 48 hpf. Our findings highlight that PS-NH2 are able to disrupt sea urchin embryos development by modulating protein and gene profile providing new understandings into the signalling pathways involved.

  10. A sea urchin homologue of the chordate Brachyury (T) gene is expressed in the secondary mesenchyme founder cells.

    PubMed

    Harada, Y; Yasuo, H; Satoh, N

    1995-09-01

    Chordates are thought to have emerged from some common ancestor of deuterostomes by organizing shared anatomical and embryological features including a notochord, a dorsal nerve cord and pharyngeal gill slits. Because the notochord is the most prominent feature of chordates and because the Brachyury (T) gene is essential for notochord formation, the T gene is a key molecular probe with which to explore the origin and evolution of chordates. We investigated whether the sea urchin (echinoderm) conserves the T gene and, if so, where the sea urchin T gene is expressed. A cDNA clone for the sea urchin T (HpTa) gene contained a long open reading frame that encodes a polypeptide of 434 amino acids. Although the overall degree of amino acid identity was not very high (52%, sea urchin/mouse), in the T domain of the N terminus the amino acid identity was 73% (sea urchin/mouse). The HpTa gene is present as a single copy per haploid genome. As with the chordate T gene, the expression of HpTa is transient, being first detected in the swimming blastula, maximally transcribed in the gastrula, decreasing at the prism larval stage and barely detectable at the pluteus larval stage. HpTa transcripts were found in the secondary mesenchyme founder cells, vegetal plate of the mesenchyme blastula, extending tip of the invaginating archenteron and, finally, the secondary mesenchyme cells at the late-gastrula stage.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky reefs.

    PubMed

    Hereu, Bernat; Linares, Cristina; Sala, Enric; Garrabou, Joaquim; Garcia-Rubies, Antoni; Diaz, David; Zabala, Mikel

    2012-01-01

    We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management.

  12. Multiple Processes Regulate Long-Term Population Dynamics of Sea Urchins on Mediterranean Rocky Reefs

    PubMed Central

    Hereu, Bernat; Linares, Cristina; Sala, Enric; Garrabou, Joaquim; Garcia-Rubies, Antoni; Diaz, David; Zabala, Mikel

    2012-01-01

    We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management. PMID:22606306

  13. Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus.

    PubMed

    Barbaglio, Alice; Tricarico, Serena; Ribeiro, Ana R; Di Benedetto, Cristiano; Barbato, Marta; Dessì, Desirèe; Fugnanesi, Valeria; Magni, Stefano; Mosca, Fabio; Sugni, Michela; Bonasoro, Francesco; Barbosa, Mario A; Wilkie, Iain C; Candia Carnevali, M Daniela

    2015-06-01

    The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes. Elucidation of the molecular mechanism underlying such mutability has implications for the zoological, ecological and evolutionary field. Important information could also arise for veterinary and biomedical sciences, particularly regarding the pathological plasticization or stiffening of connective tissue structures. In the present investigation we analyzed aspects of the ultrastructure and biochemistry in two representative models, the compass depressor ligament and the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three different mechanical states. The results provide further evidence that the mechanical adaptability of echinoderm connective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher glycosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compass depressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues. The possible involvement of GAG in the mutability phenomenon will need further clarification. During the shift from a compliant to a standard condition, significant changes in GAG content were detected only in the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling) and biochemistry (two alpha chains) were found between the two models and mammalian collagen. Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLAST alignment highlighted the uniqueness of sea urchin

  14. Purification and characterization of Contractin A from the pedicellarial venom of sea urchin, Toxopneustes pileolus.

    PubMed

    Nakagawa, H; Tu, A T; Kimura, A

    1991-02-01

    A component that causes contraction of the isolated guinea pig tracheal smooth muscle was isolated in homogeneous form from the venom of the pedicellaria of the sea urchin, Toxopneustes pileolus. It is named Contractin A. Contractin A has 18,000 Da with a total residue of 138 amino acids. The molecular weight is about 17,700. The N-terminal amino acid is serine. The partial amino acid sequence was determined up to 37 residues. Direct comparison of sea urchin Contractin A does not show any similarity in amino acid sequence to toxins isolated from other marine toxin producers such as sea snakes, sea anemones, or marine worms. Contractin A caused contraction of the tracheal smooth muscle in a dose-dependent manner. Furthermore, Contractin A relaxed the contraction induced by histamine. The contraction and relaxation activity of Contractin A on the tracheal smooth muscle is reduced by a cyclooxygenase inhibitor such as indomethacin. The contraction induced by Contractin A is also inhibited by a phospholipase C inhibitor but not by a phospholipase A2 inhibitor. These results suggest that in the isolated guinea pig tracheal smooth muscle, the response to Contractin A may be effected through activated phospholipase C.

  15. Seasonal variability in gonad development in the sea urchin (Paracentrotus lividus) on the Basque coast (southeastern Bay of Biscay).

    PubMed

    Garmendia, Joxe Mikel; Menchaca, Iratxe; Belzunce, María Jesús; Franco, Javier; Revilla, Marta

    2010-01-01

    The main limiting factor to carrying out toxicological bioassays with sea urchin larvae is the restricted period for the availability of viable gametes. Although studies have been undertaken of the reproductive cycle of the sea urchin for several areas of the Bay of Biscay, only limited information exists for the southeasternmost area (the Basque coast). Furthermore, this geographical zone presents some particular environmental conditions, e.g., relatively warm waters. In this study, the gonad state of a population of Paracentrotus lividus, settled on the rocky shores of the city of Donostia-San Sebastian have been monitored. These sea urchins are observed to behave like a typical Atlantic population, with generally high gonad indices and a single yearly main spawning period, between April and May. Further, females show a shorter spawning period than males, becoming the limiting organisms for the availability of larvae.

  16. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development

    PubMed Central

    Mocko-Strand, Julie A.; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W.; Arnone, Maria Ina; Frishman, Laura J.; Klein, William H.

    2016-01-01

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. PMID:26962139

  17. Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus.

    PubMed

    Toubarro, Duarte; Gouveia, Analuce; Ribeiro, Raquel Mesquita; Simões, Nélson; da Costa, Gonçalo; Cordeiro, Carlos; Santos, Romana

    2016-06-01

    Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions.

  18. Macro- and microstructural diversity of sea urchin teeth revealed by large-scale mircro-computed tomography survey

    NASA Astrophysics Data System (ADS)

    Ziegler, Alexander; Stock, Stuart R.; Menze, Björn H.; Smith, Andrew B.

    2012-10-01

    Sea urchins (Echinodermata: Echinoidea) generally possess an intricate jaw apparatus that incorporates five teeth. Although echinoid teeth consist of calcite, their complex internal design results in biomechanical properties far superior to those of inorganic forms of the constituent material. While the individual elements (or microstructure) of echinoid teeth provide general insight into processes of biomineralization, the cross-sectional shape (or macrostructure) of echinoid teeth is useful for phylogenetic and biomechanical inferences. However, studies of sea urchin tooth macro- and microstructure have traditionally been limited to a few readily available species, effectively disregarding a potentially high degree of structural diversity that could be informative in a number of ways. Having scanned numerous sea urchin species using micro-computed tomography µCT) and synchrotron µCT, we report a large variation in macro- and microstructure of sea urchin teeth. In addition, we describe aberrant tooth shapes and apply 3D visualization protocols that permit accelerated visual access to the complex microstructure of sea urchin teeth. Our broad survey identifies key taxa for further in-depth study and integrates previously assembled data on fossil species into a more comprehensive systematic analysis of sea urchin teeth. In order to circumvent the imprecise, word-based description of tooth shape, we introduce shape analysis algorithms that will permit the numerical and therefore more objective description of tooth macrostructure. Finally, we discuss how synchrotron µCT datasets permit virtual models of tooth microstructure to be generated as well as the simulation of tooth mechanics based on finite element modeling.

  19. Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin

    PubMed Central

    2010-01-01

    Background Sea urchin is a major model organism for developmental biology and biomineralization research. However, identification of proteins involved in larval skeleton formation and mineralization processes in the embryo and adult, and the molecular characterization of such proteins, has just gained momentum with the sequencing of the Strongylocentrotus purpuratus genome and the introduction of high-throughput proteomics into the field. Results The present report contains the determination of test (shell) and tooth organic matrix phosphoproteomes. Altogether 34 phosphoproteins were identified in the biomineral organic matrices. Most phosphoproteins were specific for one compartment, only two were identified in both matrices. The sea urchin phosphoproteomes contained several obvious orthologs of mammalian proteins, such as a Src family tyrosine kinase, protein kinase C-delta 1, Dickkopf-1 and other signal transduction components, or nucleobindin. In most cases phosphorylation sites were conserved between sea urchin and mammalian proteins. However, the majority of phosphoproteins had no mammalian counterpart. The most interesting of the sea urchin-specific phosphoproteins, from the perspective of biomineralization research, was an abundant highly phosphorylated and very acidic tooth matrix protein composed of 35 very similar short sequence repeats, a predicted N-terminal secretion signal sequence, and an Asp-rich C-terminal motif, contained in [Glean3:18919]. Conclusions The 64 phosphorylation sites determined represent the most comprehensive list of experimentally identified sea urchin protein phosphorylation sites at present and are an important addition to the recently analyzed Strongylocentrotus purpuratus shell and tooth proteomes. The identified phosphoproteins included a major, highly phosphorylated protein, [Glean3:18919], for which we suggest the name phosphodontin. Although not sequence-related to such highly phosphorylated acidic mammalian dental

  20. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development.

    PubMed

    Mao, Chai-An; Agca, Cavit; Mocko-Strand, Julie A; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W; Arnone, Maria Ina; Frishman, Laura J; Klein, William H

    2016-03-16

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures.

  1. Cyclin E in centrosome duplication and reduplication in sea urchin zygotes.

    PubMed

    Schnackenberg, Bradley J; Marzluff, William F; Sluder, Greenfield

    2008-12-01

    When protein synthesis is completely blocked from before fertilization, the sea urchin zygote arrests in first S phase and the paternal centrosome reduplicates multiple times. However, when protein synthesis is blocked starting in prophase of first mitosis, the zygote divides and the blastomeres arrest in a G1-like state. The centrosome inherited from this mitosis duplicates only once in each blastomere for reasons that are not understood. The late G1 rise in cyclin E/cdk2 kinase activity initiates centrosome duplication in mammalian cells and its activity is needed for centrosome duplication in Xenopus egg extracts. Since the half-time for cyclin E turnover is normally approximately 1 h in sea urchin zygotes, the different behaviors of centrosomes during G1 and S phase arrests could be due to differential losses of cyclin E and its associated kinase activities at these two arrest points. To better understand the mechanisms that limit centrosome duplication, we characterize the levels of cyclin E and its associated kinase activity at the S phase and G1 arrest points. We first demonstrate that cyclin E/cdk2 kinase activity is required for centrosome duplication and reduplication in sea urchin zygotes. Next we find that cyclin E levels and cyclin E/cdk2 kinase activities are both constitutively and equivalently elevated during both the S phase and G1 arrests. This indicates that centrosome duplication during the G1 arrest is limited by a block to reduplication under conditions permissive for duplication. The cytoplasmic conditions of S phase, however, abrogate this block to reduplication.

  2. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos.

    PubMed

    Karakostis, Konstantinos; Costa, Caterina; Zito, Francesca; Brümmer, Franz; Matranga, Valeria

    2016-06-01

    Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.

  3. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules.

    PubMed

    Chun, Jong T; Limatola, Nunzia; Vasilev, Filip; Santella, Luigia

    2014-08-01

    We previously demonstrated that many aspects of the intracellular Ca(2+) increase in fertilized eggs of starfish are significantly influenced by the state of the actin cytoskeleton. In addition, the actin cytoskeleton appeared to play comprehensive roles in modulating cortical granules exocytosis and sperm entry during the early phase of fertilization. In the present communication, we have extended our work to sea urchin which is believed to have bifurcated from the common ancestor in the phylogenetic tree some 500 million years ago. To corroborate our earlier findings in starfish, we have tested how the early events of fertilization in sea urchin eggs are influenced by four different actin-binding drugs that promote either depolymerization or stabilization of actin filaments. We found that all the actin drugs commonly blocked sperm entry in high doses and significantly reduced the speed of the Ca(2+) wave. At low doses, however, cytochalasin B and phalloidin increased the rate of polyspermy. Overall, certain aspects of Ca(2+) signaling in these eggs were in line with the morphological changes induced by the actin drugs. That is, the time interval between the cortical flash and the first Ca(2+) spot at the sperm interaction site (the latent period) was significantly prolonged in the eggs pretreated with cytochalasin B or latrunculin A, whereas the Ca(2+) decay kinetics after the peak was specifically attenuated in the eggs pretreated with jasplakinolide or phalloidin. In addition, the sperm interacting with the eggs pretreated with actin drugs often generated multiple Ca(2+) waves, but tended to fail to enter the egg. Thus, our results indicated that generation of massive Ca(2+) waves is neither indicative of sperm entry nor sufficient for cortical granules exocytosis in the inseminated sea urchin eggs, whereas the structure and functionality of the actin cytoskeleton are the major determining factors in the two processes.

  4. Habitat and density-dependent growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain)

    NASA Astrophysics Data System (ADS)

    Ouréns, Rosana; Flores, Luis; Fernández, Luis; Freire, Juan

    2013-02-01

    We studied the small-scale spatial variability in the growth of Paracentrotus lividus in two populations in Galicia (NW Spain) by reading growth rings. A tetracycline marking experiment was carried out to verify that the rings form annually. The growth rings were read by two independent readers in order to estimate the uncertainty involved in assigning the age. Of the six growth models evaluated (Tanaka, von Bertalanffy, Gompertz, Richards, logistic and Jolicoeur) the Tanaka function obtained the best fit to the data. This function predicts unlimited growth and a maximum growth rate of 15.00 (± 0.97 SE) mm·year- 1 at 3.09 ± 0.10 years old, which progressively decreases at older ages. However, habitat characteristics lead to intrapopulation variations in this general function. Recruitment seems to occur mainly in shallow waters (≤ 4 m) and when the sea urchins reach 50 mm (approximately 4 years old) they migrate to deeper areas. Sea urchins larger than 50 mm that stayed in shallow waters grew at a rate between 0.41 and 0.43 mm·year- 1 less than the sea urchins that moved to depths of 8 and 12 m. The population density also influenced the growth, and individuals older than 4 years had higher growth rates in high-density patches than in low-density areas. This could be due to the better environmental conditions in aggregation areas, that is, better protection against waves and predators and/or more abundant food.

  5. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    PubMed

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%).

  6. Oxidative damage and cellular defense mechanisms in sea urchin models of aging.

    PubMed

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-10-01

    The free radical, or oxidative stress, theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging because of the existence of species with tremendously different natural life spans, including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity, and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus, and Strongylocentrotus purpuratus, which has an intermediate life span. Levels of protein carbonyls and 4-hydroxynonenal measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2'-deoxyguanosine measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age pigment lipofuscin, measured in muscle, nerve, and esophagus, increased with age; however, it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species; however, further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age, and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage.

  7. Intracellular sodium changes during the speract response and the acrosome reaction in sea urchin sperm

    PubMed Central

    Rodríguez, Esmeralda; Darszon, Alberto

    2003-01-01

    The sperm-activating peptide speract and fucose-sulphate glycoconjugate (FSG) are sea urchin egg-envelope components that modulate sperm ion permeability. They influence motility and induce acrosomal reaction (AR), respectively. A fluorescent Na+-sensitive dye (Na+-binding benzofuran isophthalate, SBFI) was used to determine how these egg envelope components influence sperm Na+ permeability. [Ca2+]i and pHi were also measured to correlate their changes in response to speract and FSG with those observed in [Na+]i. SBFI determinations indicate that the resting [Na+]i is 20 ± 8 mm in sea urchin sperm. Saturating levels of speract increased [Na+]i by ≈15 mm, while similar levels of FSG caused a further elevation of ≈30 mm. The kinetics of the [Na+]i, [Ca2+]i and pHi changes induced by saturating levels of speract were faster than those induced by FSG. Both egg ligands appeared to activate more than one Na+ transport system. Nifedipine, Ni2+ and TEA+ inhibited the ionic changes and the AR induced by FSG but, importantly, did not alter those caused by speract. Thus, there are differences in some of the ionic transport mechanisms that operate in the speract and FSG responses. ZD2788, a blocker of hyperpolarization and cyclic-nucleotide-gated (HCN) channels such as SpHCN present in sea urchin sperm, did not decrease the speract-induced [Na+]i increase, but slowed its kinetics. Therefore, SpHCN does not play a major role in the uptake of Na+ triggered by this decapeptide. KB-R7943, an inhibitor of Na+/Ca2+ exchangers, decreased the resting [Na+]i and did not change significantly the speract-induced [Ca2+]i increase, but slowed its recovery. PMID:12509481

  8. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    PubMed Central

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  9. Elimination of 2,4,5,2',4',5'-hexachlorobiphenyl by the purple sea urchin, Strongylocentrotus purpuratus, following single exposure

    SciTech Connect

    Tjeerdema, R.S.; Jacobs, R.S.

    1987-06-01

    Understanding the fate of a single PCB isomer in a resident species may aid in assessing the risk to the marine community. Therefore, the elimination of 2,4,5,2',4',5'-hexachlorobiphenyl (HCBP) by the purple sea urchin, Strongylocentrotus purpuratus, following a single exposure, was investigated. The purple sea urchin was chosen because of its economic importance and ability to proliferate in certain polluted conditions. Single exposure may best mimic the effects of intermittent oceanic incineration or disposal, and 2,4,5,2',4',5'-HCBP was chosen due to its presence in common PCB mixtures and high chlorine content, thus strong lipophilicity.

  10. Effect of calcium ionophore A23187 on the sensitivity of early sea urchin embryos to cytotoxic neuropharmacological drugs.

    PubMed

    Buznikov, G A; Mileusnić, R; Yurovskaya, M A; Rakić, L J

    1984-01-01

    The ability of cytotoxic neurochemicals (indole and amphetamine derivatives) to block first cleavage division in the embryos of the sea urchin Arbacia lixula abruptly increases when the embryos are incubated in calcium-free seawater and decreases when the external Ca concentration is raised up to 46.4 mM. Sensitivity of the embryos to these drugs decreases also in the presence of the Ca-ionophore A23187. It is suggested that Ca ions are involved in the realization of physiological effects of "prenervous" neurotransmitters whose presence in early sea urchin embryos was shown by us earlier.

  11. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations.

    PubMed

    Roepke, Troy A; Snyder, Mark J; Cherr, Gary N

    2005-01-26

    Environmental endocrine disrupting compounds (EDCs) are a wide variety of chemicals that typically exert effects, either directly or indirectly, through receptor-mediated processes, thus mimicking endogenous hormones and/or inhibiting normal hormone activities and metabolism. Little is known about the effects of EDCs on echinoderm physiology, reproduction and development. We exposed developing sea urchin embryos (Strongylocentrotus purpuratus and Lytechinus anamesus) to two known EDCs (4-octylphenol (OCT), bisphenol A (BisA)) and to natural and synthetic reproductive hormones (17beta-estradiol (E2), estrone (E1), estriol (E3), progesterone (P4) and 17alpha-ethynylestradiol (EE2)). In addition, we studied two non-estrogenic EDCs, tributyltin (TBT) and o,p-DDD. Successful development to the pluteus larval stage (96 h post-fertilization) was used to define EDC concentration-response relationships. The order of compound potency based on EC50 values for a reduction in normal development was as follows: TBT(L. anamesus)>OCT>TBT(S. purpuratus)>E2>EE2>DDD>BisA>P4>E1>E3. The effect of TBT was pronounced even at concentrations substantially lower than those commonly reported in heavily contaminated areas, but the response was significantly different in the two model species. Sea urchin embryos were generally more sensitive to estrogenic EDCs and TBT than most other invertebrate larvae. Stage-specific exposure experiments were conducted to determine the most sensitive developmental periods using blastula, gastrula and post-gastrula (pluteus) stages. The stage most sensitive to E2, OCT and TBT was the blastula stage with less overall sensitivity in the gastrula stage, regardless of concentration. Selective estrogen receptor modulators (SERMs) were added to the experiments individually and in combination with estrogenic EDCs to interfere with potential receptor-mediated actions. Tamoxifen, a partial ER agonist, alone inhibited development at concentrations as low as 0.02 ng

  12. Fertilization of sea urchin eggs in space and subsequent development under normal conditions.

    PubMed

    Marthy, H J; Schatt, P; Santella, L

    1994-01-01

    Sea urchin eggs are generally considered as most suitable animal models for studying fertilization processes and embryonic development. In the present study, they are used for determining a possible role of gravity in fertilization and the establishment of egg polarity and the embryonic axis. For this purpose, eggs of the particularly well known and suitable species Paracentrotus lividus have been automatically fertilized under microgravity conditions during the Swedish sounding rocket flights MASER IV and MASER V. It turns out, that fertilization "in Space" occurs normally and that subsequent embryonic and larval development of such eggs, continued on the ground, is normal, leading to advanced pluteus stages.

  13. The evolution of nervous system patterning: insights from sea urchin development.

    PubMed

    Angerer, Lynne M; Yaguchi, Shunsuke; Angerer, Robert C; Burke, Robert D

    2011-09-01

    Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.

  14. Evidence for a novel cytoplasmic processing event in ribosome maturation in the sea urchin Paracentrotus lividus.

    PubMed

    Bellavia, Daniele; Barbieri, Rainer

    2010-06-01

    In this paper we demonstrate the existence of a cytoplasmic processing step, never before described, involving both the pre-ribosomal subunits in the sea urchin Paracentrotus lividus. Northern-blot hybridization, primer extension, S1 mapping experiments and in situ hybridizations allowed us to demonstrate that cytoplasmic processed particles are successively re-imported into the nucleus where maturation of their RNAs is completed prior to being exported to the cytoplasm. Our findings lead to the proposal of a new model of ribosome maturation and shuttling.

  15. Purple sea urchin Strongylocentrotus purpuratus gamete manipulation using optical trapping and microfluidics

    NASA Astrophysics Data System (ADS)

    Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Berns, Michael W.

    2013-04-01

    A system has been developed that allows for optical and fluidic manipulation of gametes. The optical manipulation is performed by using a single-point gradient trap with a 40× oil immersion PH3 1.3 NA objective on a Zeiss inverted microscope. The fluidic manipulation is performed by using a custom microfluidic chamber designed to fit into the short working distance between the condenser and objective. The system is validated using purple sea urchin Strongylocentrotus purpuratus gametes and has the potential to be used for mammalian in vitro fertilization and animal husbandry.

  16. Comparative toxicities of benzene, chlorobenzene, and dichlorobenzenes to sea urchin embryos and sperm

    SciTech Connect

    Pagano, G.; Cipollaro, M.; Corsale, G.; Esposito, A.; Giordano, G.G.; Ragucci, E.; Trieff, N.M.

    1988-04-01

    The leukemogenicity and myelotoxicity of benzene are well-known and the major cause of benzene's banning from most industrial applications. Various benzene derivatives such as alkylbenzenes and chlorobenzenes, however, continue to be used as chemical intermediates, solvents, pesticides, etc. in spite of incomplete knowledge of their chronic toxicity. This study was designed to obtain comparative data on developmental, genetic and reproductive toxicities of benzene (B), chlorobenzene (CB) and dichlorobenzenes (o-, m-, and p-DCB) in the sea urchin bioassay. This test system, permits observation of a number of biological endpoints on mitotic activity, embryogenesis and fertilization, and thus provides multi-parametric toxicological data on xenobiotics.

  17. The role of advection and diffusion in waste disposal by sea urchin embryos

    NASA Astrophysics Data System (ADS)

    Clark, Aaron; Licata, Nicholas

    2014-03-01

    We determine the first passage probability for the absorption of waste molecules released from the microvilli of sea urchin embryos. We calculate a perturbative solution of the advection-diffusion equation for a linear shear profile similar to the fluid environment which the embryos inhabit. Rapid rotation of the embryo results in a concentration boundary layer of comparable thickness to the length of the microvilli. A comparison of the results to the regime of diffusion limited transport indicates that fluid flow is advantageous for efficient waste disposal.

  18. Metal-binding proteins in eggs of various sea urchin species.

    PubMed

    Scudiero, R; Capasso, C; De Prisco, P P; Capasso, A; Filosa, S; Parisi, E

    1994-01-01

    Metallothionein presence and amount were determined in the unfertilized eggs of six sea urchin species by silver saturation assay and gel-chromatography of cell extracts. The results showed high levels of metallothionein in the egg cytoplasm of the two Mediterranean species Paracentrotus lividus and Sphaerechinus granularis. No metallothionein was found either in the eggs of Arbacia lixula, or in those of the three Eastern species Strongylocentrotus intermedius, Temnopleurus hardwickii and Clypeaster japonicus. However, the extracts of the latter three species revealed the presence of zinc bound in a macromolecular form, thus suggesting the existence of metal-binding proteins distinct from metallothioneins.

  19. N2-fixing vibrios isolated from the gastrointestinal tract of sea urchins.

    PubMed

    Guerinot, M L; Patriquin, D G

    1981-03-01

    Facultatively anaerobic bacteria, capable of fixing N2 anaerobically or at low O2 concentrations, were isolated from the gastrointestinal tracts of temperate (Strongylocentrotus droebachiensis) and tropical (Tripneustes ventricosus) sea urchins. Morphological and biochemical characteristics, as well as the guanine plus cytosine content of their DNA (45.9 and 48.4 mol%), place these isolates in the genus Vibrio Pacini 1865 in the family Vibrionaceae. Members of this family have not previously been shown to fix N2. These isolates are not identical to any described species in the Vibrio genus and can be distinguished by a combination of biochemical and physiological traits.

  20. Aggregation of Sea Urchin Phagocytes Is Augmented In Vitro by Lipopolysaccharide

    PubMed Central

    Majeske, Audrey J.; Bayne, Christopher J.; Smith, L. Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ∼10% of the cells were positive for Sp185/333 proteins. At 24 hr, ∼90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the

  1. Differential toxicity of three PCB congeners in developing sea urchin embryos and implication of TEQ approach

    SciTech Connect

    Schweitzer, L.; Suffet, I.; Hose, J.; Bay, S.

    1995-12-31

    The relationship between body burden and toxicity of three individual PCB congeners in developing sea urchin embryos was investigated to evaluate the validity of current predictive models of PCB toxicity in an invertebrate system. The uptake and accumulation of radiolabeled PCB congeners from sea water was measured in the sea urchin embryo tissues and the relative toxicity determined. According to the toxic equivalents (TEQ) approach of assessing risk to mammals, congener 77, a nonortho-substituted congener, is predicted to be more toxic than the diortho-substituted congeners 47 and 153. Using a 72 hour embryo development assay, congener 47 was found to be at least four times as toxic as congener 77, with EC50s of 15.7 and > 72.5 mmol/kg, respectively. Congener 153, a hexachlorobiphenyl, was virtually nontoxic even at the highest dose used. Cytologic and cytogenetic anomalies were studied to find a possibly more sensitive endpoint and to suggest a mechanism of toxicity. The cytogenetic analysis revealed that the PCBs inhibited mitosis. At the highest doses, complete mitotic arrest was observed. Congener 77 was found to be at least two times more toxic than congener 153 but not as toxic as congener 47 using mitotic activity as the endpoint. Thus, the two endpoints of toxicity did not change the order in which the congeners are toxic, but established different EC50s. The relative toxicities of these congeners in this study contradict the structure-activity prediction of the mammalian-based TEQ approach.

  2. Review: Morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles.

    PubMed

    Gambardella, Chiara; Ferrando, Sara; Gatti, Antonietta M; Cataldi, Edoardo; Ramoino, Paola; Aluigi, Maria Grazia; Faimali, Marco; Diaspro, Alberto; Falugi, Carla

    2016-11-01

    We describe the use of different life stages of the Mediterranean sea urchin Paracentrotus lividus for the assessment of the possible risk posed by nanoparticles (NPs) in the coastal water. A first screening for the presence of NPs in sea water may be obtained by checking their presence inside tissues of organisms taken from the wild. The ability of NPs to pass from gut to the coelomic fluid is demonstrated by accumulation in sea urchin coelomocytes; the toxicity on sperms can be measured by embryotoxicity markers after sperm exposure, whereas the transfer through the food chain can be observed by developmental anomalies in larvae fed with microalgae exposed to NPs. The most used spermiotoxicity and embryotoxicity tests are described, as well as the biochemical and histochemical analyses of cholinesterase (ChE) activities, which are used to verify toxicity parameters such as inflammation, neurotoxicity, and interference in cell-to-cell communication. Morphological markers of toxicity, in particular skeletal anomalies, are described and classified. In addition, NPs may impair viability of the immune cells of adult specimens. Molecular similarity between echinoderm and human immune cells is shown and discussed. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1552-1562, 2016.

  3. Day Pass Down the Red Sea

    NASA Video Gallery

    This video over the southeastern Mediterranean Sea and down the coastline of the Red Sea was taken by the crew of Expedition 29 aboard the International Space Station. This sequence of shots was ta...

  4. Aryl sulfate formation in sea urchins (Strongylocentrotus droebachiensis) ingesting marine algae (Fucus distichus) containing 2,6-dimethylnapthalene

    SciTech Connect

    Malins, D.C.; Roubal, W.T.

    1982-04-01

    The metabolism of tritiated 2,6-dimethylnapthalene (2,6-DMN) was studied in sea urchins (Strongylocentrotus droebachiensis) feeding on marine algae (Fucus distichus). The Fucus accumulated this hydrocarbon from sea water without converting it to metabolites. Most of the tritium accumulated by the sea urchins (e.g., 70.8% after 3 days) from feeding on 2,6-DMN-exposed Fucus was present in the exoskeleton (shell and spines). Moreover, after 3 days feeding, about 90% of the tritium in the total metabolite fraction of the gonads and digestive tract of the sea urchin was present as sulfate derivatives. These metabolites were identified through hydrolysis with aryl sulfatase, followed by thin-layer chromatography of the products. After 14 days of feeding, the tritium associated with the sulfate derivatives decreased in the gonads and digestive tract to 61 and 65%, respectively, of the total metabolite fraction. Hydroxy compounds from sulfatase hydrolysis were chromatographed using multiple elutions with toluene. The hydroxy isomers were separated and the R/sub f/ values were compared to those of pure reference compounds. The data indicated that 80% of the 2,6-dimethylnaphtyl sulfate contained the sulfate on the 1 and/or 3 position of the aromatic ring. Moreover, 6-methyl-2-naphthalenemethanol was not detected, which implies that sea urchins, unlike fish, metabolize alkyl-substituted aromatic hydrocarbons primarily through aromatic ring oxidations.

  5. Trawling disturbance on the isotopic signature of a structure-building species, the sea urchin Gracilechinus acutus (Lamarck, 1816)

    NASA Astrophysics Data System (ADS)

    González-Irusta, José M.; Preciado, Izaskun; López-López, Lucia; Punzón, Antonio; Cartes, Joan E.; Serrano, Alberto

    2014-08-01

    Bottom trawling is one of the main sources of anthropogenic disturbance in benthic habitats with important direct and indirect effects on the ecosystem functional diversity. In this study, the effect of this impact on a structure-building species, the sea urchin Gracilechinus acutus, was studied in the Central Cantabrian Sea (southern Bay of Biscay) comparing its isotopic signature and additional population descriptors across different trawling pressures. Trawling disturbance had a significant effect on the studied descriptors. In trawling areas, this urchin showed significantly lower values of biomass and mean size and significantly higher values of fullness index. Moreover, the trawling disturbance effect was also significant in the isotopic signature of G. acutus. Urchins inhabiting untrawled areas showed significant lower values of δ15N than urchins dwelling areas under trawling pressure. The urchins' isotopic enrichment increased along the species ontogeny regardless of the trawling effort level. Stable isotope analyses are a suitable tool to detect trawling disturbance on the trophic pathways but do not suffice to explain these changes, especially if there is a lack of baseline information.

