DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudnick, Gregory H.; Tran, Kim-Vy; Papovich, Casey
2012-08-10
We study the red sequence in a cluster of galaxies at z = 1.62 and follow its evolution over the intervening 9.5 Gyr to the present day. Using deep YJK{sub s} imaging with the HAWK-I instrument on the Very Large Telescope, we identify a tight red sequence and construct its rest-frame i-band luminosity function (LF). There is a marked deficit of faint red galaxies in the cluster that causes a turnover in the LF. We compare the red-sequence LF to that for clusters at z < 0.8, correcting the luminosities for passive evolution. The shape of the cluster red-sequence LFmore » does not evolve between z = 1.62 and z = 0.6 but at z < 0.6 the faint population builds up significantly. Meanwhile, between z = 1.62 and 0.6 the inferred total light on the red sequence grows by a factor of {approx}2 and the bright end of the LF becomes more populated. We construct a simple model for red-sequence evolution that grows the red sequence in total luminosity and matches the constant LF shape at z > 0.6. In this model the cluster accretes blue galaxies from the field whose star formation is quenched and who are subsequently allowed to merge. We find that three to four mergers among cluster galaxies during the 4 Gyr between z = 1.62 and z = 0.6 match the observed LF evolution between the two redshifts. The inferred merger rate is consistent with other studies of this cluster. Our result supports the picture that galaxy merging during the major growth phase of massive clusters is an important process in shaping the red-sequence population at all luminosities.« less
The morphological transformation of red sequence galaxies in clusters since z ˜ 1
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.
2017-11-01
The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 < z < 1.5 drawn from the HAWK-I Cluster Survey (HCS), with the aim of investigating the evolutionary paths of galaxies with different morphologies. We classify galaxies according to their apparent bulge-to-total light ratio and compare with red sequence galaxies from the lower redshift WIde-field Nearby Galaxy-cluster Survey (WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV < -21.0 mag), while S0s become the most frequent class at fainter luminosities. Disc-dominated galaxies comprise 10-14 per cent of the red sequence population in the low (WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.
The accelerated build-up of the red sequence in high-redshift galaxy clusters
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.
2016-04-01
We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.
Ages of intermediate-age Magellanic Cloud star clusters
NASA Technical Reports Server (NTRS)
Flower, P. J.
1984-01-01
Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.
The Nature of Red-Sequence Cluster Spiral Galaxies
NASA Astrophysics Data System (ADS)
Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar
2017-01-01
Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.
Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions
NASA Astrophysics Data System (ADS)
Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-02-01
Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.
On the nature of the symbiotic binary AX Persei
NASA Technical Reports Server (NTRS)
Mikolajewska, Joanna; Kenyon, Scott J.
1992-01-01
Photometric and spectroscopic observations of the symbiotic binary AX Persei are presented. This system contains a red giant that fills its tidal lobe and transfers material into an accretion disk surrounding a low-mass main-sequence star. The stellar masses - 1 solar mass for the red giant and about 0.4 solar mass for the companion - suggest AX Per is poised to enter a common envelope phase of evolution. The disk luminosity increases from L(disk) about 100 solar luminosity in quiescence to L(disk) about 5700 solar luminosity in outburst for a distance of d = 2.5 kpc. Except for visual maximum, high ionization permitted emission lines - such as He II - imply an EUV luminosity comparable to the disk luminosity. High-energy photons emitted by a hot boundary layer between the disk and central star ionize a surrounding nebula to produce this permitted line emission. High ionization forbidden lines form in an extended, shock-excited region well out of the binary's orbital plane and may be associated with mass loss from the disk.
X-rays from accretion of red giant winds
NASA Technical Reports Server (NTRS)
Jura, M.; Helfand, D. J.
1984-01-01
X-ray observations of the late-type red giants Mira and R Aqr obtained with the Einstein Observatory are presented, and the general problems of white dwarf accretion from late-type giant winds is considered. The extremely low measured luminosities obtained for the two systems leads to the conclusion that the companions of Mira and R Aqr are most likely low-mass main sequence objects rather than white dwarfs as is usually assumed. The expected X-ray luminosities of true red giant/white dwarf systems are considered, and it is concluded that far too few have been detected if the canonical accretion scenario is adopted. A possible explanation of this situation in terms of grain-dominated Eddington-limited accretion is proposed.
The red-sequence of 72 WINGS local galaxy clusters
NASA Astrophysics Data System (ADS)
Valentinuzzi, T.; Poggianti, B. M.; Fasano, G.; D'Onofrio, M.; Moretti, A.; Ramella, M.; Biviano, A.; Fritz, J.; Varela, J.; Bettoni, D.; Vulcani, B.; Moles, M.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Omizzolo, A.; Cava, A.
2011-12-01
We study the color - magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z = 0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence (RS) and the environment. We consider the slope and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction, and the fractions of ellipticals, S0s, and spirals that compose the RS. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies, and the spatial concentration of ellipticals. The properties of the RS, instead, depend strongly on local galaxy density. Higher density regions have a smaller RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results clearly illustrate the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.
OBSERVATIONAL CONSTRAINTS ON RED AND BLUE HELIUM BURNING SEQUENCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Dalcanton, Julianne J.
We derive the optical luminosity, colors, and ratios of the blue and red helium burning (HeB) stellar populations from archival Hubble Space Telescope observations of nineteen starburst dwarf galaxies and compare them with theoretical isochrones from Padova stellar evolution models across metallicities from Z = 0.001 to 0.009. We find that the observational data and the theoretical isochrones for both blue and red HeB populations overlap in optical luminosities and colors and the observed and predicted blue to red HeB ratios agree for stars older than 50 Myr over the time bins studied. These findings confirm the usefulness of applyingmore » isochrones to interpret observations of HeB populations. However, there are significant differences, especially for the red HeB population. Specifically, we find (1) offsets in color between the observations and theoretical isochrones of order 0.15 mag (0.5 mag) for the blue (red) HeB populations brighter than M{sub V} {approx} -4 mag, which cannot be solely due to differential extinction; (2) blue HeB stars fainter than M{sub V} {approx} -3 mag are bluer than predicted; (3) the slope of the red HeB sequence is shallower than predicted by a factor of {approx}3; and (4) the models overpredict the ratio of the most luminous blue to red HeB stars corresponding to ages {approx}< 50 Myr. Additionally, we find that for the more metal-rich galaxies in our sample (Z {approx}> 0.5 Z{sub sun}), the red HeB stars overlap with the red giant branch stars in the color-magnitude diagrams, thus reducing their usefulness as indicators of star formation for ages {approx}> 100 Myr.« less
Galaxy luminosity function: evolution at high redshift
NASA Astrophysics Data System (ADS)
Martinet, N.; Durret, F.; Guennou, L.; Adami, C.
2014-12-01
There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4
Surface Compositions of Red Giant Stars in Globular Clusters
NASA Astrophysics Data System (ADS)
Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian
2018-01-01
Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.
A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view
NASA Astrophysics Data System (ADS)
Rampazzo, R.; Mazzei, P.; Marino, A.; Bianchi, L.; Plana, H.; Trinchieri, G.; Uslenghi, M.; Wolter, A.
2018-04-01
The ultraviolet-optical colour magnitude diagram of rich galaxy groups is characterised by a well developed Red Sequence, a Blue Cloud and the so-called Green Valley. Loose, less evolved groups of galaxies which are probably not virialised yet may lack a well defined Red Sequence. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the Red Sequence, checking for signatures of such a transition in their photometric and morphological properties. We report on the ultraviolet properties of a sample of early-type (ellipticals+S0s) galaxies inhabiting the Red Sequence. The analysis of their structures, as derived by fitting a Sérsic law to their ultraviolet luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role to play in the evolution of this class of galaxies. Smooth particle hydrodynamic simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through ultraviolet-optical colour magnitude diagrams, providing some fundamental information such as the crossing time through the Green Valley, which depends on their luminosity. The transition from the Blue Cloud to the Red Sequence takes several Gyrs, being about 3-5 Gyr for the brightest galaxies and longer for fainter ones, if occurring. The photometric study of nearby galaxy structures in the ultraviolet is seriously hampered by either the limited field of view of the cameras (e.g., in Hubble Space Telescope) or by the low spatial resolution of the images (e.g., in the Galaxy Evolution Explorer). Current missions equipped with telescopes and cameras sensitive to ultraviolet wavelengths, such as Swift- UVOT and Astrosat-UVIT, provide a relatively large field of view and a better resolution than the Galaxy Evolution Explorer. More powerful ultraviolet instruments (size, resolution and field of view) are obviously bound to yield fundamental advances in the accuracy and depth of the surface photometry and in the characterisation of the galaxy environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiegel, David S.; Madhusudhan, Nikku, E-mail: dave@ias.edu, E-mail: Nikku.Madhusudhan@yale.edu
When the Sun ascends the red giant branch (RGB), its luminosity will increase and all the planets will receive much greater irradiation than they do now. Jupiter, in particular, might end up more highly irradiated than the hot Neptune GJ 436b and, hence, could appropriately be termed a 'hot Jupiter'. When their stars go through the RGB or asymptotic giant branch stages, many of the currently known Jupiter-mass planets in several-AU orbits will receive levels of irradiation comparable to the hot Jupiters, which will transiently increase their atmospheric temperatures to {approx}1000 K or more. Furthermore, massive planets around post-main-sequence starsmore » could accrete a non-negligible amount of material from the enhanced stellar winds, thereby significantly altering their atmospheric chemistry as well as causing a significant accretion luminosity during the epochs of most intense stellar mass loss. Future generations of infrared observatories might be able to probe the thermal and chemical structure of such hot Jupiters' atmospheres. Finally, we argue that, unlike their main-sequence analogs (whose zonal winds are thought to be organized in only a few broad, planetary-scale jets), red-giant hot Jupiters should have multiple, narrow jets of zonal winds and efficient day-night redistribution.« less
The total rate of mass return to the interstellar medium from red giants and planetary nebulae
NASA Technical Reports Server (NTRS)
Knapp, G. R.; Rauch, K. P.; Wilcots, E. M.
1990-01-01
High luminosity post main sequence stars are observed to be losing mass in large amounts into the interstellar medium. The various methods used to estimate individual and total mass loss rates are summarized. Current estimates give MT 0.3 - 0.6 solar mass per year for the whole Galaxy.
NASA Technical Reports Server (NTRS)
Ake, Thomas B.; Johnson, Hollis R.
1988-01-01
Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.
The Very Slow Wind from the Pulsating Semiregular Red Giant, L2 Puppis
NASA Technical Reports Server (NTRS)
Jura, M.; Chen, C.; Plavchan, P.
2002-01-01
We have obtained 1 1.7 and 17.9 micron images at the Keck I telescope of the circumstellar dust emission from L(sub 2) Pup, which is one of the nearest ( D = 61 pc) mass-losing, pulsating red giants that has a substantial infra-red excess. We propose that the star is losing mass at a rate of approx.3 x 10(exp -7) Solar Mass/yr. Given its relatively low luminosity (approx. 1500 Solar Luminosity), relatively high effective temperature (near 3400 K), relatively short period (approx. 140 days), and inferred gas outflow speed of 3.5 km/s, standard models for dust-driven mass loss do not apply. Instead, the wind may be driven by the stellar pulsations, with radiation pressure on dust being relatively unimportant. as described in some recent calculations. L(sub 2) Pup may serve as the prototype of this phase of stellar evolution, in which a star could lose approx. 15% of its initial main-sequence mass. Subject headings: circumstellar matter - stars: individual (L2 Puppis) - stars: mass loss
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa
2015-03-01
Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z < 0.9) cluster samples to date in order to probe the abundance of faint galaxies in clusters. We also study how the GLF depends on cluster redshift, mass, and substructure and compare the GLFs of clusters with those of the field. We separately investigate the GLFs of blue and red-sequence (RS) galaxies to understand the evolution of different cluster populations. Methods: We calculated the GLFs for 31 clusters taken from the DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z < 0.65 and αred > 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field environment at all redshifts might have replaced the blue late-type galaxies that converted into early types, explaining the lack of evolution in the faint-end slopes of the blue GLFs. Appendix is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.; Dziembowski, W. A.
2004-12-01
We used the OGLE-II and OGLE-III photometry of red giants in the Large Magellanic Cloud to select and study objects revealing ellipsoidal variability. We detected 1546 candidates for long period ellipsoidal variables and 121 eclipsing binary systems with clear ellipsoidal modulation. The ellipsoidal red giants follow a period--luminosity (PL) relationship (sequence E), and the scatter of the relation is correlated with the amplitude of variability: the larger the amplitude, the smaller the scatter. We note that some of the ellipsoidal candidates exhibit simultaneously OGLE Small Amplitude Red Giants pulsations. Thus, in some cases the Long Secondary Period (LSP) phenomenon can be explained by the ellipsoidal modulation. We also select about 1600 red giants with distinct LSP, which are not ellipsoidal variables. We discover that besides the sequence D in the PL diagram known before, the LSP giants form additional less numerous sequence for longer periods. We notice that the PL sequence of the ellipsoidal candidates is a direct continuation of the LSP sequence toward fainter stars, what might suggest that the LSP phenomenon is related to binarity but there are strong arguments against such a possibility. About 10% of the presented light curves reveal clear deformation by the eccentricity of the system orbits. The largest estimated eccentricity in our sample is about 0.4. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.
V and K-band Mass-Luminosity Relations for M Dwarf Stars
NASA Astrophysics Data System (ADS)
Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio
2015-08-01
Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.
The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs
NASA Astrophysics Data System (ADS)
Salimbeni, S.; Giallongo, E.; Menci, N.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.; Trevese, D.; Cristiani, S.; Nonino, M.; Vanzella, E.
2008-01-01
Aims: We study the evolution of the galaxy population up to z˜ 3 as a function of its colour properties. In particular, luminosity functions and luminosity densities were derived as a function of redshift for the blue/late and red/early populations. Methods: We use data from the GOODS-MUSIC catalogue, which have typical magnitude limits z850≤ 26 and K_s≤ 23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8~ μm band). We have derived a catalogue of galaxies complete in the rest-frame B-band, which has been divided into two subsamples according to their rest-frame U-V colour (or derived specific star formation rate) properties. Results: We confirm a bimodality in the U-V colour and specific star formation rate of the galaxy sample up to z˜ 3. This bimodality is used to compute the luminosity functions of the blue/late and red/early subsamples. The luminosity functions of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the luminosity functions of the red/early populations decreases with increasing redshift. The shape of the red/early luminosity functions shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the luminosity functions of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. D.; Kelly, Douglas M.; Rieke, George H.; Liebert, James; Allard, France; Wehrse, Rainer
1993-01-01
Red/infrared (0.6-1.5 micron) spectra are presented for a sequence of well-studied M dwarfs ranging from M2 through M9. A variety of temperature-sensitive features useful for spectral classification are identified. Using these features, the spectral data are compared to recent theoretical models, from which a temperature scale is assigned. The red portion of the model spectra provide reasonably good fits for dwarfs earlier than M6. For layer types, the infrared region provides a more reliable fit to the observations. In each case, the wavelength region used includes the broad peak of the energy distribution. For a given spectral type, the derived temperature sequence assigns higher temperatures than have earlier studies - the difference becoming more pronounced at lower luminosities. The positions of M dwarfs on the H-R diagram are, as a result, in closer agreement with theoretical tracks of the lower main sequence.
THE RED SUPERGIANT CONTENT OF M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, Philip; Evans, Kate Anne, E-mail: kevans@caltech.edu, E-mail: phil.massey@lowell.edu
2016-08-01
We investigate the red supergiant (RSG) population of M31, obtaining the radial velocities of 255 stars. These data substantiate membership of our photometrically selected sample, demonstrating that Galactic foreground stars and extragalactic RSGs can be distinguished on the basis of B V , V R two-color diagrams. In addition, we use these spectra to measure effective temperatures and assign spectral types, deriving physical properties for 192 RSGs. Comparison with the solar metallicity Geneva evolutionary tracks indicates astonishingly good agreement. The most luminous RSGs in M31 are likely evolved from 25–30 M {sub ⊙} stars, while the vast majority evolved frommore » stars with initial masses of 20 M {sub ⊙} or less. There is an interesting bifurcation in the distribution of RSGs with effective temperatures that increases with higher luminosities, with one sequence consisting of early K-type supergiants, and with the other consisting of M-type supergiants that become later (cooler) with increasing luminosities. This separation is only partially reflected in the evolutionary tracks, although that might be due to the mis-match in metallicities between the solar Geneva models and the higher-than-solar metallicity of M31. As the luminosities increase the median spectral type also increases; i.e., the higher mass RSGs spend more time at cooler temperatures than do those of lower luminosities, a result which is new to this study. Finally we discuss what would be needed observationally to successfully build a luminosity function that could be used to constrain the mass-loss rates of RSGs as our Geneva colleagues have suggested.« less
Science from a glimpse: Hubble SNAPshot observations of massive galaxy clusters
NASA Astrophysics Data System (ADS)
Repp, A.; Ebeling, H.
2018-06-01
Hubble Space Telescope SNAPshot surveys of 86 X-ray selected galaxy clusters at 0.3 < z < 0.5 from the MACS sample have proven invaluable for the exploration of a wide range of astronomical research topics. We here present an overview of the four MACS SNAPshot surveys conducted from Cycle 14 to Cycle 20 as part of a long-term effort aimed at identifying exceptional cluster targets for in-depth follow up by the extragalactic community. We also release redshifts and X-ray luminosities of all clusters observed as part of this initiative. To illustrate the power of SNAPshot observations of MACS clusters, we explore several aspects of galaxy evolution illuminated by the images obtained for these programmes. We confirm the high lensing efficiency of X-ray selected clusters at z > 0.3. Examining the evolution of the slope of the cluster red sequence, we observe at best a slight decrease with redshift, indicating minimal age contribution since z ˜ 1. Congruent to previous studies' findings, we note that the two BCGs which are significantly bluer (≥5σ) than their clusters' red sequences reside in relaxed clusters and exhibit pronounced internal structure. Thanks to our targets' high X-ray luminosity, the subset of our sample observed with Chandra adds valuable leverage to the X-ray luminosity-optical richness relation, which, albeit with substantial scatter, is now clearly established from groups to extremely massive clusters of galaxies. We conclude that SNAPshot observations of MACS clusters stand to continue to play a vital pathfinder role for astrophysical investigations across the entire electromagnetic spectrum.
The development of the red giant branch. II - Astrophysical properties
NASA Technical Reports Server (NTRS)
Sweigart, Allen V.; Greggio, Laura; Renzini, Alvio
1990-01-01
Evolutionary sequences developed in another paper are used here to investigate the properties of the red giant branch (RGB) phase transition. Results are found for compositions in the range Y(MS) between 0.20 and 0.30 and Z between 0.004 and 0.04. The transition mass M(HeF) increases as either Y(MS) decreases or Z increases. The stellar population transition age t(HeF) is virtually independent of composition and close to 0.6 Gyr. The RGB phase transition occurs almost abruptly over a mass range of only a few tenths of a solar mass or, equivalently, over a time interval of about 0.2 Gyr in the life of a stellar population. During the RGB phase transition the core mass Mc at helium ignition increases very rapidly by about 0.15 solar mass, while the luminosity at the tip of the RGB increases by about one order of magnitude. Absolute minima are found for the values of Mc and the RGB tip luminosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, J.H.
1988-06-01
It is shown that a radiative envelope in which the Kramers opacity law holds cannot transport a luminosity larger than a critical value, and it is argued that the transition to red giant structure is triggered by the star's luminosity exceeding the critical value. If the Kramers law is used for all temperatures and densities, the radius of the star diverges as the critical luminosity is approached. In real stars the radiative envelope expands as the luminosity increases until the star intersects the Hayashi track. Once on the Hayashi track, luminosities in excess of the critical luminosity can be accommodatedmore » by forcing most of the mass of the envelope into the convection zone. 17 references.« less
NASA Astrophysics Data System (ADS)
Jiang, Dengkai; Chen, Xuefei; Li, Lifang; Han, Zhanwen
2017-11-01
Two blue-straggler sequences discovered in globular cluster M30 provide a strong constraint on the formation mechanisms of blue stragglers. We study the formation of blue-straggler binaries through binary evolution, and find that binary evolution can contribute to the blue stragglers in both of the sequences. Whether a blue-straggler is located in the blue sequence or red sequence depends on the contribution of the mass donor to the total luminosity of the binary, which is generally observed as a single star in globular clusters. The blue stragglers in the blue sequence have a cool white dwarf companion, while the majority (˜60%) of the objects in the red sequence are binaries that are still experiencing mass transfer. However, there are also some objects for which the donors have just finished the mass transfer (the stripped-core stars, ˜10%) or the blue stragglers (the accretors) have evolved away from the blue sequence (˜30%). Meanwhile, W UMa contact binaries found in both sequences may be explained by various mass ratios, that is, W UMa contact binaries in the red sequence have two components with comparable masses (e.g., mass ratio q ˜ 0.3-1.0), while those in the blue sequence have low mass ratios (e.g., q< 0.3). However, the fraction of the blue sequence in M30 cannot be reproduced by binary population synthesis if we assumed the initial parameters of a binary sample to be the same as those of the field. This possibly indicates that dynamical effects on binary systems are very important in globular clusters.
Variable Stars in M13. II.The Red Variables and the Globular Cluster Period-Luminosity Relation
NASA Astrophysics Data System (ADS)
Osborn, W.; Layden, A.; Kopacki, G.; Smith, H.; Anderson, M.; Kelly, A.; McBride, K.; Pritzl, B.
2017-06-01
New CCD observations have been combined with archival data to investigate the nature of the red variables in the globular cluster M13. Mean magnitudes, colors and variation ranges on the UBVIC system have been determined for the 17 cataloged red variables. 15 of the stars are irregular or semi-regular variables that lie at the top of the red giant branch in the color-magnitude diagram. Two stars are not, including one with a well-defined period and a light curve shape indicating it is an ellipsoidal or eclipsing variable. All stars redder than (V-IC)0=1.38 mag vary, with the amplitudes being larger with increased stellar luminosity and with bluer filter passband. Searches of the data for periodicities yielded typical variability cycle times ranging from 30 d up to 92 d for the most luminous star. Several stars have evidence of multiple periods. The stars' period-luminosity diagram compared to those from microlensing survey data shows that most M13 red variables are overtone pulsators. Comparison with the diagrams for other globular clusters shows a correlation between red variable luminosity and cluster metallicity.
The formation and build-up of the red-sequence over the past 9 Gyr in VIPERS
NASA Astrophysics Data System (ADS)
Fritz, Alexander; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Branchini, E.; Burden, A.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Di Porto, C.; Franzetti, P.; Fumana, M.; Garilli, B.; Granett, B. R.; Guzzo, L.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marchetti, A.; Marinoni, C.; Marulli, F.; McCracken, H. J.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Paioro, L.; Peacock, J. A.; Percival, W. J.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zamorani, G.; Zanichelli, A.; VIPERS Team
2015-02-01
We present the Luminosity Function (LF) and Colour-Magnitude Relation (CMR) using ~45000 galaxies drawn from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Using different selection criteria, we define several samples of early-type galaxies and explore their impact on the evolution of the red-sequence (RS) and the effects of dust. Our results suggest a rapid build-up of the RS within a short time scale. We find a rise in the number density of early-type galaxies and a strong evolution in LF and CMR. Massive galaxies exist already 9 Gyr ago and experience an efficient quenching of their star formation at z = 1, followed by a passive evolution with only limited merging activity. In contrast, low-mass galaxies indicate a different mass assembly history and cause a slow build-up of the CMR over cosmic time.
The Contribution of Stellar Winds to Cosmic Ray Production
NASA Astrophysics Data System (ADS)
Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu
2018-04-01
Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.
Progenitors of low-luminosity Type II-Plateau supernovae
NASA Astrophysics Data System (ADS)
Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli
2018-01-01
The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.
THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath
2015-02-01
We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find thatmore » red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K} < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K} < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.« less
PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1more » Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.« less
PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1
NASA Astrophysics Data System (ADS)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Moustakas, John; Aird, James; Blanton, Michael R.; Bray, Aaron D.; Cool, Richard J.; Eisenstein, Daniel J.; Mendez, Alexander J.; Wong, Kenneth C.; Zhu, Guangtun
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp , π) and wp (rp ), using volume-limited samples constructed from a parent sample of over ~130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h -1 < rp < 1 Mpc h -1) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b gal ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ~ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that "cosmic variance" can be a significant source of uncertainty for high-redshift clustering measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, D.; Bedding, T. R.; Stello, D.
2011-12-20
We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen andmore » Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.« less
VizieR Online Data Catalog: FIR data of IR-bright dust-obscured galaxies (DOGs) (Toba+, 2017)
NASA Astrophysics Data System (ADS)
Toba, Y.; Nagao, T.; Wang, W.-H.; Matsuhara, H.; Akiyama, M.; Goto, T.; Koyama, Y.; Ohyama, Y.; Yamamura, I.
2017-11-01
We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, (i-[22])AB>7.0. Combining an IR-bright DOG sample with the flux at 22μm>3.8mJy discovered by Toba & Nagao (2016ApJ...820...46T) with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07
NASA Astrophysics Data System (ADS)
Toba, Yoshiki; Nagao, Tohru; Wang, Wei-Hao; Matsuhara, Hideo; Akiyama, Masayuki; Goto, Tomotsugu; Koyama, Yusei; Ohyama, Youich; Yamamura, Issei
2017-05-01
We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, {(I-[22])}{AB}> 7.0. Combining an IR-bright DOG sample with the flux at 22 μm > 3.8 mJy discovered by Toba & Nagao with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07< z< 1.0) that were obtained from the literature, we estimated their IR luminosity, star formation rate (SFR), and stellar mass based on the spectral energy distribution fitting. We found that (1) the WISE 22 μm luminosity at the observed frame is a good indicator of IR luminosity for IR-bright DOGs and (2) the contribution of the active galactic nucleus to IR luminosity increases with IR luminosity. By comparing the stellar mass and SFR relation for our DOG sample and the literature, we found that most of the IR-bright DOGs lie significantly above the main sequence of star-forming galaxies at similar redshift, indicating that the majority of IRAS- or AKARI-detected IR-bright DOGs are starburst galaxies.
Resolved stars in nearby galaxies: Ground-based photometry of M81
NASA Technical Reports Server (NTRS)
Madore, Barry F.; Freedman, Wendy L.; Lee, Myung G.
1993-01-01
Using the Canada-France-Hawaii Telescope (CFHT) we have obtained three closely spaced epochs of calibrated Blue Violet Red Infrared (BVRI) CCD imaging of two fields in M81, each known to contain a thirty-day Cepheid. Calibrated BVRI photometry of the brightest stars in these fields is presented. The slope of the luminosity function from the brightest 3-4 mag of the main-sequence blue plume is consistent with similar determinations of the apparent luminosity function in other resolved galaxies, thereby removing the one potential deviation from universality noted by Freedman in a photographic study of luminosity functions in nearby resolved galaxies. Under the assumption that the two Cepheids are representative, a reddening-law fit to the multiwavelength BVRI period-luminosity moduli give a true distance modulus of (m-M)sub 0 = 27.79 mag for M81, corresponding to a linear distance of 3.6 Mpc. An error analysis shows that the derived true distance modulus has a random error of +/- 0.28 mag (due to the photometric uncertainties in the BVRI data), with a systematic uncertainty of +/- 0.10 mag (accounting for the combined effects of unknown phasing of the data points, and the unknown positioning of these particular stars within the Cepheid instabiliy strip).
NASA Astrophysics Data System (ADS)
Jørgensen, Inger; Chiboucas, Kristin; Hibon, Pascale; Nielsen, Louise D.; Takamiya, Marianne
2018-04-01
The Gemini/HST Galaxy Cluster Project (GCP) covers 14 z = 0.2–1.0 clusters with X-ray luminosity of {L}500≥slant {10}44 {erg} {{{s}}}-1 in the 0.1–2.4 keV band. In this paper, we provide homogeneously calibrated X-ray luminosities, masses, and radii, and we present the complete catalog of the ground-based photometry for the GCP clusters. The clusters were observed with either Gemini North or South in three or four of the optical passbands g‧, r‧, i‧, and z‧. The photometric catalog includes consistently calibrated total magnitudes, colors, and geometrical parameters. The photometry reaches ≈25 mag in the passband closest to the rest-frame B band. We summarize comparisons of our photometry with data from the Sloan Digital Sky Survey. We describe the sample selection for our spectroscopic observations, and establish the calibrations to obtain rest-frame magnitudes and colors. Finally, we derive the color–magnitude relations for the clusters, and briefly discuss these in the context of evolution with redshift. Consistent with our results based on spectroscopic data, the color–magnitude relations support passive evolution of the red sequence galaxies. The absence of change in the slope with redshift constrains the allowable age variation along the red sequence to <0.05 dex between the brightest cluster galaxies and those four magnitudes fainter. This paper serves as the main reference for the GCP cluster and galaxy selection, X-ray data, and ground-based photometry.
NASA Astrophysics Data System (ADS)
Stern, S. A.
2002-09-01
Late in the Sun's evolution it, like all low and moderate mass stars, it will burn as a red giant, generating 1000s of solar luminosities for a few tens of millions of years. A dozen years ago this stage of stellar evolution was predicted to create observable sublimation signatures in systems where Kuiper Belts (KBs) are extant (Stern et al. 1990, Nature, 345, 305); recently, the SWAS spacecraft detected such systems (Melnick et al. 2001, 412, 160). During the red giant phase, the habitable zone of our solar system will lie in the region where Triton, Pluto-Charon, and KBOs orbit. Compared to the 1 AU habitable zone where Earth resided early in the solar system's history, this "delayed gratification habitable zone (DG-HZ)" will enjoy a far less biologically hazardous environment-- with far lower harmful UV radiation levels from the Sun, and a far quieter collisional environment. Objects like Triton, Pluto-Charon, and KBOs, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Sun's DG-HZ may only be of academic interest owing to its great separation from us in time. However, several 108 approximately solar-type Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our solar system (and as inferred in numerous main sequence stellar disk systems), then DG-HZs form a kind of niche habitable zone that is likely to be numerically common in the galaxy. I will show the calculated temporal evolution of DG-HZs around various stellar types using modern stellar evolution luminosity tracks, and then discuss various aspects of DG-HZs, including the effects of stellar pulsations and mass loss winds. This work was supported by NASA's Origins of Solar Systems Program.
NASA Technical Reports Server (NTRS)
Tarter, Jill C.; Rothschild, Lynn J.
2012-01-01
The planetary environment around a star will be assaulted with various amounts of radiation. including solar and ionizing radiation. The amount and type varies with the type of star, the distance from the star, time of day, and other variables. While some radiation is critical to life on Earth, especially from 400-750 nm (so-called visible and photosynthetically active radiation), the effects of ultraviolet and ionizing radiation can be hazardous and even deadly. This is because life is based on organic carbon, which is susceptible to radiation damage. Radiation regimes in our own solar system address specifically radiation in our solar system with a main sequence star. The possibility remains of planets around red dwarfs. Such stars are much smaller in mass than the Sun (between 0.5 and .08 M(sub Sun), and so their temperature and stellar luminosity are low and peaked in the red. Since red dwarfs comprise about 75% of all stars in the galaxy, the possibility of life on planets around red dwarfs has been examined.
NASA Technical Reports Server (NTRS)
Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.
2002-01-01
We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster candidates, and examine the prominence of the red sequence in each. We find that the X-ray clusters in our survey do not all have a prominent red sequence. We conclude that while the red sequence may be a distinct feature in the color-magnitude plots for virialized massive clusters, it may be less distinct in lower mass clusters of galaxies at even moderate redshifts. Multiple, complementary methods of selecting and defining clusters may be essential, particularly at high redshift where all methods start to run into completeness limits, incomplete understanding of physical evolution, and projection effects.
An intermediate luminosity optical transient (ILOTs) model for the young stellar object ASASSN-15qi
NASA Astrophysics Data System (ADS)
Kashi, Amit; Soker, Noam
2017-07-01
We construct a scenario where the outburst of the young stellar object ASASSN-15qi is an intermediate luminosity optical transient (ILOT). In this scenario, a sub-Jupiter young planet was tidally destructed on to a young main-sequence (MS) star. The system is young, and therefore the radius of the planet is larger than its final value; consequently, its density is smaller. The lower density allows the tidal destruction of the young Saturn-like planet on to the MS star of mass ≈2.4 M⊙, resulting in the formation of a disc and a gravitationally powered ILOT. Unlike the case of the more energetic ILOT V838 Mon, the mass of the destructed planet is too low to inflate a giant envelope, and hence the merger remnant remains hot. If our suggested model holds, this ILOT possesses two interesting properties: (I) its luminosity and total energy are below those of novae; (II) it is not as red as other ILOTs. The unusual outburst of ASASSN-15qi - if indeed is an ILOT - further increases the diversity of the already heterogeneous group of ILOTs. We mark the region on the energy-time diagram occupied by such young ILOTs.
V and K-band Mass-Luminosity Relations for M dwarf Stars
NASA Astrophysics Data System (ADS)
Benedict, G. Fritz; Henry, Todd J.; McArthur, Barbara; Franz, Otto G.; Wasserman, Lawrence H.; Dieterich, Sergio
2015-01-01
Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2.1% error for 24 components of 12 M dwarf binary star systems. Masses range 0.08 to 0.40 solar masses. With these we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. (1999, ApJ, 512, 864). We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter than in the V-band. For the eight binary components for which we have component magnitude differences in the K-band the RMS residual drops from 0.5 magnitude in the V-band to 0.05 magnitude in the K-band. These relations can be used to estimate the masses of the ubiquitous red dwarfs that account for 75% of all stars, to an accuracy of 5%, which is much better than ever before.
Metallicity of Young and Old Stars in Irregular Galaxies
NASA Astrophysics Data System (ADS)
Tikhonov, N. A.
2018-01-01
Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index ( V - I) of the supergiant branch at the luminosity level M I = -7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies ( M B ) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Tracy M. A.; Bonaventura, Nina; Muzzin, Adam
2015-12-01
We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. Themore » luminosity-limited detection rate of BCGs in similar richness clusters (N{sub gal} > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of L{sub IR} > 10{sup 12} L{sub ⊙}, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.« less
VY Canis Majoris: The Astrophysical Basis of Its Luminosity
NASA Astrophysics Data System (ADS)
Gehrz, Robert D.; Humphreys, R. M.; Jones, T. J.
2006-12-01
The luminosity of the famous red supergiant VY CMa ( L = 4 5 x 105 L ) is well-determined from its spectral energy distribution and distance, and places it near the empirical upper luminosity limit for cool hypergiants. In contrast, its surface temperature is fundamentally ill-defined. Implications for its location on the HR Diagram and its apparent size are discussed.
NASA Technical Reports Server (NTRS)
Young, P. J.; Shields, G. A.; Wheeler, J. C.
1977-01-01
The paper develops certain aspects of a model wherein a QSO is a massive black hole located in a dense galactic nucleus, with its growth and luminosity fueled by tidal disruption of passing stars. Cross sections for tidal disruptions are calculated, taking into account the thermal energy of stars, relativistic effects, and partial disruption removing only the outer layers of a star. Accretion rates are computed for a realistic distribution of stellar masses and evolutionary phases, the effect of the black hole on the cluster distribution is examined, and the red-giant disruption rate is evaluated for hole mass of at least 300 million solar masses, the cutoff of disruption of main-sequence stars. The results show that this black-tide model can explain QSO luminosities of at least 1 trillion suns if the black hole remains almost maximally Kerr as it grows above 100 million solar masses and if 'loss-cone' depletion of the number of stars in disruptive orbits is unimportant.
AGN radiative feedback in dusty quasar populations
NASA Astrophysics Data System (ADS)
Ishibashi, W.; Banerji, M.; Fabian, A. C.
2017-08-01
New populations of hyper-luminous, dust-obscured quasars have been recently discovered around the peak epoch of galaxy formation (z ˜ 2-3), in addition to similar sources found at lower redshifts. Such dusty quasars are often interpreted as sources 'in transition', from dust-enshrouded starbursts to unobscured luminous quasars, along the evolutionary sequence. Here we consider the role of the active galactic nucleus (AGN) radiative feedback, driven by radiation pressure on dust, in high-luminosity, dust-obscured sources. We analyse how the radiation pressure-driven dusty shell models, with different shell mass configurations, may be applied to the different populations of dusty quasars reported in recent observations. We find that expanding shells, sweeping up matter from the surrounding environment, may account for prolonged obscuration in dusty quasars, e.g. for a central luminosity of L ˜ 1047 erg s-1, a typical obscured phase (with extinction in the range AV ˜ 1-10 mag) may last a few ˜106 yr. On the other hand, fixed-mass shells, coupled with high dust-to-gas ratios, may explain the extreme outflows recently discovered in red quasars at high redshifts. We discuss how the interaction between AGN radiative feedback and the ambient medium at different temporal stages in the evolutionary sequence may contribute to shape the observational appearance of dusty quasar populations.
The dynamics of post-main sequence planetary systems
NASA Astrophysics Data System (ADS)
Mustill, Alexander James
2017-06-01
The study of planetary systems after their host stars have left the main sequence is of fundamental importance for exoplanet science, as the most direct determination of the compositions of extra-Solar planets, asteroids and comets is in fact made by an analysis of the elemental abundances of the remnants of these bodies accreted into the atmospheres of white dwarfs.To understand how the accreted bodies relate to the source populations in the planetary system, and to model their dynamical delivery to the white dwarf, it is necessary to understand the effects of stellar evolution on bodies' orbits. On the red giant branch (RGB) and asymptotic giant branch (AGB) prior to becoming a white dwarf, stars expand to a large size (>1 au) and are easily deformed by orbiting planets, leading to tidal energy dissipation and orbital decay. They also lose half or more of their mass, causing the expansion of bodies' orbits. This mass loss increases the planet:star mass ratio, so planetary systems orbiting white dwarfs can be much less stable than those orbiting their main-sequence progenitors. Finally, small bodies in the system experience strong non-gravitational forces during the RGB and AGB: aerodynamic drag from the mass shed by the star, and strong radiation forces as the stellar luminosity reaches several thousand Solar luminosities.I will review these effects, focusing on planet--star tidal interactions and planet--asteroid interactions, and I will discuss some of the numerical challenges in modelling systems over their entire lifetimes of multiple Gyr.
On transient events in the upper atmosphere generated away of thunderstorm regions
NASA Astrophysics Data System (ADS)
Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.
2011-12-01
Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their origin may be related to electromagnetic pulses (EMP) or waves (whistler, EMW) generated by lightning. The EMP-EMW is transmitted in the ionosphere- ground channel to large distances R with low absorption. The part of EMP-EMW "visible" in the detector aperture diminishes with distance as R-1 due to observation geometry. The EMP-EMW triggers the electric discharge in the upper atmosphere (lower ionosphere, ~70 km). Estimates of resulting transients luminosity and their correlation with geomagnetic field are in progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Leiner, Emily M.; Mathieu, Robert D.
Sub-subgiants are stars that are observed to be redder than normal main-sequence stars and fainter than normal subgiant (and giant) stars in an optical color–magnitude diagram (CMD). The red straggler stars, which lie redward of the red giant branch, may be related and are often grouped together with the sub-subgiants in the literature. These stars defy our standard theory of single-star evolution and are important tests for binary evolution and stellar collision models. In total, we identify 65 sub-subgiants (SSG) and red stragglers (RS) in 16 open and globular star clusters from the literature; 50 of these, including 43 sub-subgiants,more » pass our strict membership selection criteria (though the remaining sources may also be cluster members). In addition to their unique location on the CMD, we find that at least 58% (25/43) of sub-subgiants in this sample are X-ray sources with typical 0.5–2.5 keV luminosities of order 10{sup 30}–10{sup 31} erg s{sup −1}. Their X-ray luminosities and optical–to–X-ray flux ratios are similar to those of RS CVn active binaries. At least 65% (28/43) of the sub-subgiants in our sample are variables, 21 of which are known to be radial-velocity binaries. Typical variability periods are ≲15 days. At least 33% (14/43) of the sub-subgiants are H α emitters. These observational demographics provide strong evidence that binarity is important for sub-subgiant formation. Finally, we find that the number of sub-subgiants per unit mass increases toward lower-mass clusters, such that the open clusters in our sample have the highest specific frequencies of sub-subgiants.« less
The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter G.
2005-12-01
We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0
Properties of Spectrally Defined Red QSOs at z = 0.3–1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, A.-L.; Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw
We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOsmore » with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.« less
SOLAR-LIKE OSCILLATIONS IN LOW-LUMINOSITY RED GIANTS: FIRST RESULTS FROM KEPLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedding, T. R.; Huber, D.; Stello, D.
2010-04-20
We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations ({delta}{nu}) and the frequency of maximum power ({nu}{sub max}). We focus on a sample of 50 low-luminosity stars ({nu}{sub max} > 100 {mu}Hz, L {approx}< 30 L {sub sun}) havingmore » high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l = 3. Measuring the small separation between l = 0 and l = 2 allows us to plot the so-called C-D diagram of {delta}{nu}{sub 02} versus {delta}{nu}. The small separation {delta}{nu}{sub 01} of l = 1 from the midpoint of adjacent l = 0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l = 1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.« less
A survey for red varibles INT he LMC - II
NASA Astrophysics Data System (ADS)
Reid, Neill; Glass, I. S.; Catchpole, R. M.
1988-05-01
Infrared photometry of a sample of 126 variables drawn from a 16 sq deg area of the northern LMC is presented. Most of these stars were previously unknown and the majority prove the be long period red-giant variables. Most of the latter stars fall within two groups in the /K(0), log(P)/ diagram, the lower luminosity ones being Miras which obey a definite period-luminosity relation. Using the latter stars as distance estimators is discussed. The /M(bol), P/ diagram is compared with the theoretical tracks calculated by Wood, Bessell & Fox (1983), and it is found that the distribution of stars is probably consistent with a lull in star formation in the LMC from about 10 to the 9th - 2 x 10 to the 8th yr ago, although this conclusion depends strongly on the luminosity at which stars of different initial mass enter the thermally pulsing AGB.
Digging in the coronal graveyard - A Rosat observation of the red giant Arcturus
NASA Technical Reports Server (NTRS)
Ayres, Thomas R.; Fleming, Thomas A.; Schmitt, Juergen H. M. M.
1991-01-01
A deep exposure of the bright star Arcturus (Alpha Bootis: K1 III) with the Roentgensatellit (Rosat) failed to detect soft X-ray emission from the archetype 'noncoronal' red giant. The 3-sigma upper limit in the energy band 0.1-2.4 keV corresponds to an X-ray luminosity of less than 3 x 10 to the 25th erg/s, equivalent to a coronal surface flux density of less than 0.0001 solar. The nondetection safely eliminates coronal irradiation as a possible mechanism to produce the highly variable He I 10830 feature and emphasizes the sharp decline in solarlike coronal activity that accompanies the evolution of low-mass single stars away from the main sequence. While the most conspicuous object in the Rosat field of view was not visible in X-rays, at least one fainter star is among the about 60 sources recorded: the Sigma Sct variable CN Boo, an A8 giant in the UMa Stream.
NASA Astrophysics Data System (ADS)
Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Guirado, J. C.
2017-01-01
Aims: We add four warmer late-type supergiants to our previous spectro-interferometric studies of red giants and supergiants. Methods: We measure the near-continuum angular diameter, derive fundamental parameters, discuss the evolutionary stage, and study extended atmospheric atomic and molecular layers. Results: V766 Cen (=HR 5171 A) is found to be a high-luminosity (log L/L⊙ = 5.8 ± 0.4) source of effective temperature 4290 ± 760 K and radius 1490 ± 540 R⊙, located in the Hertzsprung-Russell (HR) diagram close to both the Hayashi limit and Eddington limit; this source is consistent with a 40 M⊙ evolutionary track without rotation and current mass 27-36 M⊙. V766 Cen exhibits Na I in emission arising from a shell of radius 1.5 RPhot and a photocenter displacement of about 0.1 RPhot. It shows strong extended molecular (CO) layers and a dusty circumstellar background component. The other three sources are found to have lower luminosities of about log L/L⊙ = 3.4-3.5, corresponding to 5-9 M⊙ evolutionary tracks. They cover effective temperatures of 3900 K to 5300 K and radii of 60-120 R⊙. They do not show extended molecular layers as observed for higher luminosity RSGs of our sample. BM Sco shows an unusually strong contribution by an over-resolved circumstellar dust component. Conclusions: V766 Cen is a red supergiant located close to the Hayashi limit instead of a yellow hypergiant already evolving back toward warmer effective temperatures as discussed in the literature. Our observations of the Na I line and the extended molecular layers suggest an optically thick pseudo-photosphere at about 1.5 RPhot at the onset of the wind. The stars σ Oph, BM Sco, and HD 206859 are more likely high-mass red giants instead of RSGs as implied by their luminosity class Ib. This leaves us with an unsampled locus in the HR diagram corresponding to luminosities log L/L⊙ 3.8-4.8 or masses 10-13 M⊙, possibly corresponding to the mass region where stars explode as (type II-P) supernovae during the red supergiant stage. With V766 Cen, we now confirm that our previously found relation of increasing strength of extended molecular layers with increasing luminosities extends to double our previous luminosities and up to the Eddington limit. This might further point to steadily increasing radiative winds with increasing luminosity. Based on observations made with the VLT Interferometer (VLTI) at Paranal Observatory under program ID 093.D-0014.
Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars
NASA Astrophysics Data System (ADS)
Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.
2016-07-01
Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.
Solar Luminosity on the Main Sequence, Standard Model and Variations
NASA Astrophysics Data System (ADS)
Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.
2017-05-01
Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, D.; Bedding, T. R.; Stello, D.
2010-11-10
We have studied solar-like oscillations in {approx}800 red giant stars using Kepler long-cadence photometry. The sample includes stars ranging in evolution from the lower part of the red giant branch to the helium main sequence. We investigate the relation between the large frequency separation ({Delta}{nu}) and the frequency of maximum power ({nu}{sub max}) and show that it is different for red giants than for main-sequence stars, which is consistent with evolutionary models and scaling relations. The distributions of {nu}{sub max} and {Delta}{nu} are in qualitative agreement with a simple stellar population model of the Kepler field, including the first evidencemore » for a secondary clump population characterized by M {approx}> 2 M{sub sun} and {nu}{sub max} {approx_equal} 40-110 {mu}Hz. We measured the small frequency separations {delta}{nu}{sub 02} and {delta}{nu}{sub 01} in over 400 stars and {delta}{nu}{sub 03} in over 40. We present C-D diagrams for l = 1, 2, and 3 and show that the frequency separation ratios {delta}{nu}{sub 02}/{Delta}{nu} and {delta}{nu}{sub 01}/{Delta}{nu} have opposite trends as a function of {Delta}{nu}. The data show a narrowing of the l = 1 ridge toward lower {nu}{sub max}, in agreement with models predicting more efficient mode trapping in stars with higher luminosity. We investigate the offset {epsilon} in the asymptotic relation and find a clear correlation with {Delta}{nu}, demonstrating that it is related to fundamental stellar parameters. Finally, we present the first amplitude-{nu}{sub max} relation for Kepler red giants. We observe a lack of low-amplitude stars for {nu}{sub max} {approx}> 110 {mu}Hz and find that, for a given {nu}{sub max} between 40 and 110 {mu}Hz, stars with lower {Delta}{nu} (and consequently higher mass) tend to show lower amplitudes than stars with higher {Delta}{nu}.« less
Mass loss in red giants and supergiants
NASA Technical Reports Server (NTRS)
Sanner, F.
1975-01-01
The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.
Characterization of Omega-WINGS galaxy clusters. I. Stellar light and mass profiles
NASA Astrophysics Data System (ADS)
Cariddi, S.; D'Onofrio, M.; Fasano, G.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Sciarratta, M.
2018-02-01
Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims: Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods: We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results: We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions: We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color-magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.
The initial mass function and star formation law in the outer disc of NGC 2915
NASA Astrophysics Data System (ADS)
Bruzzese, S. M.; Meurer, G. R.; Lagos, C. D. P.; Elson, E. C.; Werk, J. K.; Blakeslee, John P.; Ford, H.
2015-02-01
Using Hubble Space Telescope (HST) Advanced Camera for Surveys/Wide Field Camera data we present the photometry and spatial distribution of resolved stellar populations in the outskirts of NGC 2915, a blue compact dwarf with an extended H I disc. These observations reveal an elliptical distribution of red giant branch stars, and a clumpy distribution of main-sequence stars that correlate with the H I gas distribution. We constrain the upper-end initial mass function (IMF) and determine the star formation law (SFL) in this field, using the observed main-sequence stars and an assumed constant star formation rate. Previously published Hα observations of the field, which show one faint H II region, are used to provide further constraints on the IMF. We find that the main-sequence luminosity function analysis alone results in a best-fitting IMF with a power-law slope α = -2.85 and upper-mass limit M_u = 60 M_{⊙}. However, if we assume that all Hα emission is confined to H II regions then the upper-mass limit is restricted to M_u ≲ 20 M_{⊙}. For the luminosity function fit to be correct, we have to discount the Hα observations implying significant diffuse ionized gas or escaping ionizing photons. Combining the HST photometry with H I imaging, we find the SFL has a power-law index N = 1.53 ± 0.21. Applying these results to the entire outer H I disc indicates that it contributes 11-28 per cent of the total recent star formation in NGC 2915, depending on whether the IMF is constant within the disc or varies from the centre to the outer region.
Cosmic Accretion and Galaxy Co-Evolution: Lessons from the Extended Chandra Deep Field South
NASA Astrophysics Data System (ADS)
Urry, C. Megan
2011-05-01
The Chandra deep fields reveal that most cosmic accretion onto supermassive black holes is obscured by gas and dust. The GOODS and MUSYC multiwavelength data show that many X-ray-detected AGN are faint and red (or even undetectable) in the optical but bright in the infrared, as is characteristic of obscured sources. (N.B. The ECDFS is most sensitive to the AGN that constitute the X-ray background, namely, moderate luminosity AGN, with log Lx=43-44, at moderate redshifts, 0.5
Period-luminosity relations for red supergiant variables - II. The distance to M101
NASA Astrophysics Data System (ADS)
Jurcevic, J. S.; Pierce, M. J.; Jacoby, G. H.
2000-04-01
We report the discovery of 42 red supergiant variables (RSVs) in the late-type spiral galaxy M101. Periods for the luminosity variation of these RSVs were determined from 20 epochs of ground-based CCD photometry in the Kron-Cousins R band obtained with the KPNO 2.1-m and WIYN 3.5-m telescopes over a span of three years. The periods found were in the range 200-1300days. Using the relationship between the RSV periods and their luminosity in the Kron-Cousins I band, we estimate a reddening-corrected distance modulus to M101 of 29.40+/-0.16mag (based on a distance modulus of 18.5+/-0.1mag for the Large Magellanic Cloud). This distance is consistent with the Hubble Space Telescope Key Project Cepheid distances of 29.34+/-0.17mag for the outer field of M101 and 29.21+/-0.17mag for the inner field.
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Mikolajewska, Joanna; Mikolajewski, Maciej; Polidan, Ronald S.; Slovak, Mark H.
1993-01-01
We present an analysis of new and existing photometric and spectroscopic observations of the ongoing eruption in the symbiotic star AG Pegasi, showing that this binary has evolved considerably since the turn of the century. Recent dramatic changes in both the UV continuum and the wind from the hot component allow a more detailed analysis than in previous papers. AG Peg is composed of a normal M3 giant and a hot, compact star embedded in a dense, ionized nebula. The hot component powers the activity observed in this system, including a dense wind and a photoionized region within the outer atmosphere of the red giant. The hot component contracted in radius at roughly constant luminosity from 1850 to 1985. Its bolometric luminosity declined by a factor of about 4 during the past 5 yr. Both the mass loss rate from the hot component and the emission activity decreased in step with the hot component's total luminosity, while photospheric radiation from the red giant companion remained essentially constant.
NASA Technical Reports Server (NTRS)
Hand, Nick; Appel, John William; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.;
2010-01-01
We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y(sub 200) and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between BCG luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be in the range approx.10(exp 13) - 10(exp 14)/h Stellar Mass, a lower range than has been previously probed.
NASA Astrophysics Data System (ADS)
Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi; Rozo, Eduardo; Rykoff, Eli; Baxter, Eric J.
2016-11-01
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Finally, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hung -Jin; Mandelbaum, Rachel; Freeman, Peter E.
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes andmore » the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.« less
Huang, Hung -Jin; Mandelbaum, Rachel; Freeman, Peter E.; ...
2016-08-11
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes andmore » the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.« less
On the apparent positions of T Tauri stars in the H-R diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenyon, S.J.; Hartmann, L.W.
1990-01-01
The spread in apparent luminosities of T Tauri stars caused by occultation and emission from protostellar disks is investigated. A random distribution of disk inclination angles, coupled with a plausible range of accretion rates, introduces a significant scatter in apparent luminosities for intrinsically identical stars. The observed dispersion of luminosities for K7-M1 Hayashi track stars thought to have disks in Taurus-Auriga is similar to predictions of the simple accretion disk model, which suggets that age determinations form many pre-main-sequence stars are uncertain. The results also suggest that Stahler's birthline for convective track pre-main-sequence stars may be located at slightly lowermore » luminosities than previously thought. 38 refs.« less
Spectroscopic studies of yellow supergiants in the Cepheid instability strip
NASA Astrophysics Data System (ADS)
Usenko, I. A.
2017-04-01
High-resolution spectra of nine yellow nonvariable supergiants (NVSs) located within the canonical Cepheid instability strip from Sandage and Tammann (1969) ( α Aqr, ɛ Leo, μ Per, ω Gem, BD+60 2532, HD 172365, HD 187299, HD 190113, and HD 200102) were taken with the 1-m Zeiss and 6-m BTA telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences in the 1990s. These have been used to determine the atmospheric parameters, chemical composition, radial velocities, reddenings, luminosities, distances, and radii. The spectroscopic estimates of T eff and the luminosities determined from the Hipparcos parallaxes have shown eight of the nine program NVSs on the T eff-log( L/ L ⊙) diagram to be outside the canonical Cepheid instability strip. When the edges of the Cepheid instability strip from Bono et al. (2000) are used, out of the NVSs from the list on the diagram one is within the Cepheid instability strip but closer to the red edge, two are at the red edge, three are beyond the red edge, two are at the blue edge, and one is beyond the blue edge. The evolutionary masses of the objects have been estimated. The abundances of α-elements, r- and s-process elements for all program objects have turned out to be nearly solar. The CNO, Na, Mg, and Al abundance estimates have shown that eight of the nine NVSs from the list have already passed the first dredge-up. Judging by the abundances of the key elements and its position on the T eff-log( L/ L ⊙) diagram, the lithium-rich supergiant HD 172365 is at the post-main-sequence evolutionary stage of gravitational helium core contraction and moves toward the first crossing of the Cepheid instability strip. The star ɛ Leo should be assigned to bright supergiants, while HD 187299 and HD 190113 may have already passed the second dredge-up and move to the asymptotic branch.
NASA Technical Reports Server (NTRS)
Whitmire, D. P.; Matese, John J.; Reynolds, R. T.
1989-01-01
A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.
Different Characteristics of the Bright Branches of the Globular Clusters M15 and M92
NASA Astrophysics Data System (ADS)
Cho, Dong-Hwan; Lee, Sang-Gak
2007-05-01
We carried out relatively wide-field BVI CCD photometric observations of the globular clusters M15 (NGC 7078) and M92 (NGC 6341) using the 1.8 m telescope of the Bohyun Optical Astronomy Observatory. We present color-magnitude diagrams (V vs. B-V, V vs. V-I, and V vs. B-I) of M15 and M92. We found asymptotic giant branch (AGB) bumps at VbumpAGB=15.20+/-0.05 mag and VbumpAGB=14.50+/-0.05 mag for M15 and M92, respectively. We identified the red giant branch (RGB) bumps of the two clusters. We have estimated the population ratios R and R2 for M15 and M92 in two cases: when only normal horizontal-branch (HB) stars are used and when all the HB stars are used. We have compared the observed RGB luminosity functions of M15 and M92 with the theoretical RGB luminosity functions of Bergbusch & VandenBerg and found no significant ``extra stars'' in the comparisons. This implies that the HB morphology difference between M15 and M92 is not certain due to the results of deep mixing in the RGB sequence.
Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran
2014-03-01
We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.
NASA Astrophysics Data System (ADS)
Stern, S. Alan
2003-06-01
Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >105 objects >=50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, ~109 Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy.
Stern, S Alan
2003-01-01
Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >10(5) objects > or =50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, approximately 10(9) Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy.
A Search for Galactic Red Supergiant Variables Beyond the Solar Circle
NASA Astrophysics Data System (ADS)
Alves, David; MacConnell, Jack; Wing, Robert; Bond, Howard E.; Zurek, David; Hoard, Donald W.
2000-02-01
The Galactic rotation curve outside of the Solar circle is particularly difficult to ascertain, yet of critical importance for characterizing the distribution of mass in the Galaxy. We propose to identify a new and large sample of stellar kinematic tracers beyond the Solar circle, in the form of red supergiant variables (RSVs; spectral type M0-M5, luminosity class Ia-Ib). RSVs are ideal tracers of the heavily extincted outer Galactic disk, because (1) they are the intrinsically most luminous Pop I standard candles in the near-infrared, (2) they are more common than the classically employed Cepheids, and (3) they exhibit a period-luminosity relation of comparable precision to that of Cepheids. With the CTIO 0.9m in queue mode, we will derive the pulsation periods of our RSV candidates, allowing us to identify the most distant RSVs for further study. In addition, follow- up observations to obtain accurate, phase-weighted (``(gamma)'') radial velocities (a prerequisite for determining the Galactic rotation curve with RSVs) cannot be planned without period information. We have preselected RSV candidates from a catalog of ~1500 red supergiants in the Galactic plane, originally identified on objective-prism plates. Spectral types and luminosity classes have been determined from 8-color Wing photometry and medium-resolution spectra. The pulsation periods are expected to be 100 to 1000 days, and thus we request long-term status.
What makes red quasars red?. Observational evidence for dust extinction from line ratio analysis
NASA Astrophysics Data System (ADS)
Kim, Dohyeong; Im, Myungshin
2018-02-01
Red quasars are very red in the optical through near-infrared (NIR) wavelengths, which is possibly due to dust extinction in their host galaxies as expected in a scenario in which red quasars are an intermediate population between merger-driven star-forming galaxies and unobscured type 1 quasars. However, alternative mechanisms also exist to explain their red colors: (i) an intrinsically red continuum; (ii) an unusual high covering factor of the hot dust component, that is, CFHD = LHD/Lbol, where the LHD is the luminosity from the hot dust component and the Lbol is the bolometric luminosity; and (iii) a moderate viewing angle. In order to investigate why red quasars are red, we studied optical and NIR spectra of 20 red quasars at z 0.3 and 0.7, where the usage of the NIR spectra allowed us to look into red quasar properties in ways that are little affected by dust extinction. The Paschen to Balmer line ratios were derived for 13 red quasars and the values were found to be 10 times higher than unobscured type 1 quasars, suggesting a heavy dust extinction with AV > 2.5 mag. Furthermore, the Paschen to Balmer line ratios of red quasars are difficult to explain with plausible physical conditions without adopting the concept of the dust extinction. The CFHD of red quasars are similar to, or marginally higher than, those of unobscured type 1 quasars. The Eddington ratios, computed for 19 out of 20 red quasars, are higher than those of unobscured type 1 quasars (by factors of 3-5), and hence the moderate viewing angle scenario is disfavored. Consequently, these results strongly suggest the dust extinction that is connected to an enhanced nuclear activity as the origin of the red color of red quasars, which is consistent with the merger-driven quasar evolution scenario. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A31
ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Yerra Bharat; Reddy, Bacham E.; Lambert, David L.
