Sample records for red shell defining

  1. Review on the preparation and modified technologies of microencapsulated red phosphorus

    NASA Astrophysics Data System (ADS)

    Cheng, Chen; Du, Shiguo; Yan, Jun

    2017-10-01

    Coated by a compact shell structure, pristine red phosphorus transforms into microcapsule red phosphorus (MCRP) with lower PH3 emission and improved compatibility with polymer matrix. Diverse kinds of microcapsule red phosphorus are classified by shell material, i.e.organic shell material MCRP, inorganic shell material MCRP and composite shell material MCRP. Furthermore, the modified technology to make up deficiencies of MCRP is also introduced in the lecture. Aiming at the existing microencapsulation craft, a more harmless and high-efficiency process should be presented, and ultrafine MCRP is also urgent to be prepared.

  2. Interacting supernovae from photoionization-confined shells around red supergiant stars

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  3. Interacting supernovae from photoionization-confined shells around red supergiant stars.

    PubMed

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M-A; Moriya, Takashi J; Neilson, Hilding R

    2014-08-21

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  4. Sensing of moisture content in in-shell peanuts by NIR (Near Infra Red) reflectance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    It was found earlier that moisture content (MC) of intact kernels of grain and nuts could be determined by Near Infra Red (NIR) reflectance spectrometry. However, if the MC values can be determined while the nuts are in their shells, it would save lot of labor and money spent in shelling and cleanin...

  5. Integration of Next Generation Sequencing and EPR Analysis to Uncover Molecular Mechanism Underlying Shell Color Variation in Scallops

    PubMed Central

    Sun, Xiujun; Liu, Zhihong; Zhou, Liqing; Wu, Biao; Dong, Yinghui; Yang, Aiguo

    2016-01-01

    The Yesso scallop Patinopecten yessoensis displays polymorphism in shell colors, which is of great interest for the scallop industry. To identify genes involved in the shell coloration, in the present study, we investigate the transcriptome differences by Illumina digital gene expression (DGE) analysis in two extreme color phenotypes, Red and White. Illumina sequencing yields a total of 62,715,364 clean sequence reads, and more than 85% reads are mapped into our previously sequenced transcriptome. There are 25 significantly differentially expressed genes between Red and White scallops. EPR (Electron paramagnetic resonance) analysis has identified EPR spectra of pheomelanin and eumelanin in the red shells, but not in the white shells. Compared to the Red scallops, the White scallops have relatively higher mRNA expression in tyrosinase genes, but lower expression in other melanogensis-associated genes. Meantime, the relatively lower tyrosinase protein and decreased tyrosinase activity in White scallops are suggested to be associated with the lack of melanin in the white shells. Our findings highlight the functional roles of melanogensis-associated genes in the melanization process of scallop shells, and shed new lights on the transcriptional and post-transcriptional mechanisms in the regulation of tyrosinase activity during the process of melanin synthesis. The present results will assist our molecular understanding of melanin synthesis underlying shell color polymorphism in scallops, as well as other bivalves, and also help the color-based breeding in shellfish aquaculture. PMID:27563719

  6. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method.

    PubMed

    Habibi, Mohammad Hossein; Rahmati, Mohammad Hossein

    2015-02-25

    Photocatalytic degradation of Congo red was investigated using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method in aqueous solution under irradiation. Field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were used for the morphological and structural characterization of ZnO-CdS core-shell nanostructures. XRD results showed diffractions of wurtzite zinc oxide core and wurtzite cadmium sulfide shell. FESEM results showed that nanoparticles are nearly hexagonal with an average diameter of about 50 nm. The effect of catalyst loading, UV-light irradiation time and solution pH on photocatalytic degradation of Congo red was studied and optimized values were obtained. Results showed that the employment of efficient photocatalyst and selection of optimal operational parameters may lead to complete decolorization of dye solutions. It was found that ZnO-CdS core-shell nano-structure is more favorable for the degradation of Congo red compare to pure ZnO or pure CdS due to lower electron hole recombination. The results showed that the photocatalytic degradation rate of Congo red is enhanced with increasing the content of ZnO up to ZnO(0.2 M)/CdS(0.075 M) which is reached 88.0% within 100 min irradiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Bandgap engineered reverse type-I CdTe/InP/ZnS core-shell nanocrystals for the near-infrared.

    PubMed

    Kim, Sunghoon; Shim, Wooyoung; Seo, Heonjin; Hyun Bae, Je; Sung, Jaeyoung; Choi, Seung Hong; Moon, Woo Kyung; Lee, Gwang; Lee, Bunyeoul; Kim, Sang-Wook

    2009-03-14

    New quantum dots were fabricated with a core/shell/shell structure consisting of CdTe core/InP shell/ZnS shell of which the InP shell causes a red-shift to the NIR region and the ZnS shell imparts photo-stability; toxicity tests on mammalian cells and NIR imaging of a mouse highlight their potential applications in biomedical imaging.

  8. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars.

    PubMed

    Bedding, Timothy R; Mosser, Benoit; Huber, Daniel; Montalbán, Josefina; Beck, Paul; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P; García, Rafael A; Miglio, Andrea; Stello, Dennis; White, Timothy R; De Ridder, Joris; Hekker, Saskia; Aerts, Conny; Barban, Caroline; Belkacem, Kevin; Broomhall, Anne-Marie; Brown, Timothy M; Buzasi, Derek L; Carrier, Fabien; Chaplin, William J; Di Mauro, Maria Pia; Dupret, Marc-Antoine; Frandsen, Søren; Gilliland, Ronald L; Goupil, Marie-Jo; Jenkins, Jon M; Kallinger, Thomas; Kawaler, Steven; Kjeldsen, Hans; Mathur, Savita; Noels, Arlette; Aguirre, Victor Silva; Ventura, Paolo

    2011-03-31

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼ 50 seconds) and those that are also burning helium (period spacing ∼ 100 to 300 seconds).

  9. Symbolic use of marine shells and mineral pigments by Iberian Neandertals

    PubMed Central

    Zilhão, João; Angelucci, Diego E.; Badal-García, Ernestina; d’Errico, Francesco; Daniel, Floréal; Dayet, Laure; Douka, Katerina; Higham, Thomas F. G.; Martínez-Sánchez, María José; Montes-Bernárdez, Ricardo; Murcia-Mascarós, Sonia; Pérez-Sirvent, Carmen; Roldán-García, Clodoaldo; Vanhaeren, Marian; Villaverde, Valentín; Wood, Rachel; Zapata, Josefina

    2010-01-01

    Two sites of the Neandertal-associated Middle Paleolithic of Iberia, dated to as early as approximately 50,000 years ago, yielded perforated and pigment-stained marine shells. At Cueva de los Aviones, three umbo-perforated valves of Acanthocardia and Glycymeris were found alongside lumps of yellow and red colorants, and residues preserved inside a Spondylus shell consist of a red lepidocrocite base mixed with ground, dark red-to-black fragments of hematite and pyrite. A perforated Pecten shell, painted on its external, white side with an orange mix of goethite and hematite, was abandoned after breakage at Cueva Antón, 60 km inland. Comparable early modern human-associated material from Africa and the Near East is widely accepted as evidence for body ornamentation, implying behavioral modernity. The Iberian finds show that European Neandertals were no different from coeval Africans in this regard, countering genetic/cognitive explanations for the emergence of symbolism and strengthening demographic/social ones. PMID:20080653

  10. Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3.

    PubMed

    Jung, W J; Jo, G H; Kuk, J H; Kim, K Y; Park, R D

    2006-06-01

    For one-step extraction of chitin from red crab shell waste, cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074, a lactic-acid-producing bacterium, and Serratia marcescens FS-3, a protease-producing bacterium, was conducted. Fermentation with single strain (L. 3074 or FS-3) was also conducted. At day 7, the pH in L. 3074, FS-3, and L. 3074+FS-3 (1:1) treatment decreased from 6.90 to 3.30, 5.88, and 3.48, respectively. Ash content in the residue after fermentation treatment of crab shells in L. 3074 and L. 3074+FS-3 (1:1) treatment drastically decreased from 41.2% to 3.19 and 1.15%, respectively. In L. 3074+FS-3 (1:1) cofermentation, the level of demineralization was the highest value of 97.2%, but the level of deproteinization in the cofermentation was 52.6% at day 7. Protein content in the treatment of FS-3 alone reduced from 22.4 to 3.62%. These results indicate that cofermentation of the shells using the two strains is efficient and applicable for the one-step extraction of crude chitin from red crab shell waste.

  11. Isolation and cDNA cloning of a novel red colour-related pigment-binding protein derived from the shell of the shrimp, Litopenaeus vannamei.

    PubMed

    Pan, Chuang; Ishizaki, Shoichiro; Nagashima, Yuji; Gao, Jialong; Watabe, Shugo

    2018-02-15

    Pigment-binding proteins play important roles in crustacean shell colour change. In this study, a red colour-related pigment-binding protein, designated LvPBP75, was purified from the shell of Litopenaeus vannamei. HPLC and PAGE analysis showed that LvPBP75 was a homogeneous monomer with molecular mass of 75kDa. Peptide mass fingerprint analysis revealed that LvPBP75 belonged to hemocyanin, and the released pigment from heated LvPBP75 showed a λ max at 481nm in acetone. The significant red-colour change temperatures were detected at 30 and 80°C, respectively. Based on the determined amino acid fragments, a full-length cDNA of LvPBP75 was cloned and sequenced. The ORF encodes a protein of 662 amino acids having 80% identity with penaeidae hemocyanin. These results strongly suggest a novel function of hemocyanin, namely binding with pigment, and its involvement in L. vannamei shell colour change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The feasibility of bomb radiocarbon analysis to support an age-at-length relationship for red abalone, Haliotis rufescens Swainson in northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaf, R T; Andrews, A H; Cailliet, G M

    2009-01-07

    Analysis of bomb generated radiocarbon ({sup 14}C) changes in a red abalone, Haliotis rufescens Swainson shell was used to investigate age-at-length relationships derived from data from a previous multi-year, multi-site tag-recapture study. Shell carbonate was extracted from four successive growth trajectory locations in a single shell with a length of 251 mm MSL. Extraction locations were based on VBGF predictions and chosen to span the initial rise of the {sup 14}C-bomb pulse that is known to have occurred in surface ocean waters during 1958 {+-} 1 y in the northeast Pacific. The close temporal correspondence of the red abalone samplemore » series to regional {Delta}{sup 14}C records demonstrated the utility of the technique for validating age-at-length relationships for the red abalone. The findings provided support for a mean VBGF derived age of 32 y (range 30 to 33 y) for the specimen; however, the analysis of {sup 14}C data indicated that the specimen could be older.« less

  13. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less

  14. Core-Shell Processing of Natural Pigment: Upper Palaeolithic Red Ochre from Lovas, Hungary.

    PubMed

    Sajó, István E; Kovács, János; Fitzsimmons, Kathryn E; Jáger, Viktor; Lengyel, György; Viola, Bence; Talamo, Sahra; Hublin, Jean-Jacques

    2015-01-01

    Ochre is the common archaeological term for prehistoric pigments. It is applied to a range of uses, from ritual burials to cave art to medications. While a substantial number of Palaeolithic paint mining pits have been identified across Europe, the link between ochre use and provenance, and their antiquity, has never yet been identified. Here we characterise the mineralogical signature of core-shell processed ochre from the Palaeolithic paint mining pits near Lovas in Hungary, using a novel integration of petrographic and mineralogical techniques. We present the first evidence for core-shell processed, natural pigment that was prepared by prehistoric people from hematitic red ochre. This involved combining the darker red outer shell with the less intensely coloured core to efficiently produce an economical, yet still strongly coloured, paint. We demonstrate the antiquity of the site as having operated between 14-13 kcal BP, during the Epigravettian period. This is based on new radiocarbon dating of bone artefacts associated with the quarry site. The dating results indicate the site to be the oldest known evidence for core-shell pigment processing. We show that the ochre mined at Lovas was exported from the site based on its characteristic signature at other archaeological sites in the region. Our discovery not only provides a methodological framework for future characterisation of ochre pigments, but also provides the earliest known evidence for "value-adding" of products for trade.

  15. Synthesis and White-Light Emission of ZnO/HfO2: Eu Nanocables

    PubMed Central

    2010-01-01

    ZnO/HfO2:Eu nanocables were prepared by radio frequency sputtering with electrospun ZnO nanofibers as cores. The well-crystallized ZnO/HfO2:Eu nanocables showed a uniform intact core–shell structure, which consisted of a hexagonal ZnO core and a monoclinic HfO2 shell. The photoluminescence properties of the samples were characterized. A white-light band emission consisted of blue, green, and red emissions was observed in the nanocables. The blue and green emissions can be attributed to the zinc vacancy and oxygen vacancy defects in ZnO/HfO2:Eu nanocables, and the yellow–red emissions are derived from the inner 4f-shell transitions of corresponding Eu3+ ions in HfO2:Eu shells. Enhanced white-light emission was observed in the nanocables. The enhancement of the emission is ascribed to the structural changes after coaxial synthesis. PMID:20730130

  16. Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films

    NASA Astrophysics Data System (ADS)

    Gardelis, S.; Fakis, M.; Droseros, N.; Georgiadou, D.; Travlos, A.; Nassiopoulou, A. G.

    2017-01-01

    We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed.

  17. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    PubMed

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%.

  18. The Mendelian inheritance of rare flesh and shell colour variants in the black-lipped pearl oyster (Pinctada margaritifera).

    PubMed

    Ky, Chin-Long; Nakasai, Seiji; Pommier, Steve; Sham Koua, Manaarii; Devaux, Dominique

    2016-10-01

    Pinctada margaritifera is French Polynesia's most economically important aquaculture species. This pearl oyster has the specific ability to produce cultured pearls with a very wide range of colours, depending on the colour phenotypes of donor oysters used. Its aquaculture is still based on natural spat collection from wild stocks. We investigated three rare colour variants of P. margaritifera - orange flesh, and red and white shell colour phenotypes - in comparison with the wild-type black flesh and shell commonly found in this species. The study aimed to assess the geographic distribution and genetic basis of these colour variants. Colour frequencies were evaluated during transfer and graft processes of pearl oyster seed captured at collector stations. Among the collection locations studied, Mangareva Island showed the highest rate of the orange flesh phenotype, whereas Takaroa and Takume atolls had relatively high rates of red and white shell phenotypes respectively. Broodstocks were made of these rare colour variants, and crosses were performed to produce first- and second-generation progenies to investigate segregation. The results were consistent with Mendelian ratios and suggest a distinct model with no co-dominance: (i) a two-allele model for flesh trait, whereby the orange allele is recessive to the black fleshed type, and (ii) a three-allele model for shell trait, whereby the black wild-type allele is dominant to the red coloration, which is dominant to the white shell. Furthermore, the proposed model provides the basis for producing selected donor pearl oyster lines through hatchery propagation. © 2016 Stichting International Foundation for Animal Genetics.

  19. HI emission from the red giant Y CVn with the VLA and FAST

    NASA Astrophysics Data System (ADS)

    Hoai, Do T.; Nhung, Pham T.; Matthews, Lynn D.; Gérard, Eric; Le Bertre, Thibaut

    2017-07-01

    Imaging studies with the Very Large Array (VLA) have revealed HI emission associated with the extended circumstellar shells of red giants. We analyze the spectral map obtained on Y CVn, a J-type carbon star on the Asymptotic Giant Branch. The HI line profiles can be interpreted with a model of a detached shell resulting from the interaction of a stellar outflow with the local interstellar medium. We reproduce the spectral map by introducing a distortion along a direction corresponding to the star’s motion in space. We then use this fitting to simulate observations expected from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), and discuss its potential for improving our description of the outer regions of circumstellar shells.

  20. Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda)

    PubMed Central

    Ito, S.; Wakamatsu, K.; Goral, T.; Edwards, N. P.; Wogelius, R. A.; Henkel, T.; de Oliveira, L. F. C.; Maia, L. F.; Strekopytov, S.; Speiser, D. I.; Marsden, J. T.

    2016-01-01

    Colour and pattern are key traits with important roles in camouflage, warning and attraction. Ideally, in order to begin to understand the evolution and ecology of colour in nature, it is important to identify and, where possible, fully characterise pigments using biochemical methods. The phylum Mollusca includes some of the most beautiful exemplars of biological pigmentation, with the vivid colours of sea shells particularly prized by collectors and scientists alike. Biochemical studies of molluscan shell colour were fairly common in the last century, but few of these studies have been confirmed using modern methods and very few shell pigments have been fully characterised. Here, we use modern chemical and multi-modal spectroscopic techniques to identify two porphyrin pigments and eumelanin in the shell of marine snails Clanculus pharaonius and C margaritarius. The same porphyrins were also identified in coloured foot tissue of both species. We use high performance liquid chromatography (HPLC) to show definitively that these porphyrins are uroporphyrin I and uroporphyrin III. Evidence from confocal microscopy analyses shows that the distribution of porphyrin pigments corresponds to the striking pink-red of C. pharaonius shells, as well as pink-red dots and lines on the early whorls of C. margaritarius and yellow-brown colour of later whorls. Additional HPLC results suggest that eumelanin is likely responsible for black spots. We refer to the two differently coloured porphyrin pigments as trochopuniceus (pink-red) and trochoxouthos (yellow-brown) in order to distinguish between them. Trochopuniceus and trochoxouthos were not found in the shell of a third species of the same superfamily, Calliostoma zizyphinum, despite its superficially similar colouration, suggesting that this species has different shell pigments. These findings have important implications for the study of colour and pattern in molluscs specifically, but in other taxa more generally, since this study shows that homology of visible colour cannot be assumed without identification of pigments. PMID:27367426

  1. Identification of Shell Colour Pigments in Marine Snails Clanculus pharaonius and C. margaritarius (Trochoidea; Gastropoda).

    PubMed

    Williams, S T; Ito, S; Wakamatsu, K; Goral, T; Edwards, N P; Wogelius, R A; Henkel, T; de Oliveira, L F C; Maia, L F; Strekopytov, S; Jeffries, T; Speiser, D I; Marsden, J T

    2016-01-01

    Colour and pattern are key traits with important roles in camouflage, warning and attraction. Ideally, in order to begin to understand the evolution and ecology of colour in nature, it is important to identify and, where possible, fully characterise pigments using biochemical methods. The phylum Mollusca includes some of the most beautiful exemplars of biological pigmentation, with the vivid colours of sea shells particularly prized by collectors and scientists alike. Biochemical studies of molluscan shell colour were fairly common in the last century, but few of these studies have been confirmed using modern methods and very few shell pigments have been fully characterised. Here, we use modern chemical and multi-modal spectroscopic techniques to identify two porphyrin pigments and eumelanin in the shell of marine snails Clanculus pharaonius and C margaritarius. The same porphyrins were also identified in coloured foot tissue of both species. We use high performance liquid chromatography (HPLC) to show definitively that these porphyrins are uroporphyrin I and uroporphyrin III. Evidence from confocal microscopy analyses shows that the distribution of porphyrin pigments corresponds to the striking pink-red of C. pharaonius shells, as well as pink-red dots and lines on the early whorls of C. margaritarius and yellow-brown colour of later whorls. Additional HPLC results suggest that eumelanin is likely responsible for black spots. We refer to the two differently coloured porphyrin pigments as trochopuniceus (pink-red) and trochoxouthos (yellow-brown) in order to distinguish between them. Trochopuniceus and trochoxouthos were not found in the shell of a third species of the same superfamily, Calliostoma zizyphinum, despite its superficially similar colouration, suggesting that this species has different shell pigments. These findings have important implications for the study of colour and pattern in molluscs specifically, but in other taxa more generally, since this study shows that homology of visible colour cannot be assumed without identification of pigments.

  2. Core-Shell Processing of Natural Pigment: Upper Palaeolithic Red Ochre from Lovas, Hungary

    PubMed Central

    Sajó, István E.; Kovács, János; Fitzsimmons, Kathryn E.; Jáger, Viktor; Lengyel, György; Viola, Bence; Talamo, Sahra; Hublin, Jean-Jacques

    2015-01-01

    Ochre is the common archaeological term for prehistoric pigments. It is applied to a range of uses, from ritual burials to cave art to medications. While a substantial number of Palaeolithic paint mining pits have been identified across Europe, the link between ochre use and provenance, and their antiquity, has never yet been identified. Here we characterise the mineralogical signature of core-shell processed ochre from the Palaeolithic paint mining pits near Lovas in Hungary, using a novel integration of petrographic and mineralogical techniques. We present the first evidence for core-shell processed, natural pigment that was prepared by prehistoric people from hematitic red ochre. This involved combining the darker red outer shell with the less intensely coloured core to efficiently produce an economical, yet still strongly coloured, paint. We demonstrate the antiquity of the site as having operated between 14–13 kcal BP, during the Epigravettian period. This is based on new radiocarbon dating of bone artefacts associated with the quarry site. The dating results indicate the site to be the oldest known evidence for core-shell pigment processing. We show that the ochre mined at Lovas was exported from the site based on its characteristic signature at other archaeological sites in the region. Our discovery not only provides a methodological framework for future characterisation of ochre pigments, but also provides the earliest known evidence for “value-adding” of products for trade. PMID:26147808

  3. 33 CFR 87.1 - Need of assistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; (c) Rockets or shells, throwing red stars fired one at a time at short intervals; (d) A signal made... burning tar barrel, oil barrel, etc.); (i) A rocket parachute flare or a hand flare showing a red light...

  4. 33 CFR 87.1 - Need of assistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; (c) Rockets or shells, throwing red stars fired one at a time at short intervals; (d) A signal made... burning tar barrel, oil barrel, etc.); (i) A rocket parachute flare or a hand flare showing a red light...

  5. 33 CFR 87.1 - Need of assistance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; (c) Rockets or shells, throwing red stars fired one at a time at short intervals; (d) A signal made... burning tar barrel, oil barrel, etc.); (i) A rocket parachute flare or a hand flare showing a red light...

  6. 33 CFR 87.1 - Need of assistance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; (c) Rockets or shells, throwing red stars fired one at a time at short intervals; (d) A signal made... burning tar barrel, oil barrel, etc.); (i) A rocket parachute flare or a hand flare showing a red light...

  7. 33 CFR 87.1 - Need of assistance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; (c) Rockets or shells, throwing red stars fired one at a time at short intervals; (d) A signal made... burning tar barrel, oil barrel, etc.); (i) A rocket parachute flare or a hand flare showing a red light...

  8. Economic design in a long-distance migrating molluscivore: how fast-fuelling red knots in Bohai Bay, China, get away with small gizzards.

    PubMed

    Yang, Hong-Yan; Chen, Bing; Ma, Zhi-Jun; Hua, Ning; van Gils, Jan A; Zhang, Zheng-Wang; Piersma, Theunis

    2013-10-01

    We carried out an observational and experimental study to decipher how resource characteristics, in interaction with the predator's phenotype, constrain a fitness-determining performance measure, i.e. refuelling in a migrant bird. Two subspecies of red knot (Calidris canutus rogersi and C. c. piersmai) use northern Bohai Bay, Yellow Sea, China, for the final prebreeding stopover, during their 10,000-15,000 km long migrations between wintering and breeding areas. Here, they feed on small bivalves, especially 2-7 mm long Potamocorbula laevis. With an average stay of 29 days, and the need to store 80 g of fat for the onward flights to high-Arctic breeding grounds, red knots need to refuel fast. Using existing knowledge, we expected them to achieve this on the basis of (1) prey with high flesh to shell mass ratios, (2) large gizzards to crush the ingested molluscs, or (3) a combination of the two. Rejecting all three predictions, we found that red knots staging in Bohai Bay had the smallest gizzards on record (4.9 ± 0.8 g, mean ± s.e.m., N = 27), and also found that prey quality of P. laevis is much lower than predicted for the measured gizzard size (i.e. 1.3 rather than the predicted 4.5 kJ g(-1) dry shell mass, DM(shell)). The estimated handling time of P. laevis (0.2 s) is much shorter than the observed time between two prey ingestions (0.7 s), indicating that prey handling time is no constraint. Based on field observations of dropping rates and on indoor digestion trails, the shell processing rate was estimated at 3.9 mg DM(shell) s(-1), i.e. three times higher the rate previously predicted for red knots eating as fast as they can with the measured gizzard size. This is explained by the small and easily crushed P. laevis enabling high processing rates. As P. laevis also occurred in high densities, the metabolizable energy intake rate of red knots with small gizzards at 5 J s(-1) was as high as at northward staging sites elsewhere in the world. Currently, therefore, food characteristics in Bohai Bay are such that red knots can refuel fast whilst economizing on the size of their gizzard. These time-stressed migrants thus provide an elegant example of symmorphosis.

  9. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Qian, Li Peng; Zhou, Li Han; Too, Heng-Phon; Chow, Gan-Moog

    2011-02-01

    Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles ( 70-80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles ( 6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by 31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.

  10. A preliminary study for identification of candidate AFLP markers under artificial selection for shell color in pearl oyster Pinctada fucata.

    PubMed

    Zou, Keshu; Zhang, Dianchang; Guo, Huayang; Zhu, Caiyan; Li, Min; Jiang, Shigui

    2014-05-25

    Pearl oyster Pinctada fucata is widely cultured to produce seawater pearl in South China, and the quality of pearl is significantly affected by its shell color. Thus the Pearl Oyster Selective Breeding Program (POSBP) was carried out for the shell color and growth traits. The black (B), gold (G), red (R) and white (W) shell strains with fast growth trait were achieved after five successive generation selection. In this study, AFLP technique was used to scan genome of four strains with different shell colors to identify the candidate markers under artificial selection. Eight AFLP primer combinations were screened and yielded 688 loci, 676 (98.26%) of which were polymorphic. In black, gold, red and white strains, the percentage of polymorphic loci was 90.41%, 87.79%, 93.60% and 93.31%, respectively, Nei's gene diversity was 0.3225, 0.2829, 0.3221 and 0.3292, Shannon's information index was 0.4801, 0.4271, 0.4825 and 0.4923, and the value of FST was 0.1805. These results suggested that the four different shell color strains had high genetic diversity and great genetic differentiation among strains, which had been subjected to the continuous selective pressures during the artificial selective breeding. Furthermore, six outlier loci were considered as the candidate markers under artificial selection for shell color. This study provides a molecular evidence for the inheritance of shell color of P. fucata. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.

    PubMed

    le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J

    2018-02-14

    To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.

  12. Invertebrate shells (mollusca, foraminifera) as pollution indicators, Red Sea Coast, Egypt

    NASA Astrophysics Data System (ADS)

    Youssef, Mohamed; Madkour, Hashem; Mansour, Abbas; Alharbi, Wedad; El-Taher, Atef

    2017-09-01

    To assess the degree of pollution and its impact on the environment along the Red Sea Coast, the most abundant nine species of recent benthic foraminifera and three species of molluscan shells have been selected for the analysis of Fe, Mn, Zn, Cu, Pb, Ni, Co, and Cd concentrations. The selected foraminiferal species are: Textularia agglutinans, Amphispsorus hemprichii, Sorites marginalis, Peneroplis planatus, Borelis schlumbergeri, Amphistegina lessonii, Ammonia beccarii, Operculina gaimairdi, and Operculinella cumingii. The selected molluscan shells are: Lambis truncata and Strombus tricornis (gastropods) and Tridacana gigas (bivalves). The inorganic material analysis of foraminifera and molluscs from the Quseir and Safaga harbors indicates that foraminifera tests include higher concentrations of heavy metals such as Fe and Mn than molluscan shells. These results are supported by the black tests of porcelaneous foraminifera and reflect iron selectivity. The Cd and Pb concentrations in molluscan shells are high in the El Esh Area because of oil pollution at this site. The Cu, Zn, and Ni concentrations in the studied invertebrates are high at Quseir Harbor and in the El Esh Area because of the strong influence of terrigenous materials that are rich in these metals. The heavy metal contamination is mostly attributed to anthropogenic sources.

  13. Fabrication and investigation of effect of core size in heterostructure PbS/CdS core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, D.; Hussain, A. M. P.

    2018-04-01

    PbS/CdS core/shell (CS) nanoparticles (NPs) were fabricated with three different concentrations of PbS core and CdS shell. Formation of core/shell heterostructure was confirmed from X-ray diffraction studies. The diffraction patterns exhibited formation of cubic phase and polycrystalline core/shell nanostructure. The crystalline sizes calculated from Williamson-Hall plot exhibited increase with molar concentration of precursors with decrease in strain. High resolution electron microscopy studies also confirm the formation of core/shell structure with particle size around 10 nm. A large blue-shift for PbS core compared to its bulk and small red-shift for the PbS/CdS core/shell as compared to the core is being observed in absorption spectra.

  14. 7 CFR 56.1 - Meaning of words and terms defined.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) VOLUNTARY GRADING OF SHELL EGGS Grading of Shell Eggs Definitions § 56.1 Meaning of words and terms defined. For the purpose of... distribution of shell eggs. Auditing services are performed by graders authorized by the Secretary to perform...

  15. Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery.

    PubMed

    Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei

    2017-03-01

    Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced red emission of 808 nm excited upconversion nanoparticles by optimizing the composition of shell for efficient generation of singlet oxygen

    NASA Astrophysics Data System (ADS)

    Liu, Jinxue; Zhang, Tingbin; Song, Xiaoyan; Xing, Jinfeng

    2018-01-01

    With the aim to enhance the upconversion luminescence (UCL) intensity, much attention was paid to reduce the energy-back transfer from Er3+ ions to Nd3+ ions by constructing various kinds of multilayer upconversion nanoparticles (UCNPs). However, the energy-back transfer was difficult to be completely eliminated. Also, the thick shell of multilayer UCNPs is not favourable for effective Förster resonance energy transfer (FRET) in photodynamic therapy (PDT) system. Herein, an effective and facile method was applied to prepare UCNPs by optimizing the composition to largely enhance the red emission (at 660 nm) for efficient generation of singlet oxygen (1O2). In detail, the concentrations of Nd3+ ions and Yb3+ ions doped in the sensitizing shell were systematically researched to balance the energy back-transfer and the light harvest ability. The optimal emission and a relatively high Red/Green (R/G) ratio of NaYF4:Yb,Er,Nd@NaYF4:Yb0.1Nd0.2 UCNPs were obtained simultaneously. Furthermore, the emission under 980 nm excitation demonstrated the energy back-transfer from Er3+ to Yb3+ ions was also notable which was largely ignored previously. Then, UCNPs were encapsulated into mesoporous silica shell, and the photosensitizer Chlorin e6 (Ce6) was covalently conjugated to form a non-leaking nanoplatform. The efficiency of 1O2 generation obviously increased with the enhanced emission of UCNPs.

  17. Inverse Photonic Glasses by Packing Bidisperse Hollow Microspheres with Uniform Cores.

    PubMed

    Kim, Seung-Hyun; Magkiriadou, Sofia; Rhee, Do Kyung; Lee, Doo Sung; Yoo, Pil J; Manoharan, Vinothan N; Yi, Gi-Ra

    2017-07-19

    A major fabrication challenge is producing disordered photonic materials with an angle-independent structural red color. Theoretical work has shown that such a color can be produced by fabricating inverse photonic glasses with monodisperse, nontouching voids in a silica matrix. Here, we demonstrate a route toward such materials and show that they have an angle-independent red color. We first synthesize monodisperse hollow silica particles with precisely controlled shell thickness and then make glassy colloidal structures by mixing two types of hollow particles with the same core size and different shell thicknesses. We then infiltrate the interstices with index-matched polymers, producing disordered porous materials with uniform, nontouching air voids. This procedure allows us to control the light-scattering form factor and structure factor of these porous materials independently, which is not possible to do in photonic glasses consisting of packed solid particles. The structure factor can be controlled by the shell thickness, which sets the distance between pores, whereas the pore size determines the peak wave vector of the form factor, which can be set below the visible range to keep the main structural color pure. By using a binary mixture of 246 and 268 nm hollow silica particles with 180 nm cores in an index-matched polymer matrix, we achieve angle-independent red color that can be tuned by controlling the shell thickness. Importantly, the width of the reflection peak can be kept constant, even for larger interparticle distances.

  18. Experimental evaluation of fluorescent (alizarin red S and calcein) and clip-tag markers for stock assessment of ark shell, Anadara broughtonii

    NASA Astrophysics Data System (ADS)

    Zhou, Shanshan; Zhang, Xiumei; Li, Wentao; Li, Long; Cai, Xingyuan

    2017-03-01

    Release programs to enhance stocks of ark shell ( Anadara broughtonii) have been undertaken in a number of Asian countries, but their effectiveness has rarely been investigated owing to a lack of marking methods. The quality and longevity of fluorescent markers, alizarin red S (ARS) and calcein (CAL) (200 and 300 mg/L), as well as clip tags, were tested on juvenile A. broughtonii. No significant differences in survival or shell growth were observed in juveniles stained with either of the two fluorochromes after a 160-day culture period, but the retention rate was 100% after 1 year. Fluorescent marks (≥grade 3) were observable microscopically in juveniles stained with the two fluorochromes, and some fluorescent marks (≥grade 4) were visible with the naked eye after 1 year. ARS-marked shells were brighter than those marked with CAL, and shells marked with 300 mg/L of the fluorochromes were easier to detect than those marked with 200 mg/L. Clip tags were incorporated into the shell as the bivalve grew, and the retention rate was 64.25% after 160 days. Significant differences in survival (at 30 days), shell length (at 60, 90, 120, and 160 days), and wet weight (at 90, 120, and 160 days) were observed between the clip-tagged and control groups (all P< 0.05), indicating that the tags may have passive effects on the ark shell. The results suggest that both ARS and CAL are suitable to mark A. broughtonii for large-scale restocking programs, and that optimal marking quality was achieved with 300 mg/L ARS. Lighter and smaller clip tags need to be developed to reduce injury and increase survival rate of clams.

  19. Tropical sea snail shells: Possible exotic sources for ceramic biomaterial synthesis

    NASA Astrophysics Data System (ADS)

    Oktar, F. N.; Kiyici, I. A.; Gökçe, H.; Aǧaogulları, D.; Kayali, E. S.

    2013-12-01

    In this study, chemical and structural properties of sea snail shell based bioceramic materials (i.e. hydroxyapatite, whitlockite and other phases) are produced by using mechano-chemical (ultrasonic) conversion method. For this purpose, differential thermal and gravimetric analysis (DTA/TG), X-ray diffraction, infra-red (IR) and scanning electron microscope (SEM) studies are performed.

  20. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  1. Razor clam (Ensis directus) shell as a low-cost adsorbent for the removal of Congo red and Rhodamine B dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Areibat, Lila Elamari Mohamed; Kamari, Azlan

    2017-05-01

    Wastewater originating from industrial effluents contains many types of pollutants including dyes. Anionic and cationic dyes are very toxic and they can cause several problems to aquatic system. In present study, razor clam shell was used as a potential adsorbent to remove two classes of dyes, namely anionic (Congo red, CR) and cationic (Rhodamine B, RB) dyes from aqueous solution. Batch adsorption experiments were performed to study the effects of three experimental parameters, namely solution pH, adsorbent dosage and initial dye concentration, on adsorption capacity of CR and RB onto razor clam shell. Results indicated that pH 2.0 was optimum pH for adsorbent to adsorb both CR and RB. At an initial concentration of 20 mg/L, the removal percentages of CR and RB were 97% and 38%, respectively. The Freundlich and Langmuir isotherm models were used to describe adsorption behaviour of CR and RB, as well as the relationship between adsorbent and adsorbate. The adsorption equilibrium data were well fitted to Freundlich isotherm model. The separation factor (RL) constants suggest that both CR and RB were favourably adsorbed by razor clam shell. Razor clam shell was characterised by using two techniques, namely Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectrometry (FTIR). Overall, this study suggests that razor clam shell has great potential to be an alternative to expensive adsorbents.

  2. Phenotypic differentiation of the Red Sea gastropods in response to the environmental deterioration: Geometric morphometric approach

    NASA Astrophysics Data System (ADS)

    Abdelhady, Ahmed Awad

    2016-03-01

    The negative impacts of degradation in the coastal zone of the Red Sea are becoming well known in upper portions of the trophic web (e.g., humans and fish), but are less well known among the benthic primary consumers. In addition, the degree to which heavy metals are entering the trophic web can be better-quantified using macrobenthos. Two-gastropod genera encompassing Echinolittorina subnodosa and Planaxis sulcatus from three different localities on the Egyptian coast of the Red Sea were examined in order to deduce the impact of environmental deterioration on the morphology of shells. The examined sites include clean pristine, slightly polluted, and markedly polluted rocky shores. Phosphate/lead industry is the main source of pollution in this zone. Because landmarks on the rugose Echinolittorina are difficult to define and to ensure finer resolution of the analyses, a newly 'grid-based' landmarks was implemented. Both Canonical Variate Analysis (CVA) and Thin Plate Spline (TPS) were particularly capable to capture and terrace the minor morphological variations accurately. Two phenotypes portioned among the environmentally different populations were recognized and interpreted as ecotypes with many intermediate forms. The first ecotype has a higher spire and smaller aperture and dominating the pristine site North of Marsa Alam, whereas the second ecotype has a globular shell shape with big aperture and dominating the markedly polluted site. The intermediate forms dominating the slightly polluted site. The shape differences are interpreted as an adaptive differentiation to different metal concentrations. As the morphological variation between the two-ecotypes of both taxa is still minors, and both ecotypes occur together with many intermediate forms, the phenotypic divergence stage has not yet accomplished. The gradational shape change among the investigated populations was positively correlated with index of Pollution (IP). As the human activities were the main driver of the phenotypic changes, hence anthropogenic impact may shift the evolution and/or the extinction rates.

  3. 75 FR 36673 - Notice of Inventory Completion: Public Museum of West Michigan, Grand Rapids, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... red ochre, 1 shell bracelet, 1 lot of bird bone, 1 flint flake, and 1 projectile point fragment. At an... 33 associated funerary objects are 1 Busycon shell dipper, 16 lots of bone awls and fragments, 1... lots of polished bone, 1 pottery vessel, and 1 lot of turtle carapace fragments. In 1879, human remains...

  4. Structure of the first- and second-neighbor shells of simulated water: Quantitative relation to translational and orientational order

    NASA Astrophysics Data System (ADS)

    Yan, Zhenyu; Buldyrev, Sergey V.; Kumar, Pradeep; Giovambattista, Nicolas; Debenedetti, Pablo G.; Stanley, H. Eugene

    2007-11-01

    We perform molecular dynamics simulations of water using the five-site transferable interaction potential (TIP5P) model to quantify structural order in both the first shell (defined by four nearest neighbors) and second shell (defined by twelve next-nearest neighbors) of a central water molecule. We find that the anomalous decrease of orientational order upon compression occurs in both shells, but the anomalous decrease of translational order upon compression occurs mainly in the second shell. The decreases of translational order and orientational order upon compression (called the “structural anomaly”) are thus correlated only in the second shell. Our findings quantitatively confirm the qualitative idea that the thermodynamic, structural, and hence dynamic anomalies of water are related to changes upon compression in the second shell.

  5. Red giants: then and now

    NASA Astrophysics Data System (ADS)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and ρsh·ρolinec prove to be important self-consistently derived quantities. I present some striking, explicit, asymptotic analytical theorems and results involving these quantities. Perhaps the most astonishingly unexpected and gratifying single result is this: for the very value Nature gives us for the relevant temperature exponent (η=15; CNO cycle) for nuclear-energy generation, ρsh and ρolinec behave in a well defined, precisely inverse manner for a given value of core-mass, Mc. This emphasizes that the internal behaviour of such stars is definitely anti-homologous rather than homologous: dense cores physically promote diffuse surrounding envelopes. I also extend the ideas yet further in a way which (I) links the structural and evolutionary behaviour of stars from the main sequence through horizontal-branch phases of evolution, and (II) also has implications for post-main-sequence developments in more massive stars. The end results is that the post-main-sequence developments of all stars - low-mass, intermediate-mass, and high-mass - as they expand to become giants, are finally seen to be examples of one underpinning fact: that dense cores with this surrounding shells naturally follow hydrogen exhaustion. While "this has been know all along" from oft-repeated computer calculations, we now know why analytically. That matters to true theorists. What follows is a requested, much expanded version of my Cambridge talk.

  6. Induced nucleation of carbon dust in red giant stars

    NASA Technical Reports Server (NTRS)

    Cadwell, Brian J.; Wang, Hai; Feigelson, Eric D.; Frenklach, Michael

    1994-01-01

    This study quantitatively tests the proposed model of induced nucleation of carbonaceous grains in carbon-rich red giant stars. Induced nucleation is the process of grain growth initiated by the presence of reactive surfaces provided by seed particles. The numerical study was performed using a deailed chemical kinetic model of carbon deposition, grain coagulation, and homogeneous nucleation of polycyclic aromatic hydrocarbons (PAHs). The model uses a method of moments to keep track of developing grain population in the forming dust shell. We test the efficiency of grain formation for large ranges of dust shell parameters typical for carbon stars. Our model is capable of producing a range of optically thick and thin dust shells in carbon stars. Results are in accord with (IRAS) spectral classes of carbon stars. The resulting composite grains produced are consistent with those recently found in ancient meteorites. This model also provides a realistic explanation for high abundances of (PAHs) in the interstellar medium and some planetary nebulae.

  7. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.

    PubMed

    Salem, Mohamed A; Bakr, Eman A; El-Attar, Heba G

    2018-01-05

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17nm for Pt@Ag and 8.8nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH 4 ) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH 4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes. Copyright © 2017. Published by Elsevier B.V.

  8. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  9. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Zhang, Jinfeng; Wang, Yu; Chen, Xianfeng; Zapien, J. Antonio; Lee, Chun-Sing

    2015-10-01

    Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process.Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04436g

  10. Fabrication of diamond shells

    DOEpatents

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  11. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops.

    PubMed

    Li, Jiang; Wang, Yixuan; Chen, Haosheng; Wan, Jiandi

    2014-11-21

    We present the manipulation of oil, organic and gaseous chemicals by electrowetting-on-dielectric (EWOD) technology using aqueous-shell compound drops. We demonstrate that the transport and coalescence of viscous oil drops, the reaction of bromine with styrene in benzene solution, and the reaction of red blood cells with carbon monoxide bubbles can be accomplished using this method.

  12. Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Selvi, N.; Sankar, S.; Dinakaran, K.

    2014-12-01

    Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.

  13. Efficient red luminescence from organic-soluble Au25 clusters by ligand structure modification

    NASA Astrophysics Data System (ADS)

    Mathew, Ammu; Varghese, Elizabeth; Choudhury, Susobhan; Pal, Samir Kumar; Pradeep, T.

    2015-08-01

    An efficient method to enhance visible luminescence in a visibly non-luminescent organic-soluble 4-(tert butyl)benzyl mercaptan (SBB)-stabilized Au25 cluster has been developed. This method relies mainly on enhancing the surface charge density on the cluster by creating an additional shell of thiolate on the cluster surface, which enhances visible luminescence. The viability of this method has been demonstrated by imparting red luminescence to various ligand-protected quantum clusters (QCs), observable to the naked eye. The bright red luminescent material derived from Au25SBB18 clusters was characterized using UV-vis and luminescence spectroscopy, TEM, SEM/EDS, XPS, TG, ESI and MALDI mass spectrometry, which collectively proposed an uncommon molecular formula of Au29SBB24S, suggested to be due to different stapler motifs protecting the Au25 core. The critical role of temperature on the emergence of luminescence in QCs has been studied. The restoration of the surface ligand shell on the Au25 cluster and subsequent physicochemical modification to the cluster were probed by various mass spectral and spectroscopic techniques. Our results provide fundamental insights into the ligand characteristics determining luminescence in QCs.An efficient method to enhance visible luminescence in a visibly non-luminescent organic-soluble 4-(tert butyl)benzyl mercaptan (SBB)-stabilized Au25 cluster has been developed. This method relies mainly on enhancing the surface charge density on the cluster by creating an additional shell of thiolate on the cluster surface, which enhances visible luminescence. The viability of this method has been demonstrated by imparting red luminescence to various ligand-protected quantum clusters (QCs), observable to the naked eye. The bright red luminescent material derived from Au25SBB18 clusters was characterized using UV-vis and luminescence spectroscopy, TEM, SEM/EDS, XPS, TG, ESI and MALDI mass spectrometry, which collectively proposed an uncommon molecular formula of Au29SBB24S, suggested to be due to different stapler motifs protecting the Au25 core. The critical role of temperature on the emergence of luminescence in QCs has been studied. The restoration of the surface ligand shell on the Au25 cluster and subsequent physicochemical modification to the cluster were probed by various mass spectral and spectroscopic techniques. Our results provide fundamental insights into the ligand characteristics determining luminescence in QCs. Electronic supplementary information (ESI) available: Additional data on characterization of red luminescent Au29 QC and comparison with parent Au25SBB18 are given. See DOI: 10.1039/c5nr03457d

  14. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process.

    PubMed

    Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook

    2016-07-20

    InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm; green QY: ~85%, FWHM: 41 nm; red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell.

  15. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process

    PubMed Central

    Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook

    2016-01-01

    InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm; green QY: ~85%, FWHM: 41 nm; red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell. PMID:27435428

  16. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process

    NASA Astrophysics Data System (ADS)

    Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook

    2016-07-01

    InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm green QY: ~85%, FWHM: 41 nm red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell.

  17. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  18. Far-infrared data for symbiotic stars. II - The IRAS survey observations

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Fernandez-Castro, T.; Stencel, R. E.

    1988-01-01

    IRAS survey data for all known symbiotic binaries are reported. S type systems have 25 micron excesses much larger than those of single red giant stars, suggesting that these objects lose mass more rapidly than do normal giants. D type objects have far-IR colors similar to those of Mira variables, implying mass-loss rate of about 10 to the -6th solar masses/yr. The near-IR extinctions of the D types indicate that their Mira components are enshrouded in optically thick dust shells, while their hot companions lie outside the shells. If this interpretation of the data is correct, then the very red near-IR colors of D type symbiotic stars are caused by extreme amounts of dust absorption rather than dust emission. The small group of D prime objects possesses far-IR colors resembling those of compact planetary nebulae or extreme OH/IR stars. It is speculated that these binaries are not symbiotic stars at all, but contain a hot compact star and an exasymptotic branch giant which is in the process of ejecting a planetary nebula shell.

  19. Quantum collapse of dust shells in 2 + 1 gravity

    NASA Astrophysics Data System (ADS)

    Ortíz, L.; Ryan, M. P.

    2007-08-01

    This paper considers the quantum collapse of infinitesimally thin dust shells in 2 + 1 gravity. In 2 + 1 gravity a shell is no longer a sphere, but a ring of matter. The classical equation of motion of such shells in terms of variables defined on the shell has been considered by Peleg and Steif (Phys Rev D 51:3992, 1995), using the 2 + 1 version of the original formulation of Israel (Nuovo Cimento B 44:1, 1966), and Crisóstomo and Olea (Phys Rev D 69:104023, 2004), using canonical methods. The minisuperspace quantum problem can be reduced to that of a harmonic oscillator in terms of the curvature radius of the shell, which allows us to use well-known methods to find the motion of coherent wave packets that give the quantum collapse of the shell. Classically, as the radius of the shell falls below a certain point, a horizon forms. In the quantum problem one can define various quantities that give “indications” of horizon formation. Without a proper definition of a “horizon” in quantum gravity, these can be nothing but indications.