  6. Spermiotoxicity and embryotoxicity of permethrin in the sea urchin Paracentrotus lividus.

    PubMed

    Erkmen, Belda

    2015-04-01

    The toxicity of permethrin on the fertilization and early development of sea urchin Paracentrotus lividus embryos were studied. Spermiotoxicity was evaluated on the basis of fertilization rate. Embryotoxicity was determined by comparing the frequency of normal development and malformations in embryos exposed to permethrin throughout their development. Permethrin inhibited fertilization success, and yielded IC25 and IC50 values of 0.58 (CL = 0.44-0.77) and 0.94 (CL = 0.92-0.95) µg/L, respectively. The embryotoxicity of permethrin was concentration dependent indicating a decreased percentage of normally developed plutei with increasing permethrin concentrations: IC25 = 0.195 µg/L (CL = 0.15-0.26) and IC50 = 0.346 µg/L (CF = 0.29-0.41). Associated with the decrease in normal pluteus frequency was an increase in larval malformations as skeleton deformities. The results suggest that permethrin is more highly toxic to embryos than to sperm, and that this insecticide may present a potential risk for the sea urchin in contaminated marine environments.

  7. Molecular Response to Toxic Diatom-Derived Aldehydes in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G.; Ruocco, Nadia; Costantini, Maria

    2014-01-01

    Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes) in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes. PMID:24714125

  8. Nitric Oxide Mediates the Stress Response Induced by Diatom Aldehydes in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms. PMID:22022485

  9. Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family

    PubMed Central

    Semmens, Dean C.; Beets, Isabel; Rowe, Matthew L.; Blowes, Liisa M.; Oliveri, Paola; Elphick, Maurice R.

    2015-01-01

    Neuropeptides are ancient regulators of physiology and behaviour, but reconstruction of neuropeptide evolution is often difficult owing to lack of sequence conservation. Here, we report that the receptor for the neuropeptide NGFFFamide in the sea urchin Strongylocentrotus purpuratus (phylum Echinodermata) is an orthologue of vertebrate neuropeptide-S (NPS) receptors and crustacean cardioactive peptide (CCAP) receptors. Importantly, this has facilitated reconstruction of the evolution of two bilaterian neuropeptide signalling systems. Genes encoding the precursor of a vasopressin/oxytocin-type neuropeptide and its receptor duplicated in a common ancestor of the Bilateria. One copy of the precursor retained ancestral features, as seen in highly conserved vasopressin/oxytocin–neurophysin-type precursors. The other copy diverged, but this took different courses in protostomes and deuterostomes. In protostomes, the occurrence of a disulfide bridge in neuropeptide product(s) of the precursor was retained, as in CCAP, but with loss of the neurophysin domain. In deuterostomes, we see the opposite scenario—the neuropeptides lost the disulfide bridge, and neurophysin was retained (as in the NGFFFamide precursor) but was subsequently lost in vertebrate NPS precursors. Thus, the sea urchin NGFFFamide precursor and receptor are ‘missing links’ in the evolutionary history of neuropeptides that control ecdysis in arthropods (CCAP) and regulate anxiety in humans (NPS). PMID:25904544

  10. Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin.

    PubMed

    Ebert, Thomas A; Hernández, José Carlos; Clemente, Sabrina

    2014-03-22

    A wide variety of organisms show morphologically plastic responses to environmental stressors but in general these changes are not reversible. Though less common, reversible morphological structures are shown by a range of species in response to changes in predators, competitors or food. Theoretical analysis indicates that reversible plasticity increases fitness if organisms are long-lived relative to the frequency of changes in the stressor and morphological changes are rapid. Many sea urchin species show differences in the sizes of jaws (demi-pyramids) of the feeding apparatus, Aristotle's lantern, relative to overall body size, and these differences have been correlated with available food. The question addressed here is whether reversible changes of relative jaw size occur in the field as available food changes with season. Monthly samples of the North American Pacific coast sea urchin Strongylocentrotus purpuratus were collected from Gregory Point on the Oregon (USA) coast and showed an annual cycle of relative jaw size together with a linear trend from 2007 to 2009. Strongylocentrotus purpuratus is a long-lived species and under field conditions individuals experience multiple episodes of changes in food resources both seasonally and from year to year. Their rapid and reversible jaw plasticity fits well with theoretical expectations.

  11. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    PubMed

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  12. Molecular response to toxic diatom-derived aldehydes in the sea urchin Paracentrotus lividus.

    PubMed

    Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Ruocco, Nadia; Costantini, Maria

    2014-04-04

    Diatoms are dominant photosynthetic organisms in the world's oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes) in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes.

  13. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816).

    PubMed

    Moulin, Laure; Catarino, Ana Isabel; Claessens, Thomas; Dubois, Philippe

    2011-01-01

    The effect of pH ranging from 8.0 to 6.8 (total scale - pH(T)) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pH(T)=7.4) and another where pH was more stable (lowest pH(T)=7.8). The highest pH(T) at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pH(T) 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pH(T) 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.

  14. Submicrometer structure of sea urchin tooth via remote synchrotron microCT imaging

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Rack, Alexander

    2014-09-01

    Remote electron microscopy sessions are featured at a number of imaging centers. Similarly, many synchrotron light sources offer routine "mail-in" crystallography and powder diffractometry. At imaging beam lines, small numbers of (preliminary) scans are sometimes performed by staff, in the absence of the investigator, to demonstrate feasibility of the proposed study or as an industrial service. In the 1990s, one of us (SRS) participated in processing experiments where samples were couriered between Georgia Tech and SSRL and synchrotron microCT followed the spatial distribution of densification. Here, the authors report results of remote microCT experiments, i.e., where the investigator who knows the sample interacts via the web with the beam line scientist operating the apparatus and provides real-time feedback on where to scan based upon radiographs and on the most recent reconstructions. Local tomography imaged sea urchin teeth with 350 nm isotropic volume element (voxel) at beam line ID-19, ESRF. Sea urchin teeth form by growing parallel plates of high Mg calcite, each of which is 2-5 μm away from its neighbors, and very high Mg calcite columns later link the plates. The remote imaging session focused on tooth positions where the columns were just forming, and column shapes and dimensions were measured, something which has previously only been done with destructive sample preparation and scanning electron microscopy. The experiments were successful despite a separation of 4,400 miles and seven time zones.

  15. Control of protein synthesis in cell-free extracts of sea urchin embryos

    SciTech Connect

    Hansen, L.J.; Huang, W.I.; Jagus, R.

    1986-05-01

    Although the increase in protein synthesis that occurs after fertilization of sea urchin eggs results from increased utilization of stored maternal mRNA, the underlying mechanism is unknown. The authors have prepared cell-free extracts from S.purpuratus and A.puctulata unfertilized eggs and 2-cell embryos that retain the protein synthetic differences observed in vivo. The method is based on that of Dr. Alina Lopo. /sup 35/S methionine incorporation is linear during a 30 min incubation and is 10-20 fold higher in extracts from 2-cell embryos than unfertilized eggs. Addition of purified mRNA does not stimulate these systems, suggesting a regulatory mechanism other than mRNA masking. Addition of rabbit reticulocyte ribosomal salt wash stimulated protein synthesis in extracts from eggs but not embryos, suggesting deficiencies in translational components in unfertilized eggs. Mixing of egg and embryo lysates indicated the presence of a weak protein synthesis inhibitor in eggs. Translational control in developing sea urchin embryos thus appears to be complex, involving both stimulatory and inhibitory factors.

  16. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin.

    PubMed

    Warner, Jacob F; Miranda, Esther L; McClay, David R

    2016-03-15

    Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it's contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin.

  17. Sea urchin-like cobalt-iron phosphide as an active catalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Mendoza-Garcia, Adriana; Su, Dong; Sun, Shouheng

    2016-02-01

    Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm-2 at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER.Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm-2 at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08763e

  18. Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Chakrabarti, A.; Taylor, M.; Sommer, L.; Levine, H.; Anderson, K.; Runco, M.; Kemp, R.

    1999-01-01

    Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. Calcium and cytoskeletal events were investigated within sea urchin embryos which were cultured in space under both microgravity and 1 g conditions. Embryos were fixed at time-points ranging from 3 h to 8 days after fertilization. Investigative emphasis was placed upon: (1) sperm-induced calcium-dependent exocytosis and cortical granule secretion, (2) membrane fusion of cortical granule and plasma membranes; (3) microfilament polymerization and microvilli elongation; and (5) embryonic development into morula, blastula, gastrula, and pluteus stages. For embryos cultured under microgravity conditions, the processes of cortical granule discharge, fusion of cortical granule membranes with the plasma membrane, elongation of microvilli and elevation of the fertilization coat were reduced in comparison with embryos cultured at 1 g in space and under normal conditions on Earth. Also, 4% of all cells undergoing division in microgravity showed abnormalities in the centrosome-centriole complex. These abnormalities were not observed within the 1 g flight and ground control specimens, indicating that significant alterations in sea urchin development processes occur under microgravity conditions. Copyright 1999 Academic Press.

  19. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos.

    PubMed

    Schatzberg, Daphne; Lawton, Matthew; Hadyniak, Sarah E; Ross, Erik J; Carney, Tamara; Beane, Wendy S; Levin, Michael; Bradham, Cynthia A

    2015-10-15

    The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles.

  20. Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos.

    PubMed

    Torres-Duarte, Cristina; Adeleye, Adeyemi S; Pokhrel, Suman; Mädler, Lutz; Keller, Arturo A; Cherr, Gary N

    2016-08-01

    Copper oxide nanomaterials (nano-CuOs) are widely used and can be inadvertently introduced into estuarine and marine environments. We analyzed the effects of different nano-CuOs (a synthesized and a less-pure commercial form), as well as ionic copper (CuSO4) on embryo development in the white sea urchin, a well-known marine model. After 96 h of development with both nano-CuO exposures, we did not detect significant oxidative damage to proteins but did detect decreases in total antioxidant capacity. We show that the physicochemical characteristics of the two nano-CuOs play an essential role in their toxicities. Both nano-CuOs were internalized by embryos and their differential dissolution was the most important toxicological parameter. The synthesized nano-CuO showed greater toxicity (EC50 = 450 ppb of copper) and had increased dissolution (2.5% by weight over 96 h) as compared with the less-pure commercial nano-CuO (EC50 = 5395 ppb of copper, 0.73% dissolution by weight over 96 h). Copper caused specific developmental abnormalities in sea urchin embryos including disruption of the aboral-oral axis as a result in changes to the redox environment caused by dissolution of internalized nano-CuO. Abnormal skeleton formation also occurred.

  1. Differential gene expression patterns during embryonic development of sea urchin exposed to triclosan.

    PubMed

    Hwang, Jinik; Suh, Sung-Suk; Park, Mirye; Park, So Yun; Lee, Sukchan; Lee, Taek-Kyun

    2017-02-01

    Triclosan (TCS; 2,4,4'-trichloro-2'-hydroxydiphenyl ether) is a broad-spectrum antibacterial agent used in common industrial, personal care and household products which are eventually rinsed down the drain and discharged with wastewater effluent. It is therefore commonly found in the aquatic environment, leading to the continual exposure of aquatic organisms to TCS and the accumulation of the antimicrobial and its harmful degradation products in their bodies. Toxic effects of TCS on reproductive and developmental progression of some aquatic organisms have been suggested but the underlying molecular mechanisms have not been defined. We investigated the expression patterns of genes involved in the early development of TCS-treated sea urchin Strongylocentrotus nudus using cDNA microarrays. We observed that the predominant consequence of TCS treatment in this model system was the widespread repression of TCS-modulated genes. In particular, empty spiracles homeobox 1 (EMX-1), bone morphogenic protein, and chromosomal binding protein genes showed a significant decrease in expression in response to TCS. These results suggest that TCS can induce abnormal development of sea urchin embryos through the concomitant suppression of a number of genes that are necessary for embryonic differentiation in the blastula stage. Our data provide new insight into the crucial role of genes associated with embryonic development in response to TCS. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 426-433, 2017.

  2. Sea-urchin Embryo Bioassay for in situ Evaluation of the Biological Quality of Coastal Seawater

    NASA Astrophysics Data System (ADS)

    Beiras, R.; Vázquez, E.; Bellas, J.; Lorenzo, J. I.; Fernández, N.; Macho, G.; Mariño, J. C.; Casas, L.

    2001-01-01

    The Paracentrotus lividus sea-urchin embryo bioassay, consisting of incubation of fertilized eggs in test water and measurement of the percentage of four-armed plutei larvae developed after the incubation period (2-3 days), has been adapted for in situ evaluation of seawater quality in coastal areas. Mature sea-urchins are dissected in situ and fertilization is performed in the field; fertilized eggs are delivered into screw lid 50-ml cylinders with 20 μm nylon mesh in both ends filled with sieved local seawater. The cylinders, tied to 60-cm ropes with weights on one end and buoys in the other one, are placed by scuba divers in the test sites at subtidal level and recovered after the incubation period. The contents of each cylinder are then transferred into a vial, fixed with formalin and observed directly under an inverted microscope to record the percentage ( N=100) and size (length, N=25) of four-arm pluteus larvae. Our results show that the bioassay can discriminate between well known polluted and unpolluted sites, but further improvement is needed in order to: (1) take into account differences of temperature between sites; (2) minimize larval mortality due to reasons other than pollution.

  3. Calcium channel antagonists inhibit the acrosome reaction and bind to plasma membranes of sea urchin sperm.

    PubMed Central

    Kazazoglou, T; Schackmann, R W; Fosset, M; Shapiro, B M

    1985-01-01

    As a prerequisite to fertilization, sea urchin sperm undergo an acrosome reaction that is mediated in part by increased permeability to Ca2+, with an attendant rapid, massive intracellular Ca2+ accumulation. The acrosome reaction is inhibited by Ca2+ channel antagonists, including verapamil, D600, and dihydropyridines such as nitrendipine, nimodipine, and nisoldipine. To examine the interaction of Ca2+ antagonists with sperm, a plasma membrane preparation enriched for Na+,K+-ATPase was isolated from sea urchin sperm. These plasma membranes specifically bound [3H]nitrendipine and [3H]verapamil at concentrations similar to those that inhibit the acrosome reaction. The binding of verapamil was sigmoidal and half-maximal at 1 microM. There was a high specificity in the binding interaction, since by competition binding verapamil, (-)-D600, and (+)-D600 had different relative Kd values, 11, 2.5, and 0.5 microM, respectively. These data suggest that sperm mediate the Ca2+ influx required for induction of the acrosome reaction via Ca2+ channels with properties similar, but not identical, to those of other excitable tissues. Images PMID:3856274

  4. Influence of salinity on fertilization and larval development toxicity tests with two species of sea urchin.

    PubMed

    Carballeira, C; Martín-Díaz, L; Delvalls, T A

    2011-10-01

    Sea urchin embryo-larval development (ELD) and fertilization tests have been widely used in ecotoxicity studies and are included in regulatory frameworks. Biological processes occur naturally within a range of salinity that depends on the species considered. In an attempt to determine the optimum range of salinity, ELD and fertilization bioassays were performed at different salinities (15-40.5‰) with two species of Atlantic sea urchin: Arbacia lixula and Paracentrotus lividus. In the ELD assay, the optimum range of salinity was wider for A. lixula (29-35.5‰) than for P. lividus (29-33‰). In the fertilization assay with P. lividus as a bioindicator species, the highest percentage of fertilization (90%) was obtained at salinities of between 29 and 33‰. More research on A. lixula is required, since the fertilization success was below 60%. The results of the present study demonstrate that salinity may be a confounding factor in interpreting ELD test results.

  5. Toxicity of four spill-treating agents on bacterial growth and sea urchin embryogenesis.

    PubMed

    Rial, Diego; Murado, Miguel A; Beiras, Ricardo; Vázquez, José A

    2014-06-01

    The toxicity of spill-treating agents (STAs) is a topic that needs to be assessed prior to their potential application in environmental disasters. The aim of the present work was to study the effects of four commercial STAs (CytoSol, Finasol OSR 51, Agma OSD 569 and OD4000) on the growth of marine (Phaeobacter sp., Pseudomonas sp.) and terrestrial (Leuconostoc mesenteroides) bacteria, and sea urchin (Paracentrotus lividus) embryolarval development. In general, STA did not inhibit significantly the biomass production of the tested marine bacteria. Finasol OSR 51 and OD4000 clearly inhibited the growth of L. mesenteroides and an accurate description of the kinetics was provided by a proposed bivariate equation. For this species, a global parameter (EC50,τ) was defined to summarize the set of growth kinetics. Using this parameter Finasol OSR 51 was found to be less toxic (754μL L(-1)) than OD4000 (129μL L(-1)). For the sea urchin embryo assay, the ranking of toxicity as EC50 (μL L(-1)) was Agma OSD 569 (34.0)

  6. Relative effects of gamete compatibility and hydrodynamics on fertilization in the green sea urchin Strongylocentrotus droebachiensis.

    PubMed

    Kregting, Louise T; Thomas, Florence I M; Bass, Anna L; Yund, Philip O

    2014-08-01

    Intraspecific variation in gamete compatibility among male/female pairs causes variation in the concentration of sperm required to achieve equivalent fertilization levels. Gamete compatibility is therefore potentially an important factor controlling mating success. Many broadcast-spawning marine invertebrates, however, also live in a dynamic environment where hydrodynamic conditions can affect the concentration of sperm reaching eggs during spawning. Thus flow conditions may moderate the effects of gamete compatibility on fertilization. Using the green sea urchin Strongylocentrotus droebachiensis as a model system, we assessed the relative effects of gamete compatibility (the concentration of sperm required to fertilize 50% of the eggs in specific male/female pairs; F50) and the root-mean-square of total velocity (urms; 0.01-0.11 m s(-1)) on fertilization in four locations near a spawning female (water column, wake eddy, substratum, and aboral surface) in both unidirectional and oscillatory flows. Percent fertilization decreased significantly with increasing urms at all locations and both flow regimes. However, although gamete compatibility varied by almost 1.5 orders of magnitude, it was not a significant predictor of fertilization for most combinations of position and flow. The notable exception was a significant effect of gamete compatibility on fertilization on the aboral surface under unidirectional flow. Our results suggest that selection on variation in gamete compatibility may be strongest in eggs fertilized on the aboral surface of sea urchins and that hydrodynamic conditions may add environmental noise to selection outcomes.

  7. A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws.

    PubMed

    Frank, Michael B; Naleway, Steven E; Wirth, Taylor S; Jung, Jae-Young; Cheung, Charlene L; Loera, Faviola B; Medina, Sandra; Sato, Kirk N; Taylor, Jennifer R A; McKittrick, Joanna

    2016-04-24

    Bioinspired design is an emerging field that takes inspiration from nature to develop high-performance materials and devices. The sea urchin mouthpiece, known as the Aristotle's lantern, is a compelling source of bioinspiration with an intricate network of musculature and calcareous teeth that can scrape, cut, chew food and bore holes into rocky substrates. We describe the bioinspiration process as including animal observation, specimen characterization, device fabrication and mechanism bioexploration. The last step of bioexploration allows for a deeper understanding of the initial biology. The design architecture of the Aristotle's lantern is analyzed with micro-computed tomography and individual teeth are examined with scanning electron microscopy to identify the microstructure. Bioinspired designs are fabricated with a 3D printer, assembled and tested to determine the most efficient lantern opening and closing mechanism. Teeth from the bioinspired lantern design are bioexplored via finite element analysis to explain from a mechanical perspective why keeled tooth structures evolved in the modern sea urchins we observed. This circular approach allows for new conclusions to be drawn from biology and nature.

  8. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    SciTech Connect

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.

    2009-12-01

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  9. Fuel oil and dispersant toxicity to the Antarctic sea urchin (Sterechinus neumayeri).

    PubMed

    Alexander, Frances J; King, Catherine K; Reichelt-Brushett, Amanda J; Harrison, Peter L

    2016-11-04

    The risk of a major marine fuel spill in Antarctic waters is increasing, yet there are currently no standard or suitable response methods under extreme Antarctic conditions. Fuel dispersants may present a possible solution; however, little data exist on the toxicity of dispersants or fuels to Antarctic species, thereby preventing informed management decisions. Larval development toxicity tests using 3 life history stages of the Antarctic sea urchin (Sterechinus neumayeri) were completed to assess the toxicity of physically dispersed, chemically dispersed, and dispersant-only water-accommodated fractions (WAFs) of an intermediate fuel oil (IFO 180, BP) and the chemical dispersant Slickgone NS (Dasic International). Despite much lower total petroleum hydrocarbon concentrations, physically dispersed fuels contained higher proportions of low-to-intermediate weight carbon compounds and were generally at least an order of magnitude more toxic than chemically dispersed fuels. Based on concentrations that caused 50% abnormality (EC50) values, the embryonic unhatched blastula life stage was the least affected by fuels and dispersants, whereas the larval 4-armed pluteus stage was the most sensitive. The present study is the first to investigate the possible implications of the use of fuel dispersants for fuel spill response in Antarctica. The results indicate that the use of a fuel dispersant did not increase the hydrocarbon toxicity of IFO 180 to the early life stages of Antarctic sea urchins, relative to physical dispersal. Environ Toxicol Chem 2016;9999:1-9. © 2016 SETAC.

  10. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    SciTech Connect

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  11. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    SciTech Connect

    Cameron, R A; Rowen, L; Nesbitt, R; Bloom, S; Rast, J P; Berney, K; Arenas-Mena, C; Martinez, P; Lucas, S; Richardson, P M; Davidson, E H; Peterson, K J; Hood, L

    2005-10-11

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is : 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  12. Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus.

    PubMed

    Gaitán-Espitia, Juan Diego; Sánchez, Roland; Bruning, Paulina; Cárdenas, Leyla

    2016-11-02

    The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates.

  13. Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos.

    PubMed

    Ghiglione, C; Emily-Fenouil, F; Chang, P; Gache, C

    1996-10-01

    The HE gene is the earliest strictly zygotic gene activated during sea urchin embryogenesis. It is transiently expressed in a radially symmetrical domain covering the animal-most two-thirds of the blastula. The border of this domain, which is orthogonal to the primordial animal-vegetal axis, is shifted towards the animal pole in Li+-treated embryos. Exogenous micromeres implanted at the animal pole of whole embryos, animal or vegetal halves do not modify the extent and localization of the HE expression domain. In grafted embryos or animal halves, the Li+ effect is not affected by the presence of ectopic micromeres at the animal pole. A Li+-induced shift of the border, similar to that seen in whole embryos, occurs in embryoids developing from animal halves isolated from 8-cell stage embryos or dissected from unfertilised eggs. Therefore, the spatial restriction of the HE gene is not controlled by the inductive cascade emanating from the micromeres and the patterning along the AV-axis revealed by Li+ does not require interactions between cells from the animal and vegetal halves. This suggests that maternal primary patterning in the sea urchin embryo is not limited to a small vegetal center but extends along the entire AV axis.

  14. Pattern and process during sea urchin gut morphogenesis: the regulatory landscape.

    PubMed

    Annunziata, Rossella; Perillo, Margherita; Andrikou, Carmen; Cole, Alison G; Martinez, Pedro; Arnone, Maria I

    2014-03-01

    The development of the endoderm is a multistage process. From the initial specification of the endodermal domain in the embryo to the final regionalization of the gut, there are multiple stages that require the involvement of complex gene regulatory networks. In one concrete case, the sea urchin embryo, some of these stages and their genetic control are (relatively) well understood. Several studies have underscored the relevance of individual transcription factor activities in the process, but very few have focused the attention on gene interactions within specific gene regulatory networks (GRNs). Sea urchins offer an ideal system to study the different factors involved in the morphogenesis of the gut. Here we review the knowledge gained over the last 10 years on the process and its regulation, from the early specification of endodermal lineages to the late events linked to the patterning of functional domains in the gut. A lesson of remarkable importance has been learnt from comparison of the mechanisms involved in gut formation in different bilaterian animals; some of these genetic mechanisms are particularly well conserved. Patterning the gut seems to involve common molecular players and shared interactions, whether we look at mammals or echinoderms. This astounding degree of conservation reveals some key aspects of deep homology that are most probably shared by all bilaterian guts.

  15. Antiallergic effects of pigments isolated from green sea urchin (Strongylocentrotus droebachiensis) shells.

    PubMed

    Pozharitskaya, Olga N; Shikov, Alexander N; Makarova, Marina N; Ivanova, Svetlana A; Kosman, Vera M; Makarov, Valery G; Bazgier, Václav; Berka, Karel; Otyepka, Michal; Ulrichová, Jitka

    2013-12-01

    This study was undertaken to evaluate possible antiallergic effects of an extract of pigments from green sea urchin (Strongylocentrotus droebachiensis) shells. Effects were studied on animal models - guinea pig ileum contraction, rabbit eyes allergic conjunctivitis, and rabbit local skin irritation. The extract significantly reduced, in a dose-dependent manner, the histamine-induced contractions of the isolated guinea pig ileum with ID50 =1.2 µg/mL (in equivalents of spinochrome B), had an inhibitory effect on the model of ocular allergic inflammation surpassing the reference drug olopatadine, and did not show any irritating effect in rabbits. The extract predominantly contained polyhydroxy-1,4-naphthoquinone which would be responsible for the pharmacological activity. The active compounds of the extract were evaluated in silico with molecular docking. Molecular docking into H1R receptor structures obtained from molecular dynamic simulations showed that all spinochrome derivatives bind to the receptor active site, but spinochrome monomers fit better to it. The results of the present study suggest possibilities for the development of new agents for treating allergic diseases on the base of pigments from sea urchins shells.

  16. Complete mitochondrial genome of Chilean sea urchin: Loxechinus albus (Camarodonta, Parechinidae).

    PubMed

    Jung, Gila; Lee, Youn-Ho

    2015-01-01

    The complete mitochondrial genome of Chilean sea urchin Loxechinus albus, the single species of the genus Loxechinus, is determined. The circular mitogenome is 15,709 bp in length containing 2 rRNA, 22 tRNA and 13 protein coding genes as well as the control region. The gene order is identical to those of described Camarodonta species. There are 24 bp gene overlaps at 6 locations and 124 bp intergenic spacers at 17 boundaries. The nucleotide composition of the genome is 31.2% A, 22.3% C, 29.7% T, and 16.8% G. The A+T bias (60.9%) is similar to that of P. lividus (60.3%) but slightly higher than those of strongylocentrotid species (58.8-59.8%). The mitogenome sequence of L. albus will provide valuable information on the phylogeny and evolution of the genus Loxechinus in relation to other Camarodonta sea urchins.

  17. Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins

    PubMed Central

    Fujii, Tsubasa; Egusa, Yuji; Komatsu, Miéko; Yamanaka, Akira

    2016-01-01

    ABSTRACT Embryos of temnopleurid sea urchins exhibit species-specific morphologies. While Temnopleurus toreumaticus has a wrinkled blastula and then invaginates continuously at gastrulation, others have a smooth blastula and their invagination is stepwise. We studied blastula and gastrula formation in four temnopleurids using light and scanning electron microscopy to clarify the mechanisms producing these differences. Unlike T. toreumaticus, blastomeres of mid-blastulae in T. reevesii, T. hardwickii and Mespilia globulus formed pseudopods. Before primary mesenchyme cells ingressed, embryos developed an area of orbicular cells in the vegetal plate. The cells surrounding the orbicular cells extended pseudopods toward the orbicular cell area in three Temnopleurus species. In T. toreumaticus, the extracellular matrix was well-developed and developed a hole-like structure that was not formed in others. Gastrulation of T. reevesii, T. hardwickii and M. globulus was stepwise, suggesting that differences of gastrulation are caused by all or some of the following factors: change of cell shape, rearrangement, pushing up and towing of cells. We conclude that (1) many aspects of early morphogenesis differ even among very closely related sea urchins with indirect development and (2) many of these differences may be caused by the cell shape and structure of blastomeres or by differences in extracellular matrix composition. PMID:27591193

  18. Na+/K+-ATPase activity during early development and growth of an Antarctic sea urchin.

    PubMed

    Leong, P K; Manahan, D T

    1999-08-01

    In Antarctic environments, the physiological bases for long larval life spans under natural conditions of limited food availability are not understood. The Na+ pump is likely to be involved with hypometabolic regulation in such cold environments. Changes in the activity and metabolic importance of Na+/K+-ATPase were measured in embryos of the Antarctic sea urchin Sterechinus neumayeri and in larvae reared under different feeding conditions. The rate of increase of total Na+/K+-ATPase activity was 3.9 times faster in fed than in unfed larvae. During development and growth, there was an increase in the percentage of total, potential Na+/K+-ATPase activity that was physiologically utilized. In early (10-day-old) gastrulae, 17 % was utilized in vivo, increasing to 77 % in six-arm pluteus (48-day-old) larvae. The metabolic importance of in vivo Na+/K+-ATPase activity also increased during development, accounting for 12 % of metabolic rate at day 10 and 84 % at day 48. When compared at the same enzyme assay temperature (15 degrees C), the protein-specific total Na+/K+-ATPase activities for late embryonic (prism) and early larval (pluteus) stages of S. neumayeri were 2.6 times lower than those for comparable developmental stages of two temperate sea urchin species (Strongylocentrotus purpuratus and Lytechinus pictus).

  19. Expression of the Hox gene complex in the indirect development of a sea urchin.

    PubMed

    Arenas-Mena, C; Martinez, P; Cameron, R A; Davidson, E H

    1998-10-27

    Hox complex genes control spatial patterning mechanisms in the development of arthropod and vertebrate body plans. Hox genes are all expressed during embryogenesis in these groups, which are all directly developing organisms in that embryogenesis leads at once to formation of major elements of the respective adult body plans. In the maximally indirect development of a large variety of invertebrates, the process of embryogenesis leads only to a free-living, bilaterally organized feeding larva. Maximal indirect development is exemplified in sea urchins. The 5-fold radially symmetric adult body plan of the sea urchin is generated long after embryogenesis is complete, by a separate process occurring within imaginal tissues set aside in the larva. The single Hox gene complex of Strongylocentrotus purpuratus contains 10 genes, and expression of eight of these genes was measured by quantitative methods during both embryonic and larval developmental stages and also in adult tissues. Only two of these genes are used significantly during the entire process of embryogenesis per se, although all are copiously expressed during the stages when the adult body plan is forming in the imaginal rudiment. They are also all expressed in various combinations in adult tissues. Thus, development of a microscopic, free-living organism of bilaterian grade, the larva, does not appear to require expression of the Hox gene cluster as such, whereas development of the adult body plan does. These observations reflect on mechanisms by which bilaterian metazoans might have arisen in Precambrian evolution.

  20. Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development.

    PubMed

    Walton, Katherine D; Croce, Jenifer C; Glenn, Thomas D; Wu, Shu-Yu; McClay, David R

    2006-12-01

    The Hedgehog (Hh) and Notch signal transduction pathways control a variety of developmental processes including cell fate choice, differentiation, proliferation, patterning and boundary formation. Because many components of these pathways are conserved, it was predicted and confirmed that pathway components are largely intact in the sea urchin genome. Spatial and temporal location of these pathways in the embryo, and their function in development offer added insight into their mechanistic contributions. Accordingly, all major components of both pathways were identified and annotated in the sea urchin Strongylocentrotus purpuratus genome and the embryonic expression of key components was explored. Relationships of the pathway components, and modifiers predicted from the annotation of S. purpuratus, were compared against cnidarians, arthropods, urochordates, and vertebrates. These analyses support the prediction that the pathways are highly conserved through metazoan evolution. Further, the location of these two pathways appears to be conserved among deuterostomes, and in the case of Notch at least, display similar capacities in endomesoderm gene regulatory networks. RNA expression profiles by quantitative PCR and RNA in situ hybridization reveal that Hedgehog is produced by the endoderm beginning just prior to invagination, and signals to the secondary mesenchyme-derived tissues at least until the pluteus larva stage. RNA in situ hybridization of Notch pathway members confirms that Notch functions sequentially in the vegetal-most secondary mesenchyme cells and later in the endoderm. Functional analyses in future studies will embed these pathways into the growing knowledge of gene regulatory networks that govern early specification and morphogenesis.