In this Letter, we report on a low-resolution spectroscopic survey for Li-rich K giants among 2000 low-mass (M {<=} 3 M{sub sun}) giants spanning the luminosity range from below to above the luminosity of the clump. Fifteen new Li-rich giants including four super Li-rich K giants (log {epsilon}(Li) {>=}3.2) were discovered. A significant finding is that there is a concentration of Li-rich K giants at the luminosity of the clump or red horizontal branch. This new finding is partly a consequence of the fact that our low-resolution survey is the first large survey to include giants well below and abovemore » the red giant branch (RGB) bump and clump locations in the H-R diagram. Origin of the lithium enrichment may be plausibly attributed to the conversion of {sup 3}He via {sup 7}Be to {sup 7}Li by the Cameron-Fowler mechanism but the location for the onset of the conversion is uncertain. Two possible opportunities to effect this conversion are discussed: the bump in the first ascent of the RGB and the He-core flash at the tip of the RGB. The finite luminosity spread of the Li-rich giants serves to reject the idea that Li enhancement is, in general, a consequence of a giant swallowing a large planet.« less
The STREGA survey - II. Globular cluster Palomar 12
NASA Astrophysics Data System (ADS)
Musella, I.; Di Criscienzo, M.; Marconi, M.; Raimondo, G.; Ripepi, V.; Cignoni, M.; Bono, G.; Brocato, E.; Dall'Ora, M.; Ferraro, I.; Grado, A.; Iannicola, G.; Limatola, L.; Molinaro, R.; Moretti, M. I.; Stetson, P. B.; Capaccioli, M.; Cioni, M.-R. L.; Getman, F.; Schipani, P.
2018-01-01
In the framework of the STREGA (STRucture and Evolution of the GAlaxy) survey, two fields around the globular cluster Pal 12 were observed with the aim of detecting the possible presence of streams and/or an extended halo. The adopted stellar tracers are the main sequence, turn-off and red giant branch stars. We discuss the luminosity function and the star counts in the observed region covering about 2 tidal radii, confirming that Pal 12 appears to be embedded in the Sagittarius Stream. Adopting an original approach to separate cluster and field stars, we do not find any evidence of significant extra-tidal Pal 12 stellar populations. The presence of the Sagittarius stream seems to have mimicked a larger tidal radius in previous studies. Indeed, adopting a King model, a redetermination of this value gives rT = 0.22 ± 0.1 deg.
The Cool Stellar Populations of Early-Type Galaxies and the Galactic Bulge
NASA Astrophysics Data System (ADS)
Houdashelt, Mark Lee
1995-01-01
Red (6800-9200 A) and near-infrared (K-band) spectra have been obtained for 34 early-type galaxies in the Virgo cluster, the Coma cluster and the field. The strengths of the Ca II triplet (lambdalambda 8498, 8542, 8662 A), the Na I doublet ( lambdalambda8183, 8195 A), the Mg I lambda8807 A line, and molecular bands of TiO and VO were measured from the red spectra. Absorption due to the CO band with bandhead at 2.29 mu m was measured from the near-infrared spectra. The behavior of the spectral indices was examined for the Virgo galaxy nuclei as functions of luminosity and color. Overall, the CO, TiO and Na I indices were found to be stronger in redder and brighter galaxies. The Mg I and the Ca II triplet lines did not vary significantly among galaxies of different color or brightness. These trends are consistent with a change in chemical composition producing the well-known color-magnitude relation for early -type galaxies. No significant differences were detected among galaxies of similar luminosity in the Virgo cluster, the Coma cluster and the field. To simulate the stellar population changes implied by the radial color gradients observed in early-type galaxies, models were constructed to represent the integrated light of the Galactic bulge as a function of latitude. A field in Baade's Window (BW) was studied first and the stellar population there was found to be quite inhomogeneous. The BW model indicated that the integrated light of BW is giant -dominated, and the BW spectral energy distribution is very similar to that of the nucleus of a low-luminosity early -type galaxy. From models of BW and a field at b = -8^circ, radial gradients were estimated for the Galactic bulge and compared to the changes which occur along a luminosity sequence of early -type galaxies in the Virgo cluster. This comparison showed that: (1) the Na I and I(8197) indices increase steeply with redder colors in the Virgo galaxies but appear to decrease with color in the Galactic bulge; this effect is not understood but may be caused by some deficiency in the modelling; and (2) differences in the slopes of the TiO-color trends in E/S0 galaxies and in the Galactic bulge may indicate that the (Ti/Fe) ratio is changing differently in these two instances.
NASA Astrophysics Data System (ADS)
Heinis, S.; Buat, V.; Béthermin, M.; Bock, J.; Burgarella, D.; Conley, A.; Cooray, A.; Farrah, D.; Ilbert, O.; Magdis, G.; Marsden, G.; Oliver, S. J.; Rigopoulou, D.; Roehlly, Y.; Schulz, B.; Symeonidis, M.; Viero, M.; Xu, C. K.; Zemcov, M.
2014-01-01
We study the link between observed ultraviolet (UV) luminosity, stellar mass and dust attenuation within rest-frame UV-selected samples at z ˜ 4, ˜ 3 and ˜1.5. We measure by stacking at 250, 350 and 500 μm in the Herschel/Spectral and Photometric Imaging Receiver images from the Herschel Multi-Tiered Extragalactic Survey (HerMES) program the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate (SFR) and stellar mass at z ˜ 4, ˜3 and ˜1.5. The SFR-stellar mass relations are well described by power laws (SFR∝ M_*^{0.7}), with the amplitudes being similar at z ˜ 4 and ˜3, and decreasing by a factor of 4 at z ˜ 1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific SFR. Our results are in the upper range of previous measurements, in particular at z ˜ 3, and are consistent with a plateau at 3 < z < 4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the main sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5 < z < 4) stay around 1 Gyr on the main sequence. With decreasing redshift, this time increases such that z = 1 main-sequence galaxies with 108
NASA Astrophysics Data System (ADS)
Taylor, Matthew A.; Puzia, Thomas H.; Muñoz, Roberto P.; Mieske, Steffen; Lançon, Ariane; Zhang, Hongxin; Eigenthaler, Paul; Bovill, Mia Sauda
2017-08-01
New wide-field u΄g΄r΄I΄z΄ Dark Energy Camera observations centred on the nearby giant elliptical galaxy NGC 5128 covering ˜21 deg2 are used to compile a new catalogue of ˜3200 globular clusters (GCs). We report 2404 newly identified candidates, including the vast majority within ˜140 kpc of NGC 5128. We find evidence for a transition at a galactocentric radius of Rgc ≈ 55 kpc from GCs 'intrinsic' to NGC 5128 to those likely to have been accreted from dwarf galaxies or that may transition to the intragroup medium of the Centaurus A galaxy group. We fit power-law surface number density profiles of the form Σ _{N, R_gc}∝ R_gc^Γ and find that inside the transition radius, the red GCs are more centrally concentrated than the blue, with Γinner, red ≈ -1.78 and Γinner, blue ≈ -1.40, respectively. Outside this region both profiles flatten, more dramatically for the red GCs (Γouter, red ≈ -0.33) compared to the blue (Γouter, blue ≈ -0.61), although the former is more likely to suffer contamination by background sources. The median (g΄ - z΄)0 = 1.27 mag colour of the inner red population is consistent with arising from the amalgamation of two giant galaxies each less luminous than present-day NGC 5128. Both inwards and outwards of the transition radius, we find the fraction of blue GCs to dominate over the red GCs, indicating a lively history of minor mergers. Assuming the blue GCs to originate primarily in dwarf galaxies, we model the population required to explain them, while remaining consistent with NGC 5128's present-day spheroid luminosity. We find that several dozen dwarfs of luminosities Ldw, V ≃ 106-9.3 LV, ⊙, following a Schechter luminosity function with a faint-end slope of -1.50 ≲ α ≲ -1.25 is favoured, many of which may have already been disrupted in NGC 5128's tidal field.
Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol
1995-01-01
We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.
High surface magnetic field in red giants as a new signature of planet engulfment?
NASA Astrophysics Data System (ADS)
Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A.; Bianda, Michele; Villaver, Eva; ud-Doula, Asif
2016-09-01
Context. Red giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims: We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of magnetic braking through stellar wind on the evolution of the surface velocity of the parent star. Methods: By studying rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduced the evolution of the surface magnetic field along the red giant branch. The effects of stellar wind magnetic braking were explored using a relation deduced from magnetohydrodynamics simulations. Results: The stellar evolution model of a red giant with 1.7 M⊙ without planet engulfment and with a time-averaged rotation velocity during the main sequence equal to 100 km s-1 shows a surface magnetic field triggered by convection that is stronger than 10 G only at the base of the red giant branch, that is, for gravities log g> 3. When a planet engulfment occurs, this magnetic field can also appear at much lower gravities, that is, at much higher luminosities along the red giant branch. The engulfment of a 15 MJ planet typically produces a dynamo-triggered magnetic field stronger than 10 G for gravities between 2.5 and 1.9. We show that for reasonable magnetic braking laws for the wind, the high surface velocity reached after a planet engulfment may be maintained sufficiently long to be observable. Conclusions: High surface magnetic fields for red giants in the upper part of the red giant branch are a strong indication of a planet engulfment or of an interaction with a companion. Our theory can be tested by observing fast-rotating red giants such as HD 31994, Tyc 0347-00762-1, Tyc 5904-00513-1, and Tyc 6054-01204-1 and by determining whether they show magnetic fields.
Mass functions for globular cluster main sequences based on CCD photometry and stellar models
NASA Astrophysics Data System (ADS)
McClure, Robert D.; Vandenberg, Don A.; Smith, Graeme H.; Fahlman, Gregory G.; Richer, Harvey B.; Hesser, James E.; Harris, William E.; Stetson, Peter B.; Bell, R. A.
1986-08-01
Main-sequence luminosity functions constructed from CCD observations of globular clusters reveal a strong trend in slope with metal abundance. Theoretical luminosity functions constructed from VandenBerg and Bell's (1985) isochrones have been fitted to the observations and reveal a trend between x, the power-law index of the mass function, and metal abundance. The most metal-poor clusters require an index of about x = 2.5, whereas the most metal-rich clusters exhibit an index of x of roughly -0.5. The luminosity functions for two sparse clusters, E3 and Pal 5, are distinct from those of the more massive clusters, in that they show a turndown which is possibly a result of mass loss or tidal disruption.
NASA Astrophysics Data System (ADS)
Bond, Howard
2017-08-01
Our team is using Spitzer in a long-term search for extragalactic mid-infrared (MIR) variable stars and transients-the SPIRITS project (SPitzer InfraRed Intensive Transients Survey). In this first exploration of luminous astrophysical transients in the infrared, we have discovered a puzzling new class. We call them SPRITEs: eSPecially Red Intermediate-luminosity Transient Events. They have maximum MIR luminosities between supernovae and classical novae, but are not detected in the optical to deep limits. To date, we have discovered more than 50 SPRITEs in galaxies out to 17 Mpc. In this Archival Research proposal, we request support in order to investigate the pre-eruption sites in HST images of some 3 dozen SPRITEs discovered to date, and an additional 2 dozen that we are likely to find until the end of Spitzer observing in late 2018. Our aims are (1) characterize the pre-outburst environments at HST resolution in the visible and near-IR, to understand the stellar populations, stellar ages and masses, and interstellar medium at the outburst sites; (2) search for progenitors; (3) help prepare the way for a better understanding of the nature of extragalactic IR transients that will be investigated by JWST.
High-redshift Extremely Red Quasars in X-Rays
NASA Astrophysics Data System (ADS)
Goulding, Andy D.; Zakamska, Nadia L.; Alexandroff, Rachael M.; Assef, Roberto J.; Banerji, Manda; Hamann, Fred; Wylezalek, Dominika; Brandt, William N.; Greene, Jenny E.; Lansbury, George B.; Pâris, Isabelle; Richards, Gordon; Stern, Daniel; Strauss, Michael A.
2018-03-01
Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper, we present X-ray observations of 11 extremely red quasars (ERQs) with L bol ∼ 1047 erg s‑1 at z = 1.5–3.2 with evidence for high-velocity (v ≥slant 1000 km s‑1) [O III] λ5007 outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect 10 out of 11 ERQs available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of N H ≈ 1023 cm‑2, including four Compton-thick candidates (N H ≥slant 1024 cm‑2). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of N H ∼ 8 × 1023 cm‑2. The absorption-corrected (intrinsic) 2–10 keV X-ray luminosity of the stack is 2.7 × 1045 erg s‑1, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.
Optical Searches for Baryonic Dark Matter
NASA Astrophysics Data System (ADS)
Graff, David Steven
1997-08-01
Microlensing results suggest that a good fraction of the halo is composed of massive chunks (0.1-1 Msolar) called MACHOs. I examine several optical searches for dim stars to constrain the local density of MACHOs. These searches show that (1) there are few red dwarfs in the galactic halo, and (2) they suggest that there are few brown dwarfs. I also find that (3) there may be sufficiently many white dwarfs in the halo to account for the microlensing results, but only if certain interesting conditions are met. (1) I examine a deep search for halo red dwarfs (Bahcall, Flynn, Gould & Kirhakos 1994). Using new stellar models and parallax observations of low mass, low metallicity stars, I find the halo red dwarf density to be <1% of the halo, while my best estimate of this value is 0.14-0.37%. (2) I derive mass functions (MF) for halo red dwarfs (the faintest hydrogen burning stars) and then extrapolate to place limits on the total mass of halo brown dwarfs (stars not quite massive enough to burn hydrogen). I find that the MF for halo red dwarfs cannot rise more quickly than 1/m2 as one approaches the hydrogen burning limit. Using recent results from star formation theory, I extrapolate the MF into the brown-dwarf regime. Likely extrapolations imply that the total mass of brown dwarfs in the halo is less than ~3% of the local mass density of the halo (~0.3% for the more realistic models I consider). My limits apply to brown dwarfs in the halo that come from the same stellar population as the red dwarfs. (3) A ground based search by Liebert, Dahn & Monet (1988) and a search of the Hubble Deep Field by Flynn, Bahcall & Gould (1996) have found no evidence for a substantial halo population of white dwarfs, implying that the putative halo population is either dim enough or sparse enough to elude detection. I use white dwarf luminosity functions calculated from various main sequence progenitor mass functions to re-examine the implications of these searches in light of recent microlensing results. I show that the minimum age of the white dwarf population depends upon assumptions regarding the initial mass function, atmospheric composition, and their total density. When I compare various theoretical white dwarf luminosity functions in which I vary these three parameters with the non detections of Liebert et al. and Flynn et al., I conclude that if white dwarfs constitute a significant portion of the halo then (I) the Universe must be 11 Gyr old and (II) they must have helium dominated atmospheres. Thus, white dwarfs could be the MACHOs and could make a significant contribution to galactic dark matter.
NASA Astrophysics Data System (ADS)
Stanley, F.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; Wang, L.; Aird, J. A.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; Knudsen, K. K.; Michałowski, M. J.; Valiante, E.; De Zotti, G.; Furlanetto, C.; Ivison, R.; Maddox, S.; Smith, M. W. L.
2017-12-01
We investigate the mean star formation rates (SFRs) in the host galaxies of ∼3000 optically selected quasi-stellar objects (QSOs) from the Sloan Digital Sky Survey within the Herschel-ATLAS fields, and a radio-luminous subsample covering the redshift range of z = 0.2-2.5. Using Wide-field Infrared Survey Explorer (WISE) and Herschel photometry (12-500 μm) we construct composite spectral energy distributions (SEDs) in bins of redshift and active galactic nucleus (AGN) luminosity. We perform SED fitting to measure the mean infrared luminosity due to star formation, removing the contamination from AGN emission. We find that the mean SFRs show a weak positive trend with increasing AGN luminosity. However, we demonstrate that the observed trend could be due to an increase in black hole (BH) mass (and a consequent increase of inferred stellar mass) with increasing AGN luminosity. We compare to a sample of X-ray selected AGN and find that the two populations have consistent mean SFRs when matched in AGN luminosity and redshift. On the basis of the available virial BH masses, and the evolving BH mass to stellar mass relationship, we find that the mean SFRs of our QSO sample are consistent with those of main sequence star-forming galaxies. Similarly the radio-luminous QSOs have mean SFRs that are consistent with both the overall QSO sample and with star-forming galaxies on the main sequence. In conclusion, on average QSOs reside on the main sequence of star-forming galaxies, and the observed positive trend between the mean SFRs and AGN luminosity can be attributed to BH mass and redshift dependencies.
A Rogues’ Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches
NASA Astrophysics Data System (ADS)
Martin, Nicolas F.; Weisz, Daniel R.; Albers, Saundra M.; Bernard, Edouard; Collins, Michelle L. M.; Dolphin, Andrew E.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Laevens, Benjamin; Lewis, Geraint F.; Mackey, A. Dougal; McConnachie, Alan; Rich, R. Michael; Skillman, Evan D.
2017-11-01
We present homogeneous, sub-horizontal branch photometry of 20 dwarf spheroidal satellite galaxies of M31 observed with the Hubble Space Telescope. Combining our new data for 16 systems with archival data in the same filters for another four, we show that Andromeda dwarf spheroidal galaxies favor strikingly red horizontal branches or red clumps down to ˜104.2 L ⊙ (M V ˜ -5.8). The age-sensitivity of horizontal branch stars implies that a large fraction of the M31 dwarf galaxies have extended star formation histories (SFHs), and appear inconsistent with early star formation episodes that were rapidly shutdown. Systems fainter than ˜105.5 L ⊙ show the widest range in the ratios and morphologies of red and blue horizontal branches, indicative of both complex SFHs and a diversity in quenching timescales and/or mechanisms, which is qualitatively different from what is currently known for faint Milky Way (MW) satellites of comparable luminosities. Our findings bolster similar conclusions from recent deeper data for a handful of M31 dwarf galaxies. We discuss several sources for diversity of our data such as varying halo masses, patchy reionization, mergers/accretion, and the environmental influence of M31 and the Milky Way on the early evolution of their satellite populations. A detailed comparison between the histories of M31 and MW satellites would shed signifiant insight into the processes that drive the evolution of low-mass galaxies. Such a study will require imaging that reaches the oldest main-sequence turnoffs for a significant number of M31 companions.
Studies of hydrodynamic events in stellar evolution. 3: Ejection of planetary nebulae
NASA Technical Reports Server (NTRS)
Sparks, W. M.; Kutter, G. S.
1973-01-01
The dynamic behavior of the H-rich envelope (0.101 solar mass) of an evolved star (1.1 solar mass) as the luminosity rises to 19000 solar luminosity during the second ascent of the red giant branch. For luminosities in the range 3100 L 19000 solar luminosity the H-rich envelope pulsates like a long-period variable (LPV) with periods of the order of a year. As L reaches 19000 solar luminosity, the entire H-rich envelope is ejected as a shell with speeds of a few 10 km/s. The ejection occurs on a timescale of a few LPV pulsation periods. This ejection is associated with the formation of a planetary nebula. The computations are based on an implicit hydrodynamic computer code. T- and RHO-dependent opacities and excitation and ionization energies are included. As the H-rich envelope is accelerated off the stellar core, the gap between envelope and core is approximated by a vacuum, filled with radiation. Across the vacuum, the luminosity is conserved and the anisotropy of the radiation is considered as well as the solid angle subtended by the remnant star at the inner surface of the H-rich envelope. Spherical symmetry and the diffusion approximation are assumed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro
2015-03-15
Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with thosemore » from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.« less
Internal rotation of 13 low-mass low-luminosity red giants in the Kepler field
NASA Astrophysics Data System (ADS)
Triana, S. A.; Corsaro, E.; De Ridder, J.; Bonanno, A.; Pérez Hernández, F.; García, R. A.
2017-06-01
Context. The Kepler space telescope has provided time series of red giants of such unprecedented quality that a detailed asteroseismic analysis becomes possible. For a limited set of about a dozen red giants, the observed oscillation frequencies obtained by peak-bagging together with the most recent pulsation codes allowed us to reliably determine the core/envelope rotation ratio. The results so far show that the current models are unable to reproduce the rotation ratios, predicting higher values than what is observed and thus indicating that an efficient angular momentum transport mechanism should be at work. Here we provide an asteroseismic analysis of a sample of 13 low-luminosity low-mass red giant stars observed by Kepler during its first nominal mission. These targets form a subsample of the 19 red giants studied previously, which not only have a large number of extracted oscillation frequencies, but also unambiguous mode identifications. Aims: We aim to extend the sample of red giants for which internal rotation ratios obtained by theoretical modeling of peak-bagged frequencies are available. We also derive the rotation ratios using different methods, and compare the results of these methods with each other. Methods: We built seismic models using a grid search combined with a Nelder-Mead simplex algorithm and obtained rotation averages employing Bayesian inference and inversion methods. We compared these averages with those obtained using a previously developed model-independent method. Results: We find that the cores of the red giants in this sample are rotating 5 to 10 times faster than their envelopes, which is consistent with earlier results. The rotation rates computed from the different methods show good agreement for some targets, while some discrepancies exist for others.
Galaxies Collide to Create Hot, Huge Galaxy
NASA Technical Reports Server (NTRS)
2009-01-01
This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy. A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process. This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).NASA Technical Reports Server (NTRS)
Laget, M.
1972-01-01
Filter photometry has been obtained of 16 BO stars at ten effective wavelengths in the range 4250-1430 A. The wavelength dependence of the interstellar reddening law, deduced from a least squares fit of the observed values to the reddening line at each band, is found in satisfactory agreement with that derived by Bless and Savage (1972). Toward the shorter wavelengths the increase of the computed probable error of the slope of the mean reddening line suggests that large fluctuations in the law may occur from star to star. Similar computations, separating main-sequence stars and supergiants, indicate that the large fluctuations of the law appear to be well related to the luminosity of the stars; the supergiants show systematically less extinction, this deficiency becoming large toward the far UV. The small number in the sample however, does not allow a general conclusion to be drawn.
Multiplicity of the Galactic Senior Citizens: A high-resolution search for cool subdwarf companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.
2015-01-01
Cool subdwarfs, with spectral types late K and M, are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low metallicity and high proper-motions. Understanding their binary fraction could give key insights into the star formation process early in the Milky Way's history. However, because of their low luminosity and relative rarity in the solar neighborhood, binary surveys of cool subdwarfs have suffered from small sample sizes and large incompleteness gaps. It appears, however, that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs yet. We find from 349 target cool subdwarfs, 39 are in multiple systems, 13 newly discovered, for a binary fraction of 11 ± 1.8%.
Do Close-in Giant Planets Orbiting Evolved Stars Prefer Eccentric Orbits?
NASA Astrophysics Data System (ADS)
Grunblatt, Samuel K.; Huber, Daniel; Gaidos, Eric; Lopez, Eric D.; Barclay, Thomas; Chontos, Ashley; Sinukoff, Evan; Van Eylen, Vincent; Howard, Andrew W.; Isaacson, Howard T.
2018-07-01
The NASA Kepler and K2 Missions have recently revealed a population of transiting giant planets orbiting moderately evolved, low-luminosity red giant branch stars. Here, we present radial velocity (RV) measurements of three of these systems, revealing significantly non-zero orbital eccentricities in each case. Comparing these systems with the known planet population suggests that close-in giant planets around evolved stars tend to have more eccentric orbits than those around main sequence stars. We interpret this as tentative evidence that the orbits of these planets pass through a transient, moderately eccentric phase where they shrink faster than they circularize due to tides raised on evolved host stars. Additional RV measurements of currently known systems, along with new systems discovered by the recently launched NASA Transiting Exoplanet Survey Satellite (TESS) mission, may constrain the timescale and mass dependence of this process.
The nature of the embedded population in the Rho Ophiuchi dark cloud - Mid-infrared observations
NASA Technical Reports Server (NTRS)
Lada, C. J.; Wilking, B. A.
1984-01-01
In combination with previous IR and optical data, the present 10-20 micron observations of previously identified members of the embedded population of the Rho Ophiuchi dark cloud allow determinations to be made of the broadband energy distributions for 32 of the 44 sources. The majority of the sources are found to emit the bulk of their luminosity in the 1-20 micron range, and to be surrounded by dust shells. Because they are, in light of these characteristics, probably premain-sequence in nature, relatively accurate bolometric luminosities for these objects can be obtained through integration of their energy distributions. It is found that 44 percent of the sources are less luminous than the sun, and are among the lowest luminosity premain-sequence/protostellar objects observed to date.
Habitable Moons and Planets Around Post-Main Sequence Stars
NASA Astrophysics Data System (ADS)
Lorenz, R.
2014-04-01
Habitability is ephemeral, and arises against the backdrop of stellar evolution. Atmospheric modulation of incoming and outgoing radiative fluxes can restrict or extend the insolation domain in which habitable conditions can persist, and feedbacks (notably, silicate weathering of CO2) may fortuitously adapt that modulation to counteract evolving luminosity. But eventually the star will win. What happens then depends on the histories of stellar luminosity, and of stellar mass loss. While the enhancement of luminosity may render the outer solar system habitable in a classic radiative/convective equilibrium sense, a scenario studied in most detail in connection with Saturn's moon Titan, the enhanced solar wind associated with the latter may strip atmospheres unprotected by magnetic fields. The question of post-main sequence habitability is therefore not a simple one.
Doi, Ryoichi
2012-09-01
Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.
Infrared Detection of Very Low Mass Stars.
NASA Astrophysics Data System (ADS)
Probst, Ronald George
We present in this thesis a review of very-low -mass ((TURN)0.1 M(,0)) star research, and results of two observational programs directed at the photometric detection of low mass binary companions in the infrared. Present theoretical desiderata are model atmospheres for very cool dwarf stars and determination of the minimum protostellar mass with all relevant physics included. Luminosities for these stars are well determined, but the effective temperature scale is uncertain and abundance analyses are lacking. Masses are known for very few, and with large relative errors. The luminosity function for M(,v) > 13 is very uncertain. Astrometric methods provide at present the only means of detecting very low mass objects in significant numbers. Completion of the near-star parallax catalogue and measurement of additional low-mass binaries are important observational programs. The potential of photometric selection of red dwarf binaries is explored in Chapter II. Separation of binaries from single stars by color anomalies alone is found impractical. Detection by overluminosity in the HR diagram is hampered by the intrinsic spread of the field star population. However, we find that application of both kinematic and photometric criteria allows binaries to be detected with only moderate contamination by single stars; we discuss several binary suspects selected in this way. Our approach uses an infrared bandpass to provide temperature resolution in the color baseline, and we present JHK photometry for 60 stars, including recent parallax stars with M(,v)>14. We examine the status of the least luminous stars; there is no conclusive evidence that they are not hydrogen-burning objects. Chapter III presents a survey of (TURN)100 white dwarfs at 2 (mu) for infrared excess indicative of low -luminosity cool companions. White dwarf-red dwarf composites are detectable by infared color anomalies down to M(,v)(TURN)21 for the red dwarf component, and our survey is complete to absolute magnitudes on this level. Candidates for astrometric mass determination are suggested. Several stars are found to be composites containing an accretion disk or a hot subdwarf + dK secondary. We find very few new low-luminosity companions to normal white dwarfs. This does not appear to be a selection effect, nor is there reason to believe that all parent systems have been altered or destroyed in the mass loss phase. Our strongly negative result constrains the luminosity function for red dwarf companions to decline steeply past M(,v) (DBLTURN) 13. This may reflect a general decline in the initial mass function for star formation, or a failure of systems with large mass ratios to form or remain bound in the parent star-forming regions.
What Is The Color Of The Milky Way?
NASA Astrophysics Data System (ADS)
Licquia, Timothy; Newman, J. A.
2012-01-01
For most galaxies with known redshift, the properties we can measure best are their color and luminosity, making these quantities vital for classifying galaxies from the local universe to high z. However, it is difficult to determine these same properties for the Milky Way, the galaxy we can study in the most detail, due to our location within it. Here, we employ a new approach which is immune to the effects of interstellar reddening. Using new infrared measurements of the Milky Way's star-formation rate and dynamical measurements of its stellar mass (along with their attendant uncertainties), we identify samples of galaxies in Sloan Digital Sky Survey data with matching properties, and evaluate the distribution of colors and luminosities of these analogs. Essentially, we make the Copernican assumption that the Milky Way is not unusual for a galaxy of its mass and star formation rate. This procedure tightly constrains the possible photometric properties of the Milky Way; we present results for both ugriz colors and absolute magnitudes, and explore the impact of potential systematic errors. We also present a gallery of images of galaxies whose properties should be similar to those of the Milky Way. Our results show that the Milky Way must be amongst the brightest, reddest star-forming spiral galaxies, with an overall color which is likely only slightly bluer than the bluest red sequence galaxies.
Multiplicity of the Galactic Senior Citizens: A High-resolution Search for Cool Subdwarf Companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed L.; Fuchs, Joshua T.
2015-05-01
Cool subdwarfs are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low-metallicity. Measuring their binary fraction and comparing it to solar-metallicity stars could give key insights into the star formation process early in the Milky Way’s history. However, because of their low luminosity and relative rarity in the solar neighborhood, binarity surveys of cool subdwarfs have suffered from small sample sizes and incompleteness. Previous surveys have suggested that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs, sensitive to angular separations (ρ ≥slant 0.″ 15) and contrast ratios ({Δ }{{m}i} ≤slant 6) invisible in past surveys. Of 344 target cool subdwarfs, 43 are in multiple systems, 19 of which are newly discovered, for a binary fraction of 12.5 ± 1.9%. We also discovered seven triple star systems for a triplet fraction of 2.0 ± 0.8%. Comparisons to similar surveys of solar-metallicity dwarf stars gives a ∼3σ disparity in luminosity between companion stars, with subdwarfs displaying a shortage of low-contrast companions. We also observe a lack of close subdwarf companions in comparison to similar-mass dwarf multiple systems.
The quasar luminosity function from a variability-selected sample
NASA Astrophysics Data System (ADS)
Hawkins, M. R. S.; Veron, P.
1993-01-01
A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sign of the 'break' found in the recent UVX sample of Boyle et al. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved.
Spectroscopic observations of the symbiotic binary RW Hydrae
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Fernandez-Castro, Telmo
1987-01-01
Ultraviolet/optical spectrophotometry and infrared photometry show that the symbiotic binary RW Hya is comprised of an M giant (with L of about 1000 solar luminosities) and a compact object (with L of about 200 solar luminosities) which resembles the central star of a planetary nebula. The luminosity of the hot component is produced by a nuclear shell source which is replenished by the wind of the red giant at a rate of about 10 to the -8th solar mass/yr. Results indicate that the binary is surrounded by an H II region (of radius of about 10 AU) which gives rise to the observed emission lines and radio emission. The He(2+) and O(2+) regions are found to be confined to the immediate vicinity of the hot component.
On the Progenitor System of V392 Persei
NASA Astrophysics Data System (ADS)
Darnley, M. J.; Starrfield, S.
2018-05-01
A discussion regarding the progenitor system of the nova and dwarf nova system V392 Persei using archival data from 2MASS and WISE. We find that the system is unlikely to contain a luminous red giant donor (i.e. a symbiotic system), but cannot exclude the presence of a lower luminosity red giant or a sub-giant donor. The similarity of the SED of the quiescent V392 Per to that of GK Persei is noted.
NASA Technical Reports Server (NTRS)
Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas;
2014-01-01
On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.
Frequency domain analysis of knock images
NASA Astrophysics Data System (ADS)
Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin
2014-12-01
High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.
NASA Astrophysics Data System (ADS)
Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew
2016-03-01
We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 < Mg < -8 mag range, and we measure their apparent axis ratios, q, through Sérsic fits to their two-dimensional light distribution, which is well described by a constant ellipticity parameter. The resulting distribution of apparent axis ratios is then fit by families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides, but there is a hint that objects may be slightly rounder in denser environments. The comparable flattening distributions of low-luminosity galaxies that have experienced very different degrees of environmental effects suggest that internal processes are the main drivers of galaxy structure at low masses, with external mechanisms playing a secondary role.
Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age
NASA Technical Reports Server (NTRS)
Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.
1985-01-01
The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.
A 16 deg2 survey of emission-line galaxies at z < 1.5 in HSC-SSP Public Data Release 1
NASA Astrophysics Data System (ADS)
Hayashi, Masao; Tanaka, Masayuki; Shimakawa, Rhythm; Furusawa, Hisanori; Momose, Rieko; Koyama, Yusei; Silverman, John D.; Kodama, Tadayuki; Komiyama, Yutaka; Leauthaud, Alexie; Lin, Yen-Ting; Miyazaki, Satoshi; Nagao, Tohru; Nishizawa, Atsushi J.; Ouchi, Masami; Shibuya, Takatoshi; Tadaki, Ken-ichi; Yabe, Kiyoto
2018-01-01
We present initial results from the Subaru Strategic Program (SSP) with Hyper Suprime-Cam (HSC) on a comprehensive survey of emission-line galaxies at z < 1.5 based on narrowband imaging. The first Public Data Release provides us with data from two narrowband filters, specifically NB816 and NB921 over 5.7 deg2 and 16.2 deg2 respectively. The 5 σ limiting magnitudes are 25.2 mag (UltraDeep layer, 1.4 deg2) and 24.8 mag (Deep layer, 4.3 deg2) for NB816, and 25.1 mag (UltraDeep, 2.9 deg2) and 24.6-24.8 mag (Deep, 13.3 deg2) for NB921. The wide-field imaging allows us to construct unprecedentedly large samples of 8054 H α emitters at z ≈ 0.25 and 0.40, 8656 [O III] emitters at z ≈ 0.63 and 0.84, and 16877 [O II] emitters at z ≈ 1.19 and 1.47. We map the cosmic web on scales out to about 50 comoving Mpc that includes galaxy clusters, identified by red sequence galaxies, located at the intersection of filamentary structures of star-forming galaxies. The luminosity functions of emission-line galaxies are measured with precision and are consistent with published studies. The wide field coverage of the data enables us to measure the luminosity functions up to brighter luminosities than previous studies. The comparison of the luminosity functions between the different HSC-SSP fields suggests that a survey volume of >5 × 105 Mpc3 is essential to overcome cosmic variance. Since the current data have not reached the full depth expected for the HSC-SSP, the color cut in i - NB816 or z - NB921 induces a bias towards star-forming galaxies with large equivalent widths, primarily seen in the stellar mass functions for the H α emitters at z ≈ 0.25-0.40. Even so, the emission-line galaxies clearly cover a wide range of luminosity, stellar mass, and environment, thus demonstrating the usefulness of the narrowband data from the HSC-SSP for investigating star-forming galaxies at z < 1.5.
The V-band Empirical Mass-luminosity Relation for Main Sequence Stars
NASA Astrophysics Data System (ADS)
Xia, Fang; Fu, Yan-Ning
2010-07-01
Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙ Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.
The V Band Empirical Mass-Luminosity Relation for Main Sequence Stars
NASA Astrophysics Data System (ADS)
Xia, F.; Fu, Y. N.
2010-01-01
Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determination of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass-luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙. Recently, many relevant data have been accumulated for main sequence stars with larger mass, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weight to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. Compared with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in studies of statistical nature, but also in studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.
DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jiayi; Shen, Yue
2015-05-01
The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshiftmore » Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.« less
The Tip of the Red Giant Branch as a Precision Distance Indicator: II. Computer Simulations
NASA Technical Reports Server (NTRS)
Madore, B.; Freedman, W.
1993-01-01
This paper presents an analysis of synthetic I versus color-magnitude diagrams of Population II systems to investigate the use of the observed discontinuity in the I-band luminosity function as a precicion primary distance indicator.
NASA Astrophysics Data System (ADS)
Faulkner, John
Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and ρsh·ρolinec prove to be important self-consistently derived quantities. I present some striking, explicit, asymptotic analytical theorems and results involving these quantities. Perhaps the most astonishingly unexpected and gratifying single result is this: for the very value Nature gives us for the relevant temperature exponent (η=15; CNO cycle) for nuclear-energy generation, ρsh and ρolinec behave in a well defined, precisely inverse manner for a given value of core-mass, Mc. This emphasizes that the internal behaviour of such stars is definitely anti-homologous rather than homologous: dense cores physically promote diffuse surrounding envelopes. I also extend the ideas yet further in a way which (I) links the structural and evolutionary behaviour of stars from the main sequence through horizontal-branch phases of evolution, and (II) also has implications for post-main-sequence developments in more massive stars. The end results is that the post-main-sequence developments of all stars - low-mass, intermediate-mass, and high-mass - as they expand to become giants, are finally seen to be examples of one underpinning fact: that dense cores with this surrounding shells naturally follow hydrogen exhaustion. While "this has been know all along" from oft-repeated computer calculations, we now know why analytically. That matters to true theorists. What follows is a requested, much expanded version of my Cambridge talk.
Chlorine-Free Red-Burning Pyrotechnics.
Sabatini, Jesse J; Koch, Ernst-Christian; Poret, Jay C; Moretti, Jared D; Harbol, Seth M
2015-09-07
The development of a red, chlorine-free pyrotechnic illuminant of high luminosity and spectral purity was investigated. Red-light emission based solely on transient SrOH(g) has been achieved by using either 5-amino-1H-tetrazole or hexamine to deoxidize the combustion flame of a Mg/Sr(NO3 )2 /Epon-binder composition and reduce the amount of both condensed and gaseous SrO, which emits undesirable orange-red light. The new formulations were found to possess high thermal onset temperatures. Avoiding chlorine in these formulations eliminates the risk of the formation of PCBs, PCDDs, and PCDFs. This finding, hence, will have a great impact on both military pyrotechnics and commercial firework sectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The initial masses of the red supergiant progenitors to Type II supernovae
NASA Astrophysics Data System (ADS)
Davies, Ben; Beasor, Emma R.
2018-02-01
There are a growing number of nearby supernovae (SNe) for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitor's brightness a few years before explosion, and ultimately estimate its initial mass. Previous work has shown that II-P and II-L SNe have red supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to ≲ 17 M⊙. This is in contrast with the cut-off of 25-30 M⊙ predicted by evolutionary models, a result that is termed the `red supergiant problem'. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, which of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a star's luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cut-off of Mhi = 19.0^{+2.5}_{-1.3} M⊙, with a 95 per cent upper confidence limit of <27 M⊙. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cut-off to Mhi = 25 M⊙ (<33 M⊙, 95 per cent confidence). We therefore conclude that there is currently no strong evidence for `missing' high-mass progenitors to core-collapse SNe.
NASA Astrophysics Data System (ADS)
LoPresto, Michael C.
2018-05-01
In a recent "AstroNote," I described a simple exercise on the mass-luminosity relation for main sequence stars as an example of exposing students in a general education science course of lower mathematical level to the use of quantitative skills such as collecting and analyzing data. Here I present another attempt at a meaningful experience for such students that again involves both the gathering and analysis of numerical data and comparison with accepted result, this time on the relationship of the mass and lifetimes of main sequence stars. This experiment can stand alone or be used as an extension of the previous mass-luminosity relationship experiment.
LUMINOSITY FUNCTIONS OF LMXBs IN CENTAURUS A: GLOBULAR CLUSTERS VERSUS THE FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Rasmus; Gilfanov, Marat; Sivakoff, Gregory R.
2009-08-10
We study the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXB) in the nearby early-type galaxy Centaurus A, concentrating primarily on two aspects of binary populations: the XLF behavior at the low-luminosity limit and the comparison between globular cluster and field sources. The 800 ksec exposure of the deep Chandra VLP program allows us to reach a limiting luminosity of {approx}8 x 10{sup 35} erg s{sup -1}, about {approx}2-3 times deeper than previous investigations. We confirm the presence of the low-luminosity break of the overall LMXB XLF at log(L{sub X} ) {approx} 37.2-37.6, below which the luminosity distribution followsmore » a dN/d(ln L) {approx} const law. Separating globular cluster and field sources, we find a statistically significant difference between the two luminosity distributions with a relative underabundance of faint sources in the globular cluster population. This demonstrates that the samples are drawn from distinct parent populations and may disprove the hypothesis that the entire LMXB population in early-type galaxies is created dynamically in globular clusters. As a plausible explanation for this difference in the XLFs, we suggest an enhanced fraction of helium-accreting systems in globular clusters, which are created in collisions between red giants and neutron stars. Due to the four times higher ionization temperature of He, such systems are subject to accretion disk instabilities at {approx}20 times higher mass accretion rate and, therefore, are not observed as persistent sources at low luminosities.« less
VizieR Online Data Catalog: Quasar luminosity function (Hawkins+, 1993)
NASA Astrophysics Data System (ADS)
Hawkins, M. R. S.; Veron, P.
1994-11-01
A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sigh of the 'break' found in the recent UVX sample of Boyle, Shanks & Peterson. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved. (1 data file).
Winds as the origin of radio emission in z = 2.5 radio-quiet extremely red quasars
NASA Astrophysics Data System (ADS)
Hwang, Hsiang-Chih; Zakamska, Nadia L.; Alexandroff, Rachael M.; Hamann, Fred; Greene, Jenny E.; Perrotta, Serena; Richards, Gordon T.
2018-06-01
Most active galactic nuclei (AGNs) are radio quiet, and the origin of their radio emission is not well understood. One hypothesis is that this radio emission is a byproduct of quasar-driven winds. In this paper, we present the radio properties of 108 extremely red quasars (ERQs) at z = 2-4. ERQs are among the most luminous quasars (Lbol ˜ 1047-48 erg s-1) in the Universe, with signatures of extreme (≫1000 km s-1) outflows in their [O III]λ5007 Å emission, making them the best subjects to seek the connection between radio and outflow activities. All ERQs but one are unresolved in the radio on ˜10 kpc scales, and the median radio luminosity of ERQs is νLν[6 GHz] = 1041.0 erg s-1, in the radio-quiet regime, but 1-2 orders of magnitude higher than that of other quasar samples. The radio spectra are steep, with a mean spectral index <α> = -1.0. In addition, ERQs neatly follow the extrapolation of the low-redshift correlation between radio luminosity and the velocity dispersion of [O III]-emitting ionized gas. Uncollimated winds, with a power of one per cent of the bolometric luminosity, can account for all these observations. Such winds would interact with and shock the gas around the quasar and in the host galaxy, resulting in acceleration of relativistic particles and the consequent synchrotron emission observed in the radio. Our observations support the picture in which ERQs are signposts of extremely powerful episodes of quasar feedback, and quasar-driven winds as a contributor of the radio emission in the intermediate regime of radio luminosity νLν = 1039-1042 erg s-1.
Interpreting the Clustering of Distant Red Galaxies
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Wechsler, Risa H.; Zheng, Zheng
2010-01-01
We analyze the angular clustering of z ~ 2.3 distant red galaxies (DRGs) measured by Quardi et al. We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be well fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w(θ) at θ = 10'', nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is ~44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z = 2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that ~30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star-forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z ~ 0 estimates. Down to the completeness limit of the Quadri et al. sample, we find that the halo masses of central DRGs are ~50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only ~2/3 of the time.
NASA Astrophysics Data System (ADS)
Christodoulou, L.; Eminian, C.; Loveday, J.; Norberg, P.; Baldry, I. K.; Hurley, P. D.; Driver, S. P.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Peacock, J. A.; Bland-Hawthorn, J.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-09-01
We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ˜L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for ˜L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L ˜ 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark & Peebles. A visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.
Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wentao; Yang, Xiaohu; Zhang, Jun
We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% atmore » 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.« less
NASA Astrophysics Data System (ADS)
Javadi, Atefeh; Saberi, Maryam; van Loon, Jacco Th.; Khosroshahi, Habib; Golabatooni, Najmeh; Mirtorabi, Mohammad Taghi
2015-03-01
We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope, of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fourth paper of the series, we present a search for variable red giant stars in an almost square degree region comprising most of the galaxy's disc, carried out with the WFCAM (Wide Field CAMera) instrument in the K band. These data, taken during the period 2005-2007, were complemented by J- and H-band images. Photometry was obtained for 403 734 stars in this region; of these, 4643 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. The variable stars are concentrated towards the centre of M33, more so than low-mass, less-evolved red giants. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. Most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey. The photometric catalogue is made publicly available at the Centre de Données astronomiques de Strasbourg.
Doi, Ryoichi; Arif, Chusnul
2014-01-01
Red-green-blue (RGB) channels of RGB digital photographs were loaded with luminosity-adjusted R, G, and completely white grayscale images, respectively (RGwhtB method), or R, G, and R + G (RGB yellow) grayscale images, respectively (RGrgbyB method), to adjust the brightness of the entire area of multi-temporally acquired color digital photographs of a rice canopy. From the RGwhtB or RGrgbyB pseudocolor image, cyan, magenta, CMYK yellow, black, L*, a*, and b* grayscale images were prepared. Using these grayscale images and R, G, and RGB yellow grayscale images, the luminosity-adjusted pixels of the canopy photographs were statistically clustered. With the RGrgbyB and the RGwhtB methods, seven and five major color clusters were given, respectively. The RGrgbyB method showed clear differences among three rice growth stages, and the vegetative stage was further divided into two substages. The RGwhtB method could not clearly discriminate between the second vegetative and midseason stages. The relative advantages of the RGrgbyB method were attributed to the R, G, B, magenta, yellow, L*, and a* grayscale images that contained richer information to show the colorimetrical differences among objects than those of the RGwhtB method. The comparison of rice canopy colors at different time points was enabled by the pseudocolor imaging method. PMID:25302325
X-rays across the galaxy population - I. Tracing the main sequence of star formation
NASA Astrophysics Data System (ADS)
Aird, J.; Coil, A. L.; Georgakakis, A.
2017-03-01
We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.
The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration
NASA Astrophysics Data System (ADS)
Xu, Shuangjing; Zhang, Bo; Reid, Mark J.; Menten, Karl M.; Zheng, Xingwu; Wang, Guangli
2018-05-01
We report astrometric results of VLBI phase-referencing observations of 22 GHz H2O masers emission toward the red hypergiant VX Sgr, one of most massive and luminous red hypergiant stars in our Galaxy, using the Very Long Baseline Array. A background source, J1820‑2528, projected 4.°4 from the target VX Sgr, was used as the phase reference. For the low decl. of these sources, such a large separation normally would seriously degrade the relative astrometry. We use a two-step method of tropospheric delay calibration, which combines the VLBI geodetic-block (or Global Positioning System) calibration with an image-optimization calibration, to obtain a trigonometric parallax of 0.64 ± 0.04 mas, corresponding to a distance of {1.56}-0.10+0.11 kpc. The measured proper motion of VX Sgr is 0.36 ± 0.76 and ‑2.92 ± 0.78 mas yr‑1 in the eastward and northward directions. The parallax and proper motion confirms that VX Sgr belong to the Sgr OB1 association. Rescaling bolometric luminosities in the literature to our parallax distance, we find that the luminosity of VX Sgr is (1.95 ± 0.62) × 105 L ⊙, where the uncertainty is dominated by differing photometry measurements.
EXors and the stellar birthline
NASA Astrophysics Data System (ADS)
Moody, Mackenzie S. L.; Stahler, Steven W.
2017-04-01
We assess the evolutionary status of EXors. These low-mass, pre-main-sequence stars repeatedly undergo sharp luminosity increases, each a year or so in duration. We place into the HR diagram all EXors that have documented quiescent luminosities and effective temperatures, and thus determine their masses and ages. Two alternate sets of pre-main-sequence tracks are used, and yield similar results. Roughly half of EXors are embedded objects, I.e., they appear observationally as Class I or flat-spectrum infrared sources. We find that these are relatively young and are located close to the stellar birthline in the HR diagram. Optically visible EXors, on the other hand, are situated well below the birthline. They have ages of several Myr, typical of classical T Tauri stars. Judging from the limited data at hand, we find no evidence that binarity companions trigger EXor eruptions; this issue merits further investigation. We draw several general conclusions. First, repetitive luminosity outbursts do not occur in all pre-main-sequence stars, and are not in themselves a sign of extreme youth. They persist, along with other signs of activity, in a relatively small subset of these objects. Second, the very existence of embedded EXors demonstrates that at least some Class I infrared sources are not true protostars, but very young pre-main-sequence objects still enshrouded in dusty gas. Finally, we believe that the embedded pre-main-sequence phase is of observational and theoretical significance, and should be included in a more complete account of early stellar evolution.
CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souto, Diogo; Cunha, K.; Smith, V.
NGC 2420 is a ∼2 Gyr old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution ( R = 22,500) near-infrared ( λ 1.5–1.7 μ m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains six stars that are identified asmore » members of the first-ascent red giant branch (RGB), as well as six members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = −0.16 ± 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni) is also very small (∼0.03–0.06 dex), indicating a uniform cluster abundance distribution within the uncertainties. NGC 2420 is one of the clusters used to calibrate the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). The results from this manual analysis compare well with ASPCAP abundances for most of the elements studied, although for Na, Al, and V there are more significant offsets. No evidence of extra-mixing at the RGB luminosity bump is found in the {sup 12}C and {sup 14}N abundances from the pre-luminosity-bump RGB stars in comparison to the post-He core-flash RC stars.« less
NASA Astrophysics Data System (ADS)
Hamann, Fred; Zakamska, Nadia L.; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M.; Villforth, Carolin; Richards, Gordon T.; Herbst, Hanna; Brandt, W. Niel; Cook, Ben; Denney, Kelly D.; Greene, Jenny E.; Schneider, Donald P.; Strauss, Michael A.
2017-01-01
Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual `wingless' line profiles, large N V/Lyα, N V/C IV, Si IV/C IV and other flux ratios, and very broad and blueshifted [O III] λ5007. Here we present a new catalogue of C IV and N V emission-line data for 216 188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR colour, secondarily on REW(C IV), and not at all on luminosity or the Baldwin Effect. We identify a `core' sample of 97 ERQs with nearly uniform peculiar properties selected via I-W3 ≥ 4.6 (AB) and REW(C IV) ≥ 100 Å at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity
NASA Astrophysics Data System (ADS)
Oteo, I.; Ivison, R. J.; Dunne, L.; Smail, I.; Swinbank, A. M.; Zhang, Z.-Y.; Lewis, A.; Maddox, S.; Riechers, D.; Serjeant, S.; Van der Werf, P.; Biggs, A. D.; Bremer, M.; Cigan, P.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Ibar, E.; Messias, H.; Michałowski, M. J.; Pérez-Fournon, I.; van Kampen, E.
2016-08-01
Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L IR ˜ 2.5 × 1013 L ⊙ and a star formation rate of ˜ 4500 M ⊙ yr-1. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in the early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ˜ 3. Probing scales of ˜0.″1 or ˜800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C II] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C II] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oteo, I.; Ivison, R. J.; Dunne, L.
Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L {sub IR} ∼ 2.5 × 10{sup 13} L {sub ⊙} and a star formation rate of ∼ 4500 M {sub ⊙} yr{sup −1}. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in themore » early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ∼ 3. Probing scales of ∼0.″1 or ∼800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C ii] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C ii] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.« less
Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram
NASA Technical Reports Server (NTRS)
Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.;
1996-01-01
We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.
Detection of the Red Giant Branch Stars in the M82 Using the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Madore, B.; Sakai, S.
1999-01-01
We present color-magnitude diagrams and luminosity functions or stars in two halo regions of the irregular galaxy in M82, based on F555W and F814W photometry taken with the Hubble Space Telescope and Wide Field Planetary Camera 2.
New bound on neutrino dipole moments from globular-cluster stars
NASA Technical Reports Server (NTRS)
Raffelt, Georg G.
1990-01-01
Neutrino dipole moments mu(nu) would increase the core mass of red giants at the helium flash by delta(Mc) = 0.015 solar mass x mu(nu)/10 to the -12th muB (where muB is the Bohr magneton) because of enhanced neutrino losses. Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters, number counts of horizontal-branch stars and red giants in 15 globular clusters, and statistical parallax determinations of field RR Lyr luminosities yield delta(Mc) = 0.009 + or - 0.012 solar mass, so that conservatively mu(nu) is less than 3 x 10 to the -12th muB.
NASA Astrophysics Data System (ADS)
Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.
2016-06-01
We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. Davy; Mcgraw, John T.; Hess, Thomas R.; Liebert, James; Mccarthy, Donald W., Jr.
1994-01-01
The luminosity function at the end of the main sequence is determined from V, R, and I data taken by the charge coupled devices (CCD)/Transit Instrument, a dedicated telescope surveying an 8.25 min wide strip of sky centered at delta = +28 deg, thus sampling Galactic latitudes of +90 deg down to -35 deg. A selection of 133 objects chosen via R - I and V - I colors has been observed spectroscopically at the 4.5 m Multiple Mirror Telescope to assess contributions by giants and subdwarfs and to verify that the reddest targets are objects of extremely late spectral class. Eighteen dwarfs of type M6 or later have been discovered, with the latest being of type M8.5. Data used for the determination of the luminosity function cover 27.3 sq. deg down to a completeness limit of R = 19.0. This luminosity function, computed at V, I, and bolometric magnitudes, shows an increase at the lowest luminosities, corresponding to spectral types later than M6- an effect suggested in earlier work by Reid & Gilmore and Legget & Hawkins. When the luminosity function is segregated into north Galactic and south Galactic portions, it is found that the upturn at faint magnitudes exists only in the southern sample. In fact, no dwarfs with M(sub I) is greater than or equal to 12.0 are found within the limiting volume of the 19.4 sq deg northern sample, in stark contrast to the smaller 7.9 sq deg area at southerly latitudes where seven such dwarfs are found. This fact, combined with the fact that the Sun is located approximately 10-40 pc north of the midplane, suggests that the latest dwarfs are part of a young population with a scale height much smaller than the 350 pc value generally adopted for other M dwarfs. These objects comprise a young population either because the lower metallicities prevelant at earlier epochs inhibited the formation of late M dwarfs or because the older counterparts of this population have cooled beyond current detection limits. The latter scenario would hold if these late-type M dwarfs are substellar. The luminosity function data together with an empirical derivation of the mass-luminosity relation (from Henry & McCarthy) are used to compute a mass function independent of theory. This mass function increases toward the end of the main sequence, but the observed density of M dwarfs is still insufficient to account for the missing mass. If the increases seen in the luminosity and mass functions are indicative of a large, unseen, substellar population, brown dwarfs may yet add significantly to the mass of the Galaxy.
GALAXY EVOLUTION IN THE MID-INFRARED GREEN VALLEY: A CASE OF THE A2199 SUPERCLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gwang-Ho; Lee, Myung Gyoon; Sohn, Jubee
2015-02-20
We study the mid-infrared (MIR) properties of the galaxies in the A2199 supercluster at z = 0.03 to understand the star formation activity of galaxy groups and clusters in the supercluster environment. Using the Wide-field Infrared Survey Explorer data, we find no dependence of mass-normalized integrated star formation rates of galaxy groups/clusters on their virial masses. We classify the supercluster galaxies into three classes in the MIR color-luminosity diagram: MIR blue cloud (massive, quiescent, and mostly early-type), MIR star-forming sequence (mostly late-type), and MIR green valley galaxies. These MIR green valley galaxies are distinguishable from the optical green valley galaxiesmore » in the sense that they belong to the optical red sequence. We find that the fraction of each MIR class does not depend on the virial mass of each group/cluster. We compare the cumulative distributions of surface galaxy number density and cluster/group-centric distance for the three MIR classes. MIR green valley galaxies show the distribution between MIR blue cloud and MIR star-forming (SF) sequence galaxies. However, if we fix galaxy morphology, early- and late-type MIR green valley galaxies show different distributions. Our results suggest a possible evolutionary scenario of these galaxies: (1) late-type MIR SF sequence galaxies → (2) late-type MIR green valley galaxies → (3) early-type MIR green valley galaxies → (4) early-type MIR blue cloud galaxies. In this sequence, the star formation of galaxies is quenched before the galaxies enter the MIR green valley, and then morphological transformation occurs in the MIR green valley.« less
NASA Technical Reports Server (NTRS)
Sion, Edward M.; Starrfield, Sumner G.
1994-01-01
We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.
NASA Astrophysics Data System (ADS)
Campante, Tiago L.; Veras, Dimitri; North, Thomas S. H.; Miglio, Andrea; Morel, Thierry; Johnson, John A.; Chaplin, William J.; Davies, Guy R.; Huber, Daniel; Kuszlewicz, James S.; Lund, Mikkel N.; Cooke, Benjamin F.; Elsworth, Yvonne P.; Rodrigues, Thaíse S.; Vanderburg, Andrew
2017-08-01
Doppler-based planet surveys point to an increasing occurrence rate of giant planets with stellar mass. Such surveys rely on evolved stars for a sample of intermediate-mass stars (so-called retired A stars), which are more amenable to Doppler observations than their main-sequence progenitors. However, it has been hypothesized that the masses of subgiant and low-luminosity red-giant stars targeted by these surveys - typically derived from a combination of spectroscopy and isochrone fitting - may be systematically overestimated. Here, we test this hypothesis for the particular case of the exoplanet-host star HD 212771 using K2 asteroseismology. The benchmark asteroseismic mass (1.45^{+0.10}_{-0.09} M_{⊙) is significantly higher than the value reported in the discovery paper (1.15 ± 0.08 M⊙), which has been used to inform the stellar mass-planet occurrence relation. This result, therefore, does not lend support to the above hypothesis. Implications for the fates of planetary systems are sensitively dependent on stellar mass. Based on the derived asteroseismic mass, we predict the post-main-sequence evolution of the Jovian planet orbiting HD 212771 under the effects of tidal forces and stellar mass-loss.
Nebular Line Emission and Stellar Mass of Bright z 8 Galaxies "Super-Eights"
NASA Astrophysics Data System (ADS)
Holwerda, Benne; Bouwens, Rychard; Trenti, Michele; Oesch, Pascal; Labbe, Ivo; Smit, Renske; Roberts-Borsani, Guido; Bernard, Stephanie; Bridge, Joanna
2018-05-01
Searches for the Lyman-alpha emission from the very first galaxies ionizing the Universe have proved to be extremely difficult with limited success beyond z 7 (<3% detections). However, a search of all CANDELS yielded four bright z 8 sources with associated strong Lyman-alpha lines, despite the Universe expected to be 70% neutral at this time. The key to their selection is an extremely red IRAC color ([3.6]-[4.5]> 0.5, Roberts-Borsani+ 2016), indicative of very strong nebular line emission. Do such extreme line emitting galaxies produce most of the photons to reionize the Universe? We propose to expand the sample of bright z 8 galaxies with reliable IRAC colors with seven more Y-band dropouts found with HST and confirmed through HST/Spitzer. The Spitzer observations will test how many of bright z 8 galaxies are IRAC-red and measure both their stellar mass and [OIII]+Hbeta line strength. Together with Keck/VLT spectroscopy, they will address these questions: I) Do all luminous z 8 galaxies show such red IRAC colors ([OIII] emission / hard spectra)? II) Is luminosity or a red IRAC color the dominant predictor for Lyman-alpha emission? III) Or are these sources found along exceptionally transparent sightlines into the early Universe? With 11 bright z 8 sources along different lines-of-sight, all prime targets for JWST, we will aim to determine which of the considered factors (luminosity, color, sight-line) drives the high Lyman-alpha prevalence (100%) and insight into the sources reionizing the Universe.
A New Determination of the Luminosity Function of the Galactic Halo.
NASA Astrophysics Data System (ADS)
Dawson, Peter Charles
The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 < M(,v) < 14 is about 2 x 10('-5) M(,o) pc('-3). With due allowance for white dwarfs and binaries, and taking into account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.
Planets, Planetary Nebulae, and Intermediate Luminosity Optical Transients (ILOTs)
NASA Astrophysics Data System (ADS)
Soker, Noam
2018-05-01
I review some aspects related to the influence of planets on the evolution of stars before and beyond the main sequence. Some processes include the tidal destruction of a planet on to a very young main sequence star, on to a low mass main sequence star, and on to a brown dwarf. This process releases gravitational energy that might be observed as a faint intermediate luminosity optical transient (ILOT) event. I then summarize the view that some elliptical planetary nebulae are shaped by planets. When the planet interacts with a low mass upper asymptotic giant branch (AGB) star it both enhances the mass loss rate and shapes the wind to form an elliptical planetary nebula, mainly by spinning up the envelope and by exciting waves in the envelope. If no interaction with a companion, stellar or sub-stellar, takes place beyond the main sequence, the star is termed a Jsolated star, and its mass loss rates on the giant branches are likely to be much lower than what is traditionally assumed.