  20. Shell-Type Micromechanical Oscillator

    DTIC Science & Technology

    2003-04-01

    interferometric setup. A positive feedback loop was implemented by amplifying the red laser signal (related to the oscillator deflection) and using...resonator was actuated by a sharply focused, modulated Ar+ ion (blue) laser beam and detected by a red HeNe laser using an interferometric setup. A positive...top. Fig. 1 shows optical micrograph obtained by DIC (Differential Interference Contrast, known also as Nomarsky contrast). An array of three domes

  1. The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.

    PubMed

    Kim, Sunghoon; Park, Jaehyun; Kim, Sungwoo; Jung, Won; Sung, Jaeyoung; Kim, Sang-Wook

    2010-06-15

    New type-II structures of CdSe/InP and InP/CdSe core-shell nanocrystals which have staggered bandgap alignment were fabricated. Using a simple model for the wave function for electrons and holes in InP/CdSe and CdSe/InP core/shell nanocrystals showed the wave function of the electron and hole spread into the shell, respectively. The probability density of the InP/CdSe and CdSe/InP core/shell QDs also showed a similar tendency. As a result, the structure exhibits increased delocalization of electrons and holes, leading to a red-shift in absorption and emission. Quantum yield increased in the InP/CdSe, however decreased in the CdSe/InP. The reason may be due to the surface trap and high activation barrier for de-trapping in the InP shell. 2010 Elsevier Inc. All rights reserved.

  2. Coherently Strained Si-SixGe1-x Core-Shell Nanowire Heterostructures.

    PubMed

    Dillen, David C; Wen, Feng; Kim, Kyounghwan; Tutuc, Emanuel

    2016-01-13

    Coherently strained Si-SixGe1-x core-shell nanowire heterostructures are expected to possess a positive shell-to-core conduction band offset, allowing for quantum confinement of electrons in the Si core. We report the growth of epitaxial, coherently strained Si-SixGe1-x core-shell heterostructures through the vapor-liquid-solid mechanism for the Si core, followed in situ by the epitaxial SixGe1-x shell growth using ultrahigh vacuum chemical vapor deposition. The Raman spectra of individual nanowires reveal peaks associated with the Si-Si optical phonon mode in the Si core and the Si-Si, Si-Ge, and Ge-Ge vibrational modes of the SixGe1-x shell. The core Si-Si mode displays a clear red-shift compared to unstrained, bare Si nanowires thanks to the lattice mismatch-induced tensile strain, in agreement with calculated values using a finite-element continuum elasticity model combined with lattice dynamic theory. N-type field-effect transistors using Si-SixGe1-x core-shell nanowires as channel are demonstrated.

  3. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.

    PubMed

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-06-10

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 °C for 24 h by using a P source of P(N(CH(3))(2))(3). The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  4. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source

    NASA Astrophysics Data System (ADS)

    Byun, Ho-June; Song, Woo-Seuk; Yang, Heesun

    2011-06-01

    The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180 °C for 24 h by using a P source of P(N(CH3)2)3. The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.

  5. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain

    NASA Astrophysics Data System (ADS)

    Kamran, K.; Rossi, R.; Oñate, E.

    2013-07-01

    The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.

  6. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light.

    PubMed

    Zhang, Zhigang; Chai, Aiyun

    2012-12-01

    Lack of solubility under physiological conditions poses an additional risk for toxicity and side effects for intravenous delivery of the photodynamic therapeutic agent in vivo. Employing magnetite-silica composite nanoparticles as carriers of the photodynamic therapeutic agents may be a promising way to solve the problem. In this study, core-shell magnetite-silica composite nanoparticles were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering, then they were used as carriers of a photoactive platinum diimine complex. The interactions of the photosensitizer-loaded magnetic composite nanoparticles with DNA in red light were monitored by agarose-gel electrophoresis. The results suggest that high doses of magnetite-silica composite nanoparticles might facilitate the transformation of covalently closed circular (ccc)-DNA band to open circular (oc)-DNA band though they are harmless to DNA at their low concentrations, therefore enhancing the extent of DNA damage caused by the metal complex in red light. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    PubMed

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  8. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  9. Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Corbel, S; Corbet, R; DeCesar, M E; den Hartog, P R; Dermer, C D; de Palma, F; Digel, S W; Donato, D; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Hill, A B; Horan, D; Hughes, R E; Itoh, R; Jean, P; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nestoras, I; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ripken, J; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F-W; Sander, A; Parkinson, P M Saz; Scargle, J D; Schinzel, F K; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Sokolovsky, K V; Spandre, G; Spinelli, P; Stawarz, Ł; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Tanaka, Y; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wolff, M T; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M; Maehara, H; Nishiyama, K; Kabashima, F; Bach, U; Bower, G C; Falcone, A; Forster, J R; Henden, A; Kawabata, K S; Koubsky, P; Mukai, K; Nelson, T; Oates, S R; Sakimoto, K; Sasada, M; Shenavrin, V I; Shore, S N; Skinner, G K; Sokoloski, J; Stroh, M; Tatarnikov, A M; Uemura, M; Wahlgren, G M; Yamanaka, M

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce pi(0) decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.

  10. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    PubMed Central

    Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-01-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443–900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser. PMID:28368021

  11. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    NASA Astrophysics Data System (ADS)

    Park, Bong Je; Hong, A.-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-04-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

  12. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Fei; Hou, Xiangshu; Xu, Kun

    2015-10-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core-shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H2O2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core-shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum.

  13. Bulge formed cooling channels with a variable lead helix on a hollow body of revolution

    NASA Technical Reports Server (NTRS)

    McAninch, Michael D. (Inventor); Holbrook, Richard L. (Inventor); Lacount, Dale F. (Inventor); Kawashige, Chester M. (Inventor); Crapuchettes, John M. (Inventor); Scala, James (Inventor)

    1993-01-01

    A method of constructing a nozzle having cooling channels comprises a shell and a liner which are formed into a body of revolution having an axis of revolution. Helical welds are formed to hold the liner and shell to each other with a channel position being defined between each pair of helical welds. Pressurized fluid which may be a gas or a liquid, is introduced between the weld pairs to outwardly bulge the material of at least one of the liner and shell to define the channels.

  14. A Sixteen Node Shell Element with a Matrix Stabilization Scheme.

    DTIC Science & Technology

    1987-04-22

    coordinates with components x, y and z are defined on the shell midsurface in addition to global coordinates with components X, Y and Z. The x, y and z axes... midsurface while a3 is normal to the surface. The al, A2 and a3 vectors are given at each node as an input. In addition, they are defined at each integra...drawn from the point on the midsurface to the generic material point, t is the shell thickness and the nondimenslonal coordinate C runs from -1 to 1

  15. Photocatalytic activity of Ag/ZnO core-shell nanoparticles with shell thickness as controlling parameter under green environment

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee

    2017-02-01

    Plasmonic Ag/ZnO core-shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core-shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core-shell nanoparticles. The Photocatalytic activities of Ag/ZnO core-shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core-shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core-shell NPs is found to be enhanced with increase in shell thickness.

  16. Cold gas in hot star clusters: the wind from the red supergiant W26 in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Castro, Norberto; Fossati, Luca; Langer, Norbert

    2015-10-01

    The massive red supergiant W26 in Westerlund 1 is one of a growing number of red supergiants shown to have winds that are ionized from the outside in. The fate of this dense wind material is important for models of second generation star formation in massive star clusters. Mackey et al. (2014, Nature, 512, 282) showed that external photoionization can stall the wind of red supergiants and accumulate mass in a dense static shell. We use spherically symmetric radiation-hydrodynamic simulations of an externally photoionized wind to predict the brightness distribution of Hα and [N II] emission arising from photoionized winds both with and without a dense shell. We analyse spectra of the Hα and [N II] emission lines in the circumstellar environment around W26 and compare them with simulations to investigate whether W26 has a wind that is confined by external photoionization. Simulations of slow winds that are decelerated into a dense shell show strongly limb-brightened line emission, with line radial velocities that are independent of the wind speed. Faster winds (≳22 km s-1) do not form a dense shell, have less limb-brightening, and the line radial velocity is a good tracer of the wind speed. The brightness of the [N II] and Hα lines as a function of distance from W26 agrees reasonably well with observations when only the line flux is considered. The radial velocity of the simulated winds disagrees with observations, however: the brightest observed emission is blueshifted by ≈25 km s-1 relative to the radial velocity of the star, whereas a spherically symmetric wind has the brightest emission at zero radial velocity because of limb brightening. Our results show that the bright nebula surrounding W26 must be asymmetric, and we suggest that it is confined by external ram pressure from the extreme wind of the nearby supergiant W9. We obtain a lower limit on the nitrogen abundance within the nebula of 2.35 times solar. The line ratio strongly favours photoionization over shock ionization, and so even if the observed nebula is pressure confined there should still be an ionization front and a photoionization-confined shell closer to the star that is not resolved by the current observations, which could be tested with better spectral resolution and spatial coverage. Appendices are available in electronic form at http://www.aanda.org

  17. Measurement of the sizes of circumstellar dust shells around evolved stars with high mass loss rates

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Knapp, G. R.

    1992-01-01

    The research supported by the NASA ADP contract NAG5-1153 has been completed. The attached paper, which will be submitted for publication in the Astrophysical Journal in January 1992, presents the results of this work. Here is a summary of the project and its results. A set of computer programs was developed to process the raw 60 micron and 100 micron IRAS survey data. The programs were designed to detect faint extended emission surrounding a bright unresolved source. Candidate objects were chosen from a list of red giant stars and young planetary nebulae which have been detected in millimeter/submillimeter lines of CO. Of the 279 stars examined, 55 were resolved at 60 microns. The principle results of the study are given. The average age for the shells surrounding the 9 Mira-type stars which are extended is 6 x 10(exp 4) yr. This suggests that the period during which these stars lose mass lasts for approx 10(exp 5) yr. The oldest shell found surrounds U Ori, and the youngest surrounds Mira itself. Some shells appear to be detached from the central star. This phenomenon is more common among older stars, suggesting that the mass loss becomes more episodic as the star sheds its envelope. Although all 8 stars less distant than 200 pc are resolved in the IRAS 60 micron data, 29 stars within 500 pc were not. These stars probably have younger circumstellar shells than those which were resolved. Almost all the carbon stars with distances of 500 pc or less have resolved shells, while only 1/2 of the oxygen-rich stars do. The resolved carbon star shells also are older on average than the oxygen-rich ones. These facts imply that carbon stars have been losing mass for a longer period, on average, than oxygen-rich red giants. Large circumstellar shells tend to be found at large distances from the galactic plane, confirming that the ISM density limits the size to which a dust shell can grow. Surprisingly, even very large shells seem to be nearly spherical, and do not appear to be distorted by ram-pressure caused by the star's motion with respect to the ISM. Radiative transfer models and the value of I sub 60 microns/I sub 100 microns allow the average dust temperature in the outer regions of a circumstellar shell to be estimated. The typical value obtained in about 35 K.

  18. Freeze-Dried Human Red Blood Cells.

    DTIC Science & Technology

    1992-07-15

    conducted with the approval of the appropriate Institutional Review Board. The design and dosage of these studies parallels what would be used in any...components by standard blood bank procedures. The red blood cells were mixed with standard lyophilization buffers at a standard blood to buffer ratio. Samples...3% -1% - Yeas I Year 2 i Final poduct sterility (at Inluslon stage). Not done O "emonstrated Year I Year 2 Shell Life: Refrlgerated storage. vt10

  19. pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes.

    PubMed

    Zhao, Yue; Shi, Ce; Yang, Xudong; Shen, Bowen; Sun, Yuanqing; Chen, Yang; Xu, Xiaowei; Sun, Hongchen; Yu, Kui; Yang, Bai; Lin, Quan

    2016-06-28

    This study demonstrates high contrast and sensitivity by designing a dual-emissive hydrogel particle system, whose two emissions respond to pH and temperature strongly and independently. It describes the photoluminescence (PL) response of poly(N-isopropylacrylamide) (PNIPAM)-based core/shell hydrogel nanoparticles with dual emission, which is obtained by emulsion polymerization with potassium persulfate, consisting of the thermo- and pH-responsive copolymers of PNIPAM and poly(acrylic acid) (PAA). A red-emission rare-earth complex and a blue-emission quaternary ammonium tetraphenylethylene derivative (d-TPE) with similar excitation wavelengths are inserted into the core and shell of the hydrogel nanoparticles, respectively. The PL intensities of the nanoparticles exhibit a linear temperature response in the range from 10 to 80 °C with a change as large as a factor of 5. In addition, the blue emission from the shell exhibits a linear pH response between pH 6.5 and 7.6 with a resolution of 0.1 unit, while the red emission from the core is pH-independent. These stimuli-responsive PL nanoparticles have potential applications in biology and chemistry, including bio- and chemosensors, biological imaging, cancer diagnosis, and externally activated release of anticancer drugs.

  20. Metal accumulation in eggs of the red-eared slider (Trachemys scripta elegans) in the Lower Illinois River.

    PubMed

    Tryfonas, Anna E; Tucker, John K; Brunkow, Paul E; Johnson, Kevin A; Hussein, Hussein S; Lin, Zhi-Qing

    2006-03-01

    The Illinois River is a highly utilized navigable waterway in the US Midwest, and has historically been contaminated with metal toxicants from various industrial and municipal pollution sources. Little information on metal contamination is available in the Lower Illinois River, and in particular, in the habitat of the red-eared slider (Trachemys scripta elegans) at the southern end of the river near Grafton, IL. This study was conducted to determine current levels of metal contamination in water, sediment, soil, and plants in the habitat, as well as to reveal temporal and spatial variations of metal accumulation in eggs of the red-eared slider. Aluminum, Cd, Cr, Cu, Mn, Ni, Pb, V, Sn, and Zn were analyzed by inductively-coupled plasma spectroscopy. High concentrations of metals were observed in lake sediment, compared with the concentrations in water, soil, and plant tissues. Sediment Ni concentrations (mg kg(-1)) varied from 66 to 95 and Sn from 1100 to 1600. Five detectable metals in egg content were Zn (24.2 +/- 13), Al (2.2 +/- 1.2), Sn (1.8 +/- 1.1), Mn (1.1 +/- 0.6), and Cu (0.9 +/- 0.5); nine detectable metals in egg shell were Zn (6.8 +/- 3.9), Sn (3.7 +/- 3.1), Cu (1.9 +/- 1.3), Cr (1.6 +/- 1.5), V (1.6 +/- 1.4), Pb (1.3 +/- 0.7), Ni (1.3 +/- 0.9), Mn (1.0 +/- 0.8), and Cd (0.16 +/- 0.11). Zinc accumulation in egg content was significantly correlated with Zn in egg shell (r = 0.445, P < 0.002, n = 42). While significant spatial variation was observed in egg shell, metal accumulation in eggs (content and shell) collected from the same ground of turtles consecutively for 4 years did not show a significant temporal change.

  1. The shell game: a panoramic view of Fornax

    NASA Astrophysics Data System (ADS)

    Bate, N. F.; McMonigal, B.; Lewis, G. F.; Irwin, M. J.; Gonzalez-Solares, E.; Shanks, T.; Metcalfe, N.

    2015-10-01

    We present a panoramic study of the Fornax dwarf spheroidal galaxy, using data obtained as part of the VLT Survey Telescope (VST) ATLAS Survey. The data presented here - a subset of the full survey - uniformly cover a region of 25 deg2 centred on the galaxy, in g, r and i bands. This large area coverage reveals two key differences to previous studies of Fornax. First, data extending beyond the nominal tidal radius of the dwarf highlight the presence of a second distinct red giant branch population. This bluer red giant branch appears to be co-eval with the horizontal branch population. Secondly, a shell structure located approximately 1.4° from the centre of Fornax is shown to be a mis-identified background overdensity of galaxies. This last result casts further doubt on the hypothesis that Fornax underwent a gas-rich merger in its relatively recent past.

  2. Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here in this paper, we report the Fermi Large Area Telescope detection of variable γ-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particlesmore » can be accelerated effectively to produce π 0 decay γ-rays from proton-proton interactions. Lastly, emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.« less

  3. Imaging Magnetospheric Boundries at Ionospheric Heights

    NASA Astrophysics Data System (ADS)

    Baumgardner, J.; Nottingham, D.; Wroten, J.; Mendillo, M.

    2001-12-01

    Stable auroral red (SAR) arcs are excited by a downward heat flux within a narrow range of fluxtubes that define the plasmapause-ring current interaction region. Ambient F-region electrons near and above the peak height (300-500 km) are heated and collisionally excite atomic oxygen to the O(1D) state, thereby emitting 6300 A photons. At the same time, the diffuse aurora at 6300 A is excited by the precipitation of plasma sheet electrons into the lower thermosphere, exciting O(1D) to emit near 200 km. An all-sky imaging system operating at a sub-auroral site (e.g., at Millstone Hill) can readily record the SAR arc centroid location and the equatorial edge of the diffuse aurora in the same 6300 A image. We have analyzed 75 such cases showing where both stuctures occur in the ionosphere and then conducted field-line mapping to define the L-shell domains of origin in the equatorial plane of the inner magnetosphere (L ~ 2.5 - 4). To within the measurement and mapping accuracies, both boundaries coincide, i.e., the inner edge of the plasma sheet essentially falls along the plasmapause. Since the O(1D) 6300 A emission corresponds to ~2 ev of excitation by magnetospheric processes, this technique defines ELENA (Extremely Low Energetic Neutral Atom) imaging of magnetospheric structures.

  4. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  5. SOLAR-LIKE OSCILLATIONS IN LOW-LUMINOSITY RED GIANTS: FIRST RESULTS FROM KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedding, T. R.; Huber, D.; Stello, D.

    2010-04-20

    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations ({delta}{nu}) and the frequency of maximum power ({nu}{sub max}). We focus on a sample of 50 low-luminosity stars ({nu}{sub max} > 100 {mu}Hz, L {approx}< 30 L {sub sun}) havingmore » high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l = 3. Measuring the small separation between l = 0 and l = 2 allows us to plot the so-called C-D diagram of {delta}{nu}{sub 02} versus {delta}{nu}. The small separation {delta}{nu}{sub 01} of l = 1 from the midpoint of adjacent l = 0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l = 1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.« less

  6. Food Protein Based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers.

    PubMed

    Alqahtani, Mohammed S; Islam, M Saiful; Podaralla, Satheesh; Kaushik, Radhey S; Reineke, Joshua; Woyengo, Tofuko; Perumal, Omathanu

    2017-03-06

    The study was aimed at systematically investigating the influence of shell composition on the particle size, stability, release, cell uptake, permeability, and in vivo gastrointestinal distribution of food protein based nanocarriers for oral delivery applications. Three different core-shell nanocarriers were prepared using food-grade biopolymers including zein-casein (ZC) nanoparticles, zein-lactoferrin (ZLF), nanoparticles and zein-PEG (ZPEG) micelles. Nile red was used as a model hydrophobic dye for in vitro studies. The nanocarriers had negative, positive, and neutral charge, respectively. All three nanocarriers had a particle size of less than 200 nm and a low polydispersity index. The nanoparticles were stable at gastrointestinal pH (2-9) and ionic strength (10-200 mM). The nanocarriers sustained the release of Nile red in simulated gastric and intestinal fluids. ZC nanoparticles showed the slowest release followed by ZLF nanoparticles and ZPEG micelles. The nanocarriers were taken up by endocytosis in Caco-2 cells. ZPEG micelles showed the highest cell uptake and transepithelial permeability followed by ZLF and ZC nanoparticles. ZPEG micelles also showed P-gp inhibitory activity. All three nanocarriers showed bioadhesive properties. Cy 5.5, a near IR dye, was used to study the in vivo biodistribution of the nanocarriers. The nanocarriers showed longer retention in the rat gastrointestinal tract compared to the free dye. Among the three formulations, ZC nanoparticles was retained the longest in the rat gastrointestinal tract (≥24 h). Overall, the outcomes from this study demonstrate the structure-function relationship of core-shell protein nanocarriers. The findings from this study can be used to develop food protein based oral drug delivery systems with specific functional attributes.

  7. A new approach to the method of source-sink potentials for molecular conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha

    2015-11-21

    We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue ofmore » the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.« less

  8. Effect of core-shell structure on optical properties of Au-Cu2O nanoparticles

    NASA Astrophysics Data System (ADS)

    Sai, Cong Doanh; Ngac, An Bang

    2018-03-01

    Solid Au-Cu2O core-shell nanoparticles were synthesized using gold nanoparticles of 16.6 nm in size as the core. The core-shell structure of the synthesized particles was confirmed and characterized by TEM and HRTEM images. Due to their similar crystal structure, the (111) planes of Cu2O are nucleated and grown epitaxially on the {111} facets of Au nanoparticles with the lattice mismatch of about 4.3% resulting in a polycrystallized Cu2O shell covering the Au nanocore. Due to the quantum confinement effect, the band gap energy Eg of the synthesized Cu2O shells is blue-shifted from 2.35 to 2.70 eV as the shell thickness decreases from of 24.6±3.6 to 9.0±1.7 nm. The localized SPR (Surface Plasmon Resonance) peak of the Au nanocore undergoes a large red shift of the order of a hundred of nm due to both the high refractive index and the increase of the thickness of Cu2O shell. Theoretical models within the Drude framework significantly underestimate the experimental data and predict a wrong rate of change of the SPR peak position with respect to the shell thickness.

  9. Enhanced Electron Mobility in Nonplanar Tensile Strained Si Epitaxially Grown on SixGe1-x Nanowires.

    PubMed

    Wen, Feng; Tutuc, Emanuel

    2018-01-10

    We report the growth and characterization of epitaxial, coherently strained Si x Ge 1-x -Si core-shell nanowire heterostructure through vapor-liquid-solid growth mechanism for the Si x Ge 1-x core, followed by an in situ ultrahigh-vacuum chemical vapor deposition for the Si shell. Raman spectra acquired from individual nanowire reveal the Si-Si, Si-Ge, and Ge-Ge modes of the Si x Ge 1-x core and the Si-Si mode of the shell. Because of the compressive (tensile) strain induced by lattice mismatch, the core (shell) Raman modes are blue (red) shifted compared to those of unstrained bare Si x Ge 1-x (Si) nanowires, in good agreement with values calculated using continuum elasticity model coupled with lattice dynamic theory. A large tensile strain of up to 2.3% is achieved in the Si shell, which is expected to provide quantum confinement for electrons due to a positive core-to-shell conduction band offset. We demonstrate n-type metal-oxide-semiconductor field-effect transistors using Si x Ge 1-x -Si core-shell nanowires as channel and observe a 40% enhancement of the average electron mobility compared to control devices using Si nanowires due to an increased electron mobility in the tensile-strained Si shell.

  10. Explosion of a supernova with a red giant companion

    NASA Technical Reports Server (NTRS)

    Livne, E.; Tuchman, Y.; Wheeler, J. C.

    1992-01-01

    Two-dimensional numerical simulations of the collision between spherical ejecta from a supernova and a red giant companion are presented. In contrast to previous numerical studies, in which the companion was a main-sequence star or a compact object, the collision consequences are found to have a dramatic impact upon the red giant. In most cases the red giant companion loses most of its envelope in a time scale of 10 exp 7 s with typical velocities about an order of magnitude less than those of the expanding velocity of the supernova shell. We confirm the conclusion of Chugai (1986) that the stripped hydrogen tends to come off as a low-velocity component interior to the supernova ejecta. Possible observational consequences of the results are discussed.

  11. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.

    PubMed

    Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika

    2013-06-27

    Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

  12. Fragmentation of protostars dust shells at the Hayashi stage

    NASA Astrophysics Data System (ADS)

    Abdulmyanov, T. R.

    2017-09-01

    The aim of this study is to determine the density variations of a protostars dust shells at the Hayashi stage. The simplified model of the density wave perturbations are obtained on the base hydrodynamic equations. According to this model, the fragmentation of dust shells may occur at the stage of slow compression of protostar. Using the solution of the wave equation, the 3-D profiles of the density of the dust shell are defined.

  13. Effect of Temperature on the Size Distribution, Shell Properties, and Stability of Definity®.

    PubMed

    Shekhar, Himanshu; Smith, Nathaniel J; Raymond, Jason L; Holland, Christy K

    2018-02-01

    Physical characterization of an ultrasound contrast agent (UCA) aids in its safe and effective use in diagnostic and therapeutic applications. The goal of this study was to investigate the impact of temperature on the size distribution, shell properties, and stability of Definity ® , a U.S. Food and Drug Administration-approved UCA used for left ventricular opacification. A Coulter counter was modified to enable particle size measurements at physiologic temperatures. The broadband acoustic attenuation spectrum and size distribution of Definity ® were measured at room temperature (25 °C) and physiologic temperature (37 °C) and were used to estimate the viscoelastic shell properties of the agent at both temperatures. Attenuation and size distribution was measured over time to assess the effect of temperature on the temporal stability of Definity ® . The attenuation coefficient of Definity ® at 37 °C was as much as 5 dB higher than the attenuation coefficient measured at 25 °C. However, the size distributions of Definity ® at 25 °C and 37 °C were similar. The estimated shell stiffness and viscosity decreased from 1.76 ± 0.18 N/m and 0.21 × 10 -6  ± 0.07 × 10 -6 kg/s at 25 °C to 1.01 ± 0.07 N/m and 0.04 × 10 -6  ± 0.04 × 10 -6 kg/s at 37 °C, respectively. Size-dependent differences in dissolution rates were observed within the UCA population at both 25 °C and 37 °C. Additionally, cooling the diluted UCA suspension from 37 °C to 25 °C accelerated the dissolution rate. These results indicate that although temperature affects the shell properties of Definity ® and can influence the stability of Definity ® , the size distribution of this agent is not affected by a temperature increase from 25 °C to 37 °C. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  14. META-GLARE: a shell for CIG systems.

    PubMed

    Bottrighi, Alessio; Rubrichi, Stefania; Terenziani, Paolo

    2015-01-01

    In the last twenty years, many different approaches to deal with Computer-Interpretable clinical Guidelines (CIGs) have been developed, each one proposing its own representation formalism (mostly based on the Task-Network Model) execution engine. We propose META-GLARE a shell for easily defining new CIG systems. Using META-GLARE, CIG system designers can easily define their own systems (basically by defining their representation language), with a minimal programming effort. META-GLARE is thus a flexible and powerful vehicle for research about CIGs, since it supports easy and fast prototyping of new CIG systems.

  15. HD 38452 - J. R. Hind's star that changed colour

    NASA Technical Reports Server (NTRS)

    Warner, Brian; Sneden, Christopher

    1988-01-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.

  16. Hierarchical inorganic-organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood

    NASA Astrophysics Data System (ADS)

    Khairy, Mohamed; El-Safty, Sherif A.; Shenashen, Mohamed. A.; Elshehy, Emad A.

    2013-08-01

    The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia. Electronic supplementary information (ESI) available: The experimental procedures for synthesis of AC-LHT, mesoporous core/double shell silica, and optical core/multi-shell sensors. The adsorption capacity, optical recognition of Pb ions, colorimetric response of Pb ions in ethanol medium, Langmuir adsorption isotherm and reusability of captor are addressed. See DOI: 10.1039/c3nr02403b

  17. Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging.

    PubMed

    Liu, Yue; Li, Xiao-Shuang; Hu, Jia; Guo, Miao; Liu, Wei-Jun; Feng, Yi-Mei; Xie, Jing-Ran; Du, Gui-Xiang

    2015-12-01

    A novel nanoparticle with multilayer core-shell architecture for cell imaging is designed and synthesized by coating a fluorescent YVO4:Eu core with a diblock copolymer, MPEG-b-PMAA. The synthesis of YVO4:Eu core, which further makes MPEG-b-PMAA-YVO4:Eu NPs adapt for cell imaging, is guided by the model determined upon the evaluation of pH and CEu%. The PMAA block attached tightly on the YVO4:Eu core forms the inner shell and the MPEG block forms the biocompatible outermost shell. Factors including reaction time, reaction temperature, CEu% and pH are optimized for the preparation of the YVO4:Eu NPs. A precise defined model is established according to analyzing the coefficients of pH and CEu% during the synthesis. The MPEG-b-PMAA-YVO4:Eu NPs, with an average diameter of 24 nm, have a tetragonal structure and demonstrate luminescence in the red region, which lies in a biological window (optical imaging). Significant enhancement in luminescence intensity by MPEG-b-PMAA-YVO4:Eu NPs formation is observed. The capping copolymer MPEG-b-PMAA improves the dispersibility of hydrophobic YVO4:Eu NPs in water, making the NPs stable under different conditions. In addition, the biocompatibility MPEG layer reduces the cytotoxicity of the nanoparticles effectively. 95% cell viability can be achieved at the NPs concentration of 800 mgL(-1) after 24h of culture. Cellular uptake of the MPEG-b-PMAA-YVO4:Eu NPs is evaluated by cell imaging assay, indicating that the NPs can be taken up rapidly and largely by cancerous or non-cancerous cells through an endocytosis mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Containers and systems for the measurement of radioactive gases and related methods

    DOEpatents

    Mann, Nicholas R; Watrous, Matthew G; Oertel, Christopher P; McGrath, Christopher A

    2017-06-20

    Containers for a fluid sample containing a radionuclide for measurement of radiation from the radionuclide include an outer shell having one or more ports between an interior and an exterior of the outer shell, and an inner shell secured to the outer shell. The inner shell includes a detector receptacle sized for at least partial insertion into the outer shell. The inner shell and outer shell together at least partially define a fluid sample space. The outer shell and inner shell are configured for maintaining an operating pressure within the fluid sample space of at least about 1000 psi. Systems for measuring radioactivity in a fluid include such a container and a radiation detector received at least partially within the detector receptacle. Methods of measuring radioactivity in a fluid sample include maintaining a pressure of a fluid sample within a Marinelli-type container at least at about 1000 psi.

  19. Nd3+/Yb3+ cascade-sensitized single-band red upconversion emission in active-core/active-shell nanocrystals.

    PubMed

    Ding, M Y; Hou, J J; Yuan, Y J; Bai, W F; Lu, C H; Xi, J H; Ji, Z G; Chen, D Q

    2018-08-24

    Lanthanide-doped upconversion nanomaterials (UCNMs) have promoted extensive interest for its biological research and biomedical applications, benefiting from low autofluorescence background, deep light penetration depth, and minimal photo-damage to biological tissues. However, owing to the 980 nm laser-induced overheating issue and the attenuation effect associated with conventional multi-peak emissions, the usage of UCNMs as fluorescent bioprobes is still limited. To address these issues, an effective strategy has been proposed to tune both the excitation and emission peaks of UCNMs into the first biological window (650 ∼ 900 nm), where the light absorption by water and hemoglobin in biological tissues is minimal. Based on the Nd 3+ /Yb 3+ cascade-sensitized upconversion process and efficient exchange-energy transfer between Mn 2+ and Er 3+ in conjunction with the active-core@active-shell nanostructured design, we have developed a new class of upconversion nanoparticles (UCNPs) that exhibit strong single-band red emission upon excitation of an 808 nm near-infrared laser. Hopefully, the well-designed KMnF 3 :Yb/Er/Nd@ KMnF 3 :Yb/Nd core-shell nanocrystals will be considered a promising alternative to conventionally used UCNPs for biolabeling applications without the concern of the overheating issue and the attenuation constraints.

  20. Crushing motor patterns in drum (Teleostei: Sciaenidae): functional novelties associated with molluscivory.

    PubMed

    Grubich, J R

    2000-10-01

    This study explores the evolution of molluscivory in the marine teleost family Sciaenidae by comparing the motor activity patterns of the pharyngeal muscles of two closely related taxa, the molluscivorous black drum (Pogonias cromis) and the generalist red drum (Sciaenops ocellatus). Muscle activity patterns were recorded simultaneously from eight pharyngeal muscles. Electromyographic (EMG) activity was recorded during feeding on three prey types that varied in shell hardness. Canonical variate and discriminant function analyses were used to describe the distinctness of drum pharyngeal processing behaviors. Discriminant functions built of EMG timing variables were more accurate than muscle activity intensity at identifying cycles by prey type and species. Both drum species demonstrated the ability to modulate pharyngeal motor patterns in response to prey hardness. The mean motor patterns and the canonical variate space of crushing behavior indicated that black drum employed a novel motor pattern during molluscivory. The mollusc-crushing motor pattern of black drum is different from other neoteleost pharyngeal behaviors in lacking upper jaw retraction by the retractor dorsalis muscle. This functional modification suggests that crushing hard-shelled marine bivalves requires a 'vice-like' compression bite in contrast to the shearing forces that are applied to weaker-shelled fiddler crabs by red drum and to freshwater snails by redear sunfish.

  1. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.

    2007-06-01

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  2. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris.

    PubMed

    Ziurys, L M; Milam, S N; Apponi, A J; Woolf, N J

    2007-06-28

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  3. A Phosphine-Free Route to Size-Adjustable CdSe and CdSe/CdS Core-Shell Quantum Dots for White-Light-Emitting Diodes.

    PubMed

    Zhang, Yugang; Li, Guopeng; Zhang, Ting; Song, Zihang; Wang, Hui; Zhang, Zhongping; Jiang, Yang

    2018-03-01

    The selenium dioxide was used as the precursor to synthesize wide-size-ranged CdSe quantum dots (2.4-5.7 nm) via hot-injection route. The CdSe quantum dots are featured with high crystalline, monodisperse, zinc blende structure and wide emission region (530-635 nm). In order to improve the stability and quantum yield, a phosphine-free single-molecular precursor approach is used to obtain CdSe/CdS core/shell quantum dots. The CdSe/CdS quantum dots are highly fluorescent with quantum yield up to 65%, and persist the good monodispersity and high crystallinity. Moreover, the quantum dots white light-emitting-diodes are fabricated by using the resultant red emission core/shell quantum dots and Y3Al5O12:Ce3+ yellow phosphors as color-conversion layers on a blue InGaN chip. The prepared light-emitting-diodes show good performance with CIE-1931 coordinated of (0.3583, 0.3349), an Ra of 92.9, and a Tc of 4410 K at 20 mA, which indicate that the combination of red-emission QDs and yellow phophors as a promising approach to obtain warm WLEDs with good color rendering.

  4. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    PubMed

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 77 FR 25738 - Notice of Intent To Repatriate Cultural Items: Yale Peabody Museum of Natural History, New Haven, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ...; two broken pumice stones marked with red ochre; six bone arrowheads; four broken stone pipes; sixteen dentalium and other shell beads; and thirteen small items including ochre, bone carving fragments, and bone...

  6. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy

    DOE PAGES

    Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; ...

    2014-09-25

    A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP–PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major stepmore » forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors.Lastly, it also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.« less

  7. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy.

    PubMed

    Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira; El-Rifai, Mahmoud; Lee, Hyungseok; Zhang, Yuanwei; Wang, Chao; Liu, Zhuang; Chan, Emory M; Duan, Chunying; Han, Gang

    2014-10-28

    A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP-PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major step forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors. It also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.

  8. Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Amol; Wu, Xiang; Tokatli-Apollon, Amira

    A class of biocompatible upconverting nanoparticles (UCNPs) with largely amplified red-emissions was developed. The optimal UCNP shows a high absolute upconversion quantum yield of 3.2% in red-emission, which is 15-fold stronger than the known optimal β-phase core/shell UCNPs. When conjugated to aminolevulinic acid, a clinically used photodynamic therapy (PDT) prodrug, significant PDT effect in tumor was demonstrated in a deep-tissue (>1.2 cm) setting in vivo at a biocompatible laser power density. Furthermore, we show that our UCNP–PDT system with NIR irradiation outperforms clinically used red light irradiation in a deep tumor setting in vivo. This study marks a major stepmore » forward in photodynamic therapy utilizing UCNPs to effectively access deep-set tumors.Lastly, it also provides an opportunity for the wide application of upconverting red radiation in photonics and biophotonics.« less

  9. Flexible configuration-interaction shell-model many-body solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Calvin W.; Ormand, W. Erich; McElvain, Kenneth S.

    BIGSTICK Is a flexible configuration-Interaction open-source shell-model code for the many-fermion problem In a shell model (occupation representation) framework. BIGSTICK can generate energy spectra, static and transition one-body densities, and expectation values of scalar operators. Using the built-in Lanczos algorithm one can compute transition probabflity distributions and decompose wave functions into components defined by group theory.

  10. Quasi-local conserved charges in the Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-05-01

    In this paper we consider the Einstein-Maxwell theory and define a combined transformation composed of diffeomorphism and U(1) gauge transformation. For generality, we assume that the generator χ of such transformation is field-dependent. We define the extended off-shell ADT current and then off-shell ADT charge such that they are conserved off-shell for the asymptotically field-dependent symmetry generator χ. Then, we define the conserved charge corresponding to the asymptotically field-dependent symmetry generator χ. We apply the presented method to find the conserved charges of the asymptotically AdS3 spacetimes in the context of the Einstein-Maxwell theory in three dimensions. Although the usual proposal for the quasi local charges provides divergent global charges for the Einstein-Maxwell theory with negative cosmological constant in three dimensions, here we avoid this problem by introducing proposed combined transformation χ

  11. Covalent Binding with Neutrons on the Femto-scale

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Kanada-En'yo, Y.; Kimura, M.

    2017-06-01

    In light nuclei we have well defined clusters, nuclei with closed shells, which serve as centers for binary molecules with covalent binding by valence neutrons. Single neutron orbitals in light neutron-excess nuclei have well defined shell model quantum numbers. With the combination of two clusters and their neutron valence states, molecular two-center orbitals are defined; in the two-center shell model we can place valence neutrons in a large variety of molecular two-center states, and the formation of Dimers becomes possible. The corresponding rotational bands point with their large moments of inertia and the Coriolis decoupling effect (for K = 1/2 bands) to the internal molecular orbital structure in these states. On the basis of these the neutron rich isotopes allow the formation of a large variety molecular structures on the nuclear scale. An extended Ikeda diagram can be drawn for these cases. Molecular bands in Be and Ne-isotopes are discussed as text-book examples.

  12. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  13. Optimization of wall thickness and lay-up for the shell-like composite structure loaded by non-uniform pressure field

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2017-01-01

    The glass/carbon fiber composites are widely used in the design of various aircraft and rotorcraft components such as fairings and cowlings, which have predominantly a shell-like geometry and are made of quasi-isotropic laminates. The main requirements to such the composite parts are the specified mechanical stiffness to withstand the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflow-induced vibrations at the constrained weight of the part. The main objective of present study is the optimization of wall thickness and lay-up of composite shell-like cowling. The present approach assumes conversion of the CAD model of the cowling surface to finite element (FE) representation, then its wind tunnel testing simulation at the different orientation of airflow to find the most stressed mode of flight. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. A wall thickness of the shell had to change over its surface to minimize the objective at the constrained weight. We used a parameterization of the problem that assumes an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. Curve that formed by the intersection of the shell with sphere defined boundary of area, which should be reinforced by local thickening the shell wall. To eliminate a local stress concentration this increment was defined as the smooth function defined on the shell surface. As a result of structural optimization we obtained the thickness of shell's wall distribution, which then was used to design the draping and lay-up of composite prepreg layers. The global strain energy in the optimized cowling was reduced in2.5 times at the weight growth up to 15%, whereas the eigenfrequencies at the 6 first natural vibration modes have been increased by 5-15%. The present approach and developed programming tools that demonstrated a good efficiency and stability at the acceptable computational costs can be used to optimize a wide range of shell-like structures made of quasi-isotropic laminates.

  14. Theoretical investigation of geometries, stabilities, electronic and optical properties for advanced Ag{sub n}@(ZnO){sub 42} (n=6-18) hetero-nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Department of Physics, National University of Singapore, 117542; Wang, Xiao-Xu

    The structural properties of Ag{sub n}@(ZnO){sub 42} (n=6-18) core-shell nanoparticles have been investigated by the first principles calculations, and the core-shell nanostructure with n=13 is proved to be the most stable one for the first time. Ag{sub 13}@(ZnO){sub 42} core-shell nanostructure possesses higher chemistry activity and shows a red shift phenomenon in the light of the absorption spectrum compare to the (ZnO){sub 48}, this can be confirmed by the calculated electron structure. The visible-light could be absorbed by Ag{sub 13}@(ZnO){sub 42} to improve the photo-catalysis of (ZnO){sub 48} nanostructure. Our results show good agreement with experiments.

  15. VizieR Online Data Catalog: Investigation of mass loss mechanism of LPVs (Winters+, 2000)

    NASA Astrophysics Data System (ADS)

    Winters, J. M.; Le Bertre, T.; Jeong, K. S.; Helling, C.; Sedlmayr, E.

    2000-09-01

    Parameters and resultant quantities of a grid of hydrodynamical models for the circumstellar dust shells around pulsating red giants which treat the time-dependent hydrodynamics and include a detailed treatment of the dust formation process. (1 data file).

  16. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    PubMed

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  17. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  18. Identifying the most influential spreaders in complex networks by an Extended Local K-Shell Sum

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhang, Ruisheng; Yang, Zhao; Hu, Rongjing; Li, Mengtian; Yuan, Yongna; Li, Keqin

    Identifying influential spreaders is crucial for developing strategies to control the spreading process on complex networks. Following the well-known K-Shell (KS) decomposition, several improved measures are proposed. However, these measures cannot identify the most influential spreaders accurately. In this paper, we define a Local K-Shell Sum (LKSS) by calculating the sum of the K-Shell indices of the neighbors within 2-hops of a given node. Based on the LKSS, we propose an Extended Local K-Shell Sum (ELKSS) centrality to rank spreaders. The ELKSS is defined as the sum of the LKSS of the nearest neighbors of a given node. By assuming that the spreading process on networks follows the Susceptible-Infectious-Recovered (SIR) model, we perform extensive simulations on a series of real networks to compare the performance between the ELKSS centrality and other six measures. The results show that the ELKSS centrality has a better performance than the six measures to distinguish the spreading ability of nodes and to identify the most influential spreaders accurately.

  19. O-H anharmonic vibrational motions in Cl(-)···(CH3OH)(1-2) ionic clusters. Combined IRPD experiments and AIMD simulations.

    PubMed

    Beck, Jordan P; Cimas, Alvaro; Lisy, James M; Gaigeot, Marie-Pierre

    2014-02-05

    The structures of Cl(-)-(Methanol)1,2 clusters have been unraveled combining Infrared Predissociation (IR-PD) experiments and DFT-based molecular dynamics simulations (DFT-MD) at 100 K. The dynamical IR spectra extracted from DFT-MD provide the initial 600 cm(-1) large anharmonic red-shift of the O-H stretch from uncomplexed methanol (3682 cm(-1)) to Cl(-)-(Methanol)1 complex (3085 cm(-1)) as observed in the IR-PD experiment, as well as the subtle supplementary blue- and red-shifts of the O-H stretch in Cl(-)-(Methanol)2 depending on the structure. The anharmonic vibrational calculations remarkably provide the 100 cm(-1) O-H blue-shift when the two methanol molecules are simultaneously organized in the anion first hydration shell (conformer 2A), while they provide the 240 cm(-1) O-H red-shift when the second methanol is in the second hydration shell of Cl(-) (conformer 2B). RRKM calculations have also shown that 2A/2B conformers interconvert on a nanosecond time-scale at the estimated 100 K temperature of the clusters formed by evaporative cooling of argon prior to the IR-PD process. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Electroless nickel – phosphorus coating on crab shell particles and its characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coatingmore » process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.« less

  1. Morphological and mechanical changes in juvenile red-eared slider turtle (Trachemys scripta elegans) shells during ontogeny.

    PubMed

    Fish, Jennifer F; Stayton, Charles T

    2014-04-01

    Turtles experience numerous modifications in the morphological, physiological, and mechanical characteristics of their shells through ontogeny. Although a general picture is available of the nature of these modifications, few quantitative studies have been conducted on changes in turtle shell shape through ontogeny, and none on changes in strength or rigidity. This study investigates the morphological and mechanical changes that juvenile Trachemys scripta elegans undergo as they increase in size. Morphology and shell rigidity were quantified in a sample of 36 alcohol-preserved juvenile Trachemys scripta elegans. Morphometric information was used to create finite element models of all specimens. These models were used to assess the mechanical behavior of the shells under various loading conditions. Overall, we find that turtles experience complementary changes in size, shape, deformability, and relative strength as they grow. As turtles age their shells become larger, more elongate, relatively flatter, and more rigid. These changes are associated with decreases in relative (size independent) strength, even though the shells of larger turtles are stronger in an absolute sense. Decreased deformability is primarily due to changes in the size of the animals. Residual variation in deformability cannot be explained by changes in shell shape. This variation is more likely due to changes in the degree of connectedness of the skeletal elements in the turtle's shells, along with changes in the thickness and degree of mineralization of shell bone. We suggest that the mechanical implications of shell size, shape, and deformability may have a large impact on survivorship and development in members of this species as they mature. Copyright © 2013 Wiley Periodicals, Inc.

  2. Possible co-option of engrailed during brachiopod and mollusc shell development.

    PubMed

    Shimizu, Keisuke; Luo, Yi-Jyun; Satoh, Noriyuki; Endo, Kazuyoshi

    2017-08-01

    In molluscs, two homeobox genes, engrailed ( en ) and distal-less ( dlx ), are transcription factors that are expressed in correlation with shell development. They are expressed in the regions between shell-forming and non-shell-forming cells, likely defining the boundaries of shell-forming fields. Here we investigate the expression of two transcription factors in the brachiopod Lingula anatina We find that en is expressed in larval mantle lobes, whereas dlx is expressed in larval tentacles. We also demonstrate that the embryonic shell marker mantle peroxidase ( mpox ) is specifically expressed in mantle lobes. Our results suggest that en and mpox are possibly involved in brachiopod embryonic shell development. We discuss the evolutionary developmental origin of lophotrochozoan biomineralization through independent gene co-option. © 2017 The Author(s).

  3. Comparison of protoporphyrin IX content and related gene expression in the tissues of chickens laying brown-shelled eggs.

    PubMed

    Li, Guangqi; Chen, Sirui; Duan, Zhongyi; Qu, Lujiang; Xu, Guiyun; Yang, Ning

    2013-12-01

    Protoporphyrin IX (PpIX), an immediate precursor of heme, is the main pigment resulting in the brown coloration of eggshell. The brownness and uniformity of the eggshell are important marketing considerations. In this study, 9 chickens laying darker brown shelled eggs and 9 chickens laying lighter brown shelled eggs were selected from 464 individually caged layers in a Rhode Island Red pureline. The PpIX contents were measured with a Microplate Reader at the wavelength of 412 nm and were compared in different tissues of the 2 groups. Although no significant difference in serum, bile, and excreta was found between the 2 groups, PpIX content in the shell gland and eggshell of the darker group was higher than in those of the lighter group, suggesting that PpIX was synthesized in the shell gland. We further determined the expression levels of 8 genes encoding enzymes involved in the heme synthesis and transport in the liver and shell gland at 6 h postoviposition by quantitative PCR. The results showed that expression of aminolevulinic acid synthase-1 (ALAS1) was higher in the liver of hens laying darker brown shelled eggs, whereas in the shell gland the expression levels of ALAS1, coproporphyrinogen oxidase (CPOX), ATP-binding cassette family members ABCB7 and ABCG2, and receptor for feline leukemia virus, subgroup C (FLVCR) were significantly higher in the hens laying darker brown shelled eggs. Our results demonstrated that hens laying darker brown shelled eggs could deposit more PpIX onto the eggshell and the brownness of the eggshell was dependent on the total quantity of PpIX in the eggshell. More heme was synthesized in the liver and shell gland of hens laying darker brown shelled eggs than those of hens laying lighter brown shelled eggs. High expression level of ABCG2 might facilitate the accumulation of PpIX in the shell gland.

  4. IRAS observations of a large circumstellar dust shell around W Hydrae

    NASA Technical Reports Server (NTRS)

    Hawkins, G. W.