  1. Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin.

    PubMed

    Yajima, Mamiko; Wessel, Gary M

    2012-10-01

    The process of germ line determination involves many conserved genes, yet is highly variable. Echinoderms are positioned at the base of Deuterostomia and are crucial to understanding these evolutionary transitions, yet the mechanism of germ line specification is not known in any member of the phyla. Here we demonstrate that small micromeres (SMics), which are formed at the fifth cell division of the sea urchin embryo, illustrate many typical features of primordial germ cell (PGC) specification. SMics autonomously express germ line genes in isolated culture, including selective Vasa protein accumulation and transcriptional activation of nanos; their descendants are passively displaced towards the animal pole by secondary mesenchyme cells and the elongating archenteron during gastrulation; Cadherin (G form) has an important role in their development and clustering phenotype; and a left/right integration into the future adult anlagen appears to be controlled by a late developmental mechanism. These results suggest that sea urchin SMics share many more characteristics typical of PGCs than previously thought, and imply a more widely conserved system of germ line development among metazoans.

  2. Characterization and expression of two matrix metalloproteinase genes during sea urchin development.

    PubMed

    Ingersoll, Eric P; Pendharkar, Ninad C

    2005-08-01

    Matrix metalloproteinases (MMPs) play an essential role in a variety of processes in development that require extracellular matrix remodeling and degradation. In this study, we characterize two MMPs from the sea urchin Strongylocentrotus purpuratus. These clones can both be identified as MMPs based on the presence of conserved domains such as the cysteine switch, zinc-binding, and hemopexin domains. In addition, both of these genes contain consensus furin cleavage sites and putative transmembrane domains, classifying them as membrane-type MMPs. We have named these clones SpMMP14 and SpMMP16 based on the vertebrate MMPs with which they share the greatest similarity. SpMMP14 is expressed in all cells from the egg to mesenchyme blastula stage embryo. Expression of this gene is strongest in the animal and vegetal poles early in gastrulation and in the animal pole only later in gastrulation. SpMMP16 is expressed at low levels in eggs. Expression of SpMMP16 becomes more pronounced in the vegetal pole region at the blastula and mesenchyme blastula stages and becomes confined to vegetal pole descendants, such as pigment cells, later in development. In the future, we hope to learn more about the possible functions of these genes in sea urchin development.

  3. Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus

    PubMed Central

    Gaitán-Espitia, Juan Diego; Sánchez, Roland; Bruning, Paulina; Cárdenas, Leyla

    2016-01-01

    The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates. PMID:27805042

  4. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    NASA Technical Reports Server (NTRS)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  5. Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism.

    PubMed

    García-Rincón, Juan; Darszon, Alberto; Beltrán, Carmen

    2016-04-01

    Sea urchin sperm have only one mitochondrion, that in addition to being the main source of energy, may modulate intracellular Ca(2+) concentration ([Ca(2+)]i) to regulate their motility and possibly the acrosome reaction. Speract is a decapeptide from the outer jelly layer of the Strongylocentrotus purpuratus egg that upon binding to its receptor in the sperm, stimulates sperm motility, respiration and ion fluxes, among other physiological events. Altering the sea urchin sperm mitochondrial function with specific inhibitors of this organelle, increases [Ca(2+)]i in an external Ca(2+) concentration ([Ca(2+)]ext)-dependent manner (Ardón, et al., 2009. BBActa 1787: 15), suggesting that the mitochondrion is involved in sperm [Ca(2+)]i homeostasis. To further understand the interrelationship between the mitochondrion and the speract responses, we measured mitochondrial membrane potential (ΔΨ) and NADH levels. We found that the stimulation of sperm with speract depolarizes the mitochondrion and increases the levels of NADH. Surprisingly, these responses are independent of external Ca(2+) and are due to the increase in intracellular pH (pHi) induced by speract. Our findings indicate that speract, by regulating pHi, in addition to [Ca(2+)]i, may finely modulate mitochondrial metabolism to control motility and ensure that sperm reach the egg and fertilize it.

  6. The role of lysyl oxidase and collagen crosslinking during sea urchin development.

    PubMed

    Butler, E; Hardin, J; Benson, S

    1987-11-01

    Lysyl oxidase, the only enzyme involved in collagen crosslinking, is shown to be present in embryos of the sea urchin Strongylocentrotus purpuratus. The enzyme specific activity increases over six-fold during development, showing the greatest rise during gastrulation and prism larva formation. The enzyme is inhibited by the specific inhibitor, beta-aminoproprionitrile (BAPN). Continuous BAPN treatment of S. purpuratus and Lytechinus pictus embryos from late cleavage stages onward increases the amount of noncrosslinked collagen present in prism larvae. When BAPN is added at the 128- or 256-cell stage it causes developmental arrest at the mesenchyme blastula stage. Embryos can be maintained in the arrested state for at least 96 h and will resume normal development and morphogenesis following BAPN removal. If BAPN is added after the mesenchyme blastula stage, it has little adverse effect on development; consequently nonspecific toxic effects of the drug are unlikely. The results suggest that lysyl oxidase and collagen crosslinking play a vital role in primary mesenchyme migration, gastrulation, and morphogenesis during sea urchin development and indicate that BAPN may be very useful in studying the extracellular matrix-cell interactions at the cellular and molecular level.

  7. Lineage and fate of each blastomere of the eight-cell sea urchin embryo.

    PubMed

    Cameron, R A; Hough-Evans, B R; Britten, R J; Davidson, E H

    1987-03-01

    A fluoresceinated lineage tracer was injected into individual blastomeres of eight-cell sea urchin (Strongylocentrotus purpuratus) embryos, and the location of the progeny of each blastomere was determined in the fully developed pluteus. Each blastomere gives rise to a unique portion of the advanced embryo. We confirm many of the classical assignments of cell fate along the animal-vegetal axis of the cleavage-stage embryo, and demonstrate that one blastomere of the animal quartet at the eight-cell stage lies nearest the future oral pole and the opposite one nearest the future aboral pole of the embryo. Clones of cells deriving from ectodermal founder cells always remain contiguous, while clones of cells descendant from the vegetal plate (i.e., gut, secondary mesenchyme) do not. The locations of ectodermal clones contributed by specific blastomeres require that the larval plane of bilateral symmetry lie approximately equidistant (i.e., at a 45 degree angle) from each of the first two cleavage planes. These results underscore the conclusion that many of the early spatial patterns of differential gene expression observed at the molecular level are specified in a clonal manner early in embryonic sea urchin development, and are each confined to cell lineages established during cleavage.

  8. Structure and developmental expression of a sea urchin fibrillar collagen gene.

    PubMed

    D'Alessio, M; Ramirez, F; Suzuki, H R; Solursh, M; Gambino, R

    1989-12-01

    We have isolated and characterized cDNA and genomic clones that specify a Paracentrotus lividus procollagen chain. The cDNAs code for 160 uninterrupted Gly-Xaa-Yaa triplets and a 252-amino acid carboxyl propeptide. Analysis of the deduced amino acid sequences indicated that the sea urchin polypeptide exhibits structural features that are characteristic of the fibril-forming class of collagen molecules. Partial characterization of two genomic recombinants revealed that the 3' end of the echinoid gene displays a complex organization that closely resembles that of a prototypical vertebrate fibrillar collagen gene. In situ and Northern (RNA) blot hybridizations established the size, time of appearance, and tissue distribution of the collagen transcripts in the developing sea urchin embryo. Collagen mRNA, approximately equal to 6 kilobases in size, is first detected in the forming primary mesenchyme cells of late blastulae where it progressively accumulates until the free swimming/feeding pluteus larval stage. Interestingly, collagen transcripts are also detected in the forming secondary mesenchyme cells of late gastrulae, and by the prism stage, their derivatives appear to be the most intensively labeled cells.

  9. Structure and developmental expression of a sea urchin fibrillar collagen gene.

    PubMed Central

    D'Alessio, M; Ramirez, F; Suzuki, H R; Solursh, M; Gambino, R

    1989-01-01

    We have isolated and characterized cDNA and genomic clones that specify a Paracentrotus lividus procollagen chain. The cDNAs code for 160 uninterrupted Gly-Xaa-Yaa triplets and a 252-amino acid carboxyl propeptide. Analysis of the deduced amino acid sequences indicated that the sea urchin polypeptide exhibits structural features that are characteristic of the fibril-forming class of collagen molecules. Partial characterization of two genomic recombinants revealed that the 3' end of the echinoid gene displays a complex organization that closely resembles that of a prototypical vertebrate fibrillar collagen gene. In situ and Northern (RNA) blot hybridizations established the size, time of appearance, and tissue distribution of the collagen transcripts in the developing sea urchin embryo. Collagen mRNA, approximately equal to 6 kilobases in size, is first detected in the forming primary mesenchyme cells of late blastulae where it progressively accumulates until the free swimming/feeding pluteus larval stage. Interestingly, collagen transcripts are also detected in the forming secondary mesenchyme cells of late gastrulae, and by the prism stage, their derivatives appear to be the most intensively labeled cells. Images PMID:2594770

  10. A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.

    PubMed

    Angerer, L M; Oleksyn, D W; Logan, C Y; McClay, D R; Dale, L; Angerer, R C

    2000-03-01

    To examine whether a BMP signaling pathway functions in specification of cell fates in sea urchin embryos, we have cloned sea urchin BMP2/4, analyzed its expression in time and space in developing embryos and assayed the developmental consequences of changing its concentration through mRNA injection experiments. These studies show that BMP4 mRNAs accumulate transiently during blastula stages, beginning around the 200-cell stage, 14 hours postfertilization. Soon after the hatching blastula stage, BMP2/4 transcripts can be detected in presumptive ectoderm, where they are enriched on the oral side. Injection of BMP2/4 mRNA at the one-cell stage causes a dose-dependent suppression of commitment of cells to vegetal fates and ectoderm differentiates almost exclusively as a squamous epithelial tissue. In contrast, NOGGIN, an antagonist of BMP2/4, enhances differentiation of endoderm, a vegetal tissue, and promotes differentiation of cells characteristic of the ciliated band, which contains neurogenic ectoderm. These findings support a model in which the balance of BMP2/4 signals produced by animal cell progeny and opposing vegetalizing signals sent during cleavage stages regulate the position of the ectoderm/ endoderm boundary. In addition, BMP2/4 levels influence the decision within ectoderm between epidermal and nonepidermal differentiation.

  11. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    PubMed

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed.

  12. The structure of sulfated polysaccharides ensures a carbohydrate-based mechanism for species recognition during sea urchin fertilization.

    PubMed

    Vilela-Silva, Ana-Cristina E S; Hirohashi, Noritaka; Mourão, Paulo A S

    2008-01-01

    The evolution of barriers to inter-specific hybridization is a crucial step in the fertilization of free spawning marine invertebrates. In sea urchins, molecular recognition between sperm and egg ensures species recognition. Here we review the sulfated polysaccharide-based mechanism of sperm-egg recognition in this model organism. The jelly surrounding sea urchin eggs is not a simple accessory structure; it is molecularly complex and intimately involved in gamete recognition. It contains sulfated polysaccharides, sialoglycans and peptides. The sulfated polysaccharides have unique structures, composed of repetitive units of alpha-L-fucose or alpha-L-galactose, which differ among species in the sulfation pattern and/or the position of the glycosidic linkage. The egg jelly sulfated polysaccharides show species-specificity in inducing the sperm acrosome reaction, which is regulated by the structure of the saccharide chain and its sulfation pattern. Other components of the egg jelly do not possess acrosome reaction inducing activity, but sialoglycans act in synergy with the sulfated polysaccharide, potentiating its activity. The system we describe establishes a new view of cell-cell interaction in the sea urchin model system. Here, structural changes in egg jelly polysaccharides modulate cell-cell recognition and species-specificity leading to exocytosis of the acrosome. Therefore, sulfated polysaccharides, in addition to their known functions as growth factors, coagulation factors and selectin binding partners, also function in fertilization. The differentiation of these molecules may play a role in sea urchin speciation.

  13. bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo.

    PubMed

    Yaguchi, Shunsuke; Yaguchi, Junko; Inaba, Kazuo

    2014-10-31

    bicaudal-C (bicC) mRNA encodes a protein containing RNA-binding domains that is reported to be maternally present with deflection in the oocytes/eggs of some species. The translated protein plays a critical role in the regulation of cell fate specification along the body axis during early embryogenesis in flies and frogs. However, it is unclear how it functions in eggs in which bicC mRNA is uniformly distributed, for instance, sea urchin eggs. Here, we show the function of BicC in the formation of neurogenic ectoderm of the sea urchin embryo. Loss-of-function experiments reveal that BicC is required for serotonergic neurogenesis and for expression of ankAT-1 gene, which is essential for the formation of apical tuft cilia in the neurogenic ectoderm of the sea urchin embryo. In contrast, the expression of FoxQ2, the neurogenic ectoderm specification transcription factor, is invariant in BicC morphants. Because FoxQ2 is an upstream factor of serotonergic neurogenesis and ankAT-1 expression, these data indicate that BicC functions in regulating the events that are coordinated by FoxQ2 during sea urchin embryogenesis.

  14. PROJECTING POPULATION-LEVEL RESPONSE OF PURPLE SEA URCHINS TO LEAD CONTAMINATION FOR AN ESTUARINE ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    As part of an ecological risk assessment case study at the Portsmouth naval Shipyard (PNS), Kittery, Maine, USA, the population level effects of lead exposure to purple sea urchin, Arbacia punctulata, were investigated using a stage-classified matrix population model. The model d...

  15. Relationships between fish, sea urchins and macroalgae: The structure of shallow rocky sublittoral communities in the Cyclades, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Giakoumi, Sylvaine; Cebrian, Emma; Kokkoris, Giorgos D.; Ballesteros, Enric; Sala, Enric

    2012-08-01

    Historical overfishing is the most likely explanation for the depletion of the shallow sublittoral communities in many areas not least in the Cyclades Archipelago, Greece. The present study is the first quantitative study of the shallow rocky sublittoral of the Cyclades based on in situ underwater surveys of algal cover, and fish and sea urchin abundance at 181 sampling sites in 25 islands to provide a baseline and investigate the relationship between these communities. Algal turf was the most abundant algal functional group, and canopy algae of the genus Cystoseira were more abundant at the northern islands. A range in fish biomass of almost two orders of magnitude was found across islands, but overall the Cyclades displayed much lower values than fished areas of the Western Mediterranean. We observed apex predators only in 25% of our sampling sites, and their biomass was uncorrelated to total fish biomass, indicating a depleted ecosystem. Sea urchin biomass was also low but similar to values found in other Mediterranean islands and was positively correlated with barrens. We observed a gradient of benthic community complexity from sea urchin barrens to communities dominated by Cystoseira spp. There was no correlation between sea urchins and their predators Diplodus spp., which presented extremely low densities.

  16. EFFECTS OF TRIBUTYLTIN ON CA2+ HOMEOSTASIS AND MECHANISMS CONTROLLING CELL CYCLING IN SEA URCHIN EGGS (R823881)

    EPA Science Inventory

    Abstract

    Tributyltin (TBT) is one of the widespread organotins in the marine environment: we have investigated its cellular targets in the eggs of the marine invertebrate sea urchin Paracentrotus lividus. TBT was used at concentrations ranging from 10-9

  17. Manipulation of Developing Juvenile Structures in Purple Sea Urchins (Strongylocentrotus purpuratus) by Morpholino Injection into Late Stage Larvae

    PubMed Central

    2014-01-01

    Sea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development. Here we develop and validate a technique for injecting compounds into juvenile rudiments of the purple sea urchin, Strongylocentrotus purpuratus. We first document the distribution of rhodaminated dextran injected into different compartments of the juvenile rudiment of sea urchin larvae. Then, to test the potential of this technique to manipulate development, we injected Vivo-Morpholinos (vMOs) designed to knock down p58b and p16, two proteins involved in the elongation of S. purpuratus larval skeleton. Rudiments injected with these vMOs showed a delay in the growth of some juvenile skeletal elements relative to controls. These data provide the first evidence that vMOs, which are designed to cross cell membranes, can be used to transiently manipulate gene function in later developmental stages in sea urchins. We therefore propose that injection of vMOs into juvenile rudiments, as shown here, is a viable approach to testing hypotheses about gene function during development, including metamorphosis. PMID:25436992

  18. Genetic diversity of the NE Atlantic sea urchin Strongylocentrotus droebachiensis unveils chaotic genetic patchiness possibly linked to local selective pressure.

    PubMed

    Norderhaug, K M; Anglès d'Auriac, M B; Fagerli, C W; Gundersen, H; Christie, H; Dahl, K; Hobæk, A

    We compared the genetic differentiation in the green sea urchin Strongylocentrotus droebachiensis from discrete populations on the NE Atlantic coast. By using eight recently developed microsatellite markers, genetic structure was compared between populations from the Danish Strait in the south to the Barents Sea in the north (56-79°N). Urchins are spread by pelagic larvae and may be transported long distances by northwards-going ocean currents. Two main superimposed patterns were identified. The first showed a subtle but significant genetic differentiation from the southernmost to the northernmost of the studied populations and could be explained by an isolation by distance model. The second pattern included two coastal populations in mid-Norway (65°N), NH and NS, as well as the northernmost population of continental Norway (71°N) FV. They showed a high degree of differentiation from all other populations. The explanation to the second pattern is most likely chaotic genetic patchiness caused by introgression from another species, S. pallidus, into S. droebachiensis resulting from selective pressure. Ongoing sea urchin collapse and kelp forests recovery are observed in the area of NH, NS and FV populations. High gene flow between populations spanning more than 22° in latitude suggests a high risk of new grazing events to occur rapidly in the future if conditions for sea urchins are favourable. On the other hand, the possibility of hybridization in association with collapsing populations may be used as an early warning indicator for monitoring purposes.

  19. Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae.

    PubMed

    Heyland, Andreas; Hodin, Jason; Bishop, Cory

    2014-01-01

    Sea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development. Here we develop and validate a technique for injecting compounds into juvenile rudiments of the purple sea urchin, Strongylocentrotus purpuratus. We first document the distribution of rhodaminated dextran injected into different compartments of the juvenile rudiment of sea urchin larvae. Then, to test the potential of this technique to manipulate development, we injected Vivo-Morpholinos (vMOs) designed to knock down p58b and p16, two proteins involved in the elongation of S. purpuratus larval skeleton. Rudiments injected with these vMOs showed a delay in the growth of some juvenile skeletal elements relative to controls. These data provide the first evidence that vMOs, which are designed to cross cell membranes, can be used to transiently manipulate gene function in later developmental stages in sea urchins. We therefore propose that injection of vMOs into juvenile rudiments, as shown here, is a viable approach to testing hypotheses about gene function during development, including metamorphosis.

  20. Identification of a cell lineage-specific gene coding for a sea urchin alpha 2(IV)-like collagen chain.

    PubMed

    Exposito, J Y; Suzuki, H; Geourjon, C; Garrone, R; Solursh, M; Ramirez, F

    1994-05-06

    We report the isolation of several overlapping cDNAs from an embryonic library of Strongylocentrotus purpuratus coding for a novel sea urchin collagen chain. The conceptual amino acid translation of the cDNAs indicated that the protein displays the structural features of a vertebrate type IV-like collagen alpha chain. In addition to a putative 31-residue signal peptide, the sea urchin molecule contains a 14-residue amino-terminal non-collagenous segment, a discontinuous 1,477-amino acid triple helical domain, and a 225-residue carboxyl-terminal domain rich in cysteines. The amino- and carboxyl-terminal non-collagenous regions of the echinoid molecule are remarkably similar to the 7 S and carboxyl-terminal non-collagenous (NC1) domains of the alpha 1 and alpha 2 chains of vertebrate type IV collagen. The sequence similarity and distinct structural features of the 7 S and NC1 domains strongly suggest that the sea urchin polypeptide is evolutionarily related to the alpha 2(IV) class of collagen chains. Finally, in situ hybridizations revealed that expression of this collagen gene is restricted to the mesenchyme cell lineage of the developing sea urchin embryo.

  1. A sea urchin lectin, SUL-1, from the Toxopneustid sea urchin induces DC maturation from human monocyte and drives Th1 polarization in vitro

    SciTech Connect

    Takei, Masao . E-mail: mtakei@fz-borstel.de; Nakagawa, Hideyuki

    2006-05-15

    The sea urchin Toxopneustes pileolus belonging to the family Toxopneustidae, they have well-developed globiferous pedicellariae with pharmacologically active substances. We have purified a novel sea urchin lectin-1 (SUL-1) from the large globiferous pedicellariae of T. pileolus. Dendritic cells (DC) are professional APC and play a pivotal role in controlling immune responses. This study investigated whether SUL-1 can drive DC maturation from human immature monocyte-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days followed by another 1 day in the presence of SUL-1 or LPS. DC harvested on day 7 were examined using functional assays. The expression levels of CD1a, CD80, CD83, CD86 and HLA-DR as expressed by mean fluorescence intensity (MFI) on DC differentiated from immature DC after culture with 1.0 {mu}g/ml of SUL-1 for 1 day were enhanced and decreased endocytic activity. SUL-1-treated DC also displayed enhanced T cell stimulatory capacity in an MLR, as measured by T cell proliferation. Cell surface expression of CD80, CD83 and CD86 on SUL-1-treated DC was inhibited by anti-DC-SIGN mAb, while anti-DC-SIGN mAb had no influence on allogeneic T cell proliferation by SUL-1-treated DC. DC differentiated with SUL-1 induced the differentiation of naive T cell towards a helper T cell type 1 (Th1) response at DC/T (1:5) cells ratio depending on IL-12 secretion. In CTL assay, the production of IFN-{gamma} and {sup 51}Cr release on SUL-1-treated DC were more augmented than of immature DC or LPS-treated DC. SUL-1-treated DC expressed CCR7 and had a high migration to MIP-3{beta}. Intracellular Ca{sup 2+} mobilization in SUL-1-treated DC was also induced by MIP-3{beta}. These results suggest that SUL-1 bindings to DC-SIGN on surface of immature DC may lead to differentiate DC from immature DC. Moreover, it suggests that SUL-1 may be used on DC-based vaccines for cancer immunotherapy.

  2. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic.

    PubMed

    Evans, Tyler G; Pespeni, Melissa H; Hofmann, Gretchen E; Palumbi, Stephen R; Sanford, Eric

    2017-01-31

    Increasing awareness of spatial and temporal variation in ocean pH suggests some marine populations may be adapted to local pH regimes and will therefore respond differently to present-day pH variation and to long-term ocean acidification. In the Northeast Pacific Ocean, differences in the strength of coastal upwelling cause latitudinal variation in prevailing pH regimes that are hypothesized to promote local adaptation and unequal pH tolerance among resident populations. In this study, responses to experimental seawater acidification were compared among six populations of purple sea urchins (Strongylocentrotus purpuratus) inhabiting areas that differ in their frequency of low pH exposure and that prior research suggests are locally adapted to seawater pH. Transcriptomic analyses demonstrate urchin populations most frequently exposed to low pH seawater responded to experimental acidification by expressing genes within major ATP producing pathways at greater levels than populations encountering low pH less often. Multiple genes within the tricarboxylic acid cycle, electron transport chain, and fatty acid beta oxidation pathways were up-regulated in urchin populations experiencing low pH conditions most frequently. These same metabolic pathways were significantly over-represented among genes both expressed in a population-specific manner and putatively under selection to enhance low pH tolerance. Collectively, these data suggest natural selection is acting on metabolic gene networks in order to redirect ATP toward acid-base regulatory processes and enhance tolerance of seawater acidification. As a trade-off, marine populations more tolerant of low pH may have less energy to put toward other aspects of fitness and to respond to additional ocean change. This article is protected by copyright. All rights reserved.

  3. Growth rates are related to production efficiencies in juveniles of the sea urchin Lytechinus variegatus.

    PubMed

    Heflin, L E; Gibbs, V K; Jones, W T; Makowsky, R; Lawrence, A L; Watts, S A

    2013-09-01

    Growth rates of newly-metamorphosed urchins from a single spawning event (three males and three females) were highly variable, despite being held en masse under identical environmental and nutritional conditions. As individuals reached ~5 mm diameter (0.07-0.10 g wet weight), they were placed in growth trials (23 dietary treatments containing various nutrient profiles). Elapsed time from the first individual entering the growth trials to the last individual entering was 121 days (N = 170 individuals). During the five-week growth trials, urchins were held individually and proffered a limiting ration to evaluate growth rate and production efficiency. Growth rates among individuals within each dietary treatment remained highly variable. Across all dietary treatments, individuals with an initially high growth rate (entering the study first) continued to grow at a faster rate than those with an initially low growth rate (entering the study at a later date), regardless of feed intake. Wet weight gain (ranging from 0.13 -3.19 g, P < 0.0001, R(2) = 0.5801) and dry matter production efficiency (ranging from 25.2-180.5%, P = 0.0003, R(2) = 0.6162) were negatively correlated with stocking date, regardless of dietary treatment. Although canalization of growth rate during en masse early post-metamorphic growth is possible, we hypothesize that intrinsic differences in growth rates are, in part, the result of differences (possibly genetic) in production efficiencies of individual Lytechinus variegatus. That is, some sea urchins are more efficient in converting feed to biomass. We further hypothesize that this variation may have evolved as an adaptive response to selective pressure related to food availability.

  4. Growth rates are related to production efficiencies in juveniles of the sea urchin Lytechinus variegatus

    PubMed Central

    Heflin, L.E.; Gibbs, V.K.; Jones, W.T.; Makowsky, R.; Lawrence, A.L.; Watts, S.A.

    2014-01-01

    Growth rates of newly-metamorphosed urchins from a single spawning event (three males and three females) were highly variable, despite being held en masse under identical environmental and nutritional conditions. As individuals reached ~5 mm diameter (0.07–0.10 g wet weight), they were placed in growth trials (23 dietary treatments containing various nutrient profiles). Elapsed time from the first individual entering the growth trials to the last individual entering was 121 days (N = 170 individuals). During the five-week growth trials, urchins were held individually and proffered a limiting ration to evaluate growth rate and production efficiency. Growth rates among individuals within each dietary treatment remained highly variable. Across all dietary treatments, individuals with an initially high growth rate (entering the study first) continued to grow at a faster rate than those with an initially low growth rate (entering the study at a later date), regardless of feed intake. Wet weight gain (ranging from 0.13 −3.19 g, P < 0.0001, R2 = 0.5801) and dry matter production efficiency (ranging from 25.2–180.5%, P = 0.0003, R2 = 0.6162) were negatively correlated with stocking date, regardless of dietary treatment. Although canalization of growth rate during en masse early post-metamorphic growth is possible, we hypothesize that intrinsic differences in growth rates are, in part, the result of differences (possibly genetic) in production efficiencies of individual Lytechinus variegatus. That is, some sea urchins are more efficient in converting feed to biomass. We further hypothesize that this variation may have evolved as an adaptive response to selective pressure related to food availability. PMID:25435593

  5. The Seagrass Effect Turned Upside Down Changes the Prospective of Sea Urchin Survival and Landscape Implications

    PubMed Central

    Farina, Simone; Guala, Ivan; Oliva, Silvia; Piazzi, Luigi; Pires da Silva, Rodrigo; Ceccherelli, Giulia

    2016-01-01

    Habitat structure plays an important mediating role in predator-prey interactions. However the effects are strongly dependent on regional predator pools, which can drive predation risk in habitats with very similar structure in opposite directions. In the Mediterranean Sea predation on juvenile sea urchins is commonly known to be regulated by seagrass structure. In this study we test whether the possibility for juvenile Paracentrotus lividus to be predated changes in relation to the fragmentation of the seagrass Posidonia oceanica (four habitat classes: continuous, low-fragmentation, high-fragmentation and rocks), and to the spatial arrangement of such habitat classes at a landscape scale. Sea urchin predation risk was measured in a 20-day field experiment on tethered individuals placed in three square areas 35×35 m2 in size. Variability of both landscape and habitat structural attributes was assessed at the sampling grain 5×5 m2. Predation risk changed among landscapes, as it was lower where more ‘rocks’, and thus less seagrass, were present. The higher risk was found in the ‘continuous’ P. oceanica rather than in the low-fragmentation, high-fragmentation and rock habitats (p-values = 0.0149, 0.00008, and 0.0001, respectively). Therefore, the expectation that juvenile P. lividus survival would have been higher in the ‘continuous’ seagrass habitat, which would have served as shelter from high fish predation pressure, was not met. Predation risk changed across habitats due to different success between attack types: benthic attacks (mostly from whelks) were overall much more effective than those due to fish activity, the former type being associated with the ‘continuous’ seagrass habitat. Fish predation on juvenile sea urchins on rocks and ‘high-fragmentation’ habitat was less likely than benthic predation in the ‘continuous’ seagrass, with the low seagrass patch complexity increasing benthic activity. Future research should be aimed at

  6. The Seagrass Effect Turned Upside Down Changes the Prospective of Sea Urchin Survival and Landscape Implications.

    PubMed

    Farina, Simone; Guala, Ivan; Oliva, Silvia; Piazzi, Luigi; Pires da Silva, Rodrigo; Ceccherelli, Giulia

    2016-01-01

    Habitat structure plays an important mediating role in predator-prey interactions. However the effects are strongly dependent on regional predator pools, which can drive predation risk in habitats with very similar structure in opposite directions. In the Mediterranean Sea predation on juvenile sea urchins is commonly known to be regulated by seagrass structure. In this study we test whether the possibility for juvenile Paracentrotus lividus to be predated changes in relation to the fragmentation of the seagrass Posidonia oceanica (four habitat classes: continuous, low-fragmentation, high-fragmentation and rocks), and to the spatial arrangement of such habitat classes at a landscape scale. Sea urchin predation risk was measured in a 20-day field experiment on tethered individuals placed in three square areas 35×35 m2 in size. Variability of both landscape and habitat structural attributes was assessed at the sampling grain 5×5 m2. Predation risk changed among landscapes, as it was lower where more 'rocks', and thus less seagrass, were present. The higher risk was found in the 'continuous' P. oceanica rather than in the low-fragmentation, high-fragmentation and rock habitats (p-values = 0.0149, 0.00008, and 0.0001, respectively). Therefore, the expectation that juvenile P. lividus survival would have been higher in the 'continuous' seagrass habitat, which would have served as shelter from high fish predation pressure, was not met. Predation risk changed across habitats due to different success between attack types: benthic attacks (mostly from whelks) were overall much more effective than those due to fish activity, the former type being associated with the 'continuous' seagrass habitat. Fish predation on juvenile sea urchins on rocks and 'high-fragmentation' habitat was less likely than benthic predation in the 'continuous' seagrass, with the low seagrass patch complexity increasing benthic activity. Future research should be aimed at investigating, derived from

  7. Signal transduction pathways that contribute to CDK1/cyclin B activation during the first mitotic division in sea urchin embryos.