Turbulent Convection and Pulsation Stability of Stars
NASA Astrophysics Data System (ADS)
Xiong, Da-run
2017-10-01
The controversies about the excitation mechanism for low-temperature variables are reviewed: (1) Most people believe that γ Doradus variables are excited by the so-called convective blocking mechanism. Our researches show that the excitation of γ Doradus has no substantial difference from that of δ Scuti. They are two subgroups of a broader type of δ Stuti-γ Doradus stars: δ Scuti is the p-mode subgroup, while γ Doradus is the g-mode subgroup. (2) Most people believe that the solar and stellar solar-like oscillations are damped by convection, and they are driven by the so-called turbulent random excitation mechanism. Our researches show that convection is not solely a damping mechanism for stellar oscillations, otherwise it is unable to explain the Mira and Mira-like variables. By using our non-local and time-dependent theory of convection, we can reproduce not only the pulsationally unstable strip of δ Scuti and γ Doradus variables, but also the solar-like oscillation features of low-luminosity red giants and the Mira-like oscillation features of high-luminosity red giants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiner, Emily; Mathieu, Robert D.; Geller, Aaron M., E-mail: leiner@astro.wisc.edu
Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolutionmore » code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.« less
NASA Astrophysics Data System (ADS)
Wang, Tinggui; Yan, Lin; Dou, Liming; Jiang, Ning; Sheng, Zhenfeng; Yang, Chenwei
2018-07-01
We report the discovery of a sample of 19 low-redshift (z < 0.22) spectroscopically non-Seyfert galaxies that show slow declining mid-infrared (MIR) light curves (LCs), similar to those of tidal disruption event (TDE) candidates with extreme coronal lines. Two sources also showed relatively fast-rising MIR LCs. They consist of a 61 per cent sample of Wide-field Infrared Survey Explorer (WISE) MIR variable non-Seyfert galaxies with Sloan Digital Sky Survey (SDSS) spectra. In a comparison sample of optically selected Seyfert galaxies, the fraction of sources with such a LC is only 15 per cent. After rejecting five plausible obscured Seyfert galaxies with red MIR colours, the remaining 14 objects are studied in detail in this article. We fit the declining part of the LC with an exponential law and the decay time is typically one year. The observed peak MIR luminosities (νLν) after subtracting host galaxies are in the range of a few 1042-1044 erg s-1, with a median of 5 × 1043 erg s-1 in the W2 band. The black hole masses are distributed over a wide range, with more than half between 107 and 108 M⊙, but are significantly different from those of optical/UV selected TDEs. Furthermore, MIR luminosities are correlated with the black hole mass, stellar mass or luminosity of their host bulges. Most galaxies in the sample are red and luminous, with an absolute r magnitude between -20 and -23. We estimate the rate of event as about 10-4 galaxy-1 yr-1 among luminous red galaxies. We discuss several possibilities for variable infrared sources and conclude that most likely they are caused by short sporadic fuelling of supermassive black holes via either the instability of accretion flows or tidal disruption of stars.
The rate and efficiency of high-mass star formation along the Hubble sequence
NASA Technical Reports Server (NTRS)
Devereux, Nicholas A.; Young, Judith S.
1991-01-01
Data obtained with IRAS are used to compare and contrast the global star formation rates for a galactic sample which represents essentially all known noninteracting spiral and lenticular galaxies within 40 Mpc. The distribution of 60 micron luminosity is similar for spirals of types Sa-Scd inclusively, although the luminosities of the very early and very late types are, on average, one order of magnitude lower. High-mass star formation rates are similar for early, intermediate, and late type spirals, and the average high-mass star formation rate per unit molecular gas mass is independent of type for spiral galaxies. A remarkable homogeneity exists in the high-mass star-forming capabilities of spiral galaxies, particularly among the Sa-Scd types. The Hubble sequence is therefore not a sequence in the present-day rate or production efficiency of high-mass stars.
NASA Technical Reports Server (NTRS)
Yan, Lin; Choi, Philip I.; Fadda, D.; Marleau, F. R.; Soifer, B. T.; Im, M.; Armus, L.; Frayer, D. T.; Storrie-Lombardi, L. J.; Thompson, D. J.;
2004-01-01
We carried out direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R - Ks) >= 5.3 mag and Ks < 20:2 mag, using 24 micron data from the Spitzer Space Telescope. Combining deep 24 micron Ks- and R-band data over an area of 64 arcmin(sup 2) in ELAIS N1 of the Spitzer First Look Survey (FLS), we find that 50% +/- 6% of our extremely red object (ERO) sample have measurable 24 micron flux above the 3 (sigma) flux limit of 40 (micro)Jy. This flux limit corresponds to a star formation rate (SFR) of 12 solar masses per year 1, much more sensitive than any previous long-wavelength measurement. The 24 micron-detected EROs have 24 micron/2.2 micron and 24 micron/0.7 micron flux ratios consistent with infrared luminous, dusty sources at z >= 1, and are an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micron-detected EROs could be active galactic nuclei; however, the fraction among the whole ERO sample is probably small, 10%-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS N1 are probably at z 1. The mean 24 micron flux (167 (micro)Jy) of the 24 micron-detected ERO sample roughly corresponds to the rest-frame 12 micron luminosity, (nu)L(nu)(12 micron, of 3x10(exp 10)(deg) solar luminosities at z 1. Using the c IRAS (nu)L(nu)(12 (micron) and infrared luminosity LIR(8-1000 (micron), we infer that the (LIR) of the 24 micron- detected EROs is 3 x 10(exp 11) and 1 x 10(exp 12) solar luminosities at z = 1.0 and similar to that of local luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs). The corresponding SFR would be roughly 50-170 solar masses per year. If the timescale of this starbursting phase is on the order of 108 yr as inferred for the local LIRGs and ULIRGs, the lower limit on the masses of these 24 micron-detected EROs is 5 x 10(exp 9) to 2 x 10(exp 10) solar masses. It is plausible that some of the starburst EROs are in the midst of a violent transformation to become massive early type galaxies at the epoch of z 1-2.
NASA Astrophysics Data System (ADS)
Boyajian, Tabetha S.; von Braun, Kaspar; van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Jones, Jeremy; White, Russel; McAlister, Harold A.; ten Brummelaar, Theo A.; Ridgway, Stephen; Gies, Douglas; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm
2013-07-01
Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C), Kron (R K I K), Sloan (griz), and WISE (W 3 W 4) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.
The mysterious age invariance of the planetary nebula luminosity function bright cut-off
NASA Astrophysics Data System (ADS)
Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.
2018-05-01
Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.
Galaxy evolution by color-log(n) type since redshift unity in the Hubble Ultra Deep Field
NASA Astrophysics Data System (ADS)
Cameron, E.; Driver, S. P.
2009-01-01
Aims: We explore the use of the color-log(n) (where n is the global Sérsic index) plane as a tool for subdividing the galaxy population in a physically-motivated manner out to redshift unity. We thereby aim to quantify surface brightness evolution by color-log(n) type, accounting separately for the specific selection and measurement biases against each. Methods: We construct (u-r) color-log(n) diagrams for distant galaxies in the Hubble Ultra Deep Field (UDF) within a series of volume-limited samples to z=1.5. The color-log(n) distributions of these high redshift galaxies are compared against that measured for nearby galaxies in the Millennium Galaxy Catalogue (MGC), as well as to the results of visual morphological classification. Based on this analysis we divide our sample into three color-structure classes. Namely, “red, compact”, “blue, diffuse” and “blue, compact”. Luminosity-size diagrams are constructed for members of the two largest classes (“red, compact” and “blue, diffuse”), both in the UDF and the MGC. Artificial galaxy simulations (for systems with exponential and de Vaucouleurs profile shapes alternately) are used to identify “bias-free” regions of the luminosity-size plane in which galaxies are detected with high completeness, and their fluxes and sizes recovered with minimal surface brightness-dependent biases. Galaxy evolution is quantified via comparison of the low and high redshift luminosity-size relations within these “bias-free” regions. Results: We confirm the correlation between color-log(n) plane position and visual morphological type observed locally and in other high redshift studies in the color and/or structure domain. The combined effects of observational uncertainties, the morphological K-correction and cosmic variance preclude a robust statistical comparison of the shape of the MGC and UDF color-log(n) distributions. However, in the interval 0.75 < z <1.0 where the UDF i-band samples close to rest-frame B-band light (i.e., the morphological K-correction between our samples is negligible) we are able to present tentative evidence of bimodality, albiet for a very small sample size (17 galaxies). Our unique approach to quantifying selection and measurement biases in the luminosity-size plane highlights the need to consider errors in the recovery of both magnitudes and sizes, and their dependence on profile shape. Motivated by these results we divide our sample into the three color-structure classes mentioned above and quantify luminosity-size evolution by galaxy type. Specifically, we detect decreases in B-band, surface brightness of 1.57 ± 0.22 mag arcsec-2 and 1.65 ± 0.22 mag arcsec-2 for our “blue, diffuse” and “red, compact” classes respectively between redshift unity and the present day.
Type II supernovae in low luminosity host galaxies
NASA Astrophysics Data System (ADS)
Gutiérrez, C. P.; Anderson, J. P.; Sullivan, M.; Dessart, L.; González-Gaitan, S.; Galbany, L.; Dimitriadis, G.; Arcavi, I.; Bufano, F.; Chen, T.-W.; Dennefeld, M.; Gromadzki, M.; Haislip, J. B.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Leloudas, G.; Maguire, K.; McCully, C.; Morrell, N.; E, F. Olivares; Pignata, G.; Reichart, D. E.; Reynolds, T.; Smartt, S. J.; Sollerman, J.; Taddia, F.; Takáts, K.; Terreran, G.; Valenti, S.; Young, D. R.
2018-06-01
We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V -band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low luminosity galaxies display weaker pEWs of Fe II λ5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.
Simulations of dust in interacting galaxies
NASA Astrophysics Data System (ADS)
Jonsson, Patrik
This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star-formation indicators in the presence of dust. The far-infrared luminosity is found to be reliable. In contrast, the Ha and far-ultraviolet luminosities suffer severely from dust attenuation, and dust corrections can only partially remedy the situation.
Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle.
He, Y L; Wu, Y H; Quan, F S; Liu, Y G; Zhang, Y
2013-09-04
To better understand the function of the myostatin gene and its promoter region in bovine, we amplified and sequenced the myostatin gene and promoter from the blood of Qinchuan and Red Angus cattle by using polymerase chain reaction. The sequences of Qinchuan and Red Angus cattle were compared with those of other cattle breeds available in GenBank. Exon splice sites were confirmed by mRNA sequencing. Compared to the published sequence (GenBank accession No. AF320998), 69 single nucleotide polymorphisms (SNPs) were identified in the Qinchuan myostatin gene, only one of which was an insertion mutation in Qinchuan cattle. There was a 16-bp insertion in the first 705-bp intron in 3 Qinchuan cattle. A total of 7 SNPs were identified in exon 3, in which the mutation occurred in the third base of the codon and was synonymous. On comparing the Qinchuan myostatin gene sequence to that of Red Angus cattle, a total of 50 SNPs were identified in the first and third exons. In addition, there were 18 SNPs identified in the Qinchuan cattle promoter region compared with those of other cattle compared to the Red Angus cattle myostatin promoter region. breeds (GenBank accession No. AF348479), but only 14 SNPs when compared to the Red Angus cattle myostatin promoter region.
Yu, Jeong-Nam; Han, Sang-Hoon; Kim, Bang-Hwan; Kryukov, Alexey P; Kim, Soonok; Lee, Byoung-Yoon; Kwak, Myounghai
2012-11-01
The red fox (Vulpes vulpes) is the most widely distributed terrestrial carnivore in the world, occurring throughout most of North America, Europe, Asia, and North Africa. In South Korea, however, this species has been drastically reduced due to habitat loss and poaching. Consequently, it is classified as an endangered species in Korea. As a first step of a planned red fox restoration project, preserved red fox museum specimens were used to determine the genetic status of red foxes that had previously inhabited South Korea against red foxes from neighboring countries. Total eighty three mtDNA cytochrome b sequences, including 22 newly obtained East Asian red fox sequences and worldwide red fox sequences from NCBI, were clustered into three clades (i.e., I, II, and III) based on haplotype network and neighbor-joining trees. The mean genetic distance between clades was 2.0%. Clade III contained South Korean and other East Asian samples in addition to Eurasian and North Pacific individuals. In clade III, South Korean individuals were separated into two lineages of Eurasian and North Pacific groups, showing unclear phylogeographic structuring and admixture. This suggests that South Korean red fox populations may have been composed of individuals from these two different genetic lineages.
NASA Astrophysics Data System (ADS)
Riebel, D.; Srinivasan, S.; Sargent, B.; Meixner, M.
2012-07-01
We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ~30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 × 10-5 M ⊙ yr-1, equivalent to a total mass injection rate (including the gas) into the ISM of ~6 × 10-3 M ⊙ yr-1. Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K s band as a function of J - K s color, BC_{K_{s}} = -0.40(J-K_{s})^2 + 1.83(J-K_{s}) + 1.29. We determine several IR color proxies for the dust mass-loss rate (\\dot{M}_{d}) from C-rich AGB stars, such as log \\dot{M_{d}} = ({-18.90}/({(K_{s}-[8.0])+3.37}))-5.93. We find that a larger fraction of AGB stars exhibiting the "long-secondary period" phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.
3 CFR 8535 - Proclamation 8535 of June 11, 2010. Flag Day and National Flag Week, 2010
Code of Federal Regulations, 2011 CFR
2011-01-01
..., the thirteen stripes alternating red and white, and thirteen white stars in a blue field, represented... luminosity, and the enduring American story that it represents. Although the configuration of stars and... first embraced by our Founders, the Stars and Stripes remain the symbol of our Nation’s pride. On Flag...
NASA Astrophysics Data System (ADS)
Shahbazian, R. K.; Borngen, F.
1984-09-01
A supernova near the galaxy Zw1 16.7+1.57, has been found on the maps of the Palomar Observatory. The eye estimation of photographic and red magnitudes gives: mpg = 18.3, mr = 18.6. The blue colour and the supposed luminosity (Mpg = -17.2) of the object suggest that it is of type II near the maximum.
BLAZAR ANTI-SEQUENCE OF SPECTRAL VARIATION WITHIN INDIVIDUAL BLAZARS: CASES FOR MRK 501 AND 3C 279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jin; Zhang, Shuang-Nan; Liang, En-Wei, E-mail: zhang.jin@hotmail.com
2013-04-10
The jet properties of Mrk 501 and 3C 279 are derived by fitting broadband spectral energy distributions (SEDs) with lepton models. The derived {gamma}{sub b} (the break Lorenz factor of the electron distribution) is 10{sup 4}-10{sup 6} for Mrk 501 and 200 {approx} 600 for 3C 279. The magnetic field strength (B) of Mrk 501 is usually one order of magnitude lower than that of 3C 279, but their Doppler factors ({delta}) are comparable. A spectral variation feature where the peak luminosity is correlated with the peak frequency, which is opposite from the blazar sequence, is observed in the twomore » sources. We find that (1) the peak luminosities of the two bumps in the SEDs for Mrk 501 depend on {gamma}{sub b} in both the observer and co-moving frames, but they are not correlated with B and {delta} and (2) the luminosity variation of 3C 279 is dominated by the external Compton (EC) peak and its peak luminosity is correlated with {gamma}{sub b} and {delta}, but anti-correlated with B. These results suggest that {gamma}{sub b} may govern the spectral variation of Mrk 501 and {delta} and B would be responsible for the spectral variation of 3C 279. The narrow distribution of {gamma}{sub b} and the correlation of {gamma}{sub b} and B in 3C 279 would be due to the cooling from the EC process and the strong magnetic field. Based on our brief discussion, we propose that this spectral variation feature may originate from the instability of the corona but not from the variation of the accretion rate as does the blazar sequence.« less
Cosmology with XMM galaxy clusters: the X-CLASS/GROND catalogue and photometric redshifts
NASA Astrophysics Data System (ADS)
Ridl, J.; Clerc, N.; Sadibekova, T.; Faccioli, L.; Pacaud, F.; Greiner, J.; Krühler, T.; Rau, A.; Salvato, M.; Menzel, M.-L.; Steinle, H.; Wiseman, P.; Nandra, K.; Sanders, J.
2017-06-01
The XMM Cluster Archive Super Survey (X-CLASS) is a serendipitously detected X-ray-selected sample of 845 galaxy clusters based on 2774 XMM archival observations and covering an approximately 90 deg2 spread across the high-Galactic latitude (|b| > 20°) sky. The primary goal of this survey is to produce a well-selected sample of galaxy clusters on which cosmological analyses can be performed. This paper presents the photometric redshift follow-up of a high signal-to-noise ratio subset of 265 of these clusters with declination δ < +20° with Gamma-Ray Burst Optical and Near-Infrared Detector (GROND), a 7-channel (grizJHK) simultaneous imager on the MPG 2.2-m telescope at the ESO La Silla Observatory. We use a newly developed technique based on the red sequence colour-redshift relation, enhanced with information coming from the X-ray detection to provide photometric redshifts for this sample. We determine photometric redshifts for 232 clusters, finding a median redshift of z = 0.39 with an accuracy of Δz = 0.02(1 + z) when compared to a sample of 76 spectroscopically confirmed clusters. We also compute X-ray luminosities for the entire sample and find a median bolometric luminosity of 7.2 × 1043 erg s-1 and a median temperature of 2.9 keV. We compare our results to those of the XMM-XCS and XMM-XXL surveys, finding good agreement in both samples. The X-CLASS catalogue is available online at http://xmm-lss.in2p3.fr:8080/l4sdb/.
Classification of O Stars in the Yellow-Green: The Exciting Star VES 735
NASA Astrophysics Data System (ADS)
Kerton, C. R.; Ballantyne, D. R.; Martin, P. G.
1999-05-01
Acquiring data for spectral classification of heavily reddened stars using traditional criteria in the blue-violet region of the spectrum can be prohibitively time consuming using small to medium sized telescopes. One such star is the Vatican Observatory emission-line star VES 735, which we have found excites the H II region KR 140. In order to classify VES 735, we have constructed an atlas of stellar spectra of O stars in the yellow-green (4800-5420 Å). We calibrate spectral type versus the line ratio He I lambda4922:He II lambda5411, showing that this ratio should be useful for the classification of heavily reddened O stars associated with H II regions. Application to VES 735 shows that the spectral type is O8.5. The absolute magnitude suggests luminosity class V. Comparison of the rate of emission of ionizing photons and the bolometric luminosity of VES 735, inferred from radio and infrared measurements of the KR 140 region, to recent stellar models gives consistent evidence for a main-sequence star of mass 25 M_solar and age less than a few million years with a covering factor 0.4-0.5 by the nebular material. Spectra taken in the red (6500-6700 Å) show that the stellar Hα emission is double-peaked about the systemic velocity and slightly variable. Hβ is in absorption, so that the emission-line classification is ``(e)''. However, unlike the case of the more well-known O(e) star zeta Oph, the emission from VES 735 appears to be long-lived rather than episodic.
MASS OUTFLOW AND CHROMOSPHERIC ACTIVITY OF RED GIANT STARS IN GLOBULAR CLUSTERS. II. M13 AND M92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meszaros, Sz.; Dupree, A. K.; Szalai, T.
High-resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in H{alpha} and Ca II K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in H{alpha} generally appears in stars with T {sub eff} {approx}< 4500 K and log L/L {sub sun}{approx}> 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for H{alpha} revealsmore » the onset of chromospheric expansion in stars more luminous than log (L/L {sub sun}) {approx} 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in H{alpha} most probably due to decreased T {sub eff} and changing atmospheric structure. The Ca II K{sub 3} outflow velocities are larger than shown by H{alpha} at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in H{alpha} than RGB objects. While the H{alpha} velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92, shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the 'second-parameter' effect.« less
NASA Technical Reports Server (NTRS)
Madore, Barry F.; Freedman, Wendy L.
1995-01-01
Based on both empirical data for the nearby galaxies, and on computer simulations, we show that measuring the position of the tip of the first-ascent red-giant branch provides a means of obtaining the distances to nearby galaxies with a precision and accuracy comparable to using Cepheids and/or RR Lyrae variables. We present an analysis of synthetic I vs (V-I) color magnitude diagrams of Population 2 systems to investigate the use of the observed discontinuity in the I-band luminosity function as a primary distance indicator. In the simulations we quantify the effects (1) signal to noise, (2) crowding, (3) population size, and (4) non-giant-branch-star contamination, on the method adopted for detecting the discontinuity,, measuring its luminosity, and estimating its uncertainity. We discuss sources of systematic error in the context of observable parameters, such as the signal-to-noise ratio and/or surface brightness. The simulations are then scaled to observed color-magnitude diagrams. It is concluded, that from the ground the tip of the red-giant-branch method can be sucessfully used to determine distances accurate to +/- 10% for galaxies out to 3 Mpc (mu approximately 27.5 mag); and from space a factor of four further in distance (mu approximately 30.6 mag) can be reached using HST. This method can be applied whereever a metal-poor population (-2.0 less than Z less than -0.7) of red-giant stars is detected (whose age is in the range 7-17 Gyr), whether that population resides in the halo of a spiral galaxy, the extended outer disk of a dwarf irregular, or in the outer periphery of an elliptical galaxy.
NASA Astrophysics Data System (ADS)
Griffith, Roger L.; Wright, Jason T.; Maldonado, Jessica; Povich, Matthew S.; Sigurđsson, Steinn; Mullan, Brendan
2015-04-01
Nearby Type iii (galaxy-spanning) Kardashev supercivilizations would have high mid-infrared (MIR) luminosities. We have used the Wide-field Infrared Survey Explorer (WISE) to survey ∼ 1× {{10}5} galaxies for extreme MIR emission, 1 × 103 times more galaxies than the only previous such search. We have calibrated the WISE All-sky Catalog pipeline products to improve their photometry for extended sources. We present 563 extended sources with |b|≥slant 10 and red MIR colors, having visually vetted them to remove artifacts. No galaxies in our sample host an alien civilization reprocessing more than 85% of its starlight into the MIR, and only 50 galaxies, including Arp 220, have MIR luminosities consistent with \\gt 50% reprocessing. Ninety of these (likely) extragalactic sources have little literature presence; in most cases, they are likely barely resolved galaxies or pairs of galaxies undergoing large amounts of star formation. Five are new to science and deserve further study. The Be star 48 Librae sits within a MIR nebula, and we suggest that it may be creating dust. WISE, 2MASS, and Spitzer imagery shows that IRAS 04287+6444 is consistent with a previously unnoticed, heavily extinguished cluster of young stellar objects. We identify five “passive” (i.e., red) spiral galaxies with unusually high MIR and low NUV luminosity. We search a set of H i dark galaxies for MIR emission and find none. These 90 poorly understood sources and 5 anomalous passive spirals deserve follow-up via both SETI and conventional astrophysics.
Simultaneous Survey of Water and Class I Methanol Masers toward Red MSX Sources
NASA Astrophysics Data System (ADS)
Kim, Chang-Hee; Kim, Kee-Tae; Park, Yong-Sun
2018-06-01
We report simultaneous single-dish surveys of 22 GHz H2O and 44 and 95 GHz class I CH3OH masers toward 299 Red Midcourse Space Experiment Sources in the protostellar stage. The detection rates are 45% at 22 GHz, 28% at 44 GHz, and 23% at 95 GHz. There are 15, 53, and 51 new discoveries at 22, 44, and 95 GHz, respectively. We detect high-velocity (>30 km s‑1) features in 27 H2O maser sources. The 95 GHz maser emission is detected only in 44 GHz maser sources. The two transitions show strong correlations in the peak velocity, peak flux density, and isotropic maser luminosity, indicating that they are likely generated in the same sites by the same mechanisms. The 44 GHz masers have much narrower distributions than 22 GHz masers in the relative peak velocity and velocity range, while 6.7 GHz class II CH3OH masers have distributions intermediate between the two. The maser luminosity significantly correlates with the parental clump mass, while it correlates well with the bolometric luminosity of the central protostar only when data of the low-mass regime from the literature are added. Comparison with the results of previous maser surveys toward massive star-forming regions suggests that the detection rates of 22 and 44 GHz masers tend to increase as the central objects evolve. This is contrary to the trends found in low- and intermediate-mass star-forming regions. Thus, the occurrence of both masers might depend on the surrounding environments as well as on the evolution of the central object.
Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases
NASA Astrophysics Data System (ADS)
Pizzolato, N.; Maggio, A.; Sciortino, S.
2000-09-01
We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.
Resolving the Discrepancy of Distance to M60, a Giant Elliptical Galaxy in Virgo
NASA Astrophysics Data System (ADS)
Lee, Myung Gyoon; Jang, In Sung
2017-05-01
There is a well-known discrepancy in the distance estimation of M60, a giant elliptical galaxy in Virgo; the planetary nebula luminosity function (PNLF) distance moduli for this galaxy are, on average, 0.4 mag smaller than the values based on the surface brightness fluctuation (SBF) in the literature. We present photometry of the resolved stars in an outer field of M60 based on deep F775W and F850LP images in the Hubble Space Telescope obtained as part of the Pure Parallel Program in the archive. Detected stars are mostly old red giants in the halo of M60. With this photometry, we determine a distance to M60 using the tip of the red giant branch (TRGB). A TRGB is detected at F850LP{}{TRGB}=26.70+/- 0.06 mag, in the luminosity function of the red giants. This value corresponds to F814W{}0,{TRGB}=27.13+/- 0.06 mag and {{QT}}{TRGB}=27.04+/- 0.07 mag, where QT is a color-corrected F814W magnitude. From this we derive a distance modulus, {(m-M)}0=31.05+/- 0.07({ran}) +/- 0.06({sys}) (d=16.23+/- 0.50({ran})+/- 0.42({sys}) Mpc). This value is 0.3 mag larger than the PNLF distances and 0.1 mag smaller than the SBF distances in the previous studies, which indicates that the PNLF distances to M60 reported in the literature have larger uncertainties than the suggested values.
a Study of the AGB in Local Group Bulge Populations
NASA Astrophysics Data System (ADS)
Rich, R.
1994-01-01
We propose to survey the bolometric luminosities, colors, and space distribution of the most luminous asymptotic giant branch (AGB) stars in the bulges of M31, M32, and M33. We seek to discover whether the bulges of these galaxies are relatively young, of order 10 Gyr rather than 15 Gyr. We will use WFPC2 and the R, I, and F1042M (1 micron) filters. Knowing that F1042M falls on the first continuum point of M giants, we have shown that we can use 1.04 micron fluxes to reliably calculate bolometric magnitudes for these very red stars. Color information from R and I will permit (1) comparison with Galactic bulge M giants, (2) an estimate of the spread of abundance and (3) increase the accuracy of the bolometric magnitudes. Frames with the damaged HST show signs of resolution to within 3" of the M31 nucleus; Red images with the aberrated HST show a red star cluster associated with the nucleus. Ground-based studies of M32 find an intermediate-age population from spectroscopy and infrared photometry. The repaired HST should resolve stars close to the nuclei of these galaxies. We will measure bolometric luminosity functions to determine if the populations are intermediate age, and attempt to measure the abundance range for stars near the nuclei of these galaxies. If metals have been lost due to winds, theory predicts that we should see a substantial spread of abundances even near the nucleus.
The Near-infrared Tip of the Red Giant Branch. I. A Calibration in the Isolated Dwarf Galaxy IC 1613
NASA Astrophysics Data System (ADS)
Madore, Barry F.; Freedman, Wendy L.; Hatt, Dylan; Hoyt, Taylor J.; Monson, Andrew J.; Beaton, Rachael L.; Rich, Jeffrey A.; Jang, In Sung; Lee, Myung Gyoon; Scowcroft, Victoria; Seibert, Mark
2018-05-01
Based on observations from the FourStar near-infrared camera on the 6.5 m Baade-Magellan telescope at Las Campanas, Chile, we present calibrations of the JHK luminosities of stars defining the tip of the red giant branch (TRGB) in the halo of the Local Group dwarf galaxy IC 1613. We employ metallicity-independent (rectified) T-band magnitudes—constructed using J-, H-, and K-band magnitudes and both (J ‑ H) and (J ‑ K) colors to flatten the upward-sloping red giant branch tips as otherwise seen in their apparent color–magnitude diagrams. We describe and quantify the advantages of working at these particular near-infrared wavelengths, which are applicable to both the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST). We also note that these same wavelengths can be accessed from the ground for an eventual tie-in to Gaia for absolute astrometry and parallaxes to calibrate the intrinsic luminosity of the TRGB. Adopting the color terms derived from the IC 1613 data, as well as the zero points from a companion study of the Large Magellanic Cloud, whose distance is anchored to the geometric distances of detached eclipsing binaries, we find a true distance modulus of 24.32 ± 0.02 (statistical) ±0.05 mag (systematic) for IC 1613, which compares favorably with the recently published multi-wavelength, multi-method consensus modulus of 24.30 ± 0.05 mag by Hatt et al.
SPIRITS: Uncovering Unusual Infrared Transients with Spitzer
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi M.; Bally, John; Masci, Frank; Cody, Ann Marie; Bond, Howard E.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Armus, Lee; Boyer, Martha; Cantiello, Matteo; Carlon, Robert L.; Cass, Alexander C.; Cook, David; Corgan, David T.; Faella, Joseph; Fox, Ori D.; Green, Wayne; Gehrz, R. D.; Helou, George; Hsiao, Eric; Johansson, Joel; Khan, Rubab M.; Lau, Ryan M.; Langer, Norbert; Levesque, Emily; Milne, Peter; Mohamed, Shazrene; Morrell, Nidia; Monson, Andy; Moore, Anna; Ofek, Eran O.; O' Sullivan, Donal; Parthasarathy, Mudumba; Perez, Andres; Perley, Daniel A.; Phillips, Mark; Prince, Thomas A.; Shenoy, Dinesh; Smith, Nathan; Surace, Jason; Van Dyk, Schuyler D.; Whitelock, Patricia A.; Williams, Robert
2017-04-01
We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer/IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between -11 and -14 (Vega-mag) and [3.6]-[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr-1 to >7 mag yr-1. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.
NASA Astrophysics Data System (ADS)
Houdashelt, M. L.
1992-05-01
Initial results are presented from an examination of near-infrared spectra (6800 - 9200 Angstroms) of 34 early-type galaxies - 17 in the Virgo cluster, 10 in the Coma cluster and seven field members. It has previously been speculated that E/S0 galaxies of similar luminosity in the Virgo and Coma clusters have different red stellar populations. To explore this possibility, pseudo-equivalent widths of a number of near-IR spectral features have been measured. The important features studied include the TiO bands near 7100, 7890, 8197, 8500 and 8950 Angstroms, which are mainly produced by the late-type stars whose flux contributes only about 10-20\\ the near-IR. The strengths of the Ca triplet (8498, 8542, 8662 Angstroms) and Na I doublet (8183, 8195 Angstroms) are also measured, since these features are affected by the relative contribution of dwarf stars to the red light. Although the main focus of this work is the search for spectral differences among the Coma, Virgo and field E/S0 populations, each subgroup of galaxies (and the sample as a whole) are also examined for correlations among the feature strengths, galaxy color and luminosity.
SPIRITS: Uncovering Unusual Infrared Transients with Spitzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn
2017-04-20
We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors betweenmore » 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.« less
Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox.
Vozdova, Miluse; Kubickova, Svatava; Cernohorska, Halina; Fröhlich, Jan; Rubes, Jiri
2016-01-01
Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox. © 2017 S. Karger AG, Basel.
Olivieri, Cristina; Marota, Isolina; Rizzi, Ermanno; Ermini, Luca; Fusco, Letizia; Pietrelli, Alessandro; De Bellis, Gianluca; Rollo, Franco; Luciani, Stefania
2014-01-01
In the last years several phylogeographic studies of both extant and extinct red deer populations have been conducted. Three distinct mitochondrial lineages (western, eastern and North-African/Sardinian) have been identified reflecting different glacial refugia and postglacial recolonisation processes. However, little is known about the genetics of the Alpine populations and no mitochondrial DNA sequences from Alpine archaeological specimens are available. Here we provide the first mitochondrial sequences of an Alpine Copper Age Cervus elaphus. DNA was extracted from hair shafts which were part of the remains of the clothes of the glacier mummy known as the Tyrolean Iceman or Ötzi (5,350-5,100 years before present). A 2,297 base pairs long fragment was sequenced using a mixed sequencing procedure based on PCR amplifications and 454 sequencing of pooled amplification products. We analyzed the phylogenetic relationships of the Alpine Copper Age red deer's haplotype with haplotypes of modern and ancient European red deer. The phylogenetic analyses showed that the haplotype of the Alpine Copper Age red deer falls within the western European mitochondrial lineage in contrast with the current populations from the Italian Alps belonging to the eastern lineage. We also discussed the phylogenetic relationships of the Alpine Copper Age red deer with the populations from Mesola Wood (northern Italy) and Sardinia.
Mass-losing M supergiants in the solar neighborhood
NASA Technical Reports Server (NTRS)
Jura, M.; Kleinmann, S. G.
1990-01-01
A list of the 21 mass-losing red supergiants (20 M type, one G type; L greater than 100,000 solar luminosities) within 2.5 kpc of the sun is compiled. These supergiants are highly evolved descendants of main-sequence stars with initial masses larger than 20 solar masses. The surface density is between about 1 and 2/sq kpc. As found previously, these stars are much less concentrated toward the Galactic center than W-R stars, which are also highly evolved massive stars. Although with considerable uncertainty, it is estimated that the mass return by the M supergiants is somewhere between 0.00001 and 0.00003 solar mass/sq kpc yr. In the hemisphere facing the Galactic center there is much less mass loss from M supergiants than from W-R stars, but, in the anticenter direction, the M supergiants return more mass than do the W-R stars. The duration of the M supergiant phase appears to be between 200,000 and 400,000 yr. During this phase, a star of initially at least 20 solar masses returns perhaps 3-10 solar masses into the interstellar medium.
Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan
2016-01-01
Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less
An outburst powered by the merging of two stars inside the envelope of a giant
NASA Astrophysics Data System (ADS)
Hillel, Shlomi; Schreier, Ron; Soker, Noam
2017-11-01
We conduct 3D hydrodynamical simulations of energy deposition into the envelope of a red giant star as a result of the merger of two close main sequence stars or brown dwarfs, and show that the outcome is a highly non-spherical outflow. Such a violent interaction of a triple stellar system can explain the formation of `messy', I.e. lacking any kind of symmetry, planetary nebulae and similar nebulae around evolved stars. We do not simulate the merging process, but simply assume that after the tight binary system enters the envelope of the giant star the interaction with the envelope causes the two components, stars or brown dwarfs, to merge and liberate gravitational energy. We deposit the energy over a time period of about 9 h, which is about 1 per cent of the the orbital period of the merger product around the centre of the giant star. The ejection of the fast hot gas and its collision with previously ejected mass are very likely to lead to a transient event, I.e. an intermediate luminosity optical transient.
DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, Evan N.; Fu, Xiaoting; Deng, Licai
2012-06-10
Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the {sup 7}Li(p, {alpha}){sup 4}He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants-14 of which are new discoveries-among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] {approx}< -0.7) Li-richmore » red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li){sub NLTE} = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.« less
Discovery of a very Lyman-α-luminous quasar at z = 6.62.
Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei
2017-02-02
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 10 12 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.
Discovery of a very Lyman-α-luminous quasar at z = 6.62
Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei
2017-01-01
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 1012 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit. PMID:28150701
Variability of Red Supergiants in M31 from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Soraisam, Monika D.; Bildsten, Lars; Drout, Maria R.; Bauer, Evan B.; Gilfanov, Marat; Kupfer, Thomas; Laher, Russ R.; Masci, Frank; Prince, Thomas A.; Kulkarni, Shrinivas R.; Matheson, Thomas; Saha, Abhijit
2018-05-01
Most massive stars end their lives as red supergiants (RSGs), a short-lived evolutionary phase when they are known to pulsate with varying amplitudes. The RSG period–luminosity (PL) relation has been measured in the Milky Way, the Magellanic Clouds and M33 for about 120 stars in total. Using over 1500 epochs of R-band monitoring from the Palomar Transient Factory survey over a five-year period, we study the variability of 255 spectroscopically cataloged RSGs in M31. We find that all RGSs brighter than M K ≈ ‑10 mag (log(L/L ⊙) > 4.8) are variable at Δm R > 0.05 mag. Our period analysis finds 63 with significant pulsation periods. Using the periods found and the known values of M K for these stars, we derive the RSG PL relation in M31 and show that it is consistent with those derived earlier in other galaxies of different metallicities. We also detect, for the first time, a sequence of likely first-overtone pulsations. Comparison to stellar evolution models from MESA confirms the first-overtone hypothesis and indicates that the variable stars in this sample have 12 M ⊙ < M < 24 M ⊙. As these RSGs are the immediate progenitors to Type II-P core-collapse supernovae (SNe), we also explore the implication of their variability in the initial-mass estimates for SN progenitors based on archival images of the progenitors. We find that this effect is small compared to the present measurement errors.
The Cool White Dwarf Luminosity Function and the Age of the Galactic Disk
NASA Astrophysics Data System (ADS)
Leggett, S. K.; Ruiz, Maria Teresa; Bergeron, P.
1998-04-01
We present new optical and infrared data for the cool white dwarfs in the proper motion sample of Liebert, Dahn, & Monet. Stellar properties--surface chemical composition, effective temperature, radius, surface gravity, mass, and luminosity--are determined from these data by using the model atmospheres of Bergeron, Saumon, & Wesemael. The space density contribution is calculated for each star and the luminosity function (LF) for cool white dwarfs is determined. Comparing the LF to the most recent cooling sequences by Wood implies that the age of the local region of the Galactic disk is 8 +/- 1.5 Gyr. This result is consistent with the younger ages now being derived for the globular clusters and the universe itself.
DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochanek, C. S.
2011-11-01
SN 2008S and the 2008 NGC 300-OT were explosive transients of stars self-obscured by very dense, dusty stellar winds. An explosive transient with an unobserved shock breakout luminosity of order 10{sup 10} L{sub sun} is required to render the transients little obscured and visible in the optical at their peaks. Such a large breakout luminosity then implies that the progenitor stars were cool, red supergiants, most probably {approx}9 M{sub sun} extreme asymptotic giant branch stars. As the shocks generated by the explosions propagate outward through the dense wind, they produce a shock luminosity in soft X-rays that powers the long-livedmore » luminosity of the transients. Unlike typical cases of transients exploding into a surrounding circumstellar medium, the progenitor winds in these systems are optically thick to soft X-rays, easily absorb radio emission, and rapidly reform dust destroyed by the peak luminosity of the transients. As a result, X-rays are absorbed by the gas and the energy is ultimately radiated by the reformed dust. Three years post-peak, both systems are still significantly more luminous than their progenitor stars, but they are again fully shrouded by the reformed dust and only visible in the mid-IR. The high luminosity and heavy obscuration may make it difficult to determine the survival of the progenitor stars for {approx}10 years. However, our model indicates that SN 2008S, but not the NGC 300-OT, should now be a detectable X-ray source. SN 2008S has a higher estimated shock velocity and a lower density wind, so the X-rays begin to escape at a much earlier phase.« less
Sequence divergence of the red and green visual pigments in great apes and humans.
Deeb, S S; Jorgensen, A L; Battisti, L; Iwasaki, L; Motulsky, A G
1994-01-01
We have determined the coding sequences of red and green visual pigment genes of the chimpanzee, gorilla, and orangutan. The deduced amino acid sequences of these pigments are highly homologous to the equivalent human pigments. None of the amino acid differences occurred at sites that were previously shown to influence pigment absorption characteristics. Therefore, we predict the spectra of red and green pigments of the apes to have wavelengths of maximum absorption that differ by < 2 nm from the equivalent human pigments and that color vision in these nonhuman primates will be very similar, if not identical, to that in humans. A total of 14 within-species polymorphisms (6 involving silent substitutions) were observed in the coding sequences of the red and green pigment genes of the great apes. Remarkably, the polymorphisms at 6 of these sites had been observed in human populations, suggesting that they predated the evolution of higher primates. Alleles at polymorphic sites were often shared between the red and green pigment genes. The average synonymous rate of divergence of red from green sequences was approximately 1/10th that estimated for other proteins of higher primates, indicating the involvement of gene conversion in generating these polymorphisms. The high degree of homology and juxtaposition of these two genes on the X chromosome has promoted unequal recombination and/or gene conversion that led to sequence homogenization. However, natural selection operated to maintain the degree of separation in peak absorbance between the red and green pigments that resulted in optimal chromatic discrimination. This represents a unique case of molecular coevolution between two homologous genes that functionally interact at the behavioral level. PMID:8041777
Carbon and nitrogen abundances of stellar populations in the globular cluster M 2
NASA Astrophysics Data System (ADS)
Lardo, C.; Pancino, E.; Mucciarelli, A.; Milone, A. P.
2012-12-01
We present CH and CN index analysis and C and N abundance calculations based on the low-resolution blue spectra of red giant branch (RGB) stars in the Galactic globular cluster NGC 7089 (M 2). Our main goal is to investigate the C-N anticorrelation for this intermediate metallicity cluster. The data were collected with DOLORES, the multiobject, low-resolution facility at the Telescopio Nazionale Galileo. We first looked for CH and CN band strength variations and bimodalities in a sample of RGB stars with 17.5 ≤ V ≤ 14.5. Thus we derived C and N abundances under LTE assumption by comparing observed spectra with synthetic models from the spectral features at 4300 Å (G-band) and at ~3883 Å (CN). Spectroscopic data were coupled with UV photometry obtained during the spectroscopic run. We found a considerable star-to-star variation in both A(C) and A(N) at all luminosities for our sample of 35 targets. These abundances appear to be anticorrelated, with a hint of bimodality in the C content for stars with luminosities below the RBG bump (V ~ 15.7), while the range of variations in N abundances is very large and spans almost ~2 dex. We find additional C depletion as the stars evolve off the RGB bump, in fairly good agreement with theoretical predictions for metal-poor stars in the course of normal stellar evolution. We isolated two groups with N-rich and N-poor stars and found that N abundance variations correlate with the (U - V) color in the DOLORES color-magnitude diagram (CMD). The V, (U - V) CMD for this cluster shows an additional RGB sequence, located at the red of the main RGB and amounting to a small fraction of the total giant population. We identified two CH stars detected in previous studies in our U,V images. These stars, which are both cluster members, fall on this redder sequence, suggesting that the anomalous RGB should have a peculiar chemical pattern. Unfortunately, no additional spectra were obtained for stars in this previously unknown RGB branch. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias (PROGRAM ID: A22TAC_20).Full Table 1 and photometric data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/548/A107
The red supergiant population in the Perseus arm
NASA Astrophysics Data System (ADS)
Dorda, R.; Negueruela, I.; González-Fernández, C.
2018-04-01
We present a new catalogue of cool supergiants in a section of the Perseus arm, most of which had not been previously identified. To generate it, we have used a set of well-defined photometric criteria to select a large number of candidates (637) that were later observed at intermediate resolution in the infrared calcium triplet spectral range, using a long-slit spectrograph. To separate red supergiants from luminous red giants, we used a statistical method, developed in previous works and improved in the present paper. We present a method to assign probabilities of being a red supergiant to a given spectrum and use the properties of a population to generate clean samples, without contamination from lower luminosity stars. We compare our identification with a classification done using classical criteria and discuss their respective efficiencies and contaminations as identification methods. We confirm that our method is as efficient at finding supergiants as the best classical methods, but with a far lower contamination by red giants than any other method. The result is a catalogue with 197 cool supergiants, 191 of which did not appear in previous lists of red supergiants. This is the largest coherent catalogue of cool supergiants in the Galaxy.
Peering Through the Dust: NuSTAR Observations of Two First-2Mass Red Quasars
NASA Technical Reports Server (NTRS)
Lamassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat; Urry, C. Megan; Stern, Daniel; Yaqoob, Tahir; Lansbury, George B.; Civano, Francesca; Boggs, Steve E.; Zhang, Will
2016-01-01
Some reddened quasars appear to be transitional objects in the paradigm of merger-induced black hole growth/ galaxy evolution, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS-selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830 +3759 is moderately obscured N(sub H) = (2.1 +/- 0.2) x 10 (exp 22) per square centimeter) and F2M 1227+3214 is mildly absorbed (N(sub H),Z =3.4(+0.8/-0.7) X 10(exp -2) along the line of sight, heavier global obscuration may be present in both sources, with N(sub H) = 3.7 (+4.1/-2.6) X 10 (exp 23) per square centimeter) and less than 5.5 X 10(exp 23) per square centimeter) for F2M 0830+3759 and F2M 1227+ 3214, respectively. F2M 0830+3759 also has an excess of soft X-ray emission below 1 of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present keV, which is well accommodated by a model where 7% of the intrinsic X-ray emission from the active galactic nucleus (AGN) is scattered into the line of sight. While F2M 1227+3214 has a dust-to-gas ratio (E(B - V)/NH) consistent with the Galactic value, the value of E(B - V)/NH for F2M 0830+3759 is lower than the Galactic standard, consistent with the paradigm that the dust resides on galactic scales while the X-ray reprocessing gas originates within the dust sublimation zone of the broad-line region. The X-ray and 6.1 µm luminosities of these red quasars are consistent with the empirical relations derived for high-luminosity, unobscured quasars, extending the parameter space of obscured AGNs previously observed by NuSTAR to higher luminosities.
The cataclysmic variables from the Palomar-Green survey
NASA Astrophysics Data System (ADS)
Ringwald, F. A.
1993-09-01
This thesis explores the cataclysmic variables (CVs) found by the Palomar-Green (PG) survey. This is the first compilation of a statistically complete sample of CVs found by ultraviolet color excess, and not outburst behavior. Blue and red follow-up spectrophotometry suggests that 22 of 68 objects classified originally as CVs are hot subdwarfs. Cool companions may be mimicking CVs' flat energy distributions, although the possibility remains that some are face-on CVs. Spectra taken with the International Ultraviolet Explorer satellite prove useful for distinguishing difficult cases. With the CV sample defined, the orbital periods for eleven systems are investigated with radial velocity studies. At 16th magnitude, CV number counts increase by 2.3 mag-1, although this may level off. The luminosity function is examined for the first time, and a trend toward higher space density at low luminosity is suspected. Outburst properties are compiled, and low-luminosity dwarf novae inflate the total space density to 6 x 10-6 pc-3. I describe all the PG CVs and candidate objects, and show spectra for most. This sample should be useful for population studies, such as measuring the space density with trigonometric parallaxes, or finding the fraction of eclipsing CVs. A new class of nova-likes, the SW Sextantis stars, is characterized by absorption events of the emission lines at spectroscopic phase 0.5, accompanied by large phase lags between the lightcurves and the radial velocity curves and strong high-excitation emission. There are at least six such CVs in this sample of 33, so this mysterious behavior must be common and not peculiar, as previously thought. Five of these six objects eclipse. Serendipitous results for individual CVs include finding low-frequency quasi-periodic variations in the radial velocity curve of the dwarf nova BZ Ursae Majoris. While erratic from epoch to epoch, these are too coherent to be pure noise. Another dwarf nova, HX Pegasi, is caught with time-resolved spectrophotometry on the rise to outburst. This is the second-ever such observation, and the first with red spectra. HX Pegasi is also confirmed as having a novel subdwarf-K red star.
The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population
NASA Astrophysics Data System (ADS)
Eigenthaler, Paul; Puzia, Thomas H.; Taylor, Matthew A.; Ordenes-Briceño, Yasna; Muñoz, Roberto P.; Ribbeck, Karen X.; Alamo-Martínez, Karla A.; Zhang, Hongxin; Ángel, Simón; Capaccioli, Massimo; Côté, Patrick; Ferrarese, Laura; Galaz, Gaspar; Grebel, Eva K.; Hempel, Maren; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan; Paolillo, Maurizio; Powalka, Mathieu; Richtler, Tom; Roediger, Joel; Rong, Yu; Sánchez-Janssen, Ruben; Spengler, Chelsea
2018-03-01
We present a photometric study of the dwarf galaxy population in the core region (≲r vir/4) of the Fornax galaxy cluster based on deep u‧g‧i‧ photometry from the Next Generation Fornax Cluster Survey. All imaging data were obtained with the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Interamerican Observatory. We identify 258 dwarf galaxy candidates with luminosities ‑17 ≲ M g‧ ≲ ‑8 mag, corresponding to typical stellar masses of 9.5≳ {log}{{ \\mathcal M }}\\star /{M}ȯ ≳ 5.5, reaching ∼3 mag deeper in point-source luminosity and ∼4 mag deeper in surface brightness sensitivity compared to the classic Fornax Cluster Catalog. Morphological analysis shows that the dwarf galaxy surface-brightness profiles are well represented by single-component Sérsic models with average Sérsic indices of < n{> }u\\prime ,g\\prime ,i\\prime =(0.78{--}0.83)+/- 0.02 and average effective radii of < {r}e{> }u\\prime ,g\\prime ,i\\prime =(0.67{--}0.70)+/- 0.02 {kpc}. Color–magnitude relations indicate a flattening of the galaxy red sequence at faint galaxy luminosities, similar to the one recently discovered in the Virgo cluster. A comparison with population synthesis models and the galaxy mass–metallicity relation reveals that the average faint dwarf galaxy is likely older than ∼5 Gyr. We study galaxy scaling relations between stellar mass, effective radius, and stellar mass surface density over a stellar mass range covering six orders of magnitude. We find that over the sampled stellar mass range several distinct mechanisms of galaxy mass assembly can be identified: (1) dwarf galaxies assemble mass inside the half-mass radius up to {log}{{ \\mathcal M }}\\star ≈ 8.0, (2) isometric mass assembly occurs in the range 8.0 ≲ {log}{{ \\mathcal M }}\\star /{M}ȯ ≲ 10.5, and (3) massive galaxies assemble stellar mass predominantly in their halos at {log}{{ \\mathcal M }}\\star ≈ 10.5 and above.
Olivieri, Cristina; Marota, Isolina; Rizzi, Ermanno; Ermini, Luca; Fusco, Letizia; Pietrelli, Alessandro; De Bellis, Gianluca; Rollo, Franco; Luciani, Stefania
2014-01-01
In the last years several phylogeographic studies of both extant and extinct red deer populations have been conducted. Three distinct mitochondrial lineages (western, eastern and North-African/Sardinian) have been identified reflecting different glacial refugia and postglacial recolonisation processes. However, little is known about the genetics of the Alpine populations and no mitochondrial DNA sequences from Alpine archaeological specimens are available. Here we provide the first mitochondrial sequences of an Alpine Copper Age Cervus elaphus. DNA was extracted from hair shafts which were part of the remains of the clothes of the glacier mummy known as the Tyrolean Iceman or Ötzi (5,350–5,100 years before present). A 2,297 base pairs long fragment was sequenced using a mixed sequencing procedure based on PCR amplifications and 454 sequencing of pooled amplification products. We analyzed the phylogenetic relationships of the Alpine Copper Age red deer's haplotype with haplotypes of modern and ancient European red deer. The phylogenetic analyses showed that the haplotype of the Alpine Copper Age red deer falls within the western European mitochondrial lineage in contrast with the current populations from the Italian Alps belonging to the eastern lineage. We also discussed the phylogenetic relationships of the Alpine Copper Age red deer with the populations from Mesola Wood (northern Italy) and Sardinia. PMID:24988290
Distance to VY Canis Majoris with VERA
NASA Astrophysics Data System (ADS)
Choi, Yoon Kyung; Hirota, Tomoya; Honma, Mareki; Kobayashi, Hideyuki; Bushimata, Takeshi; Imai, Hiroshi; Iwadate, Kenzaburo; Jike, Takaaki; Kameno, Seiji; Kameya, Osamu; Kamohara, Ryuichi; Kan-Ya, Yukitoshi; Kawaguchi, Noriyuki; Kijima, Masachika; Kim, Mi Kyoung; Kuji, Seisuke; Kurayama, Tomoharu; Manabe, Seiji; Maruyama, Kenta; Matsui, Makoto; Matsumoto, Naoko; Miyaji, Takeshi; Nagayama, Takumi; Nakagawa, Akiharu; Nakamura, Kayoko; Oh, Chung Sik; Omodaka, Toshihiro; Oyama, Tomoaki; Sakai, Satoshi; Sasao, Tetsuo; Sato, Katsuhisa; Sato, Mayumi; Shibata, Katsunori M.; Tamura, Yoshiaki; Tsushima, Miyuki; Yamashita, Kazuyoshi
2008-10-01
We report on astrometric observations of H2O masers around the red supergiant VY Canis Majoris carried out with VLBI Exploration of Radio Astrometry (VERA). Based on astrometric monitoring for 13 months, we successfully measured a trigonometric parallax of 0.88±0.08 mas, corresponding to a distance of 1.14+0.11-0.09kpc. This is the most accurate determined distance to VY CMa and the first one based on an annual parallax measurement. The luminosity of VY CMa has been overestimated due to a previously accepted distance. With our result, we re-estimated the luminosity of VY CMa to be (3±0.5) × 105Lodot using the bolometric flux integrated over optical and IR wavelengths. This improved luminosity value makes the location of VY CMa on the Hertzsprung-Russell (HR) diagram much closer to the theoretically allowable zone (i.e. the left side of the Hayashi track) than previous ones, though the uncertainty in the effective temperature of the stellar surface still does not permit us to make a final conclusion.
NASA Astrophysics Data System (ADS)
Fassbender, R.; Nastasi, A.; Santos, J. S.; Lidman, C.; Verdugo, M.; Koyama, Y.; Rosati, P.; Pierini, D.; Padilla, N.; Romeo, A. D.; Menci, N.; Bongiorno, A.; Castellano, M.; Cerulo, P.; Fontana, A.; Galametz, A.; Grazian, A.; Lamastra, A.; Pentericci, L.; Sommariva, V.; Strazzullo, V.; Šuhada, R.; Tozzi, P.
2014-08-01
Context. Recent observational progress has enabled the detection of galaxy clusters and groups out to very high redshifts and for the first time allows detailed studies of galaxy population properties in these densest environments in what was formerly known as the "redshift desert" at z> 1.5. Aims: We aim to investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58, which constitutes the most extreme currently known matter-density peak at this redshift. Methods: We analyzed deep VLT/HAWK-I near-infrared data with an image quality of 0.5'' and limiting Vega magnitudes (50% completeness) of 24.2 in J- and 22.8 in the Ks band, complemented by similarly deep Subaru imaging in i and V, Spitzer observations at 4.5 μm, and new spectroscopic observations with VLT/FORS 2. Results: We detect a cluster-associated excess population of about 90 galaxies, most of them located within the inner 30'' (250 kpc) of the X-ray centroid, which follows a centrally peaked, compact NFW galaxy surface-density profile with a concentration of c200 ≃ 10. Based on the Spitzer 4.5 μm imaging data, we measure a total enclosed stellar mass of M∗500 ≃ (6.3 ± 1.6) × 1012 M⊙ and a resulting stellar mass fraction of f∗,500 = M∗,500/M500 = (3.3 ± 1.4)%, consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple zf = 3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass-assembly epoch through merging processes. Consequently, the bright end of the cluster red sequence is not in place, while a red-locus population is present at intermediate magnitudes [Ks*, Ks* + 1.6], which is then sharply truncated at magnitudes fainter than Ks* + 1.6. The dominant cluster-core population comprises post-quenched galaxies transitioning toward the red sequence at intermediate magnitudes, while additionally a significant blue-cloud population of faint star-forming galaxies is present even in the densest central regions. Based on a color-color selection performed to separate different cluster galaxy types, we find that the blue star-forming population is concentrated in clumpy structures and dominates in particular at and beyond the R500 radius. On the other hand, the fraction of post-starburst galaxies steadily increases toward the center, while the red-locus population and red-sequence transition galaxies seem to reach their peak fractions already at intermediate cluster-centric radii of about r ~ 200 kpc. Conclusions: Our observations support the scenario in which the dominant effect of the dense z ≃ 1.6 cluster environment is an accelerated mass-assembly timescale (~1 Gyr or shorter) through merging activity that is responsible for driving core galaxies across the mass-quenching threshold of log (M∗/M⊙) ≃ 10.4. Beyond this mass limit, star formation is suppressed on timescales of ~1 Gyr, while the direct environmental quenching process seems to be subdominant and is acting on significantly longer timescales (~2-3 Gyr). Based on observations under programme ID 084.A-0844, 087.A-0351, and 089.A-0419 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile.J- and Ks-band FITS files are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A5
USDA-ARS?s Scientific Manuscript database
A small fast neutron mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five Phaseolus vulgaris cv. Red Hawk fast neutron mutants wi...
Nearby Red Dwarfs are Sexy for Planets and Life
NASA Astrophysics Data System (ADS)
Henry, T. J.; Jao, W.-C.; Subasavage, J. P.; RECONS Team
2005-12-01
The RECONS group continues to discover many nearby red dwarfs in the southern sky through a combination of proper motion surveys, literature review, and ultimately, our parallax program CTIOPI. Already, we have measured the first accurate parallaxes for 11 of the nearest 100 stellar systems, including four within 5 parsecs of the Sun. These nearby red dwarfs are prime candidates for NASA's Space Interferometry Mission (SIM) because the astrometric perturbations are largest for planets orbiting stars of low mass that are nearby. In addition, new multiple red dwarf systems can be targeted for mass determinations, thereby providing points on a comprehensive mass-luminosity relation for the most populous members of the Galaxy. Recent atmospheric modeling of planets orbiting red dwarfs indicates that even if the planets are tidally locked, heat distribution is highly effective in keeping the worlds balmy over the entire surface. Red dwarfs are therefore "back on the table" as viable hosts of life-bearing planets. Given their ubiquity, red dwarfs are being seriously considered as prime SETI targets, and will allow us to answer not only the question "Are We Alone?" but "Just How Alone Are We?" This work has been supported by the National Science Foundation, NASA's Space Interferometry Mission, and Georgia State University.
redMaGiC: selecting luminous red galaxies from the DES Science Verification data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozo, E.
We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sam- ple of constant comoving density. Additionally, we demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshiftmore » range z ϵ [0.2,0.8]. Our fiducial sample has a comoving space density of 10 -3 (h -1Mpc) -3, and a median photo-z bias (z spec z photo) and scatter (σ z=(1 + z)) of 0.005 and 0.017 respectively.The corresponding 5σ outlier fraction is 1.4%. We also test our algorithm with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1% level.« less
THE ROLE OF THERMOHALINE MIXING IN INTERMEDIATE- AND LOW-METALLICITY GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelou, George C.; Stancliffe, Richard J.; Church, Ross P.
It is now widely accepted that globular cluster red giant branch (RGB) stars owe their strange abundance patterns to a combination of pollution from progenitor stars and in situ extra mixing. In this hybrid theory a first generation of stars imprints abundance patterns into the gas from which a second generation forms. The hybrid theory suggests that extra mixing is operating in both populations and we use the variation of [C/Fe] with luminosity to examine how efficient this mixing is. We investigate the observed RGBs of M3, M13, M92, M15, and NGC 5466 as a means to test a theorymore » of thermohaline mixing. The second parameter pair M3 and M13 are of intermediate metallicity and our models are able to account for the evolution of carbon along the RGB in both clusters, although in order to fit the most carbon-depleted main-sequence stars in M13 we require a model whose initial [C/Fe] abundance leads to a carbon abundance lower than is observed. Furthermore, our results suggest that stars in M13 formed with some primary nitrogen (higher C+N+O than stars in M3). In the metal-poor regime only NGC 5466 can be tentatively explained by thermohaline mixing operating in multiple populations. We find thermohaline mixing unable to model the depletion of [C/Fe] with magnitude in M92 and M15. It appears as if extra mixing is occurring before the luminosity function bump in these clusters. To reconcile the data with the models would require first dredge-up to be deeper than found in extant models.« less
THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.
2016-01-15
We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% ofmore » the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections.« less
An expanded set of brown dwarf and very low mass star models
NASA Technical Reports Server (NTRS)
Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I.
1993-01-01
We present in this paper updated and improved theoretical models of brown dwarfs and late M dwarfs. The evolution and characteristics of objects between 0.01 and 0.2 solar mass are exhaustively investigated and special emphasis is placed on their properties at early ages. The dependence on the helium fraction, deuterium fraction, and metallicity of the masses, effective temperature and luminosities at the edge of the hydrogen main sequence are calculated. We derive luminosity functions for representative mass functions and compare our predictions to recent cluster data. We show that there are distinctive features in the theoretical luminosity functions that can serve as diagnostics of brown dwarf physics. A zero-metallicity model is presented as a bound to or approximation of a putative extreme halo population.
Insertion sequences enrichment in extreme Red sea brine pool vent.
Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania
2017-03-01
Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.
Accurate identification of RNA editing sites from primitive sequence with deep neural networks.
Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie
2018-04-16
RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.
NASA Astrophysics Data System (ADS)
Fassbender, R.; Nastasi, A.; Böhringer, H.; Šuhada, R.; Santos, J. S.; Rosati, P.; Pierini, D.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; de Hoon, A.; Kohnert, J.; Pratt, G. W.; Mohr, J. J.
2011-03-01
Context. Observational galaxy cluster studies at z > 1.5 probe the formation of the first massive M > 1014 M⊙ dark matter halos, the early thermal history of the hot ICM, and the emergence of the red-sequence population of quenched early-type galaxies. Aims: We present first results for the newly discovered X-ray luminous galaxy cluster XMMU J1007.4+1237 at z = 1.555, detected and confirmed by the XMM-Newton Distant Cluster Project (XDCP) survey. Methods: We selected the system as a serendipitous weak extended X-ray source in XMM-Newton archival data and followed it up with two-band near-infrared imaging and deep optical spectroscopy. Results: We can establish XMMU J1007.4+1237 as a spectroscopically confirmed, massive,bona fide galaxy cluster with a bolometric X-ray luminosity of Lbol_X,500≃(2.1 ± 0.4)× 10^{44} erg/s, a red galaxy population centered on the X-ray emission, and a central radio-loud brightest cluster galaxy. However, we see evidence for the first time that the massive end of the galaxy population and the cluster red-sequence are not yet fully in place. In particular, we find ongoing starburst activity for the third ranked galaxy close to the center and another slightly fainter object. Conclusions: At a lookback time of 9.4 Gyr, the cluster galaxy population appears to be caught in an important evolutionary phase, prior to full star-formation quenching and mass assembly in the core region. X-ray selection techniques are an efficient means of identifying and probing the most distant clusters without any prior assumptions about their galaxy content. Based on observations under programme ID 081.A-0312 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Figure 2 and Tables 1 and 2 are only available in electronic form at http://www.aanda.org
High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82
NASA Astrophysics Data System (ADS)
Nikoloudakis, N.
2012-01-01
We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.
Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Hopkins, A. M.; Taylor, E. N.; Bland-Hawthorn, J.; Norberg, P.; Baldry, I. K.; Loveday, J.; Owers, M. S.; Wilkins, S. M.; Colless, M.; Brown, M. J. I.; Driver, S. P.; Alpaslan, M.; Brough, S.; Cluver, M.; Croom, S.; Kelvin, L.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Robotham, A. S. G.
2015-02-01
We present bivariate luminosity and stellar mass functions of Hα star-forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of 0.001 < SFRHα (M⊙ yr-1) < 100 galaxies, the requirement for an Hα detection in targets selected from an r-band magnitude-limited survey leads to an incompleteness due to missing optically faint star-forming galaxies. Using z < 0.1 bivariate distributions as a reference we model the higher-z distributions, thereby approximating a correction for the missing optically faint star-forming galaxies to the local star formation rate (SFR) and M densities. Furthermore, we obtain the r-band luminosity functions (LFs) and stellar mass functions of Hα star-forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected Hα emission, a direct tracer of ongoing star formation, this sample represents a true star-forming galaxy sample, and is drawn from both photometrically classified blue and red subpopulations, though mostly from the blue population. On average 20-30 per cent of red galaxies at all stellar masses are star forming, implying that these galaxies may be dusty star-forming systems.
NASA Astrophysics Data System (ADS)
Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.
2018-05-01
We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.
CARBON ABUNDANCES FOR RED GIANTS IN THE DRACO DWARF SPHEROIDAL GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetrone, Matthew D.; Stanford, Laura M.; Smith, Graeme H.
2013-05-15
Measurements of [C/Fe], [Ca/H], and [Fe/H] have been derived from Keck I LRISb spectra of 35 giants in the Draco dwarf spheroidal galaxy. The iron abundances are derived by a spectrum synthesis modeling of the wavelength region from 4850 to 5375 A, while calcium and carbon abundances are obtained by fitting the Ca II H and K lines and the CH G band, respectively. A range in metallicity of -2.9 {<=} [Fe/H] {<=} -1.6 is found within the giants sampled, with a good correlation between [Fe/H] and [Ca/H]. The great majority of stars in the sample would be classified asmore » having weak absorption in the {lambda}3883 CN band, with only a small scatter in band strengths at a given luminosity on the red giant branch. In this sense the behavior of CN among the Draco giants is consistent with the predominantly weak CN bands found among red giants in globular clusters of metallicity [Fe/H] < -1.8. Over half of the giants in the Draco sample have [Fe/H] > -2.25, and among these there is a trend for the [C/Fe] abundance to decrease with increasing luminosity on the red giant branch. This is a phenomenon that is also seen among both field and globular cluster giants of the Galactic halo, where it has been interpreted as a consequence of deep mixing of material between the base of the convective envelope and the outer limits of the hydrogen-burning shell. However, among the six Draco giants observed that turn out to have metallicities -2.65 < [Fe/H] < -2.25 there is no such trend seen in the carbon abundance. This may be due to small sample statistics or primordial inhomogeneities in carbon abundance among the most metal-poor Draco stars. We identify a potential carbon-rich extremely metal-poor star in our sample. This candidate will require follow-up observations for confirmation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riebel, D.; Meixner, M.; Srinivasan, S.
We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to {approx}30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionarymore » parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, equivalent to a total mass injection rate (including the gas) into the ISM of {approx}6 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}. Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K{sub s} band as a function of J - K{sub s} color, BC{sub K{sub s}}= -0.40(J-K{sub s}){sup 2} + 1.83(J-K{sub s}) + 1.29. We determine several IR color proxies for the dust mass-loss rate (M-dot{sub d}) from C-rich AGB stars, such as log M-dot{sub d} = (-18.90/((K{sub s}-[8.0])+3.37) - 5.93. We find that a larger fraction of AGB stars exhibiting the 'long-secondary period' phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.« less
NASA Technical Reports Server (NTRS)
Goldader, Jeffrey D.; Joseph, R. D.; Doyon, Rene; Sanders, D. B.
1995-01-01
We present high-quality spectra covering the K window at a resolving power of 340 for a sample of 13 ultraluminous (L(sub IR) approximately greater than 10(exp 12) solar luminosity) infrared-selected galaxies, and line fluxes for a comparison sample of 24 lower luminosity galaxies. The 2 micrometers spectra of 10 of the ultraluminous galaxies are characterized by emission and absorption features commonly associated with stars and star formation; two others have the red power-law spectra and Br gamma line widths of Seyfert 1 galaxies; the final galaxy has strong emission from hot dust. We have found no broad-line active nuclei not already known from optical observations, despite the fact that the extinction at 2 micrometers is 1/10 that at optical wavelengths; any putative Seyfert 1 nuclei must be deeply buried. Powerful continua and emission lines from H2 and Br gamma are detected in all the ultraluminous galaxies. Comparing the H2 1-0 S(1), Br gamma, and 2 micrometers and far-infrared luminosities to those of the lower luminosity galaxies yields several major results. First, the dereddened Br gamma emission, relative to the far-infrared luminosity is significantly depressed in the ultraluminous sample, when compared to the lower luminosity galaxies. Five of the ultraluminous galaxies have L(sub Br gamma)L(sub IR) ratios lower than for any of the comparison objects. Second, the H2 1-0 S(1) luminosity is also responsible, directly or indirectly, for producing the excited H2, and that the H2 apparently comes from optically thin regions in both classes of objects. Third, eight of the 13 ultraluminous systems have lower 2 micrometers/far-infrared luminosity ratios than any of the lower luminosity galaxies, and five of these are the galaxies also deficient in Br gamma. These three findings may be understood if the the H2, Br gamma, and 2 mircometers continua in the ultraluminous galaxies arise from spatially distinct regions, with the continuum and Br gamma largely coming from volumes optically thick even at 2 micrometers, and obscured in such a fashion that the extinctions measured using optical spectroscopy do not properly measure the true optical depths. If this is the case, then even near-infrared spectroscopy may be unable to exclude the presence of undetected powerful active galactive nuclei in the ultraluminous galaxies.
NASA Astrophysics Data System (ADS)
Melbourne, J.; Williams, Benjamin F.; Dalcanton, Julianne J.; Rosenfield, Philip; Girardi, Léo; Marigo, P.; Weisz, D.; Dolphin, A.; Boyer, Martha L.; Olsen, Knut; Skillman, E.; Seth, Anil C.
2012-03-01
Using high spatial resolution Hubble Space Telescope WFC3 and Advanced Camera for Surveys imaging of resolved stellar populations, we constrain the contribution of thermally pulsing asymptotic giant branch (TP-AGB) stars and red helium burning (RHeB) stars to the 1.6 μm near-infrared (NIR) luminosities of 23 nearby galaxies, including dwarfs and spirals. The TP-AGB phase contributes as much as 17% of the integrated F160W flux, even when the red giant branch is well populated. The RHeB population contribution can match or even exceed the TP-AGB contribution, providing as much as 21% (18% after a statistical correction for foreground) of the integrated F160W light. We estimate that these two short-lived phases may account for up to 70% of the rest-frame NIR flux at higher redshift. The NIR mass-to-light (M/L) ratio should therefore be expected to vary significantly due to fluctuations in the star formation rate (SFR) over timescales from 25 Myr to several Gyr, an effect that may be responsible for some of the lingering scatter in NIR galaxy scaling relations such as the Tully-Fisher and metallicity-luminosity relations. We compare our observational results to predictions based on optically derived star formation histories and stellar population synthesis (SPS) models, including models based on the 2008 Padova isochrones (used in popular SPS programs) and the updated 2010 Padova isochrones, which shorten the lifetimes of low-mass (old) low-metallicity TP-AGB populations. The updated (2010) SPS models generally reproduce the expected numbers of TP-AGB stars in the sample; indeed, for 65% of the galaxies, the discrepancy between modeled and observed numbers is smaller than the measurement uncertainties. The weighted mean model/data number ratio for TP-AGB stars is 1.5 (1.4 with outliers removed) with a standard deviation of 0.5. The same SPS models, however, give a larger discrepancy in the F160W flux contribution from the TP-AGB stars, overpredicting the flux by a weighted mean factor of 2.3 (2.2 with outliers removed) with a standard deviation of 0.8. This larger offset is driven by the prediction of modest numbers of high-luminosity TP-AGB stars at young (<300 Myr) ages. The best-fit SPS models simultaneously tend to underpredict the numbers and fluxes of stars on the RHeB sequence, typically by a factor of 2.0 ± 0.6 for galaxies with significant numbers of RHeBs. Possible explanations for both the TP-AGB and RHeB model results include (1) difficulties with measuring the SFHs of galaxies especially on the short timescales over which these stars evolve (several Myr), (2) issues with the way the SPS codes populate the color-magnitude diagrams (e.g., how they handle pulsations or self-extinction), and/or (3) lingering issues with the lifetimes of these stars in the stellar evolution codes. Coincidentally these two competing discrepancies—overprediction of the TP-AGB and underprediction of the RHeBs—result in a predicted NIR M/L ratio largely unchanged for a rapid SFR, after correcting for these effects. However, the NIR-to-optical flux ratio of galaxies could be significantly smaller than AGB-rich models would predict, an outcome that has been observed in some intermediate-redshift post-starburst galaxies.
THE GALEX/S{sup 4}G UV–IR COLOR–COLOR DIAGRAM: CATCHING SPIRAL GALAXIES AWAY FROM THE BLUE SEQUENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Gallego, Jesús
We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6 μm photometry for >2000 galaxies, available for 90% of the S{sup 4}G sample. We find a very tight GALEX blue sequence (GBS) in the (FUV–NUV) versus (NUV–[3.6]) color–color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ) and a degeneracy between τ and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call the GALEX green valley (GGV). At the red end of the GBS, atmore » (NUV–[3.6]) > 5, we find a wider GALEX red sequence (GRS) mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by M{sub [3.6]}) since both massive (M{sub ⋆}>10{sup 11}M{sub ⊙}) blue- and red-sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0-Sa’s, and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 10{sup 8} yr.« less
The GALEX/S4G UV-IR Color-Color Diagram: Catching Spiral Galaxies Away from the Blue Sequence
NASA Astrophysics Data System (ADS)
Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Boissier, Samuel; Muñoz-Mateos, Juan-Carlos; Sheth, Kartik; Zaritsky, Dennis; Laine, Jarkko; Gallego, Jesús; Peletier, Reynier F.; Röck, Benjamin R.; Knapen, Johan H.
2015-02-01
We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6 μm photometry for \\gt 2000 galaxies, available for 90% of the S4G sample. We find a very tight GALEX blue sequence (GBS) in the (FUV-NUV) versus (NUV-[3.6]) color-color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ) and a degeneracy between τ and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call the GALEX green valley (GGV). At the red end of the GBS, at (NUV-[3.6]) \\gt 5, we find a wider GALEX red sequence (GRS) mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by {{M}[3.6]}) since both massive ({{M}\\star }\\gt {{10}11}{{M}⊙ }) blue- and red-sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0-Sa’s, and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 108 yr.
A Multiplex PCR assay to differentiate between dog and red fox.
Weissenberger, M; Reichert, W; Mattern, R
2011-11-01
Foxes are frequently the cause of car accidents in Baden-Württemberg (BW, Germany). The domestic dog (Canis familiaris) is in close relation to the red fox (Vulpes vulpes) and the silver fox which is a coat colour variant of the red fox. As insurance claims that involve accidents with animals require authentication, we analyzed frequency distribution and allele sizes in two canine microsatellite loci in 26 dogs (different breeds) and 19 red foxes of the region of BW, Germany. Moreover, sequencing analysis was performed. Red foxes exhibited only 1 allele at each microsatellite locus, whereas in dog 7 alleles at the CPH4 locus and 6 alleles at the CPH12 locus were detected. Sequences of PCR products from the two species revealed several differences between dogs and foxes. We established a sequenced allelic ladder and give population data from dogs and red foxes from the region of BW, Germany. Using microsatellite polymorphisms is efficient in differentiating between dogs and foxes in forensic casework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Borissova, J.; Rejkuba, M.; Minniti, D.; Catelan, M.; Ivanov, V. D.
2009-08-01
Context: RR Lyrae variable stars are the primary Population II distance indicator. Likewise, the Large Magellanic Cloud (LMC) constitutes a key step in the extragalactic distance scale. Aims: By combining near-IR photometry and spectroscopically measured metallicities for a homogeneous sample of 50 RR Lyr stars in the LMC, we investigate the metallicity dependence of the period-luminosity relation in the near-infrared (IR), use the newly derived relations to re-derive the distance to the LMC, and compare the distance moduli obtained from RR Lyr and red clump stars. Methods: This paper presents new (single-epoch) J-band and (multi-epoch) K_s-band photometry of RR Lyr stars in 7 different LMC fields, observed with the near-IR camera SOFI at ESO's New Technology Telescope. Additional K_s-band data for another two LMC fields were taken with the ISPI infrared array at CTIO's Blanco 4m telescope. The near-IR photometry was cross-correlated with the MACHO and OGLE databases, resulting in a catalog of 62 RR Lyr stars with BVRIJKs photometry. A subsample of 50 stars also has spectroscopically measured metallicities. Results: In the deep JK color-magnitude diagrams of 7 fields, red giant branch, red clump and RR Lyr stars are detected. The majority of RR Lyr stars are located within the instability strip with near-IR colors between 0.14 ≤ (J-K_s)_0<0.32. The period-luminosity relation only has a very mild dependence on metallicity in the K band, consistent with no dependence: MKs =2.11(± 0.17) log{P} + 0.05(± 0.07) [Fe/H] - 1.05. In the J band the currently available data do not allow firm conclusions regarding the metallicity dependence of the period-luminosity relation. Conclusions: The distance modulus of the LMC, derived using our near-IR period-luminosity-metallicity relation for RR Lyr stars, is (m-M)_0=18.53 ± 0.13, in very good agreement with the distance modulus from the red clump stars, 18.46 ± 0.07. However, LMC modulus derived from the RR Lyrae stars depends on the parallax of the star RR Lyrae. Based on observations collected with European Southern Observatory's Very Large Telescope and New Technology Telescope, under programs 64.N-0176(B), 70.B-0547(A), and 072.D-0106(B) with the Blanco telescope at CTIO, under ISPI Prop. No. 0101; and at Gemini Observatory (observing program GS-2004A-Q-27), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina). Table of the individual KS measurements with dates is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/502/505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, R.; Wilson, G.; DeGroot, A.
We study the slope, intercept, and scatter of the color–magnitude and color–mass relations for a sample of 10 infrared red-sequence-selected clusters at z ∼ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z ≳ 3 with an age spread Δt ≳ 1 Gyr. We compare UVJ color–color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color–magnitude relations from our red-sequence selected sample with X-ray- and photometric-redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable tomore » detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ∼ 1.« less
A decades-long fast-rise-exponential-decay flare in low-luminosity AGN NGC 7213
NASA Astrophysics Data System (ADS)
Yan, Zhen; Xie, Fu-Guo
2018-03-01
We analysed the four-decades-long X-ray light curve of the low-luminosity active galactic nucleus (LLAGN) NGC 7213 and discovered a fast-rise-exponential-decay (FRED) pattern, i.e. the X-ray luminosity increased by a factor of ≈4 within 200 d, and then decreased exponentially with an e-folding time ≈8116 d (≈22.2 yr). For the theoretical understanding of the observations, we examined three variability models proposed in the literature: the thermal-viscous disc instability model, the radiation pressure instability model, and the TDE model. We find that a delayed tidal disruption of a main-sequence star is most favourable; either the thermal-viscous disc instability model or radiation pressure instability model fails to explain some key properties observed, thus we argue them unlikely.
Color-color diagrams in near infrared: (J-H)/(H-K). I
NASA Astrophysics Data System (ADS)
Gyulbudaghian, Armen L.; Baloian, N.; Sanchez, I. A.
2017-12-01
In the paper are presented the color-color diagrams (J-H)/(H-K) for all stars with visible values B<11, for which in the known catalogs the values of J, H, K, and also spectral classes and luminosity classes of these stars are given. The diagrams are constructed for luminosity classes Ia, Ib, II, III, IV, V. The similarity of diagrams for classes Ia and Ib (super giants) and II (giants), is obvious from these diagrams. The diagrams obtained by us can be used for discovering of new young stars and also for determining of color excesses of investigating stars. Maximal amounts of stars are registered in the classes V and III. There is a tendency of increasing of J-H and H-K along the sequence of spectral classes O - M, which is correct for all luminosity classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, William G.; Brighenti, Fabrizio; Temi, Pasquale
The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 {mu}m luminosities, both normalized with the K-band luminosity. We show that this correlation is significantly tightened if galaxies with central active galactic nucleus (AGN) emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 {mu}m luminosities remains significant along the correlation. We find that the 24 {mu}m variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branchmore » stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies, cold interstellar dust emitting at 70 and 160 {mu}m may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 {mu}m luminosity in elliptical galaxies is due to dust transported from galactic cores by feedback events in (currently IR-quiet) AGNs. Cooler dusty gas naturally accumulates in the cores of elliptical galaxies due to dust-cooled local stellar mass loss and may accrete onto the central black hole, releasing energy. AGN-heated gas can transport dust in cores 5-10 kpc out into the hot gas atmospheres where it radiates extended 70 {mu}m emission but is eventually destroyed by sputtering. This, and some modest star formation, defines a cycle of dust creation and destruction. Elliptical galaxies evidently undergo large transient excursions in the banana plot in times comparable to the sputtering time or AGN duty cycle, 10 Myr. Normally regarded as passive, elliptical galaxies are the most active galaxies in the IR color-color correlation.« less
NASA Astrophysics Data System (ADS)
Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Siverd, Robert J.; Pepper, Joshua; Tang, Sumin; Kafka, Stella; Gaudi, B. Scott; Conroy, Kyle E.; Beatty, Thomas G.; Stevens, Daniel J.; Shappee, Benjamin J.; Kochanek, Christopher S.
2016-05-01
We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ˜3.45 year long, near-total eclipse (depth of ˜4.5 mag) with a very long period of ˜69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, ɛ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source (Teff ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1-0.5 R⊙ (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1-2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a “stripped red giant” subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this “pre-He-WD” star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ˜24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary status. In any case, this system is poised to become an exemplar of a very rare class of systems, even more extreme in several respects than the well studied archetype ɛ Aurigae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.
We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ∼3.45 year long, near-total eclipse (depth of ∼4.5 mag) with a very long period of ∼69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, ϵ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giantmore » primary is orbited by a moderately hot source ( T {sub eff} ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1–0.5 R {sub ⊙} (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1–2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a “stripped red giant” subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this “pre-He-WD” star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ∼24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary status. In any case, this system is poised to become an exemplar of a very rare class of systems, even more extreme in several respects than the well studied archetype ϵ Aurigae.« less
A New Milky Way Satellite Discovered in the Subaru/Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Homma, Daisuke; Chiba, Masashi; Okamoto, Sakurako; Komiyama, Yutaka; Tanaka, Masayuki; Tanaka, Mikito; Ishigaki, Miho N.; Akiyama, Masayuki; Arimoto, Nobuo; Garmilla, José A.; Lupton, Robert H.; Strauss, Michael A.; Furusawa, Hisanori; Miyazaki, Satoshi; Murayama, Hitoshi; Nishizawa, Atsushi J.; Takada, Masahiro; Usuda, Tomonori; Wang, Shiang-Yu
2016-11-01
We report the discovery of a new ultra-faint dwarf satellite companion of the Milky Way (MW) based on the early survey data from the Hyper Suprime-Cam Subaru Strategic Program. This new satellite, Virgo I, which is located in the constellation of Virgo, has been identified as a statistically significant (5.5σ) spatial overdensity of star-like objects with a well-defined main sequence and red giant branch in the color-magnitude diagram. The significance of this overdensity increases to 10.8σ when the relevant isochrone filter is adopted for the search. Based on the distribution of the stars around the likely main-sequence turnoff at r ˜ 24 mag, the distance to Virgo I is estimated as 87 kpc, and its most likely absolute magnitude calculated from a Monte Carlo analysis is M V = -0.8 ± 0.9 mag. This stellar system has an extended spatial distribution with a half-light radius of {38}-11+12 pc, which clearly distinguishes it from a globular cluster with comparable luminosity. Thus, Virgo I is one of the faintest dwarf satellites known and is located beyond the reach of the Sloan Digital Sky Survey. This demonstrates the power of this survey program to identify very faint dwarf satellites. This discovery of Virgo I is based only on about 100 square degrees of data, thus a large number of faint dwarf satellites are likely to exist in the outer halo of the MW.
THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinis, S.; Gezari, S.; Kumar, S.
2016-07-20
We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massivemore » hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.« less
The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).
Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai
2015-01-01
In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.
Wüthrich, Daniel; Bruggmann, Rémy; Berthoud, Hélène; Arias-Roth, Emmanuelle
2015-01-01
Clostridium tyrobutyricum is the main microorganism responsible for late blowing defect in cheeses. Here, we present the draft genome sequences of two C. tyrobutyricum strains isolated from a Swiss semihard red-smear cheese. The two draft genomes comprise 3.05 and 3.08 Mbp and contain 3,030 and 3,089 putative coding sequences, respectively. PMID:25767226
redMaGiC: Selecting luminous red galaxies from the DES Science Verification data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozo, E.; Rykoff, E. S.; Abate, A.
Here, we introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling themore » redshift range z ϵ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10 –3 (h –1 Mpc) –3, and a median photo-z bias (zspec – zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.« less
redMaGiC: Selecting luminous red galaxies from the DES Science Verification data
Rozo, E.; Rykoff, E. S.; Abate, A.; ...
2016-05-30
Here, we introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling themore » redshift range z ϵ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10 –3 (h –1 Mpc) –3, and a median photo-z bias (zspec – zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.« less
Galactic cannibalism. III. The morphological evolution of galaxies and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausman, M.A.; Ostriker, J.P.
1978-09-01
We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less
THE RED SEQUENCE AT BIRTH IN THE GALAXY CLUSTER Cl J1449+0856 AT z = 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strazzullo, V.; Pannella, M.; Daddi, E.
We use Hubble Space Telescope /WFC3 imaging to study the red population in the IR-selected, X-ray detected, low-mass cluster Cl J1449+0856 at z = 2, one of the few bona fide established clusters discovered at this redshift, and likely a typical progenitor of an average massive cluster today. This study explores the presence and significance of an early red sequence in the core of this structure, investigating the nature of red-sequence galaxies, highlighting environmental effects on cluster galaxy populations at high redshift, and at the same time underlining similarities and differences with other distant dense environments. Our results suggest thatmore » the red population in the core of Cl J1449+0856 is made of a mixture of quiescent and dusty star-forming galaxies, with a seedling of the future red sequence already growing in the very central cluster region, and already characterizing the inner cluster core with respect to lower-density environments. On the other hand, the color–magnitude diagram of this cluster is definitely different from that of lower-redshift z ≲ 1 clusters, as well as of some rare particularly evolved massive clusters at similar redshift, and it is suggestive of a transition phase between active star formation and passive evolution occurring in the protocluster and established lower-redshift cluster regimes.« less
A Chandra Snapshot Survey of Extremely Red Quasars from SDSS BOSS and WISE
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2017-09-01
We propose Chandra snapshot observations of a sample of 15 extremely red and highly luminous quasars at z > 2. These Type 1 objects have recently been discovered via the SDSS BOSS and WISE surveys, and they are among the most-luminous quasars in the Universe. They appear to be part of the missing evolutionary link as merger-induced starburst galaxies transform into typical ultraviolet luminous quasars. Our aim is to efficiently gather X-ray information about a sufficiently large sample of these objects that general conclusions about their basic X-ray properties, especially obscuration level and luminosity, can be drawn reliably. The results will also allow effective targeting of promising objects in longer X-ray spectroscopic observations.
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.
2013-02-01
We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.
New red jewels in Coma Berenices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrien, Ryan C.; Mahadevan, Suvrath; Deshpande, Rohit
2014-02-20
We have used Sloan Digital Sky Survey-III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) radial velocity observations in the near-infrared H-band to explore the membership of the nearby (86.7 ± 0.9 pc) open cluster Coma Berenices (Melotte 111), concentrating on the poorly populated low-mass end of the main sequence. Using SDSS-III APOGEE radial velocity measurements, we confirm the membership of eight K/M dwarf members, providing the first confirmed low-mass members of the Coma Berenices cluster. Using R ∼ 2000 spectra from IRTF-SpeX, we confirm the independently luminosity classes of these targets, and find their metallicities to be consistent withmore » the known solar mean metallicity of Coma Berenices and of M dwarfs in the solar neighborhood. In addition, the APOGEE spectra have enabled measurement of vsin i for each target and detection for the first time of the low-mass secondary components of the known binary systems Melotte 111 102 and Melotte 111 120, as well as identification of the previously unknown binary system 2MASS J12214070+2707510. Finally, we use Kilodegree Extremely Little Telescope photometry to measure photometric variability and rotation periods for a subset of the Coma Berenices members.« less
Post-Starburst Galaxies At The End of The E+A Phase
NASA Astrophysics Data System (ADS)
Liu, Charles; Marinelli, Mariarosa; Chang, Madeleine; Lyczko, Camilla; Vega Orozco, Cecilia; SDSS-IV Collaboration
2018-06-01
Post-starburst galaxies, once thought to be rare curiosities, are now recognized to represent a key phase in the galaxy evolution. The post-starburst, or E+A phase, should however not be considered as a single, short-lived phenomenon; rather, it is an extended evolutionary process that occurs a galaxy transitions from an actively star-forming system into a quiescent one. We present a study of nearby galaxies at or near the end of the E+A phase, wherein all star formation has been quenched, the fossilized stellar population of the most recent starburst is highly localized, and the remainder of the galaxy's stellar population is old and quiescent. The luminosity and stellar age distribution of these "end-phase E+As" can provide insights into the evolution of galaxies onto and within the red sequence, from active to passive systems. This work is supported by National Science Foundation grants to CUNY College of Staten Island and the American Museum of Natural History; the College of Staten Island Office of Academic Affairs; the Sherman Fairchild Science Pathways Scholars Program (SP^2) at Barnard College; and the Alfred P. Sloan Foundation.
A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field
NASA Astrophysics Data System (ADS)
Castellano, M.; Salimbeni, S.; Trevese, D.; Grazian, A.; Pentericci, L.; Fiore, F.; Fontana, A.; Giallongo, E.; Santini, P.; Cristiani, S.; Nonino, M.; Vanzella, E.
2007-12-01
We report the discovery of a localized overdensity at z~1.6 in the GOODS-South field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well-calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)-dimensional technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field, and we find that the two populations are significantly different, supporting the reality of the structure. The reddest galaxies, once evolved according to their best-fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M200 total mass of the cluster is in the range 1.3×1014-5.7×1014 Msolar, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1 Ms Chandra observations, is LX=0.5×1043 erg s-1, suggesting that the cluster has not yet reached the virial equilibrium.
WIYN OPEN CLUSTER STUDY. LXXI. SPECTROSCOPIC MEMBERSHIP AND ORBITS OF NGC 6791 SUB-SUBGIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliman, Katelyn E.; Leiner, Emily; Mathieu, Robert D.
2016-06-01
In an optical color–magnitude diagram, sub-subgiants (SSGs) lie redward of the main sequence and fainter than the base of the red giant branch in a region not easily populated by standard stellar-evolution pathways. In this paper, we present multi-epoch radial velocities for five SSG candidates in the old and metal-rich open cluster NGC 6791 (8 Gyr, [Fe/H] = +0.30). From these data, we are able to make three-dimensional kinematic membership determinations and confirm four SSG candidates as likely cluster members. We also identify three member SSGs as short-period binary systems and present their orbital solutions. These are the first SSGsmore » with known three-dimensional kinematic membership, binary status, and orbital parameters since the two SSGs in M67 studied by Mathieu et al. We also remark on the other properties of these stars including photometric variability, H α emission, and X-ray luminosity. The membership confirmation of these SSGs in NGC 6791 strengthens the case that SSGs are a new class of nonstandard stellar evolution products, and that a physical mechanism must be found that explains the evolutionary paths of these stars.« less
Gaia luminosities of pulsating A-F stars in the Kepler field
NASA Astrophysics Data System (ADS)
Balona, L. A.
2018-06-01
All stars in the Kepler field brighter than 12.5 magnitude have been classified according to variability type. A catalogue of δ Scuti and γ Doradus stars is presented. The problem of low frequencies in δ Sct stars, which occurs in over 98 percent of these stars, is discussed. Gaia DR2 parallaxes were used to obtain precise luminosities, enabling the instability strips of the two classes of variable to be precisely defined. Surprisingly, it turns out that the instability region of the γ Dor stars is entirely within the δ Sct instability strip. Thus γDor stars should not be considered a separate class of variable. The observed red and blue edges of the instability strip do not agree with recent model calculations. Stellar pulsation occurs in less than half of the stars in the instability region and arguments are presented to show that this cannot be explained by assuming pulsation at a level too low to be detected. Precise Gaia DR2 luminosities of high-amplitude δ Sct stars (HADS) show that most of these are normal δ Sct stars and not transition objects. It is argued that current ideas on A star envelopes need to be revised.
A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes).
Kutschera, Verena E; Lecomte, Nicolas; Janke, Axel; Selva, Nuria; Sokolov, Alexander A; Haun, Timm; Steyer, Katharina; Nowak, Carsten; Hailer, Frank
2013-06-05
Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown bears and red foxes colonized Japan's northern island Hokkaido at least three times, all lineages being most closely related to different mainland lineages. Red foxes, grey wolves, and brown bears thus represent an interesting case where species that occupy similar ecological niches also exhibit similar phylogeographic histories.
A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes)
2013-01-01
Background Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. Results Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. Conclusions The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown bears and red foxes colonized Japan’s northern island Hokkaido at least three times, all lineages being most closely related to different mainland lineages. Red foxes, grey wolves, and brown bears thus represent an interesting case where species that occupy similar ecological niches also exhibit similar phylogeographic histories. PMID:23738594
NASA Astrophysics Data System (ADS)
Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.
2011-02-01
To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the "Grid of Red supergiant and Asymptotic giant branch star ModelS" (GRAMS). This model grid explores four parameters—stellar effective temperature from 2100 K to 4700 K luminosity from 103 to 106 L sun; dust shell inner radii of 3, 7, 11, and 15 R star; and 10.0 μm optical depth from 10-4 to 26. From an initial grid of ~1200 2Dust models, we create a larger grid of ~69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.
On the luminosity function, lifetimes, and origin of blue stragglers in globular clusters
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Pinsonneault, Marc H.
1995-01-01
We compute theoretical evolutionary tracks of blue stragglers created by mergers. Two formation scenarios are considered: mergers of primordial binaries, and stellar collisions. These two scenarios predict strikingly different luminosity functions, which are potentially distinguishable observationally. Tabulated theoretical luminosity functions and lifetimes are presented for blue stragglers formed under a variety of input conditions. We compare our results with observations of the blue straggler sequences in 47 Tucanae and M3. In the case of 47 Tuc, the luminosity function and the formation rate are compatible with the hypothesis that the blue stragglers formed through the collision of single stars. Mergers of primordial binaries are only marginally cosistent with the data, and a significant enhancement of the collision cross section by binary-single-star encounters appears to be ruled out. In the case of M3, we find that the innermost blue stragglers have a luminosity function significantly different from that of the outer stragglers, thus confirming earlier suggestions that there are two distinct populations of blue stragglers in this cluster. The inner stragglers are preferentially brighter and bluer, as would be expected if they were made by collisions, but there are so many of them that the collision rate would need to be enhanced by interactions involving wide binaries. The luminosity function of the outer stragglers is almost identical to the predictions of mergers from primordial binaries and is inconsistent with the collision hypothesis.
Storari, Michelangelo; Wüthrich, Daniel; Bruggmann, Rémy; Berthoud, Hélène; Arias-Roth, Emmanuelle
2015-03-12
Clostridium tyrobutyricum is the main microorganism responsible for late blowing defect in cheeses. Here, we present the draft genome sequences of two C. tyrobutyricum strains isolated from a Swiss semihard red-smear cheese. The two draft genomes comprise 3.05 and 3.08 Mbp and contain 3,030 and 3,089 putative coding sequences, respectively. Copyright © 2015 Storari et al.
Guimaraes, Ana M S; Toth, Balazs; Santos, Andrea P; do Nascimento, Naíla C; Kritchevsky, Janice E; Messick, Joanne B
2012-11-01
We report the complete genome sequence of "Candidatus Mycoplasma haemolamae," an endemic red-cell pathogen of camelids. The single, circular chromosome has 756,845 bp, a 39.3% G+C content, and 925 coding sequences (CDSs). A great proportion (49.1%) of these CDSs are organized into paralogous gene families, which can now be further explored with regard to antigenic variation.
Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline
2018-01-01
The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.
Galaxias enanas: las voces de la mayoría
NASA Astrophysics Data System (ADS)
Cellone, S. A.
More than twenty years after photographic surveys of nearby clusters of galaxies revealed that low-luminosity, or ``dwarf'', galaxies (M_B ≳ -18 mag) are the numerically dominant population, research on these objects has been boosted by new instrumental and theoretical developments. Among several breakthroughs that have re-shaped our knowledge abut dwarf galaxies, we should point out: the detection of underlying spiral structure, disks/bars in dwarf ``elliptical'' galaxies; the possible evolutionary relation between (some?) dwarf ellipticals and spiral galaxies; the discoveries of ultra-compact and ultra-faint dwarfs; the universality of the color-luminosity relation extending along ˜ 10 mag. A brief review on these subjects is presented, with emphasis on early-type dwarfs and their possible evolutionary relations with other galaxy types. I will particularly address the controversy about which are the objects that extend the E sequence down to the lowest luminosities (if such objects really exist). FULL TEXT IN SPANISH
Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H
2013-04-02
Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.
Detection of a possible superluminous supernova in the epoch of reionization
NASA Astrophysics Data System (ADS)
Mould, Jeremy; Abbott, Tim; Cooke, Jeff; Curtin, Chris; Katsiani, Antonios; Koekemoer, Anton; Tescari, Edoardo; Uddin, Syed; Wang, Lifan; Wyithe, Stuaet
2017-04-01
An interesting transient has been detected in one of our three Dark Energy Camera deep fields. Observations of these deep fields take advantage of the high red sensitivity of DECam on the Cerro Tololo Interamerican Observatory Blanco telescope. The survey includes the Y band with rest wavelength 1430{Å} at z = 6. Survey fields (the Prime field 0555-6130, the 16hr field 1600-75 and the SUDSS New Southern Field) are deeper in Y than other infrared surveys. They are circumpolar, allowing all night to be used efficiently, exploiting the moon tolerance of 1 micron observations to minimize conflict with the Dark Energy Survey. As an i-band dropout (meaning that the flux decrement shortward of Lyman alpha is in the i bandpass), the transient we report here is a supernova candidate with z 6, with a luminosity comparable to the brightest known current epoch superluminous supernova (i.e., 2 x 10^11 solar luminosities).
The Leo I color-magnitude diagram
NASA Astrophysics Data System (ADS)
Reid, Neill; Mould, Jeremy
1991-04-01
The R-and I-band photometry of the Leo I dwarf galaxy is presented. A relatively narrow giant branch is found, Implying an abundance range of no more than Fe/H/= - 0.7 to - 1.3. This is in contrast to the results is found by Fox and Pritchet (1987) from BV CCD photometry. The distance modulus is estimated as (m - M) = 21.85 + or - 0.15, based on the luminosity of the tip of the red giant branch.
PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasliwal, Mansi M.; Kulkarni, Shri R.; Quimby, Robert M.
2011-04-01
The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local universe (distance less than 200 Mpc). Here, we report the discovery of PTF 10fqs, a transient in the luminosity 'gap' between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of M{sub r} = -12.3, red color (g - r = 1.0), and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width H{alpha} ({approx}930more » km s{sup -1}) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to that of M85 OT2006-1, SN 2008S, and NGC 300 OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF 10fqs shows some evidence of a broad feature (around 8600 A) that may suggest very large velocities ({approx}10,000 km s{sup -1}) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring, and statistics (e.g., disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.« less
NASA Astrophysics Data System (ADS)
Karczmarek, Paulina; Pietrzyński, Grzegorz; Górski, Marek; Gieren, Wolfgang; Bersier, David
2017-12-01
We have obtained single-phase near-infrared (NIR) magnitudes in the J and K bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818+/- 0.015{{(statistical)}}+/- 0.116{{(systematic)}} mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 ± 0.013 mag), the tip of the red giant branch (20.84+/- 0.04+/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5% level. This precision is expected to reach the level of 3% once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids. Based on data collected with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile, as a part of programme 082.D-0123(B).
Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei
2016-11-01
In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.
A deeper look at the X-ray point source population of NGC 4472
NASA Astrophysics Data System (ADS)
Joseph, T. D.; Maccarone, T. J.; Kraft, R. P.; Sivakoff, G. R.
2017-10-01
In this paper we discuss the X-ray point source population of NGC 4472, an elliptical galaxy in the Virgo cluster. We used recent deep Chandra data combined with archival Chandra data to obtain a 380 ks exposure time. We find 238 X-ray point sources within 3.7 arcmin of the galaxy centre, with a completeness flux, FX, 0.5-2 keV = 6.3 × 10-16 erg s-1 cm-2. Most of these sources are expected to be low-mass X-ray binaries. We finding that, using data from a single galaxy which is both complete and has a large number of objects (˜100) below 1038 erg s-1, the X-ray luminosity function is well fitted with a single power-law model. By cross matching our X-ray data with both space based and ground based optical data for NGC 4472, we find that 80 of the 238 sources are in globular clusters. We compare the red and blue globular cluster subpopulations and find red clusters are nearly six times more likely to host an X-ray source than blue clusters. We show that there is evidence that these two subpopulations have significantly different X-ray luminosity distributions. Source catalogues for all X-ray point sources, as well as any corresponding optical data for globular cluster sources, are also presented here.
Toth, Balazs; Santos, Andrea P.; do Nascimento, Naíla C.; Kritchevsky, Janice E.
2012-01-01
We report the complete genome sequence of “Candidatus Mycoplasma haemolamae,” an endemic red-cell pathogen of camelids. The single, circular chromosome has 756,845 bp, a 39.3% G+C content, and 925 coding sequences (CDSs). A great proportion (49.1%) of these CDSs are organized into paralogous gene families, which can now be further explored with regard to antigenic variation. PMID:23105057
Ruggiero, Maria Valeria; Procaccini, Gabriele
2004-01-01
Halophila stipulacea is a dioecious marine angiosperm, widely distributed along the western coasts of the Indian Ocean and the Red Sea. This species is thought to be a Lessepsian immigrant that entered the Mediterranean Sea from the Red Sea after the opening of the Suez Canal (1869). Previous studies have revealed both high phenotypic and genetic variability in Halophila stipulacea populations from the western Mediterranean basin. In order to test the hypothesis of a Lessepsian introduction, we compare genetic polymorphism between putative native (Red Sea) and introduced (Mediterranean) populations through rDNA ITS region (ITS1-5.8S-ITS2) sequence analysis. A high degree of intraindividual variability of ITS sequences was found. Most of the intragenomic polymorphism was due to pseudogenic sequences, present in almost all individuals. Features of ITS functional sequences and pseudogenes are described. Possible causes for the lack of homogenization of ITS paralogues within individuals are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oohama, N.; Okamura, S.; Fukugita, M.
A bulge-disk decomposition is made for 737 spiral and lenticular galaxies drawn from a Sloan Digital Sky Survey galaxy sample for which morphological types are estimated. We carry out the bulge-disk decomposition using the growth curve fitting method. It is found that bulge properties, effective radius, effective surface brightness, and also absolute magnitude, change systematically with the morphological sequence; from early to late types, the size becomes somewhat larger, and surface brightness and luminosity fainter. In contrast, disks are nearly universal, their properties remaining similar among disk galaxies irrespective of detailed morphologies from S0 to Sc. While these tendencies weremore » often discussed in previous studies, the present study confirms them based on a large homogeneous magnitude-limited field galaxy sample with morphological types estimated. The systematic change of bulge-to-total luminosity ratio, B/T, along the morphological sequence is therefore not caused by disks but mostly by bulges. It is also shown that elliptical galaxies and bulges of spiral galaxies are unlikely to be in a single sequence. We infer the stellar mass density (in units of the critical mass density) to be OMEGA = 0.0021 for spheroids, i.e., elliptical galaxies plus bulges of spiral galaxies, and OMEGA = 0.00081 for disks.« less
NASA Technical Reports Server (NTRS)
Sparks, W. M.; Starrfield, S.; Truran, J. W.
1978-01-01
The paper reports use of a Lagrangian implicit hydrodynamics computer code incorporating a full nuclear-reaction network to follow a thermonuclear runaway in the hydrogen-rich envelope of a 1.25 solar-mass white dwarf. In this evolutionary sequence the envelope was assumed to be of normal (solar) composition and the resulting outburst closely resembles that of the slow nova HR Del. In contrast, previous CNO-enhanced models resemble fast nova outbursts. The slow-nova model ejects material by radiation pressure when the high luminosity of the rekindled hydrogen shell source exceeds the local Eddington luminosity of the outer layers. This is in contrast to the fast nova outburst where ejection is caused by the decay of the beta(+)-unstable nuclei. Nevertheless, radiation pressure probably plays a major role in ejecting material from the fast nova remnants. Therefore, the sequence from slow to fast novae can be interpreted as a sequence of white dwarfs with increasing amounts of enhanced CNO nuclei in their hydrogen envelopes, although other parameters such as the white-dwarf mass and accretion rate probably contribute to the observed variation between novae.
NASA Astrophysics Data System (ADS)
Guinan, Edward F.; Engle, S. G.
2013-01-01
As part of our NSF/NASA sponsored “Living with a Red Dwarf Star” program, we are carrying out a comprehensive study of red dwarf stars across the electromagnetic spectrum to assess their suitability as hosts for habitable planets. These cool, dim, long-lived, low mass stars comprise >75% of the stars in our Galaxy. Moreover an increasing number of (potentially habitable) large Earth-size planets are being found hosted by red dwarfs. With intrinsically low luminosities (L < 0.02 Lsun), the habitable zones (HZs) of hosted planets are close to their host stars (typically 0.05 AU < HZ <0.4 AU). Our study indicates red dwarf HZ planets without strong (protective) magnetic fields are especially susceptible to atmospheric erosion & loss by the star’s X-UV and wind fluxes. Also, the frequent flaring of young red dwarf stars and tidal-locking of close-in planets could challenge the development of life. But tidal locking of these planets could have some advantages for the developmenet of life. The long lifetimes of the red dwarfs (> 50 BY) could be favorable for the development of complex (possibly even intelligent) life. We discuss our results in the context of nearby red dwarfs as possible destinations for future interstellar missions program. We illustrate this with examples of the red dwarf exoplanet systems: GJ 581 and HD 85512 (both with large HZ Earth-size planets). Also we discuss the nearest star (4.3 LY) - the red dwarf - Proxima Centauri as a potential destination for future interstellar missions such proposed by Icarus Interstellar and the 100-Year Starship and StarVoyager programs. We gratefully acknowledge the support from NSF-Grant AST-10-09903, Chandra Grants GO1-12124X & GO2-13020X and HST Grant GO-10920.
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2004-06-01
We present analysis of the large sample of variable red giants from the Large and Small Magellanic Clouds detected during the second phase of the Optical Gravitational Lensing Experiment (OGLE-II) and supplemented with OGLE-III photometry. Comparing pulsation properties of detected objects we find that they constitute two groups with clearly distinct features. In this paper we analyze in detail small amplitude variable red giants (about 15400 and 3000 objects in the LMC and SMC, respectively). The vast majority of these objects are multi-periodic. At least 30% of them exhibit two modes closely spaced in the power spectrum, what likely indicates non-radial oscillations. About 50% exhibit additional so called Long Secondary Period. To distinguish between AGB and RGB red giants we compare PL diagrams of multi-periodic red giants located above and below the tip of the Red Giant Branch (TRGB). The giants above the TRGB form four parallel ridges in the PL diagram. Among much more numerous sample of giants below the TRGB we find objects located on the low luminosity extensions of these ridges, but most of the stars are located on the ridges slightly shifted in log P. We interpret the former as the second ascent AGB red giants and the latter as the first ascent RGB objects. Thus, we empirically show that the pulsating red giants fainter than the TRGB are a mixture of RGB and AGB giants. Finally, we compare the Petersen diagrams of the LMC, SMC and Galactic bulge variable red giants and find that they are basically identical indicating that the variable red giants in all these different stellar environments share similar pulsation properties.
Distances to M101, NGC 2403, and NGC 2366 via Long Period Variables
NASA Astrophysics Data System (ADS)
Jurcevic, J. S.
1998-12-01
A new method of measuring accurately extra-Galactic distances has been developed based on the relationship between the luminosity of red supergiant variable (RSV) stars at optical wavelengths and their period of luminosity variation. This period-luminosity (PL) relationship has been calibrated in the broadband optical R and I-bands with RSVs from the Galactic Perseus OB1 association, the Large Magellanic Cloud, and M33. To verify the effectiveness of these RSV PL relations, the distances to the galaxies M101, NGC 2403, and NGC 2366 were determined. These galaxies were chosen because they had existing Cepheid based distances to use as a comparison between the two methods. These galaxies also span a range of metallicity to investigate any metallicity effects. Ground-based photometry of the galaxies in the R-band was obtained over four years to discover red variable stars with periods in the range 100--1200 days. The number of RSVs discovered in M101, NGC 2403, and NGC 2366 was 42, 61, and 20, respectively. By assuming a distance modulus for the Large Magellanic Cloud of 18.5 +/- 0.1 mag, single epoch I-band photometry of the RSVs was used to construct random phase PL relations resulting in distance moduli for M101, NGC 2403, and NGC 2366 of 29.40 +/- 0.16, 27.67 +/- 0.16, and 27.86 +/- 0.20 mag, respectively. These distances have been corrected for extinction by assuming values of E(B - V) = 0.10, 0.04, and 0.04 mag, respectively. These distances agree quite well with those found via recent Cepheid based measurements. In particular, the RSV distance modulus to M101 is very close to the HST Key Project Cepheid modulus of 29.34 +/- 0.17 mag (Kelson {et al. } 1996). These results show that RSVs, at optical wavelengths, provide a new method for measuring distances with a precision comparable to that of Cepheids with the advantages of being more luminous and more abundant than Cepheids.
DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y. P.; Han, Z. W.; Zhang, X. B.
2012-02-10
We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that allmore » these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.« less
Analysis of fundamental parameters for V477 Lyr
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Pozdnyakova, S. A.; Borisov, N. V.; Bikmaev, I. F.; Galeev, A. I.; Sakhibullin, N. A.; Spiridonova, O. I.
2008-06-01
We analyze the photometric and spectroscopic observations of the young pre-cataclysmic variable (pre-CV) V477 Lyr. The masses of both binary components have been corrected by analyzing their radial velocity curves. We show that agreement between the theoretical and observed light curves of the object is possible for several sets of its physical parameters corresponding to the chosen temperature of the primary component. The final parameters of V477 Lyr have been established by comparing observational data with evolutionary tracks for planetary nebula nuclei. The derived effective temperature of the O subdwarf is higher than that estimated by analyzing the object’s ultraviolet spectra by more than 10000 K. This is in agreement with the analogous results obtained previously for the young pre-CVs V664 Cas and UU Sge. The secondary component of V477 Lyr has been proven to have a more than 25-fold luminosity excess compared to main-sequence stars of similar mass. Comparison of the physical parameters for the cool stars in young pre-CVs indicates that their luminosities do not correlate with the masses of the objects. The observed luminosity excesses in such stars show a close correlation with the post-common-envelope lifetime of the systems and should be investigated within the framework of the theory of their relaxation to the state of main-sequence stars.
Skorczyk, A; Flisikowski, K; Szydlowski, M; Cieslak, J; Fries, R; Switonski, M
2011-02-01
There are five genes encoding melanocortin receptors. Among canids, the genes have mainly been studied in the dog (MC1R, MC2R and MC4R). The MC4R gene has also been analysed in the red fox. In this report, we present a study of chromosome localization, comparative sequence analysis and polymorphism of the MC3R gene in the dog, red fox, arctic fox and Chinese raccoon dog. The gene was localized by FISH to the following chromosome: 24q24-25 in the dog, 14p16 in the red fox, 18q13 in the arctic fox and NPP4p15 in the Chinese raccoon dog. A high identity level of the MC3R gene sequences was observed among the species, ranging from 96.0% (red fox--Chinese raccoon dog) to 99.5% (red fox--arctic fox). Altogether, eight polymorphic sites were found in the red fox, six in the Chinese raccoon dog and two in the dog, while the arctic fox appeared to be monomorphic. In addition, association of several polymorphisms with body weight was analysed in red foxes (the number of genotyped animals ranged from 319 to 379). Two polymorphisms in the red fox, i.e. a silent substitution c.957A>C and c.*185C>T in the 3'-flanking sequence, showed a significant association (P < 0.01) with body weight. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.
Y-Chromosome Markers for the Red Fox.
Rando, Halie M; Stutchman, Jeremy T; Bastounes, Estelle R; Johnson, Jennifer L; Driscoll, Carlos A; Barr, Christina S; Trut, Lyudmila N; Sacks, Benjamin N; Kukekova, Anna V
2017-09-01
The de novo assembly of the red fox (Vulpes vulpes) genome has facilitated the development of genomic tools for the species. Efforts to identify the population history of red foxes in North America have previously been limited by a lack of information about the red fox Y-chromosome sequence. However, a megabase of red fox Y-chromosome sequence was recently identified over 2 scaffolds in the reference genome. Here, these scaffolds were scanned for repeated motifs, revealing 194 likely microsatellites. Twenty-three of these loci were selected for primer development and, after testing, produced a panel of 11 novel markers that were analyzed alongside 2 markers previously developed for the red fox from dog Y-chromosome sequence. The markers were genotyped in 76 male red foxes from 4 populations: 7 foxes from Newfoundland (eastern Canada), 12 from Maryland (eastern United States), and 9 from the island of Great Britain, as well as 48 foxes of known North American origin maintained on an experimental farm in Novosibirsk, Russia. The full marker panel revealed 22 haplotypes among these red foxes, whereas the 2 previously known markers alone would have identified only 10 haplotypes. The haplotypes from the 4 populations clustered primarily by continent, but unidirectional gene flow from Great Britain and farm populations may influence haplotype diversity in the Maryland population. The development of new markers has increased the resolution at which red fox Y-chromosome diversity can be analyzed and provides insight into the contribution of males to red fox population diversity and patterns of phylogeography. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
THE YOUNG OPEN CLUSTER BERKELEY 55
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es
We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster withmore » a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.« less
The Size Distribution Of Cluster Galaxies
NASA Astrophysics Data System (ADS)
Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.
2017-06-01
We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.
Deep spectroscopy of nearby galaxy clusters - II. The Hercules cluster
NASA Astrophysics Data System (ADS)
Agulli, I.; Aguerri, J. A. L.; Diaferio, A.; Dominguez Palmero, L.; Sánchez-Janssen, R.
2017-06-01
We carried out the deep spectroscopic observations of the nearby cluster A 2151 with AF2/WYFFOS@WHT. The caustic technique enables us to identify 360 members brighter than Mr = -16 and within 1.3R200. We separated the members into subsamples according to photometrical and dynamical properties such as colour, local environment and infall time. The completeness of the catalogue and our large sample allow us to analyse the velocity dispersion and the luminosity functions (LFs) of the identified populations. We found evidence of a cluster still in its collapsing phase. The LF of the red population of A 2151 shows a deficit of dwarf red galaxies. Moreover, the normalized LFs of the red and blue populations of A 2151 are comparable to the red and blue LFs of the field, even if the blue galaxies start dominating 1 mag fainter and the red LF is well represented by a single Schechter function rather than a double Schechter function. We discuss how the evolution of cluster galaxies depends on their mass: bright and intermediate galaxies are mainly affected by dynamical friction and internal/mass quenching, while the evolution of dwarfs is driven by environmental processes that need time and a hostile cluster environment to remove the gas reservoirs and halt the star formation.
Fermilab Tevatron and Pbar source status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, H.
1986-08-01
The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently undermore » evaluation to accomplish these goals: luminosity increase to 5 x 10/sup 31/ cm/sup -2/sec/sup -1/, production rates up to 4 x 10/sup 11/ antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade. (LEW)« less
NASA Astrophysics Data System (ADS)
Devour, Brian M.; Bell, Eric F.
2016-06-01
We study the relative dust attenuation-inclination relation in 78 721 nearby galaxies using the axis ratio dependence of optical-near-IR colour, as measured by the Sloan Digital Sky Survey, the Two Micron All Sky Survey, and the Wide-field Infrared Survey Explorer. In order to avoid to the greatest extent possible attenuation-driven biases, we carefully select galaxies using dust attenuation-independent near- and mid-IR luminosities and colours. Relative u-band attenuation between face-on and edge-on disc galaxies along the star-forming main sequence varies from ˜0.55 mag up to ˜1.55 mag. The strength of the relative attenuation varies strongly with both specific star formation rate and galaxy luminosity (or stellar mass). The dependence of relative attenuation on luminosity is not monotonic, but rather peaks at M3.4 μm ≈ -21.5, corresponding to M* ≈ 3 × 1010 M⊙. This behaviour stands seemingly in contrast to some older studies; we show that older works failed to reliably probe to higher luminosities, and were insensitive to the decrease in attenuation with increasing luminosity for the brightest star-forming discs. Back-of-the-envelope scaling relations predict the strong variation of dust optical depth with specific star formation rate and stellar mass. More in-depth comparisons using the scaling relations to model the relative attenuation require the inclusion of star-dust geometry to reproduce the details of these variations (especially at high luminosities), highlighting the importance of these geometrical effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalirai, Jason S.; Zucker, Daniel B.; Kniazev, Alexei Y.
2009-11-01
Andromeda X (And X) is a newly discovered low-luminosity M31 dwarf spheroidal galaxy (dSph) found by Zucker et al. in the Sloan Digital Sky Survey (SDSS; York et al.). In this paper, we present the first spectroscopic study of individual red giant branch stars in And X, as a part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) Survey. Using the Keck II telescope and multiobject DEIMOS spectrograph, we target two spectroscopic masks over the face of the galaxy and measure radial velocities for approx100 stars with a median accuracy of sigma {sub v} approx 3 kmmore » s{sup -1}. The velocity histogram for this field confirms three populations of stars along the sight line: foreground Milky Way dwarfs at small negative velocities, M31 halo red giants over a broad range of velocities, and a very cold velocity 'spike' consisting of 22 stars belonging to And X with v {sub rad} = -163.8 +- 1.2 km s{sup -1}. By carefully considering both the random and systematic velocity errors of these stars (e.g., through duplicate star measurements), we derive an intrinsic velocity dispersion of just sigma {sub v} = 3.9 +- 1.2 km s{sup -1} for And X, which for its size, implies a minimum mass-to-light ratio of M/L{sub V} = 37{sup +26} {sub -19} assuming that the mass traces the light. Based on the clean sample of member stars, we measure the median metallicity of And X to be [Fe/H] = -1.93 +- 0.11, with a slight radial metallicity gradient. The dispersion in metallicity is large, sigma([Fe/H]{sub phot}) = 0.48, possibly hinting that the galaxy retained much of its chemical enrichment products. And X has a total integrated luminosity (M{sub V} = -8.1 +- 0.5) that straddles the classical Local Group dSphs and the new SDSS ultra-low luminosity galaxies. The galaxy is among the most metal-poor dSphs known, especially relative to those with M{sub V} < -8, and has the second lowest intrinsic velocity dispersion of the entire sample. Our results suggest that And X is less massive by a factor of 4 when compared to Milky Way dSphs of comparable luminosity (e.g., Draco and Ursa Minor). We discuss the potential for better understanding the formation and evolution mechanisms for M31's system of dSphs through (current) kinematic and chemical abundance studies, especially in relation to the Milky Way sample.« less
The Planetary Nebulae Luminosity Function (PNLF): current perspectives
NASA Astrophysics Data System (ADS)
Méndez, Roberto H.
2017-10-01
This paper starts with a brief historical review about the PNLF and its use as a distance indicator. Then the PNLF distances are compared with Surface Brightness Fluctuations (SBF) distances and Tip of the Red Giant Branch (TRGB) distances. A Monte Carlo method to generate simulated PNLFs is described, leading to the last subject: recent progress in reproducing the expected maximum final mass in old stellar populations, a stellar astrophysics enigma that has been challenging us for quite some time.
NASA Astrophysics Data System (ADS)
Klein, M.; Mohr, J. J.; Desai, S.; Israel, H.; Allam, S.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; da Costa, L. N.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Frieman, J.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Lima, M.; Maia, M. A. G.; March, M.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Collaboration, the DES
2018-03-01
We describe a multicomponent matched filter (MCMF) cluster confirmation tool designed for the study of large X-ray source catalogues produced by the upcoming X-ray all-sky survey mission eROSITA. We apply the method to confirm a sample of 88 clusters with redshifts 0.05 < z < 0.8 in the recently published 2RXS catalogue from the ROSAT All-Sky Survey (RASS) over the 208 deg2 region overlapped by the Dark Energy Survey (DES) Science Verification (DES-SV) data set. In our pilot study, we examine all X-ray sources, regardless of their extent. Our method employs a multicolour red sequence (RS) algorithm that incorporates the X-ray count rate and peak position in determining the region of interest for follow-up and extracts the positionally and colour-weighted optical richness λMCMF as a function of redshift for each source. Peaks in the λMCMF-redshift distribution are identified and used to extract photometric redshifts, richness and uncertainties. The significances of all optical counterparts are characterized using the distribution of richnesses defined along random lines of sight. These significances are used to extract cluster catalogues and to estimate the contamination by random superpositions of unassociated optical systems. The delivered photometric redshift accuracy is δz/(1 + z) = 0.010. We find a well-defined X-ray luminosity-λMCMF relation with an intrinsic scatter of δln (λMCMF|Lx) = 0.21. Matching our catalogue with the DES-SV redMaPPer catalogue yields good agreement in redshift and richness estimates; comparing our catalogue with the South Pole Telescope (SPT) selected clusters shows no inconsistencies. SPT clusters in our data set are consistent with the high-mass extension of the RASS-based λMCMF-mass relation.