    1990-01-01

    IRAS observations at 60 and 100 microns reveal a large 30-40-arcmin (about 1-pc) diameter dust shell centered on the oxygen-rich red giant W Hya. Except for SNRs, this is the largest mass-loss envelope, in apparent diameter, known around any evolved star, including PN. W Hya's radiation field, stronger than the interstellar radiation field in the outer envelope, is sufficient to heat dust grains with IR emissivity proportional to lambda exp -1.2 to temperatures of about 40 K implied by the ratio of intensities at 60 and 100 microns.

  5. Preparation of core-shell structured CaCO3 microspheres as rapid and recyclable adsorbent for anionic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Mengen; Chen, Zhenhua; Lv, Xinyan; Zhou, Kang; Zhang, Jie; Tian, Xiaohan; Ren, Xiuli; Mei, Xifan

    2017-09-01

    Core-shell structured CaCO3 microspheres (MSs) were prepared by a facile, one-pot method at room temperature. The adsorbent dosage and adsorption time of the obtained CaCO3 MSs were investigated. The results suggest that these CaCO3 MSs can rapidly and efficiently remove 99-100% of anionic dyes within the first 2 min. The obtained CaCO3 MSs have a high Brunauer-Emmett-Teller surface area (211.77 m2 g-1). In addition, the maximum adsorption capacity of the obtained CaCO3 MSs towards Congo red was 99.6 mg g-1. We also found that the core-shell structured CaCO3 MSs have a high recycling capability for removing dyes from water. Our results demonstrate that the prepared core-shell structured CaCO3 MSs can be used as an ideal, rapid, efficient and recyclable adsorbent to remove dyes from aqueous solution.

  6. STATIC ANALYSIS OF SHELLS OF REVOLUTION USING DOUBLY-CURVED QUADRILATERAL ELEMENTS DERIVED FROM ALTERNATE VARIATIONAL MODELS.

    DTIC Science & Technology

    geometrical shape of the finite element in both of the models is a doubly-curved quadrilateral element whose edge curves are the lines-of-curvature coordinates employed to define the shell midsurface . (Author)

  7. Electroless nickel - phosphorus coating on crab shell particles and its characterization

    NASA Astrophysics Data System (ADS)

    Arulvel, S.; Elayaperumal, A.; Jagatheeshwaran, M. S.

    2017-04-01

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coating process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations.

  8. Fabrication of SiO2@ZrO2@Y2O3:Eu3+ core-multi-shell structured phosphor.

    PubMed

    Gao, Xuan; He, Diping; Jiao, Huan; Chen, Juan; Meng, Xin

    2011-08-01

    ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.

  9. Fission-Fusion Adaptivity in Finite Elements for Nonlinear Dynamics of Shells

    DTIC Science & Technology

    1988-11-30

    where mesh refinement will prove useful. In fact, the deviation of a bilinear element from a smooth shell midsurface can be related to the angle between...comparisons with nonadaptive meshes. Conclusions and further discussions are given in Section 6. -5- 2. FINITE ELEMENT FORMULATION The shape of the midsurface ...8217 22 , and e3 is defined so that e, and e2 are tangent to the midsurface and rotate with the element; 2. for each node, a triad b i is defined so that

  10. Singlet oxygen generation of photosensitizers effectively activated by Nd3+-doped upconversion nanoparticles of luminescence intensity enhancing with shell thickness decreasing

    NASA Astrophysics Data System (ADS)

    Zou, Haixia; Jin, Fengmin; Song, Xiaoyan; Xing, Jinfeng

    2017-04-01

    The introduction of a thick shell structure has been widely used to enhance the emission intensity of upconversion nanoparticles (UCNPs). However, a thick shell could increase the distance between UCNPs and photosensitizers, which is not favourable to the generation of singlet oxygen (1O2) in photodynamic therapy (PDT) due to the low fluorescence resonance energy transfer (FRET) efficiency. In this study, we used a facile method to prepare UCNPs that the emission intensity could increase with the shell thickness decreasing, which facilitated the efficient FRET between UCNPs and photosensitizers. In detail, the Nd3+-doped UCNPs with different dopant concentration of Yb3+ were prepared and characterized firstly. The Ir/g (intensity of red luminescence to green luminescence) was tuned to increase largely by precisely controlling Yb3+ concentration in core-shell, which could make UCNPs effectively activate methylene blue (MB). Then, a unique procedure was used to prepare NaYF4:Yb/Er/Nd@NaYF4:Nd (Yb3+:30%) core-shell nanoparticles with different shell thickness by tuning the amount of the core. The upconversion luminescence (UCL) intensity of those UCNPs enhanced dramatically with the shell thickness decreasing. Furthermore, UCNPs and MB were encapsulated into SiO2 nanoparticles. FRET efficiency between UCNPs and MB largely increased with the shell thickness of UCNPs decreasing. Correspondingly, the efficiency of 1O2 generation obviously increased. We provided a new method to optimize the UCL intensity and FRET efficiency at the same time to produce 1O2 efficiently.

  11. 76 FR 28076 - Notice of Inventory Completion: Museum of Anthropology, Washington State University, Pullman, WA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... scrapers, 1 bone scraper handle, 1 lot of mussel shells, 1 lot of red ochre, 2 bone awls, 1 lot of charcoal... lots of bag residue, 4 lots of animal bones, 1 stone net sinker, 1 lot of tin can fragments, 2...

  12. Synthesis of Au/TiO2 Core-Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Woo; Lim, Young-Min; Tripathy, Suraj Kumar; Kim, Byoung-Gyu; Lee, Min-Sang; Yu, Yeon-Tae

    2007-04-01

    On the synthesis of Au/TiO2 core-shell structure nanoparticles, the effect of the concentration of Ti4+ on the morphology and optical property of Au/TiO2 core-shell nanoparticles was examined. A gold colloid was prepared by mixing HAuCl4\\cdot4H2O and C6H5Na3\\cdot2H2O. Titanium stock solution was prepared by mixing solutions of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentration of the Ti4+ stock solution was adjusted to 0.01-0.3 mM, and then the gold colloid was added to the Ti4+ stock solution. Au/TiO2 core-shell structure nanoparticles could be prepared by the hydrolysis of the Ti4+ stock solution at 80 °C. The size of the as-prepared Au nanoparticles was 15 nm. The thickness of the TiO2 shell on the surface of gold particles was about 10 nm. The absorption peak of the Au/TiO2 core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of the TiO2 shell on the surface of the gold particles. The crystal structure of the TiO2 shell showed an anatase phase. The increase in the Au crystallite size of the Au/TiO2 nanoparticles with increasing heat treatment temperature is smaller than that in the pure Au nanoparticles. This may be due to the encapsulation of Au particles with the TiO2 shell that prevents the growth of the nanoparticle nucleation.

  13. The use of waste mussel shells for the adsorption of dyes and heavy metals

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris

    2016-04-01

    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  14. Thermo-responsive plasmonic nanohybrids with tunable optical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyu; Song, Gang

    2017-10-01

    In this paper, we study the temperature-dependent optical properties of gold-silver core-shell (Au@Ag) nanorods coated by a thermo-responsive polymer poly (N-isopropylacrylamide) (PNIPAM). The wavelength of the plasmonic resonant absorption of the nanohybrids changes with temperature due to the combination effects of the plasmon resonance of the core and the thermal response of the shell. Using effective medium theory, we find that with increase of temperature, the absorption peak red-shifts due to the competition effects from the changes of the thickness and the effective refractive index of the polymer shell. The working wavelength can be tuned by the aspect ratio of nanorods. Moreover, the temperature sensitivity of plasmon resonance increases with the increase of the aspect ratio. Our studies provide a proof-of-concept design of thermal responsive plasmonic smart material.

  15. Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe2O3 Nanospheres as Sensing Material.

    PubMed

    Wang, LiLi; Lou, Zheng; Deng, Jianan; Zhang, Rui; Zhang, Tong

    2015-06-17

    Three-dimensional (3D) nanostructures of α-Fe2O3 materials, including both hollow sphere-shaped and yolk-shell (core-shell)-shaped, have been successfully synthesized via an environmentally friendly hydrothermal approach. By expertly adjusting the reaction time, the solid, hollow, and yolk-shell shaped α-Fe2O3 can be selectively synthesized. Yolk-shell α-Fe2O3 nanospheres display outer diameters of 350 nm, and the interstitial hollow spaces layer is intimately sandwiched between the inner and outer shell of α-Fe2O3 nanostructures. The possible growth mechanism of the yolk-shell nanostructure is proposed. The results showed that the well-defined bilayer interface effectively enhanced the sensing performance of the α-Fe2O3 nanostructures (i.e., yolk-shell α-Fe2O3@α-Fe2O3), owing predominantly to the unique nanostructure, thus facilitated the transport rate and augmented the adsorption quantity of the target gas molecule under gas detection.

  16. A facile in situ self-assembly strategy for large-scale fabrication of CHS@MOF yolk/shell structure and its catalytic application in a flow system.

    PubMed

    Gao, Hongyi; Luan, Yi; Chaikittikul, Kullapat; Dong, Wenjun; Li, Jie; Zhang, Xiaowei; Jia, Dandan; Yang, Mu; Wang, Ge

    2015-03-04

    A hierarchical yolk/shell copper hydroxysulfates@MOF (CHS@MOF, where MOF = metal-organic frameworks) structure was fabricated from a homogeneous yolk/shell CHS template composed of an active shell and a stabilized core via a facile self-template strategy at room temperature. The active shell of the template served as the source of metal ion and was in situ transformed into a well-defined MOF crystal shell, and the relatively stabilized core retained its own nature during the formation of the MOF shell. The strategy of in situ transformation of CHS shell to MOF shell avoided the self-nucleation of MOF in the solution and complex multistep procedures. Furthermore, a flow reaction system using CHS@MOF as self-supported stationary-phase catalyst was developed, which demonstrated excellent catalytic performance for aldehyde acetalization with ethanol, and high yields and selectivities were achieved under mild conditions.

  17. Meridional circulation and CNO anomalies in red giant stars

    NASA Technical Reports Server (NTRS)

    Sweigart, A. V.; Mengel, J. G.

    1979-01-01

    The possibility is investigated that meridional circulation driven by internal rotation might lead to the mixing of CNO-processed material from the vicinity of the hydrogen shell into the envelope of a red giant star. This theory of meridional mixing is found to be generally consistent with available data and to be capable of explaining a number of observational results without invoking a radical departure from the standard physics of stellar interiors. It is suggested that meridional circulation must be a normal characteristic of a rotating star and that meridional mixing provides a reasonable framework for understanding many of the CNO anomalies exhibited by weak-G-band and CN-strong stars as well as the low C-12/C-13 ratios measured among field red giants.

  18. Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow

    2016-11-01

    Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.

  19. Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness

    NASA Astrophysics Data System (ADS)

    Vecchione, Raffaele; Luciani, Giuseppina; Calcagno, Vincenzo; Jakhmola, Anshuman; Silvestri, Brigida; Guarnieri, Daniela; Belli, Valentina; Costantini, Aniello; Netti, Paolo A.

    2016-04-01

    Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01192f

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  1. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  2. Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine

    PubMed Central

    Deniz, Fatih

    2014-01-01

    The biosorption performance of raw cone shell of Calabrian pine for C.I. Basic Red 46 as a model azo dye from aqueous system was optimized using Taguchi experimental design methodology. L9 (33) orthogonal array was used to optimize the dye biosorption by the pine cone shell. The selected factors and their levels were biosorbent particle size, dye concentration, and contact time. The predicted dye biosorption capacity for the pine cone shell from Taguchi design was obtained as 71.770 mg g−1 under optimized biosorption conditions. This experimental design provided reasonable predictive performance of dye biosorption by the biosorbent (R 2: 0.9961). Langmuir model fitted better to the biosorption equilibrium data than Freundlich model. This displayed the monolayer coverage of dye molecules on the biosorbent surface. Dubinin-Radushkevich model and the standard Gibbs free energy change proposed physical biosorption for predominant mechanism. The logistic function presented the best fit to the data of biosorption kinetics. The kinetic parameters reflecting biosorption performance were also evaluated. The optimization study revealed that the pine cone shell can be an effective and economically feasible biosorbent for the removal of dye. PMID:25405213

  3. Production of C-14 and neutrons in red giants

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Rose, W. K.

    1977-01-01

    We have examined the effects of mixing various amounts of hydrogen-rich material into the intershell convective region of red giants undergoing helium shell flashes. We find that significant amounts of C-14 can be produced via the N-14(n, p)C-14 reaction. If substantial portions of this intershell region are mixed out into the envelopes of red giants, then C-14 may be detectable in evolved stars. We find a neutron flux many orders of magnitude above the flux required for the classical s-process, and thus an intermediate neutron process (i-process) may operate in evolved red giants. In all cases studied we find substantial enhancements of O-17. These mixing models offer a plausible explanation of the observations of enhanced O-17 in the carbon star IRC 10216. For certain physical conditions we find significant enhancements of N-15 in the intershell region.

  4. Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product.

    PubMed

    Ledbetter, C A

    2008-09-01

    Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.

  5. Lyα Profile, Dust, and Prediction of Lyα Escape Fraction in Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Dijkstra, Mark; Tilvi, V.; Wang, Junxian

    2017-08-01

    We studied Lyman-α (Lyα) escape in a statistical sample of 43 Green Peas with HST/COS Lyα spectra. Green Peas are nearby star-forming galaxies with strong [O III]λ5007 emission lines. Our sample is four times larger than the previous sample and covers a much more complete range of Green Pea properties. We found that about two-thirds of Green Peas are strong Lyα line emitters with rest-frame Lyα equivalent width > 20 \\mathringA . The Lyα profiles of Green Peas are diverse. The Lyα escape fraction, defined as the ratio of observed Lyα flux to intrinsic Lyα flux, shows anti-correlations with a few Lyα kinematic features—both the blue peak and red peak velocities, the peak separations, and the FWHM of the red portion of the Lyα profile. Using properties measured from Sloan Digital Sky Survey optical spectra, we found many correlations—the Lyα escape fraction generally increases at lower dust reddening, lower metallicity, lower stellar mass, and higher [O III]/[O II] ratio. We fit their Lyα profiles with the H I shell radiative transfer model and found that the Lyα escape fraction is anti-correlated with the best-fit N H I . Finally, we fit an empirical linear relation to predict {f}{esc}{Lyα } from the dust extinction and Lyα red peak velocity. The standard deviation of this relation is about 0.3 dex. This relation can be used to isolate the effect of intergalactic medium (IGM) scatterings from Lyα escape and to probe the IGM optical depth along the line of sight of each z> 7 Lyα emission-line galaxy in the James Webb Space Telescope era.

  6. Rational Synthesis of Branched CoMoO4@CoNiO2 Core/Shell Nanowire Arrays for All-Solid-State Supercapacitors with Improved Performance.

    PubMed

    Ai, Yuanfei; Geng, Xuewen; Lou, Zheng; Wang, Zhiming M; Shen, Guozhen

    2015-11-04

    Effectively composite materials with optimized structures exhibited promising potential in continuing improving the electrochemical performances of supercapacitors in the past few years. Here, we proposed a rational design of branched CoMoO4@CoNiO2 core/shell nanowire arrays on Ni foam by two steps of hydrothermal processing. Owing to the high activity of the scaffold-like CoMoO4 nanowires and the well-defined CoNiO2 nanoneedles, the three-dimensional (3D) electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (5.31 F/cm(2) at 5 mA/cm(2)) and superior cycling stability(159% of the original specific capacitance, i.e., 95.7% of the maximum retained after 5000 cycles at 30 mA/cm(2)). The all-solid-state asymmetric supercapacitors composed of such electrode and activated carbon (AC) exhibited an areal specific capacitance of 1.54 F/cm(2) at 10 mA/cm(2) and a rate capability (59.75 Wh/kg at a 1464 W/kg) comparable with Li-ion batteries. It also showed an excellent cycling stability with no capacitance attenuation after 50000 cycles at 100 mA/cm(2). After rapid charging (1 s), such supercapacitors in series could lighten a red LED for a long time and drive a mini motor effectively, demonstrating advances in energy storage, scalable integrated applications, and promising commercial potential.

  7. Structural and optical properties of ZnSe:Eu/ZnS quantum dots depending on interfacial residual europium

    NASA Astrophysics Data System (ADS)

    Park, Ji Young; Lee, Chan Gi; Seo, Han Wook; Jeong, Da-Woon; Kim, Min Young; Kim, Woo-Byoung; Kim, Bum Sung

    2018-01-01

    A multimodal emitter comprising of ZnSe:Eu/ZnS (core/shell) quantum dots (QDs) by adding a ZnS precursor in situ during synthesis. ZnSe/Eu2+/Eu3+/ZnS actives both core and core/shell. QDs prepared with the ZnS precursor displayed a luminescence intensity three times that of ZnSe QDs due to the passivation effect of the Shell. While the core QDs display the 450-550 nm emission of Eu2+ (4F65D1 → 4F7), the core/shell system showed no Eu2+ emission but only the sharp peaks in the red at 579, 592, 615, 651, and 700 nm due to the electronic transitions of 5D0 → 7Fn (n = 0-4) depending on leisurely decreased with increased reaction time. These results are in agreement with Eu 3d spectra of XPS analysis results. Microscopic analyses show that the core and core/shell QDs both have a zinc blende structure, and their respective sizes were about 3.19 and 3.44 nm. The lattice constant in the central portion of the core/shell QDs are around d111 = 3.13 Å, which is between the outside and inside ring patterns (d111 = 3.27 and 3.07 Å, respectively). This shows the effective over-capping of shell onto the core QDs. The core/shell structure may contain Eu2O3 bonding the over-coated ZnS surface on the Eu3+-doped ZnSe core.

  8. Solar radiation stress in climbing snails: behavioural and intrinsic features define the Hsp70 level in natural populations of Xeropicta derbentina (Pulmonata).

    PubMed

    Di Lellis, Maddalena A; Seifan, Merav; Troschinski, Sandra; Mazzia, Christophe; Capowiez, Yvan; Triebskorn, Rita; Köhler, Heinz-R

    2012-11-01

    Ectotherms from sunny and hot environments need to cope with solar radiation. Mediterranean land snails of the superfamily Helicoidea feature a behavioural strategy to escape from solar radiation-induced excessive soil heating by climbing up vertical objects. The height of climbing, and also other parameters like shell colouration pattern, shell orientation, shell size, body mass, actual internal and shell surface temperature, and the interactions between those factors may be expected to modulate proteotoxic effects in snails exposed to solar radiation and, thus, their stress response. Focussing on natural populations of Xeropicta derbentina, we conducted a 'snapshot' field study using the individual Hsp70 level as a proxy for proteotoxic stress. In addition to correlation analyses, an IT-model selection approach based on Akaike's Information Criterion was applied to evaluate a set of models with respect to their explanatory power and to assess the relevance of each of the above-mentioned parameters for individual stress, by model averaging and parameter estimation. The analysis revealed particular importance of the individuals' shell size, height above ground, the shell colouration pattern and the interaction height × orientation. Our study showed that a distinct set of behavioural traits and intrinsic characters define the Hsp70 level and that environmental factors and individual features strongly interact.

  9. 77 FR 471 - Emergency Food Assistance Program; Availability of Foods for Fiscal Year 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ..., poultry, fish, vegetables, dry beans, juices, and fruits. Approximately $37.5 million in surplus foods..., frozen ham, frozen turkey roast, blackeye beans, garbanzo beans, great northern beans, light red kidney beans, lentils, lima beans, pinto beans, egg mix, shell eggs, lowfat bakery mix, egg noodles, white and...

  10. 75 FR 78674 - Emergency Food Assistance Program; Availability of Foods for Fiscal Year 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... meat, poultry, fish, vegetables, dry beans, juices, and fruits. Approximately $155.9 million in surplus... turkey roast, blackeye beans, garbanzo beans, great northern beans, light red kidney beans, lentils, lima beans, pinto beans, egg mix, shell eggs, lowfat bakery mix, egg noodles, white and yellow corn grits...

  11. Excimers from stable and persistent supramolecular radical-pairs in red/NIR-emitting organic nanoparticles and polymeric films.

    PubMed

    Blasi, Davide; Nikolaidou, Domna M; Terenziani, Francesca; Ratera, Imma; Veciana, Jaume

    2017-03-29

    In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit a uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low-doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronic and bioimaging applications.

  12. High color rendering index WLED based on YAG:Ce phosphor and CdS/ZnS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Li, Ke

    2009-08-01

    White LED combining of blue chip and YAG:Ce phosphor suffers from a red spectral deficiency, resulting in a relatively low value of color rendering index (CRI). In our study, for an effort to improve color rendering properties of YAG:Ce phosphor-based white LEDs, highly luminescent red-orange emitting CdS/ZnS QDs were blended with YAG:Ce phosphors. Core/shell CdS/ZnS quantum dots with the emission wavelength of 618nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. YAG:Ce phosphor was synthesized by high-temperature solid state reaction at 900-1200°C in a slightly reducing atmosphere for 4 hours. Blends of phosphors and QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of YAG phosphor and QDs with a weight ratio of 1.5:1,was demonstrated with an improved CRI value of 86.

  13. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs.

    PubMed

    Kumar, Baskaran Ganesh; Sadeghi, Sadra; Melikov, Rustamzhon; Aria, Mohammad Mohammadi; Jalali, Houman Bahmani; Ow-Yang, Cleva W; Nizamoglu, Sedat

    2018-08-24

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W -1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.

  14. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inserra, C.; Sim, S. A.; Smartt, S. J.

    2015-01-20

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data aremore » broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.« less

  15. Synthesis of NiAu alloy and core-shell nanoparticles in water-in-oil microemulsions

    NASA Astrophysics Data System (ADS)

    Chiu, Hsin-Kai; Chiang, I.-Chen; Chen, Dong-Hwang

    2009-07-01

    NiAu alloy nanoparticles with various Ni/Au molar ratios were synthesized by the hydrazine reduction of nickel chloride and hydrogen tetrachloroaurate in the microemulsion system. They had a face-centered cubic structure and a mean diameter of 6-13 nm, decreasing with increasing Au content. As Au nanoparticles did, they showed a characteristic absorption peak at about 520 nm but the intensity decreased with increasing Ni content. Also, they were nearly superparamagnetic, although the magnetization decreased significantly with increasing Au content. Under an external magnetic field, they could be self-organized into the parallel lines. In addition, the core-shell nanoparticles, Ni3Au1@Au, were prepared by the Au coating on the surface of Ni3Au1 alloy nanoparticles. By increasing the hydrogen tetrachloroaurate concentration for Au coating, the thickness of Au shells could be raised and led to an enhanced and red-shifted surface plasmon absorption.

  16. Nanoscale Transforming Mineral Phases in Fresh Nacre.

    PubMed

    DeVol, Ross T; Sun, Chang-Yu; Marcus, Matthew A; Coppersmith, Susan N; Myneni, Satish C B; Gilbert, Pupa U P A

    2015-10-21

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropod shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO 3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropodmore » shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO 3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.« less

  18. Low Cost CaTiO3 Perovskite Synthesized from Scallop (Anadara granosa) Shell as Antibacterial Ceramic Material

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Nur Ilahi, Rico; Pratami, Rismayanti

    2018-01-01

    Research on perovskite CaTiO3 synthesis from scallop (Anadara granosa) shell and its test as material for antibacterial ceramic application have been conducted. The synthesis was performed by calcium extraction from the scallop shell followed by solid-solid reaction of obtained calcium with TiO2. Physicochemical character of the perovskite wasstudied by measurement of crystallinity using x-ray diffraction (XRD), diffuse-reflectance UV Visible spectrophotometry, scanning electrone microscope-energy dispersive x-ray (SEM-EDX) and Fourier-Transform InfraRed. Considering the future application of the perovskite as antibacterial agent, laboratory test of the peroskite as material in antibacterial ceramic preparation was also conducted. Result of research indicated that perovskite formation was obtained and the material demonstrated photocatalytic activity as identified by band gap energy (Eg) value. The significant activity was also reflected by the antibacterial action of formed ceramic.

  19. Heat resistant protective hand covering

    NASA Technical Reports Server (NTRS)

    Sidman, K. R.; Arons, I. J. (Inventor)

    1984-01-01

    The heat resistant, protective glove is made up of first and second shell sections which define a palm side and a backside, respectively. The first shell section is made of a twill wave fabric of a temperature-resistant aromatic polyamide fiber. The second shell section is made of a knitted fabric of a temperature-resistant aromatic polyamide fiber. The first and second shell sections are secured to one another, e.g., by sewing, to provide the desired glove configuration and an opening for insertion of the wearer's hand. The protective glove also includes a first liner section which is secured to and overlies the inner surface of the first shell section and is made of a felt fabric of a temperature-resistant aromatic polyamide fiber and has a flame resistant, elastomenic coating on the surface facing and overlying the inner surface of the first shell section.

  20. Mid-Infrared Interferometry on Spectral Lines. II. Continuum (Dust) Emission Around IRC +10216 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Lipman, E. A.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    The University of California Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC +10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time variable, and these new data are used to probe the evolution of the dust shells on a decade timescale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically symmetric models at maximum and minimum light both show the inner radius of the IRC +10216 dust shell to be much larger (150 mas) than expected from the dust-condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-infrared imaging, which indicates little or no new dust production in the last 3 yr. Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time variable.

  1. ZnO@MnO2 Core-Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors.

    PubMed

    Radhamani, A V; Shareef, K M; Rao, M S Ramachandra

    2016-11-09

    Asymmetric supercapacitors (ASCs) with aqueous electrolyte medium have recently become the focus of increasing research. For high performance ASCs, selection of cathode materials play a crucial role, and core-shell nanostructures are found to be a good choice. We successfully synthesized, ZnO@MnO 2 core-shell nanofibers (NFs) by modification of high-aspect-ratio-electrospun ZnO NFs hydrothermally with MnO 2 nanoflakes. High conductivity of the ZnO NFs and the exceptionally high pseudocapacitive nature of MnO 2 nanoflakes coating delivered a specific capacitance of 907 Fg -1 at 0.6 Ag -1 for the core-shell NFs. A simple and cost-effective ASC construction was demonstrated with ZnO@MnO 2 NFs as a battery-type cathode material and a commercial-quality activated carbon as a capacitor-type anode material. The fabricated device functioned very well in a voltage window of 0-2.0 V, and a red-LED was illuminated using a single-celled fabricated ASC device. It was found to deliver a maximum energy density of 17 Whkg -1 and a power density of 6.5 kWkg -1 with capacitance retention of 94% and Coulombic efficiency of 100%. The novel architecture of the ZnO@MnO 2 core-shell nanofibrous material implies the importance of using simple design of fiber-based electrode material by mere changes of core and shell counterparts.

  2. 42,000-year-old worked and pigment-stained Nautilus shell from Jerimalai (Timor-Leste): Evidence for an early coastal adaptation in ISEA.

    PubMed

    Langley, Michelle C; O'Connor, Sue; Piotto, Elena

    2016-08-01

    In this paper, we describe worked and pigment-stained Nautilus shell artefacts recovered from Jerimalai, Timor-Leste. Two of these artefacts come from contexts dating to between 38,000 and 42,000 cal. BP (calibrated years before present), and exhibit manufacturing traces (drilling, pressure flaking, grinding), as well as red colourant staining. Through describing more complete Nautilus shell ornaments from younger levels from this same site (>15,900, 9500, and 5000 cal. BP), we demonstrate that those dating to the initial occupation period of Jerimalai are of anthropogenic origin. The identification of such early shell working examples of pelagic shell in Island Southeast Asia not only adds to our growing understanding of the importance of marine resources to the earliest modern human communities in this region, but also indicates that a remarkably enduring shell working tradition was enacted in this area of the globe. Additionally, these artefacts provide the first material culture evidence that the inhabitants of Jerimalai were not only exploiting coastal resources for their nutritional requirements, but also incorporating these materials into their social technologies, and by extension, their social systems. In other words, we argue that the people of Jerimalai were already practicing a developed coastal adaptation by at least 42,000 cal. BP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke

    2018-03-01

    Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.

  4. A Leonard-Sanders-Budiansky-Koiter-Type Nonlinear Shell Theory with a Hierarchy of Transverse-Shearing Deformations

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    A detailed exposition on a refined nonlinear shell theory suitable for nonlinear buckling analyses of laminated-composite shell structures is presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky as an explicit proper subset. This approach is used in order to leverage the exisiting experience base and to make the theory attractive to industry. In addition, the formalism of general tensors is avoided in order to expose the details needed to fully understand and use the theory. The shell theory is based on "small" strains and "moderate" rotations, and no shell-thinness approximations are used. As a result, the strain-displacement relations are exact within the presumptions of "small" strains and "moderate" rotations. The effects of transverse-shearing deformations are included in the theory by using analyst-defined functions to describe the through-the-thickness distributions of transverse-shearing strains. Constitutive equations for laminated-composite shells are derived without using any shell-thinness approximations, and simplified forms and special cases are presented.

  5. Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.

    1981-01-01

    Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.

  6. ControlShell - A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Ullman, Marc A.; Chen, Vincent W.

    1991-01-01

    ControlShell is designed to enable modular design and impplementation of real-time software. It is an object-oriented tool-set for real-time software system programming. It provides a series of execution and data interchange mechansims that form a framework for building real-time applications. These mechanisms allow a component-based approach to real-time software generation and mangement. By defining a set of interface specifications for intermodule interaction, ControlShell provides a common platform that is the basis for real-time code development and exchange.

  7. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  8. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  9. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Red Blood Cells. 640.10 Section 640.10 Food and...

  10. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  11. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining...

  12. Tricolor White-Light-Emitting Carbon Dots with Multiple-Cores@Shell Structure for WLED Application.

    PubMed

    Zhang, Tianyi; Zhao, Feifei; Li, Li; Qi, Bin; Zhu, Dongxia; Lü, Jianhua; Lü, Changli

    2018-06-13

    The past few years have witnessed the rapid development of carbon dots (CDs) due to their outstanding optical properties and a wide range of applications. However, the design and control of CDs with long-wavelength multicolor emission are still huge challenges to be addressed for their practical use in different fields. Here, novel nitrogen-doped multiple-core@shell-structured AC-CDs with tricolor emissions of red, green, and blue were constructed via one-pot hydrothermal method from 5-amino-1,10-phenanthroline and citric acid as reactants and the growth process of AC-CDs was monitored with the reaction time in the synthetic system. The origin of different fluorescence emissions was explored using the unique coordination ability of the surface groups of AC-CDs. An obvious concentration dependence of fluorescent properties was observed for the as-prepared AC-CDs, and a highly fluorescent quantum yield (QY) of 67% for red emission at 630 nm can be obtained by adjusting concentration of AC-CDs. The pure white-light emission (0.33, 0.33; Commission Internationale de l'Elcairage coordinate) was carried out from single carbon dot with QY of 29% through regulation of the excitation and concentration of multiple-core@shell-structured AC-CDs. In addition, because of their excellent photoluminescent properties, the white-emitting AC-CDs as emitting phosphor can be easily used in the fabrication of white-light-emitting diode with good anti-photobleaching and temperature stability.

  13. Nacre in Abalone Shell: Organic and Inorganic Components and their effects to the Formation and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lopez, Maria Isabel

    Abalone nacre is a natural composite that exhibits exceptional mechanical properties due to its organization that extends to various levels of hierarchy. Most of the toughness has been attributed by nacre's third level of hierarchy which entitles a brick and mortar structure consisting of the CaCO3 tiles and organic interlayers. However, there are other important components that are vital to the structure and strength of red abalone nacre. The process of formation of red abalone (Haliotis rufescens) nacre following periods of growth interruption, taking into consideration important environmental factors (access to food and temperature) and to employ high-magnification characterization techniques (scanning electron microscopy and transmission electron microscopy) to better understand how the soft tissue (e.g. epithelium and organic membrane) influences the mechanism of growth. The structure-property relationship of red abalone (Haliotis rufescens) nacre, focusing in the individual constituents (isolated mineral and isolated organic component) and comparing that to the integrated structure. Mechanical tests such as, tensile tests, microscratch, and nanoindentation is performed on the isolated organic constituent and the isolated mineral of red abalone shell. Specimens are characterized by SEM to verify the toughening and deformation mechanisms. Results obtained from the isolated mineral validate the importance of the organic constituent as the mechanical properties decline greatly as the organic component is removed. This approach forms a general picture of the mechanical response of the organic interlayers and growth bands and their effect on the toughness of the abalone nacre. These results are significant to understand the important characteristics of abalone nacre, such as the structure and mechanical properties, and an attempt to aid in improving the latest attempts to produce novel nacre-inspired materials.

  14. Predicting transport survival of brindle and red rock lobsters Jasus edwardsii using haemolymph biochemistry and behaviour traits.

    PubMed

    Simon, Cedric J; Mendo, Tania C; Green, Bridget S; Gardner, Caleb

    2016-11-01

    Mortality events during live transport of Jasus edwardsii rock lobsters are common around the time of season openings in Tasmania, with lobsters from deeper fishing areas with pale shell colouration (brindle) being perceived as more susceptible than shallow-water, red-coloured (red) lobsters. The aims of this study were to assess and predict the vulnerability of brindle and red lobsters to extended emersion exposure using pre- and post-emersion data which included 28 haemolymph biochemical parameters and 5 behaviour traits. No effect of lobster shell colour on haemolymph biochemistry, behaviour traits and their vulnerability to emersion was found. A combined survival of 97% after 40h and 57% after 64h in a first experiment, and 37% after 64h in a second experiment, was observed. Behaviour traits (i.e., righting response, tail flips and three reflex behaviours) were poor indicator of survival. Haemolymph parameters were either unaffected by emersion (e.g., Brix index, protein and lipids), affected by emersion but not associated with mortality (e.g., total haemocyte counts, calcium, magnesium, bicarbonate, glucose and uric acid), or associated with mortality following a recovery period (e.g., pH, the sodium to potassium ratio, urea, and the activity of amylase). A build-up of anaerobic end-products and nitrogenous waste most likely resulted in the mortality. A model based on lobster size and the pre-emersion concentration of haemolymph bicarbonate and haemocyanin was found to be a useful indicator of future survival. This study provides promising leads towards the development of a blood based vulnerability test for live crustacean prior transport. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. 7 CFR 810.401 - Definition of corn.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of corn. 810.401 Section 810.401... GRAIN United States Standards for Corn Terms Defined § 810.401 Definition of corn. Grain that consists of 50 percent or more of whole kernels of shelled dent corn and/or shelled flint corn (Zea mays L...

  16. 7 CFR 810.401 - Definition of corn.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of corn. 810.401 Section 810.401... GRAIN United States Standards for Corn Terms Defined § 810.401 Definition of corn. Grain that consists of 50 percent or more of whole kernels of shelled dent corn and/or shelled flint corn (Zea mays L...

  17. Effectively-truncated large-scale shell-model calculations and nuclei around 100Sn

    NASA Astrophysics Data System (ADS)

    Gargano, A.; Coraggio, L.; Itaco, N.

    2017-09-01

    This paper presents a short overview of a procedure we have recently introduced, dubbed the double-step truncation method, which is aimed to reduce the computational complexity of large-scale shell-model calculations. Within this procedure, one starts with a realistic shell-model Hamiltonian defined in a large model space, and then, by analyzing the effective single particle energies of this Hamiltonian as a function of the number of valence protons and/or neutrons, reduced model spaces are identified containing only the single-particle orbitals relevant to the description of the spectroscopic properties of a certain class of nuclei. As a final step, new effective shell-model Hamiltonians defined within the reduced model spaces are derived by way of a unitary transformation of the original large-scale Hamiltonian. A detailed account of this transformation is given and the merit of the double-step truncation method is illustrated by discussing few selected results for 96Mo, described as four protons and four neutrons outside 88Sr. Some new preliminary results for light odd-tin isotopes from A = 101 to 107 are also reported.

  18. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  19. An experimental determination of the drag coefficient of a Mens 8+ racing shell.

    PubMed

    Buckmann, James G; Harris, Samuel D

    2014-01-01

    This study centered around an experimental analysis of a Mens Lightweight Eight racing shell and, specifically, determining an approximation for the drag coefficient. A testing procedure was employed that used a Global Positioning System (GPS) unit in order to determine the acceleration and drag force on the shell, and through calculations yield a drag coefficient. The testing was run over several days in numerous conditions, and a 95% confidence interval was established to capture the results. The results obtained, over these varying trials, maintained a successful level of consistency. The significance of this study transcends the determination an approximation for the drag coefficient of the racing shell; it defined a successful means of quantifying performance of the shell itself. The testing procedures outlined in the study represent a uniform means of evaluating the factors that influence drag on the shell, and thus influence speed.

  20. Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals

    PubMed Central

    2018-01-01

    ZnS shelling of I–III–VI2 nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I–III–VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 °C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2) and high reaction temperatures (210 °C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials. PMID:29657360

  1. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.

  2. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  3. C-Shell Cookbook

    NASA Astrophysics Data System (ADS)

    Currie, Malcolm J.

    This cookbook describes the fundamentals of writing scripts using the UNIX C shell. It shows how to combine Starlink and private applications with shell commands and constructs to create powerful and time-saving tools for performing repetitive jobs, creating data-processing pipelines, and encapsulating useful recipes. The cookbook aims to give practical and reassuring examples to at least get you started without having to consult a UNIX manual. However, it does not offer a comprehensive description of C-shell syntax to prevent you from being overwhelmed or intimidated. The topics covered are: how to run a script, defining shell variables, prompting, arithmetic and string processing, passing information between Starlink applications, obtaining dataset attributes and FITS header information, processing multiple files and filename modification, command-line arguments and options, and loops. There is also a glossary.

  4. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    PubMed

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.

  5. White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication

    PubMed Central

    Ruan, Cheng; Zhang, Yu; Lu, Min; Ji, Changyin; Sun, Chun; Chen, Xiongbin; Chen, Hongda; Colvin, Vicki L.; Yu, William W.

    2016-01-01

    Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and red-emitting AgInS2/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL) spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS2/ZnS core/shell QDs are good color-converting materials for WLEDs and they are capable in visible light communication (VLC). PMID:28344270

  6. A shell-neutral modeling approach yields sustainable oyster harvest estimates: a retrospective analysis of the Louisiana state primary seed grounds

    USGS Publications Warehouse

    Soniat, Thomas M.; Klinck, John M.; Powell, Eric N.; Cooper, Nathan; Abdelguerfi, Mahdi; Hofmann, Eileen E.; Dahal, Janak; Tu, Shengru; Finigan, John; Eberline, Benjamin S.; La Peyre, Jerome F.; LaPeyre, Megan K.; Qaddoura, Fareed

    2012-01-01

    A numerical model is presented that defines a sustainability criterion as no net loss of shell, and calculates a sustainable harvest of seed (<75 mm) and sack or market oysters (≥75 mm). Stock assessments of the Primary State Seed Grounds conducted east of the Mississippi from 2009 to 2011 show a general trend toward decreasing abundance of sack and seed oysters. Retrospective simulations provide estimates of annual sustainable harvests. Comparisons of simulated sustainable harvests with actual harvests show a trend toward unsustainable harvests toward the end of the time series. Stock assessments combined with shell-neutral models can be used to estimate sustainable harvest and manage cultch through shell planting when actual harvest exceeds sustainable harvest. For exclusive restoration efforts (no fishing allowed), the model provides a metric for restoration success-namely, shell accretion. Oyster fisheries that remove shell versus reef restorations that promote shell accretion, although divergent in their goals, are convergent in their management; both require vigilant attention to shell budgets.

  7. Red Teaming Agility (Briefing Charts)

    DTIC Science & Technology

    2014-06-01

    are termed “ antifragile ”. Black Swan Model for Deep Red Futures The future is dominated not by trends, but by outliers, extreme events that lie...disproportionately higher mission impact. Agility is a measure of antifragile systems Red Teaming Defined Red Teaming is a function to provide

  8. Human spleen and red blood cells

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  9. Black, green, and red abalones. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Southwest. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, J.S.

    1985-03-01

    Black, green, and red abalones (Haliotis cracherodii, H. fulgens, and H. rufescens, respectivley) are of commercial and ecological importance and are distributed widely along the California coast. The abalones are morphologically similar; species are distinguished by particular shell sculpture, color, and body characteristics. Their latitudinal and bathymetric distribution is stratified and most closely related to temperature. Small juveniles eat mainly microflora; adults eat primarily drift macro-algae, preferring specific brown or red algae, when available. Spawning occurs during summer; gonad ripening depends on food quality and quantity and water temperature. Larvae are lecithotrophic and remain planktonic for periods of 5 tomore » 14 days after hatching; settling is substrate specific. Postlarvae and adults require hard substrate for attachment. Juveniles are cryptic, adults usually more exposed. Growth rates are similar, although maximum size varies with species. Increases in shell length and body weight correlate positively with food abundance and temperature. Below depths of 6 m, sea urchins are major competitors for food and space. Predation by invertebrates is low. Decreased abalone production from central California is associated with range expansion and increased predation by sea otters, the major source of abalone mortality. General declines in California landings are due to mortality from improper picking and replacement, habitat degradation, and perhaps overfishing. Commercial and sport diving efforts have increased sharply, whereas annual landings of abalones declined from 1965 to 1982.« less

  10. Disorders of metal metabolism

    PubMed Central

    Ferreira, Carlos R.; Gahl, William A.

    2017-01-01

    Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism. PMID:29354481

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Suoyuan; School of Chemical Engineering and Materials, Dalian Polytechnic University, Dalian 116034; Tsang, Chi Him A.

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. Black-Right-Pointing-Pointer The Si/SiO{sub x} core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC-MS and UV-Vismore » spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 Multiplication-Sign 10{sup -4} M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.« less

  12. TURTLE IN SPACE DESCRIBES NEW HUBBLE IMAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has shown us that the shrouds of gas surrounding dying, sunlike stars (called planetary nebulae) come in a variety of strange shapes, from an 'hourglass' to a 'butterfly' to a 'stingray.' With this image of NGC 6210, the Hubble telescope has added another bizarre form to the rogues' gallery of planetary nebulae: a turtle swallowing a seashell. Giving this dying star such a weird name is less of a challenge than trying to figure out how dying stars create these unusual shapes. The larger image shows the entire nebula; the inset picture captures the complicated structure surrounding the dying star. The remarkable features of this nebula are the numerous holes in the inner shells with jets of material streaming from them. These jets produce column-shaped features that are mirrored in the opposite direction. The multiple shells of material ejected by the dying star give this planetary nebula its odd form. In the 'full nebula' image, the brighter central region looks like a 'nautilus shell'; the fainter outer structure (colored red) a 'tortoise.' The dying star is the white dot in the center. Both pictures are composite images based on observations taken Aug. 6, 1997 with the telescope's Wide Field and Planetary Camera 2. Material flung off by this central star is streaming out of holes it punched in the nautilus shell. At least four jets of material can be seen in the 'full nebula' image: a pair near 6 and 12 o'clock and another near 2 and 8 o'clock. In each pair, the jets are directly opposite each other, exemplifying their 'bipolar' nature. The jets are thought to be driven by a 'fast wind' - material propelled by radiation from the hot central star. In the inner 'nautilus' shell, bright rims outline the escape holes created by this 'wind,' such as the one at 2 o'clock. This same 'wind' appears to give rise to the prominent outer jet in the same direction. The hole in the inner shell acts like a hose nozzle, directing the flow of material. Although the central star is visible in both pictures, it is more prominent on the inset image. Another clear feature on the inset image is a very interesting red, arrowhead-shaped protrusion emanating from a hole (seen nearly edge-on) at 4 o'clock. On the main image, the 'arrowhead' is colored a subtle magenta. The 'arrowhead' appears to be driving an outward swelling of material at the 4 o'clock border. This too appears to have a counterpart in the opposite direction. Some evidence is visible at the 10 o'clock position (inset). These features suggest a more recent shaping of the nebula by the fast stellar wind, because the material does not appear to be as far away from the central star as the outlying jets. The column at 6 o'clock in the main image, which appears to be a series of vertebrae-shaped structures, suggests that the jets occur episodically. The broadest, most prominent of these are near the bottom and are curved upward, facing the central star. This column seems well aligned with the opening in the bottom of the nautilus shell seen in both the main and inset images. The main picture is a composite of images taken with three filters which are used to make a representative picture of the true colors of the object. Red represents hydrogen, which constitutes most of the nebula; blue, oxygen that is singly ionized; and green, oxygen at even higher ionization (doubly ionized). The ionization, in this case, is caused by ultraviolet light from the dying star stripping electrons from atoms. The inset picture is a composite of the inner nautilus shell generated by combining the Hubble telescope images in a different way. This picture enhances some of the inner structure that is not as clear in the main photo due to color blending. The inset is a two-color composite with red and green now depicting the radiation from singly ionized and doubly ionized oxygen, respectively. (This combination is useful for separating the less highly ionized gas from more highly ionized gas.) NGC 6210 is about 6,600 light-years away in the constellation Hercules. The nebula measures 1.6 light-years from the very top of the turtle-shaped form to the tip of the bottom. The inner nautilus shell is about 0.5 light-years in diameter. Credits: Robert Rubin and Christopher Ortiz (NASA Ames Research Center), Patrick Harrington and Nancy Jo Lame (University of Maryland), Reginald Dufour (Rice University), and NASA

  13. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    NASA Astrophysics Data System (ADS)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-03-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancelation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude.

  14. Luminescent properties of YVO4:Eu/SiO2 core-shell composite particles

    NASA Astrophysics Data System (ADS)

    Bao, Amurisana; Lai, Hua; Yang, Yuming; Liu, Zhilong; Tao, Chunyan; Yang, Hua

    2010-02-01

    We report an efficient process for preparing monodisperse SiO2@Y0.95Eu0.05VO4 core-shell phosphors using a simple citrate sol-gel method and without the use of surface-coupling silane agents or large stabilizers. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the resulting SiO2@Y0.95Eu0.05VO4 core-shell phosphors. The XRD results demonstrate that the Y0.95Eu0.05VO4 particles crystallization on the surface of SiO2 annealing at 800 °C is perfectly and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 500 nm and an average thickness of 50 nm), are not agglomerated, and have a smooth surface. The thickness of the YVO4:Eu3+ shells on the SiO2 cores could be easily tailored by changing the mass ratio of shell to core ( W = [YVO4]/[SiO2]) ( 50 nm for W = 30%). The Eu3+ shows a strong PL luminescence (dominated by 5D0 - 7F2 red emission at 618 nm) under the excitation of 320 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the values of W.

  15. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.

    PubMed

    Pascual-Anaya, Juan; Hirasawa, Tatsuya; Sato, Iori; Kuraku, Shigehiro; Kuratani, Shigeru

    2014-01-01

    The turtle shell is a wonderful example of a genuine morphological novelty, since it has no counterpart in any other extant vertebrate lineages. The evolutionary origin of the shell is a question that has fascinated evolutionary biologists for over two centuries and it still remains a mystery. One of the turtle innovations associated with the shell is the carapacial ridge (CR), a bulge that appears at both sides of the dorsal lateral trunk of the turtle embryo and that probably controls the formation of the carapace, the dorsal moiety of the shell. Although from the beginning of this century modern genetic techniques have been applied to resolve the evolutionary developmental origin of the CR, the use of different models with, in principle, dissimilar results has hampered the establishment of a common mechanism for the origin of the shell. Although modern turtles are divided into two major groups, Cryptodira (or hidden-necked turtles) and Pleurodira (or side-necked turtles), molecular developmental studies have been carried out mostly using cryptodiran models. In this study, we revisit the past data obtained from cryptodiran turtles in order to reconcile the different results. We also analyze the histological anatomy and the expression pattern of main CR factors in a pleurodiran turtle, the red-bellied short-necked turtle Emydura subglobosa. We suggest that the turtle shell probably originated concomitantly with the co-option of the canonical Wnt signaling pathway into the CR in the last common ancestor of the turtle.