    PubMed

    Salaün, Patrick; Le Breton, Magali; Morales, Julia; Bellé, Robert; Boulben, Sandrine; Mulner-Lorillon, Odile; Cormier, Patrick

    2004-06-10

    In sea urchins, fertilization triggers a rapid rise in protein synthesis necessary for activation of CDK1/cyclin B, the universal cell cycle regulator. It has been shown that FRAP/mTOR is required for eIF4E release from the translational repressor 4E-BP, a process that occurs upstream of de novo cyclin B synthesis. Here, we investigate whether PI 3-kinase acts independently or upstream from FRAP/mTOR in the signal transduction pathway that links fertilization to the activation of the CDK1/cyclin B complex in sea urchin egg. We found that wortmannin, a potent inhibitor of PI 3-kinase, partially inhibited the global increase in protein synthesis triggered by fertilization. Furthermore, wortmannin treatment induced partial inhibition of cyclin B translation triggered by fertilization, in correlation with an intermediate effect of the drug on 4E-BP degradation and on the dissociation of the 4E-BP/eIF4E complex induced by fertilization. Our results presented here suggest that PI 3-kinase activity is required for completion of mitotic divisions of the sea urchin embryo. Incubation of eggs with wortmannin or microinjection of wortmannin or LY 294002 affects drastically mitotic divisions induced by fertilization. In addition, we found that wortmannin treatment inhibits dephosphorylation of the tyrosine inhibitory site of CDK1. Taken together, these data suggest that PI 3-kinase acts upstream of at least two independent targets that function in the CDK1/cyclin B activation triggered by fertilization of sea urchin oocytes. We discuss the significance of these results concerning the cascade of reactions that impinge upon the activation of the CDK1/cyclin B complex that follows sea urchin oocyte fertilization.

  8. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.

    PubMed

    Emily-Fenouil, F; Ghiglione, C; Lhomond, G; Lepage, T; Gache, C

    1998-07-01

    In the sea urchin embryo, the animal-vegetal axis is defined before fertilization and different embryonic territories are established along this axis by mechanisms which are largely unknown. Significantly, the boundaries of these territories can be shifted by treatment with various reagents including zinc and lithium. We have isolated and characterized a sea urchin homolog of GSK3beta/shaggy, a lithium-sensitive kinase which is a component of the Wnt pathway and known to be involved in axial patterning in other embryos including Xenopus. The effects of overexpressing the normal and mutant forms of GSK3beta derived either from sea urchin or Xenopus were analyzed by observation of the morphology of 48 hour embryos (pluteus stage) and by monitoring spatial expression of the hatching enzyme (HE) gene, a very early gene whose expression is restricted to an animal domain with a sharp border roughly coinciding with the future ectoderm / endoderm boundary. Inactive forms of GSK3beta predicted to have a dominant-negative activity, vegetalized the embryo and decreased the size of the HE expression domain, apparently by shifting the boundary towards the animal pole. These effects are similar to, but even stronger than, those of lithium. Conversely, overexpression of wild-type GSK3beta animalized the embryo and caused the HE domain to enlarge towards the vegetal pole. Unlike zinc treatment, GSK3beta overexpression thus appeared to provoke a true animalization, through extension of the presumptive ectoderm territory. These results indicate that in sea urchin embryos the level of GSKbeta activity controls the position of the boundary between the presumptive ectoderm and endoderm territories and thus, the relative extent of these tissue layers in late embryos. GSK3beta and probably other downstream components of the Wnt pathway thus mediate patterning both along the primary AV axis of the sea urchin embryo and along the dorsal-ventral axis in Xenopus, suggesting a conserved basis

  9. Dynamics of sea level variations in the coastal Red Sea

    NASA Astrophysics Data System (ADS)

    Churchill, James; Abulnaja, Yasser; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard; Lentz, Steven

    2016-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. While considerable scientific work has been directed at tidal and seasonal variations of Red Sea water level, very little attention has been given to elevation changes in an 'intermediate' frequency band, with periods of 2-30 d, even though motions in this band account for roughly half of the sea level variance in central Red Sea. We examined the sea level signal in this band using AVISO sea level anomaly (SLA) data, COARDAS wind data and measurements from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters. Empirical orthogonal function analysis of the SLA data indicates that longer-period (10-30 d) sea level variations in the intermediate band are dominated by coherent motions in a single mode that extends over most of the Red Sea axis. Idealized model results indicate that this large-scale mode of sea level motion is principally due to variations in the large-scale gradient of the along-axis wind. Our analysis indicates that coastal sea level motions at shorter periods (2-10 d) are principally generated by a combination of direct forcing by the local wind stress and forcing associated with large-scale wind stress gradients. However, also contributing to coastal sea level variations in the intermediate frequency band are mesoscale eddies, which are prevalent throughout the Red Sea basin, have a sea level signal of 10's of cm and produce relatively small-scale (order 50 km) changes in coastal sea level.

  10. Kelp, sea urchins and predators: A review of strong interactions in rocky subtidal systems of Eastern Canada, 1970-1980

    NASA Astrophysics Data System (ADS)

    Mann, K. H.

    Abundance of the sea urchin Stronglocentrotus droebachiensis increased following reduced predation pressure, and dense kelp ( Laminaria and Agarum) beds were overgrazed and destroyed along more than 500 km of coastline in Nova Scotia, Canada. During the same period of time, lobster stocks in this area were reduced to about 10% of their former level. While direct evidence is lacking, indirect evidence suggests very strongly that the population explosion of urchins was triggered by a reduction of lobster stocks below a critical level, and that subsequent destruction of kelp beds caused increased lobster mortality through loss of cover, and reduced production in the food chain supporting lobsters. The whole comprises a positive feedback leading to further decreases in lobster stocks and the present, low-productivity configuration of urchin-dominated barren grounds.

  11. Effects of ocean acidification and diet on thickness and carbonate elemental composition of the test of juvenile sea urchins.

    PubMed

    Asnaghi, Valentina; Mangialajo, Luisa; Gattuso, Jean-Pierre; Francour, Patrice; Privitera, Davide; Chiantore, Mariachiara

    2014-02-01

    Continuous anthropogenic CO2 emissions to the atmosphere and uptake by the oceans will cause a reduction of seawater pH and saturation state (Ω) of CaCO3 minerals from which marine calcifiers build their shells and skeletons. Sea urchins use the most soluble form of calcium carbonate, high-magnesium calcite, to build their skeleton, spines and grazing apparatus. In order to highlight the effects of increased pCO2 on the test thickness and carbonate elemental composition of juvenile sea urchins and potential differences in their responses linked to the diet, we performed a laboratory experiment on juvenile Paracentrotus lividus, grazing on calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea, Dictyota dichotoma) macroalgae, under different pH (corresponding to pCO2 values of 390, 550, 750 and 1000 μatm). Results highlighted the importance of the diet in determining sea urchin size irrespectively of the pCO2 level, and the relevance of macroalgal diet in modulating urchin Mg/Ca ratio. The present study provides relevant clues both in terms of the mechanism of mineral incorporation and in terms of bottom-up processes (algal diet) affecting top-down ones (fish predation) in rocky subtidal communities.

  12. Regulatory logic and pattern formation in the early sea urchin embryo.

    PubMed

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2014-12-21

    We model the endomesoderm tissue specification process in the vegetal half of the early sea urchin embryo using Boolean models with continuous-time updating to represent the regulatory network that controls gene expression. Our models assume that the network interaction rules remain constant over time and the dynamics plays out on a predetermined program of cell divisions. An exhaustive search of two-node models, in which each node may represent a module of several genes in the real regulatory network, yields a unique network architecture that can accomplish the pattern formation task at hand--the formation of three latitudinal tissue bands from an initial state with only two distinct cell types. Analysis of an eight-gene model constructed from available experimental data reveals that it has a modular structure equivalent to the successful two-node case. Our results support the hypothesis that the gene regulatory network provides sufficient instructions for producing the correct pattern of tissue specification at this stage of development (between the fourth and tenth cleavages in the urchin embryo).

  13. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    PubMed

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification.

  14. Longevity, life history, and relative body wall size in sea urchins

    SciTech Connect

    Ebert, T.A.

    1982-12-01

    Annual survival rates in 38 populations of 17 sea urchin species in the Indo-West Pacific were related to relative size of the body wall and exposure to the surf. Populations were studied at Hawaii, Enewetak Atok, Queensland, New South Wales and Western Australia, Sri Lanka, Seychelles, Kenya, Zanzibar, and Isaerl (Eilat). Live animals were dissected to determine the size of body components. Parameters of the Richards growth function were determined from animals tagged with tetracycline. Tagged animals were collected after they had been in the field for 1 yr. Growth parameters were used with parameters from size-frequency distributions to estimate Z, the mortality coefficient. Stepwise multiple regression was used to examine the relationship between annual survival probability (p) and two indepencent variables, ..cap alpha.. and E, where E is a subjective measure of exposure to surf (1 = most exposed). Survivorship increases with increased relative size of the body wall and with increased protection from the surf. The positive relationship between survival probability and relative body wall size supports the hypothesis that survival is related to allocation of resources to maintenance. The significane of longevity in urchins probably is that it is related to the predictability of survival of prereproductive individuals. The greater the unpredictability, the longer life must be. Long life requires a greater investment in maintenance mechanisms and hence, among other adaptations, a more massive body wall.

  15. Multiple gene genealogies reveal asymmetrical hybridization and introgression among strongylocentrotid sea urchins.

    PubMed

    Addison, Jason A; Pogson, Grant H

    2009-03-01

    The evolution of incompatibilities between eggs and sperm is thought to play important roles in establishing and maintaining reproductive isolation among species of broadcast-spawning marine invertebrates. However, the effectiveness of gametic isolation in initiating the speciation process and/or in limiting the introgression of genes among species at later stages of divergence remains largely unknown. In the present study, we collected DNA sequence data from five loci in four species of Strongylocentrotus sea urchins (S. droebachiensis, S. pallidus, S. purpuratus, and S. franciscanus) to test whether the susceptibility of S. droebachiensis eggs to fertilization by heterospecific sperm results in gene flow between species. Despite the potential for introgression, a small but statistically significant signal of introgression was observed only between the youngest pair of sister taxa (S. pallidus and S. droebachiensis) that was strongly asymmetrical (from the former into the latter). No significant gene flow was observed for either S. purpuratus or S. franciscanus despite the ability of their sperm to readily fertilize the eggs of S. droebachiensis. Our results demonstrate that asymmetrical gamete compatibilities in strongylocentrotids can give rise to asymmetrical patterns of introgression but suggest that gamete traits alone cannot be responsible for maintaining species integrities. The genetic boundaries between strongylocentrotid urchin species in the northeast Pacific appear to be related to postzygotic isolating mechanisms that scale with divergence times and not intrinsic gametic incompatibilities per se.

  16. A newly identified left–right asymmetry in larval sea urchins

    PubMed Central

    Hodin, Jason; Lutek, Keegan

    2016-01-01

    Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses—including developmental constraints and water column stability—to account for this newly identified asymmetry. PMID:27853591

  17. High-quality RNA extraction from the sea urchin Paracentrotus lividus embryos.

    PubMed

    Ruocco, Nadia; Costantini, Susan; Zupo, Valerio; Romano, Giovanna; Ianora, Adrianna; Fontana, Angelo; Costantini, Maria

    2017-01-01

    The sea urchin Paracentrotus lividus (Lamarck, 1816) is a keystone herbivore in the Mediterranean Sea due to its ability to transform macroalgal-dominated communities into barren areas characterized by increased cover of bare substrates and encrusting coralline algae, reduced biodiversity and altered ecosystem functions. P. lividus is also an excellent animal model for toxicology, physiology and biology investigations having been used for more than a century as a model for embryological studies with synchronously developing embryos which are easy to manipulate and analyze for morphological aberrations. Despite its importance for the scientific community, the complete genome is still not fully annotated. To date, only a few molecular tools are available and a few Next Generation Sequencing (NGS) studies have been performed. Here we aimed at setting-up an RNA extraction method to obtain high quality and sufficient quantity of RNA for NGS from P. lividus embryos at the pluteus stage. We compared five different RNA extraction protocols from four different pools of plutei (500, 1000, 2500 and 5000 embryos): TRIzol®, and four widely-used Silica Membrane kits, GenElute™ Mammalian Total RNA Miniprep Kit, RNAqueous® Micro Kit, RNeasy® Micro Kit and Aurum™ Total RNA Mini Kit. The quantity of RNA isolated was evaluated using NanoDrop. The quality, considering the purity, was measured as A260/A280 and A260/230 ratios. The integrity was measured by RNA Integrity Number (RIN). Our results demonstrated that the most efficient procedures were GenElute, RNeasy and Aurum, producing a sufficient quantity of RNA for NGS. The Bioanalyzer profiles and RIN values revealed that the most efficient methods guaranteeing for RNA integrity were RNeasy and Aurum combined with an initial preservation in RNAlater. This research represents the first attempt to standardize a method for high-quality RNA extraction from sea urchin embryos at the pluteus stage, providing a new resource for this

  18. High-quality RNA extraction from the sea urchin Paracentrotus lividus embryos

    PubMed Central

    Ruocco, Nadia; Costantini, Susan; Zupo, Valerio; Romano, Giovanna; Ianora, Adrianna; Fontana, Angelo; Costantini, Maria

    2017-01-01

    The sea urchin Paracentrotus lividus (Lamarck, 1816) is a keystone herbivore in the Mediterranean Sea due to its ability to transform macroalgal-dominated communities into barren areas characterized by increased cover of bare substrates and encrusting coralline algae, reduced biodiversity and altered ecosystem functions. P. lividus is also an excellent animal model for toxicology, physiology and biology investigations having been used for more than a century as a model for embryological studies with synchronously developing embryos which are easy to manipulate and analyze for morphological aberrations. Despite its importance for the scientific community, the complete genome is still not fully annotated. To date, only a few molecular tools are available and a few Next Generation Sequencing (NGS) studies have been performed. Here we aimed at setting-up an RNA extraction method to obtain high quality and sufficient quantity of RNA for NGS from P. lividus embryos at the pluteus stage. We compared five different RNA extraction protocols from four different pools of plutei (500, 1000, 2500 and 5000 embryos): TRIzol®, and four widely-used Silica Membrane kits, GenElute™ Mammalian Total RNA Miniprep Kit, RNAqueous® Micro Kit, RNeasy® Micro Kit and Aurum™ Total RNA Mini Kit. The quantity of RNA isolated was evaluated using NanoDrop. The quality, considering the purity, was measured as A260/A280 and A260/230 ratios. The integrity was measured by RNA Integrity Number (RIN). Our results demonstrated that the most efficient procedures were GenElute, RNeasy and Aurum, producing a sufficient quantity of RNA for NGS. The Bioanalyzer profiles and RIN values revealed that the most efficient methods guaranteeing for RNA integrity were RNeasy and Aurum combined with an initial preservation in RNAlater. This research represents the first attempt to standardize a method for high-quality RNA extraction from sea urchin embryos at the pluteus stage, providing a new resource for this

  19. Natural hybridization in the sea urchin genus Pseudoboletia between species without apparent barriers to gamete recognition.

    PubMed

    Zigler, Kirk S; Byrne, Maria; Raff, Elizabeth C; Lessios, H A; Raff, Rudolf A

    2012-06-01

    Marine species with high dispersal potential often have huge ranges and minimal population structure. Combined with the paucity of geographic barriers in the oceans, this pattern raises the question as to how speciation occurs in the sea. Over the past 20 years, evidence has accumulated that marine speciation is often linked to the evolution of gamete recognition proteins. Rapid evolution of gamete recognition proteins in gastropods, bivalves, and sea urchins is correlated with gamete incompatibility and contributes to the maintenance of species boundaries between sympatric congeners. Here, we present a counterexample to this general pattern. The sea urchins Pseudoboletia indiana and P. maculata have broad ranges that overlap in the Indian and Pacific oceans. Cytochrome oxidase I sequences indicated that these species are distinct, and their 7.3% divergence suggests that they diverged at least 2 mya. Despite this, we suspected hybridization between them based on the presence of morphologically intermediate individuals in sympatric populations at Sydney, Australia. We assessed the opportunity for hybridization between the two species and found that (1) individuals of the two species occur within a meter of each other in nature, (2) they have overlapping annual reproductive cycles, and (3) their gametes cross-fertilize readily in the laboratory and in the field. We genotyped individuals with intermediate morphology and confirmed that many were hybrids. Hybrids were fertile, and some female hybrids had egg sizes intermediate between the two parental species. Consistent with their high level of gamete compatibility, there is minimal divergence between P. indiana and P. maculata in the gamete recognition protein bindin, with a single fixed amino acid difference between the two species. Pseudoboletia thus provides a well-characterized exception to the idea that broadcast spawning marine species living in sympatry develop and maintain species boundaries through the

  20. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests.

    PubMed

    Hamilton, Scott L; Caselle, Jennifer E

    2015-01-22

    Size-structured predator-prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside marine reserves and due to fisheries management) of California sheephead (Semicossyphus pulcher) has affected size-structured interactions with sea urchin prey in southern California. We show that fishing changes size structure by reducing sizes and alters life histories of sheephead, while management measures that lessen or remove fishing impacts (e.g. marine reserves, effort restrictions) reverse these effects and result in increases in density, size and biomass. We show that predation on sea urchins is size-dependent, such that the diet of larger sheephead is composed of more and larger sized urchins than the diet of smaller fish. These results have implications for kelp forest resilience, because urchins can overgraze kelp in the absence of top-down control. From surveys in a network of marine reserves, we report negative relationships between the abundance of sheephead and urchins and the abundance of urchins and fleshy macroalgae (including giant kelp), indicating the potential for cascading indirect positive effects of top predators on the abundance of primary producers. Management measures such as increased minimum size limits and marine reserves may serve to restore historical trophic roles of key predators and thereby enhance the resilience of marine ecosystems.

  1. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests

    PubMed Central

    Hamilton, Scott L.; Caselle, Jennifer E.

    2015-01-01

    Size-structured predator–prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside marine reserves and due to fisheries management) of California sheephead (Semicossyphus pulcher) has affected size-structured interactions with sea urchin prey in southern California. We show that fishing changes size structure by reducing sizes and alters life histories of sheephead, while management measures that lessen or remove fishing impacts (e.g. marine reserves, effort restrictions) reverse these effects and result in increases in density, size and biomass. We show that predation on sea urchins is size-dependent, such that the diet of larger sheephead is composed of more and larger sized urchins than the diet of smaller fish. These results have implications for kelp forest resilience, because urchins can overgraze kelp in the absence of top-down control. From surveys in a network of marine reserves, we report negative relationships between the abundance of sheephead and urchins and the abundance of urchins and fleshy macroalgae (including giant kelp), indicating the potential for cascading indirect positive effects of top predators on the abundance of primary producers. Management measures such as increased minimum size limits and marine reserves may serve to restore historical trophic roles of key predators and thereby enhance the resilience of marine ecosystems. PMID:25500572

  2. Best Dressed Test: A Study of the Covering Behavior of the Collector Urchin Tripneustes gratilla.

    PubMed

    Ziegenhorn, Morgan A

    2016-01-01

    Many sea urchin genera exhibit cryptic covering behaviors. One such behavior has been documented in the sea urchin Tripneustes gratilla, and previous studies have theorized that this behavior serves as protection from UV radiation. However, other hypotheses have been presented such as protection from predators or added weight to help T. gratilla resist strong currents. A field study was conducted in October-November 2015 in Moorea, French Polynesia to assess urchin covering behavior in natural habitats. The study found that urchins partially underneath rocks covered more, and with more algae, than urchins totally underneath rocks. To test if this behavior was driven by light intensity, a series of 30-minute experimental trials were run on 10 individuals in bright and dim conditions. Individuals were given red and clear plastic, and percent cover of each was recorded. These tests were repeated once fifty percent of spines had been removed from the urchin, in order to determine whether spine loss affects T. gratilla covering behavior. The study found that urchins had a distinct preference for cover that best protects them from UV radiation. Spine loss did not significantly affect urchin ability to cover, and urchins with removed spines still preferred opaque cover. Additionally, covering behavior was mapped onto a phylogeny of echinoderms to determine how it might have evolved. Understanding urchin covering behavior more fully is a step towards an understanding of the evolution of cryptic behavior across species.

  3. Best Dressed Test: A Study of the Covering Behavior of the Collector Urchin Tripneustes gratilla

    PubMed Central

    Ziegenhorn, Morgan A.

    2016-01-01

    Many sea urchin genera exhibit cryptic covering behaviors. One such behavior has been documented in the sea urchin Tripneustes gratilla, and previous studies have theorized that this behavior serves as protection from UV radiation. However, other hypotheses have been presented such as protection from predators or added weight to help T. gratilla resist strong currents. A field study was conducted in October-November 2015 in Moorea, French Polynesia to assess urchin covering behavior in natural habitats. The study found that urchins partially underneath rocks covered more, and with more algae, than urchins totally underneath rocks. To test if this behavior was driven by light intensity, a series of 30-minute experimental trials were run on 10 individuals in bright and dim conditions. Individuals were given red and clear plastic, and percent cover of each was recorded. These tests were repeated once fifty percent of spines had been removed from the urchin, in order to determine whether spine loss affects T. gratilla covering behavior. The study found that urchins had a distinct preference for cover that best protects them from UV radiation. Spine loss did not significantly affect urchin ability to cover, and urchins with removed spines still preferred opaque cover. Additionally, covering behavior was mapped onto a phylogeny of echinoderms to determine how it might have evolved. Understanding urchin covering behavior more fully is a step towards an understanding of the evolution of cryptic behavior across species. PMID:27073915

  4. Effect of an exceptional rainfall event on the sea urchin ( Paracentrotus lividus) stock and seagrass distribution in a Mediterranean coastal lagoon

    NASA Astrophysics Data System (ADS)

    Fernandez, Catherine; Pasqualini, Vanina; Boudouresque, Charles-François; Johnson, Monique; Ferrat, Lila; Caltagirone, Angela; Mouillot, David

    2006-06-01

    A shallow Mediterranean brackish lagoon (Urbinu, Corsica), 700 ha in surface area, characterized by low freshwater input and permanent communication with the open sea, and therefore by relatively stable salinity (usually 30-38), was subject in late 1993 to an exceptional rainfall event occurring on an average once every 50 years: 450 mm in 48 h (compared to the average annual precipitation of 650 mm). The volume of freshwater that poured into the lagoon corresponds to 36% of its volume. As a result, salinity dramatically dropped while turbidity increased. The seagrass Cymodocea nodosa and other habitats were mapped before (1990) and after (1994, 1996, 1999) the rainfall event, and the sea urchin Paracentrotus lividus stock was estimated together with its population structure. In 1994, after the rainfall event, the surface area of seagrass meadows moderately declined, but it cannot be ruled out that this loss may be within their usual inter-annual fluctuations. The sea urchin stock dropped by 50% (6-3 million individuals). Low salinity, turbidity and siltation were probably the reasons for the changes in sea urchin population in addition to variability of dynamic population parameters (e.g. recruitment, mortality). The recovery of sea urchin stock was completed within a few years (six years or less). The high population dynamics and the high recruitment potential of sea urchins may act as a mechanism to maintain sea urchin populations in this highly variable habitat. These results reflect the resilience and high adjustment stability of the system.

  5. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    PubMed

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.

  6. Molecular Genetic Markers of Intra- and Interspecific Divergence within Starfish and Sea Urchins (Echinodermata).

    PubMed

    Petrov, N B; Vladychenskaya, I P; Drozdov, A L; Kedrova, O S

    2016-09-01

    A fragment of the mitochondrial COI gene from isolates of several echinoderm species was sequenced. The isolates were from three species of starfish from the Asteriidae family (Asterias amurensis and Aphelasterias japonica collected in the Sea of Japan and Asterias rubens collected in the White Sea) and from the sea urchin Echinocardium cordatum (family Loveniidae) collected in the Sea of Japan. Additionally, regions including internal transcribed spacers and 5.8S rRNA (ITS1 - 5.8S rDNA - ITS2) were sequenced for the three studied starfish species. Phylogenetic analysis of the obtained COI sequences together with earlier determined homologous COI sequences from Ast. forbesii, Ast. rubens, and Echinocardium laevigaster from the North Atlantic and E. cordatum from the Yellow and North Seas (GenBank) placed them into strictly conspecific clusters with high bootstrap support (99% in all cases). Only two exceptions - Ast. rubens DQ077915 sequence placed with the Ast. forbesii cluster and Aph. japonica DQ992560 sequence placed with the Ast. amurensis cluster - were likely results of species misidentification. The intraspecific polymorphism for the COI gene within the Asteriidae family varied within a range of 0.2-0.9% as estimated from the genetic distances. The corresponding intrageneric and intergeneric values were 10.4-12.1 and 21.8-29.8%, respectively. The interspecific divergence for the COI gene in the sea urchin of Echinocardium genus (family Loveniidae) was significantly higher (17.1-17.7%) than in the starfish, while intergeneric divergence (14.6-25.7%) was similar to that in asteroids. The interspecific genetic distances for the nuclear transcribed sequences (ITS1 - 5.8S rDNA - ITS2) within the Asteriidae family were lower (3.1-4.5%), and the intergeneric distances were significantly higher (32.8-35.0%), compared to the corresponding distances for the COI gene. These results suggest that the investigated molecular-genetic markers could be used for segregation

  7. Effect of non-histone chromosomal proteins on transcription in vitro in sea-urchin.

    PubMed Central

    Di Mauro, E; Pedone, F; Pomponi, M

    1978-01-01

    Non-histone chromosomal proteins prepared from chromosomal material of the sea-urchin Paracentrotus lividus affect RNA synthesis in vitro. 1. The extent of transcription can be radically changed from inhibition to stimulation, depending on the DNA/non-histone chromosomal proteins ratio. 2. A correlation exists between stage of development and influence on transcription. 3. Non-histone chromosomal proteins exert their action by intervening directly on some initiation step of RNA synthesis, as shown by the numbers of initiation events that take place in their presence or absence. 4. Stimulatory activity is observed only in restrictive conditions of ionic strength and temperature. These observations are in agreement with models that predict for non-histone chromosomal proteins a regulatory role on the transcription process exerted through a modulation of promoter availability. Images Fig. 1. PMID:697768

  8. Transport in technicolor: Mapping ATP-binding cassette transporters in sea urchin embryos

    PubMed Central

    Gökirmak, Tufan; Shipp, Lauren E.; Campanale, Joseph P.; Nicklisch, Sascha C.T.; Hamdoun, Amro

    2014-01-01

    One quarter of eukaryotic genes encode membrane proteins. These include nearly 1000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multi-drug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease. PMID:25156004

  9. Colchicine-binding activity distinguishes sea urchin egg and outer doublet tubulins

    PubMed Central

    1984-01-01

    The colchicine-binding activity of tubulin has been utilized to distinguish the tubulins from two distinct microtubule systems of the same species, the sea urchin Strongylocentrotus purpuratus. We have analyzed the colchicine-binding affinities of highly purified tubulins from the unfertilized eggs and from the flagellar outer doublet microtubules by van't Hoff analysis, and have found significant differences in the free energy, enthalpy, and entropy changes characterizing the binding of colchicine to the two tubulins. The data indicate that significant chemical differences in the tubulins from the two functionally distinct microtubule systems exist, and that the differences are expressed in the native forms of the tubulins. Our findings are discussed in terms of the possibility that the colchicine- binding site may be an important regulatory site on the tubulin molecule. PMID:6539784

  10. Hydrodynamism and its influence on the reproductive condition of the edible sea urchin Paracentrotus lividus.

    PubMed

    Gianguzza, Paola; Bonaviri, Chiara; Prato, Ermelinda; Fanelli, Giovanni; Chiantore, Mariachiara; Privitera, Davide; Luzzu, Filippo; Agnetta, Davide

    2013-04-01

    Despite the large body of work published in the last two decades on the reproduction of the sea urchin Paracentrotus lividus, the reproductive aspects linked to hydrodynamic conditions and their influence on gonad production remain poorly understood. The present paper aims to evaluate the effect of hydrodynamism on the reproductive cycle of P. lividus. Variability in the gonadosomatic index (GSI) of P. lividus was estimated seasonally from 2007 to 2008 at two shallow sub-littoral flat basaltic areas at Ustica Island (Western Mediterranean). GSI was higher in the sites characterized by low hydrodynamism than in those with high hydrodynamism. Results also suggest a possible role for hydrodynamism in triggering processes of resource limitation (food shortage), probably by interfering with P. lividus feeding activity.

  11. Changes in subcellular elemental distributions accompanying the acrosome reaction in sea urchin sperm

    SciTech Connect

    Cantino, M.E.; Schackmann, R.W.; Johnson, D.E.

    1983-05-01

    Energy-dispersive x-ray microanalysis was used to analyze changes in the subcellular distributions of Na, Mg, P, S, Cl, K, and Ca associated with the acrosome reaction of sea urchin sperm. Within 5 sec after induction of the acrosome reaction, nuclear Na and mitochondrial Ca increased and nuclear and mitochondrial K decreased. Uptake of mitochondrial P was detected after several minutes, and increases in nuclear Mg were detected only after 5-10 min of incubation following induction of the reaction. The results suggest that sudden permeability changes in the sperm plasma membrane are associated with the acrosome reaction, but that complete breakdown of membrane and cell function does not occur for several minutes.

  12. Effects of exposure to gadolinium on the development of geographically and phylogenetically distant sea urchins species.

    PubMed

    Martino, Chiara; Bonaventura, Rosa; Byrne, Maria; Roccheri, Maria; Matranga, Valeria

    2016-06-02

    Gadolinium (Gd), a metal of the lanthanide series used as contrast agent for magnetic resonance imaging, is released into the aquatic environment. We investigated the effects of Gd on the development of four sea urchin species: two from Europe, Paracentrotus lividus and Arbacia lixula, and two from Australia, Heliocidaris tuberculata and Centrostephanus rodgersii. Exposure to Gd from fertilization resulted in inhibition or alteration of skeleton growth in the plutei. The similar morphological response to Gd in the four species indicates a similar mechanism underlying abnormal skeletogenesis. Sensitivity to Gd greatly varied, with the EC50 ranging from 56 nM to 132 μM across the four species. These different sensitivities highlight the importance of testing toxicity in several species for risk assessment. The strong negative effects of Gd on calcification in plutei, together with the plethora of marine species that have calcifying larvae, indicates that Gd pollution is urgent issue that needs to be addressed.

  13. Structural modifications induced by TPA (12-O-tetradecanoyl phorbol-13-acetate) in sea urchin eggs.

    PubMed

    Ciapa, B; Crossley, I; De Renzis, G

    1988-07-01

    We investigated the effect of the phorbol ester TPA (12-O-tetradecanoyl phorbol 13-acetate) on the egg morphology of the sea urchin Arbacia lixula. Our study indicates that TPA alters the cortical region of the egg: the pigment granules migrate toward the surface, while cortical granules detach from the plasma membrane. Cortical granule exocytosis did not occur but the endocytosis process was turned on. Prolonged treatment of the eggs by TPA partially inhibits the cortical granule exocytosis normally triggered by fertilization. We discuss the effects of TPA in terms of its interaction with the Ca2+ pool and cytoskeletal structures. In order to discern the respective roles of pHi and protein kinase C activity in endocytosis process activation, we compared the ultrastructural effects of TPA and ammonia. Finally, the role of pigment vesicles in egg metabolism activation is discussed.

  14. Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function.