A steep slope and small scatter for the high-mass end of the L–σ relation at z ~ 0.55
Montero-Dorta, Antonio D.; Shu, Yiping; Bolton, Adam S.; ...
2016-01-07
We measure the intrinsic relation between velocity dispersion (σ) and luminosity (L) for massive, luminous red galaxies at redshift z ~ 0.55. Here, we achieve unprecedented precision by using a sample of 600 000 galaxies with spectra from the Baryon Oscillation Spectroscopic Survey of the third Sloan Digital Sky Survey (SDSS-III), covering a range of stellar masses M* ≳ 10 11M ⊙. We deconvolve the effects of photometric errors, limited spectroscopic signal-to-noise ratio, and red–blue galaxy confusion using a novel hierarchical Bayesian formalism that is generally applicable to any combination of photometric and spectroscopic observables. For an L–σ relation ofmore » the form L ∝ σ β, we find β = 7.8 ± 1.1 for σ corrected to the effective radius, and a very small intrinsic scatter of s = 0.047 ± 0.004 in log10σ at fixed L. No significant redshift evolution is found for these parameters. The evolution of the zero-point within the redshift range considered is consistent with the passive evolution of a galaxy population that formed at redshift z = 2–3, assuming single stellar populations. An analysis of previously reported results seems to indicate that the passively evolved high-mass L–σ relation at z ~ 0.55 is consistent with the one measured at z = 0.1. Finally, our results, in combination with those presented in the LF work of Montero-Dorta et al., provide a detailed description of the high-mass end of the red sequence (RS) at z ~ 0.55. This characterization, in the light of previous literature, suggest that the high-mass RS distribution corresponds to the ‘core’ elliptical population.« less
Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea
NASA Astrophysics Data System (ADS)
DiBattista, Joseph D.; Coker, Darren J.; Sinclair-Taylor, Tane H.; Stat, Michael; Berumen, Michael L.; Bunce, Michael
2017-12-01
Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.
A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark
2013-05-20
The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected withinmore » a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.« less
NASA Astrophysics Data System (ADS)
Melbourne, J.; Soifer, B. T.; Desai, Vandana; Pope, Alexandra; Armus, Lee; Dey, Arjun; Bussmann, R. S.; Jannuzi, B. T.; Alberts, Stacey
2012-05-01
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 1012 L ⊙). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 1011.6 L ⊙
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melbourne, J.; Soifer, B. T.; Desai, Vandana
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. Themore » rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up versions of local ULIRGs in terms of 250/24 {mu}m flux density ratio, and IR8, they tend to have cooler far-IR dust temperatures (20-40 K for DOGs versus 40-50 K for local ULIRGs) as measured by the rest-frame 80/115 {mu}m flux density ratios (e.g., observed-frame 250/350 {mu}m ratios at z = 2). DOGs that are not detected by Herschel appear to have lower observed-frame 250/24 {mu}m ratios than the detected sample, either because of warmer dust temperatures, lower IR luminosities, or both.« less
ERIC Educational Resources Information Center
Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong
2008-01-01
We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…
NASA Astrophysics Data System (ADS)
López-Sanjuan, C.; Cenarro, A. J.; Varela, J.; Viironen, K.; Molino, A.; Benítez, N.; Arnalte-Mur, P.; Ascaso, B.; Díaz-García, L. A.; Fernández-Soto, A.; Jiménez-Teja, Y.; Márquez, I.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.
2015-04-01
Aims: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. Methods: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections. We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. Results: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20-1.1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2.7 ± 0.5) than for red galaxies (n = 1.3 ± 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nmred = 0.57 ± 0.05 for red galaxies and Nmblue = 0.26 ± 0.02 for blue galaxies. Conclusions: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).The catalogues, probabilities, and figures of the ALHAMBRA close pairs detected in Sect. 5.1 are available at http://https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs
Discovery of a low-luminosity spiral DRAGN
NASA Astrophysics Data System (ADS)
Mulcahy, D. D.; Mao, M. Y.; Mitsuishi, I.; Scaife, A. M. M.; Clarke, A. O.; Babazaki, Y.; Kobayashi, H.; Suganuma, R.; Matsumoto, H.; Tawara, Y.
2016-11-01
Standard galaxy formation models predict that large-scale double-lobed radio sources, known as DRAGNs, will always be hosted by elliptical galaxies. In spite of this, in recent years a small number of spiral galaxies have also been found to host such sources. These so-called spiral DRAGNs are still extremely rare, with only 5 cases being widely accepted. Here we report on the serendipitous discovery of a new spiral DRAGN in data from the Giant Metrewave Radio Telescope (GMRT) at 322 MHz. The host galaxy, MCG+07-47-10, is a face-on late-type Sbc galaxy with distinctive spiral arms and prominent bulge suggesting a high black hole mass. Using WISE infra-red and GALEX UV data we show that this galaxy has a star formation rate of 0.16-0.75 M⊙ yr-1, and that the radio luminosity is dominated by star-formation. We demonstrate that this spiral DRAGN has similar environmental properties to others of this class, but has a comparatively low radio luminosity of L1.4 GHz = 1.12 × 1022 W Hz-1, two orders of magnitude smaller than other known spiral DRAGNs. We suggest that this may indicate the existence of a previously unknown low-luminosity population of spiral DRAGNS. FITS cutout image of the observed spiral DRAGN MCG+07-47- 10 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/L8
NASA Astrophysics Data System (ADS)
Fritz, A.; Scodeggio, M.; Ilbert, O.; Bolzonella, M.; Davidzon, I.; Coupon, J.; Garilli, B.; Guzzo, L.; Zamorani, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Granett, B. R.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.
2014-03-01
We explore the evolution of the colour-magnitude relation (CMR) and luminosity function (LF) at 0.4 < z < 1.3 from the VIMOS Public Extragalactic Redshift Survey (VIPERS) using ~45 000 galaxies with precise spectroscopic redshifts down to i'AB < 22.5 over ~10.32 deg2 in two fields. From z = 0.5 to z = 1.3 the LF and CMR are well defined for different galaxy populations and M*B evolves by ~1.04(1.09) ± 0.06(0.10) mag for the total (red) galaxy sample. We compare different criteria for selecting early-type galaxies: (1) a fixed cut in rest-frame (U - V) colours, (2) an evolving cut in (U - V) colours, (3) a rest-frame (NUV - r') - (r' - K) colour selection, and (4) a spectral-energy-distribution classification. The completeness and contamination varies for the different methods and with redshift, but regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4 < z < 1.3 we find a moderate evolution of the RS intercept of Δ(U - V) = 0.28 ± 0.14 mag, favouring exponentially declining star formation (SF) histories with SF truncation at 1.7 ≤ z ≤ 2.3. Together with the rise in the number density of red galaxies by 0.64 dex since z = 1, this suggests a rapid build-up of massive galaxies (M⋆ > 1011 M⊙) and expeditious RS formation over a short period of ~1.5 Gyr starting before z = 1. This is supported by the detection of ongoing SF in early-type galaxies at 0.9 < z < 1.0, in contrast with the quiescent red stellar populations of early-type galaxies at 0.5 < z < 0.6. There is an increase in the observed CMR scatter with redshift, which is two times larger than observed in galaxy clusters and at variance with theoretical model predictions. We discuss possible physical mechanisms that support the observed evolution of the red galaxy population. Our findings point out that massive galaxies have experienced a sharp SF quenching at z ~ 1 with only limited additional merging. In contrast, less-massive galaxies experience a mix of SF truncation and minor mergers which build-up the low- and intermediate-mass end of the CMR. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS website is http://www.vipers.inaf.it/.Appendices are available in electronic form at http://www.aanda.org
Teichmann, A Lina; Nieuwenstein, Mark R; Rich, Anina N
2015-01-01
Digit-color synesthetes report experiencing colors when perceiving letters and digits. The conscious experience is typically unidirectional (e.g., digits elicit colors but not vice versa) but recent evidence shows subtle bidirectional effects. We examined whether short-term memory for colors could be affected by the order of presentation reflecting more or less structure in the associated digits. We presented a stream of colored squares and asked participants to report the colors in order. The colors matched each synesthete's colors for digits 1-9 and the order of the colors corresponded either to a sequence of numbers (e.g., [red, green, blue] if 1 = red, 2 = green, 3 = blue) or no systematic sequence. The results showed that synesthetes recalled sequential color sequences more accurately than pseudo-randomized colors, whereas no such effect was found for the non-synesthetic controls. Synesthetes did not differ from non-synesthetic controls in recall of color sequences overall, providing no evidence of a general advantage in memory for serial recall of colors.
The Rest-Frame Optical Luminosity Functions of Galaxies at 2<=z<=3.5
NASA Astrophysics Data System (ADS)
Marchesini, D.; van Dokkum, P.; Quadri, R.; Rudnick, G.; Franx, M.; Lira, P.; Wuyts, S.; Gawiser, E.; Christlein, D.; Toft, S.
2007-02-01
We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<=z<=3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its combination of area and range of luminosities. The faint-end slopes of the LFs at z>2 are consistent with those at z~0. The characteristic magnitudes are significantly brighter than the local values (e.g., ~1.2 mag in the R band), while the measured values for Φ* are typically ~5 times smaller. The B-band luminosity density at z~2.3 is similar to the local value, and in the R band it is ~2 times smaller than the local value. We present the LF of distant red galaxies (DRGs), which we compare to that of non-DRGs. While DRGs and non-DRGs are characterized by similar LFs at the bright end, the faint-end slope of the non-DRG LF is much steeper than that of DRGs. The contribution of DRGs to the global densities down to the faintest probed luminosities is 14%-25% in number and 22%-33% in luminosity. From the derived rest-frame U-V colors and stellar population synthesis models, we estimate the mass-to-light ratios (M/L) of the different subsamples. The M/L ratios of DRGs are ~5 times higher (in the R and V bands) than those of non-DRGs. The global stellar mass density at 2<=z<=3.5 appears to be dominated by DRGs, whose contribution is of order ~60%-80% of the global value. Qualitatively similar results are obtained when the population is split by rest-frame U-V color instead of observed J-K color. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Also based on observations collected at the European Southern Observatories on Paranal, Chile as part of the ESO program 164.O-0612.
Evolution of the major merger galaxy pair fraction at z < 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, R. C.; Hsieh, B. C.; Lin, L.
We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies andmore » is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10{sup 8}-10{sup 12} L {sub ☉}, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f {sub pair}∝(1 + z) {sup m} than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).« less
Mass-loss From Evolved Stellar Populations In The Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Riebel, David
2012-01-01
I have conducted a study of a sample of 30,000 evolved stars in the Large Magellanic Cloud (LMC) and 6,000 in the Small Magellanic Cloud (SMC), covering their variability, mass-loss properties, and chemistry. The initial stages of of my thesis work focused on the infrared variability of Asymptotic Giant Branch (AGB) stars in the LMC. I determined the period-luminosity (P-L) relations for 6 separate sequences of 30,000 evolved star candidates at 8 wavelengths, as a function of photometrically assigned chemistry, and showed that the P-L relations are different for different chemical populations (O-rich or C-rich). I also present results from the Grid of Red supergiant and Asymptotic giant branch star ModelS (GRAMS) radiative transfer (RT) model grid applied to the evolved stellar population of the LMC. GRAMS is a pre-computed grid of RT models of RSG and AGB stars and surrounding circumstellar dust. Best-fit models are determined based on 12 bands of photometry from the optical to the mid-infrared. Using a pre-computed grid, I can present the first reasonably detailed radiative transfer modeling for tens of thousands of stars, allowing me to make statistically accurate estimations of the carbon-star luminosity function and the global dust mass return to the interstellar medium from AGB stars, both key parameters for stellar population synthesis models to reproduce. In the SAGE-Var program, I used the warm Spitzer mission to take 4 additional epochs of observations of 7500 AGB stars in the LMC and SMC. These epochs, combined with existing data, enable me to derive mean fluxes at 3.6 and 4.5 microns, that will be used for tighter constraints for GRAMS, which is currently limited by the variability induced error on the photometry. This work is support by NASA NAG5-12595 and Spitzer contract 1415784.
Amelogenin Evolution and Tetrapod Enamel Structure
Diekwisch, Thomas G.H.; Jin, Tianquan; Wang, Xinping; Ito, Yoshihiro; Schmidt, Marcella; Druzinsky, Robert; Yamane, Akira; Luan, Xianghong
2009-01-01
Amelogenins are the major proteins involved in tooth enamel formation. In the present study we have cloned and sequenced four novel amelogenins from three amphibian species in order to analyze similarities and differences between mammalian and non-mammalian amelogenins. The newly sequenced amphibian amelogenin sequences were from a Red-eyed tree frog (Litoria chloris) and a Mexican axolotl (Ambystoma mexicanum). We identified two amelogenin isoforms in the Eastern Red-backed Salamander (Plethodon cinereus). Sequence comparisons confirmed that non-mammalian amelogenins are overall shorter than their mammalian counterparts, contain less proline and less glutamine, and feature shorter polyproline tripeptide repeat stretches than mammalian amelogenins. We propose that unique sequence parameters of mammalian amelogenins might be a pre-requisite for complex mammalian enamel prism architecture. PMID:19828974
Radio properties of type 1.8 and 1.9 Seyfert galaxies
NASA Technical Reports Server (NTRS)
Ulvestad, James S.
1986-01-01
A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle.
Low-luminosity stellar mass functions in globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richer, H.B.; Fahlman, G.G.; Buonanno, R.
New data are presented on cluster luminosity functions and mass functions for selected fields in the globular clusters M13 and M71, extending down the main sequence to at least 0.2 solar mass. In this experiment, CCD photometry data were obtained at the prime focus of the CFHT on the cluster fields that were far from the cluster center. Luminosity functions were constructed, using the ADDSTAR routine to correct for the background, and mass functions were derived using the available models. The mass functions obtained for M13 and M71 were compared to existing data for NGC 6397. Results show that (1)more » all three globular clusters display a marked change in slope at about 0.4 solar mass, with the slopes becoming considerably steeper toward lower masses; (2) there is no correlation between the slope of the mass function and metallicity; and (3) the low-mass slope of the mass function for M13 is much steeper than for NGC 6397 and M71. 22 refs.« less
NASA Technical Reports Server (NTRS)
Henry, Todd J.; Beedict, G. Fritz; Gies, Douglas R.; Golimowski, David A.; Ianna, Philip A.; Mason, Brian; McArthur, Barbara; Nelan, Edmund; Torres, Guillermo
2004-01-01
The MASSIF (Masses and Stellar Systems with Interferometry) Team will use SIM to investigate the mass content of the Galaxy - from huge stars to barely glimmering brown dwarfs, and from hot white dwarfs to exotic black holes. We will target various samples of the Galactic population to determine and relate the fundamental characteristics of mass, luminosity, age, composition, and multiplicity - attributes that together yield an extensive understanding of the stars. Our samples will include distant clusters that span a factor of 5000 in age, and commonplace stars and substellar objects that lurk near the Sun. The principal goals of the MASSIF Key Project are to (1) define the mass-luminosity relation for main sequence stars in five fundamental clusters so that effects of age and metallicity can be mapped (Trapezium, TW Hydrae, Pleiades, Hyades, and M67), and (2) determine accurate masses for representative examples of nearly every type of star, stellar descendant or brown dwarf in the Galaxy.
Quantitative results of stellar evolution and pulsation theories.
NASA Technical Reports Server (NTRS)
Fricke, K.; Stobie, R. S.; Strittmatter, P. A.
1971-01-01
The discrepancy between the masses of Cepheid variables deduced from evolution theory and pulsation theory is examined. The effect of input physics on evolutionary tracks is first discussed; in particular, changes in the opacity are considered. The sensitivity of pulsation masses to opacity changes and to the ascribed values of luminosity and effective temperature are then analyzed. The Cepheid mass discrepancy is discussed in the light of the results already obtained. Other astronomical evidence, including the mass-luminosity relation for main sequence stars, the solar neutrino flux, and cluster ages are also considered in an attempt to determine the most likely source of error in the event that substantial mass loss has not occurred.
X-RAY OUTBURSTS OF ESO 243-49 HLX-1: COMPARISON WITH GALACTIC LOW-MASS X-RAY BINARY TRANSIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhen; Zhang, Wenda; Yu, Wenfei
2015-09-20
We studied the outburst properties of the hyper-luminous X-ray source ESO 243-49 HLX-1, using the full set of Swift monitoring observations. We quantified the increase in the waiting time, recurrence time, and e-folding rise timescale along the outburst sequence, and the corresponding decrease in outburst duration, total radiated energy, and e-folding decay timescale, which confirms previous findings. HLX-1 spends less and less time in outburst and more and more time in quiescence, but its peak luminosity remains approximately constant. We compared the HLX-1 outburst properties with those of bright Galactic low-mass X-ray binary transients (LMXBTs). Our spectral analysis strengthens themore » similarity between state transitions in HLX-1 and those in Galactic LMXBTs. We also found that HLX-1 follows the nearly linear correlations between the hard-to-soft state transition luminosity and the peak luminosity, and between the rate of change of X-ray luminosity during the rise phase and the peak luminosity, which indicates that the occurrence of the hard-to-soft state transition of HLX-1 is similar to those of Galactic LMXBTs during outbursts. We found that HLX-1 does not follow the correlations between total radiated energy and peak luminosity, and between total radiated energy and e-folding rise/decay timescales we had previously identified in Galactic LMXBTs. HLX-1 would follow those correlations if the distance were several hundreds of kiloparsecs. However, invoking a much closer distance for HLX-1 is not a viable solution to this problem, as it introduces other, more serious inconsistencies with the observations.« less
Mass-Luminosity Relations for Rapid and Slow Rotators.
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.
2006-08-01
Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.
Application of a digital technique in evaluating the reliability of shade guides.
Cal, E; Sonugelen, M; Guneri, P; Kesercioglu, A; Kose, T
2004-05-01
There appears to be a need for a reliable method for quantification of tooth colour and analysis of shade. Therefore, the primary objective of this study was to show the applicability of graphic software in colour analysis and secondly to investigate the reliability of commercial shade guides produced by the same manufacturer, using this digital technique. After confirming the reliability and reproducibility of the digital method by using self-assessed coloured images, three shade guides of the same manufacturer were photographed in daylight and in studio environments with a digital camera and saved in tagged image file format (TIFF) format. Colour analysis of each photograph was performed using the Adobe Photoshop 4.0 graphic program. Luminosity, and red, green, blue (L and RGB) values of each shade tab of each shade guide were measured and the data were subjected to statistical analysis using the repeated measure Anova test. The L and RGB values of the images taken in daylight differed significantly from those of the images taken in studio environment (P < 0.05). In both environments, the luminosity and red values of the shade tabs were significantly different from each other (P < 0.05). It was concluded that, when the environmental conditions were kept constant, the Adobe Photoshop 4.0 colour analysis program could be used to analyse the colour of images. On the other hand, the results revealed that the accuracy of shade tabs widely being used in colour matching should be readdressed.
Peering Through the Dust. II. XMM-Newton Observations of Two Additional FIRST-2MASS Red Quasars
NASA Astrophysics Data System (ADS)
Glikman, Eilat; LaMassa, Stephanie; Piconcelli, Enrico; Urry, Meg; Lacy, Mark
2017-10-01
We obtained XMM-Newton observations of two highly luminous dust-reddened quasars, F2M1113+1244 and F2M1656+3821, that appear to be in the early, transitional phase predicted by merger-driven models of quasar/galaxy co-evolution. These sources have been well studied at optical through mid-infrared wavelengths and are growing relatively rapidly, with Eddington ratios > 30 % . Their black hole masses are relatively small compared to their host galaxies, placing them below the {M}{BH}{--}{L}{bulge} relation. We find that for both sources, an absorbed power-law model with 1%-3% of the intrinsic continuum scattered or leaked back into the line of sight best fits their X-ray spectra. We measure the absorbing column density (N H ) and constrain the dust-to-gas ratios in these systems, finding that they lie well below the Galactic value. This, combined with the presence of broad emission lines in their optical and near-infrared spectra, suggests that the dust absorption occurs far from the nucleus and in the host galaxy, while the X-rays are mostly absorbed in the nuclear, dust-free region within the sublimation radius. We also compare the quasars’ absorption-corrected, rest-frame X-ray luminosities (2-10 keV) to their rest-frame infrared luminosities (6 μm) and find that red quasars, similar to other populations of luminous obscured quasars, are either underluminous in X-rays or overluminous in the infrared.
Large Magellanic Cloud Distance and Structure from Near-Infrared Red Clump Observations
NASA Astrophysics Data System (ADS)
Koerwer, Joel F.
2009-07-01
We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 μm) and H- (1.63 μm) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of μ = 18.54 ± 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, phi, have little dependence on the assumed RC absolute magnitude; we find i = 23fdg5 ± 0fdg4 and phi = 154fdg6 ± 1fdg2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.
Solar-Type Stars with the Suppression of Convection at an Early Stage of Evolution
NASA Astrophysics Data System (ADS)
Oreshina, A. V.; Baturin, V. A.; Ayukov, S. V.; Gorshkov, A. B.
2017-12-01
The evolution of a solar-mass star before and on the main sequence is analyzed in light of the diminished efficiency of convection in the first 500 Myr. A numerical simulation has been performed with the CESAM2k code. It is shown that the suppression of convection in the early stages of evolution leads to a somewhat higher lithium content than that predicted by the classical solar model. In addition, the star's effective temperature decreases. Ignoring this phenomenon may lead to errors in age and mass determinations for young stars (before the main sequence) from standard evolutionary tracks in the temperature-luminosity diagram. At a later stage of evolution, after 500 Myr, the efficiency of convection tends to the solar value. At this stage, the star's inner structure becomes classical; it does not depend on the previous history. On the contrary, the photospheric lithium abundance contains information about the star's past. In other words, there may exist main-sequence solar-mass stars of the same age (above 500 Myr), radius, and luminosity, yet with different photospheric lithium contents. The main results of this work add considerably to the popular method for determining the age of solar-type stars from lithium abundances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tovmassian, G.; González–Buitrago, D.; Zharikov, S.
We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from themore » active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.« less
Deep Imaging of Eridanus II and Its Lone Star Cluster
NASA Astrophysics Data System (ADS)
Crnojević, D.; Sand, D. J.; Zaritsky, D.; Spekkens, K.; Willman, B.; Hargis, J. R.
2016-06-01
We present deep imaging of the most distant dwarf discovered by the Dark Energy Survey, Eridanus II (Eri II). Our Magellan/Megacam stellar photometry reaches ˜3 mag deeper than previous work and allows us to confirm the presence of a stellar cluster whose position is consistent with Eri II’s center. This makes Eri II, at {M}V=-7.1, the least luminous galaxy known to host a (possibly central) cluster. The cluster is partially resolved, and at {M}V=-3.5 it accounts for ˜4% of Eri II’s luminosity. We derive updated structural parameters for Eri II, which has a half-light radius of ˜280 pc and is elongated (ɛ ˜ 0.48) at a measured distance of D ˜ 370 kpc. The color-magnitude diagram displays a blue, extended horizontal branch, as well as a less populated red horizontal branch. A central concentration of stars brighter than the old main-sequence turnoff hints at a possible intermediate-age (˜3 Gyr) population; alternatively, these sources could be blue straggler stars. A deep Green Bank Telescope observation of Eri II reveals no associated atomic gas. This paper includes data gathered with the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile.
A Herschel and CARMA synergistic study of turbulent gas in Hickson Compact Groups
NASA Astrophysics Data System (ADS)
Appleton, Philip N.; Alatalo, Katherine A.; Lisenfeld, Ute; Bitsakis, Thodoris; Guillard, Pierre; Charmandaris, Vassilis; Cluver, Michelle; Dopita, Michael A.; Freeland, Emily; Hickson Compact Group Team
2015-01-01
We have performed deep PACS and SPIRE imaging, [CII] and [OI] spectroscopy and CARMA CO J= 1-0 imaging of a dozen Hickson Compact Groups (HCGs). The observations attempt to explore the physical conditions of the gas in a subset of galaxies containing large quantities of warm molecular hydrogen based on previous Spitzer IRS observations. The H2 is too powerful to be heated in PDR regions, and is most likely powered by turbulence and shocks. Such galaxies are found to fall in a region of the IR color-color space believed to show galaxies rapidly transitioning from the blue cloud to the red sequence, and so shocks may play a role in quenching star formation. We explore far-IR line luminosities and surface densities for extended diffuse [CII] emission and compare this to similar quanties in the CO emitting gas, and the far-IR continuum. Preliminary results suggest that high [CII]/FIR and [CII]/CO ratios are common in these systems, and in some cases correlate with peculiar velocities in the CO emitting gas. Star formation suppression may be seen in some of the systems with the highest warm H2/PAH ratios found by Spitzer, implying that turbulence may suppress star formation.
The Origin of the Ultraluminous X-Ray Sources
NASA Astrophysics Data System (ADS)
Wiktorowicz, Grzegorz; Sobolewska, Małgorzata; Lasota, Jean-Pierre; Belczynski, Krzysztof
2017-09-01
Recently, several ultraluminous X-ray (ULX) sources were shown to host a neutron star (NS) accretor. We perform a suite of evolutionary calculations, which show that, in fact, NSs are the dominant type of ULX accretor. Although black holes (BH) dominate early epochs after the star-formation burst, NSs outweigh them after a few 100 Myr and may appear as late as a few gigayears after the end of the star-formation episode. If star formation is a prolonged and continuous event (I.e., not a relatively short burst), NS accretors dominate the ULX population at any time in the solar metallicity environment, whereas BH accretors dominate when the metallicity is sub-solar. Our results show a very clear (and testable) relation between the companion/donor evolutionary stage and the age of the system. A typical NSULX consists of a ˜ 1.3 {M}⊙ NS and ˜ 1.0 {M}⊙ Red Giant. A typical BH ULX consists of a ˜ 8 {M}⊙ BH and ˜ 6 {M}⊙ main-sequence star. Additionally, we find that the very luminous ULXs ({L}X≳ {10}41 erg s-1) are predominantly BH systems (˜ 9 {M}⊙ ) with Hertzsprung-gap donors (˜ 2 {M}⊙ ). Nevertheless, some NSULX systems may also reach extremely high X-ray luminosities (≳1041 erg s-1).
The nature of the ultraluminous X-ray sources
NASA Astrophysics Data System (ADS)
Wiktorowicz, G.; Sobolewska, M.; Lasota, J.; Belczynski, K.
2017-10-01
Recently, several ultraluminous X-ray (ULX) sources were shown to host a neutron star (NS) accretor. We perform a suite of evolutionary calculations which show that, in fact, NSs are the dominant type of ULX accretor. Although black holes (BH) dominate early epochs after the star-formation burst, NSs outweigh them after a few 100 Myr and may appear as late as a few Gyr after the end of the star formation episode. If star formation is a prolonged and continuous event (i.e., not a relatively short burst), NS accretors dominate ULX population at any time in solar metallicity environment, whereas BH accretors dominate when the metallicity is sub-solar. Our results show a very clear (and testable) relation between the companion/donor evolutionary stage and the age of the system. A typical NS ULX consists of a ˜1.3 M_⊙ NS and ˜1.0 M_⊙ Red Giant. A typical BH ULX consist of a ˜8 M_⊙ BH and ˜6 M_⊙ main-sequence star. Additionally, we find that the very luminous ULXs (L_X>˜10^{41} erg/s) are predominantly BH systems (˜9 M_⊙) with Hertzsprung gap donors (˜2 M_⊙). Nevertheless, some NS ULX systems may also reach extremely high X-ray luminosities (>˜10^{41} erg/s)
NASA Technical Reports Server (NTRS)
Stothers, Richard B.; Hansen, James E. (Technical Monitor)
2002-01-01
Theoretical models of the remnants of massive stars in a very hot, post-red-supergiant phase display no obvious instability if standard assumptions are made. However, the brightest observed classical luminous blue variables (LBVs) may well belong to such a phase. A simple time-dependent theory of moving stellar envelopes is developed in order to treat deep hydrodynamical disturbances caused by surface mass loss and to test the moving envelopes for dynamical instability. In the case of steady-state outflow, the theory reduces to the equivalent of the Castor, Abbott, and Klein formulation for optically thick winds at distances well above the sonic point. The time-dependent version indicates that the brightest and hottest LBVs are both dynamically and radiatively unstable, as a result of the substantial lowering of the generalized Eddington luminosity limit by the mass-loss acceleration. It is suggested that dynamical instability, by triggering secular cycles of mass loss, is primarily what differentiates LBVs from the purely radiatively unstable Wolf-Rayet stars. Furthermore, when accurate main-sequence mass-loss rates are used to calculate the evolutionary tracks, the predicted surface hydrogen and nitrogen abundances of the blue remnants agree much better with observations of the brightest LBVs than before.
Wang, Xiao-Jing; Wang, Xiao-Xing; Wang, Ya-Jun; Wang, Xi-Zhong; He, Guang-Xin; Chen, Hong-Wei; Fei, Li-Song
2002-09-01
Activin, which is included in the transforming growth factor-beta (TGF beta) superfamily of proteins and receptors, is known to have broad-ranging effects in the creatures. The mature peptide of beta A subunit of this gene, one of the most highly conserved sequence, can elevate the basal secretion of follicle-stimulating hormone (FSH) in the pituitary and FSH is pivotal to organism's reproduction. Reproduction block is one of the main reasons which cause giant panda to extinct. The sequence of Activin beta A subunit gene mature peptides has been successfully amplified from giant panda, red panda and malayan sun bear's genomic DNA by using polymerase chain reaction (PCR) with a pair of degenerate primers. The PCR products were cloned into the vector pBlueScript+ of Esherichia coli. Sequence analysis of Activin beta A subunit gene mature peptides shows that the length of this gene segment is the same (359 bp) and there is no intron in all three species. The sequence encodes a peptide of 119 amino acid residues. The homology comparison demonstrates 93.9% DNA homology and 99% homology in amino acid among these three species. Both GenBank blast search result and restriction enzyme map reveal that the sequences of Activin beta A subunit gene mature peptides of different species are highly conserved during the evolution process. Phylogeny analysis is performed with PHYLIP software package. A consistent phylogeny tree has been drawn with three different methods. The software analysis outcome accords with the academic view that giant panda has a closer relationship to the malayan sun bear than the red panda. Giant panda should be grouped into the bear family (Uersidae) with the malayan sun bear. As to the red panda, it would be better that this animal be grouped into the unique family (red panda family) because of great difference between the red panda and the bears (Uersidae).
New Herbig-Haro objects in star-forming regions
NASA Technical Reports Server (NTRS)
Reipurth, BO; Graham, J. A.
1988-01-01
A list of 25 new Herbig-Haro objects, HH 58 to HH 82, in the Orion molecular clouds and in southern molecular cloud complexes has been compiled. CCD images in the S II 6717, 6731 forbidden lines are presented for the objects, together with a few spectra and some IR observations. The individual objects and, when identified, their energy sources are discussed. HH 65 is located in the red lobe of the bipolar outflow associated with the highly variable reflection nebula Re 50. HH 67 is a 22-arcsec long sinusoidal jet. HH 68/69 consists of a long, linear chain of four HH knots. HH 72 emerges from a 120-solar luminosity IRAS source embedded in a Bok globule. HH 79 is the first HH object discovered in the Ophiuchus clouds. HH 80/81 in Sagittarius are among the brightest HH objects known, have complex velocities, high excitation conditions and emerge from a 6000-solar luminosity young B-star. HH 82 is associated with the bright variable star S Coronae Australis.
Probing star formation relations of mergers and normal galaxies across the CO ladder
NASA Astrophysics Data System (ADS)
Greve, Thomas R.
We examine integrated luminosity relations between the IR continuum and the CO rotational ladder observed for local (ultra) luminous infra-red galaxies ((U)LIRGs, L IR >= 1011 M⊙) and normal star forming galaxies in the context of radiation pressure regulated star formation proposed by Andrews & Thompson (2011). This can account for the normalization and linear slopes of the luminosity relations (log L IR = α log L'CO + β) of both low- and high-J CO lines observed for normal galaxies. Super-linear slopes occur for galaxy samples with significantly different dense gas fractions. Local (U)LIRGs are observed to have sub-linear high-J (J up > 6) slopes or, equivalently, increasing L COhigh-J /L IR with L IR. In the extreme ISM conditions of local (U)LIRGs, the high-J CO lines no longer trace individual hot spots of star formation (which gave rise to the linear slopes for normal galaxies) but a more widespread warm and dense gas phase mechanically heated by powerful supernovae-driven turbulence and shocks.
Kochzius, Marc; Blohm, Dietmar
2005-03-14
The aim of this study is to reveal gene flow between populations of the coral reef dwelling lionfish Pterois miles in the Gulf of Aqaba and northern Red Sea. Due to the fjord-like hydrography and topology of the Gulf of Aqaba, isolation of populations might be possible. Analysis of 5' mitochondrial control region sequences from 94 P. miles specimens detected 32 polymorphic sites, yielding 38 haplotypes. Sequence divergence among different haplotypes ranged from 0.6% to 9.9% and genetic diversity was high (h=0.85, pi=1.9%). AMOVA indicates panmixia between the Gulf of Aqaba and northern Red Sea, but analysis of migration pattern shows an almost unidirectional migration originating from the Red Sea.
Genome Sequence of Acidovorax avenae Strain T10_61 Associated with Sugarcane Red Stripe in Argentina
Fontana, Cecilia A.; Bassi, Daniela; Puglisi, Edoardo; Salazar, Sergio M.; Vignolo, Graciela M.; Coccocelli, Pier S.
2016-01-01
Red stripe of sugarcane in Argentina is a bacterial disease caused by Acidovorax avenae. The genome sequence from the first isolate of this bacterium in Argentina is presented here. The draft genome of the A. avenae T10_61 strain contains 5,646,552 bp and has a G+C content of 68.6 mol%. PMID:26847889
Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings.
Schabereiter-Gurtner, C; Piñar, G; Vybiral, D; Lubitz, W; Rölleke, S
2001-11-01
A molecular approach was chosen to analyse the correlation between bacterial colonisation and rosy discolouration of masonry and lime wall paintings of two historically important buildings in Austria and Germany. The applied molecular method included PCR amplification of genes encoding the small subunit rRNA of bacteria (16S rDNA), genetic fingerprinting by denaturing gradient gel electrophoresis (DGGE), construction of 16S rDNA clone libraries, and comparative phylogenetic sequence analyses. The bacterial community of one red-pigmented biofilm sampled in Herberstein (Austria) contained bacteria phylogenetically related to the genera Saccharopolyspora, Nocardioides, Pseudonocardia, Rubrobacter, and to a Kineococcus-like bacterium. The bacterial community of the second red-pigmented biofilm sampled in Herberstein contained bacteria related to Arthrobacter, Comamonas, and to Rubrobacter. Rubrobacter-related 16S rDNA sequences were the most abundant. In the red-pigmented biofilm sampled in Burggen (Germany), only Rubrobacter-related bacteria were identified. No Rubrobacter-related bacteria were detected in non-rosy biofilms. The majority of sequences (70%) obtained from the bacterial communities of the three investigated rosy biofilms were related to sequences of the genus Rubrobacter (red-pigmented bacteria), demonstrating a correlation between Rubrobacter-related bacteria and the phenomenon of rosy discolouration of masonry and lime wall paintings.
Tests of two convection theories for red giant and red supergiant envelopes
NASA Technical Reports Server (NTRS)
Stothers, Richard B.; Chin, Chao-Wen
1995-01-01
Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.
Optical observations of electrical activity in cloud discharges
NASA Astrophysics Data System (ADS)
Vayanganie, S. P. A.; Fernando, M.; Sonnadara, U.; Cooray, V.; Perera, C.
2018-07-01
Temporal variation of the luminosity of seven natural cloud-to-cloud lightning channels were studied, and results were presented. They were recorded by using a high-speed video camera with the speed of 5000 fps (frames per second) and the pixel resolution of 512 × 512 in three locations in Sri Lanka in the tropics. Luminosity variation of the channel with time was obtained by analyzing the image sequences. Recorded video frames together with the luminosity variation were studied to understand the cloud discharge process. Image analysis techniques also used to understand the characteristics of channels. Cloud flashes show more luminosity variability than ground flashes. Most of the time it starts with a leader which do not have stepping process. Channel width and standard deviation of intensity variation across the channel for each cloud flashes was obtained. Brightness variation across the channel shows a Gaussian distribution. The average time duration of the cloud flashes which start with non stepped leader was 180.83 ms. Identified characteristics are matched with the existing models to understand the process of cloud flashes. The fact that cloud discharges are not confined to a single process have been further confirmed from this study. The observations show that cloud flash is a basic lightning discharge which transfers charge between two charge centers without using one specific mechanism.
The development of the red giant branch. I - Theoretical evolutionary sequences
NASA Technical Reports Server (NTRS)
Sweigart, Allen V.; Greggio, Laura; Renzini, Alvio
1989-01-01
A grid of 100 evolutionary sequences extending from the zero-age main sequence to the onset of helium burning has been computed for stellar masses between 1.4 and 3.4 solar masses, helium abundances of 0.20 and 0.30, and heavy-element abundances of 0.004, 0.01, and 0.04. Using these computations the transition in the morphology of the red giant branch (RGB) between low-mass stars, which have an extended and luminous first RGB phase prior to helium ignition, and intermediate-mass stars, which do not, is investigated. Extensive tabulations of the numerical results are provided to aid in applying these sequences. The effects of the first dredge-up on the surface helium and CNO abundances of the sequences is discussed.
Toxigenic Corynebacterium ulcerans isolated from a free-roaming red fox (Vulpes vulpes).
Sting, Reinhard; Ketterer-Pintur, Sandra; Contzen, Matthias; Mauder, Norman; Süss-Dombrowski, Christine
2015-01-01
Corynebacterium (C.) ulcerans could be isolated from the spleen of a red fox (Vulpes vulpes) that had been found dead in the state of Baden-Württemberg, Germany. Pathohistological examination suggested that the fox had died of distemper, as was confirmed by PCR. The isolate was identified biochemically, by MALDI-TOF MS, FT-IR and by partial 16S rRNA, rpoB and tox gene sequencing. Using the Elek test the C. ulcerans isolate demonstrated diphtheria toxin production. FT-IR and sequencing data obtained from the C. ulcerans isolate from the red fox showed higher similarity to isolates from humans than to those from wild game.
Najm, Nour-Addeen; Meyer-Kayser, Elisabeth; Hoffmann, Lothar; Pfister, Kurt; Silaghi, Cornelia
2014-07-01
In this study, the prevalence of Hepatozoon spp. in red foxes (Vulpes vulpes) and their ticks from Germany, as well as molecular characterizations and phylogenetic relationship to other Hepatozoon spp. were investigated. DNA extracts of 261 spleen samples and 1,953 ticks were examined for the presence of Hepatozoon spp. by a conventional polymerase chain reaction (PCR) targeting the 18S rRNA gene. The ticks included four tick species: Ixodes ricinus, Ixodes canisuga, Ixodes hexagonus and Dermacentor reticulatus. A total of 118/261 foxes (45.2%) and 148/1,953 ticks (7.5%) were Hepatozoon PCR-positive. Amplicons from 36 positive foxes and 41 positive ticks were sequenced. All sequences obtained from foxes and 39/41 from ticks had a 99% similarity to Hepatozoon canis, whereas two ticks' sequences had a 99% identity to Hepatozoon sp. The obtained Hepatozoon sequences in this study were phylogenetically related to other Hepatozoon sequences detected in other countries, which may represent strain variants. The high prevalence of H. canis DNA in red foxes in this study supports the suggested role of those animals in distribution of this parasite. Furthermore, detection of DNA of H. canis in foxes and all examined tick species collected from those foxes allows speculating about previously undescribed potential vectors for H. canis and suggests a potential role of the red fox in its natural endemic cycles.
VizieR Online Data Catalog: The Seven Sisters DANCe. I. Pleiades (Bouy+, 2015)
NASA Astrophysics Data System (ADS)
Bouy, H.; Bertin, E.; Sarro, L. M.; Barrado, D.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Berihuete, A.; Olivares, J.; Beletsky, Y.
2015-02-01
Position, proper motion, multi-wavelength ugrizYJHK photometry and membership probability to the Pleiades cluster for 1972245 sources. Present-day system bolometric luminosity and mass-functions of the Pleiades cluster. Empirical sequence of the Pleiades cluster in ugrizYJHK and BT,VT,JHK photometric systems. (7 data files).
NASA Astrophysics Data System (ADS)
Sarron, F.; Martinet, N.; Durret, F.; Adami, C.
2018-06-01
Obtaining large samples of galaxy clusters is important for cosmology: cluster counts as a function of redshift and mass can constrain the parameters of our Universe. They are also useful in order to understand the formation and evolution of clusters. We develop an improved version of the Adami & MAzure Cluster FInder (AMACFI), now the Adami, MAzure & Sarron Cluster FInder (AMASCFI), and apply it to the 154 deg2 of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) to obtain a large catalogue of 1371 cluster candidates with mass M200 > 1014 M⊙ and redshift z ≤ 0.7. We derive the selection function of the algorithm from the Millennium simulation, and cluster masses from a richness-mass scaling relation built from matching our candidates with X-ray detections. We study the evolution of these clusters with mass and redshift by computing the i'-band galaxy luminosity functions (GLFs) for the early-type (ETGs) and late-type galaxies (LTGs). This sample is 90% pure and 70% complete, and therefore our results are representative of a large fraction of the cluster population in these redshift and mass ranges. We find an increase in both the ETG and LTG faint populations with decreasing redshift (with Schechter slopes αETG = -0.65 ± 0.03 and αLTG = -0.95 ± 0.04 at z = 0.6, and αETG = -0.79 ± 0.02 and αLTG = -1.26 ± 0.03 at z = 0.2) and also a decrease in the LTG (but not the ETG) bright end. Our large sample allows us to break the degeneracy between mass and redshift, finding that the redshift evolution is more pronounced in high-mass clusters, but that there is no significant dependence of the faint end on mass for a given redshift. These results show that the cluster red sequence is mainly formed at redshift z > 0.7, and that faint ETGs continue to enrich the red sequence through quenching of brighter LTGs at z ≤ 0.7. The efficiency of this quenching is higher in large-mass clusters, while the accretion rate of faint LTGs is lower as the more massive clusters have already emptied most of their environment at higher redshifts. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.The candidate cluster catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A67
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Durret, Florence; Adami, Christophe; Rudnick, Gregory
2017-08-01
Characterizing the evolution of the faint end of the cluster red sequence (RS) galaxy luminosity function (GLF) with redshift is a milestone in understanding galaxy evolution. However, the community is still divided in that respect, hesitating between an enrichment of the RS due to efficient quenching of blue galaxies from z 1 to present-day or a scenario in which the RS is built at a higher redshift and does not evolve afterwards. Recently, it has been proposed that surface brightness (SB) selection effects could possibly solve the literature disagreement, accounting for the diminishing RS faint population in ground-based observations. We investigate this hypothesis by comparing the RS GLFs of 16 CLASH clusters computed independently from ground-based Subaru/Suprime-Cam V and Ip or Ic images and space-based HST/ACS F606W and F814W images in the redshift range 0.187 ≤ z ≤ 0.686. We stack individual cluster GLFs in two redshift bins (0.187 ≤ z ≤ 0.399 and 0.400 ≤ z ≤ 0.686) and two mass (6 × 1014M⊙ ≤ M200< 1015M⊙ and 1015M⊙ ≤ M200) bins, and also measure the evolution with the enclosing radius from 0.5 Mpc up to the virial radius for the Subaru large field of view data. Finally, we simulate the low-redshift clusters at higher redshift to investigate SB dimming effects. We find similar RS GLFs for space- and ground-based data, with a difference of 0.2σ in the faint end parameter α when stacking all clusters together and a maximum difference of 0.9σ in the case of the high-redshift stack, demonstrating a weak dependence on the type of observation in the probed range of redshift and mass. When considering the full sample, we estimate α = - 0.76 ± 0.07 and α = - 0.78 ± 0.06 with HST and Subaru, respectively. We note a mild variation of the faint end between the high- and low-redshift subsamples at a 1.7σ and 2.6σ significance. We investigate the effect of SB dimming by simulating our low-redshift galaxies at high redshift. We measure an evolution in the faint end slope of less than 1σ in this case, implying that the observed signature is larger than one would expect from SB dimming alone, and indicating a true evolution in the faint end slope. Finally, we find no variation with mass or radius in the probed range of these two parameters. We therefore conclude that quenching is mildly affecting cluster galaxies at z ≲ 0.7 leading to a small enrichment of the RS until today, and that the different faint end slopes observed in the literature are probably due to specific cluster-to-cluster variation. Based on publicly available HST data acquired with ACS through the CLASH and COSMOS surveys. Also based on Subaru Suprime-Cam archive data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Zhong, Hua-Ming; Zhang, Hong-Hai; Sha, Wei-Lai; Zhang, Cheng-De; Chen, Yu-Cai
2010-04-01
The whole mitochondrial genome sequence of red fox (Vuples vuples) was determined. It had a total length of 16 723 bp. As in most mammal mitochondrial genome, it contained 13 protein coding genes, two ribosome RNA genes, 22 transfer RNA genes and one control region. The base composition was 31.3% A, 26.1% C, 14.8% G and 27.8% T, respectively. The codon usage of red fox, arctic fox, gray wolf, domestic dog and coyote followed the same pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 3 gene in the red fox. A long tandem repeat rich in AC was found between conserved sequence block 1 and 2 in the control region. In order to confirm the phylogenetic relationships of red fox to other canids, phylogenetic trees were reconstructed by neighbor-joining and maximum parsimony methods using 12 concatenated heavy-strand protein-coding genes. The result indicated that arctic fox was the sister group of red fox and they both belong to the red fox-like clade in family Canidae, while gray wolf, domestic dog and coyote belong to wolf-like clade. The result was in accordance with existing phylogenetic results.
Missense polymorphisms in the MC1R gene of the dog, red fox, arctic fox and Chinese raccoon dog.
Nowacka-Woszuk, J; Salamon, S; Gorna, A; Switonski, M
2013-04-01
Coat colour variation is determined by many genes, one of which is the melanocortin receptor type 1 (MC1R) gene. In this study, we examined the whole coding sequence of this gene in four species belonging to the Canidae family (dog, red fox, arctic fox and Chinese raccoon dog). Although the comparative analysis of the obtained nucleotide sequences revealed a high conservation, which varied between 97.9 and 99.1%, we altogether identified 22 SNPs (10 in dogs, six in farmed red foxes, two in wild red foxes, three in arctic foxes and one in Chinese raccoon dog). Among them, seven appeared to be novel: one silent in the dog, three missense and one silent in the red fox, one in the 3'-flanking region in the arctic fox and one silent in the Chinese raccoon dog. In dogs and red foxes, the SNPs segregated as 10 and four haplotypes, respectively. Taking into consideration the published reports and results of this study, the highest number of missense polymorphisms was until now found in the dog (9) and red fox (7). © 2012 Blackwell Verlag GmbH.
CXOGBS J173620.2-293338: A candidate symbiotic X-ray binary associated with a bulge carbon star
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hynes, Robert I.; Britt, C. T.; Johnson, C. B.
2014-01-01
The Galactic Bulge Survey (GBS) is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatory's ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries (SyXBs) in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a verymore » red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties are overall consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any GBS source with a carbon star to be ≲ 10{sup –3}, suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9 × 10{sup 32} erg s{sup –1}. Its characteristics are consistent with a low luminosity SyXB, or possibly a low accretion rate white dwarf symbiotic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo
2014-04-01
We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r){sub 0} color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes,more » and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.« less
The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group
NASA Astrophysics Data System (ADS)
Danieli, Shany; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.
2017-03-01
We obtained follow-up HST observations of the seven low surface brightness galaxies discovered with the Dragonfly Telephoto Array in the field of the massive spiral galaxy M101. Out of the seven galaxies, only three were resolved into stars and are potentially associated with the M101 group at D = 7 Mpc. Based on HST ACS photometry in the broad F606W and F814W filters, we use a maximum likelihood algorithm to locate the Tip of the Red Giant Branch in galaxy color-magnitude diagrams. Distances are {6.38}-0.35+0.35,{6.87}-0.30+0.21 and {6.52}-0.27+0.25 {Mpc} and we confirm that they are members of the M101 group. Combining the three confirmed low-luminosity satellites with previous results for brighter group members, we find the M101 galaxy group to be a sparsely populated galaxy group consisting of seven group members, down to M V = -9.2 mag. We compare the M101 cumulative luminosity function to that of the Milky Way and M31. We find that they are remarkably similar; in fact, the cumulative luminosity function of the M101 group gets even flatter for fainter magnitudes, and we show that the M101 group might exhibit the two known small-scale flaws in the ΛCDM model, namely “the missing satellite” problem and the “too big to fail” problem. Kinematic measurements of M101's satellite galaxies are required to determine whether the “too big to fail” problem does in fact exist in the M101 group.
Bushakra, Jill M; Lewers, Kim S; Staton, Margaret E; Zhebentyayeva, Tetyana; Saski, Christopher A
2015-10-26
Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed sequence tags (ESTs) are a source of SSRs that can be used to develop markers to facilitate plant breeding and for more basic research across genera and higher plant orders. Leaf and meristem tissue from 'Heritage' red raspberry (Rubus idaeus) and 'Bristol' black raspberry (R. occidentalis) were utilized for RNA extraction. After conversion to cDNA and library construction, ESTs were sequenced, quality verified, assembled and scanned for SSRs. Primers flanking the SSRs were designed and a subset tested for amplification, polymorphism and transferability across species. ESTs containing SSRs were functionally annotated using the GenBank non-redundant (nr) database and further classified using the gene ontology database. To accelerate development of EST-SSRs in the genus Rubus (Rosaceae), 1149 and 2358 cDNA sequences were generated from red raspberry and black raspberry, respectively. The cDNA sequences were screened using rigorous filtering criteria which resulted in the identification of 121 and 257 SSR loci for red and black raspberry, respectively. Primers were designed from the surrounding sequences resulting in 131 and 288 primer pairs, respectively, as some sequences contained more than one SSR locus. Sequence analysis revealed that the SSR-containing genes span a diversity of functions and share more sequence identity with strawberry genes than with other Rosaceous species. This resource of Rubus-specific, gene-derived markers will facilitate the construction of linkage maps composed of transferable markers for studying and manipulating important traits in this economically important genus.
Assier, E; Bouzinba-Segard, H; Stolzenberg, M C; Stephens, R; Bardos, J; Freemont, P; Charron, D; Trowsdale, J; Rich, T
1999-04-16
A novel human gene RED, and the murine homologue, MuRED, were cloned. These genes were named after the extensive stretch of alternating arginine (R) and glutamic acid (E) or aspartic acid (D) residues that they contain. We term this the 'RED' repeat. The genes of both species were expressed in a wide range of tissues and we have mapped the human gene to chromosome 5q22-24. MuRED and RED shared 98% sequence identity at the amino acid level. The open reading frame of both genes encodes a 557 amino acid protein. RED fused to a fluorescent tag was expressed in nuclei of transfected cells and localised to nuclear dots. Co-localisation studies showed that these nuclear dots did not contain either PML or Coilin, which are commonly found in the POD or coiled body nuclear compartments. Deletion of the amino terminal 265 amino acids resulted in a failure to sort efficiently to the nucleus, though nuclear dots were formed. Deletion of a further 50 amino acids from the amino terminus generates a protein that can sort to the nucleus but is unable to generate nuclear dots. Neither construct localised to the nucleolus. The characteristics of RED and its nuclear localisation implicate it as a regulatory protein, possibly involved in transcription.
NASA Technical Reports Server (NTRS)
Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.
2014-01-01
We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punsly, Brian, E-mail: brian.punsly@verizon.net, E-mail: brian.punsly@comdev-usa.com; ICRANet, Piazza della Repubblica 10, I-65100 Pescara
It has been previously determined that there is a highly significant correlation between the spectral index from 10 GHz to 1350 A and the amount of excess luminosity in the red wing of quasar C IV {lambda}1549 broad emission lines (BELs). Ostensibly, the prominence of the red excess is associated with the radio jet emission mechanism and is most pronounced for lines of sight close to the jet axis. Studying the scant significant differences in the UV spectra of radio-loud and radio-quiet quasars might provide vital clues to the origin of the unknown process that creates powerful relativistic jets thatmore » appear in only about 10% of quasars. In this study, the phenomenon is explored with multi-epoch observations of the Mg II {lambda}2798 broad line in 3C 279 which has one of the largest known red wing excesses in a quasar spectrum. The amount of excess that is detected appears to be independent of all directly observed optical continuum, radio, or submillimeter properties (fluxes or polarizations). The only trend that occurs in this sparse data is: the stronger the BEL, the larger the fraction of flux that resides in the red wing. It is concluded that more monitoring is needed and spectropolarimetry with a large telescope is essential during low states to understand more.« less
Hu, Guang-Fu; Liu, Xiang-Jiang; Li, Zhong; Liang, Hong-Wei; Hu, Shao-Na; Zou, Gui-Wei
2016-01-01
The complete mitochondrial genomes of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis) were sequenced. Comparison of these two mitochondrial genomes revealed that the mtDNAs of these two common carp varieties were remarkably similar in genome length, gene order and content, and AT content. However, size variation between these two mitochondrial genomes presented here showed 39 site differences in overall length. About 2 site differences were located in rRNAs, 3 in tRNAs, 3 in the control region, 31 in protein-coding genes. Thirty-one variable bases in the protein-coding regions between the two varieties mitochondrial sequences led to three variable amino acids, which were mainly located in the protein ND5 and ND4.
Photospheres of hot stars. III - Luminosity effects at spectral type 09.5
NASA Technical Reports Server (NTRS)
Voels, Stephen A.; Bohannan, Bruce; Abbott, David C.; Hummer, D. G.
1989-01-01
Hydrogen and helium line profiles with high signal-to-noise ratios were obtained for four stars of spectral type 09.5 (Alpha Cam, Xi Ori A, Delta Ori A,AE Aur) that form a sequence in luminosity: Ia, Ib, II, V. The basic stellar parameters of these stars are determined by fitting the observed line profiles of weak photospheric absorption lines with profiles from models which include the effect of radiation scattered back onto the photosphere from their stellar winds, an effect referred to as wind blanketing. For these stars, the inclusion of wind blanketing is significant only for the most luminous star, Alpha Cam, for which the effective temperature was shifted about -2000 K relative to an unblanketed model.
NASA Technical Reports Server (NTRS)
Boehm-Vitense, E.; Hodge, P.
1984-01-01
High-resolution and low-resolution IUE spectra of O and B stars in the LMC cluster NGC 2100, the SMC cluster NGC 330, and the young Galactic cluster NGC 6530 are investigated. Temperatures and luminosities are determined. In the LMC and SMC clusters, the most luminous stars are evolved stars on the horizontal supergiant branch, while in NGC 6530 the stars are all still on the main sequence. Extinction laws were determined. They confirm the known differences between LMC and Galactic extinctions. No mass loss was detected for the evolved B stars in the LMC and SMC clusters, while the high-luminosity stars in NGC 6530 show P Cygni profiles.
Red supergiants as supernova progenitors
NASA Astrophysics Data System (ADS)
Davies, Ben
2017-09-01
It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.
Properties of galaxies around the most massive SMBHs
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko
2015-08-01
We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1 - 1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M_BH >= 10^{8.2} Msol, and red galaxies dominate the environment of AGNs with M_BH >= 10^{9} Msol. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.
Properties of galaxies around the most massive SMBHs
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko
We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1-1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M BH >= 108.2 M ⊙, and red galaxies dominate the environment of AGNs with M BH >= 109 M ⊙. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.
Red supergiants as supernova progenitors.
Davies, Ben
2017-10-28
It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).
Spitzer Characterization of Transients from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Ofek, Eran; Corsi, Alessandra; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi
2012-12-01
We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe for IRAC follow-up. Additionally, we request low-impact target of opportunity observations for new discoveries in 2013. Our total request is 24 hrs.
Spitzer Characterization of Transients from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Goobar, Ariel; Johansson, Joel; Cenko, Brad; Ofek, Eran; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi
2013-10-01
We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe. Additionally, we request low-impact target of opportunity observations for new discoveries in 2014. Our total request is 17 hrs.
Finding Distances to Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region affects the luminosity of the supernova.Determining DistancesThe authors find that there are indeed differences in peak supernova luminosity based on metallicity of the local environment. Their observations support a trend in which more metal-rich galaxies host less luminous supernovae, whereas lower-metallicity galaxies host supernovae with greater luminosities consistent with theoretical predictions.This observational confirmation suggests that the metallicity of the progenitor may well play a role in peak supernova luminosity and, as a result, the distances at which we estimate they exploded. This systematic effect can, however, be easily corrected for in the distance-estimate procedure.As the number of known supernovae is expected to drastically increase with the start of future large surveys such as the Large Synoptic Survey Telescope (LSST) or the Dark Energy Survey (DES), supernova distance measurements will soon be dominated by systematic errors rather than statistical ones. Correctly accounting for effects such as this apparent metallicity-dependence of supernovae continues to be important for accurately determining distances using Type Ia supernovae as indicators.CitationManuel E. Moreno-Raya et al 2016 ApJ 818 L19. doi:10.3847/2041-8205/818/1/L19
Bugno-Poniewierska, Monika; Solek, Przemysław; Wronski, Mariusz; Potocki, Leszek; Jezewska-Witkowska, Grażyna; Wnuk, Maciej
2014-12-01
The molecular structure of B chromosomes (Bs) is relatively well studied. Previous research demonstrates that Bs of various species usually contain two types of repetitive DNA sequences, satellite DNA and ribosomal DNA, but Bs also contain genes encoding histone proteins and many others. However, many questions remain regarding the origin and function of these chromosomes. Here, we focused on the comparative cytogenetic characteristics of the red fox and Chinese raccoon dog B chromosomes with particular attention to the distribution of repetitive DNA sequences and their methylation status. We confirmed that the small Bs of the red fox show a typical fluorescent telomeric distal signal, whereas medium-sized Bs of the Chinese raccoon dog were characterized by clusters of telomeric sequences along their length. We also found different DNA methylation patterns for the B chromosomes of both species. Therefore, we concluded that DNA methylation may maintain the transcriptional inactivation of DNA sequences localized to B chromosomes and may prevent genetic unbalancing and several negative phenotypic effects. © 2014 The Authors.
Distances to Nearby Galaxies via Long Period Variables
NASA Astrophysics Data System (ADS)
Jurcevic, John S.
A new method of measuring extra-Galactic distances has been developed based on the relationship between the luminosity of red supergiant variable (RSV) stars at optical wavelengths and the period of their luminosity variation. This period-luminosity (PL) relationship has been calibrated with RSVs from the Galactic Perseus OB1 association, the Large Magellanic Cloud, and M33 in the broadband optical R and I-bands, in a narrow part of the I-band at 8250 Å, and in the infrared K-band. By using these RSV PL relations, the distances to a sample of nearby galaxies (M101, NGC 2403, and NGC 2366) were determined. These galaxies were chosen because they had existing Cepheid based distances which allowed for a comparison between the two methods and provided a means of verifying the effectiveness of the RSV PL relation. The galaxies were also chosen to span a range of metallicity to allow an investigation of any effects due to metallicity differences. Photometry in the R-band was obtained over a period of three years for the galaxies with a coverage of 20, 17, and 13 epochs for M101, NGC 2403, and NGC 2366, respectively. By looking for red variable stars with periods in the range 100-1200 days the total number of RSVs discovered in the three galaxies was 123. Assuming a distance modulus for the Large Magellanic Cloud of 18.5 +/- 0.1 mag, single epoch I-band photometry of the RSVs was used to construct random phase PL relations resulting in distance moduli for M101, NGC 2403, and NGC 2366 of 29.40 +/- 0.16, 27.67 +/- 0.16, and 27.86 +/- 0.20 mag, respectively. Similarly, PL relations were also found using phase averaged R-band magnitudes which produced distance moduli of 29.09 +/- 0.16, 27.56 +/- 0.16, and 27.76 +/- 0.21 mag, respectively. These distances have been corrected for extinction by assuming values of E(B - V) = 0.10, 0.04, and 0.04 mag. The distances derived agree with those found via Cepheids which indicates that RSVs provide a very useful new method for measuring distances.