  16. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes.

    PubMed

    Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud

    2017-03-15

    For the first time the extract of the plant of Salvia hydrangea was used to green synthesis of Pd nanoparticles (NPs) supported on Apricot kernel shell as an environmentally benign support. The Pd NPs/Apricot kernel shell as an effective catalyst was prepared through reduction of Pd 2+ ions using Salvia hydrangea extract as the reducing and capping agent and Pd NPs immobilization on Apricot kernel shell surface in the absence of any stabilizer or surfactant. According to FT-IR analysis, the hydroxyl groups of phenolics in Salvia hydrangea extract as bioreductant agents are directly responsible for the reduction of Pd 2+ ions and formation of Pd NPs. The as-prepared catalyst was characterized by Fourier transform infrared (FT-IR) and UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) equipped with an energy dispersive X-ray spectroscopy (EDS), Elemental mapping, X-ray diffraction analysis (XRD) and transmittance electron microscopy (TEM). The synthesized catalyst was used in the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), Methylene Blue (MB), Rhodamine B (RhB), and Congo Red (CR) at room temperature. The Pd NPs/Apricot kernel shell showed excellent catalytic activity in the reduction of these organic dyes. In addition, it was found that Pd NPs/Apricot kernel shell can be recovered and reused several times without significant loss of catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Rhythmic patterns in ancient shells: Can we reconstruct sub-annual cyclicity in trace element and stable isotope profiles from rudist bivalves?

    NASA Astrophysics Data System (ADS)

    de Winter, N.; Sinnesael, M.; Vansteenberge, S.; Goderis, S.; Snoeck, C.; Van Malderen, S. J. M.; Vanhaecke, F. F.; Claeys, P.

    2017-12-01

    Well-preserved shells of Torreites rudists from the Late Campanian Saiwan Formation in Oman exhibit fine internal layering. These fine (±20 µm) laminae are rhythmically bundled (±400 µm) and subdivide the shells' larger scale annual lamination (±15 mm), suggesting the presence of several interfering cycles in shell growth rate. The aim of the present study is to determine the duration and chemical signature of these rhythmic variations in shell composition. To achieve this, a range of micro-analytical techniques is applied on cross sections through the shells. Firstly, microscopy-based layer counting and colorimetric analysis are carried out on thin sections of shell calcite. Secondly, X-Ray Fluorescence (XRF) and Fourier Transform InfraRed (FTIR) mapping of cross sections of the shells reveal chemical and structural differences between laminae in 2D. Thirdly, high-resolution XRF (25 µm) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS; 10 µm) trace element profiles are used to quantify variations in chemical composition between shell laminae. Fourthly, annual chronology is established based on micro-sampled stable carbon and oxygen stable isotope measurements (250 µm) along the growth axis of the shells. Finally, spectral analysis routines are applied to extract rhythmic patterns matched to the shell laminae from the structural, chemical and colorimetric data. Combining these methods allows for a full evaluation of the structural and chemical characteristics as well as the timing of sub-annual lamination in rudist shells. The results of this study shed light on the external factors that influenced growth rates in rudist bivalves. A better understanding of the timing of deposition of these laminae allows them to be used to improve age models of geochemical records in rudist shells. Characterization of small scale variations in shell composition will characterize the uncertainties contained within lower resolution proxy records from these fossil bivalves. Finally, the study of these laminae enables the reconstruction of sub-annual cyclicity in the environment of Late Cretaceous rudist bivalves. This may in turn shed light on the mechanics of climate in this shallow marine hothouse setting, which provide an analogue of future climate in the light of anthropogenic climate change.

  18. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  19. Facile synthesis of Ag@ZIF-8 core-shell heterostructure nanowires for improved antibacterial activities

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Feng; Fang, Wei-Jun; Fu, Jie-Ru; Wu, Yun; Zheng, Jun; Gao, Gui-Qi; Chen, Cheng; Yan, Rui-Wen; Huang, Shou-Guo; Wang, Chun-Chang

    2018-03-01

    Compared with pure MOFs, core-shell heterostructures of noble-metal@MOFs have attracted tremendous interest due to their unique structure and extensive applications. In the present study, we have successfully synthesized well-defined core-shell Ag@ZIF-8 nanowires. The products growth process has been investigated by examining the products obtained at different intervals and the thickness of ZIF-8 shell ranging from 30 to 100 nm can be technically obtained by tuning the quantity of Ag nanowires. Ag@ZIF-8 has been proven to possess large specific surfaces and high thermal stability. Additionally, the antibacterial activity of Ag@ZIF-8 is further tested against Bacillus subtilis and Escherichia coli BL21. The results reveal that Ag@ZIF-8 core-shell heterostructure nanowires have effective activities against the two types of bacterial strains.

  20. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    NASA Astrophysics Data System (ADS)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-03-01

    Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  1. UV-VIS extinction spectra of gold particle coated by oligonucleotide shell

    NASA Astrophysics Data System (ADS)

    Bogatyrev, Vladimir A.; Vrublevsky, Stanislav A.; Trachuk, Lyubov A.; Khlebtsov, Nikolai G.

    2005-06-01

    We describe synthesis process of an oligonucleotide-functionalized colloidal gold marker CG-l5-T28, its optical properties and interaction with poly(A) in solution and on a solid-phase substrate. The marker is a complex of 15 nm diameter colloidal gold nanoparticles with covalently attached 5'-thiolated 28-base oligothymidine macromolecules. A positive hybridization reaction of the marker with poly(A) is observed by solid-phase analysis on hanging a spot color (from red to blue ) or on appearance of a red dye in dot-blot test as compared to control experiments with poly(U) target. The principles of spectrophotometric monitoring all stages of the marker preparation and application of spectrophotometry to detection of the polynucleotide hybridization in vitro are described. Experimental data were compared with theoretical calculations based on Mie theory for 2-layer model of gold core in polymeric shell with imaginary part of refractive index that typical for the real absorption spectra of NA. To explain the aggregation of CG-15-T28 caused by interaction with poly(A) in solution, we suggest a new model differing from a standard model of cross-linker binding.

  2. Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent.

    PubMed

    Georgin, Jordana; da Silva Marques, Bianca; da Silveira Salla, Julia; Foletto, Edson Luiz; Allasia, Daniel; Dotto, Guilherme Luiz

    2018-03-01

    The treatment of colored effluents containing Procion Red dye (PR) was investigated using H 2 SO 4 and HNO 3 modified avocado shells (Persea americana) as adsorbents. The adsorbent materials (AS-H 2 SO 4 and AS-HNO 3 ) were properly characterized. The adsorption study was carried out considering the effects of adsorbent dosage and pH. Kinetic, equilibrium, and thermodynamic aspects were also evaluated. Finally, the adsorbents were tested to treat simulated dye house effluents. For both materials, the adsorption was favored using 0.300 g L -1 of adsorbent at pH 6.5, where, more than 90% of PR was removed from the solution. General order model was able to explain the adsorption kinetics for both adsorbents. The Sips model was adequate to represent the isotherm data, being the maximum adsorption capacities of 167.0 and 212.6 mg g -1 for AS-H 2 SO 4 and AS-HNO 3 , respectively. The adsorption processes were thermodynamically spontaneous, favorable (- 17.0 < ΔG 0  < - 13.2 kJ mol -1 ), and exothermic (ΔH 0 values of - 29 and - 55 kJ mol -1 ). AS-H 2 SO 4 and AS-HNO 3 were adequate to treat dye house effluents, attaining color removal percentages of 82 and 75%. Avocado shells, after a simple acid treatment, can be a low-cost option to treat colored effluents.

  3. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Sim, S. A.; Fink, M.; Röpke, F. K.; Seitenzahl, I. R.; Hillebrandt, W.

    2010-08-01

    In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and γ-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

  4. Assessment of heavy metal contamination in intertidal gastropod and bivalve shells from central Arabian Gulf coastline, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sorogy, Abdelbaset S.; Youssef, Mohamed

    2015-11-01

    In order to assess pollutants and impact of environmental changes along the Saudi Arabian Gulf coast, forty specimens of gastropod and bivalve shells belonging to Diodora funiculata, Lunella coronata, Cerithium caeruleum, Barbatia parva, Pinctada margaritifera, Amiantis umbonella, Acrosterigma assimile and Asaphis violascens from five localities are selected for Fe, Cu, Pb, Mn, Cd, Se, As, Co, B, Cr, Hg, Mo analysis. The analysis indicated that heavy metal values (except Fe) were less than those recorded in molluscan shells from Gulf of Oman, Red Sea and Indian Ocean. D. funiculate, L. coronata, B. parva and P. margaritifera are good accumulators of Cu, As, Cr. The other species gave a nearly constant concentration in all the studied areas. Al Jubail coast recorded the highest heavy metal concentrations (except Mn at Ras Al-Ghar and Se at Al Jubail industrial city). Heavy metal contamination is mostly attributed to anthropogenic sources, especially effluents from petrochemical industries, sewage and desalination plants.

  5. Nanoscale Transforming Mineral Phases in Fresh Nacre

    DOE PAGES

    DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.; ...

    2015-09-24

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO 3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropodmore » shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO 3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.« less

  6. Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.

    PubMed

    Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2015-08-01

    An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A convergent approach to biocompatible polyglycerol "click" dendrons for the synthesis of modular core-shell architectures and their transport behavior.

    PubMed

    Wyszogrodzka, Monika; Haag, Rainer

    2008-01-01

    Dendrimers are an important class of polymeric materials for a broad range of applications in which monodispersity and multivalency are of interest. Here we report on a highly efficient synthetic route towards bifunctional polyglycerol dendrons on a multigram scale. Commercially available triglycerol (1), which is highly biocompatible, was used as starting material. By applying Williamson ether synthesis followed by an ozonolysis/reduction procedure, glycerol-based dendrons up to the fourth generation were prepared. The obtained products have a reactive core, which was further functionalized to the corresponding monoazido derivatives. By applying copper(I)-catalyzed 1,3-dipolar cycloaddition, so-called "click" coupling, a library of core-shell architectures was prepared. After removal of the 1,2-diol protecting groups, water-soluble core-shell architectures 24-27 of different generations were obtained in high yields. In the structure-transport relationship with Nile red we observe a clear dependence on core size and generation of the polyglycerol dendrons.

  8. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs

    NASA Astrophysics Data System (ADS)

    Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

    2012-02-01

    We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min-1, 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.

  9. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs.

    PubMed

    Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

    2012-02-17

    We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.

  10. Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells.

    PubMed

    Liu, Hongxia; Wang, Chaoyang; Gao, Quanxing; Chen, Jianxin; Ren, Biye; Liu, Xinxing; Tong, Zhen

    2009-07-06

    Well-defined magnetic nanocomposite beads with alginate gel cores and shells of iron oxide (gamma-Fe(2)O(3)) nanoparticles were prepared by self-assembly of colloidal particles at liquid-liquid interfaces and subsequent in situ gelation. Fe(2)O(3) nanoparticles could spontaneously adsorb onto the water droplet surfaces to stabilize water-in-hexane emulsions. Water droplets containing sodium alginate were in situ gelled by calcium cations, which were released from calcium-ethylenediamine tetraacetic acid (Ca-EDTA) chelate by decreasing pH value through slow hydrolysis of d-glucono-delta-lactone (GDL). The resulting hybrid beads with a core-shell structure were easily collected by removing hexane. This facile and high efficient fabrication had a 100% yield and could be carried out at room temperature. Insulin microcrystal was encapsulated into the hybrid beads by dispersing them in the aqueous solution of alginate sodium in the fabrication process. The sustained release could be obtained due to the dual barriers of the hydrogel core and the close-packed inorganic shell. The release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The hybrid beads may find applications as delivery vehicles for biomolecules, drugs, cosmetics, food supplements and living cells.

  11. Nearly suppressed photoluminescence blinking of small-sized, blue-green-orange-red emitting single CdSe-based core/gradient alloy shell/shell quantum dots: correlation between truncation time and photoluminescence quantum yield.

    PubMed

    Roy, Debjit; Mandal, Saptarshi; De, Chayan K; Kumar, Kaushalendra; Mandal, Prasun K

    2018-04-18

    CdSe-based core/gradient alloy shell/shell semiconductor quantum dots (CGASS QDs) have been shown to be optically quite superior compared to core-shell QDs. However, very little is known about CGASS QDs at the single particle level. Photoluminescence blinking dynamics of four differently emitting (blue (λem = 510), green (λem = 532), orange (λem = 591), and red (λem = 619)) single CGASS QDs having average sizes <∼7 nm have been probed in our home-built total internal reflection fluorescence (TIRF) microscope. All four samples possess an average ON-fraction of 0.70-0.85, which hints towards nearly suppressed PL blinking in these gradiently alloyed systems. Suppression of blinking has been so far achieved with QDs having sizes greater than 10 nm and mostly emitting in the red region (λem > 600 nm). In this manuscript, we report nearly suppressed PL blinking behaviour of CGASS QDs with average sizes <∼7 nm and emitting in the entire range of the visible spectrum, i.e. from blue to green to orange to red. The probability density distribution of both ON- and OFF-event durations for all of these CGASS QDs could be fitted well with a modified inverse truncated power law with an additional exponential model equation. It has been found that unlike most of the literature reports, the power law exponent for OFF-event durations is greater than the power law exponent for ON-event durations for all four samples. This suggests that relatively large ON-event durations are interrupted by comparatively small OFF-event durations. This in turn is indicative of a suppressed non-radiative Auger recombination process for these CGASS systems. However, in these four different samples the ON-event truncation time varies inversely with the OFF-event truncation time, which hints that both the ON- and OFF-event truncation processes are dictated by some common factor. We have employed 2D joint probability distribution analysis to probe the correlation between the event durations and found that residual memory exists in both the ON- and OFF-event durations. Positively correlated successive ON-ON and OFF-OFF event durations and negatively correlated (anti-correlated) ON-OFF event durations perhaps suggest the involvement of more than one type of trapping process within the blinking framework. The timescale corresponding to the additional exponential term has been assigned to hole trapping for ON-event duration statistics. Similarly, for OFF-event duration statistics, this component suggests hole detrapping. We found that the average duration of the exponential process for the ON-event durations is an order of magnitude higher than that of the OFF-event durations. This indicates that the holes are trapped for a significantly long time. When electron trapping is followed by such a hole trapping, long ON-event durations result. We have observed long ON-event durations, as high as 50 s. The competing charge tunnelling model has been used to account for the observed blinking behaviour in these CGASS QDs. Quite interestingly, the PLQY of all of these differently emitting QDs (an ensemble level property) could be correlated with the truncation time (a property at the single particle level). A respective concomitant increase-decrease of ON-OFF event truncation times with increasing PLQY is also indicative of a varying degree of suppression of the Auger recombination processes in these four different CGASS QDs.

  12. Effect of shell corrections on the beta decay isobaric mass parabolas

    NASA Astrophysics Data System (ADS)

    Kaur, Sarbjeet; Kaur, Manpreet; Singh, Bir Bikram

    2018-05-01

    The beta decay isobaric mass parabolas have been studied for isobaric families in di erent mass regions. The mass parabolas have been studied using the semi empirical mass formula of Seeger to find the most stable isobar for a particular isobaric family. In addition to liquid drop part VLDM, the shell correction part δU to give binding energy B. E. = VLDM + δU, defined within Strutinsky renormalization procedure, has been used. To elucidate the role of shell e ects on the structure shape of mass parabola, we have made comparison for the δU = 0 and δU ≠ 0 cases. For a particular mass value of isobaric family, the results show that with the inclusion of shell corrections i.e. δU ≠ 0, the minimum for the most stable isobar is strongly pronounced compared to the case without shell corrections. In other words, shell corrections significantly enhance the stability of stable isobar. The study reveals that the role of shell effects on the mass minima is more pronounced in heavy mass region compared to light and intermediate mass regions.

  13. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2014-01-01

    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  14. Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Liu, Yongjia; Zhu, Bangshang; Su, Yue; Zhu, Xinyuan

    2017-01-01

    The paclitaxel/chitosan (PTX/CS) core-shell nanofibers (NFs) are easily prepared by co-assembly of PTX and CS and used in drug-eluting stent. The mixture solution of PTX (dissolved in ethanol) and CS (dissolved in 1% acetic acid water solution) under sonication will make the formation of NFs, in which small molecule PTX co-assembles with biomacromolecular CS through non-covalent interactions. The obtained NFs are tens to hundreds nanometers in diameter and millimeter level in length. Furthermore, the structure of PTX/CS NFs was characterized by confocal laser scanning microscopy (CLSM), zeta potential, X-ray photoelectron spectroscopy (XPS) and nanoscale infra-red (nanoIR), which provided evidences demonstrated that PTX/CS NFs are core-shell structures. The 'shell' of CS wrapped outside of the NFs, while PTX is located in the core. Thus it resulted in high drug loading content (>40 wt.%). The well-controlled drug release, low cytotoxicity and good haemocompatibility were also found in drug carrier system of PTX/CS NFs. In addition, the hydrophilic and flexible properties of NFs make them easily coating and filming on stent to prepare drug-eluting stent (DES). Therefore, this study provides a convenient method to prepare high PTX loaded NFs, which is a promising nano-drug carrier used for DES and other biomedical applications. The possible molecular mechanism of PTX and CS co-assembly and core-shell nanofiber formation is also explored.

  15. Synthesis and Characterization of SiO2@Y2MoO6:Eu3+ Core-Shell Structured Spherical Phosphors by Sol-Gel Process.

    PubMed

    Li, G Z; Liu, F H; Chu, Z S; Wu, D M; Yang, L B; Li, J L; Wang, M N; Wang, Z L

    2016-04-01

    SiO2@Y2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Y2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrated that the Y2MoO6:Eu3+ layers on the SiO2 spheres crystallized after being annealed at 700 °C and the crystallinity increased with raising the annealing temperature. The obtained core-shell phosphors have spherical shape with narrow size distribution (average size ca. 640 nm), non-agglomeration, and smooth surface. The thickness of the Y2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (70 nm for four deposition cycles). The Eul+ shows a strong PL emission (dominated by 5D0-7F2 red emission at 614 nm) under the excitation of 347 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.

  16. An Ochered Fossil Marine Shell From the Mousterian of Fumane Cave, Italy

    PubMed Central

    Peresani, Marco; Vanhaeren, Marian; Quaggiotto, Ermanno; Queffelec, Alain; d’Errico, Francesco

    2013-01-01

    A scanty but varied ensemble of finds challenges the idea that Neandertal material culture was essentially static and did not include symbolic items. In this study we report on a fragmentary Miocene-Pliocene fossil marine shell, Aspa marginata , discovered in a Discoid Mousterian layer of the Fumane Cave, northern Italy, dated to at least 47.6-45.0 Cal ky BP. The shell was collected by Neandertals at a fossil exposure probably located more than 100 kms from the site. Microscopic analysis of the shell surface identifies clusters of striations on the inner lip. A dark red substance, trapped inside micropits produced by bioeroders, is interpreted as pigment that was homogeneously smeared on the outer shell surface. Dispersive X-ray and Raman analysis identify the pigment as pure hematite. Of the four hypotheses we considered to explain the presence of this object at the site, two (tool, pigment container) are discarded because in contradiction with observations. Although the other two (“manuport”, personal ornament) are both possible, we favor the hypothesis that the object was modified and suspended by a ‘thread’ for visual display as a pendant. Together with contextual and chronometric data, our results support the hypothesis that deliberate transport and coloring of an exotic object, and perhaps its use as pendant, was a component of Neandertal symbolic culture, well before the earliest appearance of the anatomically modern humans in Europe. PMID:23874677

  17. Debris Disks Among the Shell Stars: Insights from Spitzer

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Weinberger, Alycia; Teske, Johanna

    2008-01-01

    Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.

  18. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  19. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    PubMed Central

    Li, Hui; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2017-01-01

    The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host lattice of sodium lutetium fluoride (NaLuF4). We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2) shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm). We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals. PMID:28336867

  20. Gravitational force as a determinant of turtle-shell growth and shape

    NASA Technical Reports Server (NTRS)

    Wunder, C. C.; Dodge, C. H.; Walkup, G. A.; Clark, M. E.; Rice, J. O.; Edwards, M. T.

    1974-01-01

    Chronic low-gravity simulation (pedestal support, suspension by wires or foam, and/or clinostat tumbling) of 11 aquatic red-eared sliders, Pseudemys scripta elegans, and of nine box turtles, Terrapine carolina, resulted in continued but slower linear carapace growth. Decreased shell height was accompanied by drastic plastron infolding. Chronic centrifugation (1.4, 1.8, 2.8, 5, or 8.1 g) of 81 box turtles caused an eventual decrease (12% per g) in linear growth rate. No consistent decrease occurred with aquatic turtles centrifuged at below 6 g. Maximum growth of length and roundness appears near 5 g for aquatic environments and near 1 g in land environments. Present results suggest that some gravity is necessary for normal bone growth.

  1. On the Origin of Hard X-ray Structures in the VELA Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    1998-12-01

    We propose an alternative explanation for the origin of two hard X-ray structures recently discovered in the central part of the Vela supernova remnant (SNR) by Willmore et al. (1992, MNRAS, 254, 139) and Markwardt & Ogelman (1995, Nature, 375, 40; 1997, ApJ, 480, L13), and interpreted as a plerion and a pulsar jet respectively. We suggest that the first structure is a dense material shed by the supernova progenitor star during the red supergiant stage, and reheated after the supernova exploded, while the "jet" is simply a dense filament in the Vela SNR's general shell, whose origin is connected with the Rayleigh-Taylor instability in the (main-sequence) wind-driven shell reaccelerated by the supernova blast wave.

  2. Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells

    PubMed Central

    2012-01-01

    Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM) [Gilbert et al., Journal of the American Chemical Society 2008, 130:17519–17527]. Polarized optical microscopy revealed unprecedented super-structures in the calcitic shell part. This bears, in principle, the potential for in vivo studies, which might be useful for investigating the growth modes of nacre and other shell types. PMID:22967319

  3. The Colour Treatment: A Convergence of Art and Medicine at the Red Cross Russell Lea Nerve Home.

    PubMed

    Berryman, Jim

    2016-01-01

    When the Red Cross opened its new convalescent home at Russell Lea in Sydney in 1919, it contained a coloured room designed for treating ‘nerve cases’. This room was painted by Roy de Maistre, a young artist, and was modelled on the Kemp Prossor colour scheme trialled at the McCaul Convalescent Hospital in London for the treatment of shell shock. Dubbed the ‘colour cure’ by the popular press, this unconventional treatment was ignored by the Australian medical profession. The story of de Maistre's colour experiment is not widely known outside the specialist field of Australian art history. Focusing on the colour room as a point of convergence between art and medicine in the context of the First World War, this article investigates Red Cross activities and the care of soldiers suffering from nervous conditions.

  4. A Variational Method for Calculating the Natural Frequencies and Mode Shapes of a Cantilevered Open Cylindrical Shell.

    DTIC Science & Technology

    1983-12-01

    A + f( (n xNxx Nx)6u + (nxNx 9 Nee)Sv )ds (19) s w1 where n are defined as the direction cosines between the normal and the y direction. To integrate...of a specific shell shape. Thus far, Eq (27) applies to all cylindrical shells with the only assumption being the thickness, h, is small as com - pared...results. For instance, after solving Eq (32) for its eight roots, one of them must be established as X1. While this choice is com - pletely arbitrary at

  5. Automating hypertext for decision support

    NASA Technical Reports Server (NTRS)

    Bieber, Michael

    1990-01-01

    A decision support system (DSS) shell is being constructed that can support applications in a variety of fields, e.g., engineering, manufacturing, finance. The shell provides a hypertext-style interface for 'navigating' among DSS application models, data, and reports. The traditional notion of hypertext had to be enhanced. Hypertext normally requires manually, pre-defined links. A DSS shell, however, requires that hypertext connections to be built 'on the fly'. The role of hypertext is discussed in augmenting DSS applications and the decision making process. Also discussed is how hypertext nodes, links, and link markers tailored to an arbitrary DSS application were automatically generated.

  6. Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, Sushama M.; Kondawar, Subhash B.; Koinkar, Pankaj

    2018-03-01

    We report an eco-friendly green synthesis of highly luminescent CuInS2/ZnS core-shell quantum dots (QDs) with average particle size ∼ 3.9 nm via solvothermal process. The present study embodies the intensification of CuInS2/ZnS QDs properties by the shell growth on the CuInS2 QDs. The as-prepared CuInS2 core and CuInS2/ZnS core-shell QDs have been characterized using a range of optical and structural techniques. By adopting a low temperature growth of CuInS2 core and high temperature growth of CuInS2/ZnS core-shell growth, the tuning of absorption and photoluminescence emission spectra were observed. Optical absorption and photoluminescence spectroscopy probe the effect of ZnS passivation on the electronic structure of the CuInS2 dots. In addition, QDs have been scrutinized using ultra violet photoelectron spectroscopy (UPS) to explore their electronic band structure. The band level positions of CuInS2 and CuInS2/ZnS QDs suffices the demand of non-toxic acceptor material for electronic devices. The variation in electronic energy levels of CuInS2 core with the coating of wide band gap ZnS shell influence the removal of trap assisted recombination on the surface of the core. QDs exhibited tunable emission from red to orange region. These studies reveal the feasibility of QDs in photovoltaic and light emitting diodes.

  7. 50 CFR 697.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: American lobster or lobster means Homarus americanus. Approved TED means any approved TED as defined at... the species Acipenser oxyrhynchus. Berried female means a female American lobster bearing eggs... shell of the American lobster. Certified BRD means any BRD, as defined in part 622, Appendix D of this...

  8. 50 CFR 697.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: American lobster or lobster means Homarus americanus. Approved TED means any approved TED as defined at... the species Acipenser oxyrhynchus. Berried female means a female American lobster bearing eggs... shell of the American lobster. Certified BRD means any BRD, as defined in part 622, Appendix D of this...

  9. DOUBLE BOW SHOCKS AROUND YOUNG, RUNAWAY RED SUPERGIANTS: APPLICATION TO BETELGEUSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Jonathan; Mohamed, Shazrene; Neilson, Hilding R.

    2012-05-20

    A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent three-dimensional simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bowmore » shock is very young (<30, 000 years old), hence Betelgeuse may have only recently become an RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into two-dimensional hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as it undergoes the transition to an RSG near the end of its life. We find that the collapsing BSG wind bubble induces a bow shock-shaped inner shell around the RSG wind that resembles Betelgeuse's bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow shock generated by the now defunct BSG wind's interaction with the ISM. We suggest that this outer shell could explain the bar feature located (at least in projection) just in front of Betelgeuse's bow shock.« less

  10. The effect of oxide shell thickness on the structural, electronic, and optical properties of Si-SiO{sub 2} core-shell nano-crystals: A (time dependent)density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazemi, Sanaz, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir

    2016-04-14

    Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO{sub 2} core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si{sup n+}, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. Inmore » this work, Si-SiO{sub 2} NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO{sub 2} transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.« less

  11. Toughening mechanisms in laminated composites: A biomimetic study in mollusk shells

    NASA Astrophysics Data System (ADS)

    Kamat, Shekhar Shripad

    2000-10-01

    Mollusk shells can be described as structural biocomposite materials composed of a mineral (aragonite) and a continuous, albeit minor, organic (protein) component. The conch shell, Strombus Gigas, has intermediate strength and high fracture toughness. The high fracture toughness is a result of enhanced energy dissipation during crack propagation due to delamination, crack bridging, frictional sliding etc. A theoretical and experimental study was conducted on the crack bridging mechanisms operative in the shell. Four-point bend tests were conducted. Acoustic emission and post-mortem dye penetrants were used to characterize the crack propagation, together with conventional fractography. A two layer composite configuration is seen in the shells, with the tough and weak layers having a toughness ratio of ˜4 (Ktough = 2.2MPam1/2). This toughness ratio is a requisite for multiple cracking in the weak layer. A theoretical shear lag analysis of the crack bridging phenomena in the tough layer is shown to lead to a bridging law for the crack wake of the form of p = betau1/2 (p is the bridging traction for a crack opening u, with beta, being a constant of proportionality). Finite element analysis yielded a value of beta = 630 Nmm-5/2 and ucritical = 5 mum for the bridging law parameters. In a nonlinear fracture mechanics phenomenology, these values are relevant material parameters, rather than a critical stress intensity factor. The work of fracture for unnotched specimens is three orders of magnitude higher than mineral aragonite, and is demonstrated numerically incorporating the toughening mechanisms in the shell. Similar structural adaptations have been observed and studied in the red abalone shell, haliotis rufescens and the spines of the sea urchin, Heterocentrotus trigonarius. The toughening mechanisms seen in these shells give insight into structural design needs of brittle matrix composites (BMC) as well as conventional structural ceramics.

  12. 7 CFR 56.1 - Meaning of words and terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Meaning of words and terms defined. 56.1 Section 56.1... EGGS Grading of Shell Eggs Definitions § 56.1 Meaning of words and terms defined. For the purpose of the regulations in this part, words in the singular shall be deemed to import the plural and vice...

  13. External and internal shell formation in the ramshorn snail Marisa cornuarietis are extremes in a continuum of gradual variation in development

    PubMed Central

    2013-01-01

    Background Toxic substances like heavy metals can inhibit and disrupt the normal embryonic development of organisms. Exposure to platinum during embryogenesis has been shown to lead to a “one fell swoop” internalization of the shell in the ramshorn snail Marisa cornuarietis, an event which has been discussed to be possibly indicative of processes in evolution which may result in dramatic changes in body plans. Results Whereas at usual cultivation temperature, 26°C, platinum inhibits the growth of both shell gland and mantle edge during embryogenesis leading to an internalization of the mantle and, thus, also of the shell, higher temperatures induce a re-start of the differential growth of the mantle edge and the shell gland after a period of inactivity. Here, developing embryos exhibit a broad spectrum of shell forms: in some individuals only the ventral part of the visceral sac is covered while others develop almost “normal” shells. Histological studies and scanning electron microscopy images revealed platinum to inhibit the differential growth of the shell gland and the mantle edge, and elevated temperature (28 - 30°C) to mitigate this platinum effect with varying efficiency. Conclusion We could show that the formation of internal, external, and intermediate shells is realized within the continuum of a developmental gradient defined by the degree of differential growth of the embryonic mantle edge and shell gland. The artificially induced internal and intermediate shells are first external and then partly internalized, similar to internal shells found in other molluscan groups. PMID:23682742

  14. Nondimensional Parameters and Equations for Nonlinear and Bifurcation Analyses of Thin Anisotropic Quasi-Shallow Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2010-01-01

    A comprehensive development of nondimensional parameters and equations for nonlinear and bifurcations analyses of quasi-shallow shells, based on the Donnell-Mushtari-Vlasov theory for thin anisotropic shells, is presented. A complete set of field equations for geometrically imperfect shells is presented in terms general of lines-of-curvature coordinates. A systematic nondimensionalization of these equations is developed, several new nondimensional parameters are defined, and a comprehensive stress-function formulation is presented that includes variational principles for equilibrium and compatibility. Bifurcation analysis is applied to the nondimensional nonlinear field equations and a comprehensive set of bifurcation equations are presented. An extensive collection of tables and figures are presented that show the effects of lamina material properties and stacking sequence on the nondimensional parameters.

  15. Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell-Nanoparticle Interaction.

    PubMed

    Zhang, Lu; Feng, Qiang; Wang, Jiuling; Zhang, Shuai; Ding, Baoquan; Wei, Yujie; Dong, Mingdong; Ryu, Ji-Young; Yoon, Tae-Young; Shi, Xinghua; Sun, Jiashu; Jiang, Xingyu

    2015-10-27

    The functionalized lipid shell of hybrid nanoparticles plays an important role for improving their biocompatibility and in vivo stability. Yet few efforts have been made to critically examine the shell structure of nanoparticles and its effect on cell-particle interaction. Here we develop a microfluidic chip allowing for the synthesis of structurally well-defined lipid-polymer nanoparticles of the same sizes, but covered with either lipid-monolayer-shell (MPs, monolayer nanoparticles) or lipid-bilayer-shell (BPs, bilayer nanoparticles). Atomic force microscope and atomistic simulations reveal that MPs have a lower flexibility than BPs, resulting in a more efficient cellular uptake and thus anticancer effect than BPs do. This flexibility-regulated cell-particle interaction may have important implications for designing drug nanocarriers.

  16. Magnetoelastoelectric coupling in core-shell nanoparticles enabling directional and mode-selective magnetic control of THz beam propagation

    DOE PAGES

    Dutta, Moumita; Prasankumar, Rohit Prativadi; Natarajan, Kamaraju; ...

    2017-08-07

    Magnetoelastoelectric coupling in an engineered biphasic multiferroic nanocomposite enables a novel magnetic field direction-defined propagation control of terahertz (THz) waves. These core–shell nanoparticles are comprised of a ferromagnetic cobalt ferrite core and a ferroelectric barium titanate shell. Furthermore, an assembly of these nanoparticles, when operated in external magnetic fields, exhibits a controllable amplitude modulation when the magnetic field is applied antiparallel to the THz wave propagation direction; yet the same assembly displays an additional phase modulation when the magnetic field is applied along the propagation direction. And while field-induced magnetostriction of the core leads to amplitude modulation, phase modulation ismore » a result of stress-mediated piezoelectricity of the outer ferroelectric shell.« less

  17. Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery.

    PubMed

    Sperling, Laura E; Reis, Karina P; Pranke, Patricia; Wendorff, Joachim H

    2016-08-01

    Whereas highly porous scaffolds composed of electrospun nanofibers can mimick major features of the extracellular matrix in tissue engineering, they lack the ability to incorporate and release biocompounds (drugs, growth factors) safely in a controlled way. Here, electrospun core-shell fibers (core made from water and aqueous solutions of hydrophilic polymers and the shell from materials with well-defined release mechanisms) offer unique advantages in comparison with those that have helped make porous nanofibrillar scaffolds highly successful in tissue engineering. This review considers the preparation and biofunctionalization of such core-shell fibers as well as applications in various areas, including neural, vascular, cardiac, cartilage and bone tissue engineering, and touches on the topic of clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement effect and red shift in water absorption from water-solute interaction.

    PubMed

    Jung, Youngeui; Hwang, Jungseek

    2013-02-01

    We used near infrared spectroscopy to obtain concentration dependent glucose absorption spectra in aqueous solutions in the near-infrared range (3800-7500 cm(-1)). Here we introduce a new method to obtain reliable glucose absorption bands from aqueous glucose solutions without measuring the water displacement coefficients of glucose separately. Additionally, we were able to extract the water displacement coefficients of glucose, and this may offer a new general method using spectroscopy techniques applicable to other water-soluble materials. We also observed red shifts in the absorption bands of water in the hydration shell around solute molecules, which comes from the contribution of the interacting water molecules around the glucose molecules in solutions. The intensity of the red shift gets larger as the concentration increases, which indicates that as the concentration increases more water molecules are involved in the interaction. However, the red shift in frequency does not seem to depend significantly on the concentration. We also performed the same measurements and analysis with sucrose instead of glucose as solute and compared.

  19. An evaluation of red light camera (photo-red) enforcement programs in Virginia : a report in response to a request by Virginia's Secretary of Transportation.

    DOT National Transportation Integrated Search

    2005-01-01

    Red light running, which is defined as the act of a motorist entering an intersection after the traffic signal has turned red, caused almost 5,000 crashes in Virginia in 2003, resulting in at least 18 deaths and more than 3,800 injuries. In response ...

  20. A systems approach to hemostasis: 4. How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature

    PubMed Central

    Welsh, John D.; Muthard, Ryan W.; Stalker, Timothy J.; Taliaferro, Joshua P.; Diamond, Scott L.

    2016-01-01

    Previous studies have shown that hemostatic thrombi formed in response to penetrating injuries have a core of densely packed, fibrin-associated platelets overlaid by a shell of less-activated, loosely packed platelets. Here we asked, first, how the diverse elements of this structure combine to stem the loss of plasma-borne molecules and, second, whether antiplatelet agents and anticoagulants that perturb thrombus structure affect the re-establishment of a tight vascular seal. The studies combined high-resolution intravital microscopy with a photo-activatable fluorescent albumin marker to simultaneously track thrombus formation and protein transport following injuries to mouse cremaster muscle venules. The results show that protein loss persists after red cell loss has ceased. Blocking platelet deposition with an αIIbβ3 antagonist delays vessel sealing and increases extravascular protein accumulation, as does either inhibiting adenosine 5′-diphosphate (ADP) P2Y12 receptors or reducing integrin-dependent signaling and retraction. In contrast, sealing was unaffected by introducing hirudin to block fibrin accumulation or a Gi2α gain-of-function mutation to expand the thrombus shell. Collectively, these observations describe a novel approach for studying vessel sealing after injury in real time in vivo and show that (1) the core/shell architecture previously observed in arterioles also occurs in venules, (2) plasma leakage persists well beyond red cell escape and mature thrombus formation, (3) the most critical events for limiting plasma extravasation are the stable accumulation of platelets, ADP-dependent signaling, and the emergence of a densely packed core, not the accumulation of fibrin, and (4) drugs that affect platelet accumulation and packing can delay vessel sealing, permitting protein escape to continue. PMID:26738537

  1. Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking.

    PubMed

    Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki

    2018-02-06

    New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.

  2. Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents.

    PubMed

    Raymond, Jason L; Haworth, Kevin J; Bader, Kenneth B; Radhakrishnan, Kirthi; Griffin, Joseph K; Huang, Shao-Ling; McPherson, David D; Holland, Christy K

    2014-02-01

    The aim of this study was to characterize the frequency-dependent acoustic attenuation of three phospholipid-shelled ultrasound contrast agents (UCAs): Definity, MicroMarker and echogenic liposomes. A broadband through-transmission technique allowed for measurement over 2 to 25 MHz with a single pair of transducers. Viscoelastic shell parameters of the UCAs were estimated using a linearized model developed by N. de Jong, L. Hoff, T. Skotland and N. Bom (Ultrasonics 1992; 30:95-103). The effect of diluent on the attenuation of these UCA suspensions was evaluated by performing attenuation measurements in 0.5% (w/v) bovine serum albumin and whole blood. Changes in attenuation and shell parameters of the UCAs were investigated at room temperature (25°C) and physiologic temperature (37°C). The attenuation of the UCAs diluted in 0.5% (w/v) bovine serum albumin was found to be identical to the attenuation of UCAs in whole blood. For each UCA, attenuation was higher at 37°C than at 25°C, underscoring the importance of conducting characterization studies at physiologic temperature. Echogenic liposomes exhibited a larger increase in attenuation at 37°C versus 25°C than either Definity or MicroMarker. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Advanced Structural and Inflatable Hybrid Spacecraft Module

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)

    2001-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  4. Inflatable Vessel and Method

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)

    2003-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  5. Kinetic Energy Transfer Process in a Double Shell Leading to Robust Burn

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Daughton, W. S.; Albright, B. J.; Wilson, D. C.; Loomis, E. N.; Merritt, E. C.; Dodd, E. S.; Kirkpatrick, R. C.; Watt, R. G.; Rosen, M. D.

    2017-10-01

    A goal of double shell capsule implosions is to impart sufficient internal energy to the D-T fuel at stagnation in order to obtain robust α-heating and burn with low hot spot convergence, C.R. < 10. A simple description of the kinetic energy transfer from the outer shell to the inner shell is found using shock physics and adiabatic compression, and compares well with 1D modeling. An isobaric model for the stagnation phase of the inner shell is used to determine the ideal partition of internal energy in the D-T fuel. Robust burn of the fuel requires, at minimum, that α-heating exceeds the rate of cooling by expansion of the hot spot so that the yield occurs before the hot spot disassembles, which is then used to define a minimum requirement for robust burn. One potential advantage of a double shell capsule compared to single shell capsules is the use of a heavy metal pusher, which may lead to a longer hot spot disassembly time. We present these analytic results and compare them to 1D and 2D radiation-hydrodynamic simulations. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  6. AGN radiative feedback in dusty quasar populations

    NASA Astrophysics Data System (ADS)

    Ishibashi, W.; Banerji, M.; Fabian, A. C.

    2017-08-01

    New populations of hyper-luminous, dust-obscured quasars have been recently discovered around the peak epoch of galaxy formation (z ˜ 2-3), in addition to similar sources found at lower redshifts. Such dusty quasars are often interpreted as sources 'in transition', from dust-enshrouded starbursts to unobscured luminous quasars, along the evolutionary sequence. Here we consider the role of the active galactic nucleus (AGN) radiative feedback, driven by radiation pressure on dust, in high-luminosity, dust-obscured sources. We analyse how the radiation pressure-driven dusty shell models, with different shell mass configurations, may be applied to the different populations of dusty quasars reported in recent observations. We find that expanding shells, sweeping up matter from the surrounding environment, may account for prolonged obscuration in dusty quasars, e.g. for a central luminosity of L ˜ 1047 erg s-1, a typical obscured phase (with extinction in the range AV ˜ 1-10 mag) may last a few ˜106 yr. On the other hand, fixed-mass shells, coupled with high dust-to-gas ratios, may explain the extreme outflows recently discovered in red quasars at high redshifts. We discuss how the interaction between AGN radiative feedback and the ambient medium at different temporal stages in the evolutionary sequence may contribute to shape the observational appearance of dusty quasar populations.

  7. Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors.

    PubMed

    Zhang, Peng; Guan, Bu Yuan; Yu, Le; Lou, Xiong Wen David

    2017-06-12

    Complex metal-organic frameworks used as precursors allow design and construction of various nanostructured functional materials which might not be accessible by other methods. Here, we develop a sequential chemical etching and sulfurization strategy to prepare well-defined double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (RDCs). Yolk-shelled zinc/cobalt-based zeolitic imidazolate framework (Zn/Co-ZIF) RDCs are first synthesized by a controlled chemical etching process, followed by a hydrothermal sulfurization reaction to prepare double-shelled Zn-Co-S RDCs. Moreover, the strategy reported in this work enables easy control of the Zn/Co molar ratio in the obtained double-shelled Zn-Co-S RDCs. Owing to the structural and compositional benefits, the obtained double-shelled Zn-Co-S RDCs exhibit enhanced performance with high specific capacitance (1266 F g -1 at 1 A g -1 ), good rate capability and long-term cycling stability (91 % retention over 10,000 cycles) as a battery-type electrode material for hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Computation of Thin-Walled Prismatic Shells

    NASA Technical Reports Server (NTRS)

    Vlasov, V. Z.

    1949-01-01

    We consider a prismatic shell consisting of a finite number of narrow rectangular plates and having in the cross-section a finite number of closed contours (fig. 1(a)). We shall assume that the rectangular plates composing the shell are rigidly joined so that there is no motion of any kind of one plate relative to the others meeting at a given connecting line. The position of a point on the middle prismatic surface is considered to be defined by the coordinate z, the distance to a certain initial cross-section z = O, end the coordinate s determining its position on the contour of the cross-section.

  9. The brightest high-latitude 12-micron IRAS sources

    NASA Technical Reports Server (NTRS)

    Hacking, P.; Beichman, C.; Chester, T.; Neugebauer, G.; Emerson, J.

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) Point Source catalog was searched for sources brighter than 28 Jy (0 mag) at 12 microns with absolute galactic latitude greater than 30 deg excluding the Large Magellanic Cloud. The search resulted in 269 sources, two of which are the galaxies NGC 1068 and M82. The remaining 267 sources are identified with, or have infrared color indices consistent with late-type stars some of which show evidence of circumstellar dust shells. Seven sources are previously uncataloged stars. K and M stars without circumstellar dust shells, M stars with circumstellar dust shells, and carbon stars occupy well-defined regions of infrared color-color diagrams.

  10. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2013-07-25

    OBIECTIVES 1 KEY ACCOMPLISHMENTS 3.1 ON SITE INSPECTION OF COATING HEALTH 2 3.2 MICROCAPSULE SHEAR STRENGTH 4 3.3 NEXT STEPS 5 1 Summary Initial...experiments with the handheld fluorescence microscope were successful in imaging Nile Red-loaded microcapsules within the self-healing paint. However...the microcapsule shells were brighter than the entrained fluid, making it difficult to assess the health of the coating. Shear strength

  11. DIRT: Dust InfraRed Toolbox

    NASA Astrophysics Data System (ADS)

    Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve

    2011-02-01

    DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths

  12. Pinwheel Nebula around WR 98a.

    PubMed

    Monnier; Tuthill; Danchi

    1999-11-10

    We present the first near-infrared images of the dusty Wolf-Rayet star WR 98a. Aperture-masking interferometry has been utilized to recover images at the diffraction limit of the Keck I telescope, less, similar50 mas at 2.2 µm. Multiepoch observations spanning about 1 yr have resolved the dust shell into a "pinwheel" nebula, the second example of a new class of dust shell first discovered around WR 104 by Tuthill, Monnier, & Danchi. Interpreting the collimated dust outflow in terms of an interacting winds model, the binary orbital parameters and apparent wind speed are derived: a period of 565+/-50 days, a viewing angle of 35&j0;+/-6 degrees from the pole, and a wind speed of 99+/-23 mas yr-1. This period is consistent with a possible approximately 588 day periodicity in the infrared light curve, linking the photometric variation to the binary orbit. Important implications for binary stellar evolution are discussed by identifying WR 104 and WR 98a as members of a class of massive, short-period binaries whose orbits were circularized during a previous red supergiant phase. The current component separation in each system is similar to the diameter of a red supergiant, which indicates that the supergiant phase was likely terminated by Roche lobe overflow, leading to the present Wolf-Rayet stage.

  13. The Betelgeuse Project II: Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nance, S.; Sullivan, J. M.; Diaz, M.; Wheeler, J. Craig

    2018-06-01

    We explore the question of whether the interior state of massive red supergiant supernova progenitors can be effectively probed with asteroseismology. We have computed a suite of ten models with ZAMS masses from 15 to 25 M⊙ in intervals of 1 M⊙ including the effects of rotation, with the stellar evolutionary code MESA. We estimate characteristic frequencies and convective luminosities of convective zones at two illustrative stages, core helium burning and off-center convective carbon burning. We also estimate the power that might be delivered to the surface to modulate the luminous output considering various efficiencies and dissipation mechanisms. The inner convective regions should generate waves with characteristic periods of ˜ 20 days in core helium burning, ˜10 days in helium shell burning, and 0.1 to 1 day in shell carbon burning. Acoustic waves may avoid both shock and diffusive dissipation relatively early in core helium burning throughout most of the structure. In shell carbon burning, years before explosion, the signal generated in the helium shell might in some circumstances be weak enough to avoid shock dissipation, but is subject to strong thermal dissipation in the hydrogen envelope. Signals from a convective carbon-burning shell are very likely to be even more severely damped by within the envelope. In the most optimistic case, early in core helium burning, waves arriving close to the surface could represent luminosity fluctuations of a few millimagnitudes, but the conditions in the very outer reaches of the envelope suggest severe thermal damping there.