    PubMed Central

    Wang, R Z; Addadi, L; Weiner, S

    1997-01-01

    The teeth of sea urchins comprise a variety of different structural entities, all of which are composed of magnesium-bearing calcite together with a small amount of organic material. The teeth are worn down continuously, but in such a way that they remain sharp and functional. Here we describe aspects of the structural, compositional and micromechanical properties of the teeth of Paracentrotus lividus using scanning electron microscopy, infrared spectrometry, atomic absorption. X-ray diffraction and microindentation. The S-shaped single crystalline calcitic fibres are one of the main structural elements of the tooth. They extend from the stone part to the keel. The diameter of the fibres increases gradually from less than 1 micron at the stone tip to about 20 microns at the keel end, while their MgCO3 contents decrease from about 13 mol% to about 4.5 mol%. Each fibre is coated by a thin organic sheath and surrounded by polycrystalline calcitic discs containing as much as 35 mol% MgCO3. This structure constitutes a unique kind of gradient fibre-reinforced ceramic matrix composite, whose microhardness and toughness decrease gradually from the stone part to the keel. Primary plates are also important structural elements of the tooth. Each primary plate has a very unusual sandwich-like structure with a calcitic envelope surrounding a thin apparently amorphous CaCO3 layer. This central layer, together with the primary plate/disc interface, improves the toughness of this zone by stopping and blunting cracks. The self-sharpening function of the teeth is believed to result from the combination of the geometrical shape of the main structural elements and their spatial arrangement, the interfacial strength between structural elements, and the hardness gradient extending from the working stone part to the surrounding zones. The sea urchin tooth structure possesses an array of interesting functional design features, some of which may possibly be applicable to materials science

  15. Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy

    PubMed Central

    1985-01-01

    Extraction of doublet microtubules from the sperm flagella of the sea urchin Strongylocentrotus purpuratus with sarkosyl (0.5%)-urea (2.5 M) yields a highly pure preparation of "tektin" filaments that we have previously shown to resemble intermediate filament proteins. They form filaments 2-3 nm in diameter as seen by negative stain electron microscopy and are composed of approximately equal amounts of three polypeptide bands with apparent molecular weights of 47,000, 51,000, and 55,000, as determined by SDS PAGE. We prepared antibodies to this set of proteins to localize them in the doublet microtubules of S. purpuratus and other species. Tektins and tubulin were antigenically distinct when tested by immunoblotting with affinity-purified antitektin and antitubulin antibodies. Fixed sperm or axonemes from several different species of sea urchin showed immunofluorescent staining with antitektin antibodies. We also used antibodies coupled to gold spheres to localize the proteins by electron microscopy. Whereas a monoclonal antitubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol. 93:576-582) decorates intact microtubules along their lengths, antitektins labeled only the ends of intact microtubules and sarkosyl-insoluble ribbons. However, if microtubules and ribbons attached to electron microscope grids were first extracted with sarkosyl-urea, the tektin filaments that remain were decorated by antitektin antibodies throughout their length. These results suggest that tektins form integral filaments of flagellar microtubule walls, whose antigenic sites are normally masked, perhaps by the presence of tubulin around them. PMID:3880749

  16. Evolution of a Novel Muscle Design in Sea Urchins (Echinodermata: Echinoidea)

    PubMed Central

    Ziegler, Alexander; Schröder, Leif; Ogurreck, Malte; Faber, Cornelius; Stach, Thomas

    2012-01-01

    The sea urchin (Echinodermata: Echinoidea) masticatory apparatus, or Aristotle's lantern, is a complex structure composed of numerous hard and soft components. The lantern is powered by various paired and unpaired muscle groups. We describe how one set of these muscles, the lantern protractor muscles, has evolved a specialized morphology. This morphology is characterized by the formation of adaxially-facing lobes perpendicular to the main orientation of the muscle, giving the protractor a frilled aspect in horizontal section. Histological and ultrastructural analyses show that the microstructure of frilled muscles is largely identical to that of conventional, flat muscles. Measurements of muscle dimensions in equally-sized specimens demonstrate that the frilled muscle design, in comparison to that of the flat muscle type, considerably increases muscle volume as well as the muscle's surface directed towards the interradial cavity, a compartment of the peripharyngeal coelom. Scanning electron microscopical observations reveal that the insertions of frilled and flat protractor muscles result in characteristic muscle scars on the stereom, reflecting the shapes of individual muscles. Our comparative study of 49 derived “regular” echinoid species using magnetic resonance imaging (MRI) shows that frilled protractor muscles are found only in taxa belonging to the families Toxopneustidae, Echinometridae, and Strongylocentrotidae. The onset of lobe formation during ontogenesis varies between species of these three families. Because frilled protractor muscles are best observed in situ, the application of a non-invasive imaging technique was crucial for the unequivocal identification of this morphological character on a large scale. Although it is currently possible only to speculate on the functional advantages which the frilled muscle morphology might confer, our study forms the anatomical and evolutionary framework for future analyses of this unusual muscle design among

  17. Teratogenic Effects of Diatom Metabolites on Sea Urchin Paracentrotus lividus Embryos

    PubMed Central

    Romano, Giovanna; Miralto, Antonio; Ianora, Adrianna

    2010-01-01

    The diatom-derived polyunsaturated aldehydes (PUAs), 2-trans,4-trans-decadienal, 2-trans,4-trans-octadienal, 2-trans,4-trans,7-octatrienal, 2-trans,4-trans-heptadienal, as well as tridecanal were tested on early and later larval development in the sea urchin Paracentrotus lividus. We also tested the effect of some of the more abundant diatom polyunsaturated fatty acids (PUFAs) on development, in particular 5,8,11,14,17-eicosapentaenoic acid (EPA), one of the main precursors of diatom PUAs, as well as 4,7,10,13,16,19-docosahexaenoic acid (DHA), 6,9,12,15-octadecatetraenoic acid (stearidonic acid), 6,9,12-octadecatrienoic acid (γ-linolenic acid) and 9,12-octadecadienoic acid (linoleic acid). PUAs blocked sea urchin cell cleavage in a dose dependent manner and with increasing chain length from C7 to C10 PUAs, with arrest occurring at 27.27 μM with heptadienal, 16.13 μM with octadienal, 11.47 μM with octatrienal and 5.26 μM with decadienal. Of the PUFAs tested, only EPA and stearidonic acid blocked cleavage, but at much higher concentrations compared to PUAs (331 μM for EPA and 181 μM for stearidonic acid). Sub-lethal concentrations of decadienal (1.32–5.26 μM) delayed development of embryos and larvae which showed various degrees of malformations depending on the concentrations tested. Sub-lethal concentrations also increased the proportion of TUNEL-positive cells indicating imminent death in embryos and larvae. Using decadienal as a model PUA, we show that this aldehyde can be detected spectrophotometrically for up to 14 days in f/2 medium. PMID:20479962

  18. Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos.

    PubMed

    Romano, Giovanna; Miralto, Antonio; Ianora, Adrianna

    2010-03-30

    The diatom-derived polyunsaturated aldehydes (PUAs), 2-trans,4-trans-decadienal, 2-trans,4-trans-octadienal, 2-trans,4-trans,7-octatrienal, 2-trans,4-trans-heptadienal, as well as tridecanal were tested on early and later larval development in the sea urchin Paracentrotus lividus. We also tested the effect of some of the more abundant diatom polyunsaturated fatty acids (PUFAs) on development, in particular 5,8,11,14,17-eicosapentaenoic acid (EPA), one of the main precursors of diatom PUAs, as well as 4,7,10,13,16,19-docosahexaenoic acid (DHA), 6,9,12,15-octadecatetraenoic acid (stearidonic acid), 6,9,12-octadecatrienoic acid (gamma-linolenic acid) and 9,12-octadecadienoic acid (linoleic acid). PUAs blocked sea urchin cell cleavage in a dose dependent manner and with increasing chain length from C7 to C10 PUAs, with arrest occurring at 27.27 microM with heptadienal, 16.13 microM with octadienal, 11.47 microM with octatrienal and 5.26 microM with decadienal. Of the PUFAs tested, only EPA and stearidonic acid blocked cleavage, but at much higher concentrations compared to PUAs (331 microM for EPA and 181 microM for stearidonic acid). Sub-lethal concentrations of decadienal (1.32-5.26 microM) delayed development of embryos and larvae which showed various degrees of malformations depending on the concentrations tested. Sub-lethal concentrations also increased the proportion of TUNEL-positive cells indicating imminent death in embryos and larvae. Using decadienal as a model PUA, we show that this aldehyde can be detected spectrophotometrically for up to 14 days in f/2 medium.

  19. Functional analysis of the sea urchin U7 small nuclear RNA

    SciTech Connect

    Gilmartin, G.M.; Schaufele, F.; Schaffner, G.; Birnstiel, M.L.

    1988-03-01

    U7 small nuclear RNA (snRNA) is an essential component of the RNA-processing machinery which generates the 3' end of mature histone mRNA in the sea urchin. The U7 small nuclear ribonucleoprotein particle (snRNP) is classified as a member of the Sm-type U snRNP family by virtue of its recognition by both anti-trimethylguanosine and anti-Sm antibodies. The authors analyzed the function-structure relationship of the U7 snRNP by mutagenesis experiments. These suggested that the U7 snRNP of the sea urchin is composed of three important domains. The fist domain encompasses the 5'-terminal sequence, up to about nucleotides 7, which are accessible to micrococcal nuclease, while the remainder of the RNA is highly protected and hence presumably bound by proteins. This region contains the sequence complementarities between the U7 snRNA and the histone pre-mRNA which have previously been shown to be required for 3' processing. Nucleotides 9 to 20 constitute a second domain which includes sequences for Sm protein binding. The complementarities between the U7 snRNA sequences in this region and the terminal palindrome fo the historne mRNA appear to be fortuitous and play only a secondary, if any, role in 3' processing. The third domain is composed of the terminal palindrome of U7 snRNA, the secondary structure of which must be maintained for the U7 snRNP to function, but its sequence can be drastically altered without any observable effect on snRNP assembly or 3' processing.

  20. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb.

    PubMed

    Rial, Diego; Santos-Echeandía, Juan; Álvarez-Salgado, Xosé Antón; Jordi, Antoni; Tovar-Sánchez, Antonio; Bellas, Juan

    2016-02-01

    Guano is an important source of marine-derived nutrients to seabird nesting areas. Seabirds usually present high levels of metals and other contaminants because the bioaccumulation processes and biotic depositions can increase the concentration of pollutants in the receiving environments. The objectives of this study were to investigate: the toxicity of seabird guano and the joint toxicity of guano, Cu and Pb by using the sea urchin embryo-larval bioassay. In a first experiment, aqueous extracts of guano were prepared at two loading rates (0.462 and 1.952 g L(-1)) and toxicity to sea-urchin embryos was tested. Toxicity was low and not dependent of the load of guano used (EC50 0.42 ± 0.03 g L(-1)). Trace metal concentrations were also low either in guano or in aqueous extracts of guano and the toxicity of extracts were apparently related to dissolved organic matter. In a second experiment, the toxicity of Cu-Pb mixtures in artificial seawater and in extracts of guano (at two loadings: 0.015 and 0.073 g L(-1)), was tested. According to individual fittings, Cu added to extracts of guano showed less toxicity than when dissolved in artificial seawater. The response surfaces obtained for mixtures of Cu and Pb in artificial seawater, and in 0.015 g L(-1) and 0.073 g L(-1) of guano, were better described by Independent Action model adapted to describe antagonism, than by the other proposed models. This implied accepting that EC50 for Cu and Pb increased with the load of guano and with a greater interaction for Cu than for Pb.

  1. Regulation of membrane fusion and secretory events in the sea urchin embryo

    SciTech Connect

    Roe, J.L.

    1990-01-01

    Membrane fusion and secretory events play a key role in fertilization and early development in the sea urchin embryo. To investigate the mechanism of membrane fusion, the effect of inhibitors of metalloendoprotease activity was studied on two model systems of cell fusion; fertilization and spiculogenesis by primary mesenchyme cells in the embryo. Both the zinc chelator, 1,10-phenanthroline, and peptide metalloprotease substrates were found to inhibit both fertilization and gamete fusion, while peptides that are not substrates of metalloproteases did not affect either process. Primary mesenchyme cells form the larval skeleton in the embryo by deposition of mineral and an organic matrix into a syncytial cavity formed by fusion of filopodia of these cells. Metalloprotease inhibitors were found to inhibit spiculogenesis both in vivo and in cultures of isolated primary mesenchyme cells, and the activity of a metalloprotease of the appropriate specificity was found in the primary mesenchyme cells. These two studies implicate the activity of a metalloprotease in a necessary step in membrane fusion. Following fertilization, exocytosis of the cortical granules results in the formation of the fertilization envelope and the hyaline layer, that surround the developing embryo. The hatching enzyme is secreted by the blastula stage sea urchin embryo, which proteolyzes the fertilization envelope surrounding the embryo, allowing the embryo to hatch. Using an assay that measures {sup 125}I-fertilization envelope degradation, the hatching enzyme was identified as a 33 kDa metalloprotease, and was purified by ion-exchange and affinity chromatography from the hatching media of Strongylocentrotus purpuratus embryos. The hatching enzyme showed a substrate preference for only a minor subset of fertilization envelope proteins.

  2. Fixed metabolic costs for highly variable rates of protein synthesis in sea urchin embryos and larvae.

    PubMed

    Pace, Douglas A; Manahan, Donal T

    2006-01-01

    Defining the physiological mechanisms that set metabolic rates and the 'cost of living' is important for understanding the energy costs of development. Embryos and larvae of the sea urchin Lytechinus pictus (Verrill) were used to test hypotheses regarding differential costs of protein synthesis in animals differing in size, rates of protein synthesis, and physiological feeding states. For embryos, the rate of protein synthesis was 0.22+/-0.014 ng protein embryo(-1) h(-1) (mean +/- s.e.m.) and decreased in unfed larvae to an average rate of 0.05+/-0.001 ng protein larva(-1) h(-1). Fed larvae had rates of synthesis that were up to 194 times faster than unfed larvae (9.7+/-0.81 ng protein larva(-1) h(-1)). There was no significant difference, however, in the cost of protein synthesis between these larvae with very different physiological states. Furthermore, the cost of synthesis in the larval stages was also similar to costs measured for blastula and gastrula embryos of 8.4+/-0.99 J mg(-1) protein synthesized. The cost of protein synthesis was obtained using both direct ('inhibitor') and indirect ('correlative') measurements; both methods gave essentially identical results. Protein synthesis accounted for up to 54+/-8% of metabolic rate in embryos. Percent of metabolism accounted for by protein synthesis in larvae was dependent on their physiological feeding state, with protein synthesis accounting for 16+/-4% in unfed larvae and 75+/-11% in fed larvae. This regulation of metabolic rate was due to differential rates of synthesis for a fixed energy cost per unit mass of protein synthesized. The cost of synthesizing a unit of protein did not change with increasing rates of protein synthesis. We conclude that the cost of protein synthesis is independent of the rate of synthesis, developmental stage, size and physiological feeding state during sea urchin development.

  3. Evolution of a novel muscle design in sea urchins (Echinodermata: Echinoidea).

    PubMed

    Ziegler, Alexander; Schröder, Leif; Ogurreck, Malte; Faber, Cornelius; Stach, Thomas

    2012-01-01

    The sea urchin (Echinodermata: Echinoidea) masticatory apparatus, or Aristotle's lantern, is a complex structure composed of numerous hard and soft components. The lantern is powered by various paired and unpaired muscle groups. We describe how one set of these muscles, the lantern protractor muscles, has evolved a specialized morphology. This morphology is characterized by the formation of adaxially-facing lobes perpendicular to the main orientation of the muscle, giving the protractor a frilled aspect in horizontal section. Histological and ultrastructural analyses show that the microstructure of frilled muscles is largely identical to that of conventional, flat muscles. Measurements of muscle dimensions in equally-sized specimens demonstrate that the frilled muscle design, in comparison to that of the flat muscle type, considerably increases muscle volume as well as the muscle's surface directed towards the interradial cavity, a compartment of the peripharyngeal coelom. Scanning electron microscopical observations reveal that the insertions of frilled and flat protractor muscles result in characteristic muscle scars on the stereom, reflecting the shapes of individual muscles. Our comparative study of 49 derived "regular" echinoid species using magnetic resonance imaging (MRI) shows that frilled protractor muscles are found only in taxa belonging to the families Toxopneustidae, Echinometridae, and Strongylocentrotidae. The onset of lobe formation during ontogenesis varies between species of these three families. Because frilled protractor muscles are best observed in situ, the application of a non-invasive imaging technique was crucial for the unequivocal identification of this morphological character on a large scale. Although it is currently possible only to speculate on the functional advantages which the frilled muscle morphology might confer, our study forms the anatomical and evolutionary framework for future analyses of this unusual muscle design among sea

  4. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva

    PubMed Central

    CH Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-01-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates. PMID:27192936

  5. Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo

    PubMed Central

    Yaguchi, Junko; Angerer, Lynne M.; Inaba, Kazuo; Yaguchi, Shunsuke

    2012-01-01

    Serotonergic neurons differentiate in the neurogenic animal plate ectoderm of the sea urchin embryo. The regulatory mechanisms that control the specification or differentiation of these neurons in the sea urchin embryo are not yet understood, although, after the genome was sequenced, many genes encoding transcription factors expressed in this region were identified. Here, we report that zinc finger homeobox (zfhx1/z81) is expressed in serotonergic neural precursor cells, using double in situ hybridization screening with a serotonergic neural marker, tryptophan 5-hydroxylase (tph) encoding a serotonin synthase that is required for the differentiation of serotonergic neurons. zfhx1/z81 begins to be expressed at gastrula stage in individual cells in the anterior neuroectoderm, some of which also express delta. zfhx1/z81 expression gradually disappears as neural differentiation begins with tph expression. When the translation of Zfhx1/Z81 is blocked by morpholino injection, embryos express neither tph nor the neural marker synaptotagminB in cells of the animal plate, and serotonergic neurons do not differentiate. In contrast, Zfhx1/Z81 morphants do express fez, another neural precursor marker, which appears to function in the initial phase of specification/differentiation of serotonergic neurons. In addition, zfhx1/z81 is one of the targets suppressed in the animal plate by anti-neural signals such as Nodal as well as Delta-Notch. We conclude that Zfhx1/Z81 functions during the specification of individual anterior neural precursors and promotes the expression of tph and synaptotagminB, required for the differentiation of serotonergic neurons. PMID:22210002

  6. Wnt6 activates endoderm in the sea urchin gene regulatory network

    PubMed Central

    Croce, Jenifer; Range, Ryan; Wu, Shu-Yu; Miranda, Esther; Lhomond, Guy; Peng, Jeff Chieh-fu; Lepage, Thierry; McClay, David R.

    2011-01-01

    In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network. PMID:21750039

  7. Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms.

    PubMed

    Garner, Sarah; Zysk, Ivona; Byrne, Glynis; Kramer, Marabeth; Moller, Daniel; Taylor, Valerie; Burke, Robert D

    2016-01-15

    A single origin to the diverse mechanisms of metazoan neurogenesis is suggested by the involvement of common signaling components and similar classes of transcription factors. However, in many forms we lack details of where neurons arise, patterns of cell division, and specific differentiation pathway components. The sea urchin larval nervous system is composed of an apical organ, which develops from neuroepithelium and functions as a central nervous system, and peripheral neurons, which differentiate in the ciliary band and project axons to the apical organ. To reveal developmental mechanisms of neurogenesis in this basal deuterostome, we developed antibodies to SoxC, SoxB2, ELAV and Brn1/2/4 and used neurons that develop at specific locations to establish a timeline for neurogenesis. Neural progenitors express, in turn, SoxB2, SoxC, and Brn1/2/4, before projecting neurites and expressing ELAV and SynB. Using pulse-chase labeling of cells with a thymidine analog to identify cells in S-phase, we establish that neurons identified by location are in their last mitotic cycle at the time of hatching, and S-phase is coincident with expression of SoxC. The number of cells expressing SoxC and differentiating as neurons is reduced in embryos injected with antisense morpholino oligonucleotides to SoxC, SoxB2 or Six3. Injection of RNA encoding SoxC into eggs does not enhance neurogenesis. In addition, inhibition of FGF receptors (SU5402) or a morpholino to FGFR1 reduces expression of SoxC. These data indicate that there are common features of neurogenesis in deuterostomes, and that sea urchins employ developmental mechanisms that are distinct from other ambulacraria.

  8. Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis.

    PubMed

    Li, Chun; Haug, Tor; Moe, Morten K; Styrvold, Olaf B; Stensvåg, Klara

    2010-09-01

    As immune effector molecules, antimicrobial peptides (AMPs) play an important role in the invertebrate immune system. Here, we present two novel AMPs, named centrocins 1 (4.5kDa) and 2 (4.4kDa), purified from coelomocyte extracts of the green sea urchin, Strongylocentrotus droebachiensis. The native peptides are cationic and show potent activities against Gram-positive and Gram-negative bacteria. The centrocins have an intramolecular heterodimeric structure, containing a heavy chain (30 amino acids) and a light chain (12 amino acids). The cDNA encoding the peptides and genomic sequences were cloned and sequenced. One putative isoform (centrocin 1b) was identified and one intron was found in the genes coding for the centrocins. The full length protein sequence of centrocin 1 consists of 119 amino acids, whereas centrocin 2 consists of 118 amino acids which both include a preprosequence of 51 or 50 amino acids for centrocins 1 and 2, respectively, and an interchain of 24 amino acids between the heavy and light chain. The difference of molecular mass between the native centrocins and the deduced sequences from cDNA indicates that the native centrocins contain a post-translational brominated tryptophan. In addition, two amino acids at the C-terminal, Gly-Arg, were removed from the light chains during the post-translational processing. The separate peptide chains of centrocin 1 were synthesized and the heavy chain alone was shown to be sufficient for antimicrobial activity. The genome of the closely related species, the purple sea urchin (S. purpuratus), was shown to contain two putative proteins with high similarity to the centrocins.

  9. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva.

    PubMed

    Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-10-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.

  10. The transcriptome of the NZ endemic sea urchin Kina (Evechinus chloroticus)

    PubMed Central

    2014-01-01

    Background Sea urchins are studied as model organisms for developmental and systems biology and also produce highly valued food products. Evechinus chloroticus (Kina) is a sea urchin species that is indigenous to New Zealand. It is the type member of the Evechinus genus based on its morphological characteristics. Previous research has focused on identifying physical factors affecting commercial roe quality of E. chloroticus, but there is almost no genetic information available for E. chloroticus. E. chloroticus is the only species in its genus and has yet to be subject to molecular phylogenetic analysis. Results In this study we performed a de novo transcriptome assembly of Illumina sequencing data. A total of 123 million 100 base length paired-end reads were generated using RNA-Seq libraries from a range of E. chloroticus tissues from two individuals obtained from Fiordland, New Zealand. The assembly resulted in a set of 75,002 transcripts with an accepted read coverage and length, of which 24,655 transcripts could be functionally annotated using protein similarity. Transcripts could be further annotated with Gene Ontology, KEGG Orthology and InterPro terms. With this sequence data we could perform the first phylogenetic analysis of E. chloroticus to other species of its family using multiple genes. When sequences for the mitochondrial nitrogen dehydrogenase genes were compared, E. chloroticus remained outside of a family level clade, which indicated E. chloroticus is indeed a genetically distinct genus within its family. Conclusions This study has produced a large set of E. chloroticus transcripts/proteins along with functional annotations, vastly increasing the amount of genomic data available for this species. This provides a resource for current and future studies on E. chloroticus, either to increase its commercial value, or its use as a model organism. The phylogenetic results provide a basis for further analysis of relationships between E. chloroticus, its

  11. Metagenomic studies of the Red Sea.

    PubMed

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2016-02-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied among marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmoregulation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1-3°C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and

  12. Dust Storm, Red Sea and Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Outlined against the dark blue water of the Red Sea, a prominent dust storm is making its way across the Red Sea into Saudi Arabia (22.0N, 39.0E) between the Islamic holy cities of Medinah and Mecca. Funneled through a gap in the coastal ranges of southern Sudan near the Ethiopian border, dust storms frequently will blow counter to the prevailing tropical easterly winds of the region.

  13. Assessment of negative phototaxis in long-term fasted Glyptocidaris crenularis: a new insight into measuring stress responses of sea urchins in aquaculture

    NASA Astrophysics Data System (ADS)

    Tian, Xiaofei; Wei, Jing; Zhao, Chong; Feng, Wenping; Sun, Ping; Chang, Yaqing

    2015-01-01

    A cost-effective method was designed to measure the behavioral response of negative phototaxis to high-intensity illumination in the sea urchin Glyptocidaris crenularis. Ninety sea urchins were randomly and equally divided into two aquaculture environment groups: a fasted group, which was starved during the experiment, and a fed group. After 10 months, the total mortality of each group was recorded. Then, 15 sea urchins were randomly selected from each group and behavioral responses to high-intensity illumination were investigated for each sea urchin. After the behavioral experiment, body measurements of the trial sea urchins were taken. The results reveal that food deprivation significantly affected test diameter ( P<0.01), body weight ( P<0.01), gonad weight ( P<0.01), and gut weight ( P<0.01). Furthermore, food deprivation also affected negative phototaxis behaviors of time to rapid spine movement ( P<0.01), time to the 1 cm position ( P<0.05), and walking distance in 300 s ( P<0.01), but not time to body reaction ( P>0.05). The mortality rates of fasted and fed urchins were 6.7% and 0%, respectively. The present study provides evidence that food deprivation has a significant effect on phenotypic traits and behavioral responses to high-intensity illumination in the sea urchin G. crenularis. With this method, environmental stressors can be easily detected by measuring proper optional indicators. This study provides a new insight into measuring stress responses of sea urchins in aquaculture. However, further studies should be carried out to understand more environmental factors and to compare this potential behavioral method with immune, physiological, and epidemiological approaches.

  14. Assessment of negative phototaxis in long-term fasted Glyptocidaris crenularis: a new insight into measuring stress responses of sea urchins in aquaculture

    NASA Astrophysics Data System (ADS)

    Tian, Xiaofei; Wei, Jing; Zhao, Chong; Feng, Wenping; Sun, Ping; Chang, Yaqing

    2014-09-01

    A cost-effective method was designed to measure the behavioral response of negative phototaxis to high-intensity illumination in the sea urchin Glyptocidaris crenularis. Ninety sea urchins were randomly and equally divided into two aquaculture environment groups: a fasted group, which was starved during the experiment, and a fed group. After 10 months, the total mortality of each group was recorded. Then, 15 sea urchins were randomly selected from each group and behavioral responses to high-intensity illumination were investigated for each sea urchin. After the behavioral experiment, body measurements of the trial sea urchins were taken. The results reveal that food deprivation significantly affected test diameter (P<0.01), body weight (P<0.01), gonad weight (P<0.01), and gut weight (P<0.01). Furthermore, food deprivation also affected negative phototaxis behaviors of time to rapid spine movement (P<0.01), time to the 1 cm position (P<0.05), and walking distance in 300 s (P<0.01), but not time to body reaction (P>0.05). The mortality rates of fasted and fed urchins were 6.7% and 0%, respectively. The present study provides evidence that food deprivation has a significant effect on phenotypic traits and behavioral responses to high-intensity illumination in the sea urchin G. crenularis. With this method, environmental stressors can be easily detected by measuring proper optional indicators. This study provides a new insight into measuring stress responses of sea urchins in aquaculture. However, further studies should be carried out to understand more environmental factors and to compare this potential behavioral method with immune, physiological, and epidemiological approaches.

  15. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms

    PubMed Central

    Migliaccio, Oriana; Castellano, Immacolata; Di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-01-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system. PMID:27192939

  16. Comparison of the disposition of several nitrogen-containing compounds in the sea urchin and other marine invertebrates.

    PubMed

    Landrum, P F; Crosby, D G

    1981-05-01

    1. The disposition of an aromatic amine and three aromatic nitro compounds was investigated in the sea urchin, Strongylocentrotus purpuratus. 2. The sea urchin rapidly eliminated injected compounds. The elimination rate constants decreased in the order p-toluidine greater than p-nitroanisole = p-nitrophenol greater than p-nitrotoluene. The fraction of total injected compound eliminated in 8 h was lowest for p-nitrophenol less than p-toluidine less than p-nitrotoluene less than p-nitroanisole. 3. Biotransformation for the sea urchin was primarily reduction of the nitro group followed by acetylation of the amine. 4. Other animals, starfish (Pisaster ochraceus), sea cucumber (Cucumaria miniata), gum boot chiton (Cryptochiton stelleri) and mussels (Mytilus californianus), injected with p-nitroanisole exhibited a trend toward oxidative biotransformation. 5. Elimination of parent compound was the major pathway for reducing body burden of xenobiotics for the invertebrates studied. 6. p-Toluidine oxidizes during analysis and was thus not suitable for studying biotransformation.

  17. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Migliaccio, Oriana; Castellano, Immacolata; di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-05-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system.

  18. Calcium transport into the cells of the sea urchin larva in relation to spicule formation

    DOE PAGES

    Vidavsky, Netta; Addadi, Sefi; Schertel, Andreas; ...

    2016-10-24

    We investigated the manner in which the sea urchin larva takes up calcium from its body cavity into the primary mesenchymal cells (PMCs) that are responsible for spicule formation. We used the membrane-impermeable fluorescent dye calcein and alexa-dextran, with or without a calcium channel inhibitor, and imaged the larvae in vivo with selective-plane illumination microscopy. Both fluorescent molecules are taken up from the body cavity into the PMCs and ectoderm cells, where the two labels are predominantly colocalized in particles, whereas the calcium-binding calcein label is mainly excluded from the endoderm and is concentrated in the spicules. The presence ofmore » vesicles and vacuoles inside the PMCs that have openings through the plasma membrane directly to the body cavity was documented using high-resolution cryo-focused ion beam-SEM serial imaging. Some of the vesicles and vacuoles are interconnected to form large networks. We suggest that these vacuolar networks are involved in direct sea water uptake. We conclude that the calcium pathway from the body cavity into cells involves nonspecific endocytosis of sea water with its calcium.« less

  19. [The action of tiazofurin on the development of sea urchin embryos and larvae].

    PubMed

    Buznikov, G A; Mal'chenko, L A; Zvezdina, N D; Iovanovic, S; Markova, L N; Milosevic, I; Nikitina, L A; Lazarevic, L; Redzic, L; Rogac, L; Rakic, L

    1996-01-01

    The effects of the antitumor drug tiazofurin on development of sea urchins Sphaerechinus granularis, Paracentrotus lividus, Strongylocentrotus intermedius, and Arbacia lixula were studied. When 0.01-200 microM tiazofurin (TAF) was introduced in the incubation medium (artificial sea water) just after fertilization or at the midblastula stage, the development proceeded quite normally until the beginning of gastrulation. But later TAF blocked gastrulation and induced formation of mobile ball-shaped larvae with normal pigment cells but devoid of the nervous system, skeletal spicules and digestive tract. The threshold TAF concentrations varied from 0.05 microM (S. granularis) to 2-5 microM (all other species). When TAF was introduced during gastrulation and just after gastrulation, the larvae had defective nervous system and skeleton and suppressed expression of gangliosides. The nonhydrolyzable analog of GTP, GTP-gamma-S (5-20 microM), introduced in artificial sea water no later than at the midblastula stage prevented all above mentioned developmental defects.

  20. Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles.