USDA-ARS?s Scientific Manuscript database
The advent of next-generation sequencing technologies has been a boon to the cost-effective development of molecular markers, particularly in non-model species. Here, we demonstrate the efficiency of microsatellite or simple sequence repeat (SSR) marker development from short-read sequences using th...
Low energy proton capture study of the 14N(p, gamma)15O reaction
NASA Astrophysics Data System (ADS)
Daigle, Stephen Michael
The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.
ATLASGAL - towards a complete sample of massive star forming clumps
NASA Astrophysics Data System (ADS)
Urquhart, J. S.; Moore, T. J. T.; Csengeri, T.; Wyrowski, F.; Schuller, F.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Menten, K. M.; Walmsley, C. M.; Bronfman, L.; Pfalzner, S.; König, C.; Wienen, M.
2014-09-01
By matching infrared-selected, massive young stellar objects (MYSOs) and compact H II regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ˜1000 embedded young massive stars between 280° < ℓ < 350° and 10° < ℓ < 60° with | b | < 1.5°. Combined with an existing sample of radio-selected methanol masers and compact H II regions, the result is a catalogue of ˜1700 massive stars embedded within ˜1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and H II-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and H II-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main-sequence lifetimes in the most luminous sources.
Lisa W. Alexander; Keith E. Woeste
2014-01-01
Given the low intraspecific chloroplast diversity detected in northern red oak (Quercus rubra L.), more powerful genetic tools are necessary to accurately characterize Q. rubra chloroplast diversity and structure. We report the sequencing, assembly, and annotation of the chloroplast genome of northern red oak via pyrosequencing and...
P. R. Aldrich; M. Jagtap; C. H. Michler; J. Romero-Severson
2003-01-01
We examined the cross-species amplification success of thirty microsatellite markers developed from North American northern red oak (Quercus rubra) in other members of the family Fagaceae. Sixteen of these markers are newly developed and we report primer sequences and amplification conditions here. Twelve of the thirty (40.0%) red oak markers...
Calibration of Post-AGB Supergiants as Standard Extragalactic Candles for HST
NASA Technical Reports Server (NTRS)
Bond, Howard E.
1998-01-01
This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic-giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The reason for this belief is that in old populations, the stars that are evolving through the PAGB region of the HR (Hertzsprung-Russell) diagram arise from only a single main-sequence turnoff mass. In addition, the theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, the PAGB stars of these spectral types are very easily identified, due to their large Balmer jumps, which are due to their very low surface gravities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlynn, T.A.; Ostriker, J.P.
1980-11-01
If the luminosity of supergiant cD galaxies in particular, and the Bautz-Morgan sequence of galaxy types in general, is produced by dynamical evolutionary processes, then one expects to find a correlation between dynamical times and ..delta..M/sub 12/, the magnitude difference between first and second brightest cluster members.
Rousvoal, Sylvie; Bouyer, Betty; López-Cristoffanini, Camilo; Boyen, Catherine; Collén, Jonas
2016-08-01
Chondrus crispus Stackhouse (Gigartinales) is a red seaweed found on North Atlantic rocky shores. Electrophoresis of RNA extracts showed a prominent band with a size of around 6,000 bp. Sequencing of the band revealed several sequences with similarity to totiviruses, double-stranded RNA viruses that normally infect fungi. This virus-like entity was named C. crispus virus (CcV). It should probably be regarded as an extreme viral quasispecies or a mutant swarm since low identity (<65%) was found between sequences. Totiviruses typically code for two genes: one capsid gene (gag) and one RNA-dependent RNA polymerase gene (pol) with a pseudoknot structure between the genes. Both the genes and the intergenic structures were found in the CcV sequences. A nonidentical gag gene was also found in the nuclear genome of C. crispus, with associated expressed sequence tags (EST) and upstream regulatory features. The gene was presumably horizontally transferred from the virus to the alga. Similar dsRNA bands were seen in extracts from different life cycle stages of C. crispus and from all geographic locations tested. In addition, similar bands were also observed in RNA extractions from other red algae; however, the significance of this apparently widespread phenomenon is unknown. Neither phenotype caused by the infection nor any virus particles or capsid proteins were identified; thus, the presence of viral particles has not been validated. These findings increase the known host range of totiviruses to include marine red algae. © 2016 Phycological Society of America.
Soares, Cristina Neves Girao Salgado; Amaral, Flavia Lucisano Botelho do; Mesquita, Marcelo Ferraz; Franca, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso
2015-01-01
This in vitro study evaluated the efficacy of toothpastes containing abrasive and chemical whitening agents in reducing the extrinsic discoloration of dental enamel. Sixty slabs of dentin from human teeth were sealed so that only the enamel surface was exposed. The enamel surfaces were photographed for initial color assessment. Staining was performed by immersing the dental slabs in 0.2% chlorhexidine solution for 2 minutes and then in black tea for 60 minutes. This process was repeated 15 times. Photographs were taken at the end of the staining process, and the slabs were divided into 5 groups (n = 12), 3 to be brushed with toothpastes containing chemical whitening agents (2 containing phosphate salts and 1 containing phosphate salts plus hydrogen peroxide) and 2 to represent control groups (ordinary/nonwhitening toothpaste and distilled water). The dental slabs were subjected to mechanical toothbrushing with toothpaste slurry or distilled water, according to each group's specifications. After brushing, more photographs were taken for color analysis. The results showed a significant reduction in luminosity after the staining process in addition to an increase in the colors red and yellow (P < 0.001). After brushing, there was a significant increase in luminosity and a reduction in both red and yellow (P < 0.001). However, there was no observed difference between the changes in color values in dental enamel slabs brushed with whitening toothpastes and the changes found in slabs brushed with ordinary toothpaste. The whitening toothpastes did not outperform an ordinary toothpaste in the removal of extrinsic staining.
Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; ...
2017-11-23
We study the orientations of satellite galaxies in redMaPPer clusters constructed from the Sloan Digital Sky Survey at 0.1 < z < 0.35 to determine whether there is any preferential tendency for satellites to point radially towards cluster centres. Here, we analyse the satellite alignment (SA) signal based on three shape measurement methods (re-Gaussianization, de Vaucouleurs, and isophotal shapes), which trace galaxy light profiles at different radii. The measured SA signal depends on these shape measurement methods. We detect the strongest SA signal in isophotal shapes, followed by de Vaucouleurs shapes. While no net SA signal is detected using re-Gaussianizationmore » shapes across the entire sample, the observed SA signal reaches a statistically significant level when limiting to a subsample of higher luminosity satellites. We further investigate the impact of noise, systematics, and real physical isophotal twisting effects in the comparison between the SA signal detected via different shape measurement methods. Unlike previous studies, which only consider the dependence of SA on a few parameters, here we explore a total of 17 galaxy and cluster properties, using a statistical model averaging technique to naturally account for parameter correlations and identify significant SA predictors. We find that the measured SA signal is strongest for satellites with the following characteristics: higher luminosity, smaller distance to the cluster centre, rounder in shape, higher bulge fraction, and distributed preferentially along the major axis directions of their centrals. Finally, we provide physical explanations for the identified dependences and discuss the connection to theories of SA.« less
The Hunt for Red Quasars: Luminous Obscured Black Hole Growth Unveiled in the Stripe 82 X-Ray Survey
NASA Astrophysics Data System (ADS)
LaMassa, Stephanie M.; Glikman, Eilat; Brusa, Marcella; Rigby, Jane R.; Tasnim Ananna, Tonima; Stern, Daniel; Lira, Paulina; Urry, C. Megan; Salvato, Mara; Alexandroff, Rachael; Allevato, Viola; Cardamone, Carolin; Civano, Francesca; Coppi, Paolo; Farrah, Duncan; Komossa, S.; Lanzuisi, Giorgio; Marchesi, Stefano; Richards, Gordon; Trakhtenbrot, Benny; Treister, Ezequiel
2017-10-01
We present results of a ground-based near-infrared campaign with Palomar TripleSpec, Keck NIRSPEC, and Gemini GNIRS to target two samples of reddened active galactic nucleus (AGN) candidates from the 31 deg2 Stripe 82 X-ray survey. One sample, which is ˜89% complete to K< 16 (Vega), consists of eight confirmed AGNs, four of which were identified with our follow-up program, and is selected to have red R - K colors (> 4, Vega). The fainter sample (K> 17, Vega) represents a pilot program to follow-up four sources from a parent sample of 34 that are not detected in the single-epoch SDSS catalog and have WISE quasar colors. All 12 sources are broad-line AGNs (at least one permitted emission line has an FWHM exceeding 1300 km s-1) and span a redshift range 0.59< z< 2.5. Half the (R - K)-selected AGNs have features in their spectra suggestive of outflows. When comparing these sources to a matched sample of blue Type 1 AGNs, we find that the reddened AGNs are more distant (z> 0.5), and a greater percentage have high X-ray luminosities ({L}{{X},{full}}> {10}44 erg s-1). Such outflows and high luminosities may be consistent with the paradigm that reddened broad-line AGNs represent a transitory phase in AGN evolution as described by the major merger model for black hole growth. Results from our pilot program demonstrate proof of concept that our selection technique is successful in discovering reddened quasars at z> 1 missed by optical surveys.
NASA Astrophysics Data System (ADS)
Johnson, Christian I.; Rich, R. Michael; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.
2018-02-01
Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster’s detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan–M2FS and VLT–FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of ‑48.8 km s‑1 (σ = 5.3 km s‑1 148 stars) and < [{Fe}/{{H}}]> =-0.87 dex (19 stars), but the cluster’s 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster’s low < [{La}/{Eu}]> =-0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as ΔY ∼ 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.
We study the orientations of satellite galaxies in redMaPPer clusters constructed from the Sloan Digital Sky Survey at 0.1 < z < 0.35 to determine whether there is any preferential tendency for satellites to point radially towards cluster centres. Here, we analyse the satellite alignment (SA) signal based on three shape measurement methods (re-Gaussianization, de Vaucouleurs, and isophotal shapes), which trace galaxy light profiles at different radii. The measured SA signal depends on these shape measurement methods. We detect the strongest SA signal in isophotal shapes, followed by de Vaucouleurs shapes. While no net SA signal is detected using re-Gaussianizationmore » shapes across the entire sample, the observed SA signal reaches a statistically significant level when limiting to a subsample of higher luminosity satellites. We further investigate the impact of noise, systematics, and real physical isophotal twisting effects in the comparison between the SA signal detected via different shape measurement methods. Unlike previous studies, which only consider the dependence of SA on a few parameters, here we explore a total of 17 galaxy and cluster properties, using a statistical model averaging technique to naturally account for parameter correlations and identify significant SA predictors. We find that the measured SA signal is strongest for satellites with the following characteristics: higher luminosity, smaller distance to the cluster centre, rounder in shape, higher bulge fraction, and distributed preferentially along the major axis directions of their centrals. Finally, we provide physical explanations for the identified dependences and discuss the connection to theories of SA.« less
Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver
2015-05-01
During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Sequence analysis of a canine parvovirus isolated from a red panda (Ailurus fulgens) in China.
Qin, Qin; Loeffler, I Kati; Li, Ming; Tian, Kegong; Wei, Fuwen
2007-06-01
Canine parvovirus (CPV) was first recognized in the late 1970 s in dogs and has mutated and spread throughout the world in canid and felid species since then. In this study, a novel CPV was isolated from the endangered red panda (Ailurus fulgens) in China. Nucleotide and phylogenetic analysis of the capsid protein VP2 gene classified the red panda parvovirus (RPPV) as a CPV-2a type. Substitution of Val for Gly at the conserved 300 residue in RPPV presents an unusual variation in the CPV-2a amino acid sequence and is further evidence for the continuing evolution of the virus. The 300 residue is important in distinguishing the antigenicity and host range of CPVs. The clinical significance and population impact of RPPV infection in captive red pandas in China is unknown and is an important topic for future research.
NASA Astrophysics Data System (ADS)
Origlia, L.; Ferraro, F. R.; Fabbri, S.; Fusi Pecci, F.; Dalessandro, E.; Rich, R. M.; Valenti, E.
2014-04-01
Aims: The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. Methods: We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 μm range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. Results: We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 M⊙ every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of ≤0.1 M⊙, nearly constant with varying metallicity. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.Appendix A is available in electronic form at http://www.aanda.org
Optical spectroscopy and initial mass function of z = 0.4 red galaxies
NASA Astrophysics Data System (ADS)
Tang, Baitian; Worthey, Guy
2017-05-01
Spectral absorption features can be used to constrain the stellar initial mass function (IMF) in the integrated light of galaxies. Spectral indices used at low redshift are in the far red, and therefore increasingly hard to detect at higher and higher redshifts as they pass out of atmospheric transmission and CCD detector wavelength windows. We employ IMF-sensitive indices at bluer wavelengths. We stack spectra of red, quiescent galaxies around z = 0.4 from the DEEP2 Galaxy Redshift Survey. The z = 0.4 red galaxies have 2 Gyr average ages so that they cannot be passively evolving precursors of nearby galaxies. They are slightly enhanced in C and Na, and slightly depressed in Ti. Split by luminosity, the fainter half appears to be older, a result that should be checked with larger samples in the future. We uncover no evidence for IMF evolution between z = 0.4 and now, but we highlight the importance of sample selection, finding that an SDSS sample culled to select archetypal elliptical galaxies at z ˜ 0 is offset towards a more bottom-heavy IMF. Other samples, including our DEEP2 sample, show an offset towards a more spiral galaxy-like IMF. All samples confirm that the reddest galaxies look bottom-heavy compared with bluer ones. Sample selection also influences age-colour trends: red, luminous galaxies always look old and metal rich, but the bluer ones can be more metal poor, the same abundance or more metal rich, depending on how they are selected.
The graviton luminosity of the sun and other stars
NASA Technical Reports Server (NTRS)
Gould, R. J.
1985-01-01
Graviton production in electron-electron (e-e) and electron-ion (e-z) scattering is evaluated in the Born approximation. The calculation is compared with that for photon production, that is, Coulomb quadrupole bremsstrahlung, and a number of results are taken over from that problem. Application is made to the sun, and it is found that for the solar plasma the main contribution to the graviton luminosity comes from the central core at r/R approximately 0.1. The total luminosity (Lg) in gravitons is about 7.9 x 10 to the 14th ergs/s, close to an earlier estimate by Weinberg (1965, 1972); about 33 percent of the total results from e-e collisions with the rest from e-z collisions (mainly e-p and e-alpha). Approximate corrections to Born formulas are evaluated, and this Lg includes the associated (approximately + or - 10 percent, respectively) modification. The quantum-mechanical aspects of the solar Lg problem are discussed, and it is shown why a previous classical calculation overestimated Lg by about an order of magnitude. Production of gravitons in binary collisions in other types of stars is discussed briefly. It is found that Lg varies very little along the main sequence. White dwarfs have a typical graviton luminosity LWD approximately 10 to the 19th ergs/s, while neutron stars have LNS approximately 10 to the 25th ergs/s; these estimates are very rough.
Draft genome of the red harvester ant Pogonomyrmex barbatus.
Smith, Chris R; Smith, Christopher D; Robertson, Hugh M; Helmkampf, Martin; Zimin, Aleksey; Yandell, Mark; Holt, Carson; Hu, Hao; Abouheif, Ehab; Benton, Richard; Cash, Elizabeth; Croset, Vincent; Currie, Cameron R; Elhaik, Eran; Elsik, Christine G; Favé, Marie-Julie; Fernandes, Vilaiwan; Gibson, Joshua D; Graur, Dan; Gronenberg, Wulfila; Grubbs, Kirk J; Hagen, Darren E; Viniegra, Ana Sofia Ibarraran; Johnson, Brian R; Johnson, Reed M; Khila, Abderrahman; Kim, Jay W; Mathis, Kaitlyn A; Munoz-Torres, Monica C; Murphy, Marguerite C; Mustard, Julie A; Nakamura, Rin; Niehuis, Oliver; Nigam, Surabhi; Overson, Rick P; Placek, Jennifer E; Rajakumar, Rajendhran; Reese, Justin T; Suen, Garret; Tao, Shu; Torres, Candice W; Tsutsui, Neil D; Viljakainen, Lumi; Wolschin, Florian; Gadau, Jürgen
2011-04-05
We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.
Construction of Red Fox Chromosomal Fragments from the Short-Read Genome Assembly.
Rando, Halie M; Farré, Marta; Robson, Michael P; Won, Naomi B; Johnson, Jennifer L; Buch, Ronak; Bastounes, Estelle R; Xiang, Xueyan; Feng, Shaohong; Liu, Shiping; Xiong, Zijun; Kim, Jaebum; Zhang, Guojie; Trut, Lyudmila N; Larkin, Denis M; Kukekova, Anna V
2018-06-20
The genome of a red fox ( Vulpes vulpes ) was recently sequenced and assembled using next-generation sequencing (NGS). The assembly is of high quality, with 94X coverage and a scaffold N50 of 11.8 Mbp, but is split into 676,878 scaffolds, some of which are likely to contain assembly errors. Fragmentation and misassembly hinder accurate gene prediction and downstream analysis such as the identification of loci under selection. Therefore, assembly of the genome into chromosome-scale fragments was an important step towards developing this genomic model. Scaffolds from the assembly were aligned to the dog reference genome and compared to the alignment of an outgroup genome (cat) against the dog to identify syntenic sequences among species. The program Reference-Assisted Chromosome Assembly (RACA) then integrated the comparative alignment with the mapping of the raw sequencing reads generated during assembly against the fox scaffolds. The 128 sequence fragments RACA assembled were compared to the fox meiotic linkage map to guide the construction of 40 chromosomal fragments. This computational approach to assembly was facilitated by prior research in comparative mammalian genomics, and the continued improvement of the red fox genome can in turn offer insight into canid and carnivore chromosome evolution. This assembly is also necessary for advancing genetic research in foxes and other canids.
Walker, David; Fee, Seán A; Hartley, Gill; Learmount, Jane; O'Hagan, Maria J H; Meredith, Anna L; de C Bronsvoort, Barend M; Porphyre, Thibaud; Sharp, Colin P; Philbey, Adrian W
2016-10-31
Canine adenovirus type 1 (CAV-1) causes infectious canine hepatitis (ICH), a frequently fatal disease which primarily affects canids. In this study, serology (ELISA) and molecular techniques (PCR/qPCR) were utilised to investigate the exposure of free-ranging red foxes (Vulpes vulpes) to CAV-1 in the United Kingdom (UK) and to examine their role as a wildlife reservoir of infection for susceptible species. The role of canine adenovirus type 2 (CAV-2), primarily a respiratory pathogen, was also explored. In foxes with no evidence of ICH on post-mortem examination, 29 of 154 (18.8%) red foxes had inapparent infections with CAV-1, as detected by a nested PCR, in a range of samples, including liver, kidney, spleen, brain, and lung. CAV-1 was detected in the urine of three red foxes with inapparent infections. It was estimated that 302 of 469 (64.4%) red foxes were seropositive for canine adenovirus (CAV) by ELISA. CAV-2 was not detected by PCR in any red foxes examined. Additional sequence data were obtained from CAV-1 positive samples, revealing regional variations in CAV-1 sequences. It is concluded that CAV-1 is endemic in free-ranging red foxes in the UK and that many foxes have inapparent infections in a range of tissues.
Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609.
Sambles, Christine; Middelhaufe, Sabine; Soanes, Darren; Kolak, Dagmara; Lux, Thomas; Moore, Karen; Matoušková, Petra; Parker, David; Lee, Rob; Love, John; Aves, Stephen J
2017-09-01
Most eukaryotic oleaginous species are yeasts and among them the basidiomycete red yeast, Rhodotorula ( Rhodosporidium ) toruloides (Pucciniomycotina) is known to produce high quantities of lipids when grown in nitrogen-limiting media, and has potential for biodiesel production. The genome of the CGMCC 2.1609 strain of this oleaginous red yeast was sequenced using a hybrid of Roche 454 and Illumina technology generating 13 × coverage. The de novo assembly was carried out using MIRA and scaffolded using MAQ and BAMBUS. The sequencing and assembly resulted in 365 scaffolds with total genome size of 33.4 Mb. The complete genome sequence of this strain was deposited in GenBank and the accession number is LKER00000000. The annotation is available on Figshare (doi:10.6084/m9.figshare.4754251).
Genome survey sequencing of red swamp crayfish Procambarus clarkii.
Shi, Linlin; Yi, Shaokui; Li, Yanhe
2018-06-21
Red swamp crayfish, Procambarus clarkii, presently is an important aquatic commercial species in China. The crayfish is a hot area of research focus, and its genetic improvement is quite urgent for the crayfish aquaculture in China. However, the knowledge of its genomic landscape is limited. In this study, a survey of P. clarkii genome was investigated based on Illumina's Solexa sequencing platform. Meanwhile, its genome size was estimated using flow cytometry. Interestingly, the genome size estimated is about 8.50 Gb by flow cytometry and 1.86 Gb with genome survey sequencing. Based on the assembled genome sequences, total of 136,962 genes and 152,268 exons were predicted, and the predicted genes ranged from 150 to 12,807 bp in length. The survey sequences could help accelerate the progress of gene discovery involved in genetic diversity and evolutionary analysis, even though it could not successfully applied for estimation of P. clarkii genome size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stackebrandt, Erko; Zeytun, Ahmet; Lapidus, Alla L.
2013-01-01
Coriobacterium glomerans Haas and Ko nig 1988, is the only species of the genus Coriobacterium, family Coriobacteriaceae, order Coriobacteriales, phylum Actinobacteria. The bacterium thrives as an endosymbiont of pyrrhocorid bugs, i.e. the red fire bug Pyrrhocoris apterus L. The rationale for sequencing the genome of strain PW2T is its endosymbiotic life style which is rare among members of Actinobacteria. Here we describe the features of this symbiont, together with the complete genome sequence and its annotation. This is the first complete genome sequence of a member of the genus Coriobacterium and the sixth member of the order Coriobacteriales for whichmore » complete genome sequences are now available. The 2,115,681 bp long single replicon genome with its 1,804 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
Tian, Ge-Ru; Zhao, Guang-Hui; Du, Shuai-Zhi; Hu, Xiong-Feng; Wang, Hui-Bao; Zhang, Long-Xian; Yu, San-Ke
2015-08-01
Enterocytozoon bieneusi is an emerging and opportunistic enteric pathogen triggering diarrhea and enteric disease in humans and animals. Despite extensive research on this pathogen, the prevalence and genotypes of E. bieneusi infection in precious wild animals of giant and red pandas have not been reported. In the present study, 82 faecal specimens were collected from 46 giant pandas (Ailuropoda melanoleuca) and 36 red pandas (Ailurus fulgens) in the northwest of China. By PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene of E. bieneusi, an overall infection rate of 10.98% (9/82) was observed in pandas, with 8.70% (4/46) for giant pandas, and 13.89% (5/36) for red pandas. Two ITS genotypes were identified: the novel genotype I-like (n=4) and genotype EbpC (n=5). Multilocus sequence typing (MLST) employing three microsatellites (MS1, MS3 and MS7) and one minisatellite (MS4) showed that nine, six, six and nine positive products were amplified and sequenced successfully at four respective loci. A phylogenetic analysis based on a neighbor-joining tree of the ITS gene sequences of E. bieneusi indicated that the genotype EbpC fell into 1d of group 1 of zoonotic potential, and the novel genotype I-like was clustered into group 2. The present study firstly indicated the presence of E. bieneusi in giant and red pandas, and these results suggested that integrated strategies should be implemented to effectively protect pandas and humans from infecting E. bieneusi in China. Copyright © 2015 Elsevier B.V. All rights reserved.
Kirillova, Viktorija; Prakas, Petras; Calero-Bernal, Rafael; Gavarāne, Inese; Fernández-García, José Luis; Martínez-González, Manuel; Rudaitytė-Lukošienė, Eglė; Martínez-Estéllez, Miguel Ángel Habela; Butkauskas, Dalius; Kirjušina, Muza
2018-03-12
Typically, carnivores serve as definitive hosts for Sarcocystis spp. parasites; currently, their role as intermediate hosts is being elucidated. The present study aimed to identify and molecularly characterize Sarcocystis cysts detected in striated muscle of red foxes from different populations in Latvia, Lithuania and Spain. Muscle samples from 411 red foxes (Vulpes vulpes) and 269 racoon dogs (Nyctereutes procyonoides) from Latvia, 41 red foxes from Lithuania and 22 red foxes from Spain were examined for the presence of Sarcocystis sarcocysts by light microscopy (LM). Sarcocystis spp. were identified by transmission electron microscopy (TEM) and molecular biology techniques. Sarcocystis cysts were detected in 11/411 (2.7%) Latvian, 3/41 (7.3%) Lithuanian, and 6/22 (27.3%) Spanish red foxes, however, cysts were not observed in the muscles of racoon dogs. Based on LM, TEM, 18S rDNA, 28S rDNA, ITS1, cox1 and rpoB sequences, Sarcocystis arctica and Sarcocystis lutrae cysts were identified in red fox muscles from Latvia and Lithuania, whereas only S. arctica was detected in Spain. The 18S rDNA, 28S rDNA and ITS1 sequences from the 21 isolates of S. arctica from Latvia, Lithuania and Spain were identical. By contrast, two and four haplotypes were determined based on mtDNA cox1 and apicoplast rpoB sequences, respectively. Polymorphisms were not detected between the two isolates of S. lutrae from Latvia and Lithuania. Based on phylogenetic results, S. arctica and S. lutrae were most closely related to Sarcocystis spp. using predatory mammals as intermediate hosts and to Sarcocystis species with a bird-bird life-cycle. Based on current knowledge, the red fox and Arctic fox (Vulpes lagopus) could act as intermediate host for the same two Sarcocystis species. Molecular results suggest the existence of two genetic lineages of S. arctica, and such divergence relies on its geographical distribution but not on their intermediate host species.
The New Surprising Behaviour of the Two 'Prototype' Blazars PKS 2155-304 and 3C 279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costamante, Luigi; /Stanford U., HEPL /KIPAC, Menlo Park; Aharonian, Felix
2011-11-21
Recent VHE observations have unveiled a surprising behaviour in two well-known blazars at opposite sides of the blazar sequence. PKS 2155-304 have shown for the first time in an HBL a large Compton dominance, high {gamma}-ray luminosities and a cubic relation between X-ray and VHE fluxes. 3C 279 is the first FSRQ detected at VHE. The high luminosity required to overcome the significant absorption caused by the BLR emission cannot be easily reconciled with the historical and quasi-simultaneous SED properties. Both cases shed a new light on the structure and ambient fields of blazars. Contrary to previous claims, it ismore » also shown that 3C 279 - as any FSRQ - cannot provide robust constraints on the EBL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, Tiffany D.; Jao, Wei-Chun; Silverstein, Michele L.
We report findings from a long-term photometric variability study of M dwarfs carried out at the SMARTS 0.9 m telescope at the Cerro Tololo Inter-American Observatory. As part of a multi-faceted effort to investigate the range of luminosities of M dwarfs of a given color on the Hertzsprung–Russell Diagram, 76 M dwarfs have been observed for 3–17 years in the Johnson–Kron–Cousins V band. We find that stars elevated above the center of the main sequence distribution tend to have higher levels of variability, likely caused by magnetic activity, than their fainter counterparts below the center. This study provides insight intomore » how the long-term magnetic activity of these stars may be affecting their sizes, luminosities, and thus positions on the H-R Diagram.« less
The RMS survey: galactic distribution of massive star formation
NASA Astrophysics Data System (ADS)
Urquhart, J. S.; Figura, C. C.; Moore, T. J. T.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Oudmaijer, R. D.
2014-01-01
We have used the well-selected sample of ˜1750 embedded, young, massive stars identified by the Red MSX Source (RMS) survey to investigate the Galactic distribution of recent massive star formation. We present molecular line observations for ˜800 sources without existing radial velocities. We describe the various methods used to assign distances extracted from the literature and solve the distance ambiguities towards approximately 200 sources located within the solar circle using archival H I data. These distances are used to calculate bolometric luminosities and estimate the survey completeness (˜2 × 104 L⊙). In total, we calculate the distance and luminosity of ˜1650 sources, one third of which are above the survey's completeness threshold. Examination of the sample's longitude, latitude, radial velocities and mid-infrared images has identified ˜120 small groups of sources, many of which are associated with well-known star formation complexes, such as G305, G333, W31, W43, W49 and W51. We compare the positional distribution of the sample with the expected locations of the spiral arms, assuming a model of the Galaxy consisting of four gaseous arms. The distribution of young massive stars in the Milky Way is spatially correlated with the spiral arms, with strong peaks in the source position and luminosity distributions at the arms' Galactocentric radii. The overall source and luminosity surface densities are both well correlated with the surface density of the molecular gas, which suggests that the massive star formation rate per unit molecular mass is approximately constant across the Galaxy. A comparison of the distribution of molecular gas and the young massive stars to that in other nearby spiral galaxies shows similar radial dependences. We estimate the total luminosity of the embedded massive star population to be ˜0.76 × 108 L⊙, 30 per cent of which is associated with the 10 most active star-forming complexes. We measure the scaleheight as a function of the Galactocentric distance and find that it increases only modestly from ˜20-30 pc between 4 and 8 kpc, but much more rapidly at larger distances.
Multiwavelength Properties of the X-Ray Sources in the Groth-Westphal Strip Field
NASA Astrophysics Data System (ADS)
Miyaji, Takamitsu; Sarajedini, Vicki; Griffiths, Richard E.; Yamada, Toru; Schurch, Matthew; Cristóbal-Hornillos, David; Motohara, Kentaro
2004-06-01
We summarize the multiwavelength properties of X-ray sources detected in the 80 ks XMM-Newton observation of the Groth-Westphal strip, a contiguous strip of 28 Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images. Among the ~150 X-ray sources detected in the XMM-Newton field of view, 23 are within the WFPC2 fields. Ten spectroscopic redshifts are available from the Deep Extragalactic Evolutionary Probe and Canada-France Redshift Survey projects. Four of these show broad Mg II emission and can be classified as type 1 active galactic nuclei (AGNs). Two of those without any broad lines, nevertheless, have [Ne V] emission, which is an unambiguous signature of AGN activity. One is a narrow-line Seyfert 1 and the other a type 2 AGN. As a follow-up, we have made near-infrared spectroscopic observations using the OHS/CISCO spectrometer for five of the X-ray sources for which we found no indication of AGN activity in the optical spectrum. We have detected Hα+[N II] emission in four of them. A broad Hα component and/or a large [N II]/Hα ratio is seen, suggestive of AGN activity. Nineteen sources have been detected in the Ks band, and four of these are extremely red objects (EROs) (I814-Ks>4). The optical counterparts for the majority of the X-ray sources are bulge-dominated. The I814-Ks color of these bulge-dominated hosts are indeed consistent with evolving elliptical galaxies, while contaminations from star formation/AGNs seems to be present in their V606-I814 color. Assuming that the known local relations among the bulge luminosity, central velocity dispersion, and the mass of the central blackhole still hold at z~1, we compare the AGN luminosity with the Eddington luminosity of the central blackhole mass. The AGN bolometric luminosity to Eddington luminosity ratio ranges from 0.3% to 10%. Based on observations from the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA. Also based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Sarcocystis spp. Infection in two Red Panda Cubs (Ailurus fulgens).
Zoll, W M; Needle, D B; French, S J; Lim, A; Bolin, S; Langohr, I; Agnew, D
2015-01-01
Two neonatal male red panda (Ailurus fulgens) littermates were submitted for necropsy examination. One animal was found dead with no prior signs of illness; the other had a brief history of laboured breathing. Post-mortem examination revealed disseminated protozoal infection. To further characterize the causative agent, transmission electron microscopy (TEM), immunohistochemistry (IHC), polymerase chain reaction (PCR) and amplification and nucleic acid sequencing were performed. IHC was negative for Toxoplasma gondii and Neospora caninum, but was positive for a Sarcocystis spp. TEM of cardiac muscle and lung revealed numerous intracellular apicomplexan protozoa within parasitophorous vacuoles. PCR and nucleic acid sequencing of partial 18S rRNA and the internal transcribed spacer (ITS)-1 region confirmed a Sarcocystis spp. that shared 99% sequence homology to Sarcocystis neurona and Sarcocystis dasypi. This represents the first report of sarcocystosis in red pandas. The histopathological, immunohistochemical, molecular and ultrastructural findings are supportive of vertical transmission resulting in fatal disseminated disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Baldwin, Samantha; Revanna, Roopashree; Thomson, Susan; Pither-Joyce, Meeghan; Wright, Kathryn; Crowhurst, Ross; Fiers, Mark; Chen, Leshi; Macknight, Richard; McCallum, John A
2012-11-19
Although modern sequencing technologies permit the ready detection of numerous DNA sequence variants in any organisms, converting such information to PCR-based genetic markers is hampered by a lack of simple, scalable tools. Onion is an example of an under-researched crop with a complex, heterozygous genome where genome-based research has previously been hindered by limited sequence resources and genetic markers. We report the development of generic tools for large-scale web-based PCR-based marker design in the Galaxy bioinformatics framework, and their application for development of next-generation genetics resources in a wide cross of bulb onion (Allium cepa L.). Transcriptome sequence resources were developed for the homozygous doubled-haploid bulb onion line 'CUDH2150' and the genetically distant Indian landrace 'Nasik Red', using 454™ sequencing of normalised cDNA libraries of leaf and shoot. Read mapping of 'Nasik Red' reads onto 'CUDH2150' assemblies revealed 16836 indel and SNP polymorphisms that were mined for portable PCR-based marker development. Tools for detection of restriction polymorphisms and primer set design were developed in BioPython and adapted for use in the Galaxy workflow environment, enabling large-scale and targeted assay design. Using PCR-based markers designed with these tools, a framework genetic linkage map of over 800cM spanning all chromosomes was developed in a subset of 93 F(2) progeny from a very large F(2) family developed from the 'Nasik Red' x 'CUDH2150' inter-cross. The utility of tools and genetic resources developed was tested by designing markers to transcription factor-like polymorphic sequences. Bin mapping these markers using a subset of 10 progeny confirmed the ability to place markers within 10 cM bins, enabling increased efficiency in marker assignment and targeted map refinement. The major genetic loci conditioning red bulb colour (R) and fructan content (Frc) were located on this map by QTL analysis. The generic tools developed for the Galaxy environment enable rapid development of sets of PCR assays targeting sequence variants identified from Illumina and 454 sequence data. They enable non-specialist users to validate and exploit large volumes of next-generation sequence data using basic equipment.
NASA Astrophysics Data System (ADS)
Davies, Ben; Crowther, Paul A.; Beasor, Emma R.
2018-05-01
The empirical upper luminosity boundary Lmax of cool supergiants, often referred to as the Humphreys-Davidson limit, is thought to encode information on the general mass-loss behaviour of massive stars. Further, it delineates the boundary at which single stars will end their lives stripped of their hydrogen-rich envelope, which in turn is a key factor in the relative rates of Type-II to Type-Ibc supernovae from single star channels. In this paper we have revisited the issue of Lmax by studying the luminosity distributions of cool supergiants (SGs) in the Large and Small Magellanic Clouds (LMC/SMC). We assemble samples of cool SGs in each galaxy which are highly-complete above log L/L⊙=5.0, and determine their spectral energy distributions from the optical to the mid-infrared using modern multi-wavelength survey data. We show that in both cases Lmax appears to be lower than previously quoted, and is in the region of log L/L⊙=5.5. There is no evidence for Lmax being higher in the SMC than in the LMC, as would be expected if metallicity-dependent winds were the dominant factor in the stripping of stellar envelopes. We also show that Lmax aligns with the lowest luminosity of single nitrogen-rich Wolf-Rayet stars, indicating of a change in evolutionary sequence for stars above a critical mass. From population synthesis analysis we show that the Geneva evolutionary models greatly over-predict the numbers of cool SGs in the SMC. We also argue that the trend of earlier average spectral types of cool SGs in lower metallicity environments represents a genuine shift to hotter temperatures. Finally, we use our new bolometric luminosity measurements to provide updated bolometric corrections for cool supergiants.
Systemic AA amyloidosis in the red fox (Vulpes vulpes).
Rising, Anna; Cederlund, Ella; Palmberg, Carina; Uhlhorn, Henrik; Gaunitz, Stefan; Nordling, Kerstin; Ågren, Erik; Ihse, Elisabet; Westermark, Gunilla T; Tjernberg, Lars; Jörnvall, Hans; Johansson, Jan; Westermark, Per
2017-11-01
Amyloid A (AA) amyloidosis occurs spontaneously in many mammals and birds, but the prevalence varies considerably among different species, and even among subgroups of the same species. The Blue fox and the Gray fox seem to be resistant to the development of AA amyloidosis, while Island foxes have a high prevalence of the disease. Herein, we report on the identification of AA amyloidosis in the Red fox (Vulpes vulpes). Edman degradation and tandem MS analysis of proteolyzed amyloid protein revealed that the amyloid partly was composed of full-length SAA. Its amino acid sequence was determined and found to consist of 111 amino acid residues. Based on inter-species sequence comparisons we found four residue exchanges (Ser31, Lys63, Leu71, Lys72) between the Red and Blue fox SAAs. Lys63 seems unique to the Red fox SAA. We found no obvious explanation to how these exchanges might correlate with the reported differences in SAA amyloidogenicity. Furthermore, in contrast to fibrils from many other mammalian species, the isolated amyloid fibrils from Red fox did not seed AA amyloidosis in a mouse model. © 2017 The Protein Society.
Humphreys, R M; Davidson, K
1984-01-20
Stars with individual luminosities more than a million times that of the sun are now being studied in a variety of contexts. Observational and theoretical ideas about the most luminous stars have changed greatly in the past few years. They can be observed spectroscopically even in nearby galaxies. They are not very stable; some have had violent outbursts in which large amounts of mass were lost. Because of their instabilities, these stars do not evolve to become red superglants as less luminous stars do. Theoretical scenarios for the evolution of these most massive stars depend on the effects of turbulence and mixing combined with high radition densities.
NASA Astrophysics Data System (ADS)
Świetoń, Agnieszka; Pollo, Agnieszka; VVDS Team
2014-12-01
We discuss the dependence of galaxy clustering according to their colours up to z˜ 1.2. For that purpose we used one of the wide fields (F22) from the VIMOS-VLT Deep Survey (VVDS). For galaxies with absolute luminosities close to the characteristic Schechter luminosities M^* at a given redshift, we measured the projected two-point correlation function w_{p}(r_{p}) and we estimated the best-fit parameters for a single power-law model: ξ(r) = (r/r_0)^{-γ} , where r_0 is the correlation length and γ is the slope of correlation function. Our results show that red galaxies exhibit the strongest clustering in all epochs up to z˜ 1.2. Green valley represents the "intermediate" population and blue cloud shows the weakest clustering strength. We also compared the shape of w_p(r_p) for different galaxy populations. All three populations have different clustering properties on the small scales, similarly to the behaviour observed in the local catalogues.
Identifying Li-rich giants from low-resolution spectroscopic survey
NASA Astrophysics Data System (ADS)
Kumar, Yerra Bharat; Reddy, Bacham Eswar; Zhao, Gang
2018-04-01
In this paper we discuss our choice of a large unbiased sample used for the survey of red giant branch stars for finding Li-rich K giants, and the method used for identifying Li-rich candidates using low-resolution spectra. The sample has 2000 giants within a mass range of 0.8 to 3.0it{M}_{⊙}. Sample stars were selected from the Hipparcos catalogue with colour (B-V) and luminosity (it{L}/it{L}_{⊙}) in such way that the sample covers RGB evolution from its base towards RGB tip passing through first dredge-up and luminosity bump. Low-resolution (R ≈ 2000, 3500, 5000) spectra were obtained for all sample stars. Using core strength ratios of lines at Li I 6707 Å and its adjacent line Ca I 6717 Å we successfully identified 15 K giants with A(Li) > 1.5 dex, which are defined as Li-rich K giants. The results demonstrate the usefulness of low-resolution spectra to measure Li abundance and identify Li-rich giants from a large sample of stars in relatively shorter time periods.
Evidence for Cocoon Emission from the Early Light Curve of SSS17a
NASA Astrophysics Data System (ADS)
Piro, Anthony L.; Kollmeier, Juna A.
2018-03-01
Swope Supernova Survey 2017a (SSS17a) was discovered as the first optical counterpart to the gravitational wave event GW170817. Although its light curve on the timescale of weeks roughly matches the expected luminosity and red color of an r-process powered transient, the explanation for the blue emission from high velocity material over the first few days is not as clear. Here we show that the power-law evolution of the luminosity, temperature, and photospheric radius during these early times can be explained by cooling of shock-heated material around the neutron star merger. This heating is likely from the interaction of the gamma-ray burst jet with merger debris, the so-called cocoon emission. We summarize the properties of this emission and provide formulae that can be used to study future detections of shock cooling from merging neutron stars. This argues that optical transient surveys should search for such early, blue light if they wish to find off-axis gamma-ray bursts and double neutron star gravitational wave events as soon as possible after the merger.
A terrestrial planet candidate in a temperate orbit around Proxima Centauri
NASA Astrophysics Data System (ADS)
Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; Berdiñas, Zaira M.; Butler, R. Paul; Coleman, Gavin A. L.; de La Cueva, Ignacio; Dreizler, Stefan; Endl, Michael; Giesers, Benjamin; Jeffers, Sandra V.; Jenkins, James S.; Jones, Hugh R. A.; Kiraga, Marcin; Kürster, Martin; López-González, María J.; Marvin, Christopher J.; Morales, Nicolás; Morin, Julien; Nelson, Richard P.; Ortiz, José L.; Ofir, Aviv; Paardekooper, Sijme-Jan; Reiners, Ansgar; Rodríguez, Eloy; Rodríguez-López, Cristina; Sarmiento, Luis F.; Strachan, John P.; Tsapras, Yiannis; Tuomi, Mikko; Zechmeister, Mathias
2016-08-01
At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun’s closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface.
A terrestrial planet candidate in a temperate orbit around Proxima Centauri.
Anglada-Escudé, Guillem; Amado, Pedro J; Barnes, John; Berdiñas, Zaira M; Butler, R Paul; Coleman, Gavin A L; de la Cueva, Ignacio; Dreizler, Stefan; Endl, Michael; Giesers, Benjamin; Jeffers, Sandra V; Jenkins, James S; Jones, Hugh R A; Kiraga, Marcin; Kürster, Martin; López-González, Marίa J; Marvin, Christopher J; Morales, Nicolás; Morin, Julien; Nelson, Richard P; Ortiz, José L; Ofir, Aviv; Paardekooper, Sijme-Jan; Reiners, Ansgar; Rodríguez, Eloy; Rodrίguez-López, Cristina; Sarmiento, Luis F; Strachan, John P; Tsapras, Yiannis; Tuomi, Mikko; Zechmeister, Mathias
2016-08-25
At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun's closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface.
Major substructure in the M31 outer halo: the South-West Cloud
NASA Astrophysics Data System (ADS)
Bate, N. F.; Conn, A. R.; McMonigal, B.; Lewis, G. F.; Martin, N. F.; McConnachie, A. W.; Veljanoski, J.; Mackey, A. D.; Ferguson, A. M. N.; Ibata, R. A.; Irwin, M. J.; Fardal, M.; Huxor, A. P.; Babul, A.
2014-02-01
We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ˜100 kpc from the centre of M31 and extends for at least ˜50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793^{+45}_{-45} kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 ± 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 ± 0.15. We measure a brightness for the Cloud of MV = -12.1 mag; this is ˜75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.
Test Input Generation for Red-Black Trees using Abstraction
NASA Technical Reports Server (NTRS)
Visser, Willem; Pasareanu, Corina S.; Pelanek, Radek
2005-01-01
We consider the problem of test input generation for code that manipulates complex data structures. Test inputs are sequences of method calls from the data structure interface. We describe test input generation techniques that rely on state matching to avoid generation of redundant tests. Exhaustive techniques use explicit state model checking to explore all the possible test sequences up to predefined input sizes. Lossy techniques rely on abstraction mappings to compute and store abstract versions of the concrete states; they explore under-approximations of all the possible test sequences. We have implemented the techniques on top of the Java PathFinder model checker and we evaluate them using a Java implementation of red-black trees.
TERA submitted by University of California, Riverside and given the tracking designation of R-03-0001. The microorganism has been modified to carry a coding sequence of DsRed for expressing a red fluorescent protein.
Soft X-ray observations of pre-main sequence stars in the chamaeleon dark cloud
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Kriss, Gerard A.
1987-01-01
Einstein IPC observations of the nearby Chamaeleon I star forming cloud show 22 well-resolved soft X-ray sources in a 1x2 deg region. Twelve are associated with H-alpha emission line pre-main sequence (PMS) stars, and four with optically selected PMS stars. Several X-ray sources have two or more PMS stars in their error circles. Optical spectra were obtained at CTIO of possible stellar counterparts of the remaining X-ray sources. They reveal 5 probable new cloud members, K7-MO stars with weak or absent emission lines. These naked X-ray selected PMS stars are similar to those found in the Taurus-Auriga cloud. The spatial distributions and H-R diagrams of the X-ray and optically selected PMS stars in the cloud are very similar. Luminosity functions indicate the Chamaeleon stars are on average approximately 5 times more X-ray luminous than Pleiad dwarfs. A significant correlation between L sub x and optical magnitude suggests this trend may continue within the PMS phase of stellar evolution. The relation of increasing X-ray luminosity with decreasing stellar ages is thus extended to stellar ages as young as 1 million years.
J0811+4730: the most metal-poor star-forming dwarf galaxy known
NASA Astrophysics Data System (ADS)
Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.
2018-01-01
We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.
A New Giant Stellar Structure in the Outer Halo of M31
NASA Astrophysics Data System (ADS)
Zucker, Daniel B.; Kniazev, Alexei Y.; Bell, Eric F.; Martínez-Delgado, David; Grebel, Eva K.; Rix, Hans-Walter; Rockosi, Constance M.; Holtzman, Jon A.; Walterbos, Rene A. M.; Ivezić, Željko; Brinkmann, J.; Brewington, Howard; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Lamb, Don Q.; Long, Dan; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.
2004-09-01
The Sloan Digital Sky Survey has revealed an overdensity of luminous red giant stars ~3° (40 projected kpc) to the northeast of M31, which we have called Andromeda NE. The line-of-sight distance to Andromeda NE is within ~50 kpc of M31; Andromeda NE is not a physically unrelated projection. Andromeda NE has a g-band absolute magnitude of ~-11.6 and a central surface brightness of ~29 mag arcsec-2, making it nearly 2 orders of magnitude more diffuse than any known Local Group dwarf galaxy at that luminosity. Based on its distance and morphology, Andromeda NE is likely undergoing tidal disruption. Andromeda NE's red giant branch color is unlike that of M31's present-day outer disk or the stellar stream reported by Ibata et al., arguing against a direct link between Andromeda NE and these structures. However, Andromeda NE has a red giant branch color similar to that of the G1 clump; it is possible that these structures are both material torn off of M31's disk in the distant past or that these are both part of one ancient stellar stream.
NASA Technical Reports Server (NTRS)
Wilson, Gillian; Demarco, Ricardo; Muzzin, Adam; Yee, H.K.C.; Lacy, Mark; Surace, Jason; Gilbank, David; Blindert, Kris; Hoekstra, Henk; Majumdar, Subhabrata;
2008-01-01
The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' approx. 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z > 1. In tandem with pre-existing 3.6 micron observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 sq deg. In this paper, we provide an overview of the 13.6 sq deg Southern CTIO/MOSAICII observations. The 28.3 sq deg Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008a). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050+/-230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.
Sun, Xiujun; Liu, Zhihong; Zhou, Liqing; Wu, Biao; Dong, Yinghui; Yang, Aiguo
2016-01-01
The Yesso scallop Patinopecten yessoensis displays polymorphism in shell colors, which is of great interest for the scallop industry. To identify genes involved in the shell coloration, in the present study, we investigate the transcriptome differences by Illumina digital gene expression (DGE) analysis in two extreme color phenotypes, Red and White. Illumina sequencing yields a total of 62,715,364 clean sequence reads, and more than 85% reads are mapped into our previously sequenced transcriptome. There are 25 significantly differentially expressed genes between Red and White scallops. EPR (Electron paramagnetic resonance) analysis has identified EPR spectra of pheomelanin and eumelanin in the red shells, but not in the white shells. Compared to the Red scallops, the White scallops have relatively higher mRNA expression in tyrosinase genes, but lower expression in other melanogensis-associated genes. Meantime, the relatively lower tyrosinase protein and decreased tyrosinase activity in White scallops are suggested to be associated with the lack of melanin in the white shells. Our findings highlight the functional roles of melanogensis-associated genes in the melanization process of scallop shells, and shed new lights on the transcriptional and post-transcriptional mechanisms in the regulation of tyrosinase activity during the process of melanin synthesis. The present results will assist our molecular understanding of melanin synthesis underlying shell color polymorphism in scallops, as well as other bivalves, and also help the color-based breeding in shellfish aquaculture. PMID:27563719
The masses of retired A stars with asteroseismology: Kepler and K2 observations of exoplanet hosts
NASA Astrophysics Data System (ADS)
North, Thomas S. H.; Campante, Tiago L.; Miglio, Andxsrea; Davies, Guy R.; Grunblatt, Samuel K.; Huber, Daniel; Kuszlewicz, James S.; Lund, Mikkel N.; Cooke, Benjamin F.; Chaplin, William J.
2017-12-01
We investigate the masses of 'retired A stars' using asteroseismic detections on seven low-luminosity red-giant and sub-giant stars observed by the NASA Kepler and K2 missions. Our aim is to explore whether masses derived from spectroscopy and isochrone fitting may have been systematically overestimated. Our targets have all previously been subject to long-term radial velocity observations to detect orbiting bodies, and satisfy the criteria used by Johnson et al. to select survey stars which may have had A-type (or early F-type) main-sequence progenitors. The sample actually spans a somewhat wider range in mass, from ≈ 1 M⊙ up to ≈ 1.7 M⊙. Whilst for five of the seven stars the reported discovery mass from spectroscopy exceeds the mass estimated using asteroseismology, there is no strong evidence for a significant, systematic bias across the sample. Moreover, comparisons with other masses from the literature show that the absolute scale of any differences is highly sensitive to the chosen reference literature mass, with the scatter between different literature masses significantly larger than reported error bars. We find that any mass difference can be explained through use of different constraints during the recovery process. We also conclude that underestimated uncertainties on the input parameters can significantly bias the recovered stellar masses, which may have contributed to the controversy on the mass scale for retired A stars.
Montero-Dorta, Antonio D.; Bolton, Adam S.; Brownstein, Joel R.; ...
2016-06-09
The history of the expanding universe is encoded in the large-scale distribution of galaxies throughout space. By mapping out the three-dimensional locations of millions of galaxies with powerful telescopes, we can directly measure this expansion history. When interpreted using Einstein's theory of gravity, this expansion history lets us infer the contents of the universe, including the amount and nature of "dark energy", an as-yet unexplained energy density associated with the empty vacuum of space. However, to make these measurements and inferences accurately, we must understand and control for a large number of experimental effects. This paper develops a novel methodmore » for large cosmological galaxy surveys, and applies it to data from the "BOSS" experiment of the Third Sloan Digital Sky Survey. This method enables an accurate statistical characterization of the "completeness" of the BOSS experiment: the probability that a given galaxy at a given place in the universe is actually detected and successfully measured. It also enables the accurate determination of the underlying demographics of the galaxy population being studied by the experiment. These two ingredients can then be used to make a more accurate comparison between the results of the experiment and the theoretical models that predict the observable effects of dark energy.« less
NASA Astrophysics Data System (ADS)
Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.
2016-03-01
We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.
INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.
2013-01-01
Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID:24324765
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba Alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B
2013-01-01
The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.
Poojari, Sudarsana; Alabi, Olufemi J.; Fofanov, Viacheslav Y.; Naidu, Rayapati A.
2013-01-01
A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L.) cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s) associated with this emerging disease, designated as grapevine redleaf disease (GRD). High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV), and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh) from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms. PMID:23755117
USDA-ARS?s Scientific Manuscript database
Grapevine red blotch-associated virus (GRBaV) is a newly identified virus of grapevines, and a putative member of a new genus within the family Geminiviridae. This virus is associated with red blotch disease that was first reported in California in 2008. It affects the profitability of vineyards by ...
The stellar populations of M 33
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den bergh, S.
1991-07-01
A review is given of present ideas on the evolution and stellar content of the Triangulum nebula = M 33 = NGC 598. The disk of M 33 is embedded in a halo of globular clusters, metal-poor red giants, and RR Lyrae stars. Its nuclear bulge component is weak, suggesting that the halos of galaxies are not extensions of their bulges to large radii. The ages of M 33 clusters do not appear to exhibit a hiatus in their star-forming history like that which is observed in the Large Magellanic Cloud (LMC). Young and intermediate-age clusters with luminosities rivaling themore » populous clusters in the LMC are rare in M 33. The integrated light of the semistellar nucleus of M 33, which contains the strongest X-ray source in the Local Group, is dominated by a young metal-rich population. At optical wavelengths the disk scale length of M 33 is 9.6 arcmin, which is similar to the 9.9 arcmin scale length of OB associations. The ratio of the nova rate in M 33 to that in M 31 is approximately equal to the ratio of their luminosities. This suggests that the nova rate in a galaxy is not determined entirely by the integrated luminosity of old bulge stars. The gas-depletion time scale in the central region of M 33 is found to be about 1.7 {times} 10 to the 9th yr, which is significantly shorter than a Hubble time. 141 refs.« less
Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment.
Zhou, Mei; Jin, Kai; Wang, Shaoze; Ye, Juan; Qian, Dahong
2018-03-01
Many common eye diseases and cardiovascular diseases can be diagnosed through retinal imaging. However, due to uneven illumination, image blurring, and low contrast, retinal images with poor quality are not useful for diagnosis, especially in automated image analyzing systems. Here, we propose a new image enhancement method to improve color retinal image luminosity and contrast. A luminance gain matrix, which is obtained by gamma correction of the value channel in the HSV (hue, saturation, and value) color space, is used to enhance the R, G, and B (red, green and blue) channels, respectively. Contrast is then enhanced in the luminosity channel of L * a * b * color space by CLAHE (contrast-limited adaptive histogram equalization). Image enhancement by the proposed method is compared to other methods by evaluating quality scores of the enhanced images. The performance of the method is mainly validated on a dataset of 961 poor-quality retinal images. Quality assessment (range 0-1) of image enhancement of this poor dataset indicated that our method improved color retinal image quality from an average of 0.0404 (standard deviation 0.0291) up to an average of 0.4565 (standard deviation 0.1000). The proposed method is shown to achieve superior image enhancement compared to contrast enhancement in other color spaces or by other related methods, while simultaneously preserving image naturalness. This method of color retinal image enhancement may be employed to assist ophthalmologists in more efficient screening of retinal diseases and in development of improved automated image analysis for clinical diagnosis.
MULTIPLE OUTFLOWS IN THE GIANT ERUPTION OF A MASSIVE STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, Roberta M.; Gordon, Michael S.; Jones, Terry J.
The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈−14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of −400, −1100, and −1600 km s{sup −1}. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, densemore » wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of −8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported.« less
A distance-limited sample of massive star-forming cores from the RMS
NASA Astrophysics Data System (ADS)
Maud, L. T.; Lumsden, S. L.; Moore, T. J. T.; Mottram, J. C.; Urquhart, J. S.; Cicchini, A.
2015-09-01
We analyse C18O (J = 3-2) data from a sample of 99 infrared (IR)-bright massive young stellar objects (MYSOs) and compact H II regions that were identified as potential molecular-outflow sources in the Red MSX Source survey. We extract a distance-limited (D < 6 kpc) sample shown to be representative of star formation covering the transition between the source types. At the spatial resolution probed, Larson-like relationships are found for these cores, though the alternative explanation, that Larson's relations arise where surface-density-limited samples are considered, is also consistent with our data. There are no significant differences found between source properties for the MYSOs and H II regions, suggesting that the core properties are established prior to the formation of massive stars, which subsequently have little impact at the later evolutionary stages investigated. There is a strong correlation between dust-continuum and C18O-gas masses, supporting the interpretation that both trace the same material in these IR-bright sources. A clear linear relationship is seen between the independently established core masses and luminosities. The position of MYSOs and compact H II regions in the mass-luminosity plane is consistent with the luminosity expected from the most massive protostar in the cluster when using an ˜40 per cent star formation efficiency and indicates that they are at a similar evolutionary stage, near the end of the accretion phase.
NASA Astrophysics Data System (ADS)
Stello, Dennis; Huber, Daniel; Sharma, Sanjib; Johnson, Jennifer; Lund, Mikkel N.; Handberg, Rasmus; Buzasi, Derek L.; Silva Aguirre, Victor; Chaplin, William J.; Miglio, Andrea; Pinsonneault, Marc; Basu, Sarbani; Bedding, Tim R.; Bland-Hawthorn, Joss; Casagrande, Luca; Davies, Guy; Elsworth, Yvonne; Garcia, Rafael A.; Mathur, Savita; Di Mauro, Maria Pia; Mosser, Benoit; Schneider, Donald P.; Serenelli, Aldo; Valentini, Marica
2015-08-01
NASA’s re-purposed Kepler mission—dubbed K2—has brought new scientific opportunities that were not anticipated for the original Kepler mission. One science goal that makes optimal use of K2's capabilities, in particular its 360° ecliptic field of view, is galactic archaeology—the study of the evolution of the Galaxy from the fossil stellar record. The thrust of this research is to exploit high-precision, time-resolved photometry from K2 in order to detect oscillations in red giant stars. This asteroseismic information can provide estimates of stellar radius (hence distance), mass, and age of vast numbers of stars across the Galaxy. Here we present the initial analysis of a subset of red giants, observed toward the north galactic gap, during the mission’s first full science campaign. We investigate the feasibility of using K2 data for detecting oscillations in red giants that span a range in apparent magnitude and evolutionary state (hence intrinsic luminosity). We demonstrate that oscillations are detectable for essentially all cool giants within the {log}g range ˜1.9-3.2. Our detection is complete down to {\\text{Kp}} ˜ 14.5, which results in a seismic sample with little or no detection bias. This sample is ideally suited to stellar population studies that seek to investigate potential shortcomings of contemporary Galaxy models.
Multi-wavelength seds of Herschel-selected galaxies in the cosmos field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.
2013-12-01
We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties ofmore » our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from AGN heating.« less
Resolved photometry of extragalactic young massive star clusters
NASA Astrophysics Data System (ADS)
Larsen, S. S.; de Mink, S. E.; Eldridge, J. J.; Langer, N.; Bastian, N.; Seth, A.; Smith, L. J.; Brodie, J.; Efremov, Yu. N.
2011-08-01
Aims: We present colour-magnitude diagrams (CMDs) of young massive star clusters in several galaxies located well beyond the Local Group. The richness of these clusters allows us to obtain large samples of post-main sequence stars and test how well the observed CMDs are reproduced by canonical stellar isochrones. Methods: We use imaging of seven clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793 obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope and carry out PSF-fitting photometry of individual stars in the clusters. The clusters have ages in the range ~(5-50) × 106 years and masses of ~105 M⊙-106 M⊙. Although crowding prevents us from obtaining photometry in the inner regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. Results: In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. We find that this spread can be reproduced by including an age spread of ~(10-30) × 106 years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role. Conclusions: Colour-magnitude diagrams can be successfully obtained for massive star clusters out to distances of at least 4-5 Mpc. Comparing such CMDs with models based on canonical isochrones we find several areas of disagreement. One interesting possibility is that an age spread of up to ~30 Myr may be present in some clusters. The data presented here may provide useful constraints on models for single and/or binary stellar evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555Tables 4-10 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A147
NASA Astrophysics Data System (ADS)
Anthony-Twarog, Barbara J.; Lee-Brown, Donald B.; Deliyannis, Constantine P.; Twarog, Bruce A.