  14. Raman-Scattering Line Profiles of the Symbiotic Star AG Peg

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Jae; Hyung, Siek

    2017-06-01

    The high dispersion Hα and Hβ line profiles of the Symbiotic star AG Peg consist of top double Gaussian and bottom components. We investigated the formation of the broad wings with Raman scattering mechanism. Adopting the same physical parameters from the photo-ionization study of Kim and Hyung (2008) for the white dwarf and the ionized gas shell, Monte Carlo simulations were carried out for a rotating accretion disk geometry of non-symmetrical latitude angles from -7° < θ < +7° to -16° < θ < +16°. The smaller latitude angle of the disk corresponds to the approaching side of the disk responsible for weak blue Gaussian profile, while the wider latitude angle corresponds to the other side of the disk responsible for the strong red Gaussian profile. We confirmed that the shell has the high gas density ˜ 109.85 cm-3 in the ionized zone of AG Peg derived in the previous photo-ionization model study. The simulation with various HI shell column densities (characterized by a thickness ΔD × gas number density nH) shows that the HI gas shell with a column density Hhi ≈ 3 - 5 × 1019 cm-2 fits the observed line profiles well. The estimated rotation speed of the accretion disk shell is in the range of 44 - 55 kms-1. We conclude that the kinematically incoherent structure involving the outflowing gas from the giant star caused an asymmetry of the disk and double Gaussian profiles found in AG Peg.

  15. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions

    PubMed Central

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m2, could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process. PMID:29922646

  16. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    PubMed

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  17. Magnetically separable {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core-shell nanocomposites: Fabrication and visible-light-driven photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minqiang, E-mail: jbmwgkc@126.com; Li, Di; Jiang, Deli

    2012-08-15

    Novel visible-light-induced {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts capable of magnetic separation have been synthesized by a facile sol-gel and after-annealing process. The as-obtained core-shell nanocomposite is composed of a central {gamma}-Fe{sub 2}O{sub 3} core with a strong response to external fields, an interlayer of SiO{sub 2}, and an outer layer of Ce-doped TiO{sub 2} nanocrystals. UV-vis spectra analysis indicates that Ce doping in the compound results in a red-shift of the absorption edge, thus offering increased visible light absorption. We show that such a {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite with appreciated Ce doping amount exhibitsmore » much higher visible-light photocatalytic activity than bare TiO{sub 2} and undoped {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-TiO{sub 2} core-shell nanocomposite toward the degradation of rhodamine B (RhB). Moreover, the {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts could be easily separated and reused from the treated water under application of an external magnetic field. - Graphical abstract: Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core/shell nanocomposite photocatalysts with enhanced photocatalytic activity and fast magnetic separability were prepared. Highlights: Black-Right-Pointing-Pointer Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core/shell composite photocatalysts were prepared. Black-Right-Pointing-Pointer The resulting core/shell composite show high visible light photocatalytic activity. Black-Right-Pointing-Pointer The nanocomposite photocatalysts can be easily recycled with excellent durability.« less

  18. 2.5D global-disk oscillation models of the Be shell star ζ Tauri. I. Spectroscopic and polarimetric analysis

    NASA Astrophysics Data System (ADS)

    Escolano, C.; Carciofi, A. C.; Okazaki, A. T.; Rivinius, T.; Baade, D.; Štefl, S.

    2015-04-01

    Context. A large number of Be stars exhibit intensity variations of their violet and red emission peaks in their H i lines observed in emission. This is the so-called V/R phenomenon, usually explained by the precession of a one-armed spiral density perturbation in the circumstellar disk. That global-disk oscillation scenario was confirmed, both observationally and theoretically, in the previous series of two papers analyzing the Be shell star ζ Tauri. The vertically averaged (2D) global-disk oscillation model used at the time was able to reproduce the V/R variations observed in Hα, as well as the spatially resolved interferometric data from AMBER/VLTI. Unfortunately, that model failed to reproduce the V/R phase of Br15 and the amplitude of the polarization variation, suggesting that the inner disk structure predicted by the model was incorrect. Aims: The first aim of the present paper is to quantify the temporal variations of the shell-line characteristics of ζ Tauri. The second aim is to better understand the physics underlying the V/R phenomenon by modeling the shell-line variations together with the V/R and polarimetric variations. The third aim is to test a new 2.5D disk oscillation model, which solves the set of equations that describe the 3D perturbed disk structure but keeps only the equatorial (i.e., 2D) component of the solution. This approximation was adopted to allow comparisons with the previous 2D model, and as a first step toward a future 3D model. Methods: We carried out an extensive analysis of ζ Tauri's spectroscopic variations by measuring various quantities characterizing its Balmer line profiles: red and violet emission peak intensities (for Hα, Hβ, and Br15), depth and asymmetry of the shell absorption (for Hβ, Hγ, and Hδ), and the respective position (i.e., radial velocity) of each component. We attempted to model the observed variations by implementing in the radiative transfer code HDUST the perturbed disk structure computed with a recently developed 2.5D global-disk oscillation model. Results: The observational analysis indicates that the peak separation and the position of the shell absorption both exhibit variations following the V/R variations and, thus, may provide good diagnostic tools of the global-disk oscillation phenomenon. The shell absorption seems to become slightly shallower close to the V/R maximum, but the scarcity of the data does not allow the exact pattern to be identified. The asymmetry of the shell absorption does not seem to correlate with the V/R cycle; no significant variations of this parameter are observed, except during certain periods where Hα and Hβ exhibit perturbed emission profiles. The origin of these so-called triple-peak phases remains unknown. On the theoretical side, the new 2.5D formalism appears to improve the agreement with the observed V/R variations of Hα and Br15, under the proviso that a large value of the viscosity parameter, α = 0.8, be adopted. It remains challenging for the models to reproduce consistently the amplitude and the average level of the polarization data. The 2D formalism provides a better match to the peak separation, although the variation amplitude predicted by both the 2D and 2.5D models is smaller than the observed value. Shell-line variations are difficult for the models to reproduce, whatever formalism is adopted. Appendices are available in electronic form at http://www.aanda.org

  19. Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Movva, Mounika; Kommineni, Ravindra

    2017-04-01

    Cellulose is an important nanoentity that have been used for the preparation of composites. The present work focuses on the extraction of cellulose from pistachio shell and preparing a partially degradable nanocomposite with extracted cellulose. Physical and microstructural characteristics of nanocellulose extracted from pistachio shell powder (PSP) through various stages of chemical treatment are identified from scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FTIR), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). Later, characterized nanocellulose is reinforced in a polyester matrix to fabricate nanocellulose-based composites according to the ASTM standard. The resulting nanocellulose composite performance is evaluated in the mechanical perspective through tensile and flexural loading. SEM, FTIR, and XRD showed that the process for extraction is efficient in obtaining 95% crystalline cellulose. Cellulose also showed good thermal stability with a peak thermal degradation temperature of 361 °C. Such cellulose when reinforced in a matrix material showed a noteworthy rise in tensile and flexural strengths of 43 MPa and 127 MPa, at a definite weight percent of 5%.

  20. An Investigation of Differential Deposition for Figure Corrections in Full-Shell Grazing-Incidents X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Kilaru, Kirenmayee; Ramsey, Brian D.

    2009-01-01

    We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence x-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming process. Combined, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to approx. 10 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient x-ray reflection (approx. 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter.

  1. MASTER OT J004207.99+405501.1/M31LRN 2015 luminous red nova in M31: discovery, light curve, hydrodynamics and evolution

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Shumkov, V.; Vladimirov, V.; Gress, O.; Budnev, N. M.; Ivanov, K.; Tlatov, A.; Gabovich, A.; Yurkov, V.; Sergienko, Yu.; Zalozhnykh, I.

    2017-09-01

    We report the discovery and multicolour (VRIW) photometry of the rare explosive star MASTER OT J004207.99+405501.1 - a luminous red nova - in the Andromeda galaxy M31N2015-01a. We use our original light curve acquired with identical MASTER Global Robotic Net telescopes in one photometric system: VRI during the first 30 d and W (unfiltered) during 70 d. Also, we added published multicolour photometry data to estimate the mass and energy of the ejected shell and we discuss the likely formation scenarios of outbursts of this type. We propose an interpretation of the explosion that is consistent with an evolutionary scenario where the merging of stellar components or the disruption of the common envelope of a close binary can explain some luminous red novae. Radiative hydrodynamic simulations of a luminous red nova were carried out in extended parameter space to fit its light curves. We find that the multicolour passband light curves of the luminous red nova are consistent with an initial common envelope radius of 10 R⊙, a merger mass of 3 M⊙ and an explosion energy of 3 × 1048 erg. As a result, the phenomenon of novae consists of two classes: classical nuclear novae and more rare events (red novae) connected with the loss of compact common envelopes.

  2. Single-step synthesis of Er3+ and Yb3+ ions doped molybdate/Gd2O3 core-shell nanoparticles for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Kamińska, Izabela; Elbaum, Danek; Sikora, Bożena; Kowalik, Przemysław; Mikulski, Jakub; Felcyn, Zofia; Samol, Piotr; Wojciechowski, Tomasz; Minikayev, Roman; Paszkowicz, Wojciech; Zaleszczyk, Wojciech; Szewczyk, Maciej; Konopka, Anna; Gruzeł, Grzegorz; Pawlyta, Mirosława; Donten, Mikołaj; Ciszak, Kamil; Zajdel, Karolina; Frontczak-Baniewicz, Małgorzata; Stępień, Piotr; Łapiński, Mariusz; Wilczyński, Grzegorz; Fronc, Krzysztof

    2018-01-01

    Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd2O3 doped rare earth ions (erbium, Er3+ and ytterbium, Yb3+) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core-shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ—gadolinium molybdates and ξ—molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb3+-{{{{MoO}}}4}2- (∣2F7/2, 3T2〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd2O3:Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core-shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.

  3. Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.

    2014-09-01

    Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved stars, we may learn more about the later parts of the life of stardust; e.g., its residence in the interstellar medium, its time spent in molecular clouds, and its inclusion into solid bodies in future planetary systems.

  4. Polystyrene Core-Silica Shell Particles with Defined Nanoarchitectures as a Versatile Platform for Suspension Array Technology.

    PubMed

    Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut

    2016-04-19

    The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.

  5. HUBBLE WATCHES STAR TEAR APART ITS NEIGHBORHOOD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a view of a stellar demolition zone in our Milky Way Galaxy: a massive star, nearing the end of its life, tearing apart the shell of surrounding material it blew off 250,000 years ago with its strong stellar wind. The shell of material, dubbed the Crescent Nebula (NGC 6888), surrounds the 'hefty,' aging star WR 136, an extremely rare and short-lived class of super-hot star called a Wolf-Rayet. Hubble's multicolored picture reveals with unprecedented clarity that the shell of matter is a network of filaments and dense knots, all enshrouded in a thin 'skin' of gas [seen in blue]. The whole structure looks like oatmeal trapped inside a balloon. The skin is glowing because it is being blasted by ultraviolet light from WR 136. Hubble's view covers a small region at the northeast tip of the structure, which is roughly three light-years across. A picture taken by a ground-based telescope [lower right] shows almost the entire nebula. The whole structure is about 16 light-years wide and 25 light-years long. The bright dot near the center of NGC 6888 is WR 136. The white outline in the upper left-hand corner represents Hubble's view. Hubble's sharp vision is allowing scientists to probe the intricate details of this complex system, which is crucial to understanding the life cycle of stars and their impact on the evolution of our galaxy. The results of this study appear in the June issue of the Astronomical Journal. WR 136 created this web of luminous material during the late stages of its life. As a bloated, red super-giant, WR 136 gently puffed away some of its bulk, which settled around it. When the star passed from a super-giant to a Wolf-Rayet, it developed a fierce stellar wind - a stream of charged particles released from its surface - and began expelling mass at a furious rate. The star began ejecting material at a speed of 3.8 million mph (6.1 million kilometers per hour), losing matter equal to that of our Sun's every 10,000 years. Then the stellar wind collided with the material around the star and swept it up into a thin shell. That shell broke apart into the network of bright clumps seen in the image. The present-day strong wind of the Wolf-Rayet star has only now caught up with the outer edge of the shell, and is stripping away matter as it flows past [the tongue-shaped material in the upper right of the Hubble image]. The stellar wind continues moving outside the shell, slamming into more material and creating a shock wave. This powerful force produces an extremely hot, glowing skin [seen in blue], which envelops the bright nebula. A shock wave is analogous to the sonic boom produced by a jet plane that exceeds the speed of sound; in a cosmic setting, this boom is seen rather than heard. The outer material is too thin to see in the image until the shock wave hits it. The cosmic collision and subsequent shock wave implies that a large amount of matter resides outside the visible shell. The discovery of this material may explain the discrepancy between the mass of the entire shell (four solar masses) and the amount of matter the star lost when it was a red super-giant (15 solar masses). The nebula's short-term fate is less spectacular. As the stellar wind muscles past the clumps of material, the pressure around them drops. A decrease in pressure means that the clumps expand, leading to a steady decline in brightness and fading perhaps to invisibility. Later, the shell may be compressed and begin glowing again, this time as the powerful blast wave of the Wolf-Rayet star completely destroys itself in a powerful supernova explosion. The nebula resides in the constellation Cygnus, 4,700 light-years from Earth. If the nebula were visible to the naked eye, it would appear in the sky as an ellipse one-quarter the size of the full moon. The observations were taken in June 1995 with the Wide Field and Planetary Camera 2. Scientists selected the colors in this composite image to correspond with the ionization (the process of stripping electrons from atoms) state of the gases, with blue representing the highest and red the lowest observed ionization. Credits: NASA, Brian D. Moore, Jeff Hester, Paul Scowen (Arizona State University), Reginald Dufour (Rice University)

  6. The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. IV. Construction and Validation of a Grid of Models for Oxygen-rich AGB Stars, Red Supergiants, and Extreme AGB Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.

    2011-02-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the "Grid of Red supergiant and Asymptotic giant branch star ModelS" (GRAMS). This model grid explores four parameters—stellar effective temperature from 2100 K to 4700 K luminosity from 103 to 106 L sun; dust shell inner radii of 3, 7, 11, and 15 R star; and 10.0 μm optical depth from 10-4 to 26. From an initial grid of ~1200 2Dust models, we create a larger grid of ~69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  7. Properties of Spectrally Defined Red QSOs at z = 0.3–1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, A.-L.; Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw

    We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOsmore » with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanula, J.L.; Lipcomb, D.; Franzreb, K.E.

    The authors studied diets of nestling red-cockaded woodpeckers for two years on three sites in South Carolina and Georgia. Cameras recorded 33 different types of prey. Wood roaches were the most common, amounting to 50% of the prey. In addition, blueberries and saw fly larvae were collected by birds. Snail shells were also collected. Morista's index of diet overlap ranged from 0.94 to 0.99 for breeding males and females. We conclude that nestling diets are similar across the region.

  9. Eggshell-inspired biomineralization generates vaccines that do not require refrigeration.

    PubMed

    Wang, Guangchuan; Li, Xiaofeng; Mo, Lijuan; Song, Zhiyong; Chen, Wei; Deng, Yongqiang; Zhao, Hui; Qin, Ede; Qin, Chengfeng; Tang, Ruikang

    2012-10-15

    We're not gonna bake it: In situ biomineralization creates an egg-like shell on vaccine particles to improve their thermostability. Different from the bare vaccine (squares), the biomineralized vaccine (red circles) can be stored at ambient temperature without refrigeration for up to a week and retain biological activity both in vitro (see graph), as well as in a mouse model. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye.

    PubMed

    Beyki, Mostafa Hossein; Bayat, Mehrnoosh; Shemirani, Farzaneh

    2016-10-01

    Ionic liquids are considered to be a class of environmentally friendly compounds as combination of them with bioresource polymeric substances such as; cellulose, constitute emerging coating materials. Biosorption by polymeric ionic liquids exhibits an attractive green way that involves low cost and irrespective of toxicity. As a result, a novel polymeric ionic liquid has been developed by the reaction of one step synthesized Fe3O4-cellulose nanohybrid, epichlorohydrin and 1-methylimidazole and employed as a green sorbent for efficient biosorption of Congo red dye. Effective parameters on dye removing as well as their interactions were determined with response surface methodology (RSM). Congo red adsorption showed fast equilibrium time (11min) with maximum uptake of 131mgg(-1). Isotherm study revealed that Langmuir adsorption model can better describe dye adsorption behavior. Regeneration of the sorbent was performed with a mixture of methanol-acetone-NaOH (3.0molL(-1)) solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.

    PubMed

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-18

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  12. Loop Variables in String Theory

    NASA Astrophysics Data System (ADS)

    Sathiapalan, B.

    The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.

  13. X-Ray properties of Post-Merger Spheroidal Galaxies: The Missing Link in Understanding the Merger-AGN connection

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2017-09-01

    We propose to characterize the AGN properties of post-merger spheroidal galaxies, a well-defined, significant post starburst phase in merging galaxies. These galaxies probe the "coalesced" late stage of mergers lying between ULIRGs and quenched elliptical galaxies. They are characterized by shells and tidal tails with lifetimes (0.5 - 1 Gyr) similar to those of low luminosity AGN. The AGN detection fraction for 12 serendipitous Chandra sources is 83%. These `shell' galaxies may represent a key time step in major mergers which has previously been unexplored. We propose to image a well selected sample of 12 shells drawn from SDSS to investigate this missing chapter in mergers.

  14. Nanofocus x-ray diffraction and cathodoluminescence investigations into individual core-shell (In,Ga)N/GaN rod light-emitting diodes.

    PubMed

    Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas

    2016-08-12

    Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.

  15. Nanofocus x-ray diffraction and cathodoluminescence investigations into individual core-shell (In,Ga)N/GaN rod light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas

    2016-08-01

    Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.

  16. A New Computational Methodology for Structural Dynamics Problems

    DTIC Science & Technology

    2008-04-01

    by approximating the geometry of the midsurface of the shell (as in continuum-based finite element models), are prevented from the beginning...iiθ , such that the surface 03=θ defines the midsurface ( )R tM M of the region ( )R tB B . The coordinate 3θ is the measure of the distance...assumption for the shell model: “the displacement field is considered as a linear expansion of the thickness coordinate around the midsurface . The

  17. Chemical composition of Hanford Tank SY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposalmore » in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.« less

  18. Open source integrated modeling environment Delta Shell

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  19. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    PubMed

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  20. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  1. Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guan, N.; Piazza, V.; Kapoor, A.; Bougerol, C.; Julien, F. H.; Babichev, A. V.; Cavassilas, N.; Bescond, M.; Michelini, F.; Foldyna, M.; Gautier, E.; Durand, C.; Eymery, J.; Tchernycheva, M.

    2017-12-01

    Single nitride nanowire core/shell n-p photodetectors are fabricated and analyzed. Nanowires consisting of an n-doped GaN stem, a radial InGaN/GaN multiple quantum well system and a p-doped GaN external shell were grown by catalyst-free metal-organic vapour phase epitaxy on sapphire substrates. Single nanowires were dispersed and the core and the shell regions were contacted with a metal and an ITO deposition, respectively, defined using electron beam lithography. The single wire photodiodes present a response in the visible to UV spectral range under zero external bias. The detector operation speed has been analyzed under different bias conditions. Under zero bias, the  -3 dB cut-off frequency is ~200 Hz for small light modulations. The current generation was modeled using non-equilibrium Green function formalism, which evidenced the importance of phonon scattering for carrier extraction from the quantum wells.

  2. Open-Shell-Character-Based Molecular Design Principles: Applications to Nonlinear Optics and Singlet Fission.

    PubMed

    Nakano, Masayoshi

    2017-01-01

    Open-shell character, e. g., diradical character, is a quantum chemically well-defined quantity in ground-state molecular systems, which is not an observable but can quantify the degree of effective bond weakness in the chemical sense or electron correlation strength in the physical sense. Because this quantity also correlates to specific excited states, physicochemical properties concerned with those states are expected to strongly correlate to the open-shell character. This feature enables us to open a new path to revealing the mechanism of these properties as well as to realizing new design principles for efficient functional molecular systems. This account explains the open-shell-character-based molecular design principles and introduces their applications to the rational design of highly efficient nonlinear optical and singlet fission molecular systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    PubMed

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  4. Fuselage shell and cavity response measurements on a DC-9 test section

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.; Burge, P. L.

    1991-01-01

    A series of fuselage shell and cavity response measurements conducted on a DC-9 aircraft test section are described. The objectives of these measurements were to define the shell and cavity model characteristics of the fuselage, understand the structural-acoustic coupling characteristics of the fuselage, and measure the response of the fuselage to different types of acoustic and vibration excitation. The fuselage was excited with several combinations of acoustic and mechanical sources using interior and exterior loudspeakers and shakers, and the response to these inputs was measured with arrays of microphones and accelerometers. The data were analyzed to generate spatial plots of the shell acceleration and cabin acoustic pressure field, and corresponding acceleration and pressure wavenumber maps. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, structural-acoustic coupling, and fuselage response.

  5. Photocatalyst of Perovskite CaTiO3 Nanopowder Synthesized from CaO derived from Snail Shell in Comparison with The Use of CaO and CaCO3

    NASA Astrophysics Data System (ADS)

    Fatimah, I.; Rahmadianti, Y.; Pudiasari, R. A.

    2018-04-01

    Calcium titanate belongs to the important group of compounds with a perovskite structure having high dielectric loss for various applications including photocatalysis mechanism. Refer to the principles of green chemistry, in this work preparation of CaTiO3 was conducted by using CaO derived from snail shell. Aim of this research are to study the physicochemical character of perovskite derived from snail shell and its comparison with CaO and CaCO3 as Ca sources. Material preparation was performed by solid reaction of Ca sources with TiO2 under comparison with CaO and CaCO3 precursors. Mixture of Ca sources with TiO2 in certain proportion were ground and calcined at the temperature of 200 °C for 2 hs. Materials were characterized by using X-ray diffractometer (XRD), Fourier Transform-Infra Red (FTIR) and the photocatalytic activity was tested by using methylene blue photooxidation. Perovskite synthesized using CaO derived from snail shell exhibits the similar XRD pattern with that were prepared by using CaO and CaCO3. From the photooxidation activity test, it is proven that CaTiO3 shows similar photocatalytic activity correspond to that were prepared by CaO and CaCO3. Utilazation of shell as agricultural waste of the synthesis of CaTiO3 perovskite is the novelty of this work. Furthermore, the study on material structure and photoactivity is the main focuses for the application in industry and environment.

  6. On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells

    NASA Astrophysics Data System (ADS)

    Zirak, M.; Moradlou, O.; Bayati, M. R.; Nien, Y. T.; Moshfegh, A. Z.

    2013-05-01

    We have studied systematically photocatalytic properties of the vertically aligned ZnO@CdS core-shell nanorods where the features were grown through a multistep procedure including sol-gel for the formation of ZnO seed layer, hydrothermal process to grow ZnO nanorods, and successive ion layer adsorption and reaction (SILAR) process to deposit CdS nanoshells onto the ZnO nanorods. Formation of the ZnO seed layer and vertically aligned ZnO nanorods (d ∼ 40 nm) with a hexagonal cross-section was confirmed by AFM and SEM imaging. Successful capping of ZnO nanorods with homogeneous CdS nanocrystallites (∼5 nm) was ascertained by HRTEM diffraction and imaging. Optical properties of the samples were also studied using UV-vis spectrophotometry. It was found that the absorption edge of the CdS shell has a red shift when its thickness increases. Photocatalytic activity of the samples was examined by photodecomposition of methylene blue under UV and visible lights where the maximum reaction rate constant was found to be 0.012 min-1 under UV illumination and 0.007 min-1 under visible light. The difference in catalytic activities of the ZnO@CdS core-shell nanorods under UV and visible irradiations was explained based upon the electronic structure as well as the arrangement of the energy levels in the ZnO@CdS core-shells. It is shown that the structure and photocatalytic efficiency of the samples can be tuned by manipulating the SILAR variables.

  7. Photoluminescent enhancement of CdSe/Cd(1-x) Zn(x)S quantum dots by hexadecylamine at room temperature.

    PubMed

    Yang, Jie; Yang, Ping

    2012-09-01

    CdSe/Cd(1-x) Zn(x)S core/shell quantum dots (QDs) were fabricated in 1-octadecene via a two step synthesis. CdSe cores were first prepared using CdO, trioctylphosphine (TOP) selenium, and stearic acid. Subsquently, a Cd(1-x) Zn(x)S shell coating was carried out using zinc acetate dihydrate, cadmium acetate dihydrate, TOPS, and hexadecylamine (HDA) starting materials in the friendly organic system under relatively low temperature. The absorption and photoluminescence (PL) spectra have a significant red shift after the coverage of Cd(1-x)Zn(x)S shell on CdSe cores. The X-ray diffraction analysis of samples confirmed the formation of core/shell structure. The PL quantum yields (QYs) of CdSe/Cd(1-x)Zn(x)S QDs were improved gradually with time at room temperature. This is ascribed to the surface passivation of HDA to the QDs during store. This phenomenon was confirmed by the Fourier transform infrared spectrum of samples. Namely, HDA does not capped on the surface of as-prepared QDs, in which a low PL QYs was observed (less than 10%). Being storing for certain time, HDA attached to the surface of the QDs, in which the PL QYs increased (up to 31%) and the full width at half maximum of PL spectra decreased. Moreover, the fluorescence decay curve of the core/shell QDs is closer to a biexponential decay profile and has a longer average PL lifetime. The variation of average PL lifetime also indicated the influence of HDA during store.

  8. Effective surface passivation of multi-shelled InP quantum dots through a simple complexing with titanium species

    NASA Astrophysics Data System (ADS)

    Jo, Jung-Ho; Kim, Min-Seok; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2018-01-01

    Fluorescent efficiency of various visible quantum dots (QDs) has been incessantly improved to meet industrially high standard mainly through the advance in core/shell heterostructural design, however, their stability against degradable environments appears still lacking. The most viable strategy to cope with this issue was to exploit chemically inert oxide phases to passivate QD surface in the form of either individual overcoating or matrix embedding. Herein, we report a simple but effective means to passivate QD surface by complexing its organic ligands with a metal alkoxide of titanium isopropoxide (Ti(i-PrO)4). For this, highly efficient red-emitting InP QDs with a multi-shell structure of ZnSeS intermediate plus ZnS outer shell are first synthesized and then the surface of resulting InP/ZnSeS/ZnS QDs is in-situ decorated with Ti(i-PrO)4. The presence of Tisbnd O species from Ti(i-PrO)4 on QD surface is verified by x-ray photoelectron and Fourier transform infrared spectroscopic analyses. Two comparative dispersions of pristine versus Ti(i-PrO)4-complexed QDs are exposed for certain periods of time to UV photon and heat and their temporal changes in photoluminescence are monitored, resulting in a huge improvement in QD stability from the latter ones through Ti(i-PrO)4-mediated better surface passivation.

  9. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.

    PubMed

    Byun, Ho-June; Lee, Ju Chul; Yang, Heesun

    2011-03-01

    InP quantum dots (QDs) were solvothermally synthesized by using a greener phosphorus source of P(N(CH(3))(2))(3) instead of highly toxic P(TMS)(3) widely used, and subsequently subjected to a size-sorting processing. While as-grown QDs showed an undetectably low emission intensity, post-synthetic treatments such as photo-etching, photo-radiation, and photo-assisted ZnS shell coating gave rise to a substantial increase in emission efficiency due to the effective removal and passivation of surface states. The emission efficiency of the photo-etched QDs was further enhanced by a consecutive UV photo-radiation, attributable to the photo-oxidation at QD surface. Furthermore, a relatively thick ZnS shell on the surface of InP QDs that were surface-modified with hydrophilic ligands beforehand was photochemically generated in an aqueous solution at room temperature. The resulting InP/ZnS core/shell QDs, emitting from blue to red wavelengths, were more efficient than the above photo-treated InP QDs, and their luminescent properties (emission bandwidth and quantum yield) were comparable to those of InP QDs synthesized with P(TMS)(3). Structural, size, and compositional analyses on InP/ZnS QDs were also conducted to elucidate their core/shell structure. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Mission analysis report for single-shell tank leakage mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, J.M.

    1994-09-01

    This document provides an analysis of the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site`s 149 single-shell high-level waste tanks. This mission is a part of the overall missions of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineers principles are being applied to this effort. Mission analysis supports early decision making by clearly defining program objectives. This documents identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and constraints, estimates the resources to carry outmore » the mission, and establishes measures of success. The results of the mission analysis provide a consistent basis for subsequent systems engineering work.« less

  11. Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.

    2011-06-01

    A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.

  12. Red-emitting LaOF:Eu{sup 3+} phosphors: Synthesis, structure and their Judd–Ofelt analysis for LED applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhananjaya, N., E-mail: ndhananjayas@gmail.com; Shivakumara, C.; Saraf, Rohit

    Highlights: • Red-emitting LaOF:Eu{sup 3+} phosphors were synthesized via facile solid state route. • Judd–Ofelt intensity parameters and radiative properties were determined from PL data. • CIE color coordinates of LaOF:Eu{sup 3+} phosphor is close to the commercial red phosphors. • Eu{sup 3+}-activated LaOF phosphor is a potential candidate for the production of red component in white LEDs. - Abstract: In the present study, we have synthesized a series of La{sub 1−x}Eu{sub x}OF (0.01 ≤ x ≤ 0.09) phosphors by the conventional solid-state reaction route at relatively low temperature (500 °C) and shorter duration of 2 h. The compounds weremore » crystallized in the rhombohedral structure with the space group R-3m (No. 166). Upon UV excitation (254 nm), the photoluminescence spectra exhibit characteristic luminescence {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 1, 2, 3, and 4) intra-4f shell Eu{sup 3+} ion transitions. An intense red emission peak at 610 nm was observed due to electric dipole ({sup 5}D{sub 0} → {sup 7}F{sub 2}) transition. Judd–Ofelt theory was employed to evaluate various radiative parameters such as radiative emission rates, lifetime, branching and asymmetry ratios. CIE color coordinates confirmed the red emission of the phosphors. The luminescent results reveal that LaOF:Eu{sup 3+} phosphor can be used as potential candidate for developing red component in white LED applications.« less

  13. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  14. Fabrication of Highly Ordered and Well-Aligned PbTiO 3/TiN Core–Shell Nanotube Arrays

    DOE PAGES

    Yoon, Jaesung; Kim, Sangjoon; Kim, Dongjin; ...

    2015-04-30

    Highly ordered and well-aligned PbTiO 3/TiN core–shell nanotubes are fabricated in this paper via an anodic aluminum oxide templating route followed by TiN and TiO 2 atomic layer deposition deposition and a subsequent PbO vapor reaction. Finally, PbTiO 3/TiN nanotubes keep their original shape after the vapor phase reaction, and they display well-defined piezoresponse hysteresis curves with remnant piezoresponse of 38 pm V -1.

  15. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging.

    PubMed

    Hussain, Sahid; Won, Nayoun; Nam, Jutaek; Bang, Jiwon; Chung, Hyokyun; Kim, Sungjee

    2009-07-13

    True colors: High-quality InP and InP/ZnS quantum dots (QDs) are obtained by means of a simple one-pot method in the presence of polyethylene glycol (PEG). Rapid and size-controlled reactions lead to highly crystalline and nearly monodisperse QDs at relatively low temperatures. The particles emit from cyan blue to far-red, and are successfully used in cellular imaging (see figure).

  16. Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4-SiO2 nanoparticles.

    PubMed

    Li, Zhuo; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2015-08-15

    A magnetic and fluorescent nano-composite was prepared. It comprised of a core of Fe3O4 nanoparticles (NPs), a silica shell and satellitic Au nano-clusters (AuNCs) capped with bovine serum albumin (BSA). This nano-composite has many desirable properties, e.g. magnetism, red emission, high water solubility, and high resistance to photo-bleaching. On addition of the analyte, 6-mercaptopurine (6-MP) or indeed other similar thiols, AuNCs formed aggregates because the existing cross-links within the Fe3O4 NPs@SiO2 and AuNC structure were broken in favor of the gold-thiol bonds. On suitable irradiation of such aggregates, red fluorescence was emitted at 613 nm. It decreased significantly as a function of the added 6-MP concentration, and the quenching ratio (F0 - F) / F0 was related linearly to the concentration of 6-MP in the range of 0.01 to 0.5 μmol L(-1). The detection limit was 0.004 μmol L(-1) (S/N=3). The method was strongly selective for 6-MP in the presence of oxidants, phenols, heavy-metal ions, and especially bio-thiols. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. New biodiagnostics based on optical tweezers: typing red blood cells, and identification of drug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Wen; Lin, Chuen-Fu; Wang, Shyang-Guang; Lee, Yi-Chieh; Chiang, Chung-Han; Huang, Min-Hui; Lee, Yi-Hsiung; Vitrant, Guy; Pan, Ming-Jeng; Lee, Horng-Mo; Liu, Yi-Jui; Baldeck, Patrice L.; Lin, Chih-Lang

    2013-09-01

    Measurements of optical tweezers forces on biological micro-objects can be used to develop innovative biodiagnostics methods. In the first part of this report, we present a new sensitive method to determine A, B, D types of red blood cells. Target antibodies are coated on glass surfaces. Optical forces needed to pull away RBC from the glass surface increase when RBC antigens interact with their corresponding antibodies. In this work, measurements of stripping optical forces are used to distinguish the major RBC types: group O Rh(+), group A Rh(+) and group B Rh(+). The sensitivity of the method is found to be at least 16-folds higher than the conventional agglutination method. In the second part of this report, we present an original way to measure in real time the wall thickness of bacteria that is one of the most important diagnostic parameters of bacteria drug resistance in hospital diagnostics. The optical tweezers force on a shell bacterium is proportional to its wall thickness. Experimentally, we determine the optical tweezers force applied on each bacteria family by measuring their escape velocity. Then, the wall thickness of shell bacteria can be obtained after calibrating with known bacteria parameters. The method has been successfully applied to indentify, from blind tests, Methicillinresistant Staphylococcus aureus (MRSA), including VSSA (NCTC 10442), VISA (Mu 50), and heto-VISA (Mu 3)

  18. Population ecology and shell chemistry of a phytal ostracode species (Loxoconcha matagordensis) in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Vann, C.D.; Cronin, T. M.; Dwyer, Gary S.

    2004-01-01

    Population ecology and shell chemistry were studied in the phytal ostracode Loxoconcha matagordensis (Swain 1955) collected from Zostera marina seagrass beds in the Chesapeake Bay to provide seasonal constraints on shell secretion time for paleothermometry. Population density and age structure were defined by two main breeding cycles that occurred between 01 to 15 June and 02 to 16 August 2001. The time interval between breeding cycles was ???2 months and total juvenile standing crop increased almost three-fold between the first and second breeding cycles. Dark brown over-wintered adults comprised the majority of the population between March and April 2001, while newly secreted translucent adults were predominant between June and September. Seasonal shell Mg/Ca and Sr/Ca ratios were positively correlated with water temperature at both sites, with the strongest correlations occurring between June and September from newly secreted shells at Dameron Marsh. Old, dark brown shells contained 10% to 23% and 1% to 6% less Mg/Ca and Sr/Ca, respectively, than new shells. Because a fossil assemblage of L. matagordensis will contain ???30% old shells (dark-brown), these results suggest that fossil Mg/Ca ratios yield an integrated late spring to summer temperature signal. Shell Mg/Ca and Sr/Ca ratios of specimens of L. matagordensis collected from living Zostera were positively correlated, suggesting that temperature may influence both elemental ratios. Mg/Ca and Sr/Ca ratios of fossil shells of the related species Loxoconcha sp. A obtained from four sediment cores were also studied and exhibited a weaker correlation between the two elemental ratios. ?? 2004 Elsevier B.V. All rights reserved.

  19. Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures.

    PubMed

    Kosloff, Alon; Granot, Eran; Barkay, Zahava; Patolsky, Fernando

    2018-01-10

    The highly controlled formation of "radial" silicon/NiSi  core-shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the "radial" diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200-400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide-shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core-shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide "radial" diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5-100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core-shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination.

  20. Structural and electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles synthesized by hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.

    TiO{sub 2}/ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO{sub 2}. The obtained ZnO, TiO{sub 2} and TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO{sub 2} and ZnO phases in TiO{sub 2}/ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO{sub 2} nanoparticles have a spherical shape, and TiO{sub 2}/ZnO core–shellmore » nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2}/ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles were investigated. • The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about E{sub a} = 101 meV.« less

  1. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    NASA Astrophysics Data System (ADS)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  2. Automatic determination of 3D orientations of fossilized oyster shells from a densely packed Miocene shell bed

    NASA Astrophysics Data System (ADS)

    Puttonen, Ana; Harzhauser, Mathias; Puttonen, Eetu; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2018-02-01

    Shell beds represent a useful source of information on various physical processes that cause the depositional condition. We present an automated method to calculate the 3D orientations of a large number of elongate and platy objects (fossilized oyster shells) on a sedimentary bedding plane, developed to support the interpretation of possible depositional patterns, imbrications, or impact of local faults. The study focusses on more than 1900 fossil oyster shells exposed in a densely packed Miocene shell bed. 3D data were acquired by terrestrial laser scanning on an area of 459 m2 with a resolution of 1 mm. Bivalve shells were manually defined as 3D-point clouds of a digital surface model and stored in an ArcGIS database. An individual shell coordinate system (ISCS) was virtually embedded into each shell and its orientation was determined relative to the coordinate system of the entire, tectonically tilted shell bed. Orientation is described by the rotation angles roll, pitch, and yaw in a Cartesian coordinate system. This method allows an efficient measurement and analysis of the orientation of thousands of specimens and is a major advantage compared to the traditional 2D approach, which measures only the azimuth (yaw) angles. The resulting data can variously be utilized for taphonomic analyses and the reconstruction of prevailing hydrodynamic regimes and depositional environments. For the first time, the influence of possible post-sedimentary vertical displacements can be quantified with high accuracy. Here, the effect of nearby fault lines—present in the reef—was tested on strongly tilted oyster shells, but it was found out that the fault lines did not have a statistically significant effect on the large tilt angles. Aside from the high reproducibility, a further advantage of the method is its non-destructive nature, which is especially suitable for geoparks and protected sites such as the studied shell bed.

  3. 15 CFR 754.4 - Unprocessed western red cedar.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...” in the “Reason for Control” paragraph in the “License Requirements” section of ECCN 1C988 on the CCL... the export of unprocessed western red cedar covered by ECCN 1C988 (Western red cedar (thuja plicata... defined in ECCN 1C988, that has not been processed into: (i) Lumber of American Lumber Standards Grades of...

  4. 15 CFR 754.4 - Unprocessed western red cedar.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...” in the “Reason for Control” paragraph in the “License Requirements” section of ECCN 1C988 on the CCL... the export of unprocessed western red cedar covered by ECCN 1C988 (Western red cedar (thuja plicata... defined in ECCN 1C988, that has not been processed into: (i) Lumber of American Lumber Standards Grades of...

  5. 15 CFR 754.4 - Unprocessed western red cedar.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...” in the “Reason for Control” paragraph in the “License Requirements” section of ECCN 1C988 on the CCL... the export of unprocessed western red cedar covered by ECCN 1C988 (Western red cedar (thuja plicata... processed lumber containing wane on one or more sides, as defined in ECCN 1C988, that has not been processed...

  6. 15 CFR 754.4 - Unprocessed western red cedar.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...” in the “Reason for Control” paragraph in the “License Requirements” section of ECCN 1C988 on the CCL... the export of unprocessed western red cedar covered by ECCN 1C988 (Western red cedar (thuja plicata... defined in ECCN 1C988, that has not been processed into: (i) Lumber of American Lumber Standards Grades of...

  7. 15 CFR 754.4 - Unprocessed western red cedar.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...” in the “Reason for Control” paragraph in the “License Requirements” section of ECCN 1C988 on the CCL... the export of unprocessed western red cedar covered by ECCN 1C988 (Western red cedar (thuja plicata... defined in ECCN 1C988, that has not been processed into: (i) Lumber of American Lumber Standards Grades of...

  8. Deep learning classification in asteroseismology

    NASA Astrophysics Data System (ADS)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2017-08-01

    In the power spectra of oscillating red giants, there are visually distinct features defining stars ascending the red giant branch from those that have commenced helium core burning. We train a 1D convolutional neural network by supervised learning to automatically learn these visual features from images of folded oscillation spectra. By training and testing on Kepler red giants, we achieve an accuracy of up to 99 per cent in separating helium-burning red giants from those ascending the red giant branch. The convolutional neural network additionally shows capability in accurately predicting the evolutionary states of 5379 previously unclassified Kepler red giants, by which we now have greatly increased the number of classified stars.

  9. Fabrication of a high sensitivity and fast response self-powered photosensor based on a core-shell silicon nanowire homojunction

    NASA Astrophysics Data System (ADS)

    Abdul-Hameed, Assel A.; Mahdi, M. A.; Ali, Basil; Selman, Abbas M.; Al-Taay, H. F.; Jennings, P.; Lee, Wen-Jen

    2018-04-01

    Core-shell self-powered SiNWs homojunction photosensors have been fabricated. SiNWs are prepared by a metal assisted chemical etching method using different HF/H2O2 ratios and etching times. The length of the p-SiNWs increased as the H2O2 concentration and etching time increased. All the grown SiNWs show very low (∼0.7%) optical reflectance for the wavelength range of 200-1100 nm. Photoluminescence spectra of all prepared SiNWs show sharp and broad emission bands located in the red region of the light spectrum. Core-shell homojunction photosensors were fabricated by spin coating P2O2 onto the surface of the prepared p-SiNWs and annealed at 900 °C for 1 h. The fabricated devices exhibited photovoltaic behavior and high photosensitivity with fast response speed to the visible light. However, the sample that was fabricated using HF/H2O2 ratio of 1:1 showed the highest photosensitivity value of 3578% while the photosensor prepared using 2:1 ratio of HF/H2O2 gave the faster rise and decay time.

  10. Constraining the Post-Thermal Pulse Mass-Loss History of R Scl with SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Hankins, Matthew; Herter, Terry; maercker, matthias; Lau, Ryan M.; Sloan, Greg

    2018-06-01

    R Sculptoris (R Scl) is a nearby (~370 pc) carbon star with a massive circumstellar shell (Mshell∼7×10‑3 M⊙) which is thought to have been produced by a thermal pulse event ∼2200 years ago. We observed R Scl with the Faint Object InfraRed CAMera for the SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 μm to study its circumstellar dust emission. Maps of the infrared emission were used to examine the morphology and temperature structure of the spatially extended dust emission. We used the radiative transfer code DUSTY to fit the radial density profile of the circumstellar material, and find that a geometrically thin dust shell cannot reproduce the observed emission. Instead, a second dust component is needed to model the emission. This component, which lies interior to the dust shell, traces the post-thermal pulse mass loss of R Scl and is indicative of a slow decline in the star’s mass loss over thousands of years. This result is at odds with 'classical' thermal pulse models but is consistent with earlier observations of molecular gas in R Scl’s circumstellar environment.

  11. Determining host suitability of pecan for stored-product insects.

    PubMed

    Shufran, A A; Mulder, P G; Payton, M E; Shufran, K A

    2013-04-01

    A no-choice test was performed to determine survival and reproductive capacity of stored-product insect pests on pecan, Carya illinoensis (Wangenheim) Koch. Insects used were Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae); sawtoothed grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera: Cucujidae); red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae); lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae); and rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Fifty adults of each beetle species or 10 reproductive pairs of P. interpunctella adults were placed in 0.5-liter containers with either whole-shell pecans, cracked-shell pecans, randomly selected in-shell pecans, pecan nutmeats, cracked wheat, or glass beads and held at 28 degrees C, 60-70% relative humidity, and 16:8 (L:D) photoperiod for 2, 4, 6, and 8 wk. Four replications of each insect-diet-interval combination were performed. Larvae of P. interpunctella, O. surinamensis, T. castaneum, C. ferrugineus, and adult P. interpunctella and O. surinamensis developed on cracked and nutmeat pecan diets. R. dominica did not complete reproduction on pecans. Knowledge that these pests can reproduce on stored pecan will assist pecan growers, accumulators, and storage facilities in preventing insect outbreaks on their product.

  12. Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Jessica; Fedoruk, Michael; Hrelescu, Calin; Lutich, Andrey A.; Feldmann, Jochen

    2011-06-01

    We have coated gold nanorods (NRs) with thermoresponsive microgel shells based on poly(N-isopropylacrylamide) (pNIPAM). We demonstrate by simultaneous laser-heating and optical extinction measurements that the Au NR cores can be simultaneously used as fast optothermal manipulators (switchers) and sensitive optical reporters of the microgel state in a fully externally controlled and reversible manner. We support our results with optical modeling based on the boundary element method and 3D numerical analysis on the temperature distribution. Briefly, we show that due to the sharp increase in refractive index resulting from the optothermally triggered microgel collapse, the longitudinal plasmon band of the coated Au NRs is significantly red-shifted. The optothermal control over the pNIPAM shell, and thereby over the optical response of the nanocomposite, is fully reversible and can be simply controlled by switching on and off a NIR heating laser. In contrast to bulk solution heating, we demonstrate that light-triggering does not compromise colloidal stability, which is of primary importance for the ultimate utilization of these types of nanocomposites as remotely controlled optomechanical actuators, for applications spanning from drug delivery to photonic crystals and nanoscale motion.

  13. Near-infrared tunable multiple broadband perfect absorber base on VO2 semi-shell arrays photonic microstructure and gold reflector

    NASA Astrophysics Data System (ADS)

    Liang, Jiran; Li, Peng; Zhou, Liwei; Guo, Jinbang; Zhao, Yirui

    2018-01-01

    We proposed a metamaterial absorber which is aimed to achieve a multiple broadband absorption and tunable absorption peak in the near-infrared region. The absorber is based on VO2 semi-shell coated on the top of silica nano-particle array supported on the gold-reflective layer. Measured results show that the absorber has the multiple broadband with the absorption magnitudes more than 95% in the near infrared region. The absorption peaks can be tuned through the VO2 phase transition from metallic phase to insulator phase in the short wavelength (before λ = 1500 nm), when VO2 is at the metallic state, an absorption band appears in the long wavelength (after λ = 1500 nm). The simulation results closely match those of measured. The absorption intensity becomes stronger and absorption peaks have red shift with the increase of thickness of VO2 semi-shell. Thus, this designed tunable absorption intensity and position absorber based on VO2 can be a good choice for enhancing the performance of multiple band, this would be beneficial to the field of photo detectors, sensor and solar cell.

  14. Laser-induced transformation of supramolecular complexes: approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures

    PubMed Central

    Manshina, A. A.; Grachova, E. V.; Povolotskiy, A. V.; Povolotckaia, A. V.; Petrov, Y. V.; Koshevoy, I. O.; Makarova, A. A.; Vyalikh, D. V.; Tunik, S. P.

    2015-01-01

    In the present work an efficient approach of the controlled formation of hybrid Au–Ag–C nanostructures based on laser-induced transformation of organometallic supramolecular cluster compound is suggested. Herein the one-step process of the laser-induced synthesis of hybrid multi-yolk-shell Au-Ag@a-C:H nanoparticles which are bimetallic gold-silver subnanoclusters dispersed in nanospheres of amorphous hydrogenated a-C:H carbon is reported in details. It has been demonstrated that variation of the experimental parameters such as type of the organometallic precursor, solvent, deposition geometry and duration of laser irradiation allows directed control of nanoparticles’ dimension and morphology. The mechanism of Au-Ag@a-C:H nanoparticles formation is suggested: the photo-excitation of the precursor molecule through metal-to-ligand charge transfer followed by rupture of metallophilic bonds, transformation of the cluster core including red-ox intramolecular reaction and aggregation of heterometallic species that results in the hybrid metal/carbon nanoparticles with multi-yolk-shell architecture formation. It has been found that the nanoparticles obtained can be efficiently used for the Surface-Enhanced Raman Spectroscopy label-free detection of human serum albumin in low concentration solution. PMID:26153347

  15. Nezara viridula (Hemiptera: Pentatomidae) feeding patterns in macadamia nut in Hawaii: nut maturity and cultivar effects.