    PubMed

    Gambardella, Chiara; Aluigi, Maria G; Ferrando, Sara; Gallus, Lorenzo; Ramoino, Paola; Gatti, Antonietta M; Rottigni, Marino; Falugi, Carla

    2013-04-15

    The objective of this study is to examine the toxicity of engineered nanoparticles (NPs) that are dispersed in sea water by using an in vivo model. Because many products of nanotechnology contain NPs and are commonly used and well-established in the market, the accidental release of NPs into the air and water is quite possible. Indeed, at the end of their life cycle, some NPs are inevitably released into waste water and can reach marine ecosystem and affect the organisms there. Although there are few data on the presence of NPs in the marine environment, our awareness of their potential impact on environmental and organismal health is growing. Shallow-water benthonic organisms such as sea urchins provide planktonic larvae as a trophic base for finfish juveniles and are exposed to water from estuaries and precipitation. Such organisms can therefore be directly affected by NPs that are dispersed into those media. We evaluated the effects of exposure to different concentrations of nanosilver, titanium oxide and cobalt NPs on the sperm of the sea urchin Paracentrotus lividus by analyzing the functionality and the morphology and biochemistry of the first developmental stages of the sea urchin. Sperm were exposed to sea water containing suspensions of NPs ranging from 0.0001 mg/L to 1 mg/L. Fertilization ability was not affected, but developmental anomalies were identified in embryos from the gastrula to pluteus stages, including morphological alterations of the skeletal rods. In addition, the enzymatic activity (cholinesterase, ChE) of the larvae was measured. Acetylcholinesterase (AChE) and propionylcholinesterase activity (PrChE) was affected in all of the exposed samples. The results did not vary consistently with the concentration of NP, but controls were significantly different from exposed samples. Exposure of sea urchin to these NPs may cause neurotoxic damage, and the altered ChE activity may be involved in skeletogenic aberrations. In conclusion, the sea urchin

  1. The Red Sea Modeling and Forecasting System

    NASA Astrophysics Data System (ADS)

    Hoteit, Ibrahim; Gopalakrishnan, Ganesh; Latif, Hatem; Toye, Habib; Zhan, Peng; Kartadikaria, Aditya R.; Viswanadhapalli, Yesubabu; Yao, Fengchao; Triantafyllou, George; Langodan, Sabique; Cavaleri, Luigi; Guo, Daquan; Johns, Burt

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  2. Gene expression changes associated with the developmental plasticity of sea urchin larvae in response to food availability

    PubMed Central

    Carrier, Tyler J.; King, Benjamin L.; Coffman, James A.

    2016-01-01

    Planktotrophic sea urchin larvae are developmentally plastic: in response to food scarcity, development of the juvenile rudiment is suspended and larvae instead develop elongated arms, increasing feeding capacity and extending larval life. Here, data are presented on the effect of different feeding regimes on gene expression in larvae of the green sea urchin Strongylocentrotus droebachiensis. These data indicate that during periods of starvation, larvae down-regulate genes involved in growth and metabolic activity while up-regulating genes involved in lipid transport, environmental sensing and defense. Additionally, we show that starvation increases FoxO activity, and that in well-fed larvae rapamycin treatment impedes rudiment growth, indicating that the latter requires TOR activity. These results suggest that the developmental plasticity of echinoplutei is regulated by genes known to control aging and longevity in other animals. PMID:26124444

  3. Preparation and characterization of histone H1 from the sperm of the sea-urchin Sphaerechinus granularis.

    PubMed Central

    Giancotti, V; Cosimi, S; Cary, P D; Crane-Robinson, C; Geraci, G

    1981-01-01

    The separation and purification of histone H1 from the sperm of the sea-urchin Sphaerechinus granularis is described. Physical studies were used to compare this histone H1 molecule with H1 histones from other species. C.d. and 270 MHz n.m.r. spectroscopy indicate that, despite significant compositional differences from other sea-urchin sperm H1 histones, their secondary and tertiary structures are very similar. A large difference in helicity was, however, found between S. granularis histone H1 and calf thymus histone H1, and their n.m.r. and fluorescence spectra also differ considerably. It is concluded that secondary structure and tertiary structure have not been conserved in the evolution of the H1 histone family. PMID:7306043

  4. [Effect of monoamines, heat shock and other factors on the binding of several neuropharmacologic preparations by sea urchin embryos].

    PubMed

    Buznikov, G A; Manukhin, B N; Rakich, L; Kudriashova, N I; Khromov-Borisov, N V

    1977-01-01

    Early embryos of the sea urchins Arbacia lixula and Paracentrotus lividus being subjected to an osmotic or heat shock (10 min at 70 degrees C or higher) do not longer bind cytotoxic pharmaca and do not affect the sensitivity of normal indicator embryos to these drugs. After exposure for 10 min at 40 degrees C, the binding of neuropharmaca by embryos is not affected, although their ability to protect indicator embryos from the action of these neuropharmaca is inhibited 4--5 times. Serotonin and adrenaline inhibit the binding of neuropharmaca by 10--20%, while meterazine, noveryl and an amphetamine derivative--IEM-567--inhibit it by 50--60%. Antimycin A, rotenone and mercuric chloride do not affect the binding of neuropharmaca by sea urchin embryos.

  5. Cis-Regulatory Control of the Nuclear Receptor Coup-TF Gene in the Sea Urchin Paracentrotus lividus Embryo

    PubMed Central

    Kalampoki, Lamprini G.; Flytzanis, Constantin N.

    2014-01-01

    Coup-TF, an orphan member of the nuclear receptor super family, has a fundamental role in the development of metazoan embryos. The study of the gene's regulatory circuit in the sea urchin embryo will facilitate the placement of this transcription factor in the well-studied embryonic Gene Regulatory Network (GRN). The Paracentrotus lividus Coup-TF gene (PlCoup-TF) is expressed throughout embryonic development preferentially in the oral ectoderm of the gastrula and the ciliary band of the pluteus stage. Two overlapping λ genomic clones, containing three exons and upstream sequences of PlCoup-TF, were isolated from a genomic library. The transcription initiation site was determined and 5′ deletions and individual segments of a 1930 bp upstream region were placed ahead of a GFP reporter cassette and injected into fertilized P.lividus eggs. Module a (−532 to −232), was necessary and sufficient to confer ciliary band expression to the reporter. Comparison of P.lividus and Strongylocentrotus purpuratus upstream Coup-TF sequences, revealed considerable conservation, but none within module a. 5′ and internal deletions into module a, defined a smaller region that confers ciliary band specific expression. Putative regulatory cis-acting elements (RE1, RE2 and RE3) within module a, were specifically bound by proteins in sea urchin embryonic nuclear extracts. Site-specific mutagenesis of these elements resulted in loss of reporter activity (RE1) or ectopic expression (RE2, RE3). It is proposed that sea urchin transcription factors, which bind these three regulatory sites, are necessary for spatial and quantitative regulation of the PlCoup-TF gene at pluteus stage sea urchin embryos. These findings lead to the future identification of these factors and to the hierarchical positioning of PlCoup-TF within the embryonic GRN. PMID:25386650

  6. Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo.

    PubMed

    Kalampoki, Lamprini G; Flytzanis, Constantin N

    2014-01-01

    Coup-TF, an orphan member of the nuclear receptor super family, has a fundamental role in the development of metazoan embryos. The study of the gene's regulatory circuit in the sea urchin embryo will facilitate the placement of this transcription factor in the well-studied embryonic Gene Regulatory Network (GRN). The Paracentrotus lividus Coup-TF gene (PlCoup-TF) is expressed throughout embryonic development preferentially in the oral ectoderm of the gastrula and the ciliary band of the pluteus stage. Two overlapping λ genomic clones, containing three exons and upstream sequences of PlCoup-TF, were isolated from a genomic library. The transcription initiation site was determined and 5' deletions and individual segments of a 1930 bp upstream region were placed ahead of a GFP reporter cassette and injected into fertilized P.lividus eggs. Module a (-532 to -232), was necessary and sufficient to confer ciliary band expression to the reporter. Comparison of P.lividus and Strongylocentrotus purpuratus upstream Coup-TF sequences, revealed considerable conservation, but none within module a. 5' and internal deletions into module a, defined a smaller region that confers ciliary band specific expression. Putative regulatory cis-acting elements (RE1, RE2 and RE3) within module a, were specifically bound by proteins in sea urchin embryonic nuclear extracts. Site-specific mutagenesis of these elements resulted in loss of reporter activity (RE1) or ectopic expression (RE2, RE3). It is proposed that sea urchin transcription factors, which bind these three regulatory sites, are necessary for spatial and quantitative regulation of the PlCoup-TF gene at pluteus stage sea urchin embryos. These findings lead to the future identification of these factors and to the hierarchical positioning of PlCoup-TF within the embryonic GRN.

  7. Effects of an oil production effluent on gametogenesis and gamete performance in the purple sea urchin (Strongylocentrotus purpuratus Stimpson)

    SciTech Connect

    Krause, P.R. . Dept. of Biological Sciences)

    1994-07-01

    Adult organisms subjected to chronic discharges from a point source of pollution may exhibit several sublethal responses. One such response is the impairment of gamete production. This may be expressed in the amount and/or quality of gametes produced by adults. In this study the effects of chronic exposure to produced water (an oil production effluent) on the gametogenesis and gamete performance of the purple sea urchin (Strongylocentrotus purpuratus Stimpson) were examined using an in situ caging experiment. Adult purple sea urchins were kept in benthic cages arrayed down-field from a discharging diffuser at 13 sites, with distances ranging from 5 to 1,000 m. Cage exposures were maintained in the field for eight weeks, and each cage held 25 animals. Gametogenesis was examined for each sex by comparing a size-independent measure of relative gonads ass as determined by analysis of covariance. Results showed that there was a significant negative relationship between these estimates of relative gonad mass and distance from the outfall for both sexes, indicating that sea urchins living closer to the outfall produced significantly larger gonads. Gamete performance was measured through a fertilization kinetics bioassay that held the concentration of eggs constant and varied the amount of sperm added. The proportion of eggs fertilized under each sperm concentration was determined and the response fit to a model of fertilizability showed a positive relationship with distance away from the outfall. These findings indicate that although adult sea urchins exposed to a produced water outfall exhibit larger gonads, they suffer a marked decrease in a gamete performance.

  8. Variation in sensitivity to. gamma. -ray-induced chromosomal aberrations during the mitotic cycle of the sea urchin egg

    SciTech Connect

    Ejima, Y.; Nakamura, I.; Shiroya, T.

    1982-11-01

    Sea urchin eggs were irradiated with /sup 137/Cs ..gamma.. rays at various stages of the mitotic cycle, and chromosomal aberrations at the first postirradiation mitosis and embryonic abnormalities at later developmental stages were examined. The radiosensitivity of the eggs to both endpoints varied in parallel with the mitotic stage at the time of irradiation, suggesting a possible relationship between chromosomal damage and embryonic abnormalities.

  9. First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata).

    PubMed

    Santos, R; da Costa, G; Franco, C; Gomes-Alves, P; Flammang, P; Coelho, A V

    2009-01-01

    Sea urchins are common inhabitants of wave-swept shores. To withstand the action of waves, they rely on highly specialized independent adhesive organs, the adoral tube feet. The latter are extremely well-designed for temporary adhesion being composed by two functional subunits: (1) an apical disc that produces an adhesive secretion to fasten the sea urchin to the substratum, as well as a deadhesive secretion to allow the animal to move and (2) a stem that bears the tensions placed on the animal by hydrodynamism. Despite their technological potential for the development of new biomimetic underwater adhesives, very little is known about the biochemical composition of sea urchin adhesives. A characterization of sea urchin adhesives is presented using footprints. The latter contain inorganic residues (45.5%), proteins (6.4%), neutral sugars (1.2%), and lipids (2.5%). Moreover, the amino acid composition of the soluble protein fraction revealed a bias toward six amino acids: glycine, alanine, valine, serine, threonine, and asparagine/aspartic acid, which comprise 56.8% of the total residues. In addition, it also presents higher levels of proline (6.8%) and half-cystine (2.6%) than average eukaryotic proteins. Footprint insolubility was partially overcome using strong denaturing and reducing buffers, enabling the visualization of 13 proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The conjugation of mass spectrometry with homology-database search allowed the identification of six proteins: alpha and beta tubulin, actin, and histones H2B, H3, H2A, and H4, whose location and function in the adhesive are discussed but require further investigation. For the remaining unidentified proteins, five de novo-generated peptide sequences were found that were not present in the available protein databases, suggesting that they might be novel or modified proteins.

  10. The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins.

    PubMed

    Filbee-Dexter, Karen; Scheibling, Robert E

    2017-01-01

    Understanding processes that drive sudden shifts in ecosystem structure and function has become an important research focus for coastal management. In kelp bed ecosystems, regime shifts occur when high densities of sea urchins destructively graze kelp and create coralline algal barrens. While the importance of predation and disease in mediating shifts between kelp beds and barrens on shallow rocky reefs has been well documented, little is known about the role of deep-living urchins in these alternative stable-state dynamics. In this study, we test the hypothesis that deep-living urchins along the central Atlantic coast of Nova Scotia move onshore and trigger shifts from kelp beds to barrens on shallow rocky reefs. We documented urchin distribution and abundance using tow-camera surveys down to 140 m depth and spanning 140 km of coast and created a predictive species-distribution model using these observations and spatial data on environmental factors that likely delineate suitable habitat for urchins. We used a random forest model to generate our predictions, which correctly classified 91% of observations into a positive or negative occurrence of urchins. Sea urchins predominantly occurred within 1.5 km of shore, in depressions and flat habitats between 40 and 85 m depth. We found that shallow regions where destructive grazing fronts have been documented over the past four decades were closer to deep-living sea urchin habitats compared to regions that remained in a kelp bed state during the same period. This supports our prediction that deep-living urchins play an important role in driving shallow regime shift dynamics, and indicates that their distribution can help identify areas of coast that are most vulnerable to a collapse to barrens.

  11. Anandamide (arachidonylethanolamide), a brain cannabinoid receptor agonist, reduces sperm fertilizing capacity in sea urchins by inhibiting the acrosome reaction.

    PubMed Central

    Schuel, H; Goldstein, E; Mechoulam, R; Zimmerman, A M; Zimmerman, S

    1994-01-01

    Anandamide (arachidonylethanolamide) is an endogenous cannabinoid receptor agonist in mammalian brain. Sea urchin sperm contain a high-affinity cannabinoid receptor similar to the cannabinoid receptor in mammalian brain. (-)-delta 9-Tetrahydrocannabinol (THC), the primary psychoactive cannabinoid in marihuana, reduces the fertilizing capacity of sea urchin sperm by blocking the acrosome reaction that normally is stimulated by a specific ligand in the egg's jelly coat. We now report that anandamide produces effects similar to those previously obtained with THC in Strongylocentrotus purpuratus in reducing sperm fertilizing capacity and inhibiting the egg jelly-stimulated acrosome reaction. Arachidonic acid does not inhibit the acrosome reaction under similar conditions. The adverse effects of anandamide on sperm fertilizing capacity and the acrosome reaction are reversible. The receptivity of unfertilized eggs to sperm and sperm motility are not impaired by anandamide. Under conditions where anandamide completely blocks the egg jelly-stimulated acrosome reaction, it does not inhibit the acrosome reaction artificially initiated by ionomycin, which promotes Ca2+ influx, and nigericin, which activates K+ channels in sperm. These findings provide additional evidence that the cannabinoid receptor in sperm plays a role in blocking the acrosome reaction, indicate that anandamide or a related molecule may be the natural ligand for the cannabinoid receptor in sea urchin sperm, and suggest that binding of anandamide to the cannabinoid receptor modulates stimulus-secretion-coupling in sperm by affecting an event prior to ion channel opening. PMID:8052642

  12. High-Density Genetic Mapping with Interspecific Hybrids of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius, by RAD Sequencing.

    PubMed

    Zhou, Zunchun; Liu, Shikai; Dong, Ying; Gao, Shan; Chen, Zhong; Jiang, Jingwei; Yang, Aifu; Sun, Hongjuan; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-01-01

    Sea urchins have long been used as research model organisms for developmental biology and evolutionary studies. Some of them are also important aquaculture species in East Asia. In this work, we report the construction of RAD-tag based high-density genetic maps by genotyping F1 interspecific hybrids derived from a crossing between a female sea urchin Strongylocentrotus nudus and a male Strongylocentrotus intermedius. With polymorphisms present in these two wild individuals, we constructed a female meiotic map containing 3,080 markers for S. nudus, and a male meiotic map for S. intermedius which contains 1,577 markers. Using the linkage maps, we were able to anchor a total of 1,591 scaffolds (495.9 Mb) accounting for 60.8% of the genome assembly of Strongylocentrotus purpuratus. A genome-wide scan resulted in the identification of one putative QTL for body size which spanned from 25.3 cM to 30.3 cM. This study showed the efficiency of RAD-Seq based high-density genetic map construction using F1 progenies for species with no prior genomic information. The genetic maps are essential for QTL mapping and are useful as framework to order and orientate contiguous scaffolds from sea urchin genome assembly. The integration of the genetic map with genome assembly would provide an unprecedented opportunity to conduct QTL analysis, comparative genomics, and population genetics studies.

  13. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    PubMed

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.

  14. Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium.

    PubMed

    Chiarelli, Roberto; Martino, Chiara; Agnello, Maria; Bosco, Liana; Roccheri, Maria Carmela

    2016-01-01

    Autophagy is used by organisms as a defense strategy to face environmental stress. This mechanism has been described as one of the most important intracellular pathways responsible for the degradation and recycling of proteins and organelles. It can act as a cell survival mechanism if the cellular damage is not too extensive or as a cell death mechanism if the damage/stress is irreversible; in the latter case, it can operate as an independent pathway or together with the apoptotic one. In this review, we discuss the autophagic process activated in several aquatic organisms exposed to different types of environmental stressors, focusing on the sea urchin embryo, a suitable system recently included into the guidelines for the use and interpretation of assays to monitor autophagy. After cadmium (Cd) exposure, a heavy metal recognized as an environmental toxicant, the sea urchin embryo is able to adopt different defense mechanisms, in a hierarchical way. Among these, autophagy is one of the main responses activated to preserve the developmental program. Finally, we discuss the interplay between autophagy and apoptosis in the sea urchin embryo, a temporal and functional choice that depends on the intensity of stress conditions.

  15. A member of the Tlr family is involved in dsRNA innate immune response in Paracentrotus lividus sea urchin.

    PubMed

    Russo, Roberta; Chiaramonte, Marco; Matranga, Valeria; Arizza, Vincenzo

    2015-08-01

    The innate immune response involves proteins such as the membrane receptors of the Toll-like family (TLRs), which trigger different intracellular signalling pathways that are dependent on specific stimulating molecules. In sea urchins, TLR proteins are encoded by members of a large multigenic family composed of 60-250 genes in different species. Here, we report a newly identified mRNA sequence encoding a TLR protein (referred to as Pl-Tlr) isolated from Paracentrotus lividus immune cells. The partial protein sequence contained the conserved Toll/IL-1 receptor (TIR) domain, the transmembrane domain and part of the leucine repeats. Phylogenetic analysis of the Pl-Tlr protein was accomplished by comparing its sequence with those of TLRs from different classes of vertebrates and invertebrates. This analysis was suggestive of an evolutionary path that most likely represented the course of millions of years, starting from simple organisms and extending to humans. Challenge of the sea urchin immune system with poly-I:C, a chemical compound that mimics dsRNA, caused time-dependent Pl-Tlr mRNA up-regulation that was detected by QPCR. In contrast, bacterial LPS injury did not affect Pl-Tlr transcription. The study of the Tlr genes in the sea urchin model system may provide new perspectives on the role of Tlrs in the invertebrate immune response and clues concerning their evolution in a changing world.

  16. Induction of DNA-protein cross-links in developing embryos of the purple sea urchin, Strongylocentrotus purpuratus

    SciTech Connect

    Garman, G.D.; Cherr, G.N.; Anderson, S.L.

    1994-12-31

    Exposure to environmental agents during embryonic development may result in DNA-protein cross-linking (DPC), as has been demonstrated for mammalian cell lines. In the latter, formation of DPC`s upon exposure to a wide variety of agents, including some metals, has been observed. To determine whether DPCs could be detected in the sea urchin embryo during development, the authors adapted a mammalian cell assay utilizing potassium-SDS precipitation and a DNA fluorochrome to quantify relative amounts of free and protein-bound DNA. Sea urchin embryos exposed to a known DPC agent, nickel, through gastrulation exhibited a dose-dependent increase in DPCs, as well as an increase in developmental abnormalities. Morphological studies demonstrated that stage-specific exposure to Ni prior to gastrulation resulted in similar levels of abnormal pluteus larval development as compared to embryos exposed through gastrulation. Sea urchin embryos exhibit temporal differences in DNA transcription and gene expression during development, and these could be affected by modifications in DNA-protein interactions. Therefore, the authors are investigating the hypothesis that the similarities in morphological responses observed may relate to susceptibility of a critical stage of development.

  17. Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: Role of flow-induced forces

    NASA Astrophysics Data System (ADS)

    Tuya, F.; Cisneros-Aguirre, J.; Ortega-Borges, L.; Haroun, R. J.

    2007-07-01

    We examined whether adults of three species of sea urchins species ( Diadema antillarum, Arbacia lixula, and Paracentrotus lividus) exhibit a consistent depth-dependent partitioning pattern on rocky reefs of the Canarian Archipelago (eastern Atlantic). Hydrodynamic experiments were carried out to quantify the resistance to flow-induced dislodgement in these three species. We tested the model that different morphology can result in habitat partitioning among these sea urchins. Abundances of D. antillarum increased with depth. In contrast, A. lixula and P. lividus showed the opposite zonation pattern, coexisting in high abundances in the shallowest depths (<5 m), and occurring in low densities in the deepest part of reefs (>7 m). Both A. lixula and P. lividus had greater adhesion-surface to body-height ratios than D. antillarum. Similarly, A. lixula and P. lividus showed a greater ability to resist flow-induced dislodgement compared with D. antillarum. The mean "velocity of dislodgement" was ˜300% and 50% greater for A. lixula and P. lividus, respectively, relative to D. antillarum, for any particular size. As a result, A. lixula and P. lividus are better fitted to life in high-flow environments than D. antillarum. We conclude that the risk of dislodgement by water motion likely play a relevant role in the vertical distribution patterns of these sea urchins in the eastern Atlantic.

  18. Production, characterization and biocompatibility of marine collagen matrices from an alternative and sustainable source: the sea urchin Paracentrotus lividus.

    PubMed

    Benedetto, Cristiano Di; Barbaglio, Alice; Martinello, Tiziana; Alongi, Valentina; Fassini, Dario; Cullorà, Emanuele; Patruno, Marco; Bonasoro, Francesco; Barbosa, Mario Adolfo; Carnevali, Maria Daniela Candia; Sugni, Michela

    2014-09-24

    Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones. Sea urchins possess a circular area of soft tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore represents a potential unexploited collagen source, easily obtainable as a food industry waste product. Our results demonstrate that it is possible to extract native collagen fibrils from the PM and produce suitable substrates for in vitro system. The obtained matrices appear as a homogeneous fibrillar network (mean fibril diameter 30-400 nm and mesh < 2 μm) and display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity (60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can be a valuable low-cost collagen source for mechanically resistant biomedical devices.

  19. High-Density Genetic Mapping with Interspecific Hybrids of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius, by RAD Sequencing

    PubMed Central

    Dong, Ying; Gao, Shan; Chen, Zhong; Jiang, Jingwei; Yang, Aifu; Sun, Hongjuan; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-01-01

    Sea urchins have long been used as research model organisms for developmental biology and evolutionary studies. Some of them are also important aquaculture species in East Asia. In this work, we report the construction of RAD-tag based high-density genetic maps by genotyping F1 interspecific hybrids derived from a crossing between a female sea urchin Strongylocentrotus nudus and a male Strongylocentrotus intermedius. With polymorphisms present in these two wild individuals, we constructed a female meiotic map containing 3,080 markers for S. nudus, and a male meiotic map for S. intermedius which contains 1,577 markers. Using the linkage maps, we were able to anchor a total of 1,591 scaffolds (495.9 Mb) accounting for 60.8% of the genome assembly of Strongylocentrotus purpuratus. A genome-wide scan resulted in the identification of one putative QTL for body size which spanned from 25.3 cM to 30.3 cM. This study showed the efficiency of RAD-Seq based high-density genetic map construction using F1 progenies for species with no prior genomic information. The genetic maps are essential for QTL mapping and are useful as framework to order and orientate contiguous scaffolds from sea urchin genome assembly. The integration of the genetic map with genome assembly would provide an unprecedented opportunity to conduct QTL analysis, comparative genomics, and population genetics studies. PMID:26398139

  20. Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus lividus

    PubMed Central

    Di Benedetto, Cristiano; Barbaglio, Alice; Martinello, Tiziana; Alongi, Valentina; Fassini, Dario; Cullorà, Emanuele; Patruno, Marco; Bonasoro, Francesco; Barbosa, Mario Adolfo; Candia Carnevali, Maria Daniela; Sugni, Michela

    2014-01-01

    Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones. Sea urchins possess a circular area of soft tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore represents a potential unexploited collagen source, easily obtainable as a food industry waste product. Our results demonstrate that it is possible to extract native collagen fibrils from the PM and produce suitable substrates for in vitro system. The obtained matrices appear as a homogeneous fibrillar network (mean fibril diameter 30–400 nm and mesh < 2 μm) and display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity (60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can be a valuable low-cost collagen source for mechanically resistant biomedical devices. PMID:25255130

  1. β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo

    PubMed Central

    Wikramanayake, Athula H.; Huang, Ling; Klein, William H.

    1998-01-01

    In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal–vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal–vegetal axis. Our results also reveal similarities between the sea urchin animal–vegetal axis and the vertebrate dorsal–ventral axis, suggesting that these axes share a common evolutionary origin. PMID:9689082

  2. Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea)

    PubMed Central

    Ziegler, Alexander; Faber, Cornelius; Bartolomaeus, Thomas

    2009-01-01

    Background The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure. Results We therefore analyzed numerous species of almost all sea urchin orders by magnetic resonance imaging, dissection, histology, and transmission electron microscopy and compared the results with findings from published studies spanning almost two centuries. These combined analyses demonstrate that the axial complex is present in all sea urchin orders and has remained structurally conserved for a long time, at least in the "regular" species. Within the Irregularia, a considerable morphological variation of the axial complex can be observed with gradual changes in topography, size, and internal architecture. These modifications are related to the growing size of the gastric caecum as well as to the rearrangement of the morphology of the digestive tract as a whole. Conclusion The structurally most divergent axial complex can be observed in the highly derived Atelostomata in which the reorganization of the digestive tract is most pronounced. Our findings demonstrate a structural interdependence of various internal organs, including digestive tract, mesenteries, and the axial complex. PMID:19508706

  3. Stage- and tissue-specific expression of two homeo box genes in sea urchin embryos and adults.

    PubMed

    Dolecki, G J; Wang, G; Humphreys, T

    1988-12-23

    We report the isolation of two different homeo box genes, HB3 and HB4, from the Hawaiian sea urchin Tripneustes gratilla. DNA sequencing revealed a definitive Antennapedia (Antp) class homeo box in each gene. Southern transfer hybridizations showed the genes to be single-copy. A 5.7-kb transcript of the HB3 gene was found in ovary, testis, small intestine and gastrula poly(A)+ RNA. The HB4 gene produces three transcripts. A 3.7-kb and a 4.4-kb transcript are expressed during embryogenesis. A 3.5-kb transcript appears in each of the adult tissues studied. The HB4 gene appears to be the sea urchin cognate of the Drosophila infrabdominal-7 (iab-7) gene, the mouse Hox 1.7 and Hox 3.2 genes and the Xenopus X1Hbox 6 gene. An examination of Antp class homeo box genes in deuterostomes indicates that a chromosomal duplication has taken place in the evolutionary line leading to the vertebrates after the divergence of the echinoderms. Thus, the sea urchin represents the primitive condition.

  4. GC-ITMS analysis of PAH contamination levels in the marine sea urchin Paracentrotus lividus in Sardinia.

    PubMed

    Angioni, Alberto; Cau, Alessandro; Secci, Marco; Addis, Piero

    2014-05-15

    This paper describes the results of a two-year monitoring study examining the pollution of the sea urchin Paracentrotus lividus by polycyclic aromatic hydrocarbons (PAHs) in Sardinia. GC-ITMS analysis of sea urchin gonads showed the presence of 11 and 12 PAHs in the samples of Capo Pecora, and Capitana, respectively. Fluorene, naphthalene and its two degradation products, 1-methyl-naphthalene, and 2-methyl-naphthalene, were detected in all samples analyzed. The ΣPAH residues showed a similar trend over the two-year sampling period. Furthermore, the residues in the first year were slightly higher than in the second year. The information obtained by the multivariate statistical analysis PLS-DA allowed for the determination of samples based on field site and varying habitat types (rocky reef, and Posidonia seabed). The results of this study showed that Posidonia sea urchins are contaminated by high molecular weight PAHs and that Capitana samples are more contaminated due to a higher level of human activity in the area.

  5. Physiological compensation for environmental acidification is limited in the deep-sea urchin Strongylocentrotus fragilis

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2013-05-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals - particularly, calcifiers - are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of hypercapnia and hypoxia on the deep-sea urchin Strongylocentrotus fragilis, during two long-term exposure experiments (1 month and 4 month) at three levels of reduced pH at in situ O2 levels of approx. 10% saturation, and also to control pH at 100% O2 saturation. During the first experiment, internal acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by reduced pH, due in part to low non-bicarbonate extracellular fluid buffering capacity. During the second experiment, longer-term effects of hypercapnia and variable O2 on locomotion, feeding, growth, and gonadosomatic index (GSI) were investigated; results show significant mortality and correlation of all measured parameters with environmental acidification at pH 6.6. Transient adverse effects on locomotion and feeding were seen at pH 7.2, without compromise of growth or GSI. Based on the expected changes in ocean pH and oxygen, results suggest extinction of S. fragilis in the eastern North Pacific is unlikely. Rather, we expect a shoaling and contraction of its bathymetric range.

  6. A Method for Preparation, Storage and Activation of Large Populations of Immotile Sea Urchin Sperm

    NASA Technical Reports Server (NTRS)

    Bracho, Geracimo E.; Fritch, Jennifer J.; Tash, Joseph S.

    1997-01-01

    Reversible protein phosphorylation is associated with initiation and modulation of sperm flagellar motility. Many studies aimed at examining the signal transduction mechanisms underlying the expression of motility have relied on detergent-permeabilized sperm reactivated with exogenous 32 P-ATP. However, the reactivation conditions allow variable levels of motility to be expressed and phosphorylation of many proteins that appear to be unrelated to sperm motility. Thus, identification of the few relevant proteins is difficult. We have developed a method to collect and keep sperm immotile until reactivated for analysis to normal motility levels. Artificial sea water (ASW) buffered with 5 mM 2-[N-morpholino]ethanesulfonic acid at pH 6.0 and containing 50 mM KCI, allows collection and storage of immotile sea urchin sperm for up to 96 h at 4-5 C. Motility under these conditions is essentially zero, but sperm is rapidly reactivated to normal motility by diluting with ASW to standard pH (8.0) and KCI concentration (10 mM).

  7. The Influence of Physical Factors on Kelp and Sea Urchin Distribution in Previously and Still Grazed Areas in the NE Atlantic

    PubMed Central

    Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W.; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø.

    2014-01-01

    The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45–60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas. PMID:24949954

  8. The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic.

    PubMed

    Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø

    2014-01-01

    The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45-60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas.

  9. Evolution of bindin in the pantropical sea urchin Tripneustes: comparisons to bindin of other genera.

    PubMed

    Zigler, K S; Lessios, H A

    2003-02-01

    Bindin, a sea urchin sperm protein, mediates sperm-egg attachment and membrane fusion and is thus important in species recognition and speciation. Patterns of bindin variation differed among three genera that had been studied previously. In two genera of the superorder Camarodonta, Echinometra and Strongylocentrotus, both of which contain sympatric species, bindin is highly variable within and between species; a region of the molecule evolves at high rates under strong positive selection. In Arbacia, which belongs to the superorder Stirodonta and whose extant species are all allopatric, bindin variation is low, and there is no evidence of positive selection. We cloned and sequenced bindin from Tripneustes, a sea urchin that belongs to the Camarodonta but whose three species are found in different oceans. Worldwide sampling of bindin alleles shows that the bindin of Tripneustes (1) contains the highly conserved core characteristic of all other bindins characterized to date, (2) has an intron in the same position, and (3) has approximately the same length. Its structure is more like that of bindin from other camarodont sea urchins than to bindin from the stirodont ARBACIA: The resemblances to other camarodonts include a glycine-rich repeat structure upstream of the core and lack of a hydrophobic domain 3' of the core, a characteristic of Arbacia bindin. Yet the mode of evolution of Tripneustes bindin is more like that of Arbacia. Differences between bindins of the Caribbean Tripneustes ventricosus and the eastern Pacific T. depressus, separated for 3 my by the Isthmus of Panama, are limited to four amino acid changes and a single indel. There are no fixed amino acid differences or indels between T. depressus from the eastern Pacific and T. gratilla from the Indo-Pacific. Bindin of Tripneustes, like that of Arbacia, also shows no evidence of diversifying selection that would manifest itself in a higher proportion of amino acid replacements than of silent nucleotide

  10. Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin.