2018-03-01
HYDRA spectra of 287 stars in the field of NGC 2506 from the turnoff through the giant branch are analyzed. With previous data, 22 are identified as probable binaries; 90 more are classified as potential non-members. Spectroscopic analyses of ∼60 red giants and slowly rotating turnoff stars using line equivalent widths and a neural network approach lead to [Fe/H] = ‑0.27 ± 0.07 (s.d.) and [Fe/H] = ‑0.27 ± 0.06 (s.d.), respectively. Li abundances are derived for 145 probable single-star members, 44 being upper limits. Among turnoff stars outside the Li-dip, A(Li) = 3.04 ± 0.16 (s.d.), with no trend with color, luminosity, or rotation speed. Evolving from the turnoff across the subgiant branch, there is a well-delineated decline to A(Li) ∼1.25 at the giant branch base, coupled with the rotational spindown from between ∼20 and 70 km s‑1 to less than 20 km s‑1 for stars entering the subgiant branch and beyond. A(Li) remains effectively constant from the giant branch base to the red giant clump level. A new member above the clump redefines the path of the first-ascent red giant branch; its Li is 0.6 dex below the first-ascent red giants. With one exception, all post-He-flash stars have upper limits to A(Li), at or below the level of the brightest first-ascent red giant. The patterns are in excellent qualitative agreement with the model predictions for low/intermediate-mass stars which undergo rotation-induced mixing at the turnoff and subgiant branch, first dredge-up, and thermohaline mixing beyond the red giant bump.
ACOUSTIC SIGNATURES OF THE HELIUM CORE FLASH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bildsten, Lars; Paxton, Bill; Moore, Kevin
2012-01-15
All evolved stars with masses M {approx}< 2 M{sub Sun} undergo an initiating off-center helium core flash in their M{sub c} Almost-Equal-To 0.48 M{sub Sun} He core as they ascend the red giant branch (RGB). This off-center flash is the first of a few successive helium shell subflashes that remove the core electron degeneracy over 2 Myr, converting the object into a He-burning star. Though characterized by Thomas over 40 years ago, this core flash phase has yet to be observationally probed. Using the Modules for Experiments in Stellar Astrophysics (MESA) code, we show that red giant asteroseismology enabled bymore » space-based photometry (i.e., Kepler and CoRoT) can probe these stars during the flash. The rapid ({approx}< 10{sup 5} yr) contraction of the red giant envelope after the initiating flash dramatically improves the coupling of the p-modes to the core g-modes, making the detection of l = 1 mixed modes possible for these 2 Myr. This duration implies that 1 in 35 stars near the red clump in the H-R diagram will be in their core flash phase. During this time, the star has a g-mode period spacing of {Delta}P{sub g} Almost-Equal-To 70-100 s, lower than the {Delta}P{sub g} Almost-Equal-To 250 s of He-burning stars in the red clump, but higher than the RGB stars at the same luminosity. This places them in an underpopulated part of the large frequency spacing ({Delta}{nu}) versus {Delta}P{sub g} diagram that should ease their identification among the thousands of observed red giants.« less
Hunting Elusive SPRITEs with Spitzer
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-05-01
In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events were designated eSPecially Red Intermediate-luminosity Transient Events, or SPRITEs.SPRITEs are unusual infrared transients that lie in the luminosity gap between novae and supernovae, and they have no optical counterparts. They all occur in star-forming galaxies.Search for the CauseWhats the physical origin of these phenomena? The authors explore a number of possible sources, including obscured supernovae, stellar mergers with dusty winds, collapse of extreme stars, or even weak shocks in failed supernovae.Spitzer image of M83, one of the closest barred spiral galaxies in the sky. SPIRITS 14ajc was discovered in one of M83s spiral arms. [NASA/JPL-Caltech]In one case, SPIRITS 14ajc, the SPRITEs spectrum shows signs of excited molecular hydrogen lines, which are indicative of a shock. Based on the data, Kasliwal and collaborators propose that the shock might have been driven into a molecular cloud after it was triggered by the decay of a system of massive stars that either passed closely or collided and merged.The other SPRITEs may all have different origins, however, and in general the infrared photometric data isnt sufficient to identify which model fits each transient. Future technology, like spectroscopy with the James Webb Space Telescope, may help us to better understand the origins of these elusive transients, though. And future surveying with projects like SPIRITS will help us to discover more SPRITE-like events, expanding our understanding of the dynamic infrared sky.CitationMansi M. Kasliwal et al 2017 ApJ 839 88. doi:10.3847/1538-4357/aa6978
McRobie, Helen R; King, Linda M; Fanutti, Cristina; Coussons, Peter J; Moncrief, Nancy D; Thomas, Alison P M
2014-01-01
Sequence variations in the melanocortin 1 receptor (MC1R) gene are associated with melanism in many different species of mammals, birds, and reptiles. The gray squirrel (Sciurus carolinensis), found in the British Isles, was introduced from North America in the late 19th century. Melanism in the British gray squirrel is associated with a 24-bp deletion in the MC1R. To investigate the origin of this mutation, we sequenced the MC1R of 95 individuals including 44 melanic gray squirrels from both the British Isles and North America. Melanic gray squirrels of both populations had the same 24-bp deletion associated with melanism. Given the significant deletion associated with melanism in the gray squirrel, we sequenced the MC1R of both wild-type and melanic fox squirrels (Sciurus niger) (9 individuals) and red squirrels (Sciurus vulgaris) (39 individuals). Unlike the gray squirrel, no association between sequence variation in the MC1R and melanism was found in these 2 species. We conclude that the melanic gray squirrel found in the British Isles originated from one or more introductions of melanic gray squirrels from North America. We also conclude that variations in the MC1R are not associated with melanism in the fox and red squirrels.
Molecular epidemiological characterization of poultry red mite, Dermanyssus gallinae, in Japan
CHU, Thi Thanh Huong; MURANO, Takako; UNO, Yukiko; USUI, Tatsufumi; YAMAGUCHI, Tsuyoshi
2015-01-01
Dermanyssus gallinae, the poultry red mite, is an obligatory blood-sucking ectoparasite. The genetic diversity of D. gallinae has been examined in some countries, but so far not in Asian countries. Here, we sequenced a part of the mitochondrial cytochrome oxidase subunit I (COI) and16S rRNA genes and nuclear internal transcribed spacers (ITS) region in 239 mite samples collected from 40 prefectures throughout Japan. The COI and 16S rRNA nucleotide sequences were classified into 28 and 26 haplotypes, respectively. In phylogenetic trees, the haplotypes clustered into 2 haplogroups corresponding to haplogroups A and B, which were previously reported. Haplogroups A and B were further subdivided into sub-haplogroups AJ1 and AJ2, and BJ1 and BJ2, respectively. In both trees, the sequences of haplotypes in AJ1 and BJ2 were relatively distant from those reported in other countries, while some sequences in AJ2 and BJ1 were identical to those in Europe. In addition, the ITS sequences were classified into two sequences, and both sequences were closely related to the sequences found in European countries. These findings indicate a possibility of international oversea transmission of D. gallinae. PMID:26074251
Molecular epidemiological characterization of poultry red mite, Dermanyssus gallinae, in Japan.
Chu, Thi Thanh Huong; Murano, Takako; Uno, Yukiko; Usui, Tatsufumi; Yamaguchi, Tsuyoshi
2015-11-01
Dermanyssus gallinae, the poultry red mite, is an obligatory blood-sucking ectoparasite. The genetic diversity of D. gallinae has been examined in some countries, but so far not in Asian countries. Here, we sequenced a part of the mitochondrial cytochrome oxidase subunit I (COI) and16S rRNA genes and nuclear internal transcribed spacers (ITS) region in 239 mite samples collected from 40 prefectures throughout Japan. The COI and 16S rRNA nucleotide sequences were classified into 28 and 26 haplotypes, respectively. In phylogenetic trees, the haplotypes clustered into 2 haplogroups corresponding to haplogroups A and B, which were previously reported. Haplogroups A and B were further subdivided into sub-haplogroups AJ1 and AJ2, and BJ1 and BJ2, respectively. In both trees, the sequences of haplotypes in AJ1 and BJ2 were relatively distant from those reported in other countries, while some sequences in AJ2 and BJ1 were identical to those in Europe. In addition, the ITS sequences were classified into two sequences, and both sequences were closely related to the sequences found in European countries. These findings indicate a possibility of international oversea transmission of D. gallinae.
The effect of starspots on the radii of low-mass pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Jeffries, R. D.
2014-07-01
A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.
Novák, Karel; Pikousová, Jitka; Czerneková, Vladimíra; Mátlová, Věra
2017-07-03
The allelic variants of immunity genes in historical breeds likely reflect local infection pressure and therefore represent a reservoir for breeding. Screening to determine the diversity of the Toll-like receptor gene TLR4 was conducted in two conserved cattle breeds: Czech Red and Czech Red Pied. High-throughput sequencing of pooled PCR amplicons using the PacBio platform revealed polymorphisms, which were subsequently confirmed via genotyping techniques. Eight SNPs found in coding and adjacent regions were grouped into 18 haplotypes, representing a significant portion of the known diversity in the global breed panel and presumably exceeding diversity in production populations. Notably, the ancient Czech Red breed appeared to possess greater haplotype diversity than the Czech Red Pied breed, a Simmental variant, although the haplotype frequencies might have been distorted by significant crossbreeding and bottlenecks in the history of Czech Red cattle. The differences in haplotype frequencies validated the phenotypic distinctness of the local breeds. Due to the availability of Czech Red Pied production herds, the effect of intensive breeding on TLR diversity can be evaluated in this model. The advantages of the Pacific Biosciences technology for the resequencing of long PCR fragments with subsequent direct phasing were independently validated.
Zhu, Wenbin; Wang, Lanmei; Dong, Zaijie; Chen, Xingting; Song, Feibiao; Liu, Nian; Yang, Hui; Fu, Jianjun
2016-08-11
Red tilapia is becoming more popular for aquaculture production in China in recent years. However, the pigmentation differentiation in genetic breeding is the main problem limiting its development of commercial red tilapia culture and the genetic basis of skin color variation is still unknown. In this study, we conducted Illumina sequencing of transcriptome on three color variety red tilapia. A total of 224,895,758 reads were generated, resulting in 160,762 assembled contigs that were used as reference contigs. The contigs of red tilapia transcriptome had hits in the range of 53.4% to 86.7% of the unique proteins of zebrafish, fugu, medaka, three-spined stickleback and tilapia. And 44,723 contigs containing 77,423 simple sequence repeats (SSRs) were identified, with 16,646 contigs containing more than one SSR. Three skin transcriptomes were compared pairwise and the results revealed that there were 148 common significantly differentially expressed unigenes and several key genes related to pigment synthesis, i.e. tyr, tyrp1, silv, sox10, slc24a5, cbs and slc7a11, were included. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in red tilapia and accelerate the molecular selection of the specific strain with consistent skin colors.
Su, B; Fu, Y; Wang, Y; Jin, L; Chakraborty, R
2001-06-01
The red panda (Ailurus fulgens) is one of the flagship species in worldwide conservation and is of special interest in evolutionary studies due to its taxonomic uniqueness. We sequenced a 236-bp fragment of the mitochondrial D-loop region in a sample of 53 red pandas from two populations in southwestern China. Seventeen polymorphic sites were found, together with a total of 25 haplotypes, indicating a high level of genetic diversity in the red panda. However, no obvious genetic divergence was detected between the Sichuan and Yunnan populations. The consensus phylogenetic tree of the 25 haplotypes was starlike. The pairwise mismatch distribution fitted into a pattern of populations undergoing expansion. Furthermore, Fu's F(S) test of neutrality was significant for the total population (F(S) = -7.573), which also suggests a recent population expansion. Interestingly, the effective population size in the Sichuan population was both larger and more stable than that in the Yunnan population, implying a southward expansion from Sichuan to Yunnan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Michael C.; Magnier, Eugene A.; Kotson, Michael C.
2013-11-10
We have discovered using Pan-STARRS1 an extremely red late-L dwarf, which has (J – K){sub MKO} = 2.78 and (J – K){sub 2MASS} = 2.84, making it the reddest known field dwarf and second only to 2MASS J1207–39b among substellar companions. Near-IR spectroscopy shows a spectral type of L7 ± 1 and reveals a triangular H-band continuum and weak alkali (K I and Na I) lines, hallmarks of low surface gravity. Near-IR astrometry from the Hawaii Infrared Parallax Program gives a distance of 24.6 ± 1.4 pc and indicates a much fainter J-band absolute magnitude than field L dwarfs. Themore » position and kinematics of PSO J318.5–22 point to membership in the β Pic moving group. Evolutionary models give a temperature of 1160{sup +30}{sub -40} K and a mass of 6.5{sup +1.3}{sub -1.0} M {sub Jup}, making PSO J318.5–22 one of the lowest mass free-floating objects in the solar neighborhood. This object adds to the growing list of low-gravity field L dwarfs and is the first to be strongly deficient in methane relative to its estimated temperature. Comparing their spectra suggests that young L dwarfs with similar ages and temperatures can have different spectral signatures of youth. For the two objects with well constrained ages (PSO J318.5–22 and 2MASS J0355+11), we find their temperatures are ≈400 K cooler than field objects of similar spectral type but their luminosities are similar, i.e., these young L dwarfs are very red and unusually cool but not 'underluminous'. Altogether, PSO J318.5–22 is the first free-floating object with the colors, magnitudes, spectrum, luminosity, and mass that overlap the young dusty planets around HR 8799 and 2MASS J1207–39.« less
The cosmic evolution of Fermi BL lacertae objects
Ajello, M.; Romani, R. W.; Gasparrini, D.; ...
2013-12-13
Fermi has provided the largest sample of γ-ray-selected blazars to date. We use a uniformly selected set of 211 BL Lacertae (BL Lac) objects detected by Fermi during its first year of operation. We obtained redshift constraints for 206 out of the 211 BL Lac objects in our sample, making it the largest and most complete sample of BL Lac objects available in the literature. We use this sample to determine the luminosity function of BL Lac objects and its evolution with cosmic time. Here, we find that for most BL Lac classes the evolution is positive, with a space density peaking at modest redshift (z ≈ 1.2). Low-luminosity, high-synchrotron-peaked (HSP) BL Lac objects are an exception, showing strong negative evolution, with number density increasing for z lesssim 0.5. Since this rise corresponds to a drop-off in the density of flat-spectrum radio quasars (FSRQs), a possible interpretation is that these HSPs represent an accretion-starved end state of an earlier merger-driven gas-rich phase. Additionally, we find that the known BL Lac correlation between luminosity and photon spectral index persists after correction for the substantial observational selection effects with implications for the so-called "blazar sequence." Finally, by estimating the beaming corrections to the luminosity function, we find that BL Lac objects have an average Lorentz factor ofmore » $$\\gamma =6.1^{+1.1}_{-0.8}$$, and that most are seen within 10° of the jet axis.« less
NASA Technical Reports Server (NTRS)
Maggio, A.; Sciortino, S.; Harnden, F. R., Jr.
1994-01-01
We present ROSAT Position Sensitive Proportional Counters (PSPC) X-ray observations of three near-solar-mass stars, in different evolutionary phases beyond the main sequence: eta Sco (F3 III-IV), iota Vir (F6 III), and HD 74772 (G5 III). All three of these nearby, presumably single stars have been detected, and we have collected enough counts to perform a detailed analysis of their soft X-ray spectra. While the X-ray spectra of eta Sco and HD 74772 can be fitted with Raymond-Smith thermal models with temperatures around 2 x 10(exp 6) K, the high signal-to-noise spectrum of iota Vir provides unambiguous evidence of a multitemperature plasma, with a two-temperature best-fit model with components at approximately 2 x 10(exp 6) K and 8 x 10(exp 6) K. Evidence of some hot plasma (T approximately 10(exp 7) K) has been also found for HD 74772. The present data, compared with spectral fitting results for other late-type stars observed with the Einstein Observatory, indicate that the low X-ray luminosity giants (L(sub x) is less than 5 x 10(exp 28) ergs/s) do not share with the higher X-ray luminosity stars of the same class the property of having substantial amount of 10(exp 7) K plasma. Moreover, our results confirm the trend of increasing X-ray luminosities with increasing coronal temperatures.
Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies
NASA Astrophysics Data System (ADS)
Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.
2018-04-01
We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.
NASA Technical Reports Server (NTRS)
Melbourne, J.; Boyer, Martha L.
2013-01-01
We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at approx 3 - 4 micron, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at approx 3 - 4 micron and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 micron, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1 - 4 micron. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8 - 1 micron). At longer wavelengths (much > 8 micron), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 micron, TP-AGB and RSG contribute less than 4% of the 8 micron flux. However, 19% of the SMC 8 micron flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 micron flux (e.g., observed-frame 24 micron at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.
Digging for red nuggets: discovery of hot haloes surrounding massive, compact, relic galaxies
NASA Astrophysics Data System (ADS)
Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.
2018-07-01
We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has a 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has an ˜13-Gyr-old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyr ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical active galactic nucleus (AGN) feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot haloes around such massive galaxies and the growth of super-/overmassive black holes via chaotic cold accretion.
The RMS survey: near-IR spectroscopy of massive young stellar objects
NASA Astrophysics Data System (ADS)
Cooper, H. D. B.; Lumsden, S. L.; Oudmaijer, R. D.; Hoare, M. G.; Clarke, A. J.; Urquhart, J. S.; Mottram, J. C.; Moore, T. J. T.; Davies, B.
2013-04-01
Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (˜80 per cent) of the targets are YSOs, of which 131 are massive YSOs (LBOL > 5 × 103 L⊙, M > 8 M⊙). This is the largest spectroscopic study of massive YSOs to date, providing a valuable resource for the study of massive star formation. In this paper, we present our exploratory analysis of the data. The YSOs observed have a wide range of embeddedness (2.7 < AV < 114), demonstrating that this study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties. The most commonly detected lines are Brγ, H2, fluorescent Fe II, CO bandhead, [Fe II] and He I 2-1 1S-1P, in order of frequency of occurrence. In total, ˜40 per cent of the YSOs display either fluorescent Fe II 1.6878 μm or CO bandhead emission (or both), indicative of a circumstellar disc; however, no correlation of the strength of these lines with bolometric luminosity was found. We also find that ˜60 per cent of the sources exhibit [Fe II] or H2 emission, indicating the presence of an outflow. Three quarters of all sources have Brγ in emission. A good correlation with bolometric luminosity was observed for both the Brγ and H2 emission line strengths, covering 1 < LBOL < 3.5 × 105 L⊙. This suggests that the emission mechanism for these lines is the same for low-, intermediate- and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs.
NASA Astrophysics Data System (ADS)
Banerji, Manda; Ferreras, Ignacio; Abdalla, Filipe B.; Hewett, Paul; Lahav, Ofer
2010-03-01
We present an analysis of the evolution of 8625 luminous red galaxies (LRGs) between z = 0.4 and 0.8 in the 2dF and Sloan Digital Sky Survey LRG and QSO (2SLAQ) survey. The LRGs are split into redshift bins and the evolution of both the luminosity and stellar mass function with redshift is considered and compared to the assumptions of a passive evolution scenario. We draw attention to several sources of systematic error that could bias the evolutionary predictions made in this paper. While the inferred evolution is found to be relatively unaffected by the exact choice of spectral evolution model used to compute K + e corrections, we conclude that photometric errors could be a source of significant bias in colour-selected samples such as this, in particular when using parametric maximum likelihood based estimators. We find that the evolution of the most massive LRGs is consistent with the assumptions of passive evolution and that the stellar mass assembly of the LRGs is largely complete by z ~ 0.8. Our findings suggest that massive galaxies with stellar masses above 1011Msolar must have undergone merging and star formation processes at a very early stage (z >~ 1). This supports the emerging picture of downsizing in both the star formation as well as the mass assembly of early-type galaxies. Given that our spectroscopic sample covers an unprecedentedly large volume and probes the most massive end of the galaxy mass function, we find that these observational results present a significant challenge for many current models of galaxy formation.
METALLICITY EVOLUTION OF THE SIX MOST LUMINOUS M31 DWARF SATELLITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Nhung; Geha, Marla; Tollerud, Erik J.
We present global metallicity properties, metallicity distribution functions (MDFs), and radial metallicity profiles for the six most luminous M31 dwarf galaxy satellites: M32, NGC 205, NGC 185, NGC 147, Andromeda VII, and Andromeda II. The results presented are the first spectroscopic MDFs for dwarf systems surrounding a host galaxy other than the Milky Way (MW). Our sample consists of individual metallicity measurements for 1243 red giant branch member stars spread across these six systems. We determine metallicities based on the strength of the Ca II triplet lines using the empirical calibration of Carrera et al., which is calibrated over the metallicity range –4 < [Fe/H] <+0.5. We findmore » that these M31 satellites lie on the same luminosity-metallicity relationship as the MW dwarf satellites. We do not find a trend between the internal metallicity spread and galaxy luminosity, contrary to previous studies. The MDF widths of And II and And VII are similar to the MW dwarf spheroidal (dSph) satellites of comparable luminosity; however, our four brightest M31 dwarf satellites are more luminous than any of the MW dSphs and have broader MDFs. The MDFs of our six M31 dwarf satellites are consistent with the leaky box model of chemical evolution, although our metallicity errors allow a wide range of evolution models. We find a significant radial gradient in metallicity in only two of our six systems, NGC 185 and Andromeda II, and flat radial metallicity gradients in the rest of our sample with no observed correlation between rotational support and radial metallicity gradients. Although the average properties and radial trends of the M31 dwarf galaxies agree with their MW counterparts at similar luminosity, the detailed MDFs are different, particularly at the metal-rich end.« less
The importance of satellite quenching for the build-up of the red sequence of present-day galaxies
NASA Astrophysics Data System (ADS)
van den Bosch, Frank C.; Aquino, Daniel; Yang, Xiaohu; Mo, H. J.; Pasquali, Anna; McIntosh, Daniel H.; Weinmann, Simone M.; Kang, Xi
2008-06-01
According to the current paradigm, galaxies initially form as disc galaxies at the centres of their own dark matter haloes. During their subsequent evolution, they may undergo a transformation to a red, early-type galaxy, thus giving rise to the build-up of the red sequence. Two important, outstanding questions are (i) which transformation mechanisms are most important and (ii) in what environment do they occur. In this paper, we study the impact of transformation mechanisms that operate only on satellite galaxies, such as strangulation, ram-pressure stripping and galaxy harassment. Using a large galaxy group catalogue constructed from the Sloan Digital Sky Survey, we compare the colours and concentrations of satellites galaxies to those of central galaxies of the same stellar mass, adopting the hypothesis that the latter are the progenitors of the former. On average, satellite galaxies are redder and more concentrated than central galaxies of the same stellar mass, indicating that satellite-specific transformation processes do indeed operate. Central-satellite pairs that are matched in both stellar mass and colour, however, show no average concentration difference, indicating that the transformation mechanisms operating on satellites affect colour more than morphology. We also find that the colour and concentration differences of matched central-satellite pairs are completely independent of the mass of the host halo (not to be confused with the subhalo) of the satellite galaxy, indicating that satellite-specific transformation mechanisms are equally efficient in host haloes of all masses. This strongly rules against mechanisms that are thought to operate only in very massive haloes, such as ram-pressure stripping or harassment. Instead, we argue that strangulation is the main transformation mechanism for satellite galaxies. Finally, we determine the relative importance of satellite quenching for the build-up of the red sequence. We find that roughly 70 per cent of red-sequence satellite galaxies with M* ~ 109h-2Msolar had their star formation quenched as satellites. This drops rapidly with increasing stellar mass, reaching virtually zero at M* ~ 1011h-2Msolar. Therefore, a very significant fraction of red satellite galaxies were already quenched before they became a satellite.
Galaxy And Mass Assembly (GAMA): blue spheroids within 87 Mpc
NASA Astrophysics Data System (ADS)
Mahajan, Smriti; Drinkwater, Michael J.; Driver, S.; Hopkins, A. M.; Graham, Alister W.; Brough, S.; Brown, Michael J. I.; Holwerda, B. W.; Owers, Matt S.; Pimbblet, Kevin A.
2018-03-01
In this paper, we test if nearby blue spheroid (BSph) galaxies may become the progenitors of star-forming spiral galaxies or passively evolving elliptical galaxies. Our sample comprises 428 galaxies of various morphologies in the redshift range 0.002 < z < 0.02 (8-87 Mpc) with panchromatic data from the Galaxy and Mass Assembly survey. We find that BSph galaxies are structurally (mean effective surface brightness, effective radius) very similar to their passively evolving red counterparts. However, their star formation and other properties such as colour, age, and metallicity are more like star-forming spirals than spheroids (ellipticals and lenticulars). We show that BSph galaxies are statistically distinguishable from other spheroids as well as spirals in the multidimensional space mapped by luminosity-weighted age, metallicity, dust mass, and specific star formation rate. We use H I data to reveal that some of the BSphs are (further) developing their discs, hence their blue colours. They may eventually become spiral galaxies - if sufficient gas accretion occurs - or more likely fade into low-mass red galaxies.
The Carnegie Hubble Program: The Infrared Leavitt Law in IC 1613
NASA Technical Reports Server (NTRS)
Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Melbourne, Jason
2013-01-01
We have observed the dwarf galaxy IC 1613 at multiple epochs in the midinfrared using Spitzer and the in the near-infrared using the new FourStar near-IR camera on Magellan. We have constructed Cepheid period luminosity relations in the J, H, Ks, [3.6] and [4.5] bands and have used the run of their apparent distance moduli as a function of wavelength to derive the line of sight reddening and distance to IC 1613. Using a nineband fit, we find E(BV ) = 0.050.01 mag and an extinction corrected distance modulus of 0 = 24.29 0.03statistical 0.03systematic mag. By comparing our multiband and [3.6] distance moduli to results from the tip of the red giant branch and red clump distance indicators, we find that metallicity has no measurable effect on Cepheid distances at 3.6 m in the metallicity range 1.0 [Fe/H] 0.2, hence derivations of the Hubble constant at this wavelength require no correction for metallicity.
GR 290 (ROMANO’S STAR). II. LIGHT HISTORY AND EVOLUTIONARY STATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polcaro, V. F.; Nesci, R.; Chieffi, A.
We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf–Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a lowmore » luminosity state, with B ≃ 18–19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992–1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B – V color index has been constant within ±0.1{sup m} despite the 1.5{sup m} change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992–94 was equivalent to late-B-type, while, during 2002–2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600–4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002–2014 period, we find that the Rosseland radius R {sub 2/3}, changed between the minimum and maximum luminosity phases by a factor of three while T {sub eff} varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ∼1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. Presently, GR 290 falls in the H–R diagram close to WN8h stars and is probably younger than them. In the light of current evolutionary models of very massive stars, we find that GR 290 has evolved from an ∼60 M {sub ☉} progenitor star and should have an age of about four million years. From its physical charcteristics, we argue that GR 290 has left the LBV stage and is presently moving from the LBV stage to a Wolf–Rayet stage of a late nitrogen spectral type.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharrock, R.A.; Quail, P.H.
1989-01-01
Phytochrome is a plant regulatory photoreceptor that mediates red light effects on a wide variety of physiological and molecular responses. DNA blot analysis indicates that the Arabidopsis thaliana genome contains four to five phytochrome-related gene sequences. The authors have isolated and sequenced cDNA clones corresponding to three of these genes and have deduced the amino acid sequence of the full-length polypeptide encoded in each case. One of these proteins (phyA) shows 65-80% amino acid sequence identity with the major, etiolated-tissue phytochrome apoproteins described previously in other plant species. The other two polypeptides (phyB and phyC) are unique in that theymore » have low sequence identity with each other, with phyA, and with all previously described phytochromes. The phyA, phyB, and phyC proteins are of similar molecular mass, have related hydropathic profiles, and contain a conserved chromophore attachment region. However, the sequence comparison data indicate that the three phy genes diverged early in plant evolution, well before the divergence of the two major groups of angiosperms, the monocots and dicots. The steady-state level of the phyA transcript is high in dark-grown A. thaliana seedlings and is down-regulated by light. In contrast, the phyB and phyC transcripts are present at lower levels and are not strongly light-regulated. These findings indicate that the red/far red light-responsive phytochrome photoreceptor system in A. thaliana, and perhaps in all higher plants, consists of a family of chromoproteins that are heterogeneous in structure and regulation.« less
Hyun, Tae Kyung; Lee, Sarah; Kumar, Dhinesh; Rim, Yeonggil; Kumar, Ritesh; Lee, Sang Yeol; Lee, Choong Hwan; Kim, Jae-Yean
2014-10-01
Using Illumina sequencing technology, we have generated the large-scale transcriptome sequencing data containing abundant information on genes involved in the metabolic pathways in R. idaeus cv. Nova fruits. Rubus idaeus (Red raspberry) is one of the important economical crops that possess numerous nutrients, micronutrients and phytochemicals with essential health benefits to human. The molecular mechanism underlying the ripening process and phytochemical biosynthesis in red raspberry is attributed to the changes in gene expression, but very limited transcriptomic and genomic information in public databases is available. To address this issue, we generated more than 51 million sequencing reads from R. idaeus cv. Nova fruit using Illumina RNA-Seq technology. After de novo assembly, we obtained 42,604 unigenes with an average length of 812 bp. At the protein level, Nova fruit transcriptome showed 77 and 68 % sequence similarities with Rubus coreanus and Fragaria versa, respectively, indicating the evolutionary relationship between them. In addition, 69 % of assembled unigenes were annotated using public databases including NCBI non-redundant, Cluster of Orthologous Groups and Gene ontology database, suggesting that our transcriptome dataset provides a valuable resource for investigating metabolic processes in red raspberry. To analyze the relationship between several novel transcripts and the amounts of metabolites such as γ-aminobutyric acid and anthocyanins, real-time PCR and target metabolite analysis were performed on two different ripening stages of Nova. This is the first attempt using Illumina sequencing platform for RNA sequencing and de novo assembly of Nova fruit without reference genome. Our data provide the most comprehensive transcriptome resource available for Rubus fruits, and will be useful for understanding the ripening process and for breeding R. idaeus cultivars with improved fruit quality.
Amdoparvovirus Infection in Red Pandas ( Ailurus fulgens).
Alex, Charles E; Kubiski, Steven V; Li, Linlin; Sadeghi, Mohammadreza; Wack, Raymund F; McCarthy, Megan A; Pesavento, Joseph B; Delwart, Eric; Pesavento, Patricia A
2018-01-01
Aleutian mink disease virus is the type species in the genus Amdoparvovirus, and in mink and other Mustelidae can cause either subclinical disease or fatal chronic immune stimulation and immune complex disease. The authors describe a novel amdoparvovirus in the endangered red panda ( Ailurus fulgens), discovered using viral metagenomics. The authors analyzed the prevalence, tissue distribution, and disease association by PCR, in situ hybridization, electron microscopy, and histology in a group of 6 red pandas from a single zoological collection. The study incorporates a fecal shedding survey and analysis of tissues from 4 necropsied animals over a 12-year span. The tentatively named red panda amdoparvovirus (RpAPV) was detected in the feces and/or tissues of all animals tested. At necropsy of 1 geriatric animal, infection was associated with pyogranulomatous peritonitis, pancreatitis, and myocarditis. Other animals had detectable low-level viral nucleic acid in lymph nodes and both oral and intestinal epithelium at the time of necropsy. Full-length genome sequences of RpAPV strains from 2 animals had 12% sequence divergence, demonstrating genetic diversity even among in-contact animals. RpAPV is a persistent infection in this cohort of red pandas, and has variable clinical expression.
Star Formation in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Palla, Francesco; Stahler, Steven W.
1999-11-01
We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.
Molecular Survey of Hepatozoon canis in Red Foxes (Vulpes vulpes) from Romania.
Imre, Mirela; Dudu, Andreea; Ilie, Marius S; Morariu, Sorin; Imre, Kálmán; Dărăbuş, Gheorghe
2015-08-01
Blood samples of 119 red foxes, originating from 44 hunting grounds of 3 western counties (Arad, Hunedoara, and Timiş) of Romania, have been examined for the presence of Hepatozoon canis infection using the conventional polymerase chain reaction (PCR) of the fragment of 18S rRNA gene. Overall, 15 (12.6%) samples were found to be PCR-positive. Of the sampled hunting grounds, 29.5% (13/44) were found positive. Positive samples were recorded in all screened counties with the prevalence of 14.8% (9/61) in Arad, 9.8% (5/51) in Timiş, and 14.3% (1/7) in Hunedoara, respectively. No correlation was found (P > 0.05) between H. canis positivity and gender or territorial distribution of the infection. To confirm PCR results, 9 randomly selected amplicons were sequenced. The obtained sequences were identical to each other, confirmed the results of the conventional PCR, and showed 98-100% homology to other H. canis sequences. The results of the current survey support the role of red foxes as sylvatic reservoirs of H. canis in Romania.
Radio Emission from Red-Giant Hot Jupiters
NASA Technical Reports Server (NTRS)
Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku
2016-01-01
When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.
Al-Rshaidat, Mamoon M D; Snider, Allison; Rosebraugh, Sydney; Devine, Amanda M; Devine, Thomas D; Plaisance, Laetitia; Knowlton, Nancy; Leray, Matthieu
2016-09-01
High-throughput sequencing (HTS) of DNA barcodes (metabarcoding), particularly when combined with standardized sampling protocols, is one of the most promising approaches for censusing overlooked cryptic invertebrate communities. We present biodiversity estimates based on sequencing of the cytochrome c oxidase subunit 1 (COI) gene for coral reefs of the Gulf of Aqaba, a semi-enclosed system in the northern Red Sea. Samples were obtained from standardized sampling devices (Autonomous Reef Monitoring Structures (ARMS)) deployed for 18 months. DNA barcoding of non-sessile specimens >2 mm revealed 83 OTUs in six phyla, of which only 25% matched a reference sequence in public databases. Metabarcoding of the 2 mm - 500 μm and sessile bulk fractions revealed 1197 OTUs in 15 animal phyla, of which only 4.9% matched reference barcodes. These results highlight the scarcity of COI data for cryptobenthic organisms of the Red Sea. Compared with data obtained using similar methods, our results suggest that Gulf of Aqaba reefs are less diverse than two Pacific coral reefs but much more diverse than an Atlantic oyster reef at a similar latitude. The standardized approaches used here show promise for establishing baseline data on biodiversity, monitoring the impacts of environmental change, and quantifying patterns of diversity at regional and global scales.
Knotty protostellar jets as a signature of episodic protostellar accretion?
NASA Astrophysics Data System (ADS)
Vorobyov, Eduard I.; Elbakyan, Vardan G.; Plunkett, Adele L.; Dunham, Michael M.; Audard, Marc; Guedel, Manuel; Dionatos, Odysseas
2018-05-01
Aims: We aim to study the causal link between the knotty jet structure in CARMA 7, a young Class 0 protostar in the Serpens South cluster, and episodic accretion in young protostellar disks. Methods: We used numerical hydrodynamics simulations to derive the protostellar accretion history in gravitationally unstable disks around solar-mass protostars. We compared the time spacing between luminosity bursts Δτmod, caused by dense clumps spiralling on the protostar, with the differences of dynamical timescales between the knots Δτobs in CARMA 7. Results: We found that the time spacing between the bursts have a bi-modal distribution caused by isolated and clustered luminosity bursts. The former are characterized by long quiescent periods between the bursts with Δτmod = a few × (103-104) yr, whereas the latter occur in small groups with time spacing between the bursts Δτmod = a few × (10-102) yr. For the clustered bursts, the distribution of Δτmod in our models can be fit reasonably well to the distribution of Δτobs in the protostellar jet of CARMA 7, if a certain correction for the (yet unknown) inclination angle with respect to the line of sight is applied. The Kolmogorov-Smirnov test on the model and observational data sets suggests the best-fit values for the inclination angles of 55-80°, which become narrower (75-80°) if only strong luminosity bursts are considered. The dynamical timescales of the knots in the jet of CARMA 7 are too short for a meaningful comparison with the long time spacings between isolated bursts in our models. Moreover, the exact sequences of time spacings between the luminosity bursts in our models and knots in the jet of CARMA 7 were found difficult to match. Conclusions: Given the short time that has passed since the presumed luminosity bursts (tens to hundreds years), a possible overabundance of the gas-phase CO in the envelope of CARMA 7 compared to what could be expected from the current luminosity may be used to confirm the burst nature of this object. More sophisticated numerical models and observational data on jets with longer dynamical timescales are needed to further explore the possible causal link between luminosity bursts and knotty jets.
Deng, Peng; Tan, Xiaoqing; Wu, Ying; Bai, Qunhua; Jia, Yan; Xiao, Hong
2015-03-01
The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica , which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function.
DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG
2015-01-01
The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function. PMID:25667630
2010-01-01
Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily. PMID:20673336
Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo
NASA Astrophysics Data System (ADS)
Cojocaru, Elena-Ruxandra
2016-09-01
White dwarfs are fossil stars that can encode valuable information about the formation, evolution and other properties of the different Galactic stellar populations. They are the direct descendants of main-sequence stars with masses ranging from ∼0.8 M⊙ to ∼10 M⊙, which means that over 95% of the stars in our Galaxy will eventually become white dwarfs. This fact, correlated with the excellent quality of modern white dwarf cooling models, clearly marks their potential as cosmic clocks for estimating the ages of Galactic stellar populations, as well as place white dwarfs as privileged objects in understanding several actual astrophysical problems. Stellar population synthesis methods (Tinsley, 1968) use theoretical evolutionary sequences to reproduce luminosities, temperatures and other parameters building up to a synthetic population that can be readily compared to an observed sample of stars. Such techniques are perfect for the study of the different white dwarf populations in our Galaxy and their strength has only grown in recent years, fueled both by improved evolutionary sequences and detailed cooling tracks and also by the ever growing samples of white dwarfs identified through modern survey missions. In particular, the work presented in this thesis uses an updated population synthesis code based on previous versions of the code from our group (García-Berro et al., 1999; Torres et al., 2002; García-Berro et al., 2004; Torres et al., 2005; Camacho et al., 2014). Our synthetic population code, based on Monte Carlo statistical techniques, has been extensively used in the study of the disk (García-Berro et al., 1! 999; Torres et al., 2001; Torres & García-Berro, 2016) and halo (Torres et al., 2002; García-Berro et al., 2004) single white-dwarf population, white dwarf plus main sequence stars (Camacho et al., 2014), as well as open clusters such as NGC 6791 (García-Berro et al., 2010; García-Berro et al., 2011) or globular clusters, as 47 Tuc (García-Berro et al., 2014). In this thesis we investigate different properties of single and binary white dwarf populations in the Galactic disk and halo. We first study the effect of progenitor metallicity on the thin disk white dwarf luminosity function. Stellar metallicity is an important parameter in computing both main-sequence evolutionary sequences and white dwarf cooling tracks. At the same, studies of the metallicity distribution function for the Galactic disk have shown that both high and low-metallicity stars can be found throughout the entire mass range, although a clear dependence between age and metallicity has yet to be proven and more recent findings actually show little correlation. With this in mind, we test two different age-metallicity relations, one assuming a Gaussian distribution of metallicity around the Solar value, the other one a decreasing relation between age and metallicity. We take into account the influence of metallicity on both main sequence lifetimes and white dwarf s! tellar parameters. Finally, we compute the theoretical white dwarf luminosity function applying the observational selection criteria of two different surveys, the Sloan Digital Sky Survey (SDSS) and the Supercosmos Sky Survey (SSS). Next, we compute the white dwarf luminosity, mass and cumulative age functions derived from a sample of DA white dwarfs obtained from the LAMOST Spectroscopic Survey of the Galactic anti-center (LSS-GAC). We also derive the local space density and the formation rate for DA white dwarf. Given that both the observed mass distribution obtained from this sample and that derived from the local sample of white dwarfs present an apparent excess of massive white dwarfs, we investigate the possibility of accounting for this excess by reproducing the white dwarf population of the thin disk under different sets of initial assumptions, accounting also for selection criteria and observational biases. Another issue that we investigate is the robustness of the halo white dwarf luminosity function employing different models for the initial mass function, density profile and stellar formation history. We also analyze if the white dwarf luminosity function can be used as a means to discriminate the role played by residual hydrogen burning in the atmospheres of low-mass white dwarfs. This process is known to become a significant source of energy for white dwarfs descending from very low metallicity progenitors, such as those that characterize the Galactic halo population. Lastly, we simulate the white dwarf-main sequence (WD+MS) binary population of the Galactic disk and compare it to the parameter distributions from the largest and most recent WD+MS catalog derived from the SDSS (Rebassa-Mansergas et al., 2016b). We not only reproduce the selection criteria, but we also account for spectroscopic completeness, observational errors and other biases that affect the sample. We use the observed population as a benchmark for constraining several important physical quantities specific to binary evolution, such as the initial mass ratio distribution and also the common envelope parametrization. This thesis is based on three published papers, Cojocaru et al. (2014), Rebassa-Mansergas et al. (2015) and Cojocaru et al. (2015) and another work in preparation.
Bronstein, Omri; Kroh, Andreas; Haring, Elisabeth
2016-11-01
Novel COI and bindin sequences of the Red Sea collector echinoid Tripneustes gratilla elatensis are used to show that (1) discordance between mitochondrial and nuclear loci exists in this echinoid genus, (2) Tripneustes gratilla as currently defined possibly comprises a complex of cryptic species, and (3) Red Sea Tripneustes form a genetically distinct clade in the bindin tree, which diverged from other Tripneustes clades at least 2-4million years ago. Morphological reassessment of T. gratilla elatensis shows perfect congruence between identification based on skeletal features and genetic data based on a nuclear marker sequence. Hence the Red Sea Tripneustes subspecies established by Dafni in 1983 is a distinct biological unit. All T. g. elatensis samples analyzed are highly similar to or share mtDNA haplotypes with Philippine T. g. gratilla, as do representatives from other edge-of-range occurrences. This lack of genetic structure in Indo-Pacific Tripneustes is interpreted as a result of wide-spread mitochondrial introgression. New fossil specimens from the Red Sea area confirm the sympatric occurrence of T. g. elatensis and T. g. gratilla in the northern Red Sea during Late Pleistocene, identifying a possible timing for the introgression. In addition, present-day distribution shows a contact zone in the Southern Red Sea (in the Dahlak Archipelago). T. g. elatensis, is yet another example of a Red Sea taxon historically identified as conspecific with its Indo-Pacific relatives, but which turned out to be a morphologically and genetically distinct endemic taxon, suggesting that the level of endemism in the Red Sea may still be underestimated. Copyright © 2016 Elsevier Inc. All rights reserved.
The use of enzymopathic human red cells in the study of malarial parasite glucose metabolism.
Roth, E; Joulin, V; Miwa, S; Yoshida, A; Akatsuka, J; Cohen-Solal, M; Rosa, R
1988-05-01
The in vitro growth of Plasmodium falciparum malaria parasites was assayed in mutant red cells deficient in either diphosphoglycerate mutase (DPGM) or phosphoglycerate kinase (PGK). In addition, cDNA probes developed for human DNA sequences coding for these enzymes were used to examine the parasite genome by means of restriction endonuclease digestion and Southern blot analysis of parasite DNA. In both types of enzymopathic red cells, parasite growth was normal. In infected DPGM deficient red cells, no DPGM activity could be detected, and in normal red cells, DPGM activity declined slightly in a manner suggestive of parasite catabolism of host protein. However, in infected PGK deficient red cells, there was a 100-fold increase in PGK activity, and in normal red cells, a threefold increase in PGK activity was observed. Parasite PGK could be recovered from isolated parasites, and a marked increase in heat instability of parasite PGK as compared with the host cell enzyme was noted. Neither cDNA probe was found to cross-react with DNA sequences in the parasite genome. It is concluded that the parasite has no requirement for DPGM, and probably has no gene for this enzyme. On the other hand, the parasite does require PGK, (an adenosine triphosphate [ATP] generating enzyme) and synthesizes its own enzyme, which must have been encoded in the parasite genome. The parasite PGK gene most likely lacks sufficient homology to be detected by a human cDNA probe. Enzymopathic red cells are useful tools for elucidating the glycolytic enzymology of parasites and their co-evolution with their human hosts.
Abdelsalam, Mohamed; Elgendy, Mamdouh Y; Shaalan, Mohamed; Moustafa, Mohamed; Fujino, Masayuki
2017-03-01
Accurate and rapid identification of bacterial pathogens of fish is essential for the effective treatment and speedy control of infections. Massive mortalities in market-sized red tilapia (Oreochromis spp.) were noticed in mariculture concrete ponds in northern Egypt. Histopathological examination revealed marked congestion in the central vein of the liver with the presence of bacterial aggregates inside the lumen and in the vicinity of the central vein. A total of 12 isolates of streptococci were obtained from the moribund fish. This study documented the ability of the MicroSeq 500 16S bacterial sequencing method to accurately identify Streptococcus agalactiae and S. dysgalactiae mixed infections from moribund red tilapia that were difficult to be recognised by the commercial biochemical systems. The continuously decreasing cost of the sequencing technique should encourage its application in routine diagnostic procedures.
S stars in the Gaia era: stellar parameters and nucleosynthesis
NASA Astrophysics Data System (ADS)
van Eck, Sophie; Karinkuzhi, Drisya; Shetye, Shreeya; Jorissen, Alain; Goriely, Stéphane; Siess, Lionel; Merle, Thibault; Plez, Bertrand
2018-04-01
S stars are s-process and C-enriched (0.5
TOF-SIMS Analysis of Red Color Inks of Writing and Printing Tools on Questioned Documents.
Lee, Jihye; Nam, Yun Sik; Min, Jisook; Lee, Kang-Bong; Lee, Yeonhee
2016-05-01
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a well-established surface technique that provides both elemental and molecular information from several monolayers of a sample surface while also allowing depth profiling or image mapping to be performed. Static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric, biological, archaeological, and forensic materials. In forensic investigation, the use of a minimal sample for the analysis is preferable. Although the TOF-SIMS technique is destructive, the probing beams have microsized diameters so that only small portion of the questioned sample is necessary for the analysis, leaving the rest available for other analyses. In this study, TOF-SIMS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were applied to the analysis of several different pen inks, red sealing inks, and printed patterns on paper. The overlapping areas of ballpoint pen writing, red seal stamping, and laser printing in a document were investigated to identify the sequence of recording. The sequence relations for various cases were determined from the TOF-SIMS mapping image and the depth profile. TOF-SIMS images were also used to investigate numbers or characters altered with two different red pens. TOF-SIMS was successfully used to determine the sequence of intersecting lines and the forged numbers on the paper. © 2016 American Academy of Forensic Sciences.
Development of a codon optimization strategy using the efor RED reporter gene as a test case
NASA Astrophysics Data System (ADS)
Yip, Chee-Hoo; Yarkoni, Orr; Ajioka, James; Wan, Kiew-Lian; Nathan, Sheila
2018-04-01
Synthetic biology is a platform that enables high-level synthesis of useful products such as pharmaceutically related drugs, bioplastics and green fuels from synthetic DNA constructs. Large-scale expression of these products can be achieved in an industrial compliant host such as Escherichia coli. To maximise the production of recombinant proteins in a heterologous host, the genes of interest are usually codon optimized based on the codon usage of the host. However, the bioinformatics freeware available for standard codon optimization might not be ideal in determining the best sequence for the synthesis of synthetic DNA. Synthesis of incorrect sequences can prove to be a costly error and to avoid this, a codon optimization strategy was developed based on the E. coli codon usage using the efor RED reporter gene as a test case. This strategy replaces codons encoding for serine, leucine, proline and threonine with the most frequently used codons in E. coli. Furthermore, codons encoding for valine and glycine are substituted with the second highly used codons in E. coli. Both the optimized and original efor RED genes were ligated to the pJS209 plasmid backbone using Gibson Assembly and the recombinant DNAs were transformed into E. coli E. cloni 10G strain. The fluorescence intensity per cell density of the optimized sequence was improved by 20% compared to the original sequence. Hence, the developed codon optimization strategy is proposed when designing an optimal sequence for heterologous protein production in E. coli.
NASA Astrophysics Data System (ADS)
Omont, A.; ISOGAL Collaboration
1999-03-01
ISOGAL is a 7-15 μm ISOCAM survey, with 6'' pixels and sensitivity below 10 mJy, of ~20 deg2, in the galactic plane mostly interior to |l| = 30o. In combination with KJI DENIS data, the ISO images allow detailed studies of cold stellar populations and galactic structures in regions highly obscured throughout the inner Galaxy, with a sensitivity and pixel surface two orders of magnitude better than IRAS. Data reduction is particularly difficult because of the high density of strong sources, of memory effects and of short integration times. However, an improved data reduction is almost complete for all the fields observed, with the use of CIA ISOCAM software and of a special source extraction. The data quality is acceptable, as concerns reliability, completeness and photometric accuracy of the sources, to allow a systematic scientific analysis. A few fields, in the bulge and in the galactic disk, exemplify the results expected from the ~200 fields observed. These results include: A complete census of mass-losing AGB stars in fields of the inner bulge. Even very weak mass-loss are very well characterised, down to the RGB tip. Such stars are by far the most numerous there. They form a very well defined sequence in ISOGAL-DENIS infrared colour-magnitude diagrams. The knowledge of Long Period Variables in two Baade's Window fields confirm that their luminosity is just above the tip of this sequence, and that the spectral type of the stars of the sequence is M6-9III. The same AGB sequence is also quite visible in 7-15 μm colour-magnitude diagrams in the galactic disk, even with a very large extinction. Such AGB stars are thus particularly numerous among the ~105 sources detected by ISOGAL. However, foreground red giants and dusty young stars are also quite numerous. The latter with a few solar masses are detectable through the galactic centre distance. A number of bright young stars are identified on lines of sight close to the Galactic Centre, The combination of ISOGAL and DENIS data allows a detailed estimate of the interstellar extinction for individual stars and lines of sight. Many dark globules and filaments are visible on the 7 and 15 μm images, corresponding to visible extinction larger than ~20-30. The very rich structure of the mid-infrared diffuse emission is often clearly associated with stars.
Weighing the giants- V. Galaxy cluster scaling relations
NASA Astrophysics Data System (ADS)
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; von der Linden, Anja; Applegate, Douglas E.; Kelly, Patrick L.; Burke, David L.; Donovan, David; Ebeling, Harald
2016-12-01
We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness-mass relation is in excellent agreement with recent work, the measured Y-mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. The latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.
Erratum: Weighing the giants – V. Galaxy cluster scaling relations
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...
2017-02-21
We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginningmore » to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self similarity, we find tentative evidence that the luminosity and temperature scatters respectively decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness{mass relation is in excellent agreement with recent work, the measured Y {mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling-relation-derived masses.« less
The Distance to Nova V959 Mon from VLA Imaging
NASA Astrophysics Data System (ADS)
Linford, J. D.; Ribeiro, V. A. R. M.; Chomiuk, L.; Nelson, T.; Sokoloski, J. L.; Rupen, M. P.; Mukai, K.; O'Brien, T. J.; Mioduszewski, A. J.; Weston, J.
2015-06-01
Determining reliable distances to classical novae is a challenging but crucial step in deriving their ejected masses and explosion energetics. Here we combine radio expansion measurements from the Karl G. Jansky Very Large Array with velocities derived from optical spectra to estimate an expansion parallax for nova V959 Mon, the first nova discovered through its γ-ray emission. We spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different imaging epochs. The first five epochs cover the expansion of the ejecta from 2012 October to 2013 January, while the final four epochs span 2014 February-May. These observations correspond to days 126 through 199 and days 615 through 703 after the first detection of the nova. The images clearly show a non-spherical ejecta geometry. Utilizing ejecta velocities derived from three-dimensional modeling of optical spectroscopy, the radio expansion implies a distance between 0.9 ± 0.2 and 2.2 ± 0.4 kpc, with a most probable distance of 1.4 ± 0.4 kpc. This distance implies a γ-ray luminosity of 0.6× {{10}35} erg s-1, which is much less than the prototype γ-ray-detected nova, V407 Cyg, possibly due to the lack of a red giant companion in the V959 Mon system. V959 Mon also has a much lower γ-ray luminosity than other classical novae detected in γ-rays to date, indicating a range of at least a factor of 10 in the γ-ray luminosities for these explosions.
Weighing the giants– V. Galaxy cluster scaling relations
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...
2016-09-07
Here, we present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data aremore » beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness–mass relation is in excellent agreement with recent work, the measured Y–mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.« less
Cao, Dainan; Gong, Shiping; Yang, Jiangbo; Li, Weiye; Ge, Yan; Wei, Yufeng
2018-03-01
Animal coloration primarily depends on the presence of pigments and the mixing ratio of eumelanin and pheomelanin. The color of red-eared slider's carapace varies with age, from an olive green to a yellow green, and then to a yellow brown in juveniles, generally. The purpose of the present study was to investigate whether this color change is related to the difference in melanin expression. Melanin deposition levels were examined in the carapace, skin, eye and muscle of the three color-types using hematoxylin and eosin staining. Moreover, the full-length coding sequence (CDS) of red-eared slider turtle melanin biosynthesis regulatory genes TYR, TYRP1, MITF and SLC24A5 were cloned, sequenced and quantitatively analyzed. Both histological view of melanin deposition and quantitative real-time PCR test of melanin-regulated gene expressions showed that there are significant differences among different tissues of red-eared slider, but no significant difference among different color-types, indicating that melanin deposition is not associated with ontogenetic color change in the carapace of red-eared slider. This study initially explore the melanin deposition and the mRNA expression of melanin biosynthesis regulatory genes in red-eared slider, which serve as a foundation for further insight into the pigmentation patterns and the mechanism of body color change in turtles. Copyright © 2017 Elsevier Inc. All rights reserved.
Survival of a brown dwarf after engulfment by a red giant star.
Maxted, P F L; Napiwotzki, R; Dobbie, P D; Burleigh, M R
2006-08-03
Many sub-stellar companions (usually planets but also some brown dwarfs) orbit solar-type stars. These stars can engulf their sub-stellar companions when they become red giants. This interaction may explain several outstanding problems in astrophysics but it is unclear under what conditions a low mass companion will evaporate, survive the interaction unchanged or gain mass. Observational tests of models for this interaction have been hampered by a lack of positively identified remnants-that is, white dwarf stars with close, sub-stellar companions. The companion to the pre-white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this star and the extreme luminosity difference between the components make it difficult to interpret the observations or to put strong constraints on the models. The magnetic white dwarf SDSS J121209.31 + 013627.7 may have a close brown dwarf companion but little is known about this binary at present. Here we report the discovery of a brown dwarf in a short period orbit around a white dwarf. The properties of both stars in this binary can be directly observed and show that the brown dwarf was engulfed by a red giant but that this had little effect on it.
NASA Astrophysics Data System (ADS)
Khan, Saniya; Hall, Oliver J.; Miglio, Andrea; Davies, Guy R.; Mosser, Benoît; Girardi, Léo; Montalbán, Josefina
2018-06-01
The red-giant branch bump provides valuable information for the investigation of the internal structure of low-mass stars. Because current models are unable to accurately predict the occurrence and efficiency of mixing processes beyond convective boundaries, one can use the luminosity of the bump—a diagnostic of the maximum extension of the convective envelope during the first-dredge up—as a calibrator for such processes. By combining asteroseismic and spectroscopic constraints, we expand the analysis of the bump to masses and metallicities beyond those previously accessible using globular clusters. Our data set comprises nearly 3000 red-giant stars observed by Kepler and with APOGEE spectra. Using statistical mixture models, we are able to detect the bump in the average seismic parameters ν max and < {{Δ }}ν > , and show that its observed position reveals general trends with mass and metallicity in line with expectations from models. Moreover, our analysis indicates that standard stellar models underestimate the depth of efficiently mixed envelopes. The inclusion of significant overshooting from the base of the convective envelope, with an efficiency that increases with decreasing metallicity, allows us to reproduce the observed location of the bump. Interestingly, this trend was also reported in previous studies of globular clusters.
The star forming universe after z=1
NASA Astrophysics Data System (ADS)
Harker, Justin J.
This dissertation explores three projects in the field of galaxy formation and evolution: the formation of the red sequence via quenching, the detection, characterization, and frequency of starbursts in the DEEP2 sample, and the behavior of a main sequence of star forming galaxies whose behavior is determined by baryonic mass, referred to as staged star formation. The first section, in Chapter 2, presents a breakdown of several population synthesis models designed to probe the history of the red sequence. Known from measurements at low redshift to be composed of objects with a large range of ages, the red sequence is not well-modeled as being the result of a single monolithic event in the distant past. By combining information on restframe color, Balmer absorption line strengths, and the number density of L* galaxies as a function of redshift, we find evidence that the red sequence is built up over time. The second section, in Chapter 3 and 4, presents a novel method for determining simultaneously the absorption line and emission line contributions to the total measured equivalent width of Balmer lines. Relying on the predictable behavior of both absorption lines, which are to first order equivalent to one another, and emission lines, which follow a predictable decrement toward shorter wavelengths, a single measurement of total line strength for Hb and Hd yield uncoupled emission and absorption line components. Using the measurement of Hd in absorption against D n 4000 and Hb in emission, we isolate a population of potential starbursts in the DEEP2 sample. The final section, in Chapter 5, explores the regularity of star formation as a function of redshift, using the staged star formation prescription of Noeske et al. (2007a). We compute a set of t-models using the prescription, and compare them to the data in a number of parameters in addition to mass and star formation. While the staged star formation model is a good match in a number of parameters, we find several irregularities.
Najm, Nour-Addeen; Meyer-Kayser, Elisabeth; Hoffmann, Lothar; Herb, Ingrid; Fensterer, Veronika; Pfister, Kurt; Silaghi, Cornelia
2014-06-01
Wild canines which are closely related to dogs constitute a potential reservoir for haemoparasites by both hosting tick species that infest dogs and harbouring tick-transmitted canine haemoparasites. In this study, the prevalence of Babesia spp. and Theileria spp. was investigated in German red foxes (Vulpes vulpes) and their ticks. DNA extracts of 261 spleen samples and 1953 ticks included 4 tick species: Ixodes ricinus (n=870), I. canisuga (n=585), I. hexagonus (n=485), and Dermacentor reticulatus (n=13) were examined for the presence of Babesia/Theileria spp. by a conventional PCR targeting the 18S rRNA gene. One hundred twenty-one out of 261 foxes (46.4%) were PCR-positive. Out of them, 44 samples were sequenced, and all sequences had 100% similarity to Theileria annae. Similarly, sequencing was carried out for 65 out of 118 PCR-positive ticks. Theileria annae DNA was detected in 61.5% of the sequenced samples, Babesia microti DNA was found in 9.2%, and Babesia venatorum in 7.6% of the sequenced samples. The foxes were most positive in June and October, whereas the peak of tick positivity was in October. Furthermore, the positivity of the ticks was higher for I. canisuga in comparison to the other tick species and for nymphs in comparison to adults. The high prevalence of T. annae DNA in red foxes in this study suggests a reservoir function of those animals for T. annae. To our knowledge, this is the first report of T. annae in foxes from Germany as well as the first detection of T. annae and B. microti in the fox tick I. canisuga. Detection of DNA of T. annae and B. microti in three tick species collected from foxes adds new potential vectors for these two pathogens and suggests a potential role of the red fox in their natural endemic cycles. Copyright © 2014 Elsevier GmbH. All rights reserved.
Testing for X-ray Periodicities in Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
The Deep Survey instrument on the Extreme Ultraviolet Explorer obtained long, continuous light-curves of 10 Seyfert galaxies with durations of 5-33 days each. We present a uniform reduction of these data, which account for a total of 209 days of observation. Several of the light curves are uniquely suited to a search for periodicity or QPOs in the range of hours to days that might be expected from dynamical effects in the inner accretion disks around approximately 10(exp 8) solar mass black holes. Power spectra show features in three of the longest observations that could be transient periods: 0.9 days in RX J0437.4-4711, 2.1 days in Ton S180, and 5.8 days in 1H 0419-577. These period values seem to be unrelated to the length of the observations, which are similar in the three cases, but they do roughly scale as the luminosity of the objects, which would be expected in a dynamical scenario if the black hole masses also scale with luminosity. The significance of these periods will be evaluated in a future publication by using the method of Timmer & Konig (1995), which properly takes into account the red-noise properties of AGN light curves.