    PubMed

    Follett, Peter A; Wright, Mark G; Golden, Mary

    2009-08-01

    Nezara viridula L. (Hemiptera: Pentatomidae) is a serious pest of macadamia nuts, Macadamia integrifolia, in Hawaii. Using ruthenium red dye to stain stink bug feeding probes, feeding activity was determined for nuts of various maturity levels harvested from the tree and off the ground throughout the growing season in five commercial cultivars. Damage occurred in the tree and on the ground during all nut growth stages. Damage on the ground was often higher than in the tree. Cultivar 246 was more susceptible to attack than cultivars 333 and 800. It was previously thought that cultivar susceptibility was related to husk and shell thickness, but cultivar 246 showed higher damage than other cultivars even during early nut development when the nuts are small and before the shell has formed. This suggests that shell and husk thickness may play a secondary role in susceptibility to feeding by N. viridula. Monitoring N. viridula feeding activity during early nut development may help alert growers to potential problems later in the season, but early-season probing activity in immature nuts was not a good predictor of damage levels in mature nuts later in the season in our study.

  16. Investigation on the mechanical properties of polyurea (PU)/melamine formaldehyde (MF) microcapsules prepared with different chain extenders.

    PubMed

    Hu, Jianfeng; Zhang, Xiaotong; Qu, Jinqing

    2018-05-02

    There is lack of understanding on controlling of mechanical properties of moisture-curing PU/MF microcapsules which limited its further application. PU/MF microcapsules containing a core of isophorone diisocyanate (IPDI) were prepared with different chain extenders, polyetheramine D400, H 2 O, triethylenetetramine and polyetheramine (PEA) D230 by following a two-step synthesis method in this study. Fourier transform infra-red (FTIR) spectroscopy, Malvern particle sizing, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). And micromanipulation technique was used to identify chemical bonds in the shell, size distributions, structure, thickness, and mechanical properties of microcapsules. The results show that PU/MF microcapsules were successfully prepared. Tr increased from 46.4 ± 13.9 N/m to 75.8 ± 23.3 N/m when extender changed from D400 to D230. And the Tr increased from 51.3 ± 14.1 to 94.8 ± 17.5 N/m when the swelling time increased from 1 to 3h. Morphologies of the shell were utilised to understand the mechanism of reactions in forming the shell materials.

  17. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.

    2016-12-01

    Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis shell calcite as a proxy for the dissolved and/or particulate Mn concentrations, and thus the biogeochemical processes that control them, remains elusive.

  18. Composite Supraparticles with Tunable Light Emission

    PubMed Central

    2017-01-01

    Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and fine-tuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research. PMID:28787121

  19. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    NASA Astrophysics Data System (ADS)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  20. Physicochemical characterization of a new pineapple hybrid (FLHORAN41 Cv.).

    PubMed

    Brat, Pierre; Hoang, Lan Nguyen Thi; Soler, Alain; Reynes, Max; Brillouet, Jean-Marc

    2004-10-06

    The physicochemical characteristics (pH, total and soluble solids, and titratable acidity), sugars, organic acids, carotenoids, anthocyanins, volatile compounds, and cell wall polysaccharides of a new pineapple hybrid (FLHORAN41 cultivar) were measured throughout maturation and compared with the Smooth Cayenne cv. At full maturity, the FLHORAN41 cv. has a higher titratable acidity and soluble solids content than the Smooth Cayenne cv. The golden yellow flesh and red-orange to scarlet shell of ripe FLHORAN41 cv. fruits are due to carotenoid and anthocyanin levels that are, respectively, 2.5 and 1.5 times higher than those of the flesh and shell of the ripe Smooth Cayenne cv., respectively. During maturation of the FLHORAN41 cv., there was an increase in all classes of aroma compounds (mainly terpene hydrocarbons and esters), although their relative proportions were similar in both cultivars at full maturity. Cell wall polysaccharides undergo little change during maturation.

  1. Temperature Sensitivity of Water-Soluble CdTe and CdSe/ZnS Quantum Dots Incorporated into Biopolymer Submicron Particles

    NASA Astrophysics Data System (ADS)

    Slyusarenko, N. V.; Gerasimova, M. A.; Slabko, V. V.; Slyusareva, E. A.

    2017-07-01

    Polymer particles with sizes 0.3-0.4 μm are synthesized based on chitosan and chondroitin sulfate with incorporated CdTe (core) and CdSe/ZnS (core-shell) quantum dots. Their morphological and spectral properties are investigated by the methods of dynamic scattering, electron microscopy, and absorption and luminescence spectroscopy at temperatures from 10 to 80°C. Spectral effects associated with a change in temperature (a red shift and a decrease in the amplitude of the photoluminescence spectrum) can be explained by the temperature expansion of the quantum dots and activation of surface traps. It is shown that the temperature sensitivity of spectra of the quantum dots incorporated into the biopolymer particles is not less than in water. To develop an optical temperature sensor, the core quantum dots are more preferable than the core-shell quantum dots.

  2. Photoluminescence of Reduced Graphene Oxide Prepared from Old Coconut Shell with Carbonization Process at Varying Temperatures

    NASA Astrophysics Data System (ADS)

    Jayanti, Dwi Noor; Yogi Nugraheni, Ananda; Kurniasari; Anjelh Baqiya, Malik; Darminto

    2017-05-01

    Reduced graphene oxide (rGO) powder has been prepared from coconut shells by carbonization process at 400°C, 600°C, 800°C and 1000°C for 5 hours at ambient air. In this study the exfoliation rGO was added into distilled water with variation of concentration solution using the sonication process for 3 hours and centrifugation at 4000 rpm for 20 minutes. The characterization were performed by using XRD and photoluminescence (PL) spectroscopy. The photoluminescence or rGO showed the peak of excitation and emission at wavelengths ranging from 340 nm to 800 nm. The PL emission spectra are at wavelength ranging from UV to visible region approaching red. Observation showed that the photoluminescence intensity was significantly increased by the increasing content of rGO in the solution. The influence of the varying temperature on the PL spectra will also be discussed in this study.

  3. A new luminous blue variable - R143 in 30 Doradus

    NASA Technical Reports Server (NTRS)

    Parker, Joel WM.; Clayton, Geoffrey C.; Winge, Claudia; Conti, Peter S.

    1993-01-01

    We have discovered that R143 in the Large Magellanic Cloud is a luminous blue variable (LBV), the first and perhaps the lone LBV in the central cluster of 30 Doradus, and only the sixth known LMC LBV. Photometric and spectroscopic observations over the past 40 yr indicate that during that time R143 moved redward (changing from an F5 to F8 supergiant), then blueward (possibly becoming as early as O9.5), and is now moving back to the red (currently appearing as a late B supergiant). Similarly, the V magnitude of the star has changed by at least 1.4 mag. Images of R143 show very unusual filaments of nebulosity extending from the star to a shell at a distance of 3.5 pc, perhaps due to a similar ejection mechanism that created the spiral jets and shell associated with AG Car, another LBV.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Shun; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083; Lin Yuanhua

    Anatase titania-coated bismuth ferrite nanocomposites (BiFeO{sub 3}/TiO{sub 2}) have been fabricated via a hydrothermal approach combined with a hydrolysis precipitation processing. Analysis of the microstructure and phase composition reveals that a core-shell BiFeO{sub 3}/TiO{sub 2} structure can be formed, which results in a significant redshift in the UV-vis absorption spectra as compared to a simple mechanical mixture of BiFeO{sub 3}-TiO{sub 2} nanopowders. The core-shell structured BiFeO{sub 3}/TiO{sub 2} nanocomposites exhibit higher photocatalytic activity for photodegradation of Congo red under visible-light ({lambda}>400 nm) irradiation, which should be attributed to the enhancement of the quantum efficiency by separating the electrons and holesmore » effectively. The obtained BiFeO{sub 3}/TiO{sub 2} nanocomposites can be used as potential visible-light driven photocatalysts.« less

  5. Insulative laser shell coupler

    DOEpatents

    Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.

    1994-01-01

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

  6. Insulative laser shell coupler

    DOEpatents

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  7. Computer analysis of multicircuit shells of revolution by the field method

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1975-01-01

    The field method, presented previously for the solution of even-order linear boundary value problems defined on one-dimensional open branch domains, is extended to boundary value problems defined on one-dimensional domains containing circuits. This method converts the boundary value problem into two successive numerically stable initial value problems, which may be solved by standard forward integration techniques. In addition, a new method for the treatment of singular boundary conditions is presented. This method, which amounts to a partial interchange of the roles of force and displacement variables, is problem independent with respect to both accuracy and speed of execution. This method was implemented in a computer program to calculate the static response of ring stiffened orthotropic multicircuit shells of revolution to asymmetric loads. Solutions are presented for sample problems which illustrate the accuracy and efficiency of the method.

  8. G 126.1-0.8-14: A molecular shell related to Sh2-187

    NASA Astrophysics Data System (ADS)

    Cichowolski, S.; Pineault, S.; Gamen, R.; Ortega, M. E.; Arnal, E. M.; Suad, L. A.

    2014-10-01

    We present a multi-wavelength study of a region where a well defined molecular shell, named G 126.1-0.8-14, is observed. The distance of G 126.1-0.8-14 is about 1 kpc. Based on HI and CO data we analyze the atomic and molecular gas related to the structure and estimate its main physical properties. From the radio continuum and infrared data we analyze whether the emission associated with G 126.1-0.8-14 has a thermal origin. To disentangle the possible origin of the shell, and given the lack of catalogued O-type stars in the area, we observed with GEMINI the spectra of four OB stars located in projection inside the shell, to get their accurate spectral types and distances. The young HII region Sh2-187 is located onto the densest part of this molecular shell. A search for young stellar object candidates (cYSOs) was made using infrared point source catalogs. Several cYSOs are found spread out onto the shell. Based on all the available data, we discuss the possible origin of G 126.1-0.8-14 as well as its role in the formation of a new generation of stars.

  9. High-Performance Core–Shell Catalyst with Nitride Nanoparticles as a Core: Well-Defined Titanium Copper Nitride Coated with an Atomic Pt Layer for the Oxygen Reduction Reaction

    DOE PAGES

    Tian, Xinlong; Tang, Haibo; Luo, Junming; ...

    2017-04-25

    A class of core–shell structured low-platinum catalysts with well-dispersed inexpensive titanium copper nitride nanoparticles as cores and atomic platinum layers as shells exhibiting high activity and stability for the oxygen reduction reaction is successfully developed. In using nitrided carbon nanotubes (NCNTs) as the support greatly improved the morphology and dispersion of the nitride nanoparticles, resulting in significant enhancement of the performance of the catalyst. The optimized catalyst, Ti 0.9Cu 0.1N@Pt/NCNTs, has a Pt mass activity 5 times higher than that of commercial Pt/C, comparable to that of core–shell catalysts with precious metal nanoparticles as the core, and much higher thanmore » that the latter if we take into account the mass activity of all platinum group metals. Furthermore, only a minimal loss of activity can be observed after 10000 potential cycles, demonstrating the catalyst’s high stability. After durability testing, atomic-scale elemental mapping confirmed that the core–shell structure of the catalyst remained intact. This approach may open a pathway for the design and preparation of high-performance inexpensive core–shell catalysts for a wide range of applications in energy conversion processes.« less

  10. High-Performance Core–Shell Catalyst with Nitride Nanoparticles as a Core: Well-Defined Titanium Copper Nitride Coated with an Atomic Pt Layer for the Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xinlong; Tang, Haibo; Luo, Junming

    A class of core–shell structured low-platinum catalysts with well-dispersed inexpensive titanium copper nitride nanoparticles as cores and atomic platinum layers as shells exhibiting high activity and stability for the oxygen reduction reaction is successfully developed. In using nitrided carbon nanotubes (NCNTs) as the support greatly improved the morphology and dispersion of the nitride nanoparticles, resulting in significant enhancement of the performance of the catalyst. The optimized catalyst, Ti 0.9Cu 0.1N@Pt/NCNTs, has a Pt mass activity 5 times higher than that of commercial Pt/C, comparable to that of core–shell catalysts with precious metal nanoparticles as the core, and much higher thanmore » that the latter if we take into account the mass activity of all platinum group metals. Furthermore, only a minimal loss of activity can be observed after 10000 potential cycles, demonstrating the catalyst’s high stability. After durability testing, atomic-scale elemental mapping confirmed that the core–shell structure of the catalyst remained intact. This approach may open a pathway for the design and preparation of high-performance inexpensive core–shell catalysts for a wide range of applications in energy conversion processes.« less

  11. Photosynthesis in black and red spruce and their hybrid derivatives: ecological isolation and hybrid adaptive inferiority

    Treesearch

    S.A.M Manley; F. Thomas Ledig

    1979-01-01

    Photosynthetic response5 of black and red spruce were used to define parameters of their fundamental niches. Grown at warm temperature, black spruce had highest rates of CO2 uptake at high light intensities, fitting it for a pioneering role, while red spruce had the lowest light compensation point, fitting it for a late successional role. Black...

  12. The microstructure and photoluminescence of ZnO-MoS2 core shell nano-materials

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, C. M.; Huang, X. Y.; Lei, M. Y.

    2017-01-01

    In this paper, ZnO-MoS2-FT (FT is the fabrication temperature of MoS2) core shell nano-material samples (with ZnO as a core and MoS2 as a shell material) were fabricated on ITO substrate using hydrothermal method. The crystal structure, morphology, optical absorption and photoluminescence (PL) of samples were investigated. Compared with that of pure ZnO nanorods, ZnO-MoS2-FT samples show an enhanced light absorption. In addition, ultraviolet (UV) and visible (Vis) PL intensity of ZnO-MoS2-FT samples excited by 325 nm laser are greatly weakened. The UV PL peak position is not changed obviously. However, the Vis PL peak position is changed visibly. The Vis PL of ZnO-MoS2-FT samples under UV excitation indicates that the ratio of oxygen interstitial to oxygen vacancy is decreased. The suppression of UV PL of ZnO-MoS2-FT samples may be related to the weakening of crystal quality of ZnO, easier separation of electron-hole pairs, enhancement of light absorption, and newly introduced defects in the interface between ZnO and MoS2. Under 514 nm laser excitation, the PL peak position of ZnO-MoS2-FT samples has a red shift with FT being increased from 80 to 160 °C. The influence of excitation power (EP) on the PL of ZnO-MoS2-FT samples was also investigated. The PL of ZnO-MoS2-FT samples have a red shift with EP being increased. This may be due to the sample temperature is increased with EP, resulting an enhancement of electron-phonon interaction. A schematic diagram of charge generation and transfer is presented to understand the mechanism of PL of ZnO-MoS2 under UV and Vis excitation.

  13. Archeological and Historic Cultural Resources Inventory for a Proposed Flood Control Project at Grafton, Walsh County, North Dakota.

    DTIC Science & Technology

    1983-10-01

    possibly Midland (Folsom Complex) , and a var iet- f point types such as the Alberta, Plainview, Scotts Bluff, Eden Valley anj Hell Gap ( Plano Complex). A...Red River Valley near Glyndon, Minnesota (south and slightly east of Grafton) (Michlovic 1979). An apparently early type point of the Plano Complex... incised thunderbird designs and/or raised lizzards or salamanders; welk shell (marine snail) masks/gorgets; "cigar holder-shaped" tubular pipes; and

  14. An Infrared Study of the Circumstellar Material Associated with the Carbon Star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Hankins, M. J.; Herter, T. L.; Maercker, M.; Lau, R. M.; Sloan, G. C.

    2018-01-01

    The asymptotic giant branch (AGB) star R Sculptoris (R Scl) is one of the most extensively studied stars on the AGB. R Scl is a carbon star with a massive circumstellar shell (M shell ∼ 7.3 × 10‑3 M ⊙) that is thought to have been produced during a thermal pulse event ∼2200 years ago. To study the thermal dust emission associated with its circumstellar material, observations were taken with the Faint Object InfraRed CAMera for the SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 μm. Maps of the infrared emission at these wavelengths were used to study the morphology and temperature structure of the spatially extended dust emission. Using the radiative-transfer code DUSTY, and fitting the spatial profile of the emission, we find that a geometrically thin dust shell cannot reproduce the observed spatially resolved emission. Instead, a second dust component in addition to the shell is needed to reproduce the observed emission. This component, which lies interior to the dust shell, traces the circumstellar envelope of R Scl. It is best fit by a density profile with n ∝ r α , where α ={0.75}-0.25+0.45 and a dust mass of {M}d={9.0}-4.1+2.3× {10}-6 {M}ȯ . The strong departure from an r ‑2 law indicates that the mass-loss rate of R Scl has not been constant. This result is consistent with a slow decline in the post-pulse mass loss that has been inferred from observations of the molecular gas.

  15. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  16. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    PubMed

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  17. Noble gases in the Murchison meteorite - Possible relics of s-process nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Srinivasan, B.; Anders, E.

    1978-01-01

    The Murchison carbonaceous chondrite contains a new type of xenon component, enriched by up to 50 percent in five of the nine stable xenon isotopes, mass numbers 128 to 132. This component is released at 1200 to 1600 C from a severely etched mineral fraction. Krypton shows a similar but smaller enrichment in the isotopes 80 and 82. Neon and helium released in the same interval also are quite anomalous, being highly enriched in the isotopes 22 and 3. These patterns are strongly suggestive of three nuclear processes believed to take place in red giants: the s process (neutron capture on a slow time scale), helium burning, and hydrogen shell burning. If this interpretation is correct, then primitive meteorites contain yet another kind of alien, presolar material: dust grains ejected from red giants.

  18. An unusual occurrence of Nautilus macromphalus in a cenote in the Loyalty Islands (New Caledonia).

    PubMed

    Landman, Neil H; Mapes, Royal H; Cochran, J Kirk; Lignier, Vincent; Hembree, Daniel I; Goiran, Claire; Folcher, Eric; Brunet, Philippe

    2014-01-01

    Exploration of a landlocked cenote on Lifou (Loyalty Islands) revealed 37 shells of the cephalopod Nautilus macromphalus Sowerby, 1849, in saltwater on the cenote floor, approximately 40 m below the water surface. The occurrence of these shells is unusual because N. macromphalus is restricted to the open marine waters surrounding the island. All of the shells are mature, and nearly all of them are unbroken, with faded red-brown color stripes. We analyzed seven shells to determine their age. Radiocarbon dating yielded ages of 6380±30 to 7095±30 y BP. The 238U-series radionuclides 210Pb (half-life  = 22.3 y) and 226Ra (half-life  = 1600 y) also were measured. Two of the samples showed radioactive equilibrium between the nuclides, consistent with the old radiocarbon dates, but the other five samples showed excess 210Pb. When corrected for radioactive decay, the 226Ra activities were much greater than those found in living Nautilus. We conclude that exposure to high activities of 222Rn and 226Ra in the salty groundwater of the cenote altered the activities originally incorporated into the shells. Human placement of the shells in the cavity is rejected based on their radiocarbon age and the geometry of the cenote. The most probable explanation is that the animals entered the flooded karstic system through a connection on the seaward side at approximately 7,000 y BP, during an interval of slowly rising sea level. Unable to find an exit and/or due to anoxic bottom waters, the animals were trapped and died inside. The open connection with the sea persisted for ∼700 y, but after ∼6400 y BP, the connection was lost, probably due to a roof collapse. This is a rare example of Nautilus in a karstic coastal basin and provides a minimum age for the appearance of N. macromphalus in the Loyalty Islands.

  19. An Unusual Occurrence of Nautilus macromphalus in a Cenote in the Loyalty Islands (New Caledonia)

    PubMed Central

    Landman, Neil H.; Mapes, Royal H.; Cochran, J. Kirk; Lignier, Vincent; Hembree, Daniel I.; Goiran, Claire; Folcher, Eric; Brunet, Philippe

    2014-01-01

    Exploration of a landlocked cenote on Lifou (Loyalty Islands) revealed 37 shells of the cephalopod Nautilus macromphalus Sowerby, 1849, in saltwater on the cenote floor, approximately 40 m below the water surface. The occurrence of these shells is unusual because N. macromphalus is restricted to the open marine waters surrounding the island. All of the shells are mature, and nearly all of them are unbroken, with faded red-brown color stripes. We analyzed seven shells to determine their age. Radiocarbon dating yielded ages of 6380±30 to 7095±30 y BP. The 238U-series radionuclides 210Pb (half-life  = 22.3 y) and 226Ra (half-life  = 1600 y) also were measured. Two of the samples showed radioactive equilibrium between the nuclides, consistent with the old radiocarbon dates, but the other five samples showed excess 210Pb. When corrected for radioactive decay, the 226Ra activities were much greater than those found in living Nautilus. We conclude that exposure to high activities of 222Rn and 226Ra in the salty groundwater of the cenote altered the activities originally incorporated into the shells. Human placement of the shells in the cavity is rejected based on their radiocarbon age and the geometry of the cenote. The most probable explanation is that the animals entered the flooded karstic system through a connection on the seaward side at approximately 7,000 y BP, during an interval of slowly rising sea level. Unable to find an exit and/or due to anoxic bottom waters, the animals were trapped and died inside. The open connection with the sea persisted for ∼700 y, but after ∼6400 y BP, the connection was lost, probably due to a roof collapse. This is a rare example of Nautilus in a karstic coastal basin and provides a minimum age for the appearance of N. macromphalus in the Loyalty Islands. PMID:25470257

  20. User-defined Material Model for Thermo-mechanical Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.

  1. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport.

    PubMed

    Ackerman, Kathryn E; Holtzman, Bryan; Cooper, Katherine M; Flynn, Erin F; Bruinvels, Georgie; Tenforde, Adam S; Popp, Kristin L; Simpkin, Andrew J; Parziale, Allyson L

    2018-06-02

    Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC. The purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes. One thousand female athletes (15-30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05). Athletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance. These findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Effect of ascorbic acid (vitamin C) on the ESR spectra of the red and black hair: pheomelanin free radicals are not always present in red hair.

    PubMed

    Chikvaidze, Eduard; Topeshashvili, Maia

    2015-12-01

    Increased incidence of melanoma in the population with red hair is conditioned by synthesis of pheomelanin pigments in the skin and their phototoxic properties. The recent research has shown that free radicals of pheomelanin are produced not only by the influence of UV irradiation, but also in UV-independent pathways of oxidative stress. It has been ascertained, that the color of the hair is not always determinant of the amount of pheolemanin radicals in red hair. Therefore, in order to evaluate the risk of melanoma in different individuals, it is necessary to define the amount of free radicals of pheomelanin in red hair using ESR spectroscopy method. Besides, it is very important to find effective antioxidant, capable of neutralizing free radicals of pheomelanin. It was proved that ascorbic acid neutralizes free radicals of pheomelanin very effectively. The main goal of our research was to define the presumably optimal concentration of ascorbic acid as an antioxidant and study the kinetics of the influence of this concentration on red and black hair. It has been found out, that ascorbic acid influences the free radicals of red and black hair, and its appropriate optimal concentration is 10 mM. The obtained results can be considered in dermatology and cosmetology. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Snails, stable iostopes, and southwestern desert paleoclimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, S.E.; Whelan, J.F.; Forester, R.M.

    1995-09-01

    Modern and fossil molluscs (snails) occur in many localities in and semi-arid regions throughout the desert southwest. Live terrestrial snails are found under rocks and in forest litter and aquatic taxa inhabit springs, seeps, and/or wetlands. Molluscs uptake local water during their growing season (spring and summer) and incorporate its delta 180 signature into their shells. Preliminary 180 analysis of modem shells from the southern Great Basin indicates that the shells probably reflect meteoric water 180 values during the growing season. This provides a way to estimate the delta 180 value of precipitation and, thereby, the source of the moisture-bearingmore » air masses. Significant 180 variability in shells analyzed include geographic location, elevation, taxonomy, and habitat (terrestrial, spring, or wetland). We found a rough inverse correlation with elevation in modem shells from the Spring Range in southern Nevada. The delta 180 values of modem and fossil shells are also very different; modem values in this location are much higher than those from nearby late Pleistocene-age molluscs suggesting that the Pleistocene summers were variously colder and wetter than today or less evaporative (more humid). Assuming shell material directly reflects the 180 of the growing-season environment, comparison of modem and fossil shell delta 180 values can potentially identify changes in air-mass moisture sources and can help to define seasonal precipitation change through time. Comprehension and quantification of community and isotopic variability in modem gastropods is required to create probabilistic valid transfer functions with fossil materials. Valid inferences about past environmental conditions can then be established with known confidence limits.« less

  4. Shell Filling and Magnetic Anisotropy In A Few Hole Silicon Metal-Oxide-Semiconductor Quantum Dot

    NASA Astrophysics Data System (ADS)

    Hamilton, Alex; Li., R.; Liles, S. D.; Yang, C. H.; Hudson, F. E.; Veldhorst, M. E.; Dzurak, A. S.

    There is growing interest in hole spin states in group IV materials for quantum information applications. The near-absence of nuclear spins in group IV crystals promises long spin coherence times, while the strong spin-orbit interaction of the hole states provides fast electrical spin manipulation methods. However, the level-mixing and magnetic field dependence of the p-orbital hole states is non-trivial in nanostructures, and is not as well understood as for electron systems. In this work, we study the hole states in a gate-defined silicon metal-oxide-semiconductor quantum dot. Using an adjacent charge sensor, we monitor quantum dot orbital level spacing down to the very last hole, and find the standard two-dimensional (2D) circular dot shell filling structure. We can change the shell filling sequence by applying an out-of-plane magnetic field. However, when the field is applied in-plane, the shell filling is not changed. This magnetic field anisotropy suggests that the confined hole states are Ising-like.

  5. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  6. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    PubMed

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Quantum self-gravitating collapsing matter in a quantum geometry

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Gambini, Rodolfo; Olmedo, Javier; Pullin, Jorge

    2016-09-01

    The problem of how space-time responds to gravitating quantum matter in full quantum gravity has been one of the main questions that any program of quantization of gravity should address. Here we analyze this issue by considering the quantization of a collapsing null shell coupled to spherically symmetric loop quantum gravity. We show that the constraint algebra of canonical gravity is Abelian both classically and when quantized using loop quantum gravity techniques. The Hamiltonian constraint is well defined and suitable Dirac observables characterizing the problem were identified at the quantum level. We can write the metric as a parameterized Dirac observable at the quantum level and study the physics of the collapsing shell and black hole formation. We show how the singularity inside the black hole is eliminated by loop quantum gravity and how the shell can traverse it. The construction is compatible with a scenario in which the shell tunnels into a baby universe inside the black hole or one in which it could emerge through a white hole.

  8. Ochres from rituals of prehistoric human funerals at the Toca do Enoque site, Piauí, Brazil

    NASA Astrophysics Data System (ADS)

    Cavalcante, Luis Carlos Duarte; da Luz, Maria De Fátima; Guidon, Niéde; Fabris, José Domingos; Ardisson, José Domingos

    2011-11-01

    The archaeological site known as Toca do Enoque (geographical coordinates, 09° 14' 65.3″ S 43° 55' 62.5″ W) is a rock shelter located in the Serra das Andorinhas (Serra das Confusões National Park), rural area of the city of Guaribas, state of Piauí, Brazil. Several rupestrian paintings (anthropomorphic and zoomorphic motifs along with some pure graphisms), predominantly in red, are found on the sandstone walls. Charcoals, lithic materials, necklaces with teeth, animal bones, gastropod shells, ochres and human skeletons (dated from 6,220 ± 40 to 6,610 ± 40 years before present, BP) were identified in recent excavations in this shelter. Red and yellow ochre samples were collected from prehistoric funeral structures and analyzed with powder X-ray diffractometry, Fourier-transform infrared spectroscopy and 57Fe transmission Mössbauer spectroscopy at 298 K and 80 K. Mössbauer data indicate that the red ochre do contain predominantly hematite ( α-Fe2O3) whereas goethite ( α-FeOOH) is the major mineral in the yellow ochre.

  9. Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2.

    PubMed

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Szutkowski, Kosma; Mrówczyńska, Lucyna; Kaźmierczak, Zuzanna; Grzyb, Tomasz; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2016-11-01

    The luminescent GdVO4:Eu(3+)5%@SiO2@NH2 core@shell nanomaterials were obtained via co-precipitation method, followed by hydrolysis and co-condensation of silane derivatives: tetraethyl orthosilicate and 3-aminopropyltriethoxysilane. Their effect on human erythrocytes sedimentation and on proliferation of human lung microvascular endothelial cells was examined and discussed. The luminescent nanoparticles were synthesized in the presence of polyacrylic acid or glycerin in order to minimalize the agglomeration and excessive growth of nanostructures. Surface coating with amine functionalized silica shell improved their biocompatibility, facilitated further organic conjugation and protected the internal core. Magnetic measurements revealed an enhanced T1-relaxivity for the synthesized GdVO4:Eu(3+)5% nanostructures. Structure, morphology and average grain size of the obtained nanomaterials were determined by X-ray diffraction, transmission electron microscopy and dynamic light scattering analysis. The qualitative elemental composition of the nanomaterials was established using energy-dispersive X-ray spectroscopy. The spectroscopic characteristic of red emitting core@shell nanophosphors was completed by measuring luminescence spectra and decays. The emission spectra revealed characteristic bands of Eu(3+) ions related to the transitions (5)D0-(7)F0,1,2,3,4 and (5)D1-(7)F1. The luminescence lifetimes consisted of two components, associated with the presence of Eu(3+) ions located at the surface of the crystallites and in the bulk. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris.

    PubMed

    Maercker, M; Mohamed, S; Vlemmings, W H T; Ramstedt, S; Groenewegen, M A T; Humphreys, E; Kerschbaum, F; Lindqvist, M; Olofsson, H; Paladini, C; Wittkowski, M; de Gregorio-Monsalvo, I; Nyman, L-A

    2012-10-11

    The asymptotic-giant-branch star R Sculptoris is surrounded by a detached shell of dust and gas. The shell originates from a thermal pulse during which the star underwent a brief period of increased mass loss. It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse--parameters that determine the lifetime of the asymptotic giant branch and the amount of elements returned by the star. Here we report observations of CO emission from the circumstellar envelope and shell around R Sculptoris with an angular resolution of 1.3″. What was previously thought to be only a thin, spherical shell with a clumpy structure is revealed to also contain a spiral structure. Spiral structures associated with circumstellar envelopes have been previously seen, leading to the conclusion that the systems must be binaries. Combining the observational data with hydrodynamic simulations, we conclude that R Sculptoris is a binary system that underwent a thermal pulse about 1,800 years ago, lasting approximately 200 years. About 3 × 10(-3) solar masses of material were ejected at a velocity of 14.3 km s(-1) and at a rate around 30 times higher than the pre-pulse mass-loss rate. This shows that about three times more mass was returned to the interstellar medium during and immediately after the pulse than previously thought.

  11. 49 CFR 178.337-2 - Material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... basis. A lot is defined as 100 tons or less of the same heat treatment processing lot having a thickness... Transportation. (4) The direction of final rolling of the shell material shall be the circumferential orientation...

  12. Reversible, on-demand generation of aqueous two-phase microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phasemore » transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.« less

  13. Quark mass relations to four-loop order in perturbative QCD.

    PubMed

    Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-04-10

    We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.

  14. AB Initi Molecular Dynamics Simulation of the Amorphous Structure of Ca-Mg-Cu and Ca-Mg-Zn Alloys (Postprint)

    DTIC Science & Technology

    2012-09-26

    characteristic coordination poly- hedra present in an amorphous structure.[23,42] A coor- dination polyhedron is defined as an i-centered cluster with...vertices at the first-shell atom positions and edges coinciding with the interatomic bonds in the first shell.[45] Each coordination polyhedron can be...assigned a Voronoi signature (n3, n4, n5, n6), where nm is the number of vertices common to m polyhedron faces (or edges).[46] m is also called the

  15. Impacts of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Ries, Justin B.; Ghazaleh, Maite N.; Connolly, Brian; Westfield, Isaac; Castillo, Karl D.

    2016-11-01

    Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase-trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers' ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) saturation state, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers' polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg < 4)], consistent with prior studies on sedimentary and inorganic carbonates. Furthermore, the severity of the temperature effects on gross dissolution rates also varied with respect to carbonate polymorph solubility, with warming (10-25 °C) exerting the greatest effect on biogenic high-Mg calcite, an intermediate effect on biogenic aragonite, and the least effect on biogenic low-Mg calcite. These results indicate that both ocean acidification and warming will lead to increased dissolution of biogenic carbonates in future oceans, with shells/skeletons composed of the more soluble polymorphs of CaCO3 being the most vulnerable to these stressors. The effects of saturation state and temperature on gross shell dissolution rate were modeled with an exponential asymptotic function (y =B0 -B2 ·e B1 Ω) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = (C ·e -Ea / RT) (1 - Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms' gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

  16. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  17. Optical phonon modes of III-V nanoparticles and indium phosphide/II-VI core-shell nanoparticles: A Raman and infrared study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia Speranta

    The prospects for realizing efficient nanoparticle light emitters in the visible/near IR for communications and bio-medical applications have benefited from progress in chemical fabrication of nanoparticles. III-V semiconductor nanopaticles such as GaP and InP are promising materials for the development of "blue" and "green" emitters, respectively, due to their large effective bandgaps. Enhanced emission efficiency has been achieved for core-shell nanoparticles, since inorganic shell materials increase electronic tunability and may decrease surface defects that often occur for nanoparticles capped with organic molecules. Also, the emission wavelength of InP nanoparticle cores can be tuned from green to red by changing the shell material in InP/II-VI core-shell nanoparticles. Investigations of phonon modes in nanocrystals are of both fundamental and applied interest. In the former case the optical phonon modes, such as surface/interface modes, are dependent on the nanoparticle dimensions, and also can provide information about dynamical properties of the nanoparticles and test the validity of various theoretical approaches. In the latter case the vibronic properties of nanoparticle emitters are controlled by confined phonons and modifications of the electron-phonon interaction by the confinement. Thus, the objective of the present thesis is the detailed study of the phonon modes of III-V nanoparticles (GaP and InP) and InP/II-VI core-shell nanoparticles by IR absorption and Raman scattering spectroscopies, and an elucidation of their complex vibrational properties. With the exception of three samples (two GaP and one InP), all samples were synthesized by a novel colloidal chemistry method, which does not requires added surfactant, but rather treatment of the corresponding precursors in octadecene noncoordinative solvent. Sample quality was characterized by ED, TEM and X-ray diffraction. Based on a comparison with a dielectric continuum model, the observed features in the IR and Raman results are assigned to the surface optical (SO) modes of the corresponding nanoparticles (InP and GaP), and to SO/interface modes for InP/II-VI core-shell nanoparticles. For the latter systems, an evaluation of the ratio of the shell material thickness to the core radius is achieved. Reasonable agreement is obtained between the Raman and FIR results, as well as with the calculations. (Abstract shortened by UMI.)

  18. ON INFRARED EXCESSES ASSOCIATED WITH Li-RICH K GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebull, Luisa M.; Carlberg, Joleen K.; Gibbs, John C.

    2015-10-15

    Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using Infrared Astronomy Satellite (IRAS) data, and past studies have suggested a link between RGs with overabundant Li and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from the Wide-field Infrared Survey Explorer. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched Li, and IR excess. Our sample of RGs includes those with previous IR detections, a sample with well-defined rotation and Li abundancemore » measurements with no previous IR measurements, and a large sample of RGs asserted to be Li-rich in the literature; we have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by ∼20 μm (with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few Li-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, {sup 12}C/{sup 13}C. IR excesses by 20 μm, though relatively rare, are at least twice as common among our sample of Li-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the Li-enrichment mechanism may only occasionally produce dust, and an additional parameter (e.g., rotation) may control whether or not a shell is ejected.« less

  19. On Infrared Excesses Associated with Li-Rich K Giants

    NASA Technical Reports Server (NTRS)

    Rebull, Luisa M.; Carlberg, Joleen K.; Gibbs, John C.; Deeb, J. Elin; Larsen, Estefania; Black, David V.; Altepeter, Shailyn; Bucksbee, Ethan; Cashen, Sarah; Clarke, Matthew; hide

    2015-01-01

    Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using Infrared Astronomy Satellite (IRAS) data, and past studies have suggested a link between RGs with overabundant lithium and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from the Wide-field Infrared Survey Explorer. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched lithium, and IR excess. Our sample of RGs includes those with previous IR detections, a sample with well-defined rotation and lithium abundance measurements with no previous IR measurements, and a large sample of RGs asserted to be lithium-rich in the literature; we have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by approximately 20 micrometers (with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few lithium-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, 12C/13C. IR excesses by 20 micrometers, though relatively rare, are at least twice as common among our sample of lithium-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the lithium-enrichment mechanism may only occasionally produce dust, and an additional parameter (e.g., rotation) may control whether or not a shell is ejected.

  20. Porous metal oxide particles and their methods of synthesis

    DOEpatents

    Chen, Fanglin; Liu, Qiang

    2013-03-12

    Methods are generally disclosed for synthesis of porous particles from a solution formed from a leaving agent, a surfactant, and a soluble metal salt in a solvent. The surfactant congregates to form a nanoparticle core such that the metal salt forms about the nanoparticle core to form a plurality of nanoparticles. The solution is heated such that the leaving agent forms gas bubbles in the solution, and the plurality of nanoparticles congregate about the gas bubbles to form a porous particle. The porous particles are also generally disclosed and can include a particle shell formed about a core to define an average diameter from about 0.5 .mu.m to about 50 .mu.m. The particle shell can be formed from a plurality of nanoparticles having an average diameter of from about 1 nm to about 50 nm and defined by a metal salt formed about a surfactant core.

  1. The heterogeneous ice shell thickness of Enceladus

    NASA Astrophysics Data System (ADS)

    Lucchetti, Alice; Pozzobon, Riccardo; Mazzarini, Francesco; Cremonese, Gabriele; Massironi, Matteo

    2016-10-01

    Saturn's moon Enceladus is the smallest Solar System body that presents an intense geologic activity on its surface. Plumes erupting from Enceladus' South Polar terrain (SPT) provide direct evidence of a reservoir of liquid below the surface. Previous analysis of gravity data determined that the ice shell above the liquid ocean must be 30-40 km thick from the South Pole up to 50° S latitude (Iess et al., 2014), however, understand the global or regional nature of the ocean beneath the ice crust is still challenging. To infer the thickness of the outer ice shell and prove the global extent of the ocean, we used the self-similar clustering method (Bonnet et al., 2001; Bour et al., 2002) to analyze the widespread fractures of the Enceladus's surface. The spatial distribution of fractures has been analyzed in terms of their self-similar clustering and a two-point correlation method was used to measure the fractal dimension of the fractures population (Mazzarini, 2004, 2010). A self-similar clustering of fractures is characterized by a correlation coefficient with a size range defined by a lower and upper cut-off, that represent a mechanical discontinuity and the thickness of the fractured icy crust, thus connected to the liquid reservoir. Hence, this method allowed us to estimate the icy shell thickness values in different regions of Enceladus from SPT up to northern regions.We mapped fractures in ESRI ArcGis environment in different regions of the satellite improving the recently published geological map (Crow-Willard and Pappalardo, 2015). On these regions we have taken into account the fractures, such as wide troughs and narrow troughs, located in well-defined geological units. Firstly, we analyzed the distribution of South Polar Region fracture patterns finding an ice shell thickness of ~ 31 km, in agreement with gravity measurements (Iess et al., 2014). Then, we applied the same approach to other four regions of the satellite inferring an increasing of the ice shell thickness from 31 to 70 km from the South Pole to northern regions. By these findings, we prove the global extent of the ocean underneath the ice crust of the satellite.

  2. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  3. Geoarchaeological approaches to understanding human-environment interactions in Australia's tropical north: the Weipa shell mounds revisited.

    NASA Astrophysics Data System (ADS)

    Fanning, P. C.; Holdaway, S. J.; Shiner, J.; Petchey, F.

    2012-04-01

    Western Cape York Peninsula, particularly the Weipa region, has seen sustained archaeological investigation since the 1960s. These studies primarily concentrated on the shell mounds associated with coastal environments first observed at the beginning of the 20th century. Despite claims that the shell mounds were of natural origin, archaeological investigations convincingly demonstrated that they are primarily cultural deposits. Geomorphological studies indicate that chenier (beach ridge) formation occurred after sea-level stabilisation in the mid- to late Holocene, and is connected to the formation of estuaries at the mouths of the Mission, Pine, Hey and Embley Rivers. Anadara shell bed formation is in turn connected with the evolution of the estuaries. However, the relationship between shell mound age and location relative to the coastline at Weipa is neither well defined, nor tested at multiple locations. Given that the coast is susceptible to the effects of sea-level fluctuations and environmental change, and the Anadara beds can become depleted as a result of environmental shifts, the shell mounds provide a datable record of human reaction to coastal landscape and environmental change. Here, we report preliminary results of a new investigation of the shell mounds of the Weipa region. Radiocarbon and OSL-based age determinations from samples of shell, charcoal and sediment collected from trenches excavated into shell mounds on the northern shore of the Embley River indicate a relationship between the time of initial accumulation of shell and the age of the landform features upon which they were built, which in turn are a result of coastline evolution during the mid to late Holocene. These mounds are the oldest yet recorded for the Weipa region, with accumulation in one case commencing around 3500 cal BP. Accumulation appears to be more or less continuous, and abruptly ceases after 400-650 yrs. We discuss implications for understanding human-environment interactions in the past, and our strategy for further research.

  4. Rapid and Sensitive Detection of Cardiac Troponin I for Point-of-Care Tests Based on Red Fluorescent Microspheres.

    PubMed

    Cai, Yanxue; Kang, Keren; Li, Qianru; Wang, Yu; He, Xiaowei

    2018-05-07

    A reliable lateral flow immunoassay (LFIA) based on a facile one-step synthesis of single microspheres in combining with immunochromatography technique was developed to establish a new point-of-care test (POCT) for the rapid and early detection of cardiac troponin I (cTnI), a kind of cardiac specific biomarker for acute myocardial infarction (AMI). The double layered microspheres with clear core-shell structures were produced using soap-free emulsion polymerization method with inexpensive compounds (styrene and acrylic acid). The synthetic process was simple, rapid and easy to control due to one-step synthesis without any complicated procedures. The microspheres are nanostructure with high surface area, which have numerous carboxyl groups on the out layer, resulting in high-efficiency coupling between the carrier and antibody via amide bond. Meanwhile, the red fluorescent dye, Nile-red (NR), was wrapped inside the microspheres to improve its stability, as well to reduce the background noise, because of its higher emission wavelength than interference from real plasma samples. The core-shell structures provided different functional areas to separate antibody and dyes, so the immunoassay has highly sensitive, wide working curves in the range of 0⁻40 ng/mL, low limits of detection (LOD) at 0.016 ng/mL, and limits of quantification (LOQ) at 0.087 ng/mL with coefficient of variations (CV) of 10%. This strategy suggested an outstanding platform for LFIA, with good reproducibility and stability to straightforwardly analyze the plasma samples without washing steps, thereby reducing the operating procedures for non-professionals and promoting detection efficiency. The whole detection process can be completed in less than 15 min. This novel immunoassay offers a reliable and favorable analytical result by detecting the real samples, indicating that it holds great potential as a new alternative for biomolecule detection in complex samples, for the early detection of cardiac specific biomarkers.

  5. Collapse dynamics of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    King, Daniel Alan

    Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering the size distributions of these UCAs, it is shown that the shell material has a large influence on the occurrence of postexcitation rebound at all tested frequencies while moderate alteration of the size distribution may only play a significant role within certain frequency ranges. Finally, the conditions which generate the experimental postexcitation signal are examined theoretically using several forms of single bubble models. Evidence is provided for the usefulness of modeling this large amplitude UCA behavior with a size-varying surface tension as described in the Marmottant model; better agreement for lipid-shelled Definity UCAs is obtained by considering the dynamic response with a rupturing shell rather than either a non-rupturing or nonexistent shell. Moreover, the modeling indicates that maximum radial expansion from the initial UCA size is a suitable metric to predict postexcitation collapse, and that both shell rupture and inertial cavitation are necessary conditions to generate this behavior. Postexcitation analysis is found to be a beneficial characterization metric for studying the destruction behaviors of single UCAs when measured with the double PCD setup. This work provides quantitative documentation of UCA collapse, exploration into UCA material properties which affect this collapse, and comparison of existing single bubble models with experimentally measured postexcitation signals.

  6. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  7. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    PubMed

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  8. Identification of a Unique Fe-S Cluster Binding Site in a Glycyl-Radical Type Microcompartment Shell Protein

    PubMed Central

    Thompson, Michael C.; Wheatley, Nicole M.; Jorda, Julien; Sawaya, Michael R.; Gidaniyan, Soheil D.; Ahmed, Hoda; Yang, Zhongyu; McCarty, Krystal N.; Whitelegge, Julian P.; Yeates, Todd O.

    2014-01-01

    Recently, progress has been made toward understanding the functional diversity of bacterial microcompartment (MCP) systems, which serve as protein-based metabolic organelles in diverse microbes. New types of MCPs have been identified, including the glycyl-radical propanediol (Grp) MCP. Within these elaborate protein complexes, BMC-domain shell proteins assemble to form a polyhedral barrier that encapsulates the enzymatic contents of the MCP. Interestingly, the Grp MCP contains a number of shell proteins with unusual sequence features. GrpU is one such shell protein, whose amino acid sequence is particularly divergent from other members of the BMC-domain superfamily of proteins that effectively defines all MCPs. Expression, purification, and subsequent characterization of the protein showed, unexpectedly, that it binds an iron-sulfur cluster. We determined X-ray crystal structures of two GrpU orthologs, providing the first structural insight into the homohexameric BMC-domain shell proteins of the Grp system. The X-ray structures of GrpU, both obtained in the apo form, combined with spectroscopic analyses and computational modeling, show that the metal cluster resides in the central pore of the BMC shell protein at a position of broken 6-fold symmetry. The result is a structurally polymorphic iron-sulfur cluster binding site that appears to be unique among metalloproteins studied to date. PMID:25102080

  9. Triggered star formation in a molecular shell created by a SNR?

    NASA Astrophysics Data System (ADS)

    Cichowolski, S.; Pineault, S.; Gamen, R.; Arnal, E. M.; Suad, L. A.; Ortega, M. E.

    2014-02-01

    We present a study of a new molecular shell, G 126.1-0.8-14, using available multiwavelength Galactic plane surveys and optical Gemini observations. A well-defined shell-like structure is observed in the CO(1-0) line emission at (l,b) = (126.1°, -0.7°), in the velocity range -10.5 to -15.5 km s-1. The H I emission shows a region of low emissivity inside G 126.1-0.8-14, while radio continuum observations reveal faint non-thermal emission possibly related to this shell. Optical spectra obtained with Gemini South show the existence of B-type stars likely to be associated with G 126.1-0.8-14. An estimate of the stellar wind energy injected by these stars shows that they alone cannot be able to create such a structure. On the other hand, one supernova explosion would provide enough energy to generate the shell. Using the MSX, IRAS and WISE point source catalogues we have found about 30 young stellar object candidates, whose birth could have been triggered by the expansion of G 126.1-0.8-14. In this context, Sh2-187 could be a consequence of the action on its surroundings of the most massive (and thus most evolve) of the stars formed by the expanding molecular shell.

  10. Exchange bias for core/shell magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lemos, C. G. O.; Figueiredo, W.; Santos, M.