    PubMed

    Magesky, Adriano; de Oliveira Ribeiro, Ciro A; Beaulieu, Lucie; Pelletier, Émilien

    2016-12-12

    Using immune cells of sea urchin Strongylocentrotus droebachiensis in early development as a model, the cellular protective mechanisms against ionic and poly(allylamine)-coated silver nanoparticle (AgNPs; 14 ± 6 nm) treatments at 100 μg L(-1) were investigated. Oxidative stress, heat shock protein expression, and pigment production by spherulocytes were determined as well as AgNP translocation pathways and their multiple effects on circulating coelomocytes. Sea urchins showed an increasing resilience to Ag over time because ionic Ag is accumulated in a steady way, although nanoAg levels dropped between 48 h and 96 h. A clotting reaction emerged on tissues injured by dissolved Ag (present as chloro-complexes in seawater) between 12 h and 48 h. Silver contamination and nutritional state influenced the production of reactive oxygen species. After passing through coelomic sinuses and gut, AgNPs were found in coelomocytes. Inside blood vessels, apoptosis-like processes appeared in coelomocytes highly contaminated by poly(allylamine)-coated AgNPs. Increasing levels of Ag accumulated by urchins once exposed to AgNPs pointed to a Trojan-horse mechanism operating over 12-d exposure. However, under short-term treatments, physical interactions of poly(allylamine)-coated AgNPs with cell structures might be, at some point, predominant and responsible for the highest levels of stress-related proteins detected. The present study is the first report detailing nano-translocation in a marine organism and multiple mechanisms by which sea urchin cells can deal with toxic AgNPs. Environ Toxicol Chem 2016;9999:1-15. © 2016 SETAC.

  11. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.

    PubMed

    Gross, J M; McClay, D R

    2001-11-01

    The studies described here sought to identify and characterize genes involved in the gastrulation and morphogenetic movements that occur during sea urchin embryogenesis. An orthologue of the T-box family transcription factor, Brachyury, was cloned through a candidate gene approach. Brachyury (T) is the founding member of this T-box transcription factor family and has been implicated in gastrulation movements in Xenopus, zebrafish, and mouse embryogenesis. Polyclonal serum was generated to LvBrac in order to characterize protein expression. LvBrac initially appears at mesenchyme blastula stage in two distinct regions with embryonic expression perduring until pluteus stage. Vegetally, LvBrac expression is in endoderm and lies circumferentially around the blastopore. This torus-shaped area of LvBrac expression remains constant in size as endoderm cells express LvBrac upon moving into that circumference and cease LvBrac expression as they leave the circumference. Vegetal expression remains around the anus through pluteus stage. The second domain of LvBrac expression first appears broadly in the oral ectoderm at mesenchyme blastula stage and at later embryonic stages is refined to just the stomodael opening. Vegetal LvBrac expression depends on autonomous beta-catenin signaling in macromeres and does not require micromere or veg2-inductive signals. It was then determined that LvBrac is necessary for the morphogenetic movements occurring in both expression regions. A dominant-interfering construct was generated by fusing the DNA binding domain of LvBrac to the transcriptional repression module of the Drosophila Engrailed gene in order to perturb gene function. Microinjection of mRNA encoding this LvBrac-EN construct resulted in a block in gastrulation movements but not expression of endoderm and mesoderm marker genes. Furthermore, injection of LvBrac-EN into one of two blastomeres resulted in normal gastrulation movements of tissues derived from the injected blastomere

  12. Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair.

    PubMed

    Cao, Lei; Li, Xiaokang; Zhou, Xiaoshu; Li, Yong; Vecchio, Kenneth S; Yang, Lina; Cui, Wei; Yang, Rui; Zhu, Yue; Guo, Zheng; Zhang, Xing

    2017-03-22

    Sea urchin spines (Heterocentrotus mammillatus), with a hierarchical open-cell structure similar to that of human trabecular bone and superior mechanical property (compressive strength ∼43.4 MPa) suitable for machining to shape, were explored for potential applications of bone defect repair. Finite element analyses reveal that the compressive stress concentrates along the dense growth rings and dissipates through strut structures of the stereoms, indicating that the exquisite mesostructures play an important role in high strength-to-weight ratios. The fracture strength of magnesium-substituted tricalcium phosphate (β-TCMP) scaffolds produced by hydrothermal conversion of urchin spines is about 9.3 MPa, comparable to that of human trabecular bone. New bone forms along outer surfaces of β-TCMP scaffolds after implantation in rabbit femoral defects for one month and grows into the majority of the inner open-cell spaces postoperation in three months, showing tight interface between the scaffold and regenerative bone tissue. Fusion of beagle lumbar facet joints using a Ti-6Al-4V cage and β-TCMP scaffold can be completed within seven months with obvious biodegradation of the β-TCMP scaffold, which is nearly completely degraded and replaced by newly formed bone ten months after implantation. Thus, sea urchin spines suitable for machining to shape have advantages for production of biodegradable artificial grafts for bone defect repair.

  13. Evaluating the effects of protection on fish predators and sea urchins in shallow artificial rocky habitats: a case study in the northern Adriatic Sea.

    PubMed

    Guidetti, P; Bussotti, S; Boero, F

    2005-05-01

    Man-made defence structures (e.g., breakwaters, jetties) are becoming common features of marine coastal landscapes all around the world. The ecology of assemblages of species associated with such artificial structures is, however, poorly known. In this study, we evaluated the density and size of fish predators of echinoids (i.e., Diplodus sargus, Diplodus vulgaris, Sparus aurata), and the density of sea urchins (i.e., Paracentrotus lividus) at defence structures (i.e., breakwaters) inside and outside the marine protected area of Miramare (northern Adriatic Sea) in order to: (1) assess possible differences in fish predator density and size between protected and fished breakwaters; (2) assess whether fish predation may have the potential to affect sea urchin density in artificial rocky habitats. Surveys were carried out at four random times over a period of two years. Total density, and density of medium- and large-sized individuals of the three predatory fishes were generally greater at the protected than at the fished breakwaters, whereas no differences were detected in the density of small-sized individuals. Density of the sea urchin P. lividus did not show any difference between protected and fished breakwaters. The results of this study suggest that: (1) protection may significantly affect predatory fishes in artificial rocky habitats; (2) differences in predatory fish density, and size may be unrelated with the density of the sea urchin P. lividus; (3) protected artificial structures such as breakwaters, originally planned for other purposes, could represent a potential tool for fish population recovery and enhancement of local fisheries.

  14. Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos

    SciTech Connect

    Levin, M.; Ernst, S.G.

    1997-05-01

    Most work on magnetic field effects focuses on AC fields. The present study demonstrates that exposure to medium-strength (10 mT--0.1 T) static magnetic fields can alter the early embryonic development of two species of sea urchin embryos. Batches of fertilized eggs from two species of urchin were exposed to fields produced by permanent magnets. Samples of the continuous cultures were scored for the timing of the first two cell divisions, time of hatching, and incidence of exogastrulation. It was found that static fields delay the onset of mitosis in both species by an amount dependent on the exposure timing relative to fertilization. The exposure time that caused the maximum effect differed between the two species. Thirty millitesla fields, but not 15 mT fields, caused an eightfold increase in the incidence of exogastrulation in Lytechinus pictus, whereas neither of these fields produced exogastrulation in Strongylocentrotus purpuratus.

  15. Physiological response of the sea urchin Paracentrotus lividus fed with the seagrass Posidonia oceanica and the alien algae Caulerpa racemosa and Lophocladia lallemandii.

    PubMed

    Tejada, Silvia; Deudero, Salud; Box, Antonio; Sureda, Antoni

    2013-02-01

    The aim was to determine the effects of alien algae feeding on biomarkers of oxidative stress in the sea urchin Paracentrotus lividus. Sea urchins were fed during three months with the native seagrass Posidonia oceanica, and the alien macroalgae Caulerpa racemosa and Lophocladia lallemandii and biochemical analysis were performed in the gonads. A control group was immediately processed after sampling from the sea. Antioxidant enzyme and glutathione S-transferase activities and GSH concentration were significantly higher in sea urchins fed with alien algae when compared with the control group and the one fed with P. oceanica group. This response was more intense in the group fed with L. lallemandii respect to the C. racemosa group. The concentration of MDA, protein carbonyl derivates and 8-OHdG reported no significant differences between treatments. In conclusion, the invasive algae C. racemosa and L. lallemandii induced an antioxidant response in P. lividus without evident oxidative damage.

  16. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Migliaccio, Oriana; Castellano, Immacolata; Cirino, Paola; Romano, Giovanna; Palumbo, Anna

    2015-01-01

    Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10-6 and 3.6 x 10-5 M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals. PMID:26125595

  17. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus.

    PubMed

    Migliaccio, Oriana; Castellano, Immacolata; Cirino, Paola; Romano, Giovanna; Palumbo, Anna

    2015-01-01

    Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10(-6) and 3.6 x 10(-5) M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals.

  18. Assessment of the toxic effect exerted by fluorescent pseudomonads on embryos and larvae of the sea urchin Strongylocentrotus nudus.

    PubMed

    Beleneva, I A; Shamshurina, E V; Eliseikina, M G

    2015-05-01

    Strains of bacteria capable of growing on artificial culture media were isolated from the fouling of brass plates submerged in Nha Trang Bay, South China Sea, and from tissues of the seastar Distolasterias nipon, caught in Peter the Great Bay, Sea of Japan. According to the complex of data of genetic and physiological/biochemical analyzes, two strains of cultivated bacteria were identified by us as the species Pseudomonas aeruginosa, two strains as Pseudomonas fluorescens, and one strain as Ruegeria sp. It was shown that the cultivated strains of P. aeruginosa released exotoxins, particularly phenazine pigments, into the environment. Production of the toxins did not depend on presence of a target organism in the system and was aimed at regulation of interactions in the microbial community. The toxicity of the studied natural isolates of fluorescent pseudomonads was analyzed by using embryos and larvae of the sea urchin Strongylocentrotus nudus, which are the sensitive and dynamic toxicological sea-urchin embryo test (SET) system. As was established, exotoxins produced by the strains of P. aeruginosa inhibit activity of cilia in sea urchin larvae, as well as disturb processes of cell differentiation in embryos and larvae. Their toxic influence is accompanied by disturbances of protein synthesis and the disruptions of cytoskeleton in the course of zygote cleavage and larval development. Unlike P. aeruginosa, the strains of P. fluorescens and Ruegeria sp. did not exert the toxic effect on SET. The obtained data allow considering objects of the environment as the natural reservoir of opportunistic microorganisms posing a potential threat to human, whereas the use of SET for determination of toxicity of isolated bacteria provides an opportunity to study the mechanisms of their interactions with organisms in marine ecosystems.

  19. Dual effect of procaine in sea urchin eggs. Inducer and inhibitor of microtubule assembly.

    PubMed

    Coffe, G; Foucault, G; Raymond, M N; Pudles, J

    1985-01-01

    An increase in the amount of cytoplasmic filamentous structures (cytoplasmic matrix and aster) which were recovered after hexylene glycol/Triton X-100 treatment of sea urchin eggs (Paracentrotus lividus) activated by 0.2-2.5 mM procaine was observed. At higher activator concentrations, an opposite effect was observed and formation of these cytoplasmic structures was inhibited in the presence of 10 mM procaine. This inhibitory effect was reversed by diluting the drug in the incubation medium. DNase I inhibition assays on egg homogenates which were performed at different time points of the activation process, show that the same amount of actin was induced to polymerize in eggs activated either by 2.5 or 10 mM procaine. However, colchicine-binding assays on the 100 000 g particulate fractions of these homogenates show that in eggs activated by 10 mM procaine, in contrast to those activated by 2.5 mM, tubulin polymerization was inhibited and microtubules were disassembled. These results show that the dual effect of procaine in the organization of the egg cytoskeleton appears to be related to its effect on the state of tubulin.

  20. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    PubMed Central

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  1. Effects of Oscillatory Flow on Fertilization in the Green Sea Urchin Strongylocentrotus droebachiensis

    PubMed Central

    Kregting, Louise T.; Bass, Anna L.; Guadayol, Òscar; Yund, Philip O.; Thomas, Florence I. M.

    2013-01-01

    Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(uw)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(uw) <0.02 m s−1), depending on the location sampled, but declined to below 10% for most locations at higher rms(uw). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(uw) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions. PMID:24098766

  2. Embryotoxicity and spermiotoxicity of nanosized ZnO for Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Manzo, Sonia; Miglietta, Maria Lucia; Rametta, Gabriella; Buono, Silvia; Di Francia, Girolamo

    2013-06-15

    The effect of nano ZnO (nZnO) upon the fertilization and early development of embryos of the Mediterranean sea urchin Paracentrotus lividus is reported herein for the first time. Zn ion (ZnCl2) and bulk ZnO (bZnO) toxicity were assessed for comparison. The embryotoxicity tests showed a 100% effect already at 1 μM of nZnO (expressed as [Zn]) while bZnO and ZnCl2 showed EC50s of 0.98 [0.88-1.19] μM [Zn] and 2.02 [1.97-2.09] μM [Zn], respectively. Noteworthy, the frequency of developmental defects for the three compounds was dissimilar and a specific trend for larval skeletal abnormality produced by nZnO was observed. The sperm fertilization capability was only slightly affected by the tested chemicals while the effects were dramatic on the offspring quality of sperms exposed to ZnO compounds resulting in an early block of the regular larval development. ZnO toxicity seems related not only to Zinc ions but also to some surface interactions of particle/aggregates with target organisms and/or with the seawater.

  3. Ovothiol Isolated from Sea Urchin Oocytes Induces Autophagy in the Hep-G2 Cell Line

    PubMed Central

    Russo, Gian Luigi; Russo, Maria; Castellano, Immacolata; Napolitano, Alessandra; Palumbo, Anna

    2014-01-01

    Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they play a key role in the protection of cells toward the oxidative burst associated with fertilization by controlling the cellular redox balance and recycling oxidized glutathione. In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell proliferation in a dose-dependent manner. The activation of an autophagic process is revealed by phase contrast and fluorescence microscopy, together with the expression of the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 24% within 30 min from treatment. The proliferation of normal human embryonic lung cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive molecule from marine organisms able to inhibit cell proliferation in cancer cells. PMID:25003791

  4. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos

    PubMed Central

    Ruocco, Nadia; Costantini, Maria; Santella, Luigia

    2016-01-01

    The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders. PMID:27562248

  5. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus.

    PubMed

    Kanold, Julia Maxi; Wang, Jiabin; Brümmer, Franz; Šiller, Lidija

    2016-05-01

    The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl2*6 H2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem.

  6. Multidrug efflux transporters limit accumulation of inorganic, but not organic, mercury in sea urchin embryos.

    PubMed

    Bosnjak, Ivana; Uhlinger, Kevin R; Heim, Wesley; Smital, Tvrtko; Franekić-Colić, Jasna; Coale, Kenneth; Epel, David; Hamdoun, Amro

    2009-11-01

    Mercuric compounds are persistent global pollutants that accumulate in marine organisms and in humans who consume them. While the chemical cycles and speciation of mercury in the oceans are relatively well described, the cellular mechanisms that govern which forms of mercury accumulate in cells and why they persist are less understood. In this study we examined the role of multidrug efflux transport in the differential accumulation of inorganic (HgCl(2)) and organic (CH(3)HgCl) mercury in sea urchin (Strongylocentrotus purpuratus) embryos. We found that inhibition of MRP/ABCC-type transporters increases intracellular accumulation of inorganic mercury but had no effect on accumulation of organic mercury. Similarly, pharmacological inhibition of metal conjugating enzymes by ligands GST/GSH significantly increases this antimitotic potency of inorganic mercury, but had no effect on the potency of organic mercury. Our results point to MRP-mediated elimination of inorganic mercury conjugates as a cellular basis for differences in the accumulation and potency of the two major forms of mercury found in marine environments.

  7. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos

    PubMed Central

    Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  8. The DEAD-box RNA helicase Vasa functions in embryonic mitotic progression in the sea urchin.

    PubMed

    Yajima, Mamiko; Wessel, Gary M

    2011-06-01

    Vasa is a broadly conserved ATP-dependent RNA helicase that functions in the germ line of organisms from cnidarians to mammals. Curiously, Vasa is also present in the somatic cells of many animals and functions as a regulator of multipotent cells. Here, we report a mitotic function of Vasa revealed in the sea urchin embryo. We found that Vasa protein is present in all blastomeres of the early embryo and that its abundance oscillates with the cell cycle. Vasa associates with the spindle and the separating sister chromatids at metaphase, and then quickly disappears after telophase. Inhibition of Vasa protein synthesis interferes with proper chromosome segregation, arrests cells at M-phase, and delays overall cell cycle progression. Cdk activity is necessary for the proper localization of Vasa, implying that Vasa is involved in the cyclin-dependent cell cycle network, and Vasa is required for the efficient translation of cyclinB mRNA. Our results suggest an evolutionarily conserved role of Vasa that is independent of its function in germ line determination.

  9. Sodium-dependent pH regulation in active sea urchin sperm.

    PubMed

    Bibring, T; Baxandall, J; Harter, C C

    1984-02-01

    Extracellular sodium ion is required for activation of motility and respiration in sea urchin sperm when semen is diluted in seawater. We have investigated the role of sodium ion in maintenance of sperm activity. Active sperm lose activity on transfer to sodium-free artificial seawater and can be reactivated with external Na+. Reactivation occurs in the range of Na+ concentration required for initial activation; ammonium can substitute for sodium in reactivation. Sperm withdrawn from sodium and sperm prior to activation share a characteristic morphology with straight or gently bent flagella. Activation of sperm by amines in the absence of Na+ is unstable. It is followed by a steady respiratory decline which is temporarily reversed by addition of more amine and stably reversed by addition of Na+. Measurements of intracellular pH indicate that the internal pH rises during amine activation. Internal reacidification occurs during the period of respiratory decline, and Na+ again elevates internal pH. Treatment with cyanide abolishes the reacidification, indicating that it depends on respiration. We conclude that the sodium requirement persists in active sperm; respiration-dependent production of H+ must be balanced by sodium-dependent H+ removal to maintain activity.

  10. Stimulation of tubulin gene transcription by deciliation of sea urchin embryos.

    PubMed Central

    Gong, Z Y; Brandhorst, B P

    1987-01-01

    Deciliation by hypertonic shock of embryos of the sea urchin Lytechinus pictus resulted in an increase in synthesis of alpha- and beta-tubulins, the consequence of an increased concentration of RNA encoding the tubulins. RNA run-on assays in isolated nuclei indicated that this response is due to a transient increase in the rate of synthesis of tubulin RNA beginning within 5 min of deciliation. This enhancement of tubulin gene transcription also occurred in deciliated embryos treated with the microtubule-depolymerizing agent colcemid; thus the reaction to deciliation is not a response to a reduction in concentration of unpolymerized tubulin utilized for ciliogenesis. In deciliated embryos treated with colcemid, the elevated level of tubulin RNA declined rapidly, due to its destabilization by the elevated concentration of unpolymerized tubulin. The increased transcription of tubulin genes is a response to the loss of cilia, not to the hypertonic shock, and occurs even when cilium regeneration is prevented. Inhibition of protein synthesis with puromycin or emetine did not prevent the transcriptional enhancement but stabilized tubulin mRNA, resulting in increased accumulation of tubulin mRNA after deciliation. Images PMID:3437889

  11. A comprehensive survey of wnt and frizzled expression in the sea urchin Paracentrotus lividus.

    PubMed

    Robert, Nicolas; Lhomond, Guy; Schubert, Michael; Croce, Jenifer C

    2014-03-01

    WNT signaling is, in all multicellular animals, an essential intercellular communication pathway that is critical for shaping the embryo. At the molecular level, WNT signals can be transmitted by several transduction cascades, all activated chiefly by the binding of WNT ligands to receptors of the FRIZZLED family. The first step in assessing the biological functions of WNT signaling during embryogenesis is thus the establishment of the spatiotemporal expression profiles of wnt and frizzled genes in the course of embryonic development. To this end, using quantitative polymerase chain reaction, Northern blot, and in situ hybridization assays, we report here the comprehensive expression patterns of all 11 wnt and 4 frizzled genes present in the genome of the sea urchin Paracentrotus lividus during its embryogenesis. Our findings indicate that the expression of these wnt ligands and frizzled receptors is highly dynamic in both time and space. We further establish that all wnt genes are chiefly transcribed in the vegetal hemisphere of the embryo, whereas expression of the frizzled genes is distributed more widely across the embryonic territories. Thus, in P. lividus, WNT ligands might act both as short- and long-range signaling molecules that may operate in all cell lineages and tissues to control various developmental processes during embryogenesis.

  12. Physico-chemical characterization and pharmacological activities of sulfated polysaccharide from sea urchin, Paracentrotus lividus.

    PubMed

    Salem, Yosra Ben; Amri, Safa; Hammi, Khaoula Mkadmini; Abdelhamid, Amal; Cerf, Didier Le; Bouraoui, Abderrahman; Majdoub, Hatem

    2017-04-01

    Sulfated polysaccharide (SP) from the eggs of sea urchin Paracentrotus lividus, extracted by papain digestion, was characterized by size exclusion chromatography coupling on-line with light scattering and viscosity detectors (SEC/MALS/VD/DRI), gas chromatography coupled to mass spectrometer (GC-MS), and Fourier transform infrared spectroscopy (FTIR) analysis. The native molecular mass of the extracted polysaccharide is high (≥22 000 KDa) and it is composed mainly of arabinose, accompanied by other monosaccharides (mostly galactose, glucose and fucose), significant amounts of uronic acids (18.4%) and relatively high proportions of sulfate (22.4%). The pharmacological evaluation of SP showed a significant in vivo anti-inflammatory activity (p<0.001), 3h after injection, the edema inhibition was 75.8% at the dose of 100mg/Kg; a significant peripheral analgesic activity (p<0.001), with 64.9% of writhing inhibition, and a significant increase in the hot plate reaction time in mice indicating central analgesic activity. In addition, an interesting gastroprotective effect was observed with this polysaccharide; the gastric ulcer inhibition was 69.7%, at the dose of 100mg/Kg.

  13. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos.

    PubMed

    Ruocco, Nadia; Costantini, Maria; Santella, Luigia

    2016-08-26

    The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders.

  14. Genotoxic and developmental effects in sea urchins are sensitive indicators of effects of genotoxic chemicals

    SciTech Connect

    Anderson, S.L. . Energy and Environment Division); Hose, J.E. . Dept. of Biology); Knezovich, J.P. . Health and Ecological Assessment Division)

    1994-07-01

    Purple sea urchin (Strongylocentrotus purpuratus) gametes and embryos were exposed to three known mutagenic chemicals (phenol, benzidine,and pentachlorophenol) over concentration ranges bracketing the effect levels for fertilization success. Normal development and cytogenetic effects (anaphase aberrations) were assessed after the cultures were allowed to develop for 48 h. Using radiolabeled chemicals, the authors also characterized concentrations in the test water as well as doses in the embryos following 2- and 48-h exposures. The authors observed dose responses for all chemicals and all responses, except for phenol, which showed no significant effect on development. Fertilization success was never the most sensitive end point. anaphase aberrations were the most sensitive response for phenol, with an LOEC of 2.5 mg/L exposure concentration. Anaphase aberrations and development were equivalent in sensitivity for benzidine within the tested dose range, and an LOEC of <0.1 mg/L was observed. Development was the most sensitive reasons for pentachlorophenol (LOEC 1 mg/L). the LOEC values for this study were generally lower than comparable data for aquatic life or human health protection. The authors conclude that genotoxicity and development evaluations should be included in environmental management applications and that tests developed primarily for human health protection do not reliably predict the effects of toxic substances on aquatic life.

  15. Cell surface of sea urchin micromeres and primary mesenchyme. [Arbacia punctulata; Strongylocentrotus drobachiensis; Strongylocentrotus purpuratus

    SciTech Connect

    DeSimone, D.W.

    1985-01-01

    The cell surface and extracellular matrix (ECM) of the sea urchin embryo were studied during the early morphogenetic events involved in the differentiation of the micromere cell lineage. Sixteen-cell and early cleavage stage blastomeres were isolated and the protein composition of their cell surfaces examined by /sup 125/I-labelling followed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Micromere-specific cell surface proteins are reported for Arbacia punctulata, Strongylocentrotus droebachiensis, and Strongylocentrotus purpuratus. Cell surface glycoproteins were characterized on the basis of lectin binding specificity with a novel lectin affinity transfer technique. Using this procedure, cell-type specific surface proteins, which are also lectin-binding specific, can be detected. In addition, fluorescein conjugated lectins were microinjected into the blastocoels of living S. drobachiensis and Lytechinus pictus embryos and the patterns of lectin bindings observed by fluorescence microscopy. The evidence presented in this thesis suggests that the differentiation of the primary mesenchyme cells is correlated with changes in the molecular composition of the cell-surface and the ECM.

  16. Intercalation of sea urchin proteins in calcite: Study of a crystalline composite material

    SciTech Connect

    Berman, A.; Addadi, L.; Leiserowitz, L.; Weiner, S. ); Kvick, A.; Nelson, M. )

    1990-11-02

    Sea urchin skeletal elements are composed of single crystals of calcite. Unlike their synthetic counterparts, these crystals do not have well-developed cleavage and are consequently much more resistant to fracture. This phenomenon is due in part to the presence of acidic glycoproteins occluded within the crystals. By means of x-ray diffraction with synchrotron radiation, it is shown that the presence of the protein in synthetic calcite only slightly decreases the coherence length but significantly increases the angular spread of perfect domains of the crystals. In biogenic calcite, the coherence length is 1/3 to 1/4 as much as that in synthetic calcite and the angular spread is 20 to 50 times as wide. It is proposed that the presence of macromolecules concentrated at mosaic boundaries that are oblique to cleavage planes is responsible for the change in fracture properties. These results may be important in the material sciences, because of the unusual nature of this material, namely, a composite based on the controlled intercalation of macromolecules inside single-crystal lattices. 20 refs., 3 figs.

  17. Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs

    SciTech Connect

    Eisen, A.; Kiehart, D.P.; Wieland, S.J.; Reynolds, G.T.

    1984-11-01

    Measurements and observations of five early events of fertilization, singly and in pairs, from single sea urchin eggs have revealed the precise temporal sequence and spatial distribution of these events. In the Arbacia punctulata egg, a wave of surface contraction occurs coincident with membrane depolarization (t = 0). These two earliest events are followed by the onset of a rapid, propagated increase in cytoplasmic-free calcium at approx.23 s as measured by calcium-aequorin luminescence. The luminescence reaches its peak value by 40 s after the membrane depolarization. The luminescence remains uniformly elevated for some time before its decay over several minutes. The onset of an increase in the pyridin nucleotide (NAD(P)H) fluorescence follows the membrane depolarization at approx.51 s. The fertilization membrane begins its elevation in a wave-like fashion coincidentally with the increase in NAD(P)H fluorescence. Similar results are observed in the Lytechinus variegatus egg. The results suggest that while the increase in cytoplasmic-free calcium may be important for many changes occurring in the egg, the elevated-free calcium is not directly responsible for the propagated wave of cortical granule exocytosis. 32 references, 10 figures.

  18. Sea urchin-likeNiCoO2@C nanocompositesforLi-ionbatteries and supercapacitors

    SciTech Connect

    Liang, Jin; Xi, Kai; Tan, Guoqiang; Chen, Sheng; Zhao, Teng; Coxon, Paul R.; Kim, Hyun-Kyung; Ding, Shujiang; Yang, Yuan; Kumar, R. Vasant; Lu, Jun

    2016-09-01

    The rational construction of battery electrode architecture that offers both high energy and power densities on a gravimetric and volumetric basis is a critical concern but achieving this aim is beset by many fundamental and practical challenges. Here we report a new sea urchin-like NiCoO2@C composite electrode architecture composed of NiCoO2 nanosheets grown on hollow concave carbon disks. Such a unique structural design not only preserves all the advantages of hollow structures but also increases the packing density of the active materials. NiCoO2 nanosheets grown on carbon disks promote a high utilization of active materials in redox reactions by reducing the path length for Li+ ions and for electron transfer. Meanwhile, the hollow concave carbon not only reduces the volume change, but also improves the volumetric energy density of the entire composite electrode. As a result, the nanocomposites exhibit superior electrochemical performance measured in terms of high capacity/capacitance, stable cycling performance and good rate capability in both Li-ion battery and supercapacitor applications. Such nanostructured composite electrode may also have great potential for application in other electrochemical devices.

  19. Photoprotective effect of coumarin and 3-hydroxycoumarin in sea urchin gametes and embryonic cells.

    PubMed

    de Araujo Leite, Jocelmo Cássio; de Castro, Tainá Myra Xavier; Barbosa-Filho, José Maria; de Siqueira-Junior, José Pinto; Marques-Santos, Luis Fernando

    2015-05-01

    Ultraviolet radiation B (UVB) represents 5% of all solar UV radiation and chronic exposure can induce harmful biological responses, including skin cancer. Prospection of new drugs with photoprotective properties and less toxic effects is constant and natural products have been the main options in this field. Coumarins are a group of natural phenolic compounds that shows several pharmacological activities. The aim of present work was to investigate the effect of coumarin and six derivatives in sea urchin gametes and zygotes exposed to UVB. Embryonic development assay was used to monitor UVB embryotoxicity. Firstly, we demonstrated that coumarin inhibited first embryonic cell division from 5 μM (EC50 = 52.9 μM) and its derivatives showed an embryotoxic effect ten times higher. Then, gametes or zygotes were treated with coumarin compounds before or after UVB exposure (UVB doses ranged from 0.056 to 0.9 kJm(-2)). Pretreatment of gametes or zygotes with coumarin or 3-hydroxycoumarin (1 μM, both) decreased UVB embryotoxic effect. Protective effect of the compounds was observed only when cells were treated previous to UVB exposure. Coumarin derivatives 4-hydroxycoumarin, 6-hydroxycoumarin, 7-hydroxycoumarin, 6,7-dihydroxycoumarin and 6-methoxy-7-hydroxycoumarin did not exhibit photoprotective activity. Our data provides evidences that coumarin and 3-hydroxycoumarin can be a promising class of photoprotective drugs.

  20. Effect of phenol on embryo development and expression of metallothionein in the sea urchin Hemicentrotus pulcherrimus

    NASA Astrophysics Data System (ADS)

    Hwang, Un-Ki; Lee, Ju-Wook; Ryu, Hyang-Mi; Kang, Ju-Chan; Kang, Han Seung

    2015-12-01

    In this study, we identified and cloned the sea urchin Hemicentrotus pulcherrimus MT (Hp-MT) mRNA. We examined the gameto- and embryo-toxic effects and the expression of Hp-MT mRNA at various concentrations of phenol in H. pulcherrimus. We found that the normal embryogenesis rate was significantly inhibited when H. pulcherrimus was exposed to phenol (EC50 = 1565.86 ppb, 95% Cl = 1183.47-2037.84 ppb). The no observed effective concentration (NOEC) and the lowest observed effective concentration (LOEC) of the normal embryogenesis rate were < 10 ppb and 100 ppb, respectively. Hp-MT cDNA is 651 bp in length and encodes a protein of 64 amino acids. We found that the expression of Hp-MT mRNA was significantly increased with phenol treatment in a concentrationdependent manner. These results suggest that phenol at greater than 100 ppb has a toxic effect during the early embryonic stages of H. pulcherrimus, and MT mRNA may be used as a biomarker for risk assessment of phenol contamination.