NASA Astrophysics Data System (ADS)
Berger, Travis A.; Kudritzki, Rolf-Peter; Urbaneja, Miguel A.; Bresolin, Fabio; Gieren, Wolfgang; Pietrzyński, Grzegorz; Przybilla, Norbert
2018-06-01
We present a spectral analysis of 21 blue supergiant stars of spectral types late B to early A within the Local Group dwarf galaxy IC 1613, based on VLT Focal Reducer and Low Dispersion Spectrograph 2 low-resolution spectra. Combining our results with studies of early B-type blue supergiants, we report a wide bimodal distribution of metallicities with two peaks around [Z] ∼ ‑0.50 dex and [Z] ∼ ‑0.85 dex. The bimodal distribution correlates with spatial location, when compared with column densities of neutral hydrogen in IC 1613. While the low [Z] objects appear in regions of relatively high ISM H I column densities or close to them, the high [Z] supergiants are found in the central H I hole that is almost devoid of hydrogen. This suggests there are varied chemical evolution histories for the young stellar populations in IC 1613. Utilizing the flux-weighted gravity–luminosity relation, we determine IC 1613's distance modulus as m ‑ M = 24.39 ± 0.11 mag. This value is in agreement within previous distance measurements using the near-infrared period–luminosity relationship of Cepheids and the tip of the red giant branch.
Luminous and Variable Stars in M31 and M33. V. The Upper HR Diagram
NASA Astrophysics Data System (ADS)
Humphreys, Roberta M.; Davidson, Kris; Hahn, David; Martin, John C.; Weis, Kerstin
2017-07-01
We present HR diagrams for the massive star populations in M31 and M33, including several different types of emission-line stars: the confirmed luminous blue variables (LBVs), candidate LBVs, B[e] supergiants, and the warm hypergiants. We estimate their apparent temperatures and luminosities for comparison with their respective massive star populations and evaluate the possible relationships of these different classes of evolved, massive stars, and their evolutionary state. Several of the LBV candidates lie near the LBV/S Dor instability strip that supports their classification. Most of the B[e] supergiants, however, are less luminous than the LBVs. Many are very dusty with the infrared flux contributing one-third or more to their total flux. They are also relatively isolated from other luminous OB stars. Overall, their spatial distribution suggests a more evolved state. Some may be post-RSGs (red supergiants) like the warm hypergiants, and there may be more than one path to becoming a B[e] star. There are sufficient differences in the spectra, luminosities, spatial distribution, and the presence or lack of dust between the LBVs and B[e] supergiants to conclude that one group does not evolve into the other.
The Relation between Luminous AGNs and Star Formation in Their Host Galaxies
NASA Astrophysics Data System (ADS)
Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.
2015-08-01
We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.
The Mid-infrared View of Red Sequence Galaxies in Abell 2218 with AKARI
NASA Astrophysics Data System (ADS)
Ko, Jongwan; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Hopwood, Ros H.; Serjeant, Stephen; Smail, Ian; Hwang, Ho Seong; Hwang, Narae; Shim, Hyunjin; Kim, Seong Jin; Lee, Jong Chul; Lim, Sungsoon; Seo, Hyunjong; Goto, Tomotsugu; Hanami, Hitoshi; Matsuhara, Hideo; Takagi, Toshinobu; Wada, Takehiko
2009-04-01
We present the AKARI Infrared Camera (IRC) imaging observation of early-type galaxies (ETGs) in A2218 at zsime 0.175. Mid-infrared (MIR) emission from ETGs traces circumstellar dust emission from asymptotic giant branch (AGB) stars or/and residual star formation. Including the unique imaging capability at 11 and 15 μm, our AKARI data provide an effective way to investigate MIR properties of ETGs in the cluster environment. Among our flux-limited sample of 22 red sequence ETGs with precise dynamical and line strength measurements (less than 18 mag at 3 μm), we find that at least 41% have MIR-excess emission. The N3 - S11 versus N3 (3 and 11 μm) color-magnitude relation shows the expected blue sequence, but the MIR-excess galaxies add a red wing to the relation especially at the fainter end. A spectral energy distribution analysis reveals that the dust emission from AGB stars is the most likely cause of the MIR excess, with a low level of star formation being the next possible explanation. The MIR-excess galaxies show a wide spread of N3 - S11 colors, implying a significant spread (2-11 Gyr) in the estimated mean ages of stellar populations. We study the environmental dependence of MIR-excess ETGs over an area out to a half virial radius (~1 Mpc). We find that the MIR-excess ETGs are preferentially located in the outer region. From this evidence, we suggest that the fainter, MIR-excess ETGs have just joined the red sequence, possibly due to the infall and subsequent morphological/spectral transformation induced by the cluster environment.
Iso-Touru, T; Sahana, G; Guldbrandtsen, B; Lund, M S; Vilkki, J
2016-03-22
The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields. Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26 were associated with fat yield. Regions on chromosomes 5, 14, 16, 19, 20 and 25 were associated with milk yield and chromosomes 5, 14 and 25 had regions associated with protein yield. Significantly associated variations were found in 227 genes for fat yield, 72 genes for milk yield and 30 genes for protein yield. Ingenuity Pathway Analysis was used to identify networks connecting these genes displaying significant hits. When compared to previously mapped genomic regions associated with fertility, significantly associated variations were found in 5 genes common for fat yield and fertility, thus linking these two traits via biological networks. This is the first time when whole genome sequence data is utilized to study genomic regions affecting milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative traits in detail but still cannot unambiguously reveal which of the associated variations is causative. Linkage disequilibrium creates difficulties to pinpoint the causative genes and variations. One solution to overcome these difficulties is the identification of the functional gene networks and pathways to reveal important interacting genes as candidates for the observed effects. This information on target genomic regions may be exploited to improve genomic prediction.
Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.
2003-12-01
The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.
Color-magnitude distribution of face-on nearby galaxies in Sloan digital sky survey DR7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shuo-Wen; Feng, Long-Long; Gu, Qiusheng
2014-05-20
We have analyzed the distributions in the color-magnitude diagram (CMD) of a large sample of face-on galaxies to minimize the effect of dust extinctions on galaxy color. About 300,000 galaxies with log (a/b) < 0.2 and redshift z < 0.2 are selected from the Sloan Digital Sky Survey DR7 catalog. Two methods are employed to investigate the distributions of galaxies in the CMD, including one-dimensional (1D) Gaussian fitting to the distributions in individual magnitude bins and two-dimensional (2D) Gaussian mixture model (GMM) fitting to galaxies as a whole. We find that in the 1D fitting, two Gaussians are not enoughmore » to fit galaxies with the excess present between the blue cloud and the red sequence. The fitting to this excess defines the center of the green valley in the local universe to be (u – r){sub 0.1} = –0.121M {sub r,} 0{sub .1} – 0.061. The fraction of blue cloud and red sequence galaxies turns over around M {sub r,} {sub 0.1} ∼ –20.1 mag, corresponding to stellar mass of 3 × 10{sup 10} M {sub ☉}. For the 2D GMM fitting, a total of four Gaussians are required, one for the blue cloud, one for the red sequence, and the additional two for the green valley. The fact that two Gaussians are needed to describe the distributions of galaxies in the green valley is consistent with some models that argue for two different evolutionary paths from the blue cloud to the red sequence.« less
Thurber, Mary I; Ghai, Ria R; Hyeroba, David; Weny, Geoffrey; Tumukunde, Alex; Chapman, Colin A; Wiseman, Roger W; Dinis, Jorge; Steeil, James; Greiner, Ellis C; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L
2013-07-01
Hemoparasites of the apicomplexan family Plasmodiidae include the etiological agents of malaria, as well as a suite of non-human primate parasites from which the human malaria agents evolved. Despite the significance of these parasites for global health, little information is available about their ecology in multi-host communities. Primates were investigated in Kibale National Park, Uganda, where ecological relationships among host species are well characterized. Blood samples were examined for parasites of the genera Plasmodium and Hepatocystis using microscopy and PCR targeting the parasite mitochondrial cytochrome b gene, followed by Sanger sequencing. To assess co-infection, "deep sequencing" of a variable region within cytochrome b was performed. Out of nine black-and-white colobus (Colobus guereza), one blue guenon (Cercopithecus mitis), five grey-cheeked mangabeys (Lophocebus albigena), 23 olive baboons (Papio anubis), 52 red colobus (Procolobus rufomitratus) and 12 red-tailed guenons (Cercopithecus ascanius), 79 infections (77.5%) were found, all of which were Hepatocystis spp. Sanger sequencing revealed 25 different parasite haplotypes that sorted phylogenetically into six species-specific but morphologically similar lineages. "Deep sequencing" revealed mixed-lineage co-infections in baboons and red colobus (41.7% and 64.7% of individuals, respectively) but not in other host species. One lineage infecting red colobus also infected baboons, but always as the minor variant, suggesting directional cross-species transmission. Hepatocystis parasites in this primate community are a diverse assemblage of cryptic lineages, some of which co-infect hosts and at least one of which can cross primate species barriers. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Signatures of adaptation in the weedy rice genome
USDA-ARS?s Scientific Manuscript database
Weedy rice is a common problem of by product of domestication that has evolved multiple times from cultivated and wild rice relatives. Here we use whole genome sequences to examine the origin and adaptation of the two major US weedy red rice strains, with a comparison to Chinese weedy red rice. We f...
The Fate of Exoplanets and the Red Giant Rapid Rotator Connection
NASA Astrophysics Data System (ADS)
Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil; Smith, Verne V.; Cunha, Katia; Bizyaev, Dmitry
2011-03-01
We have computed the fate of exoplanet companions around main sequence stars to explore the frequency of planet ingestion by their host stars during the red giant branch evolution. Using published properties of exoplanetary systems combined with stellar evolution models and Zahn's theory of tidal friction, we modeled the tidal decay of the planets' orbits as their host stars evolve. Most planets currently orbiting within 2 AU of their star are expected to be ingested by the end of their stars' red giant branch ascent. Our models confirm that many transiting planets are sufficiently close to their parent star that they will be accreted during the main sequence lifetime of the star. We also find that planet accretion may play an important role in explaining the mysterious red giant rapid rotators, although appropriate planetary systems do not seem to be plentiful enough to account for all such rapid rotators. We compare our modeled rapid rotators and surviving planetary systems to their real-life counterparts and discuss the implications of this work to the broader field of exoplanets.
Ahuka-Mundeke, Steve; Liegeois, Florian; Ayouba, Ahidjo; Foupouapouognini, Yacouba; Nerrienet, Eric; Delaporte, Eric; Peeters, Martine
2010-01-01
Simian immunodeficiency viruses (SIVs) are lentiviruses that infect an extensive number of wild African primate species. Here we describe for the first time SIV infection in a captive agile mangabey (Cercocebus agilis) from Cameroon. Phylogenetic analysis of the full-length genome sequence of SIVagi-00CM312 showed that this novel virus fell into the SIVrcm lineage and was most closely related to a newly characterized SIVrcm strain (SIVrcm-02CM8081) from a wild-caught red-capped mangabey (Cercocebus torquatus) from Cameroon. In contrast to red-capped mangabeys, no 24 bp deletion in CCR5 has been observed in the agile mangabey. Further studies on wild agile mangabeys are needed to determine whether agile and red-capped mangabeys are naturally infected with the same SIV lineage, or whether this agile mangabey became infected with an SIVrcm strain in captivity. However, our study shows that agile mangabeys are susceptible to SIV infection. PMID:20797968
Ahuka-Mundeke, Steve; Liegeois, Florian; Ayouba, Ahidjo; Foupouapouognini, Yacouba; Nerrienet, Eric; Delaporte, Eric; Peeters, Martine
2010-12-01
Simian immunodeficiency viruses (SIVs) are lentiviruses that infect an extensive number of wild African primate species. Here we describe for the first time SIV infection in a captive agile mangabey (Cercocebus agilis) from Cameroon. Phylogenetic analysis of the full-length genome sequence of SIVagi-00CM312 showed that this novel virus fell into the SIVrcm lineage and was most closely related to a newly characterized SIVrcm strain (SIVrcm-02CM8081) from a wild-caught red-capped mangabey (Cercocebus torquatus) from Cameroon. In contrast to red-capped mangabeys, no 24 bp deletion in CCR5 has been observed in the agile mangabey. Further studies on wild agile mangabeys are needed to determine whether agile and red-capped mangabeys are naturally infected with the same SIV lineage, or whether this agile mangabey became infected with an SIVrcm strain in captivity. However, our study shows that agile mangabeys are susceptible to SIV infection.
NASA Astrophysics Data System (ADS)
Kalirai, Jason S.; Zucker, Daniel B.; Guhathakurta, Puragra; Geha, Marla; Kniazev, Alexei Y.; Martínez-Delgado, David; Bell, Eric F.; Grebel, Eva K.; Gilbert, Karoline M.
2009-11-01
Andromeda X (And X) is a newly discovered low-luminosity M31 dwarf spheroidal galaxy (dSph) found by Zucker et al. in the Sloan Digital Sky Survey (SDSS; York et al.). In this paper, we present the first spectroscopic study of individual red giant branch stars in And X, as a part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) Survey. Using the Keck II telescope and multiobject DEIMOS spectrograph, we target two spectroscopic masks over the face of the galaxy and measure radial velocities for ~100 stars with a median accuracy of σ v ~ 3 km s-1. The velocity histogram for this field confirms three populations of stars along the sight line: foreground Milky Way dwarfs at small negative velocities, M31 halo red giants over a broad range of velocities, and a very cold velocity "spike" consisting of 22 stars belonging to And X with v rad = -163.8 ± 1.2 km s-1. By carefully considering both the random and systematic velocity errors of these stars (e.g., through duplicate star measurements), we derive an intrinsic velocity dispersion of just σ v = 3.9 ± 1.2 km s-1 for And X, which for its size, implies a minimum mass-to-light ratio of M/LV = 37+26 -19 assuming that the mass traces the light. Based on the clean sample of member stars, we measure the median metallicity of And X to be [Fe/H] = -1.93 ± 0.11, with a slight radial metallicity gradient. The dispersion in metallicity is large, σ([Fe/H]phot) = 0.48, possibly hinting that the galaxy retained much of its chemical enrichment products. And X has a total integrated luminosity (MV = -8.1 ± 0.5) that straddles the classical Local Group dSphs and the new SDSS ultra-low luminosity galaxies. The galaxy is among the most metal-poor dSphs known, especially relative to those with MV < -8, and has the second lowest intrinsic velocity dispersion of the entire sample. Our results suggest that And X is less massive by a factor of 4 when compared to Milky Way dSphs of comparable luminosity (e.g., Draco and Ursa Minor). We discuss the potential for better understanding the formation and evolution mechanisms for M31's system of dSphs through (current) kinematic and chemical abundance studies, especially in relation to the Milky Way sample. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias; these observations were funded by the Optical Infrared Coordination Network (OPTICON), a major international collaboration supported by the Research Infrastructures Programme of the European Commission's Sixth Framework Programme.
QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift?
NASA Astrophysics Data System (ADS)
Corbin, Michael R.
1995-07-01
The broad optical and ultraviolet emission lines of QSOs and active galactic nuclei (AGNs) display both redward and blueward asymmetries. This result is particularly well established for Hβ and C IV λ1549, and it has been found that Hβ becomes increasingly redward asymmetric with increasing soft X-ray luminosity. Two models for the origin of these asymmetries are investigated: (1) Anisotropic line emission from an ensemble of radially moving clouds, and (2) Two-component profiles consisting of a core of intermediate (˜1000-4000 km s-1) velocity width and a very broad (˜5000-20,000 km s-1) base, in which the asymmetries arise due to a velocity difference between the centroids of the components. The second model is motivated by the evidence that the traditional broad-line region is actually composed of an intermediate-line region (ILR) of optically thick clouds and a very broad line region (VBLR) of optically thin clouds lying closer to the central continuum source. Line profiles produced by model (1) are found to be inconsistent with those observed, being asymmetric mainly in their cores, whereas the asymmetries of actual profiles arise mainly from excess emission in their wings. By contrast, numerical fitting to actual Hβ and C IV λ1549 line profiles reveals that the majority can be accurately modeled by two components, either two Gaussians or the combination of a Gaussian base and a logarithmic core. The profile asymmetries in Hβ can be interpreted as arising from a shift of the base component over a range ˜6300 km s-1 relative to systemic velocity as defined by the position of the [O III] λ5007 line. A similar model appears to apply to C IV λ1549. The correlation between Hβ asymmetry and X-ray luminosity may thus be interpreted as a progressive red- shift of the VBLR velocity centroid relative to systemic velocity with increasing X-ray luminosity. This in turn suggests that the underlying effect is gravitational red shift, as soft X-ray emission arises from a region ˜ light-minutes in size and arguably traces the mass of the putative supermassive black hole. Depending on the size of the VBLR and the exact amount of its profile centroid shift, central masses in the range 109-10 Msun are implied for the objects displaying the strongest redward profile asymmetries, consistent with other estimates. The largest VBLR velocity dispersions measured from the two-component modeling are ˜20,000 km s-1, which also yields a virial mass ˜109 Msun for a VBLR size 0.1 pc. The gravitational redshift model does not explain the origin of the blueshift of the VBLR emission among low X-ray luminosity sources, however. This must be interpreted as arising from a competing effect such as electron scattering of line photons in the vicinity of the VBLR. On average, radio-loud objects have redward asymmetric broad-line profiles and stronger intermediate- and narrow-line emission than radio-quiet objects of comparable optical luminosity. Under the gravitational redshift model these differences may be interpreted as the result of black hole and host galaxy masses that are larger on average among the former class, consistent with the evidence that they are merger products.
NASA Astrophysics Data System (ADS)
Piskunov, A. E.; Belikov, A. N.; Kharchenko, N. V.; Sagar, R.; Subramaniam, A.
2004-04-01
We construct the observed luminosity functions of the remote young open clusters NGC 2383, 2384, 4103, 4755, 7510 and Hogg 15 from CCD observations of them. The observed LFs are corrected for field star contamination determined with the help of a Galactic star count model. In the case of Hogg 15 and NGC 2383 we also consider the additional contamination from neighbouring clusters NGC 4609 and 2384, respectively. These corrections provide a realistic pattern of cluster LF in the vicinity of the main-sequence (MS) turn-on point and at fainter magnitudes reveal the so-called H-feature arising as a result of the transition of the pre-MS phase to the MS, which is dependent on the cluster age. The theoretical LFs are constructed representing a cluster population model with continuous star formation for a short time-scale and a power-law initial mass function (IMF), and these are fitted to the observed LF. As a result, we are able to determine for each cluster a set of parameters describing the cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It is found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as power-law functions with slopes similar to Salpeter's value. The present main-sequence turn-on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn-off region of the upper main sequences.
Accretion States of the Galactic Micro Quasar GRS 1758-258
NASA Technical Reports Server (NTRS)
Soria, Roberto; Mehdipour, Missagh; Broderick, Jess W.; Hao, JingFang; Hannikainen, Diana C.; Pottschmidt, Katja; Zhang, Shuang-Nan
2011-01-01
We present the results of a radio and X-ray study of the Galactic micro quasar GRS 1758-258, using unpublished archival data and new observations. We focus in particular on the 2000-2002 state transitions, and on its more quiet behaviour in 2008-2009. Our spectral and timing analysis of the XMM-Newton data shows that the source was in the canonical intermediate, soft and hard states in 2000 September 19,2001 March 22 and 2002 September 28, respectively. We estimate the disk size, luminosity and temperature, which are consistent with a black hole mass approx.10 Solar Mass, There is much overlap between the range of total X-ray luminosities (on average approx. 0.02L(sub Edd)) in the hard and soft states, and probably between the corresponding mass accretion rates; in fact, the hard state is often more luminous. The extended radio lobes seen in 1992 and 1997 are still present in 2008-2009. The 5-GHz radio core flux density has shown variability between approx. 0.1-0.5 mJy over the last two decades. This firmly places GRS 1758-258 in the radio-quiet sequence of Galactic black holes, in the radio/X-ray plane. We note that this dichotomy is similar to the dichotomy between the radio/X-ray sequences of Seyfert and radio galaxies. We propose that the different radio efficiency of the two sequences is due to relativistic electron/positron jets in radio-loud black holes, and sub-relativistic, thermally dominated outflows in radio-quiet sources.
NASA Astrophysics Data System (ADS)
Beck, P. G.; Kallinger, T.; Pavlovski, K.; Palacios, A.; Tkachenko, A.; Mathis, S.; García, R. A.; Corsaro, E.; Johnston, C.; Mosser, B.; Ceillier, T.; do Nascimento, J.-D.; Raskin, G.
2018-04-01
Context. Binaries in double-lined spectroscopic systems (SB2) provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differences are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. Aim. In this work, we aim to study the eccentric binary system KIC 9163796, whose two components are very close in mass and both are low-luminosity red-giant stars. Methods: We analysed four years of Kepler space photometry and we obtained high-resolution spectroscopy with the Hermes instrument. The orbital elements and the spectra of both components were determined using spectral disentangling methods. The effective temperatures, and metallicities were extracted from disentangled spectra of the two stars. Mass and radius of the primary were determined through asteroseismology. The surface rotation period of the primary is determined from the Kepler light curve. From representative theoretical models of the star, we derived the internal rotational gradient, while for a grid of models, the measured lithium abundance is compared with theoretical predictions. Results: From seismology the primary of KIC 9163796 is a star of 1.39 ± 0.06 M⊙, while the spectroscopic mass ratio between both components can be determined with much higher precision by spectral disentangling to be 1.015 ± 0.005. With such mass and a difference in effective temperature of 600 K from spectroscopy, the secondary and primary are, respectively, in the early and advanced stage of the first dredge-up event on the red-giant branch. The period of the primary's surface rotation resembles the orbital period within ten days. The radial rotational gradient between the surface and core in KIC 9163796 is found to be 6.9-1.0+2.0. This is a low value but not exceptional if compared to the sample of typical single field stars. The seismic average of the envelope's rotation agrees with the surface rotation rate. The lithium'abundance is in agreement with quasi rigidly rotating models. Conclusions: The agreement between the surface rotation with the seismic result indicates that the full convective envelope is rotating quasi-rigidly. The models of the lithium abundance are compatible with a rigid rotation in the radiative zone during the main sequence. Because of the many constraints offered by oscillating stars in binary systems, such objects are important test beds of stellar evolution. Based on observations made with the Kepler space telescope and the Hermes spectrograph mounted on the 1.2 m Mercator Telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunha, M. S.; Avelino, P. P.; Stello, D.
2015-06-01
With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacingmore » and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.« less
NASA Astrophysics Data System (ADS)
Bower, Richard G.; Schaye, Joop; Frenk, Carlos S.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; McAlpine, Stuart
2017-02-01
Galaxies fall into two clearly distinct types: `blue-sequence' galaxies which are rapidly forming young stars, and `red-sequence' galaxies in which star formation has almost completely ceased. Most galaxies more massive than 3 × 1010 M⊙ follow the red sequence, while less massive central galaxies lie on the blue sequence. We show that these sequences are created by a competition between star formation-driven outflows and gas accretion on to the supermassive black hole at the galaxy's centre. We develop a simple analytic model for this interaction. In galaxies less massive than 3 × 1010 M⊙, young stars and supernovae drive a high-entropy outflow which is more buoyant than any tenuous corona. The outflow balances the rate of gas inflow, preventing high gas densities building up in the central regions. More massive galaxies, however, are surrounded by an increasingly hot corona. Above a halo mass of ˜1012 M⊙, the outflow ceases to be buoyant and star formation is unable to prevent the build-up of gas in the central regions. This triggers a strongly non-linear response from the black hole. Its accretion rate rises rapidly, heating the galaxy's corona, disrupting the incoming supply of cool gas and starving the galaxy of the fuel for star formation. The host galaxy makes a transition to the red sequence, and further growth predominantly occurs through galaxy mergers. We show that the analytic model provides a good description of galaxy evolution in the EAGLE hydrodynamic simulations. So long as star formation-driven outflows are present, the transition mass scale is almost independent of subgrid parameter choice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalirai, Jason S.; Beaton, Rachael L.; Majewski, Steven R.
2010-03-10
We present new Keck/DEIMOS spectroscopic observations of hundreds of individual stars along the sightline to the first three of the Andromeda (M31) dwarf spheroidal (dSph) galaxies to be discovered, And I, II, and III, and combine them with recent spectroscopic studies by our team of three additional M31 dSphs, And VII, X, and XIV, as a part of the SPLASH Survey (Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo). Member stars of each dSph are isolated from foreground Milky Way dwarf stars and M31 field contamination using a variety of photometric and spectroscopic diagnostics. Our final spectroscopic sample of membermore » stars in each dSph, for which we measure accurate radial velocities with a median uncertainty (random plus systematic errors) of 4-5 km s{sup -1}, includes 80 red giants in And I, 95 in And II, 43 in And III, 18 in And VII, 22 in And X, and 38 in And XIV. The sample of confirmed members in the six dSphs is used to derive each system's mean radial velocity, intrinsic central velocity dispersion, mean abundance, abundance spread, and dynamical mass. This combined data set presents us with a unique opportunity to perform the first systematic comparison of the global properties (e.g., metallicities, sizes, and dark matter masses) of one-third of Andromeda's total known dSph population with Milky Way counterparts of the same luminosity. Our overall comparisons indicate that the family of dSphs in these two hosts have both similarities and differences. For example, we find that the luminosity-metallicity relation is very similar between L {approx} 10{sup 5} and 10{sup 7} L{sub sun}, suggesting that the chemical evolution histories of each group of dSphs are similar. The lowest luminosity M31 dSphs appear to deviate from the relation, possibly suggesting tidal stripping. Previous observations have noted that the sizes of M31's brightest dSphs are systematically larger than Milky Way satellites of similar luminosity. At lower luminosities between L = 10{sup 4} and 10{sup 6} L{sub sun}, we find that the sizes of dSphs in the two hosts significantly overlap and that four of the faintest M31 dSphs are smaller than Milky Way counterparts. The first dynamical mass measurements of six M31 dSphs over a large range in luminosity indicate similar mass-to-light ratios compared to Milky Way dSphs among the brighter satellites, and smaller mass-to-light ratios among the fainter satellites. Combined with their similar or larger sizes at these luminosities, these results hint that the M31 dSphs are systematically less dense than Milky Way dSphs. The implications of these similarities and differences for general understanding of galaxy formation and evolution are summarized.« less
Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.
Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel
2015-08-07
The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.
Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method
Xue, Huabai; Shi, Ting; Wang, Fangfang; Zhou, Huangkai; Yang, Jian; Wang, Long; Wang, Suke; Su, Yanli; Zhang, Zhen; Qiao, Yushan; Li, Xiugen
2017-01-01
Pears with red skin are attractive to consumers and provide additional health benefits. Identification of the gene(s) responsible for skin coloration can benefit cultivar selection and breeding. The use of QTL-seq, a bulked segregant analysis method, can be problematic when heterozygous parents are involved. The present study modified the QTL-seq method by introducing a |Δ(SNP-index)| parameter to improve the accuracy of mapping the red skin trait in a group of highly heterozygous Asian pears. The analyses were based on mixed DNA pools composed of 28 red-skinned and 27 green-skinned pear lines derived from a cross between the ‘Mantianhong’ and ‘Hongxiangsu’ red-skinned cultivars. The ‘Dangshansuli’ cultivar genome was used as reference for sequence alignment. An average single-nucleotide polymorphism (SNP) index was calculated using a sliding window approach (200-kb windows, 20-kb increments). Nine scaffolds within the candidate QTL interval were in the fifth linkage group from 111.9 to 177.1 cM. There was a significant linkage between the insertions/deletions and simple sequence repeat markers designed from the candidate intervals and the red/green skin (R/G) locus, which was in a 582.5-kb candidate interval that contained 81 predicted protein-coding gene models and was composed of two subintervals at the bottom of the fifth chromosome. The ZFRI 130-16, In2130-12 and In2130-16 markers located near the R/G locus could potentially be used to identify the red skin trait in Asian pear populations. This study provides new insights into the genetics controlling the red skin phenotype in this fruit. PMID:29118994
Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method.
Xue, Huabai; Shi, Ting; Wang, Fangfang; Zhou, Huangkai; Yang, Jian; Wang, Long; Wang, Suke; Su, Yanli; Zhang, Zhen; Qiao, Yushan; Li, Xiugen
2017-01-01
Pears with red skin are attractive to consumers and provide additional health benefits. Identification of the gene(s) responsible for skin coloration can benefit cultivar selection and breeding. The use of QTL-seq, a bulked segregant analysis method, can be problematic when heterozygous parents are involved. The present study modified the QTL-seq method by introducing a |Δ(SNP-index)| parameter to improve the accuracy of mapping the red skin trait in a group of highly heterozygous Asian pears. The analyses were based on mixed DNA pools composed of 28 red-skinned and 27 green-skinned pear lines derived from a cross between the 'Mantianhong' and 'Hongxiangsu' red-skinned cultivars. The 'Dangshansuli' cultivar genome was used as reference for sequence alignment. An average single-nucleotide polymorphism (SNP) index was calculated using a sliding window approach (200-kb windows, 20-kb increments). Nine scaffolds within the candidate QTL interval were in the fifth linkage group from 111.9 to 177.1 cM. There was a significant linkage between the insertions/deletions and simple sequence repeat markers designed from the candidate intervals and the red/green skin (R/G) locus, which was in a 582.5-kb candidate interval that contained 81 predicted protein-coding gene models and was composed of two subintervals at the bottom of the fifth chromosome. The ZFRI 130-16, In2130-12 and In2130-16 markers located near the R/G locus could potentially be used to identify the red skin trait in Asian pear populations. This study provides new insights into the genetics controlling the red skin phenotype in this fruit.
NASA Technical Reports Server (NTRS)
Carlson, S.; Culler, T.; Muller, R. A.; Tetreault, M.; Perlmutter, S.
1994-01-01
The parallax of all stars of visual magnitude greater than about 6.5 has already been measured. If Nemesis is a main-sequence star 1 parsec away, this requires Nemesis's mass to be less than about 0.4 solar masses. If it were less than about 0.05 solar masses its gravity would be too weak to trigger a comet storm. If Nemesis is on the main sequence, this mass range requires it to be a red dwarf. A red dwarf companion would probably have been missed by standard astronomical surveys. Nearby stars are usually found because they are bright or have high proper motion. However, Nemesis's proper motion would now be 0.01 arcsec/yr, and if it is a red dwarf its magnitude is about 10 - too dim to attract attention. Unfortunately, standard four-color photometry does not distinguish between red dwarfs and giants. So although surveys such as the Dearborn Red Star Catalog list stars by magnitude and spectral type, they do not identify the dwarfs. Every star of the correct spectral type and magnitude must be scrutinized. Our candidate list is a hybrid; candidate red stars are identified in the astrometrically poor Dearborn Red Star Catalog and their positions are corrected using the Hubble Guide Star Catalog. When errors in the Dearborn catalog make it impossible to identify the corresponding Hubble star, the fields are split so that we have one centering on each possible candidate. We are currently scrutinizing 3098 fields, which we believe contain all possible red dwarf candidates in the northern hemisphere. Since our last report the analysis and database software has been completely rebuilt to take advantage of updated hardware, to make the data more accessible, and to implement improved methods of data analysis. The software is now completed and we are eliminating stars every clear night.
van der Giessen, Joke; Haagmans, Bart L.; Osterhaus, Albert D. M. E.; Smits, Saskia L.
2013-01-01
Red foxes (Vulpes vulpes) are the most widespread members of the order of Carnivora. Since they often live in (peri)urban areas, they are a potential reservoir of viruses that transmit from wildlife to humans or domestic animals. Here we evaluated the fecal viral microbiome of 13 red foxes by random PCR in combination with next-generation sequencing. Various novel viruses, including a parvovirus, bocavirus, adeno-associated virus, hepevirus, astroviruses, and picobirnaviruses, were identified. PMID:23616657
Beer, Brigitte E.; Foley, Brian T.; Kuiken, Carla L.; Tooze, Zena; Goeken, Robert M.; Brown, Charles R.; Hu, Jinjie; Claire, Marisa St.; Korber, Bette T.; Hirsch, Vanessa M.
2001-01-01
Two novel simian immunodeficiency virus (SIV) strains from wild-caught red-capped mangabeys (Cercocebus torquatus torquatus) from Nigeria were characterized. Sequence analysis of the fully sequenced SIV strain rcmNG411 (SIVrcmNG411) and gag and pol sequence of SIVrcmNG409 revealed that they were genetically most closely related to the recently characterized SIVrcm from Gabon (SIVrcmGB1). Thus, red-capped mangabeys from distant geographic locations harbor a common lineage of SIV. SIVrcmNG411 carried a vpx gene in addition to vpr, suggesting a common evolutionary ancestor with SIVsm (from sooty mangabeys). However, SIVrcm was only marginally closer to SIVsm in that region than to any of the other lentiviruses. SIVrcm showed the highest similarity in pol with SIVdrl, isolated from a drill, a primate that is phylogenetically distinct from mangabey monkeys, and clustered with other primate lentiviruses (primarily SIVcpz [from chimpanzees] and SIVagmSab [from African green monkeys]) discordantly in different regions of the genome, suggesting a history of recombination. Despite the genetic relationship to SIVcpz in the pol gene, SIVrcmNG411 did not replicate in chimpanzee peripheral blood mononuclear cells (PBMC), although two other viruses unrelated to SIVcpz, SIVmndGB1 (from mandrills) and SIVlhoest (from L'Hoest monkeys), were able to grow in chimpanzee PBMC. The CCR5 24-bp deletion previously described in red-capped mangabeys from Gabon was also observed in Nigerian red-capped mangabeys, and SIVrcmNG411, like SIVrcmGB1, used CCR2B and STRL33 as coreceptors for virus entry. SIVrcm, SIVsm, SIVmndGB1, and all four SIVlhoest isolates but not SIVsun (from sun-tailed monkeys) replicated efficiently in human PBMC, suggesting that the ability to infect the human host can vary within one lineage. PMID:11711592
Sediment budget as affected by construction of a sequence of dams in the lower Red River, Viet Nam
NASA Astrophysics Data System (ADS)
Lu, Xi Xi; Oeurng, Chantha; Le, Thi Phuong Quynh; Thuy, Duong Thi
2015-11-01
Dam construction is one of the main factors resulting in riverine sediment changes, which in turn cause river degradation or aggradation downstream. The main objective of this work is to examine the sediment budget affected by a sequence of dams constructed upstream in the lower reach of the Red River. The study is based on the longer-term annual data (1960-2010) with a complementary daily water and sediment data set (2008-2010). The results showed that the stretch of the river changed from sediment surplus (suggesting possible deposition processes) into sediment deficit (possible erosion processes) after the first dam (Thac Ba Dam) was constructed in 1972 and changed back to deposition after the second dam (Hoa Binh Dam) was constructed in 1985. The annual sediment deposition varied between 1.9 Mt/y and 46.7 Mt/y with an annual mean value of 22.9 Mt/y (1985-2010). The sediment deposition at the lower reach of the Red River would accelerate river aggradation which would change river channel capacity in the downstream of the Red River. The depositional processes could be sustained or changed back to erosional processes after more dams (the amount of sediment deposit was much less after the latest two dams Tuyen Quang Dam in 2009 and Sonla Dam in 2010) are constructed, depending on the water and sediment dynamics. This study revealed that the erosional and depositional processes could be shifted for the same stretch of river as affected by a sequence of dams and provides useful insights in river management in order to reduce flood frequency along the lower reach of the Red River.
Tong, C G; Reichler, S; Blumenthal, S; Balk, J; Hsieh, H L; Roux, S J
1997-01-01
A cDNA encoding a nucleolar protein was selected from a pea (Pisum sativum) plumule library, cloned, and sequenced. The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%). It also has sequence patterns in its primary structure that are characteristic of all nucleolins, including an N-terminal acidic motif, RNA recognition motifs, and a C-terminal Gly- and Arg-rich domain. By immunoblot analysis, the polyclonal antibodies used to select the cDNA bind selectively to a 90-kD protein in purified pea nuclei and nucleoli and to an 88-kD protein in extracts of Escherichia coli expressing the cDNA. In immunolocalization assays of pea plumule cells, the antibodies stained primarily a region surrounding the fibrillar center of nucleoli, where animal nucleolins are typically found. Southern analysis indicated that the pea nucleolin-like protein is encoded by a single gene, and northern analysis showed that the labeled cDNA binds to a single band of RNA, approximately the same size and the cDNA. After irradiation of etiolated pea seedlings by red light, the mRNA level in plumules decreased during the 1st hour and then increased to a peak of six times the 0-h level at 12 h. Far-red light reversed this effect of red light, and the mRNA accumulation from red/far-red light irradiation was equal to that found in the dark control. This indicates that phytochrome may regulate the expression of this gene. PMID:9193096
Duncan, Alison B.; Gonzalez, Andrew; Kaltz, Oliver
2013-01-01
Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host–parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5°C) and permissive (23°C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise. PMID:23966645
The Red Spiral Galaxy UGC11680: Clues for the Inside-Out Quenching.
NASA Astrophysics Data System (ADS)
Bárcenas, J.; Sanchez, S. F.
2016-06-01
Broadly, galaxies can be divided in two groups, thanks to the Color-Magnitude Diagram: the lively star formation ones, ``The blue Cloud'' and galaxies which halted their star formation, ``The Red Sequence''. It is a currently accepted that the galaxies start their lifespan as a blue objects, turning red when they stop to assembly more mass and thus more stars. Nevertheless, This change need to be quick (˜ 1 Gyr), due to the dearth of galaxies between this two populations (the so called ``green valley'').Previous works have found two distinct stellar mass assembly modes, they are termed as ``the inside-out'' and ``the outside-in'' growth scenarios in the literature. In the ``inside-out'' scenario, mass assembly is finished in the galactic central region. In some cases, the inflow gas can fuel the central SuperMassive BlackHole. The subsequent AGN feedback will then shut-off the central star formation. One possible case of this scenario is the galaxy UGC11680, an unusual face-on red spiral galaxy with an AGN type 2, at the red sequence belonging to the CALIFA survey. We used the so called fossil method to study its star formation history and try to understand what happened to its stellar populations.
Outbreak and genotyping of canine distemper virus in captive Siberian tigers and red pandas.
Zhang, He; Shan, Fen; Zhou, Xia; Li, Bing; Zhai, Jun-Qiong; Zou, Shu-Zhan; Wu, Meng-Fan; Chen, Wu; Zhai, Shao-Lun; Luo, Man-Lin
2017-08-15
In this study, four canine distemper virus (CDV) strains were isolated from captive Siberian tigers (Panthera tigris altaica) and red pandas (Ailurus fulgens) during two separate CDV outbreaks in a zoo in Guangdong province, China. Sequence alignment and phylogenetic analyses based on the full-length hemagglutinin (H) and fusion (F) genes showed that they were closely identical to genotype Asia-1. Prior to confirmation of CDV in Siberian tigers, to control spread of the disease, a live attenuated combination CDV vaccine was used among almost all carnivore animals except for red pandas in which another recombinant combination CDV vaccine was used. However, about two months later, CDV re-emerged and caused the death among red pandas. Based on the vaccination records, the live combination vaccine could be considered an ideal weapon against CDV in zoo carnivore animals. Although the recombinant combination CDV vaccine was safe for red pandas, its protection effectiveness remains to be further investigated. Moreover, according to the outbreak interval time and sequence characterization, we suspected that stray cats circulating in the zoo were the intermediate host, which contributed to CDV spread from stray dogs to zoo animals. This study revealed the importance of vaccination and biosecurity for zoo animals.
Shu, Jing-Ting; Bao, Wen-Bin; Zhang, Hong-Xia; Zhang, Xue-Yu; Ji, Cong-Liang; Chen, Guo-Hong
2007-03-01
This study investigates single nucleotide polymorphism (SNP) of the adenylosuccinate lyase(ADSL) gene in variety chicken breeds, including Recessive White chickens, Silkies chickens, Baier chickens, Tibetan chickens and two red jungle fowls. Primers for exon 2 in ADSL gene were designed based on the chicken genomic sequence and a SNP(C/T at 3484) was detected by PCR-SSCP and DNA sequencing. Three genotypes within all breeds were found and least square analysis showed that TT genotype birds had a significant higher inosine monophosphate acid (IMP) content than TC (P < 0.01) and CC (P < 0.05) genotype birds, TC genotype birds had a little higher IMP content than CC genotype birds, but the difference was not significant. We proposed this SNP site correlated with IMP content in chickens. A neighbour-joining dendrogram was constructed based on the Nei's genentic distance. The genetic relationship between Chinese red jungle fowl and Tibetan chickens was the nearest, whereas Baier chickens were more closer to Silkies chickens. The Chinese red jungle fowls were relatively closer to the domestic fowls, whereas Thailand red jungle fowls were relatively diverging to the Chinese native breeds. These results supported the theory concerning the independent origins of Chinese native fowl breeds.
One-milliarsecond precision parallax studies in the regions of Delta Cephei and EV Lacertae
NASA Technical Reports Server (NTRS)
Gatewood, George; De Jonge, Kiewiet Joost; Stephenson, Bruce
1993-01-01
Trigonometric parallaxes for stars in the regions of the variable stars delta Cephei and EV Lacertae are derived from data collected with the Multichannel Astrometric Photometer (MAP) and the Thaw Refractor of the University of Pittsburgh's Allegheny Observatory. The weighted mean parallax of all trigonometric studies of delta Cephei is now + 0.0030 sec + or - 0.00093 sec, corresponding to a distance modulus of 7.61 + or - 0.67 mag. This indicates that this luminosity standard star is approximately one standard deviation more distance than has been generally accepted. The weighted mean trigonometric parallax of all studies of the variable star EV Lacertae (BD + 43 deg 4305) is + 0.1993 sec + or - 0.00093 sec, implying a distance modulus of - 1.498 + or - 0.0010 mag. The calculated absolute magnitude of this star is almost exactly that predicted by its (R-I)(sub Kron) magnitude and by the Gliese (R-I) main-sequence value for stars in the solar neighborhood. We also find a parallax of 0.0189 sec + or - 0.0008 sec for the FO IVn star, HR 8666 (BD + 43 sec 4300). The derived luminosity of this star is midway between that expected for luminosity class IV and V stars at the indicated temperature.
Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancuso, C.; Prandoni, I.; Lapi, A.
We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statisticsmore » at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.« less
High-precision infra-red stellar interferometry
NASA Astrophysics Data System (ADS)
Lane, Benjamin F.
2003-08-01
This dissertation describes work performed at the Palomar Testbed Interferometer (PTI) during 1998 2002. Using PTI, we developed a method to measure stellar angular diameters in the 1 3 milli-arcsecond range with a precision of better than 5%. Such diameter measurements were used to measure the mass-radius relations of several lower main sequence stars and hence verify model predictions for these stars. In addition, by measuring the changes in Cepheid angular diameters during the pulsational cycle and applying a Baade-Wesselink analysis we are able to derive the distances to two galactic Cepheids (η Aql & ζ Gem) with a precision of ˜10%; such distance determinations provide an independent calibration of the Cepheid period- luminosity relations that underpin current estimates of cosmic distance scales. Second, we used PTI and the adaptive optics facility at the Keck Telescope on Mauna Kea to resolve the low mass binary systems BY Dra and GJ 569B, resulting in dynamical mass determinations for these systems. GJ 569B most likely contains at least one sub-stellar component, and as such represents the first dynamical mass determination of a brown dwarf. Finally, a new observing technique, dual star phase referencing, was developed and demonstrated at PTI. Phase referencing allows interferometric observations of stars previously too faint to observe, and is a prerequisite for large-scale interferometric astrometry programs such as the one planned for the Keck Interferometer; interferometric astrometry is a promising technique for the study of extra-solar planetary systems, particularly ones with long-period planets.
Al-Amoudi, Soha; Essack, Magbubah; Simões, Marta F; Bougouffa, Salim; Soloviev, Irina; Archer, John A C; Lafi, Feras F; Bajic, Vladimir B
2016-09-10
Microorganisms that inhabit unchartered unique soil such as in the highly saline and hot Red Sea lagoons on the Saudi Arabian coastline, represent untapped sources of potentially new bioactive compounds. In this study, a culture-dependent approach was applied to three types of sediments: mangrove mud (MN), microbial mat (MM), and barren soil (BS), collected from Rabigh harbor lagoon (RHL) and Al-Kharrar lagoon (AKL). The isolated bacteria were evaluated for their potential to produce bioactive compounds. The phylogenetic characterization of 251 bacterial isolates based on the 16S rRNA gene sequencing, supported their assignment to five different phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Planctomycetes. Fifteen putative novel species were identified based on a 16S rRNA gene sequence similarity to other strain sequences in the NCBI database, being ≤98%. We demonstrate that 49 of the 251 isolates exhibit the potential to produce antimicrobial compounds. Additionally, at least one type of biosynthetic gene sequence, responsible for the synthesis of secondary metabolites, was recovered from 25 of the 49 isolates. Moreover, 10 of the isolates had a growth inhibition effect towards Staphylococcus aureus, Salmonella typhimurium and Pseudomonas syringae. We report the previously unknown antimicrobial activity of B. borstelensis, P. dendritiformis and M. salipaludis against all three indicator pathogens. Our study demonstrates the evidence of diverse cultured microbes associated with the Red Sea harbor/lagoon environments and their potential to produce antimicrobial compounds.
Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies
NASA Astrophysics Data System (ADS)
Evans, Fraser A.; Parker, Laura C.; Roberts, Ian D.
2018-06-01
We study Red Misfits, a population of red, star-forming galaxies in the local Universe. We classify galaxies based on inclination-corrected optical colours and specific star formation rates derived from the Sloan Digital Sky Survey Data Release 7. Although the majority of blue galaxies are star-forming and most red galaxies exhibit little to no ongoing star formation, a small but significant population of galaxies (˜11 per cent at all stellar masses) are classified as red in colour yet actively star-forming. We explore a number of properties of these galaxies and demonstrate that Red Misfits are not simply dusty or highly inclined blue cloud galaxies or quiescent red galaxies with poorly constrained star formation. The proportion of Red Misfits is nearly independent of environment, and this population exhibits both intermediate morphologies and an enhanced likelihood of hosting an active galactic nucleus. We conclude that Red Misfits are a transition population, gradually quenching on their way to the red sequence and this quenching is dominated by internal processes rather than environmentally driven processes. We discuss the connection between Red Misfits and other transition galaxy populations, namely S0s, red spirals, and green valley galaxies.
Pilkington, Sarah M; Crowhurst, Ross; Hilario, Elena; Nardozza, Simona; Fraser, Lena; Peng, Yongyan; Gunaseelan, Kularajathevan; Simpson, Robert; Tahir, Jibran; Deroles, Simon C; Templeton, Kerry; Luo, Zhiwei; Davy, Marcus; Cheng, Canhong; McNeilage, Mark; Scaglione, Davide; Liu, Yifei; Zhang, Qiong; Datson, Paul; De Silva, Nihal; Gardiner, Susan E; Bassett, Heather; Chagné, David; McCallum, John; Dzierzon, Helge; Deng, Cecilia; Wang, Yen-Yi; Barron, Lorna; Manako, Kelvina; Bowen, Judith; Foster, Toshi M; Erridge, Zoe A; Tiffin, Heather; Waite, Chethi N; Davies, Kevin M; Grierson, Ella P; Laing, William A; Kirk, Rebecca; Chen, Xiuyin; Wood, Marion; Montefiori, Mirco; Brummell, David A; Schwinn, Kathy E; Catanach, Andrew; Fullerton, Christina; Li, Dawei; Meiyalaghan, Sathiyamoorthy; Nieuwenhuizen, Niels; Read, Nicola; Prakash, Roneel; Hunter, Don; Zhang, Huaibi; McKenzie, Marian; Knäbel, Mareike; Harris, Alastair; Allan, Andrew C; Gleave, Andrew; Chen, Angela; Janssen, Bart J; Plunkett, Blue; Ampomah-Dwamena, Charles; Voogd, Charlotte; Leif, Davin; Lafferty, Declan; Souleyre, Edwige J F; Varkonyi-Gasic, Erika; Gambi, Francesco; Hanley, Jenny; Yao, Jia-Long; Cheung, Joey; David, Karine M; Warren, Ben; Marsh, Ken; Snowden, Kimberley C; Lin-Wang, Kui; Brian, Lara; Martinez-Sanchez, Marcela; Wang, Mindy; Ileperuma, Nadeesha; Macnee, Nikolai; Campin, Robert; McAtee, Peter; Drummond, Revel S M; Espley, Richard V; Ireland, Hilary S; Wu, Rongmei; Atkinson, Ross G; Karunairetnam, Sakuntala; Bulley, Sean; Chunkath, Shayhan; Hanley, Zac; Storey, Roy; Thrimawithana, Amali H; Thomson, Susan; David, Charles; Testolin, Raffaele; Huang, Hongwen; Hellens, Roger P; Schaffer, Robert J
2018-04-16
Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouwens, R. J.; Franx, M.; Labbe, I.
2012-08-01
Ultra-deep Advanced Camera for Surveys (ACS) and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope {beta}, of star-forming galaxies over a wide range of luminosity (0.1L*{sub z=3} to 2L*{sub z=3}) at high redshift (z {approx} 7 to z {approx} 4). {beta} is measured using all ACS and WFC3/IR passbands uncontaminated by Ly{alpha} and spectral breaks. Extensive tests show that our {beta} measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their {beta}more » measurements. To reconcile these different results, we simulated both approaches and found that {beta} measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure {beta}. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer toward fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero point to redder colors from z {approx} 7 to z {approx} 4. This suggests that galaxies are evolving along a well-defined sequence in the L{sub UV}-color ({beta}) plane (a 'star-forming sequence'?). Dust appears to be the principal factor driving changes in the UV color {beta} with luminosity. These new larger {beta} samples lead to improved dust extinction estimates at z {approx} 4-7 and confirm that the extinction is essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (1) excellent agreement between the star formation rate (SFR) density at z {approx} 4-8 and that inferred from the stellar mass density; and (2) to higher specific star formation rates (SSFRs) at z {approx}> 4, suggesting that the SSFR may evolve modestly (by factors of {approx}2) from z {approx} 4-7 to z {approx} 2.« less
Eukaryotic algal phytochromes span the visible spectrum
Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark
2014-01-01
Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382
Formation and evolution of dwarf elliptical galaxies. I. Structural and kinematical properties
NASA Astrophysics Data System (ADS)
de Rijcke, S.; Michielsen, D.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.
2005-08-01
This paper is the first in a series in which we present the results of an ESO Large Program on the kinematics and internal dynamics of dwarf elliptical galaxies (dEs). We obtained deep major and minor axis spectra of 15 dEs and broad-band imaging of 22 dEs. Here, we investigate the relations between the parameters that quantify the structure (B-band luminosity L_B, half-light radius R_e, and mean surface brightness within the half-light radius Ie = LB / 2 π R_e^2) and internal dynamics (velocity dispersion σ) of dEs. We confront predictions of the currently popular theories for dE formation and evolution with the observed position of dEs in log LB vs. log σ, log LB vs. log R_e, log LB vs. log I_e, and log Re vs. log Ie diagrams and in the (log σ,log R_e,log I_e) parameter space in which bright and intermediate-luminosity elliptical galaxies and bulges of spirals define a Fundamental Plane (FP). In order to achieve statistical significance and to cover a parameter interval that is large enough for reliable inferences to be made, we merge the data set presented in this paper with two other recently published, equally large data sets. We show that the dE sequences in the various univariate diagrams are disjunct from those traced by bright and intermediate-luminosity elliptical galaxies and bulges of spirals. It appears that semi-analytical models (SAMs) that incorporate quiescent star formation with an essentially z-independent star-formation efficiency, combined with post-merger starbursts and the dynamical response after supernova-driven gas-loss, are able to reproduce the position of the dEs in the various univariate diagrams. SAMs with star-formation efficiencies that rise as a function of redshift are excluded since they leave the observed sequences traced by dEs virtually unpopulated. dEs tend to lie above the FP and the FP residual declines as a function of luminosity. Again, models that take into account the response after supernova-driven mass-loss correctly predict the position of dEs in the (log σ,log R_e,log I_e) parameter space as well as the trend of the FP residual as a function of luminosity. While these findings are clearly a success for the hierarchical-merging picture of galaxy formation, they do not necessarily invalidate the alternative “harassment” scenario, which posits that dEs stem from perturbed and stripped late-type disk galaxies that entered clusters and groups of galaxies about 5 Gyr ago.
Characterization of short interspersed elements (SINEs) in a red alga, Porphyra yezoensis.
Zhang, Wenbo; Lin, Xiaofei; Peddigari, Suresh; Takechi, Katsuaki; Takano, Hiroyoshi; Takio, Susumu
2007-02-01
Short interspersed element (SINE)-like sequences referred to as PySN1 and PySN2 were identified in a red alga, Porphyra yezoensis. Both elements contained an internal promoter with motifs (A box and B box) recognized by RNA polymerase III, and target site duplications at both ends. Genomic Southern blot analysis revealed that both elements were widely and abundantly distributed on the genome. 3' and 5' RACE suggested that PySN1 was expressed as a chimera transcript with flanking SINE-unrelated sequences and possessed the poly-A tail at the same position near the 3' end of PySN1.
SN 1987A - The evolution from red to blue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuchman, Y.; Wheeler, J.C.
1989-11-01
Envelope models in thermal and dynamic equilibrium are used to explore the nature of the transition of SK -69 deg 202, the progenitor of SN 1987A, from the Hayashi track to its final blue position in the H-R diagram. Loci of possible thermal equilibrium solutions are presented as a function of Teff and M(C/O), the mass of the carbon/oxygen core interior to the helium burning shell. It is found that uniform helium enrichment of the envelope results in red-blue evolution but that the resulting blue solution is much hotter than SK -69 deg 202. Solutions in which the only changemore » is to redistribute the portion of the envelope enriched in helium during main-sequence convective core contraction into a step function with Y of about 0.5 at a mass cut of about 10 solar masses give a natural transition from red to blue and a final value of Teff in agreement with observations. It is argued that SK -69 deg 202 probably fell on a post-Hayashi track sequence at moderate Teff. The possible connection of this sequence to the step distribution in the H-R diagram of the LMC. 19 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncalves, Thiago S.; Menendez-Delmestre, Karin; Martin, D. Christopher
2012-11-01
The bimodality in galaxy properties has been observed at low and high redshifts, with a clear distinction between star-forming galaxies in the blue cloud and passively evolving objects in the red sequence; the absence of galaxies with intermediate properties indicates that the quenching of star formation and subsequent transition between populations must happen rapidly. In this paper, we present a study of over 100 transiting galaxies in the so-called green valley at intermediate redshifts (z {approx} 0.8). By using very deep spectroscopy with the DEIMOS instrument at the Keck telescope we are able to infer the star formation histories ofmore » these objects and measure the stellar mass flux density transiting from the blue cloud to the red sequence when the universe was half its current age. Our results indicate that the process happened more rapidly and for more massive galaxies in the past, suggesting a top-down scenario in which the massive end of the red sequence is forming first. This represents another aspect of downsizing, with the mass flux density moving toward smaller galaxies in recent times.« less
RADIO EMISSION FROM RED-GIANT HOT JUPITERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony
2016-04-01
When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroralmore » radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.« less
Speth, Daan R; Lagkouvardos, Ilias; Wang, Yong; Qian, Pei-Yuan; Dutilh, Bas E; Jetten, Mike S M
2017-07-01
Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the possibility of anammox at BSI sites using metagenomic shotgun sequencing of DNA obtained from the BSI above the Discovery Deep brine pool. Analysis of sequencing reads matching the 16S rRNA and hzsA genes confirmed presence of anammox bacteria of the genus Scalindua. Phylogenetic analysis of the 16S rRNA gene indicated that this Scalindua sp. belongs to a distinct group, separate from the anammox bacteria in the seawater column, that contains mostly sequences retrieved from high-salt environments. Using coverage- and composition-based binning, we extracted and assembled the draft genome of the dominant anammox bacterium. Comparative genomic analysis indicated that this Scalindua species uses compatible solutes for osmoadaptation, in contrast to other marine anammox bacteria that likely use a salt-in strategy. We propose the name Candidatus Scalindua rubra for this novel species, alluding to its discovery in the Red Sea.
Variations in 5S rDNAs in diploid and tetraploid offspring of red crucian carp × common carp.
Ye, Lihai; Zhang, Chun; Tang, Xiaojun; Chen, Yiyi; Liu, Shaojun
2017-08-08
The allotetraploid hybrid fish (4nAT) that was created in a previous study through an intergeneric cross between red crucian carp (Carassius auratus red var., ♀) and common carp (Cyprinus carpio L., ♂) provided an excellent platform to investigate the effect of hybridization and polyploidization on the evolution of 5S rDNA. The 5S rDNAs of paternal common carp were made up of a coding sequence (CDS) and a non-transcribed spacer (NTS) unit, and while the 5S rDNAs of maternal red crucian carp contained a CDS and a NTS unit, they also contained a variable number of interposed regions (IPRs). The CDSs of the 5S rDNAs in both parental fishes were conserved, while their NTS units seemed to have been subjected to rapid evolution. The diploid hybrid 2nF 1 inherited all the types of 5S rDNAs in both progenitors and there were no signs of homeologous recombination in the 5S rDNAs of 2nF 1 by sequencing of PCR products. We obtained two segments of 5S rDNA with a total length of 16,457 bp from allotetraploid offspring 4nAT through bacterial artificial chromosome (BAC) sequencing. Using this sequence together with the 5S rDNA sequences amplified from the genomic DNA of 4nAT, we deduced that the 5S rDNAs of 4nAT might be inherited from the maternal progenitor red crucian carp. Additionally, the IPRs in the 5S rDNAs of 4nAT contained A-repeats and TA-repeats, which was not the case for the IPRs in the 5S rDNAs of 2nF 1 . We also detected two signals of a 200-bp fragment of 5S rDNA in the chromosomes of parental progenitors and hybrid progenies by fluorescence in situ hybridization (FISH). We deduced that during the evolution of 5S rDNAs in different ploidy hybrid fishes, interlocus gene conversion events and tandem repeat insertion events might occurred in the process of polyploidization. This study provided new insights into the relationship among the evolution of 5S rDNAs, hybridization and polyploidization, which were significant in clarifying the genome evolution of polyploid fish.
Stellar Populations with the LSST
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Olsen, K.; LSST Stellar Populations Collaboration
2006-12-01
The LSST will produce a multi-color map and photometric object catalog of half the sky to g 27.5(5σ). Strategically cadenced time-space sampling of each field spanning ten years will allow variability, proper motion and parallax measurements for objects brighter than g 25. As part of providing an unprecedented map of the Galaxy, the accurate multi-band photometry will permit photometric parallaxes, chemical abundances and a handle on ages via colors at turn-off for main-sequence stars at all distances within the Galaxy, permitting a comprehensive study of star formation histories (SFH) and chemical evolution for field stars. With a geometric parallax accuracy of 1mas, LSST will produce a robust complete sample of the solar neighborhood stars. While delivering parallax accuracy comparable to HIPPARCOS, LSST will extend the catalog to more than a 10 magnitudes fainter limit, and will be complete to MV 15. In the Magellanic Clouds too, the photometry will reach MV +8, allowing the SFH and chemical signatures in the expansive outer extremities to be gleaned from their main sequence stars. This in turn will trace the detailed interaction of the Clouds with the Galaxy halo. The LSST time sampling will identify and characterize variable stars of all types, from time scales of 1hr to several years, a feast for variable star astrophysics. Cepheids and LPVs in all galaxies in the Sculptor, M83 and Cen-A groups are obvious data products: comparative studies will reveal systematic differences with galaxy properties, and help to fine tune the rungs of the distance ladder. Dwarf galaxies within 10Mpc that are too faint to find from surface brightness enhancements will be revealed via over-densities of their red giants: this systematic census will extend the luminosity function of galaxies to the faint limit. Novae discovered by LSST time sampling will trace intergalactic stars out to the Virgo and Fornax clusters.
Microsatellite markers for northern red oak (Fagaceae: Quercus rubra)
Preston R. Aldrich; Charles H. Michler; Weilin Sun; Jeanne Romero-Severson
2002-01-01
We provide primer sequences for 14 (GA)n microsatellite loci developed from northern red oak, an important timber species. We screened loci using two sets of samples. A parent-offspring set included DNA from seven acorns collected from one mother tree along with maternal DNA, to determine that all progeny carried a maternal allele at each locus....