    2015-09-01

    We study the properties of a finite magnetic system to model a magnetic nanoparticle, which is formed by a reduced number of magnetic dipole moments due to the spin of the atoms. The nanoparticle is of the type core/shell where the shell is formed by spins interacting through an antiferromagnetic exchange coupling while for the spins belonging to the core the coupling is ferromagnetic. The interaction between the spins at the interface core/shell can be either ferro or antiferromagnetic. To describe the states of the spins we used the XY model in which the spins are considered as continuous variables, free to point in any direction of the xy plane. We also consider a magnetocrystalline anisotropy, exchange anisotropy and the Zeeman effect. Our model is studied in a lattice with square symmetry, using the Monte Carlo method along with the Metropolis prescription. The results show that in the absence of an external magnetic field and exchange anisotropy, the system continuously goes to a disordered state from an ordered state at a well defined temperature. In the presence of external magnetic fields the system displays the exchange bias phenomenon, that is, the displacement of the hysteresis loops, due to the introduction of the exchange anisotropy term. However, this displacement depends on the core and shell sizes, as well as on the magnitude of the coupling between the shell and the core moments.

  11. Synthesis and Luminescence Properties of Rare Earth Activated Phosphors for near UV-Emitting LEDs for Efficacious Generation of White Light

    NASA Astrophysics Data System (ADS)

    Han, Jinkyu

    Solid state white-emitting lighting devices based on LEDs outperform conventional light sources in terms of lifetime, durability, and luminous efficiency. Near UV-LEDs in combination with blue-, green-, and red-emitting phosphors show superior luminescence properties over the commercialized blue-emitting LED with yellow-emitting phosphors. However, phosphor development for near UV LEDs is a challenging problem and a vibrant area of research. In addition, using the proper synthesis technique is an important consideration in the development of phosphors. In this research, efficient blue-, green-yellow, red-emitting, and color tunable phosphors for near UV LEDs based white light are identified and prepared by various synthetic methods such as solid state reaction, sol-gel/Pechini, co-precipitation, hydrothermal, combustion and spray-pyrolysis. Blue-emittingLiCaPO4:Eu2+, Green/yellow-emitting (Ba,Sr)2SiO4:Eu2+, color tunable solid solutions of KSrPO4-(Ba,Ca)2SiO4:Eu 2+, and red-emitting (Ba,Sr,Ca)3MgSi2O 8:Eu2+,Mn2+ show excellent excitation profile in the near UV region, high quantum efficiency, and good thermal stability for use in solid state lighting applications. In addition, different synthesis methods are analyzed and compared, with the goal of obtaining ideal phosphors, which should have not only have high luminous output but also optimal particle size (˜150--400 nm) and spherical morphology. For Sr2SiO 4:Eu2+, the sol-gel method appears to be the best method. For Ba2SiO4:Eu2+, the co-precipitation method is be the best. Lastly, the fabrication of core/SiO2 shell particles alleviate surface defects and improve luminescence output and moisture stability of nano and micron sized phosphors. For nano-sized Y2O 3:Eu3+, Y2SiO5:Ce3+,Tb 3+, and (Ba,Sr)2SiO4, the luminescence emission intensity of the core/shell particles were significantly higher than that of bare cores. Additionally, the moisture stability is also improved by SiO 2 shells, the luminescence output of SiO2 coated green emitting Ca3SiO4Cl2:Eu2+ and blue emitting Ca2PO4Cl:Eu2+ phosphors is comparable to that of fresh phosphors although bare phosphors shows significant luminescence quenching after water exposure.

  12. Understanding the interface of six-shell cuboctahedral and icosahedral palladium clusters on reduced graphene oxide: experimental and theoretical study.

    PubMed

    Gracia-Espino, Eduardo; Hu, Guangzhi; Shchukarev, Andrey; Wågberg, Thomas

    2014-05-07

    Studies on noble-metal-decorated carbon nanostructures are reported almost on a daily basis, but detailed studies on the nanoscale interactions for well-defined systems are very rare. Here we report a study of reduced graphene oxide (rGOx) homogeneously decorated with palladium (Pd) nanoclusters with well-defined shape and size (2.3 ± 0.3 nm). The rGOx was modified with benzyl mercaptan (BnSH) to improve the interaction with Pd clusters, and N,N-dimethylformamide was used as solvent and capping agent during the decoration process. The resulting Pd nanoparticles anchored to the rGOx-surface exhibit high crystallinity and are fully consistent with six-shell cuboctahedral and icosahedral clusters containing ~600 Pd atoms, where 45% of these are located at the surface. According to X-ray photoelectron spectroscopy analysis, the Pd clusters exhibit an oxidized surface forming a PdO(x) shell. Given the well-defined experimental system, as verified by electron microscopy data and theoretical simulations, we performed ab initio simulations using 10 functionalized graphenes (with vacancies or pyridine, amine, hydroxyl, carboxyl, or epoxy groups) to understand the adsorption process of BnSH, their further role in the Pd cluster formation, and the electronic properties of the graphene-nanoparticle hybrid system. Both the experimental and theoretical results suggest that Pd clusters interact with functionalized graphene by a sulfur bridge while the remaining Pd surface is oxidized. Our study is of significant importance for all work related to anchoring of nanoparticles on nanocarbon-based supports, which are used in a variety of applications.

  13. Effects of pictorially-defined surfaces on visual search.

    PubMed

    Morita, Hiromi; Kumada, Takatsune

    2003-08-01

    Three experiments of visual search for a cube (for a square pillar in Experiment 3) with an odd conjunction of orientation of faces and color (a cube with a red top face and a green right face among cubes with a green top face and a red right face, for example) showed that the search is made more efficient by arranging cubes (or square pillars) so that their top faces lie in a horizontal surface defined by pictorial cues. This effect shows the same asymmetry as that of the surface defined by the disparity cue did [Perception and Psychophysics, 62 (2000) 540], implying that the effect is independent of the three-dimensional cue and the global surface structure influences the control of attention during the search.

  14. Structure and crystallography of foliated and chalk shell microstructures of the oyster Magallana: the same materials grown under different conditions.

    PubMed

    Checa, Antonio G; Harper, Elizabeth M; González-Segura, Alicia

    2018-05-14

    Oyster shells are mainly composed of layers of foliated microstructure and lenses of chalk, a highly porous, apparently poorly organized and mechanically weak material. We performed a structural and crystallographic study of both materials, paying attention to the transitions between them. The morphology and crystallography of the laths comprising both microstructures are similar. The main differences were, in general, crystallographic orientation and texture. Whereas the foliated microstructure has a moderate sheet texture, with a defined 001 maximum, the chalk has a much weaker sheet texture, with a defined 011 maximum. This is striking because of the much more disorganized aspect of the chalk. We hypothesize that part of the unanticipated order is inherited from the foliated microstructure by means of, possibly, [Formula: see text] twinning. Growth line distribution suggests that during chalk formation, the mantle separates from the previous shell several times faster than for the foliated material. A shortage of structural material causes the chalk to become highly porous and allows crystals to reorient at a high angle to the mantle surface, with which they continue to keep contact. In conclusion, both materials are structurally similar and the differences in orientation and aspect simply result from differences in growth conditions.

  15. Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots

    NASA Astrophysics Data System (ADS)

    Hinz, C.; Gumbsheimer, P.; Traum, C.; Holtkemper, M.; Bauer, B.; Haase, J.; Mahapatra, S.; Frey, A.; Brunner, K.; Reiter, D. E.; Kuhn, T.; Seletskiy, D. V.; Leitenstorfer, A.

    2018-01-01

    We study the dynamics of photoexcited electrons and holes in single negatively charged CdSe/ZnSe quantum dots with two-color femtosecond pump-probe spectroscopy. An initial characterization of the energy level structure is performed at low temperatures and magnetic fields of up to 5 T. Emission and absorption resonances are assigned to specific transitions between few-fermion states by a theoretical model based on a configuration interaction approach. To analyze the dynamics of individual charge carriers, we initialize the quantum system into excited trion states with defined energy and spin. Subsequently, the time-dependent occupation of the trion ground state is monitored by spectrally resolved differential transmission measurements. We observe subpicosecond dynamics for a hole excited to the D shell. The energy dependence of this D -to-S shell intraband transition is investigated in quantum dots of varying size. Excitation of an electron-hole pair in the respective p shells leads to the formation of singlet and triplet spin configurations. Relaxation of the p -shell singlet is observed to occur on a time scale of a few picoseconds. Pumping of p -shell triplet transitions opens up two pathways with distinctly different scattering times. These processes are shown to be governed by the mixing of singlet and triplet states due to exchange interactions enabling simultaneous electron and hole spin flips. To isolate the relaxation channels, we align the spin of the residual electron by a magnetic field and employ laser pulses of defined helicity. This step provides ultrafast preparation of a fully inverted trion ground state of the quantum dot with near unity probability, enabling deterministic addition of a single photon to the probe pulse. Therefore our experiments represent a significant step towards using single quantum emitters with well-controled inversion to manipulate the photon statistics of ultrafast light pulses.

  16. Al-26 from red giants. [connections with anomalous Mg-26 content in meteorites and solar system formation

    NASA Technical Reports Server (NTRS)

    Norgaard, H.

    1980-01-01

    Simplified models of thermally pulsing red giants are investigated, with particular emphasis on predicting the extent to which nuclear processing at the base of the convective envelope in conjunction with processing in the thermally unstable He shell can synthesize Al-26 (tau/1/2/ = 7.2 x 10 to the 5th yr). Values of Al-26/Al-27 of about 0.5-1, with Al-27/Al-27(solar) of about 1-2, are predicted in some cases. It is pointed out that such results can lead to isotope shifts in the absorption lines of AlH and AlO, which should be observationally identifiable in some late-type supergiants. The possible connection with the anomalous Mg-26 content (assigned to the decay of Al-26) detected in some meteorites and the connection with formation of the solar system are also touched on.

  17. Noble Gases in the Murchison Meteorite: Possible Relics of s-Process Nucleosynthesis.

    PubMed

    Srinivasan, B; Anders, E

    1978-07-07

    The Murchison carbonaceous chondrite contains a new type of xenon component, enriched by up to 50 percent in five of the nine stable xenon isotopes, mass numbers 128 to 132. This component, comprising 5 x 10(-5) of the total xenon in the meteorite, is released at 1200 degrees to 1600 degrees C from a severely etched mineral fraction, and probably resides in some refractory mineral. Krypton shows a similar but smaller enrichment in the isotopes 80 and 82. Neon and helium released in the same interval also are quite anomalous, being highly enriched in the isotopes 22 and 3. These patterns are strongly suggestive of three nuclear processes believed to take place in red giants: the s process (neutron capture on a slow time scale), helium burning, and hydrogen shell burning. If this interpretation is correct, then primitive meteorites contain yet another kind of alien, presolar material: dust grains ejected from red giants.

  18. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.

    PubMed

    de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan

    2016-01-01

    In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

  19. 7 CFR 52.771 - Identity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Identity. 52.771 Section 52.771 Agriculture... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Identity and Grades § 52.771 Identity. Canned red tart pitted cherries is the product represented as defined in the standard of identity...

  20. Developing core-shell upconversion nanoparticles for optical encoding

    NASA Astrophysics Data System (ADS)

    Huang, Kai

    Lanthanide-doped upconversion nanoparticles (UCNPs) are an emerging class of luminescent materials that emit UV or visible light under near infra-red (NIR) excitations, thereby possessing a large anti-Stokes shift property. Also considering their sharp emission bands, excellent photo- and chemical stability, and almost zero auto-fluorescence of their NIR excitation, UCNPs are advantageous for optical encoding. Fabricating core-shell structured UCNPs provides a promising strategy to tune and enhance their upconverting luminescence. However, the energy transfer between core and shell had been rarely studied. Moreover, this strategy had been limited by the difficulty of coating thick shells onto the large cores of UCNPs. To overcome these constraints, the overall aim of this project is to study the inter-layers energy transfer in core-shell UCNPs and to develop an approach for coating thicker shell onto the core UCNPs, in order to fabricate UCNPs with enhanced and tunable luminescence for optical encoding. The strategy for encapsulating UCNPs into hydrogel droplet to fabricate multi-color bead barcodes has also been developed. Firstly, to study the inter-layers energy transfer between the core and shell of coreshell UCNPs, the activator and sensitizer ions were separately doped in the core or shell by fabricating NaYF4:Er NaYF4:Yb and NaYF4:Yb NaYF4:Er UCNPs. This eliminated the intra-layer energy transfer, resulting in a luminescence that is solely based on the energy transfer between layers, which facilitated the study of inter-layers energy transfer. The results demonstrated that the NaYF4:Yb NaYF4:Er structure, with sensitizer ions doped in the core, was preferable because of the strong luminescence, through minimizing the cross relaxations between Er3+ and Yb3+ and the surface quenching. Based on these information, a strategy of enhancing and tuning upconversion luminescence of core-shell UCNPs by accumulating sensitizer in the core has been developed. Next, a strategy of coating a thick shell by lutetium doping has been developed. With a smaller ion radius compared to Y3+, when Lu3+ partially replace Y3+ in the NaYF4 UCNPs during nanoparticle synthesis, nucleation process is suppressed and the growth process is promoted, which are favorable for increasing the nanoparticle size and coating a thicker shell onto the core UCNPs. Through the rational doping of Lu3+, core UCNPs with bigger sizes and enhanced luminescence were produced. Using NaLuF4 as the shell material, shells with tremendous thickness were coated onto core UCNPs, with the shell/core ratio of up to 10:1. This led to the fabrication of multi-color UCNPs with well-designed core-shell structures with multiple layers and controllable thicknesses. Finally, a strategy of encapsulating these UCNPs to produce optically encoded micro-beads through high-throughput microfluidics has been developed. The hydrophobic UCNPs were first modified with Pluronic F127 to render them hydrophilic and uniformly distributed in the poly (ethylene glycol) diacrylate (PEGDA) hydrogel precursor. Droplets of the hydrogel precursor were formed in a microfluidic device and cross-linked into micro-beads under UV irradiation. Through encapsulation of multi-color UCNPs and by controlling their ratio, optically encoded multi-color micro-beads have been easily fabricated. These multi-color UCNPs and micro-bead barcodes have great potential for use in multiplexed bioimaging and detection.

  1. The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants

    NASA Technical Reports Server (NTRS)

    Blasius, T. D.; Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.; Anderson, M.

    2012-01-01

    While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 m and 3.1 m. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC +10216 or CIT 6. Using radiative transfer models, we find the sublimation temperature of Tsub(silicates) = 1130 90K and Tsub(amorphous carbon) = 1170 60 K, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. The fact that O-rich and C-rich dust types showed the same sublimation temperature was surprising as well. For the most optically-thick shells ( 2.2 m > 2), the temperature profile of the inner dust shell is observed to change substantially, an effect we suggest could arise when individual dust clumps become optically-thick at the highest mass-loss rates.

  2. The Embryonic Transcriptome of the Red-Eared Slider Turtle (Trachemys scripta)

    PubMed Central

    Kaplinsky, Nicholas J.; Gilbert, Scott F.; Cebra-Thomas, Judith; Lilleväli, Kersti; Saare, Merly; Chang, Eric Y.; Edelman, Hannah E.; Frick, Melissa A.; Guan, Yin; Hammond, Rebecca M.; Hampilos, Nicholas H.; Opoku, David S. B.; Sariahmed, Karim; Sherman, Eric A.; Watson, Ray

    2013-01-01

    The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences. PMID:23840449

  3. UV Light Reveals the Diversity of Jurassic Shell Colour Patterns: Examples from the Cordebugle Lagerstätte (Calvados, France)

    PubMed Central

    Caze, Bruno; Merle, Didier; Schneider, Simon

    2015-01-01

    Viewed under UV light the diverse and exceptionally well-preserved molluscs from the Late Jurassic Cordebugle Konservat Lagerstätte (Calvados, Normandy, France) reveal fluorescent fossil shell colour patterns predating the oldest previously known instance of such patterns by 100 Myr. Evidently, residual colour patterns are observable in Mesozoic molluscs by application of this non-destructive method, provided the shells are not decalcified or recrystallized. Among 46 species which are assigned to twelve gastropod families and eight bivalve families, no less than 25 species yielded positive results. Out of nine colour pattern morphologies that have been distinguished six occur in gastropods and three in bivalves. The presence of these variant morphologies clearly indicates a significant pre-Cenozoic diversification of colour patterns, especially in gastropods. In addition, the occurrence of two distinct types of fluorescence highlights a major difference in the chemical composition of the pigments involved in colour pattern formation in gastropods. This discovery enables us to discriminate members of higher clades, i.e. the Vetigastropoda emitting red fluorescence from the Caenogastropoda and Heterobranchia emitting whitish-beige to yellow fluorescence. Consequently, fluorescent colour patterns may help to allocate part of the numerous enigmatic Mesozoic gastropod taxa to their correct systematic position. PMID:26039592

  4. Measurements of the K -Shell Opacity of a Solid-Density Magnesium Plasma Heated by an X-Ray Free-Electron Laser

    DOE PAGES

    Preston, T. R.; Vinko, S. M.; Ciricosta, O.; ...

    2017-08-25

    We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness independent source function, allowing the extraction of a measure of the opacity to K-shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the Kα transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

  5. Conveyor with rotary airlock apparatus

    DOEpatents

    Kronbert, J.W.

    1993-01-01

    This invention is comprised of an apparatus for transferring objects from a first region to a second region, the first and second regions having differing atmospheric environments. The apparatus includes a shell having an entrance and an exit, a conveyer belt running through the shell from the entrance to the exit, and a horizontally mounted `revolving door` with at least four vanes revolving about its axis. The inner surface of the shell and the top surface of the conveyer belt act as opposing walls of the `revolving door`. The conveyer belt dips as it passes under but against the revolving vanes so as not to interfere with them but to engage at least two of the vanes and define thereby a moving chamber. Preferably, the conveyer belt has ridges or grooves on its surface that engage the edges of the vanes and act to rotate the vane assembly. Conduits are provided that communicate with the interior of the shell and allow the adjustment of the atmosphere of the moving chamber or recovery of constituents of the atmosphere of the first region from the moving chamber before they escape to the second region.

  6. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  7. Conveyor with rotary airlock apparatus

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An apparatus for transferring objects from a first region to a second reg, the first and second regions having differing atmospheric environments. The apparatus includes a shell having an entrance and an exit, a conveyor belt running through the shell from the entrance to the exit, and a horizontally mounted "revolving door" with at least four vanes revolving about its axis. The inner surface of the shell and the top surface of the conveyor belt act as opposing walls of the "revolving door." The conveyor belt dips as it passes under but against the revolving vanes so as not to interfere with them but to engage at least two of the vanes and define thereby a moving chamber. Preferably, the conveyor belt has ridges or grooves on its surface that engage the edges of the vanes and act to rotate the vane assembly. Conduits are provided that communicate with the interior of the shell and allow the adjustment of the atmosphere of the moving chamber or recovery of constituents of the atmosphere of the first region from the moving chamber before they escape to the second region.

  8. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Liu, Haiou; Zhang, Xiongfu

    2018-03-01

    Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.

  9. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals.

    PubMed

    Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua

    2016-08-08

    A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.

  10. [Case study of red water phenomenon in drinking water distribution systems caused by water source switch].

    PubMed

    Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Pan, An-jun; Xu, Yang; Liao, Ping-an; Zhang, Su-xia; Gu, Jun-nong

    2009-12-01

    Red water phenomenon occurred in some communities of a city in China after water source switch in recent days. The origin of this red water problem and mechanism of iron release were investigated in the study. Water quality of local and new water sources was tested and tap water quality in suffered area had been monitored for 3 months since red water occurred. Interior corrosion scales on the pipe which was obtained from the suffered area were analyzed by XRD, SEM, and EDS. Corrosion rates of cast iron under the conditions of two source water were obtained by Annular Reactor. The influence of different source water on iron release was studied by pipe section reactor to simulate the distribution systems. The results indicated that large increase of sulfate concentration by water source shift was regarded as the cause of red water problem. The Larson ratio increased from about 0.4 to 1.7-1.9 and the red water problem happened in the taps of some urban communities just several days after the new water source was applied. The mechanism of iron release was concluded that the stable shell of scales in the pipes had been corrupted by this kind of high-sulfate-concentration source water and it was hard to recover soon spontaneously. The effect of sulfate on iron release of the old cast iron was more significant than its effect on enhancing iron corrosion. The rate of iron release increased with increasing Larson ratio, and the correlation of them was nonlinear on the old cast-iron. The problem remained quite a long time even if the water source re-shifted into the blended one with only small ratio of the new source and the Larson ratio reduced to about 0.6.

  11. ACOUSTIC SIGNATURES OF THE HELIUM CORE FLASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bildsten, Lars; Paxton, Bill; Moore, Kevin

    2012-01-15

    All evolved stars with masses M {approx}< 2 M{sub Sun} undergo an initiating off-center helium core flash in their M{sub c} Almost-Equal-To 0.48 M{sub Sun} He core as they ascend the red giant branch (RGB). This off-center flash is the first of a few successive helium shell subflashes that remove the core electron degeneracy over 2 Myr, converting the object into a He-burning star. Though characterized by Thomas over 40 years ago, this core flash phase has yet to be observationally probed. Using the Modules for Experiments in Stellar Astrophysics (MESA) code, we show that red giant asteroseismology enabled bymore » space-based photometry (i.e., Kepler and CoRoT) can probe these stars during the flash. The rapid ({approx}< 10{sup 5} yr) contraction of the red giant envelope after the initiating flash dramatically improves the coupling of the p-modes to the core g-modes, making the detection of l = 1 mixed modes possible for these 2 Myr. This duration implies that 1 in 35 stars near the red clump in the H-R diagram will be in their core flash phase. During this time, the star has a g-mode period spacing of {Delta}P{sub g} Almost-Equal-To 70-100 s, lower than the {Delta}P{sub g} Almost-Equal-To 250 s of He-burning stars in the red clump, but higher than the RGB stars at the same luminosity. This places them in an underpopulated part of the large frequency spacing ({Delta}{nu}) versus {Delta}P{sub g} diagram that should ease their identification among the thousands of observed red giants.« less

  12. Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.

    PubMed

    Matvejev, V; Zizi, M; Stiens, J

    2012-12-06

    Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.

  13. Construction of Au@Pt core—satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Wenlan; Li, Junbo; Zou, Sheng; Guo, Jinwu; Zhou, Huiyun

    2017-03-01

    A method of in-situ reduction to prepare Au@Pt core-satellite nanoparticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core-satellite NPs. The characterization of composite and core-satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size ( 2 nm) dotted around Au core, and the resulting Au@Pt core-satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core-satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction of p-nitrophenol with NaBH4.

  14. "Smart" nickel oxide based core-shell nanoparticles for combined chemo and photodynamic cancer therapy.

    PubMed

    Bano, Shazia; Nazir, Samina; Munir, Saeeda; AlAjmi, Mohamed Fahad; Afzal, Muhammad; Mazhar, Kehkashan

    2016-01-01

    We report "smart" nickel oxide nanoparticles (NOPs) as multimodal cancer therapy agent. Water-dispersible and light-sensitive NiO core was synthesized with folic acid (FA) connected bovine serum albumin (BSA) shell on entrapped doxorubicin (DOX). The entrapped drug from NOP-DOX@BSA-FA was released in a sustained way (64 hours, pH=5.5, dark conditions) while a robust release was found under red light exposure (in 1/2 hour under λmax=655 nm, 50 mW/cm(2), at pH=5.5). The cell viability, thiobarbituric acid reactive substances and diphenylisobenzofuran assays conducted under light and dark conditions revealed a high photodynamic therapy potential of our construct. Furthermore, we found that the combined effect of DOX and NOPs from NOP-DOX@BSA-FA resulted in cell death approximately eightfold high compared to free DOX. We propose that NOP-DOX@BSA-FA is a potential photodynamic therapy agent and a collective drug delivery system for the systemic administration of cancer chemotherapeutics resulting in combination therapy.

  15. Oxidative stress and anxiety-like symptoms related to withdrawal of passive cigarette smoke in mice: beneficial effects of pecan nut shells extract, a by-product of the nut industry.

    PubMed

    Reckziegel, P; Boufleur, N; Barcelos, R C S; Benvegnú, D M; Pase, C S; Muller, L G; Teixeira, A M; Zanella, R; Prado, A C P; Fett, R; Block, J M; Burger, M E

    2011-09-01

    The present study evaluated the role of pecan nut (Carya illinoensis) shells aqueous extract (AE) against oxidative damage induced by cigarette smoke exposure (CSE) and behavioral parameters of smoking withdrawal. Mice were passively exposed to cigarette smoke for 3 weeks (6, 10, and 14 cigarettes/day) and orally treated with AE (25 g/L). CSE induced lipid peroxidation in brain and red blood cells (RBC), increased catalase (CAT) activity in RBC, and decreased plasma ascorbic acid levels. AE prevented oxidative damage and increased antioxidant defenses of mice exposed to cigarette smoke. In addition, AE reduced the locomotor activity and anxiety symptoms induced by smoking withdrawal, and these behavioral parameters showed a positive correlation with RBC lipid peroxidation. Our results showed the beneficial effects of this by-product of the pecan industry, indicating its usefulness in smoking cessation. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Energy data sourcebook for the US residential sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M.

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for newmore » and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.« less

  17. Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.

    PubMed

    Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C

    2006-12-08

    Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.

  18. Preparation of ZnS/ZnO core - Shell nanocomposite and its photocatalytic behaviour for dye degradation

    NASA Astrophysics Data System (ADS)

    Patil, Bharati N.; Acharya, Smita A.

    2018-05-01

    In the present work ZnS-ZnO core-shell-type composite nanostructures was prepared by hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD) for structural confirmation. Microstructural study by scanning electron microscopy (SEM) exhibit nanoscale dimensions of as-synthesized composite. UV/VIS spectra were recorded for evaluation of photophysical properties. The composite was explored as photocatalysts to study dye degradation using methylene blue in aqueous slurry under irradiation of 663 nm wavelength and congo red under irradiation of 493 nm wavelength. Under the same conditions the photocatalytic activity of the individual phases ZnS and ZnO were also examined, just for sake of comparison. The ZnS-ZnO composite is found to be enhancing the rate of photo degradation of toxic dyes in presence of visible light as compared to ZnS and ZnO individual phases. Thus ZnS based metal sulphide/oxide semiconductor nanocomposites are potential material for Photo-degradation of toxic dyes, and act as good photocatalyst.

  19. Defined polymer shells on nanoparticles via a continuous aerosol-based process

    NASA Astrophysics Data System (ADS)

    Sigmund, Stephanie; Akgün, Ertan; Meyer, Jörg; Hubbuch, Jürgen; Wörner, Michael; Kasper, Gerhard

    2014-08-01

    A continuous aerosol-based process is described for the encapsulation of nanoparticles with a thin polymer shell. The process is essentially based on directed binary collisions between gas-borne core particles and liquid monomer droplets carrying opposite electrical charges, followed by photo-initiated polymerization. Once the two streams are mixed together, the process runs to completion on a time scale of about 2 min or less, required for coagulation and polymerization. Gold, silica, and sodium chloride nanoparticles were successfully coated by this technique with PHDDA [poly(hexanediol diacrylate)] and/or crosslinked PMMA [poly(methyl methacrylate)]. It was found that all core materials as well as agglomerates were wettable at room temperature and that the spreading kinetics of the monomer were fast enough to cover the core particles uniformly within the time scale provided for coagulation. The shell thickness depends on the volume ratio between core particles and monomer droplets. This was demonstrated for a combination of monodisperse silica spheres ( d = 241 nm) and polydisperse methyl methacrylate droplets, resulting in a theoretical shell thickness of 18 nm. There was very good agreement between measurements by TEM and electrical mobility spectroscopy. The results revealed that about 90 % or more of the core-shell structures were formed from 1:1 collisions between a core particle and a single monomer droplet.

  20. Numerical study of heat transfer characteristics in BOG heat exchanger

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  1. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    USGS Publications Warehouse

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  2. Image analysis method to quantify the effect of different treatments on the visual meat/shell ratio of half-shelled green lipped mussels (Perna canaliculus).

    PubMed

    Kim, Min Geun; Alçiçek, Zayde; Balaban, Murat O; Atar, Hasan Huseyin

    2014-04-01

    Aquacultured green lipped mussel (Perna canaliculus) is the New Zealand export leader of seafood in terms of weight. Different treatments shrink mussel meat differently and affect the consumer perception of half-shelled mussels. In order to quantify this, digital images of half-shelled green lipped mussels subjected to two postharvest treatments (ultrahigh pressure (UHP) and heat treatment (HT)) and raw controls were taken. The ratio of the view area of the meat to that of the shell (labelled as 'visual condition index' (VCI)) was measured using image analysis. A polygonal region of interest was defined on the image to depict the boundary of the meat and to calculate the view area. Raw mussels had a VCI of 85%. HT mussels had a much reduced VCI of 41%, indicating shrinkage of the meat due to heat. UHP treatment used as a shucking method resulted in a VCI of 83%. Since VCI is one measure of quality for the consumer, this quantitative method can be used in the optimization of shucking treatment (HT or UHP). VCI can be used to optimize postharvest treatments to minimize meat shrinkage. This method can also be applied to other shellfish such as oysters and clams. © 2013 Society of Chemical Industry.

  3. Red Fox as Sentinel for Blastomyces dermatitidis, Ontario, Canada.

    PubMed

    Nemeth, Nicole M; Campbell, G Douglas; Oesterle, Paul T; Shirose, Lenny; McEwen, Beverly; Jardine, Claire M

    2016-07-01

    Blastomyces dermatitidis, a fungus that can cause fatal infection in humans and other mammals, is not readily recoverable from soil, its environmental reservoir. Because of the red fox's widespread distribution, susceptibility to B. dermatitidis, close association with soil, and well-defined home ranges, this animal has potential utility as a sentinel for this fungus.

  4. Institutional Change through Assessment: Contrasting Case Studies

    ERIC Educational Resources Information Center

    Deess, E. Pierre; Elliot, Norbert

    2009-01-01

    The framework for understanding the management difference is neatly captured by the "red ocean" and "blue ocean" strategies described by W. Chan Kim and Renee Mauborgne in "Blue Ocean Strategy" (Kim & Mauborgne, 2004). In the original, the terms refer to alternative market strategies. Red ocean means competition in a market defined by a zero sum…

  5. Eagle Nebula Flaunts its Infrared Feathers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2 Figure 3

    This set of images from NASA's Spitzer Space Telescope shows the Eagle nebula in different hues of infrared light. Each view tells a different tale. The left picture shows lots of stars and dusty structures with clarity. Dusty molecules found on Earth called polycyclic aromatic hydrocarbons produce most of the red; gas is green and stars are blue.

    The middle view is packed with drama, because it tells astronomers that a star in this region violently erupted, or went supernova, heating surrounding dust (orange). This view also reveals that the hot dust is shell shaped, another indication that a star exploded.

    The final picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the region's dusty star-forming clouds and towers (red, blue and purple).

    The left image is a composite of infrared light with the following wavelengths: 3.6 microns (blue); 4.5 microns (green); 5.8 microns (orange); and 8 microns (red). The right image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red). The middle image is made up solely of 24-micron light.

  6. In vivo studies of sickle red blood cells.

    PubMed

    Kaul, Dhananjay K; Fabry, Mary E

    2004-03-01

    The defining clinical feature of sickle cell anemia is periodic occurrence of painful vasoocclusive crisis. Factors that promote trapping and sickling of red cells in the microcirculation are likely to trigger vasoocclusion. The marked red cell heterogeneity in sickle blood and abnormal adhesion of sickle red cells to vascular endothelium would be major disruptive influences. Using ex vivo and in vivo models, the authors show how to dissect the relative contribution of heterogeneous sickle red cell classes to adhesive and obstructive events. These studies revealed that (1) both rheological abnormalities and adhesion of sickle red cells contribute to their abnormal hemodynamic behavior, (2) venules are the sites of sickle cell adhesion, and (3) sickle red cell deformability plays an important role in adhesive and obstructive events. Preferential adhesion of deformable sickle red cells in postcapillary venules followed by selective trapping of dense sickle red cells could result in vasoocclusion. An updated version of this 2-step model is presented. The multifactorial nature of sickle red cell adhesion needs to be considered in designing antiadhesive therapy in vivo.

  7. VizieR Online Data Catalog: Optically red galaxies in H-ATLAS/GAMA (Dariush+, 2016)

    NASA Astrophysics Data System (ADS)

    Dariush, A.; Dib, S.; Hony, S.; Smith, D. J. B.; Zhukovska, S.; Dunne, L.; Eales, S.; Andrae, E.; Baes, M.; Baldry, I.; Bauer, A.; Bland-Hawthorn, J.; Brough, S.; Bourne, N.; Cava, A.; Clements, D.; Cluver, M.; Cooray, A.; de Zotti, G.; Driver, S.; Grootes, M. W.; Hopkins, A. M.; Hopwood, R.; Kaviraj, S.; Kelvin, L.; Lara-Lopez, M. A.; Liske, J.; Loveday, J.; Maddox, S.; Madore, B.; Michalowski, M. J.; Pearson, C.; Popescu, C.; Robotham, A.; Rowlands, K.; Seibert, M.; Shabani, F.; Smith, M. W. L.; Taylor, E. N.; Tuffs, R.; Valiante, E.; Virdee, J. S.

    2016-09-01

    We use data from the H-ATLAS phase 1 version 3.0 internal release which contains the IDs of >5σ SPIRE detections at 250um. We define two sub-samples of red and blue galaxies based on NUV-r colours. The morphology of all 117 red galaxies were examined from their SDSS r-band images, following independent visual inspection by three team members. Galaxies were classified into three categories of elliptical (E), spiral (S) and uncertain (U). (2 data files).

  8. SN 1987A - The evolution from red to blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuchman, Y.; Wheeler, J.C.

    1989-11-01

    Envelope models in thermal and dynamic equilibrium are used to explore the nature of the transition of SK -69 deg 202, the progenitor of SN 1987A, from the Hayashi track to its final blue position in the H-R diagram. Loci of possible thermal equilibrium solutions are presented as a function of Teff and M(C/O), the mass of the carbon/oxygen core interior to the helium burning shell. It is found that uniform helium enrichment of the envelope results in red-blue evolution but that the resulting blue solution is much hotter than SK -69 deg 202. Solutions in which the only changemore » is to redistribute the portion of the envelope enriched in helium during main-sequence convective core contraction into a step function with Y of about 0.5 at a mass cut of about 10 solar masses give a natural transition from red to blue and a final value of Teff in agreement with observations. It is argued that SK -69 deg 202 probably fell on a post-Hayashi track sequence at moderate Teff. The possible connection of this sequence to the step distribution in the H-R diagram of the LMC. 19 refs.« less

  9. Proton Induced X-ray Emission Spectroscopy of Red Wine Samples Using the Union College Pelletron Accelerator

    NASA Astrophysics Data System (ADS)

    Schuff, Katie; Labrake, Scott

    2010-11-01

    A 1-megavolt tandem electrostatic Pelletron particle accelerator housed at Union College was used to measure the elemental composition and concentration of homemade Cabernet and Merlot red wine samples. A beam of 1.8-MeV protons directed at an approximately 12-μm thin Mylar substrate onto which 8-μL of concentrated red wine was dried caused inner shell electrons to be ejected from the target nuclei and these vacancies are filled through electronic transitions of higher orbital electrons accompanied by the production of an x-ray photon characteristic of the elemental composition of the target. This is the PIXE Method. Data on the intensity versus energy of the x-rays were collected using an Amptek silicon drift detector and were analyzed to determine the elemental composition and the samples were found to contain P, S, K, Cl, Ca, Sc, Mn, Al, Fe, & Co. Elemental concentrations were determined using the analysis package GUPIX. It is hypothesized that the cobalt seen is a direct result of the uptake by the grapes and as a product of the fermentation process a complex of vitamin B12 is produced.

  10. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    DOEpatents

    Bland, Robert J [Oviedo, FL; Horazak, Dennis A [Orlando, FL

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  11. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.

    PubMed

    Chan, Juliana M; Zhang, Liangfang; Yuet, Kai P; Liao, Grace; Rhee, June-Wha; Langer, Robert; Farokhzad, Omid C

    2009-03-01

    Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, stability, drug release properties and cytotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various formulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system.

  12. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity

    NASA Astrophysics Data System (ADS)

    Cinal, M.

    2010-01-01

    It is found that for closed-l-shell atoms, the exact local exchange potential vx(r) calculated in the exchange-only Kohn-Sham (KS) scheme of the density functional theory (DFT) is very well represented within the region of every atomic shell by each of the suitably shifted potentials obtained with the nonlocal Fock exchange operator for the individual Hartree-Fock (HF) orbitals belonging to this shell. This newly revealed property is not related to the well-known steplike shell structure in the response part of vx(r), but it results from specific relations satisfied by the HF orbital exchange potentials. These relations explain the outstanding proximity of the occupied HF and exchange-only KS orbitals as well as the high quality of the Krieger-Li-Iafrate and localized HF (or, equivalently, common-energy-denominator) approximations to the DFT exchange potential vx(r). Another highly accurate representation of vx(r) is given by the continuous piecewise function built of shell-specific exchange potentials, each defined as the weighted average of the shifted orbital exchange potentials corresponding to a given shell. The constant shifts added to the HF orbital exchange potentials, to map them onto vx(r), are nearly equal to the differences between the energies of the corresponding KS and HF orbitals. It is discussed why these differences are positive and grow when the respective orbital energies become lower for inner orbitals.

  13. Preliminary Evaluation of Microbial Communities Isolated from the Calcifying Fluid of Oysters

    NASA Astrophysics Data System (ADS)

    Banker, R.

    2016-02-01

    The process of biomineralization is defined as the selective uptake of elements that are incorporated into a defined mineral structure under strict biological control. For bivalve molluscs, such as clams, oysters, and mussels, the mantle is the primary organ in control of shell deposition. Alternatively, remote calcification takes place when carbonate-precipitating microbes (e.g. sulfate reducers) colonize a shell-secreting organism and enhance the ability of the host to build shell material. The oyster syndrome is a term that describes bivalves that possess an unusual shell morphology characterized by exceptionally thick valves containing numerous chambers filled with chalky calcite. Although remote calcification via microbial metabolism has been proposed as a mechanism of chalky deposit formation in oysters, this hypothesis has not yet been rigorously investigated. Here I present data on the microbial communities found in the calcifying fluid of two oyster species; Crassostrea gigas and Ostrea lurida are examples of oysters that do and do not exhibit the oyster syndrome, respectively. Comparison of the microbiomes of these two morphological end members may provide insight into the role of microbes in the formation of chalky deposits. Results indicate that the microbial community in the surrounding water is the dominant source for bacterial taxa found in the calcifying fluid of both oyster species. Also, it appears as though C. gigas maintains a microbial community that is more similar to its ambient environment than O. lurida. These results demonstrate that the ambient aquatic environment has a guiding influence on the microbiome found in the calcifying fluid of bivalve molluscs. However, the magnitude of this effect varies among organisms, even those that are closely related.

  14. Change Is Good...Wrong!

    ERIC Educational Resources Information Center

    Hill, Franklin

    2000-01-01

    Change must be personally relevant, beneficial, clearly defined and believed to be achievable. To renovate school facilities, several steps are necessary: identifying future trends and making them personally applicable, establishing a realistic vision, creating functional facility goals, seeing the building as an empty shell, and considering…

  15. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  16. Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor.

    PubMed

    Glasgow, Jeff E; Asensio, Michael A; Jakobson, Christopher M; Francis, Matthew B; Tullman-Ercek, Danielle

    2015-09-18

    Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes. Self-assembled protein shells for encapsulation are especially desirable for their uniform structures and ease of perturbation through genetic mutation. Here, we use the MS2 capsid, a well-defined porous 27 nm protein shell, as an enzymatic nanoreactor to explore pore-structure effects on substrate and product flux during the catalyzed reaction. Our results suggest that the shell can influence the enzymatic reaction based on charge repulsion between small molecules and point mutations around the pore structure. These findings also lend support to the hypothesis that protein compartments modulate the transport of small molecules and thus influence metabolic reactions and catalysis in vitro.

  17. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  18. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE PAGES

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; ...

    2017-07-31

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  19. Monocrystalline platinum-nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction.

    PubMed

    Cao, Zhenming; Li, Huiqi; Zhan, Chenyang; Zhang, Jiawei; Wang, Wei; Xu, Binbin; Lu, Fa; Jiang, Yaqi; Xie, Zhaoxiong; Zheng, Lansun

    2018-03-15

    Single crystalline noble metal nanocages are the most promising candidates for heterogeneous catalysis due to their large specific surface area, well-defined structure and enhanced structural stability. Herein, based on the observation of an unexpected phenomenon that the alloying of Pt and transition metals by co-reduction is more preferential than the formation of pure Pt NCs, we propose a feasible one-pot strategy to synthesize a uniformly epitaxial core-shell Pt-Ni structure with a Ni-rich alloy as the core and a Pt-rich alloy as the shell. The as-prepared Pt-Ni core-shell structures are subsequently etched into monocrystalline Pt-Ni branched nanocages with the wall thickness being 2.8 nm. This unique structure exhibits excellent catalytic performance and stability for the hydrogen evolution reaction (HER) in alkaline solution which is of great significance for the energy-intensive water-alkali and chlor-alkali industry.

  20. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  1. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    PubMed Central

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; Sumpter, Bobby G.; Fuentes-Cabrera, Miguel; Kerfeld, Cheryl A.; Ducat, Daniel C.

    2017-01-01

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering. PMID:28824573

  2. Connections between the dynamical symmetries in the microscopic shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgieva, A. I., E-mail: anageorg@issp.bas.bg; Drumev, K. P.

    2016-03-25

    The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQMmore » Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.« less

  3. MS overline -on-shell quark mass relation up to four loops in QCD and a general SU (N ) gauge group

    NASA Astrophysics Data System (ADS)

    Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias; Wellmann, David

    2016-10-01

    We compute the relation between heavy quark masses defined in the modified minimal subtraction and the on-shell schemes. Detailed results are presented for all coefficients of the SU (Nc) color factors. The reduction of the four-loop on-shell integrals is performed for a general QCD gauge parameter. Altogether there are about 380 master integrals. Some of them are computed analytically, others with high numerical precision using Mellin-Barnes representations, and the rest numerically with the help of FIESTA. We discuss in detail the precise numerical evaluation of the four-loop master integrals. Updated relations between various short-distance masses and the MS ¯ quark mass to next-to-next-to-next-to-leading order accuracy are provided for the charm, bottom and top quarks. We discuss the dependence on the renormalization and factorization scale.

  4. Properties of concrete containing coconut shell powder (CSP) as a filler

    NASA Astrophysics Data System (ADS)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  5. Parallel Microchannel-Based Measurements of Individual Erythrocyte Areas and Volumes

    PubMed Central

    Gifford, Sean C.; Frank, Michael G.; Derganc, Jure; Gabel, Christopher; Austin, Robert H.; Yoshida, Tatsuro; Bitensky, Mark W.

    2003-01-01

    We describe a microchannel device which utilizes a novel approach to obtain area and volume measurements on many individual red blood cells. Red cells are aspirated into the microchannels much as a single red blood cell is aspirated into a micropipette. Inasmuch as there are thousands of identical microchannels with defined geometry, data for many individual red cells can be rapidly acquired, and the fundamental heterogeneity of cell membrane biophysics can be analyzed. Fluorescent labels can be used to quantify red cell surface and cytosolic features of interest simultaneously with the measurement of area and volume for a given cell. Experiments that demonstrate and evaluate the microchannel measuring capabilities are presented and potential improvements and extensions are discussed. PMID:12524315

  6. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    PubMed

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  7. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple model of a nanocrystal with spherical shape and centro-symmetric strain at the surface shell we obtain theoretical alp-Q values which match very well the alp-Q plots determined experimentally for Sic, GaN, and diamond nanopowders. The theoretical models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the surface shell. According to our calculations, the part of the diffraction pattern measured at relatively low diffraction vectors Q (below 10/angstrom) provides information on the surface strain, whle determination of the lattice parameters in the grain core requires measurements at large Q-values (above 15 - 20/angstrom).

  8. INTERNAL ROTATION OF THE RED-GIANT STAR KIC 4448777 BY MEANS OF ASTEROSEISMIC INVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M. P.; Cardini, D.; Ventura, R.

    We study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from Kepler observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure to extract the rotational splittings from the power spectrum. We find not only that the core rotates from a minimum of 8 to a maximum of 17 times faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al.), but we also estimate the variation of the angularmore » velocity within the helium core with a spatial resolution of 0.001R and verify the hypothesis of a sharp discontinuity in the inner stellar rotation. The results show that the entire core rotates rigidly and provide evidence for an angular velocity gradient around the base of the hydrogen-burning shell; however, we do not succeed in characterizing the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of 68 ± 22 nHz. We conclude that a set of data that includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.« less

  9. Red Supergiants as Potential Type IIn Supernova Progenitors: Spatially Resolved 4.6 μm CO Emission Around VY CMa and Betelgeuse

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Hinkle, Kenneth H.; Ryde, Nils

    2009-03-01

    We present high-resolution 4.6 μm CO spectra of the circumstellar environments of two red supergiants (RSGs) that are potential supernova (SN) progenitors: Betelgeuse and VY Canis Majoris (VY CMa). Around Betelgeuse, 12CO emission within ±3'' (±12 km s-1) follows a mildly clumpy but otherwise spherical shell, smaller than its ~55'' shell in K I λ7699. In stark contrast, 4.6 μm CO emission around VY CMa is coincident with bright K I in its clumpy asymmetric reflection nebula, within ±5'' (±40 km s-1) of the star. Our CO data reveal redshifted features not seen in K I spectra of VY CMa, indicating a more isotropic distribution of gas punctuated by randomly distributed asymmetric clumps. The relative CO and K I distribution in Betelgeuse arises from ionization effects within a steady wind, whereas in VY CMa, K I is emitted from skins of CO cloudlets resulting from episodic mass ejections 500-1000 yr ago. In both cases, CO and K I trace potential pre-SN circumstellar matter: we conclude that an extreme RSG like VY CMa might produce a Type IIn event like SN 1988Z if it were to explode in its current state, but Betelgeuse will not. VY CMa demonstrates that luminous blue variables are not necessarily the only progenitors of SNe IIn, but it underscores the requirement that SNe IIn suffer enhanced episodic mass loss shortly before exploding. Based on observations obtained at the Gemini Observatory.

  10. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'Ichi; Yasuda, Naoki; Jha, Saurabh W.; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D.; Mazzali, Paolo A.; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J.; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-01

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models—the helium-ignition branch—does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  11. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.

    PubMed

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-04

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  12. Cu2O-directed in situ growth of Au nanoparticles inside HKUST-1 nanocages.

    PubMed

    Liu, Yongxin; Liu, Ting; Tian, Long; Zhang, Linlin; Yao, Lili; Tan, Taixing; Xu, Jin; Han, Xiaohui; Liu, Dan; Wang, Cheng

    2016-12-07

    Controllable integration of metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) is attracting considerable attention as the obtained composite materials always show synergistic effects in applications of catalysis, delivery, as well as sensing. Herein, a Cu 2 O-directed in situ growth strategy was developed to integrate Au nanoparticles and HKUST-1. In this strategy, Cu 2 O@HKUST-1 core-shell heterostructures, HKUST-1 nanocages, Cu 2 O@Au@HKUST-1 sandwich core-shell heterostructures and Au@HKUST-1 balls-in-cage heterostructures were successfully synthesized. Cu 2 O@HKUST-1 core-shell heterostructures were synthesized by soaking Cu 2 O nanocrystals in benzene-1,3,5-tricarboxylic acid solution. The well-defined Cu 2 O@HKUST-1 core-shell heterostructures were demonstrated to be dominated by the ratio of Cu 2+ cations to btc 3- ligands in solution during the period of HKUST-1 formation. Cu 2 O@Au@HKUST-1 sandwich core-shell or Au@HKUST-1 balls-in-cage heterostructures were obtained by impregnating HAuCl 4 into Cu 2 O@HKUST-1 core-shell heterostructures. Due to the porosity of HKUST-1 and reducibility of Cu 2 O, HAuCl 4 could pass through the HKUST-1 shell and be reduced by the Cu 2 O core in situ forming Au nanoparticles. Finally, CO oxidation reaction at high temperatures was carried out to assess the catalytic functionality of the obtained composite heterostructures. This strategy can circumvent some drawbacks of the existing approaches for integrating MNPs and MOFs, such as nonselective deposition of MNPs at the outer surface of the MOF matrices, extreme treatment conditions and additional surface modifications.