  1. Use of power analysis to develop detectable significance criteria for sea urchin toxicity tests

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.

    1999-01-01

    When sufficient data are available, the statistical power of a test can be determined using power analysis procedures. The term “detectable significance” has been coined to refer to this criterion based on power analysis and past performance of a test. This power analysis procedure has been performed with sea urchin (Arbacia punctulata) fertilization and embryological development data from sediment porewater toxicity tests. Data from 3100 and 2295 tests for the fertilization and embryological development tests, respectively, were used to calculate the criteria and regression equations describing the power curves. Using Dunnett's test, a minimum significant difference (MSD) (β = 0.05) of 15.5% and 19% for the fertilization test, and 16.4% and 20.6% for the embryological development test, for α ≤ 0.05 and α ≤ 0.01, respectively, were determined. The use of this second criterion reduces type I (false positive) errors and helps to establish a critical level of difference based on the past performance of the test.

  2. Cellular control over spicule formation in sea urchin embryos: A structural approach.

    PubMed

    Beniash, E; Addadi, L; Weiner, S

    1999-03-01

    The spicules of the sea urchin embryo form in intracellular membrane-delineated compartments. Each spicule is composed of a single crystal of calcite and amorphous calcium carbonate. The latter transforms with time into calcite by overgrowth of the preexisting crystal. Relationships between the membrane surrounding the spiculogenic compartment and the spicule mineral phase were studied in the transmission electron microscope (TEM) using freeze-fracture. In all the replicas observed the spicules were tightly surrounded by the membrane. Furthermore, a variety of structures that are related to the material exchange process across the membrane were observed. The spiculogenic cells were separated from other cell types of the embryo, frozen, and freeze-dried on the TEM grids. The contents of electron-dense granules in the spiculogenic cells were shown by electron diffraction to be composed of amorphous calcium carbonate. These observations are consistent with the notion that the amorphous calcium carbonate-containing granules contain the precursor mineral phase for spicule formation and that the membrane surrounding the forming spicule is involved both in transport of material and in controlling spicule mineralization.

  3. Antimitotic action of extracts of Petiveria alliacea on sea urchin egg development.

    PubMed

    Malpezzi, E L; Davino, S C; Costa, L V; Freitas, J C; Giesbrecht, A M; Roque, N F

    1994-03-01

    The hydroethanol extract of the roots of Petiveria alliacea L. (Phytolaccaceae) has been investigated previously as an antitumor agent against mouse Ehrlich ascites. The extract and its methanol, butanol and ether fractions exhibited an antimitotic effect on sea urchin egg development. The aqueous fraction did not produce inhibition of cell cleavage. At the first cleavage the inhibition, at the lowest concentration (10 micrograms/ml), produced by the ether fraction was 42%, whereas the inhibition produced by the total extract and by the other fractions was only 5 to 10% showing that the ether fraction was the most active. Even at higher concentrations the butanol and methanol fractions inhibit the cleavage about 30%. At the first cleavage, the ED50 of the hydroethanol extract and of the ether fraction were 45.02 and 12.40 micrograms/ml, respectively. Furthermore, in the second cleavage, the hydroethanol extract was about twice as potent as the methanol or butanol fractions (ED50 of 22.40, 44.80 and 54.10 micrograms/ml, respectively).

  4. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  5. Ultrastructure of sea urchin tube feet. Evidence for connective tissue involvement in motor control.

    PubMed

    Florey, E; Cahill, M A

    1977-02-09

    An analysis of the ultrastructure of the tube feet of three species of sea urchins (Strongylocentrotus franciscanus, Arbacia lixula and Echinus esculentus) revealed that the smooth muscle, although known to be cholinoceptive, receives no motor innervation. The muscle fibers are attached to a double layer of circular and longitudinal connective tissue which surrounds the muscle layer and contains numerous bundles of collagen fibers. On its outside, the connective tissue cylinder is invested by a basal lamina of the outer epithelium to which numerous nerve terminals are attached. These are part of a nerve plexus which surrounds the connective tissue cylinder. The plexus itself is an extension of a longitudinal nerve that extends the whole length of the tube foot. It is composed of axons, but nerve cell bodies and synapses are conspicuously lacking, suggesting that the axons and terminals derive from cells of the radial nerve. Processes of the epithelial cells penetrate the nerve plexus and attach to the basal lamina. There is no evidence that the epithelial cells function as sensory cells. On the basis of supporting evidence it is suggested that the transmitter released by the nerve terminals diffuses to the muscle cells over a distance of several microns and in doing so affects the mechanical properties of the connective tissue.

  6. THE FINE STRUCTURE OF PRONUCLEAR DEVELOPMENT AND FUSION IN THE SEA URCHIN, ARBACIA PUNCTULATA

    PubMed Central

    Longo, Frank J.; Anderson, Everett

    1968-01-01

    Fertilization events following coalescence of the gamete plasma membranes and culminating in the formation of the zygote nucleus were investigated by light and electron microscopy in the sea urchin, Arbacia punctulata. Shortly after the spermatozoon passes through the fertilization cone, it rotates approximately 180° and comes to rest lateral to its point of entrance. Concomitantly, the nonperforated nuclear envelope of the sperm nucleus undergoes degeneration followed by dispersal of the sperm chromatin and development of the pronuclear envelope. During this reorganization of the sperm nucleus, the sperm aster is formed. The latter is composed of ooplasmic lamellar structures and fasciles of microtubules. The male pronucleus, sperm mitochondrion, and flagellum accompany the sperm aster during its migration. As the pronuclei encounter one another, the surface of the female pronucleus proximal to the advancing male pronucleus becomes highly convoluted. Subsequently, the formation of the zygote nucleus commences with the fusion of the outer and the inner membranes of the pronuclear envelopes, thereby producing a small internuclear bridge and one continuous, perforated zygote nuclear envelope. PMID:5677969

  7. Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum

    PubMed Central

    1991-01-01

    The calcium indicator dye fluo-3/AM was loaded into the ER of isolated cortices of unfertilized eggs of the sea urchin Arbacia punctulata. Development of the fluorescent signal took from 8 to 40 min and usually required 1 mM ATP. The signal decreased to a minimum level within 30 s after perfusion with 1 microM InsP3 and increased within 5 min when InsP3 was replaced with 1 mM ATP. Also, the fluorescence signal was lowered rapidly by perfusion with 10 microM A23187 or 10 microM ionomycin. These findings demonstrate that the cortical ER is a site of ATP-dependent calcium sequestration and InsP3-induced calcium release. A light-induced wave of calcium release, traveling between 0.7 and 2.8 microns/s (average speed 1.4 microns/s, N = 8), was sometimes observed during time lapse recordings; it may therefore be possible to use the isolated cortex preparation to investigate the postfertilization calcium wave. PMID:1955454

  8. Mitochondrial DNA in the sea urchin Arbacia lixula: evolutionary inferences from nucleotide sequence analysis.

    PubMed

    De Giorgi, C; Lanave, C; Musci, M D; Saccone, C

    1991-07-01

    From the stirodont Arbacia lixula we determined the sequence of 5,127 nucleotides of mitochondrial DNA (mtDNA) encompassing 18 tRNAs, two complete coding genes, parts of three other coding genes, and part of the 12S ribosomal RNA (rRNA). The sequence confirms that the organization of mtDNA is conserved within echinoids. Furthermore, it underlines the following peculiar features of sea urchin mtDNA: the clustering of tRNAs, the short noncoding regulatory sequence, and the separation by the ND1 and ND2 genes of the two rRNA genes. Comparison with the orthologous sequences from the camarodont species Paracentrotus lividus and Strongylocentrotus purpuratus revealed that (1) echinoids have an extra piece on the amino terminus of the ND5 gene that is probably the remnant of an old leucine tRNA gene; (2) third-position codon nucleotide usage has diverged between A. lixula and the camarodont species to a significant extent, implying different directional mutational pressures; and (3) the stirodont-camarodont divergence occurred twice as long ago as did the P. lividus-S. purpuratus divergence.

  9. Evidence for an acidic compartment in sea urchin eggs (Paracentrotus lividus): role at fertilization.

    PubMed

    Payan, P; Girard, J P; Viglietti, F

    1987-04-01

    The characteristics of [14C]methylamine accumulation by isolated cortices were measured in eggs from three species of sea urchins: Paracentrotus lividus, Arbacia lixula and Sphaerechinus granularis. In all cases, the results pointed to the existence of an acidic compartment in the cortical zone. In P. lividus eggs, cortical granules did not participate in proton storage which likely took place in pigment granules. [14C]Methylamine accumulation was dramatically reduced by monovalent cation ionophores (monensin and nigericin) and by NH4Cl, but not by valinomycin. ATP depletion only partially affected the isotope uptake. Simultaneous measurements of intracellular pH and of external titratable acidity during ammonia treatment of eggs, indicate that after fertilization, eggs increased their capacity to concentrate hydrogen ions in an intracellular store. Following insemination, cortices from P. lividus eggs exhibited a 3-fold increase in [14C]methylamine accumulation. It is concluded that the egg cortical area contains acidic organelles sequestering hydrogen ions by means of an electrogenic H+ pump, and that this mechanism, enhanced at fertilization, participates in a local alkalinization. The role of such a mechanism is discussed.

  10. All males are not created equal: Fertility differences depend on gamete recognition polymorphisms in sea urchins

    PubMed Central

    Palumbi, Stephen R.

    1999-01-01

    Behaviors, morphologies, and genetic loci directly involved in reproduction have been increasingly shown to be polymorphic within populations. Explaining how such variants are maintained by selection is crucial to understanding the genetic basis of fertility differences, but direct tests of how alleles at reproductive loci affect fertility are rare. In the sea urchin genus Echinometra, the protein bindin mediates sperm attachment to eggs, evolves quickly, and is polymorphic within species. Eggs exposed to experimental sperm mixtures show strong discrimination on the basis of the males’ bindin genotype. Different females produce eggs that nonrandomly select sperm from different males, showing that variable egg–sperm interactions determine fertility. Eggs select sperm with a bindin genotype similar to their own, suggesting strong linkage between female choice and male trait loci. These experiments demonstrate that alleles at a single locus can have a strong effect on fertilization and that reproductive loci may retain functional polymorphisms through epistatic interactions between male and female traits. They also suggest that positive selection at gamete recognition loci like bindin involves strong selection within species on mate choice interactions. PMID:10535974

  11. Embryotoxic effects of nonylphenol and octylphenol in sea urchin Arbacia lixula.

    PubMed

    Cakal Arslan, O; Parlak, H

    2007-08-01

    Nonylphenol (NP) and octylphenol (OP), both of which are biodegradation products of alkylphenols, are widely used in industrial applications and in some domestic products. These chemicals are found widely in surface water and aquatic sediments. We have carried out a comparative embryotoxicity analysis of the effects of increasing concentrations of NP (seven concentrations ranging from 0.937 to 18.74 microg/l) and OP (six concentrations ranging from 5 to 160 microg/l) on embryos of the sea urchin Arbacia lixula. The indicators evaluated were larval malformations, developmental arrest and embryonic/larval mortality. The results revealed that low concentrations of these chemicals (NP, OP) generally caused malformations in the skeletal system. High concentrations (18.74 microg NP/l, 160 microg OP/l) were found to inhibit the growth of embryos in the early life stages by preventing mitosis. We conclude that NP and OP present a major risk to the normal development of A. lixula at the low concentrations that have been recorded in the environment. These chemicals are therefore most likely to represent an ecological hazard at the population level given the cumulative effects of other environmental pollutants.

  12. Calcium-binding modulator protein from the unfertilized egg of the sea urchin Arbacia punctulata

    PubMed Central

    1979-01-01

    We have purified and partly characterized a calcium-binding protein from the unfertilized egg of the sea urchin Arbacia punctulata. This protein closely resembles the calcium-binding modulator protein of bovine brain in its molecular weight, electrophoretic mobility, amino acid analysis, and peptide map. It activates bovine brain phosphodiesterase in the presence of calcium but has no effect on the phosphodiesterase of the Arbacia egg. Densitometric scanning of acrylamide gels of arbacia egg homogenates shows the modulator protein to represent 0.1% of the total protein of the egg. At 10(-4) M free calcium, the protein binds four calcium ions per 17,000-dalton molecule. We have used a column of rabbit skeletal muscle troponin-I covalently coupled to Sepharose 4B as an affinity column to selectively purify the Arbacia egg calcium-binding protein. This column has also been used to purify bovine brain modulator protein and may prove of general use in isolating similar proteins from other sources. The technique may be particularly helpful when only small quantities of starting material are available. PMID:217882

  13. Toxicity of spill-treating agents and oil to sea urchin embryos.

    PubMed

    Rial, Diego; Vázquez, José A; Murado, Miguel A

    2014-02-15

    The aim of this study was to assess the joint toxicity of a Maya crude oil and four spill-treating agents (STAs) (CytoSol, Finasol OSR51, Agma OSD569 and OD4000). The acute toxicity of the binary mixtures of the water accommodated fractions (WAFs) obtained independently for the oil and each STA was assessed. The toxicity of the chemically enhanced WAF (CEWAF) of oil and Finasol OSR51 at several dispersant to oil ratios (1:2, 1:10 and 1:100) was also evaluated. The toxicity (EC50) obtained for the WAFs of the STAs was: CytoSol (15.1 mL/L)sea urchin embryo toward the dispersant.

  14. Toxicity of binary mixtures of oil fractions to sea urchin embryos.

    PubMed

    Rial, Diego; Vázquez, José A; Menduiña, Araceli; García, Ana M; González, M Pilar; Mirón, Jesús; Murado, Miguel A

    2013-12-15

    The assumption of additive toxicity for oil compounds is related to a narcotic mode of action. However, the joint toxicity of oil fractions has not been fully investigated. A fractionation of Maya crude oil into aliphatics, aromatics and polars was performed, fractions were dissolved in dimethyl sulfoxide (DMSO) and subsequently toxicity of single fractions and binary mixtures was assessed using the sea urchin embryo test. The descriptive ability of Concentration Addition (CA), Independent Action (IA) and modifications of both models for describing the joint toxicity of mixtures has also been evaluated. The hydrocarbon content extractable with dichloromethane of the fractions dissolved in DMSO was: 12.0 ± 1.8 mg mL(-1), 39.0 ± 0.5 mg mL(-1) and 20.5 ± 2.5 mg mL(-1) for aliphatics, aromatics and polars, respectively. The toxicity of the extracts in DMSO of the fractions as EC50 (μLL(-1)) was: aliphatics (165.8-242.3)

  15. Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte.

    PubMed

    Wessel, Gary M; Conner, Sean D; Berg, Linnea

    2002-09-01

    Cortical granules exocytose after the fusion of egg and sperm in most animals, and their contents function in the block to polyspermy by creating an impenetrable extracellular matrix. Cortical granules are synthesized throughout oogenesis and translocate en masse to the cell surface during meiosis where they remain until fertilization. As the mature oocyte is approximately 125 micro m in diameter (Lytechinus variegatus), many of the cortical granules translocate upwards of 60 micro m to reach the cortex within a 4 hour time window. We have investigated the mechanism of this coordinated vesicular translocation event. Although the stimulus to reinitiate meiosis in sea urchin oocytes is not known, we found many different ways to reversibly inhibit germinal vesicle breakdown, and used these findings to discover that meiotic maturation and cortical granule translocation are inseparable. We also learned that cortical granule translocation requires association with microfilaments but not microtubules. It is clear from endocytosis assays that microfilament motors are functional prior to meiosis, even though cortical granules do not use them. However, just after GVBD, cortical granules attach to microfilaments and translocate to the cell surface. This latter conclusion is based on organelle stratification within the oocyte followed by positional quantitation of the cortical granules. We conclude from these studies that maturation promoting factor (MPF) activation stimulates vesicle association with microfilaments, and is a key regulatory step in the coordinated translocation of cortical granules to the egg cortex.

  16. A Rho-signaling pathway mediates cortical granule translocation in the sea urchin oocyte.

    PubMed

    Covián-Nares, Fernando; Martínez-Cadena, Guadalupe; López-Godínez, Juana; Voronina, Ekaterina; Wessel, Gary M; García-Soto, Jesús

    2004-03-01

    Cortical granules are secretory vesicles of the egg that play a fundamental role in preventing polyspermy at fertilization. In the sea urchin egg, they localize directly beneath the plasma membrane forming a compact monolayer and, upon fertilization, undergo a Ca(2+)-dependent exocytosis. Cortical granules form during early oogenesis and, during maturation, translocate from the cytosol to the oocyte cortex in a microfilament-mediated process. We tested the hypothesis that these cortical granule dynamics were regulated by Rho, a GTPase of the Ras superfamily. We observed that Rho is synthesized early in oogenesis, mainly in a soluble form. At the end of maturation, however, Rho associates with cortical granules. Inhibition of Rho with the C3 transferase from C. botulinum blocks cortical granule translocation and microfilaments undergo a significant disorganization. A similar effect is observed by GGTI-286, a geranylgeranyl transferase inhibitor, suggesting that the association of Rho with the cortical granules is indispensable for its function. In contrast, the anchorage of the cortical granules in the cortex, as well as their fusion at fertilization, are Rho-independent processes. We conclude that Rho association with the cortical granules is a critical regulatory step in their translocation to the egg cortex.

  17. Branching out: origins of the sea urchin larval skeleton in development and evolution.

    PubMed

    McIntyre, Daniel C; Lyons, Deirdre C; Martik, Megan; McClay, David R

    2014-03-01

    It is a challenge to understand how the information encoded in DNA is used to build a three-dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here, we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, fibroblast growth factor, vascular endothelial growth factor, and Wnt5. Each is necessary for explicit tasks in skeleton production.

  18. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos.

    PubMed

    Chassé, Héloïse; Mulner-Lorillon, Odile; Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism.

  19. Ultraviolet radiation-specific DNA damage and embryonic viability in sea urchins from Kasitsna Bay, Alaska

    SciTech Connect

    Theodorakis, C.; Anderson, S.; Shugart, L.R.

    1995-12-31

    Ripe ova and sperm were obtained from Green Sea Urchins (Strongvlocentrotus drochbachiensis) collected from Kasitsna Bay, Alaska, and ova were fertilized in vitro. Embryos were immediately placed in plastic bags secured to floating racks deployed in the bay. The bags were suspended just below the surface of the water and at 1 and 2 meter depths for up to 120 hours. Bags were either left uncovered, covered with Mylar plastic (which blocks out UV-B but not UV-A radiations), or covered with dark plastic. The number of damaged DNA sites was determined by digesting the DNA with enzymes isolated from the bacterium Micrococcus luteus which cleave the DNA at damaged sites. It was found that DNA damage was present in a dose-dependent fashion with the amount of damage in embryos from the uncovered bags > Mylar covered bags > dark covered bags. No dimers were detected from embryos at 1 or 2 m. depths. Also, the number of damaged sites varied from day to day. Finally, the number of damaged sites was positively correlated with percent abnormal embryos in each bag. The results are discussed with relation to monitoring UV-B effects and ecological consequences of enhanced UV-B radiation.

  20. Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase.

    PubMed

    Calestani, Cristina; Rogers, David J

    2010-04-15

    The Strongylocentrotus purpuratus polyketide synthase gene (SpPks) encodes an enzyme required for the biosynthesis of the larval pigment echinochrome. SpPks is expressed exclusively in pigment cells and their precursors starting at blastula stage. The 7th-9th cleavage Delta-Notch signaling, required for pigment cell development, positively regulates SpPks. In previous studies, the transcription factors glial cell missing (SpGcm), SpGatae and kruppel-like (SpKrl/z13) have been shown to positively regulate SpPks. To uncover the structure of the Gene Regulatory Network (GRN) regulating the specification and differentiation processes of pigment cells, we experimentally analyzed the putative SpPks cis-regulatory region. We established that the -1.5kb region is sufficient to recapitulate the correct spatial and temporal expression of SpPks. Predicted DNA-binding sites for SpGcm, SpGataE and SpKrl are located within this region. The mutagenesis of these DNA-binding sites indicated that SpGcm, SpGataE and SpKrl are direct positive regulators of SpPks. These results demonstrate that the sea urchin GRN for pigment cell development is quite shallow, which is typical of type I embryo development.

  1. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.

    PubMed

    Love, Alan C; Lee, Abigail E; Andrews, Mary E; Raff, Rudolf A

    2008-01-01

    The origin of marine invertebrate larvae has been an area of controversy in developmental evolution for over a century. Here, we address the question of whether a pelagic "larval" or benthic "adult" morphology originated first in metazoan lineages by testing the hypothesis that particular gene co-option patterns will be associated with the origin of feeding, indirect developing larval forms. Empirical evidence bearing on this hypothesis is derivable from gene expression studies of the sea urchin larval gut of two closely related but differently developing congenerics, Heliocidaris tuberculata (feeding indirect-developing larva) and H. erythrogramma (nonfeeding direct developer), given two subsidiary hypotheses. (1) If larval gut gene expression in H. tuberculata was co-opted from an ancestral adult expression pattern, then the gut expression pattern will remain in adult H. erythrogramma despite its direct development. (2) Genes expressed in the larval gut of H. tuberculata will not have a coordinated expression pattern in H. erythrogramma larvae due to loss of a functional gut. Five structural genes expressed in the invaginating archenteron of H. tuberculata during gastrulation exhibit substantially different expression patterns in H. erythrogramma with only one remaining endoderm specific. Expression of these genes in the adult of H. erythrogramma and larval gut of H. tuberculata, but not in H. erythrogramma larval endoderm, supports the hypothesis that they first played roles in the formation of adult structures and were subsequently recruited into larval ontogeny during the origin and evolution of feeding planktotrophic deuterostome larvae.

  2. Genomic characterization of the evolutionary potential of the sea urchin Strongylocentrotus droebachiensis facing ocean acidification.

    PubMed

    Runcie, Daniel E; Dorey, Narimane; Garfield, David A; Stumpp, Meike; Dupont, Sam; Wray, Gregory A

    2017-01-12

    Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions, and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms' health and persistence an understanding is needed of (1) the mechanisms underlying developmental and physiological tolerance, and (2) the potential populations have for rapid evolutionary adaptation. This is especially challenging in non-model species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.

  3. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos

    NASA Astrophysics Data System (ADS)

    Ruocco, Nadia; Costantini, Maria; Santella, Luigia

    2016-08-01

    The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders.

  4. Characterization of a calsequestrin-like protein from sea-urchin eggs.

    PubMed Central

    Lebeche, D; Kaminer, B

    1992-01-01

    Following our studies on the identification of a calsequestrin-like protein (CSLP) from sea-urchin eggs [Oberdorf, Lebeche, Head & Kaminer (1988) J. Biol Chem. 263, 6806-6809], we have characterized its Ca(2+)-binding properties and identified it as a glycoprotein. The molecule binds 23 mol of Ca2+/mol of protein, as determined by equilibrium dialysis. This is in the range reported for cardiac calsequestrin but is about half the binding capacity of striated muscle calsequestrin. The affinities of the CSLP for Ca2+ are decreased by increasing KCl concentrations (20-250 mM) and the presence of Mg2+ (3 mM) in the medium: the half-maximal binding values varied from 1.62 to 5.77 mM. Hill coefficients indicated mild co-operativity in the Ca2+ binding. Ca2+ (1-8 mM)-induced u.v. difference spectra and intrinsic fluorescence changes suggest a net exposure of aromatic residues to an aqueous environment. C.d. measurements showed minor Ca(2+)-induced changes in alpha-helical and beta-sheet content of less than 10%. These spectral changes are distinctly different from those found in muscle calsequestrin. Immunoblotting studies showed that the CSLP is distinct from calreticulin, a low-affinity Ca(2+)-binding protein. Images Fig. 5. PMID:1445238

  5. ISWI contributes to ArsI insulator function in development of the sea urchin

    PubMed Central

    Yajima, Mamiko; Fairbrother, William G.; Wessel, Gary M.

    2012-01-01

    Insulators are genomic elements that regulate transcriptional activity by forming chromatin boundaries. Various DNA insulators have been identified or are postulated in many organisms, and the paradigmatic CTCF-dependent insulators are perhaps the best understood and most widespread in function. The diversity of DNA insulators is, however, understudied, especially in the context of embryonic development, when many new gene territories undergo transitions in functionality. Here we report the functional analysis of the arylsulfatase insulator (ArsI) derived from the sea urchin, which has conserved insulator activity throughout the many metazoans tested, but for which the molecular mechanism of function is unknown. Using a rapid in vivo assay system and a high-throughput mega-shift assay, we identified a minimal region in ArsI that is responsible for its insulator function. We discovered a small set of proteins specifically bound to the minimal ArsI region, including ISWI, a known chromatin-remodeling protein. During embryogenesis, ISWI was found to interact with select ArsI sites throughout the genome, and when inactivated led to misregulation of select gene expression, loss of insulator activity and aberrant morphogenesis. These studies reveal a mechanistic basis for ArsI function in the gene regulatory network of early development. PMID:22949616

  6. Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo

    PubMed Central

    Cavalieri, Vincenzo; Spinelli, Giovanni

    2014-01-01

    Dorsal/ventral (DV) patterning of the sea urchin embryo relies on a ventrally-localized organizer expressing Nodal, a pivotal regulator of the DV gene regulatory network. However, the inceptive mechanisms imposing the symmetry-breaking are incompletely understood. In Paracentrotus lividus, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, spatially facing and preceding the onset of nodal transcription. We report that Hbox12 misexpression provokes DV abnormalities, attenuating nodal and nodal-dependent transcription. Reciprocally, impairing hbox12 function disrupts DV polarity by allowing ectopic expression of nodal. Clonal loss-of-function, inflicted by blastomere transplantation or gene-transfer assays, highlights that DV polarization requires Hbox12 action in dorsal cells. Remarkably, the localized knock-down of nodal restores DV polarity of embryos lacking hbox12 function. Finally, we show that hbox12 is a dorsal-specific negative modulator of the p38-MAPK activity, which is required for nodal expression. Altogether, our results suggest that Hbox12 function is essential for proper positioning of the DV organizer. DOI: http://dx.doi.org/10.7554/eLife.04664.001 PMID:25457050

  7. Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo.

    PubMed

    Li, Enhu; Cui, Miao; Peter, Isabelle S; Davidson, Eric H

    2014-03-11

    By gastrulation the ectodermal territories of the sea urchin embryo have developed an unexpectedly complex spatial pattern of sharply bounded regulatory states, organized orthogonally with respect to the animal/vegetal and oral/aboral axes of the embryo. Although much is known of the gene regulatory network (GRN) linkages that generate these regulatory states, the principles by which the boundaries between them are positioned and maintained have remained undiscovered. Here we determine the encoded genomic logic responsible for the boundaries of the oral aspect of the embryo that separate endoderm from ectoderm and ectoderm from neurogenic apical plate and that delineate the several further subdivisions into which the oral ectoderm per se is partitioned. Comprehensive regulatory state maps, including all spatially expressed oral ectoderm regulatory genes, were established. The circuitry at each boundary deploys specific repressors of regulatory states across the boundary, identified in this work, plus activation by broadly expressed positive regulators. These network linkages are integrated with previously established interactions on the oral/aboral axis to generate a GRN model encompassing the 2D organization of the regulatory state pattern in the pregastrular oral ectoderm of the embryo.

  8. ISWI contributes to ArsI insulator function in development of the sea urchin.

    PubMed

    Yajima, Mamiko; Fairbrother, William G; Wessel, Gary M

    2012-10-01

    Insulators are genomic elements that regulate transcriptional activity by forming chromatin boundaries. Various DNA insulators have been identified or are postulated in many organisms, and the paradigmatic CTCF-dependent insulators are perhaps the best understood and most widespread in function. The diversity of DNA insulators is, however, understudied, especially in the context of embryonic development, when many new gene territories undergo transitions in functionality. Here we report the functional analysis of the arylsulfatase insulator (ArsI) derived from the sea urchin, which has conserved insulator activity throughout the many metazoans tested, but for which the molecular mechanism of function is unknown. Using a rapid in vivo assay system and a high-throughput mega-shift assay, we identified a minimal region in ArsI that is responsible for its insulator function. We discovered a small set of proteins specifically bound to the minimal ArsI region, including ISWI, a known chromatin-remodeling protein. During embryogenesis, ISWI was found to interact with select ArsI sites throughout the genome, and when inactivated led to misregulation of select gene expression, loss of insulator activity and aberrant morphogenesis. These studies reveal a mechanistic basis for ArsI function in the gene regulatory network of early development.

  9. Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis.

    PubMed

    Tu, Qiang; Cameron, R Andrew; Worley, Kim C; Gibbs, Richard A; Davidson, Eric H

    2012-10-01

    A comprehensive transcriptome analysis has been performed on protein-coding RNAs of Strongylocentrotus purpuratus, including 10 different embryonic stages, six feeding larval and metamorphosed juvenile stages, and six adult tissues. In this study, we pooled the transcriptomes from all of these sources and focused on the insights they provide for gene structure in the genome of this recently sequenced model system. The genome had initially been annotated by use of computational gene model prediction algorithms. A large fraction of these predicted genes were recovered in the transcriptome when the reads were mapped to the genome and appropriately filtered and analyzed. However, in a manually curated subset, we discovered that more than half the computational gene model predictions were imperfect, containing errors such as missing exons, prediction of nonexistent exons, erroneous intron/exon boundaries, fusion of adjacent genes, and prediction of multiple genes from single genes. The transcriptome data have been used to provide a systematic upgrade of the gene model predictions throughout the genome, very greatly improving the research usability of the genomic sequence. We have constructed new public databases that incorporate information from the transcriptome analyses. The transcript-based gene model data were used to define average structural parameters for S. purpuratus protein-coding genes. In addition, we constructed a custom sea urchin gene ontology, and assigned about 7000 different annotated transcripts to 24 functional classes. Strong correlations became evident between given functional ontology classes and structural properties, including gene size, exon number, and exon and intron size.

  10. Geometric control of ciliated band regulatory states in the sea urchin embryo.

    PubMed

    Barsi, Julius C; Li, Enhu; Davidson, Eric H

    2015-03-01

    The trapezoidal ciliated band (CB) of the postgastrular sea urchin embryo surrounds the oral ectoderm, separating it from adjacent embryonic territories. Once differentiated, the CB is composed of densely arranged cells bearing long cilia that endow the larva with locomotion and feeding capability. The spatial pattern from which the CB will arise is first evidenced during pregastrular stages by expression of the pioneer gene onecut. Immediately after gastrulation, the CB consists of four separate regulatory state domains, each of which expresses a unique set of transcription factors: (1) the oral apical CB, located within the apical neurogenic field; (2) the animal lateral CB, which bilaterally separates the oral from aboral ectoderm; (3) the vegetal lateral CB, which bilaterally serves as signaling centers; and (4) the vegetal oral CB, which delineates the boundary with the underlying endoderm. Remarkably, almost all of the regulatory genes specifically expressed within these domains are downregulated by interference with SoxB1 expression, implying their common activation by this factor. Here, we show how the boundaries of the CB subdomains are established, and thus ascertain the design principle by which the geometry of this unique and complex regulatory state pattern is genomically controlled. Each of these boundaries, on either side of the CB, is defined by spatially confined transcriptional repressors, the products of regulatory genes operating across the border of each subdomain. In total this requires deployment of about ten different repressors, which we identify in this work, th