  13. Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.

    PubMed

    Mitri, F G; Fatemi, M

    2005-05-01

    An object placed in an acoustic field is known to experience a force due to the transfer of momentum from the wave to the object itself. This force is known to be steady when the incident field is considered to be continuous with constant amplitude. One may define the dynamic (oscillatory) radiation force for a continuous wave-field whose intensity varies slowly with time. This paper extends the theory of the dynamic acoustic radiation force resulting from an amplitude-modulated progressive plane wave-field incident on solid cylinders to the case of solid cylindrical shells with particular emphasis on their thickness and contents of their hollow regions. A new factor corresponding to the dynamic radiation force is defined as Y(d) and stands for the dynamic radiation force per unit energy density and unit cross sectional surface. The results of numerical calculations are presented, indicating the ways in which the form of the dynamic radiation force function curves are affected by variations in the material mechanical parameters and by changes in the interior fluid inside the shell's hollow region. It was shown that the dynamic radiation force function Y(d) deviates from the static radiation force function for progressive waves Y(p) when the modulation frequency increases. These results indicate that the theory presented here is broader than the existing theory on cylinders.

  14. 9 CFR 590.5 - Terms defined.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of current production means shell eggs which have moved through the usual marketing channels since... Marketing Service of the Department or any other officer or employee of the Department to whom there has... Branch means Chief of the Poultry Grading Branch, Poultry Division, Agricultural Marketing Service. Class...

  15. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  16. A software architecture for automating operations processes

    NASA Technical Reports Server (NTRS)

    Miller, Kevin J.

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed a software architecture based on an integrated toolkit approach for simplifying and automating mission operations tasks. The toolkit approach is based on building adaptable, reusable graphical tools that are integrated through a combination of libraries, scripts, and system-level user interface shells. The graphical interface shells are designed to integrate and visually guide a user through the complex steps in an operations process. They provide a user with an integrated system-level picture of an overall process, defining the required inputs and possible output through interactive on-screen graphics. The OEL has developed the software for building these process-oriented graphical user interface (GUI) shells. The OEL Shell development system (OEL Shell) is an extension of JPL's Widget Creation Library (WCL). The OEL Shell system can be used to easily build user interfaces for running complex processes, applications with extensive command-line interfaces, and tool-integration tasks. The interface shells display a logical process flow using arrows and box graphics. They also allow a user to select which output products are desired and which input sources are needed, eliminating the need to know which program and its associated command-line parameters must be executed in each case. The shells have also proved valuable for use as operations training tools because of the OEL Shell hypertext help environment. The OEL toolkit approach is guided by several principles, including the use of ASCII text file interfaces with a multimission format, Perl scripts for mission-specific adaptation code, and programs that include a simple command-line interface for batch mode processing. Projects can adapt the interface shells by simple changes to the resources configuration file. This approach has allowed the development of sophisticated, automated software systems that are easy, cheap, and fast to build. This paper will discuss our toolkit approach and the OEL Shell interface builder in the context of a real operations process example. The paper will discuss the design and implementation of a Ulysses toolkit for generating the mission sequence of events. The Sequence of Events Generation (SEG) system provides an adaptable multimission toolkit for producing a time-ordered listing and timeline display of spacecraft commands, state changes, and required ground activities.

  17. Hyperemic peripheral red marrow in a patient with sickle cell anemia demonstrated on Tc-99m labeled red blood cell venography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiden, R.A.; Locko, R.C.; Stent, T.R.

    1991-03-01

    A 25-year-old gravid woman, homozygous for sickle cell anemia, with a history of recent deep venous thrombosis, was examined using Tc-99m labeled red blood cell venography for recurrent thrombosis. Although negative for thrombus, the study presented an unusual incidental finding: the patient's peripheral bone marrow was hyperemic in a distribution consistent with peripheral red bone marrow expansion. Such a pattern has not been documented before using this technique. This report supports other literature that has demonstrated hyperemia of peripheral red bone marrow in other hemolytic anemias. This finding may ultimately define an additional role of scintigraphy in assessing the pathophysiologicmore » status of the sickle cell patient.« less

  18. Binary release of ascorbic acid and lecithin from core-shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte.

    PubMed

    Shi, Qiang; Fan, Qunfu; Ye, Wei; Hou, Jianwen; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2015-01-01

    There is an urgent need to develop blood-contacting biomaterials with long-term anti-hemolytic capability. To obtain such biomaterials, we coaxially electrospin [ascorbic acid (AA) and lecithin]/poly (ethylene oxide) (PEO) core-shell nanofibers onto the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) that has been grafted with poly (ethylene glycol) (PEG) chains. Our strategy is based on that the grafted layers of PEG render the surface hydrophilic to reduce the mechanical injure to red blood cells (RBCs) while the AA and lecithin released from nanofibers on blood-contacting surface can actively interact with RBCs to decrease the oxidative damage to RBCs. We demonstrate that (AA and lecithin)/PEO core-shell structured nanofibers have been fabricated on the PEG grafted surface. The binary release of AA and lecithin in the distilled water is in a controlled manner and lasts for almost 5 days; during RBCs preservation, AA acts as an antioxidant and lecithin as a lipid supplier to the membrane of erythrocytes, resulting in low mechanical fragility and hemolysis of RBCs, as well as high deformability of stored RBCs. Our work thus makes a new approach to fabricate blood-contacting biomaterials with the capability of long-term anti-hemolysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Modeling and studying of white light emitting diodes based on CdS/ZnS spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Hasanirokh, K.; Asgari, A.

    2018-07-01

    In this paper, we propose a quantum dot (QD) based white light emitting diode (WLED) structure to study theoretically the material gain and quantum efficiency of the system. We consider the spherical QDs with a II-VI semiconductor core (CdS) that covered with a wider band gap semiconductor acting as a shell (ZnS). In order to generate white light spectrum, we use layers with different dot size that can emit blue, green and red colors. The blue emission originating from CdS core combines to green/orange components originating from ZnS shell and creates an efficiency white light emission. To model this device, at first, we solve Schrödinger and Poisson equations self consistently and obtain eigen energies and wave functions. Then, we calculate the optical gain and internal quantum efficiency (IQE) of a CdS/ZnS LED sample. We investigate the structural parameter effects on the optical properties of the WLED. The numerical results show that the gain profile and IQE curves depend strongly on the structural parameters such as dot size, carrier density and volume scaling parameter. The gain profile becomes higher and wider with increasing the core radius while it becomes less and narrower with increasing the shell thickness. Furthermore, it is found that the volume scaling parameter can manage the system quantum efficiency.

  20. Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods

    NASA Astrophysics Data System (ADS)

    Mounir, Christian; Schimpke, Tilman; Rossbach, Georg; Avramescu, Adrian; Strassburg, Martin; Schwarz, Ulrich T.

    2017-01-01

    We investigate the optical emission properties of the active InGaN shell of high aspect-ratio InGaN/GaN core-shell microrods (μRods) by confocal quasi-resonant polarization-resolved and excitation density dependent micro-photoluminescence (μPL). The active shell, multiple thin InGaN/GaN quantum wells (MQWs), was deposited on GaN μRods selectively grown by metal organic vapor phase epitaxy on patterned SiO2/n-GaN/sapphire template. High spatial resolution mappings reveal a very homogeneous emission intensity along the whole μRods including the tip despite a red-shift of 30 nm from the base to the tip along the 8.6 μm-long m-plane sidewalls. Looking at the Fabry-Perot interference fringes superimposed on the μPL spectra, we get structural information on the μRods. A high degree of linear polarization (DLP) of 0.6-0.66 is measured on the lower half of the m-plane side facets with a slight decrease toward the tip. We observe the typical drop of the DLP with an excitation density caused by degenerate filling of valence bands (Fermi regime). Local internal quantum efficiencies (IQEs) of 55 ±11 % up to 73 ±7 % are estimated on the m-plane facet from measurements at low temperature. Finally, simultaneously fitting the DLP and IQE as a function of the excitation density, we determine the carrier density inside the active region and the recombination rate coefficients of the m-plane MQWs. We show that phase-space filling and the background carrier density have to be included in the recombination rate model.

  1. Discovering Planetary Nebula Geometries: Explorations with a Hierarchy of Models

    NASA Technical Reports Server (NTRS)

    Huyser, Karen A.; Knuth, Kevin H.; Fischer, Bernd; Schumann, Johann; Granquist-Fraser, Domhnull; Hajian, Arsen R.

    2004-01-01

    Astronomical objects known as planetary nebulae (PNe) consist of a shell of gas expelled by an aging medium-sized star as it makes its transition from a red giant to a white dwarf. In many cases this gas shell can be approximately described as a prolate ellipsoid. Knowledge of the physics of ionization processes in this gaseous shell enables us to construct a model in three dimensions (3D) called the Ionization-Bounded Prolate Ellipsoidal Shell model (IBPES model). Using this model we can generate synthetic nebular images, which can be used in conjunction with Hubble Space Telescope (HST) images of actual PNe to perform Bayesian model estimation. Since the IBPES model is characterized by thirteen parameters, model estimation requires the search of a 13-dimensional parameter space. The 'curse of dimensionality,' compounded by a computationally intense forward problem, makes forward searches extremely time-consuming and frequently causes them to become trapped in local solutions. We find that both the speed and of the search can be improved by judiciously reducing the dimensionality of the search space. Our basic approach employs a hierarchy of models of increasing complexity that converges to the IBPES model. Earlier studies establish that a hierarchical sequence converges more quickly, and to a better solution, than a search relying only on the most complex model. Here we report results for a hierarchy of five models. The first three models treat the nebula as a 2D image, while the last two models explore its characteristics as a 3D object and enable us to characterize the physics of the nebula. This five-model hierarchy is applied to HST images of ellipsoidal PNe to estimate their geometric properties and gas density profiles.

  2. Regulation of Extracellular Matrix Synthesis by Shell Extracts from the Marine Bivalve Pecten maximus in Human Articular Chondrocytes- Application for Cartilage Engineering.

    PubMed

    Bouyoucef, Mouloud; Rakic, Rodolphe; Gómez-Leduc, Tangni; Latire, Thomas; Marin, Frédéric; Leclercq, Sylvain; Carreiras, Franck; Serpentini, Antoine; Lebel, Jean-Marc; Galéra, Philippe; Legendre, Florence

    2018-04-07

    The shells of the bivalve mollusks are organo-mineral structures predominantly composed of calcium carbonate, but also of a minor organic matrix, a mixture of proteins, glycoproteins, and polysaccharides. These proteins are involved in mineral deposition and, more generally, in the spatial organization of the shell crystallites in well-defined microstructures. In this work, we extracted different organic shell extracts (acid-soluble matrix, acid-insoluble matrix, water-soluble matrix, guanidine HCl/EDTA-extracted matrix, referred as ASM, AIM, WSM, and EDTAM, respectively) from the shell of the scallop Pecten maximus and studied their biological activities on human articular chondrocytes (HACs). We found that these extracts differentially modulate the biological activities of HACs, depending on the type of extraction and the concentration used. Furthermore, we showed that, unlike ASM and AIM, WSM promotes maintenance of the chondrocyte phenotype in monolayer culture. WSM increased the expression of chondrocyte-specific markers (aggrecan and type II collagen), without enhancing that of the main chondrocyte dedifferentiation marker (type I collagen). We also demonstrated that WSM could favor redifferentiation of chondrocyte in collagen sponge scaffold in hypoxia. Thus, this study suggests that the organic matrix of Pecten maximus, particularly WSM, may contain interesting molecules with chondrogenic effects. Our research emphasizes the potential use of WSM of Pecten maximus for cell therapy of cartilage.

  3. Electronic shell structure in Ga12 icosahedra and the relation to the bulk forms of gallium.

    PubMed

    Schebarchov, D; Gaston, N

    2012-07-28

    The electronic structure of known cluster compounds with a cage-like icosahedral Ga(12) centre is studied by first-principles theoretical methods, based on density functional theory. We consider these hollow metalloid nanostructures in the context of the polymorphism of the bulk, and identify a close relation to the α phase of gallium. This previously unrecognised connection is established using the electron localisation function, which reveals the ubiquitous presence of radially-pointing covalent bonds around the Ga(12) centre--analogous to the covalent bonds between buckled deltahedral planes in α-Ga. Furthermore, we find prominent superatom shell structure in these clusters, despite their hollow icosahedral motif and the presence of covalent bonds. The exact nature of the electronic shell structure is contrasted with simple electron shell models based on jellium, and we demonstrate how the interplay between gallium dimerisation, ligand- and crystal-field effects can alter the splitting of the partially filled 1F shell. Finally, in the unique compound where the Ga(12) centre is bridged by six phosphorus ligands, the electronic structure most closely resembles that of δ-Ga and there are no well-defined superatom orbitals. The results of this comprehensive study bring new insights into the nature of chemical bonding in metalloid gallium compounds and the relation to bulk gallium metal, and they may also guide the development of more general models for ligand-protected clusters.

  4. Experimental performance investigation of a shell and tube heat exchanger by exergy based sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Mert, Suha Orçun; Reis, Alper

    2016-06-01

    Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.

  5. Sickle red cell-endothelium interactions.

    PubMed

    Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A

    2009-01-01

    Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.

  6. Examination of gamma-irradiated fruits and vegetables by electron spin resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the seeds, pits, shells, and skins of a variety of irradiated fruits and vegetables were measured. All spectra, control and irradiated, contained a single resonance with a g-factor of 2.00. Additional resonances due to Mn 2+ were observed for the drupelets of blackberries and red raspberries. An unusual radiation-induced radical was observed for irradiated mango seed; however, the signal decayed completely within a few days. It was concluded that only in a few specialized cases could the ESR resonances observed be suitable for postirradiation monitoring or dosimetry.

  7. Polymerizable Molecular Silsesquioxane Cage Armored Hybrid Microcapsules with In Situ Shell Functionalization.

    PubMed

    Xing, Yuxiu; Peng, Jun; Xu, Kai; Lin, Weihong; Gao, Shuxi; Ren, Yuanyuan; Gui, Xuefeng; Liang, Shengyuan; Chen, Mingcai

    2016-02-01

    We prepared core-shell polymer-silsesquioxane hybrid microcapsules from cage-like methacryloxypropyl silsesquioxanes (CMSQs) and styrene (St). The presence of CMSQ can moderately reduce the interfacial tension between St and water and help to emulsify the monomer prior to polymerization. Dynamic light scattering (DLS) and TEM analysis demonstrated that uniform core-shell latex particles were achieved. The polymer latex particles were subsequently transformed into well-defined hollow nanospheres by removing the polystyrene (PS) core with 1:1 ethanol/cyclohexane. High-resolution TEM and nitrogen adsorption-desorption analysis showed that the final nanospheres possessed hollow cavities and had porous shells; the pore size was approximately 2-3 nm. The nanospheres exhibited large surface areas (up to 486 m 2  g -1 ) and preferential adsorption, and they demonstrated the highest reported methylene blue adsorption capacity (95.1 mg g -1 ). Moreover, the uniform distribution of the methacryloyl moiety on the hollow nanospheres endowed them with more potential properties. These results could provide a new benchmark for preparing hollow microspheres by a facile one-step template-free method for various applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Is seniority a partial dynamic symmetry in the first νg9/2 shell?

    NASA Astrophysics Data System (ADS)

    Morales, A. I.; Benzoni, G.; Watanabe, H.; de Angelis, G.; Nishimura, S.; Coraggio, L.; Gargano, A.; Itaco, N.; Otsuka, T.; Tsunoda, Y.; Van Isacker, P.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Valiente-Dobón, J. J.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Bruce, A. M.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Lalkovski, S.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoybjor, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Podolyák, Zs.; Regan, P. H.; Sakurai, H.; Sahin, E.; Sohler, D.; Schaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Wieland, O.; Yalcinkaya, M.

    2018-06-01

    The low-lying structures of the midshell νg9/2 Ni isotopes 72Ni and 74Ni have been investigated at the RIBF facility in RIKEN within the EURICA collaboration. Previously unobserved low-lying states were accessed for the first time following β decay of the mother nuclei 72Co and 74Co. As a result, we provide a complete picture in terms of the seniority scheme up to the first (8+) levels for both nuclei. The experimental results are compared to shell-model calculations in order to define to what extent the seniority quantum number is preserved in the first neutron g9/2 shell. We find that the disappearance of the seniority isomerism in the (81+) states can be explained by a lowering of the seniority-four (6+) levels as predicted years ago. For 74Ni, the internal de-excitation pattern of the newly observed (62+) state supports a restoration of the normal seniority ordering up to spin J = 4. This property, unexplained by the shell-model calculations, is in agreement with a dominance of the single-particle spherical regime near 78Ni.

  9. In situ fabrication of ZnO@N-doped nanoporous carbon core-shell heterostructures with high photocatalytic and adsorption capacity by a calcination of ZnO@MOF strategy

    NASA Astrophysics Data System (ADS)

    Qi, Qi; Liu, Sujuan; Li, Xing; Kong, Chunlong; Guo, Zhiyong; Chen, Liang

    2017-11-01

    This report describes the controllable encapsulation of ZnO nanoparticles with N-doped nanoporous carbon (N-NpC) via a simple fabrication and calcination of ZnO@ZIF-8 (zeolitic imidazolate framework). In the fabrication of ZnO@ZIF-8, ZnO was used both as the support and Zn source for the formation of ZIF-8. After calcination under N2 atmosphere, the ZnO@N-NpC core-shell heterostructures were formed and characterized by IR, UV-vis, XRD, XPS, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As expected, the well-defined ZnO@N-NpC core-shell nanospheres demonstrated distinct photocatalytic activity and adsorption capacity in response to the dye methylene blue (MB) in aqueous solution, and the degradation efficiency of MB is up to 99% under UV irradiation for 20 min after catalysts were reused for 5 cycles and stored for two months. Therefore, it is reasonable to believe that the ZnO@N-NpC core-shell heterostructures are new-type nanomaterials for photodegradation of the organic pollutants from wastewater.

  10. Coulomb Excitation of the 64Ni Nucleus and Application of Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Greaves, Beau; Muecher, Dennis; Ali, Fuad A.; Drake, Tom; Bildstein, Vinzenz; Berner, Christian; Gernhaeuser, Roman; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.

    2017-09-01

    In this contribution, we present new data on the semi-magic 64Ni nucleus, close to the N =40 harmonic oscillator shell gap. Recent studies suggest a complicated existence of shape coexistence in 68Ni, likely caused by type-II shell evolutions. The region studied here thus might define the ``shore'' of the region of more deformed nuclei in the Island of Inversion below 68Ni. At the Maier-Leibnitz-Laboratory (MLL) in Munich, a beam of 64Ni was excited using Coulomb excitation. The high-granularity MINIBALL HPGe array and a segmented silicon strip detector were used to identify gamma decays in 64Ni. Doppler-shifted attenuation method (DSAM) analysis was applied to the experimental data acquired to resolve the low-lying excited states and acquire a lifetime measurement based on Geant4 simulations of the first excited 2 + state, clarifying the previously conflicting results. Furthermore, we show DSAM data following transfer reactions in inverse kinematics. This new method has the potential to provide insight into tests of ab-initio shell model calculations in the sd-pf shell and for the study of nuclear reaction rates. Supported under NSERC SAPIN-2016-00030.

  11. Gram-Scale Synthesized Pd2Co-Supported PtMonolayers Electrocatalysts for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, W.P.; Sasaki, K.; Su, D.

    2010-04-21

    Gram-scale synthesis of Pt{sub ML} electrocatalysts with a well-defined core-shell structure has been carried out using method involving galvanic displacement of an underpotential deposition Cu layer. The Pt shell thickness can be controlled by stepwise deposition. The Pt{at}Pd{sub 2}Co/C nanoparticles were characterized by X-ray powder diffraction, aberration-corrected scanning transmission electron microscopy, high-resolution energy-loss spectrometry, and in situ X-ray absorption spectroscopy. A complete Pt shell of 0.6 nm on a Pd{sub 2}Co core has been confirmed. The Pt{at}Pd{sub 2}Co/C core-shell electrocatalysts showed a very high activity for the oxygen reduction reaction; the Pt mass and specific activity were 0.72 A mg{supmore » -1}{sub Pt} and 0.5 mA cm{sup -2}, respectively (3.5 and 2.5 times higher than the corresponding values for commercial Pt catalysts), at 0.9 V in 0.1 M HClO{sub 4} at room temperature. In an accelerated potential cycling test, a loss in active surface area and a decrease in catalytic activity for gram-scale-synthesized Pt{sub ML} catalysts were also determined.« less

  12. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, Brian M., E-mail: bmhaines@lanl.gov

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion duemore » to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.« less

  13. Burrowing behaviour of robotic bivalves with synthetic morphologies.

    PubMed

    Germann, D P; Carbajal, J P

    2013-12-01

    Several bivalve species burrow into sandy sediments to reach their living position. There are many hypotheses concerning the functional morphology of the bivalve shell for burrowing. Observational studies are limited and often qualitative and should be complemented by a synthetic approach mimicking the burrowing process using a robotic emulation. In this paper we present a simple mechatronic set-up to mimic the burrowing behaviour of bivalves. As environment we used water and quartz sand contained in a glass tank. Bivalve shells were mathematically modelled on the computer and then materialized using a 3D printer. The burrowing motion of the shells was induced by two external linear motors. Preliminary experiments did not expose any artefacts introduced to the burrowing process by the set-up. We tested effects of shell size, shape and surface sculpturing on the burrowing performance. Neither the typical bivalve shape nor surface sculpture did have a clear positive effect on burrowing depth in the performed experiments. We argue that the presented method is a valid and promising approach to investigate the functional morphology of bivalve shells and should be improved and extended in future studies. In contrast to the observation of living bivalves, our approach offers complete control over the parameters defining shell morphology and motion pattern. The technical set-up allows the systematic variation of all parameters to quantify their effects. The major drawback of the built set-up was that the reliability and significance of the results was limited by the lack of an optimal technique to standardize the sediment state before experiments.

  14. Site characteristics of red spruce witness tree locations in the uplands of West Virginia, USA

    Treesearch

    Melissa Thomas-Van Gundy; Michael Strager; James. Rentch

    2012-01-01

    Knowledge, both of the historical range of spruce-dominated forests and associated site conditions, is needed by land managers to help define restoration goals and potential sites for restoration. We used an existing digital database of witness trees listed in deeds from 1752 to 1899 to compare characteristics of red spruce (Picea rubens Sarg.) sites...

  15. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    NASA Astrophysics Data System (ADS)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material. Experiments further examined shell thickness and particle concentration (chapter 6) dependencies on ~530 nm CSnp dielectrophoretic and electrorotational responses with ~30nm and ~80 nm shell thicknesses and at particle concentration count rates of 5000 +/- 500, 10000 +/- 500, and 15000 +/- 500 counts per second. Using similar experimental conditions, both dielectrophoretic and electrorotational CSnp responses were compiled versus frequency, shell thickness, and particle concentration. Knowledge gained from this study includes a unique resonance-like dielectrophoretic and electrorotational spectrum, which is significantly distinct from other cells and particles. CSnp dielectric properties were then calculated by parametrically fitting parameters to an existing core-shell model. The optimum conductivity and relative permittivity for the core and the shell are 1E-15 S/m, 1, 0.6 S/m, and 90, respectively. These properties can be exploited to rapidly assemble these unique core-shell particles for future structural color production in fabrics, vehicle, and wall painting.

  16. Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks

    PubMed Central

    Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne

    2016-01-01

    One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089

  17. Mechanism and Safety at the Threshold of the Blood-Brain Barrier Opening In Vivo

    NASA Astrophysics Data System (ADS)

    Konofagou, Elisa E.; Choi, James; Baseri, Babak; Selert, Kirsten; Tung, Yao-Sheng

    2010-03-01

    Current treatments of neurological and neurodegenerative diseases are limited due to the blood-brain barrier (BBB). In this paper, the threshold of BBB opening and its dependence on the microbubble diameter as well as the associated mechanism and safety are identified in vivo. In vivo BBB opening in mice (n = 13) was achieved by systemically injecting microbubbles (Definity and 1-2 and 4-5-μm lipid-shelled, gas-filled) and applying pulsed FUS (frequency: 1.525 MHz, peak-rarefactional pressure: 150-600 kPa) to the left hippocampus through the intact skin and skull. Systemically administered, BBB-impermeable, fluorescent-tagged dextrans at 3 kDa were injected to confirm BBB opening. H&E histology was also performed to determine any associated vascular or neuronal damage. Detection of stable and inertial cavitation was performed using a passive cavitation device (PCD) in a blood vessel phantom at the same pressure amplitudes as those used in vivo. Larger microbubbles (4-5 μm) resulted in a lower threshold of BBB opening. Cavitation studies confirmed that stable cavitation occurs at the threshold of BBB opening. The mechanism of BBB opening at the threshold was identified to be mainly related to stable cavitation. Histological studies indicated that, at the BBB opening threshold, no red-blood cell extravasation or neuronal damage was noted.

  18. Nanocolloidal gold-based immuno-dip strip assay for rapid detection of Sudan red I in food samples.

    PubMed

    Wang, Jia; Wang, Zhanhui; Liu, Jing; Li, Hao; Li, Qing X; Li, Ji; Xu, Ting

    2013-02-15

    A semiquantitative dip strip assay was developed using nanocolloidal gold-labelled monoclonal antibody (Mab) 8A10 for the rapid detection of Sudan red I in food samples. A protein-Sudan red I conjugate was coated on a nitro cellulose membrane strip in a defined test line. In flow of the complex of nanocolloidal gold labelled-Mab and Sudan red I along the strip, intensive red colour that was formed in the test line reflected the Sudan red I concentration. The test required 10 min and had a visual limit of detection of 10 ng/g Sudan red I in tomato sauce and chilli powder samples. The results of the strip assay agreed well with those of a high performance liquid chromatography method for both spiked and real commercial samples. The strip was stable for at least 2 months at 4°C. The strip assay offers the potential as a useful rapid and simple method for screening of Sudan red I in food samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. [Comparative chromosome painting shows the red panda (Ailurus fulgens) has a highly conserved karyotype].

    PubMed

    Tian, Ying; Nie, Wen-Hui; Wang, Jin-Huan; Yang, Yun-Fei; Yang, Feng-Tang

    2002-02-01

    We have established a comparative chromosome map between red panda (Ailurus fulgens, 2n = 36) and dog by chromosome painting with biotin-labelled chromosome-specific probes of the dog. Dog probes specific for the 38 automates delineated 71 homologous segments in the metaphase chromosomes of red panda. Of the 38 autosomal paints, 18 probes each delineated one homologous segment in red panda genome, while the other 20 ones each detected two to five homologous segments. The dog X chromosome-specific paint delineated the whole X chromosome of the red panda. The results indicate that at least 28 fissions (breaks), 49 fusions and 4 inversions were needed to "convert" the dog karyotype to that of the red panda, suggesting that extensive chromosome rearrangements differentiate the karyotypes of red panda and dog. Based on the established comparative chromosome homologies of dog and domestic cat, we could infer that there were 26 segments of conserved synteny between red panda and domestic cat. Comparative analysis of the distribution patterns of conserved segments defined by dog paints in red panda and domestic cat genomes revealed at least 2 cryptic inversions in two large chromosomal regions of conserved synteny between red panda and domestic cat. The karyotype of red panda shows high degree of homology with that of domestic cat.

  20. Carbon Chemistry in the Envelope of VY Canis Majoris: Implications for Oxygen-Rich Evolved Stars

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Tenenbaum, E. D.; Pulliam, R. L.; Woolf, N. J.; Milam, S. N.

    2009-04-01

    Observations of the carbon-bearing molecules CO, HCN, CS, HNC, CN, and HCO+ have been conducted toward the circumstellar envelope of the oxygen-rich red supergiant star, VY Canis Majoris (VY CMa), using the Arizona Radio Observatory (ARO). CO and HCN were also observed toward the O-rich shells of NML Cyg, TX Cam, IK Tau, and W Hya. Rotational transitions of these species at 1 mm, 0.8 mm, and 0.4 mm were measured with the ARO Submillimeter Telescope, including the J = 6 → 5 line of CO at 691 GHz toward TX Cam and W Hya. The ARO 12 m was used for 2 mm and 3 mm observations. Four transitions were observed for HCO+ in VY CMa, the first definitive identification of this ion in a circumstellar envelope. Molecular line profiles from VY CMa are complex, indicating three separate outflows: a roughly spherical flow and separate red- and blueshifted winds, as suggested by earlier observations. Spectra from the other sources appear to trace a single outflow component. The line data were modeled with a radiative transfer code to establish molecular abundances relative to H2 and source distributions. Abundances for CO derived for these objects vary over an order of magnitude, f ~ 0.4-5 × 10-4, with the lower values corresponding to the supergiants. For HCN, a similar range in abundance is found (f ~ 0.9-9 × 10-6), with no obvious dependence on the mass-loss rate. In VY CMa, HCO+ is present in all three outflows with f ~ 0.4-1.6 × 10-8 and a spatial extent similar to that of CO. HNC is found only in the red- and blueshifted components with [HCN]/[HNC] ~ 150-190, while [CN]/[HCN] ~ 0.01 in the spherical flow. All three velocity components are traced in CS, which has a confined spatial distribution and f ~ 2-6 × 10-7. These observations suggest that carbon-bearing molecules in O-rich shells are produced by a combination of photospheric shocks and photochemistry. Shocks may play a more prominent role in the supergiants because of their macroturbulent velocities.

  1. Supernova 1987A - the evolution from blue to red

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuchman, Y.; Wheeler, J.C.

    1989-09-01

    The evolution of stars with mass comparable to that of the progenitor of SN 1987A from the main sequence to the Hayashi track is critically examined to determine why some models evolve to the red on nuclear time scales, some on thermal time scales, and some not at all. Thermal equilibrium solutions to a parametrized series of structural models with active hydrogen burning shells have two stable solutions with different T(eff) for the same helium core M(He) mass and a minimum M(He) below which no blue thermal equlibrium solution is possible. The dependence of the equilibrium solutions on stellar mass,more » envelope composition, and mass loss are investigated. The solutions quantitatively account for the 'gap' in the HR diagrams of massive stars in the Galaxy and LMC and suggest that the outer envelopes are not substantially enriched in helium during the first passage from the main sequence to the Hayashi track. 23 refs.« less

  2. Fano-like resonance in symmetry-broken gold nanotube dimer.

    PubMed

    Wu, DaJian; Jiang, ShuMin; Cheng, Ying; Liu, XiaoJun

    2012-11-19

    The influences of the symmetry-breaking on the plasmon resonance couplings in the isolated gold nanotube and the gold nanotube dimer have been investigated by means of the finite element method. It is found that the core offset of gold nanotubes leads to the red-shifts of the low energy modes and the enhanced near-field on the thin shell side of the symmetry-broken gold nanotube (SBGNT). In the weak coupling model of the SBGNT dimer, the interference of the bonding octupole mode of the dimer with the dipole modes causes a strong Fano-like resonance in scattering spectrum. The Fano dip shows a red-shift and becomes deep with the increase of the offset-value. In the strong coupling model of the SBGNT dimer, the coupling between two SBGNTs induces giant electric field enhancement at the gap of the dimer, which is much larger than that in the symmetry gold nanotube dimer. The SBGNT with larger offset-value exhibits stronger near-field at the "hot spot".

  3. Optical, colloidal and biological properties of up-converting nanoparticles embedded in polyester nanocarriers

    NASA Astrophysics Data System (ADS)

    Wawrzyńczyk, Dominika; Kulbacka, Julita; Bazylińska, Urszula

    2017-08-01

    We have investigated the change in optical properties and biocompatibility of up-converting NaYF4 nanoparticles (NPs) upon encapsulation inside the polyester nanocarriers (NCs) stabilized by Crempophor RH40 (CRH40), poly(D,L-lactide) (PLA), Pluronic P123 (P123). NaYF4:Er3+,Yb3+ NPs showed intense green and red emission, and upon encapsulation the increase of red band in respect to green one was observed, with no luminescence lifetime shortening. Obtained NCs showed prolonged colloidal stability and protective effect of the polymer shell simultaneously preserving the high emission efficiency of nanoparticles embedded within the silicon oil (SO) core. Based on emission spectra, kinetic measurements and cytotoxicity studies upon human malignant melanoma Me45 cell line we have shown the advantages of using polyester NCs as containers for the up-converting NPs. Due to the possibility of co-encapsulation of photosensitizers the obtained nanocarriers showed potential for application in theranostics.

  4. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    PubMed

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  5. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., the cardinal signs and symptoms of muscle disability are loss of power, weakness, lowered threshold of... signs or symptoms of muscle disability as defined in paragraph (c) of this section. (iii) Objective... injury. Through and through or deep penetrating wound of short track from a single bullet, small shell or...

  6. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., the cardinal signs and symptoms of muscle disability are loss of power, weakness, lowered threshold of... signs or symptoms of muscle disability as defined in paragraph (c) of this section. (iii) Objective... injury. Through and through or deep penetrating wound of short track from a single bullet, small shell or...

  7. 7 CFR 56.1 - Meaning of words and terms defined.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... product. National supervisor means (a) the officer in charge of the shell egg grading service of the AMS, and (b) other employees of the Department designated by the national supervisor. Nest run eggs means... of excellence. Quality assurance inspector means any designated company employee other than the plant...

  8. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  9. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  10. Advances in Fluorescence Sensing Systems for the Remote Assessment of Nitrogen Supply in Field Corn

    NASA Technical Reports Server (NTRS)

    Corp, L. A.; Chappelle, E. W.; McMurtrey, J. E.; Daughtry, C. S. T.; Kim, M. S.

    2000-01-01

    The studies described herein were conducted to better define changes in fluorescence properties of leaves from field grown corn (Zea mays L.) as they relate to varying levels of nitrogen (N) fertilization. This research was directed toward: 1) providing a remote non-destructive sensing technique to aid in the determination of optimal rates of N fertilization in corn crops and, 2) defining parameters for further development of fluorescence instrumentation to be operated remotely at field canopy levels. Fluorescence imaging bands centered in the blue (450 nm), green (525 nm), red (680 nm), and far-red (740 nm) and ratios of these bands were compared with the following plant parameters: rates of photosynthesis, N:C ratio, pigment concentrations, and grain yields. Both the fluorescence and physiological measures exhibited similar curvilinear responses to N fertilization level while significant linear correlations were obtained among fluorescence bands and band ratios to certain physiological measures of plant productivity. The red / blue, red / green, far-red / blue, far-red /green fluorescence ratios are well suited for remote observation and provided high correlations to grain yield, LAI, N:C, and chlorophyll contents. The results from this investigation indicate that fluorescence technology could aid in the determination of N fertilization requirements for corn. This discussion will also address design concepts and preliminary field trials of a mobile field-based Laser Induced Fluorescence Imaging System (LIFIS) capable of simultaneously acquiring images of four fluorescence emission bands from areas of plant canopies equaling 1 sq m and greater without interference of ambient solar radiation.

  11. STRUCTURAL GLITCHES NEAR THE CORES OF RED GIANTS REVEALED BY OSCILLATIONS IN G-MODE PERIOD SPACINGS FROM STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunha, M. S.; Avelino, P. P.; Stello, D.

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacingmore » and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.« less

  12. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 1. Depth to Bedrock Determinations Using Shallow Seismic Data Acquired in the Straight Creek Drainage Near Red River, New Mexico

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2004-01-01

    In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.

  13. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE PAGES

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.; ...

    2017-03-06

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  14. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  15. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    NASA Astrophysics Data System (ADS)

    Cirilo António, N.; Manojlović, N.; Salom, I.

    2014-12-01

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  16. Synthesis and Visible-Light Photocatalytic Activity of CeO₂ Nanoboxes Based on Pearson’s Principle.

    PubMed

    Ge, Shengsong; Bao, Liwei; Shao, Qian; Zhang, Qiaoxia; Liu, Zingyun

    2017-01-01

    The CeO₂ nanoboxes with well-defined hollow structure were fabricated by template-engaged coordinating etching of Cu₂O cubes based on Pearson’s hard and soft acid-base principle. The morphologically uniform CeO₂ nanoboxes have an average edge length of 400 nm and shell thickness of around 60 nm. The strong chemical affinity between Cu+ and S₂O(2− 3) was the driving force for the etching of Cu₂O templates and the formation of shells. A possible formation mechanism of CeO₂ nanoboxes was proposed. The synthesized CeO₂ nanoboxes exhibit good photocatalytic activity for photodegradation of acid orange 7 (AO 7) under visible light irradiation.

  17. Multiple piece turbine blade

    DOEpatents

    Kimmel, Keith D [Jupiter, FL

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  18. Black Ink and Red Ink (BIRI) Testing: A Testing Method to Evaluate Both Recall and Recognition Learning in Accelerated Adult-Learning Courses

    ERIC Educational Resources Information Center

    Rodgers, Joseph Lee; Rodgers, Jacci L.

    2011-01-01

    We propose, develop, and evaluate the black ink-red ink (BIRI) method of testing. This approach uses two different methods within the same test administration setting, one that matches recognition learning and the other that matches recall learning. Students purposively define their own tradeoff between the two approaches. Evaluation of the method…

  19. Modeling and Performance Estimation for Airborne Minefield Detection System

    DTIC Science & Technology

    2008-05-01

    Difference Vegetation Index ( NDVI ) NDVI is defined as: NDVI = (NIR – RED)/ (NIR + RED...to minimize the effect of variable irradiance levels. NDVI is always bounded between -1 and 1. A higher positive value of NDVI indicates the...lakes, and rivers) which has low reflectance in both NIR as well as visible bands, results in very low positive or slightly negative NDVI values

  20. Polyelectrolyte multilayer capsules as vehicles with tunable permeability.

    PubMed

    Antipov, Alexei A; Sukhorukov, Gleb B

    2004-11-29

    This review is devoted to a novel type of polymer micro- and nanocapsules. The shell of the capsule is fabricated by alternate adsorption of oppositely charged polyelectrolytes (PEs) onto the surface of colloidal particles. Cores of different nature (organic or inorganic) with size varied from 0.1 to 10 mum can be used for templating such PE capsules. The shell thickness can be tuned in nanometer range by assembling of defined number of PE layers. The permeability of capsules depends on the pH, ionic strength, solvent, polymer composition, and shell thickness; it can be controlled and varied over wide range of substances regarding their molecular weight and charge. Including functional polymers into capsule wall, such as weak PEs or thermosensitive polymers, makes the capsule permeability sensitive to correspondent external stimuli. Permeability of the capsules is of essential interest in diverse areas related to exploitation of systems with controlled and sustained release properties. The envisaged applications of such capsules/vesicles cover biotechnology, medicine, catalysis, food industry, etc.

  1. Core–shell PdPb@Pd aerogels with multiply-twinned intermetallic nanostructures: facile synthesis with accelerated gelation kinetics and their enhanced electrocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang

    Delicately engineering the well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported one-pot and facile method for synthesizing core-shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 hrs, far faster than the previous reports. Owe to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performancemore » towards ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.Core–shell PdPb@Pd aerogels with multiply-twinned grains and an ordered intermetallic phase was synthesized, which exhibited good electrocatalytic activity towards ethanol oxidation.« less

  2. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  3. Route towards cylindrical cloaking at visible frequencies using an optimization algorithm

    NASA Astrophysics Data System (ADS)

    Rottler, Andreas; Krüger, Benjamin; Heitmann, Detlef; Pfannkuche, Daniela; Mendach, Stefan

    2012-12-01

    We derive a model based on the Maxwell-Garnett effective-medium theory that describes a cylindrical cloaking shell composed of metal rods which are radially aligned in a dielectric host medium. We propose and demonstrate a minimization algorithm that calculates for given material parameters the optimal geometrical parameters of the cloaking shell such that its effective optical parameters fit the best to the required permittivity distribution for cylindrical cloaking. By means of sophisticated full-wave simulations we find that a cylindrical cloak with good performance using silver as the metal can be designed with our algorithm for wavelengths in the red part of the visible spectrum (623nm <λ<773nm). We also present a full-wave simulation of such a cloak at an exemplary wavelength of λ=729nm (ℏω=1.7eV) which indicates that our model is useful to find design rules of cloaks with good cloaking performance. Our calculations investigate a structure that is easy to fabricate using standard preparation techniques and therefore pave the way to a realization of guiding light around an object at visible frequencies, thus rendering it invisible.

  4. Novel synthesis and characterization of Ag@TiO2 core shell nanostructure for non-enzymatic glucose sensor

    NASA Astrophysics Data System (ADS)

    T, Dayakar; Venkateswara Rao, K.; Vinodkumar, M.; Bikshalu, K.; Chakradhar, B.; Ramachandra Rao, K.

    2018-03-01

    Ag@TiO2 core-shell nano composite (ATCSNC) were synthesized by using Ocimum tenuiflorum leaves extract through a simple one-step hydrothermal route for Non-enzymatic glucose sensing material. The prepared NCs were characterized and found high crystallinity, red shift absorbance, interface-bonding parameters, rough surface and network like microstructure through XRD, Uv-vis, FTIR, SEM, and TEM. The prepared ATCSNC have been used for fabrication of glassy carbon electrode (GCE) and the same was applied to test its electro catalytic activity of glucose in 0.1 M NaOH. The promising results were recorded for ATCSNC/GCE with a high sensitivity (1968.72 μAm M-1cm-2), wide linear range (1 μM-8.1 mM), good response time (3 s), and excellent low detection limit (0.19 μM, S/N = 3). Furthermore, the designed sensor exhibits admirable stability and reproducibility, as well as attractive achievability for real sample analysis. As such, the proposed ATCSNC could be highly beneficial in the development of sustainable and eco-friendly glucose sensing devices.

  5. Design of a low cost spinneret assembly for coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Raheja, Anant; Chandra, T. S.; Natarajan, T. S.

    2015-06-01

    Coaxial electrospinning makes use of a concentric arrangement of spinneret orifices for synthesis of core-shell polymer nanofibers. Most laboratories purchase the spinneret from commercial manufacturers at a significant expense, or design it indigenously to save costs but compromise on manufacturing precision. Therefore, the present work suggests the use of a relatively lower priced McIntyre cannula needle, conventionally used for ophthalmic surgeries, as a coaxial spinneret for electrospinning. The McIntyre cannula needle was modified to synthesize hollow fibers of nylon 6, which acted as sheath with hydrogen peroxide as core during electrospinning. In addition, encapsulation of bioactives, viz., red blood cells, bacterial cells, and lysozyme (enzyme protein) was attempted, using their aqueous suspensions as core, with polycaprolactone solution as sheath. Resulting fibers had an integral core-shell structure with the bioactives encapsulated in the core. This indicated that the modified McIntyre cannula functions suitably as a spinneret for coaxial electrospinning. Thus, apart from being a clinical device, the modified McIntyre cannula needle provides an economic alternative to conventional coaxial spinneret assemblies.

  6. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    NASA Astrophysics Data System (ADS)

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  7. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleton, P P; Dearborn, D P; Lattanzio, J

    2006-07-26

    Low-mass stars, {approx} 1-2 solar masses, near the Main Sequence are efficient at producing {sup 3}He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of {sup 3}He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between themore » hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that {sup 3}He production in low-mass stars poses to the Big Bang nucleosynthesis of {sup 3}He.« less

  8. Removal of Congo Red by magnetic mesoporous titanium dioxide-graphene oxide core-shell microspheres for water purification.

    PubMed

    Li, Leilei; Li, Xiangjun; Duan, Huimin; Wang, Xiaojiao; Luo, Chuannan

    2014-06-14

    Magnetic mesoporous titanium dioxide-graphene oxide (Fe3O4@mTiO2@GO) with a large surface area and a good magnetic responsiveness was synthesized by immobilizing a mesoporous titanium dioxide (mTiO2) shell on the surface of magnetic Fe3O4 nanoparticles prior to binding with graphene oxide (GO). It showed a tunable pore structure and surface properties, and was mechanically strong. The characteristic results of a Fourier transform infrared spectrometer (FTIR), a scanning electron microscope (SEM), a vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) indicated that Fe3O4@mTiO2@GO has been prepared. Fe3O4@mTiO2@GO was used as an adsorbent for the removal of Congo Red (CR) from simulated wastewater with a fast solid-liquid separation in the presence of an external magnetic field. Batch adsorption experiments were performed to evaluate the adsorption conditions and reusability. The results showed that the maximum adsorption capacity was 89.95 mg g(-1), which is much higher than the previously reported values of other absorbent materials. Moreover, the Fe3O4@mTiO2@GO could be repeatedly used via simple treatment without any obvious structure and performance degradation. The adsorption kinetic data were best described by a pseudo-second-order model and the equilibrium adsorptions were well-described by the Freundlich isotherm model. The Fe3O4@mTiO2@GO may be suitable materials for use in CR pollution cleanup if synthesized on a large scale and at a low price in the near future.

  9. Middle Pleistocene volcanic activity dated by red thermoluminescence (RTL) - a case study from Lanzarote (Canary Islands)

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, H.; Blanchard, H.; Rittner, S.; Radtke, U.; Fuchs, M.; Dietze, M.; Zöller, L.

    2009-04-01

    On Lanzarote (Canary Islands) soils were baked by Quaternary lava flows. This offers the possibility to date phases of eruptive activity by red thermoluminescence (RTL). We dated soil material baked by two different lava flows originating from the "Las Calderetas de Guatiza" volcanic chain in the northeast of the island by RTL. Furthermore, three samples of Helicidae-mollusk shells overlying one of the lava flows (site Mála) were dated using electron spin resonance (ESR). RTL datings were carried out using quartz grains 63-200 µm from baked material that were originally brought by eolian transport from the nearby Saharan desert. It appears that in spite of a baking temperature < 550°C the RTL-signal was sufficiently annealed and thus dating by RTL was possible. RTL ages of ca. 170 ka show good agreement with each other, however, ESR ages are up to 40 % higher than the corresponding RTL age of the lava flow in Mála. Despite this disagreement these results demonstrate that eruptive activity of the volcanic chain occurred during the Middle Pleistocene rather than during the Early Holocene/Late Pleistocene as supposed based on geomorphologic features. Furthermore, they show that 14C-ages of mollusk shells originating from Mála are underestimating volcanic activity up to a factor of 10, a problem often recorded in arid areas. These results demonstrate the value of luminescence and ESR datings on the semi arid Eastern Canary Islands. The successful dating of lava-baked soils on Lanzarote by RTL thus offers the possibility to further investigate the yet fragmentary Middle and Late Quaternary eruptive history of these islands.

  10. The chromosphere of VV cephei and the distribution of circumstellar dust around red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Bauer, Wendy Hagen

    1992-01-01

    The work on this project has followed two separate paths of inquiry. The first project was entitled 'the Chromosphere of VV Cephei.' The examination of the archival spectra revealed significant changes in the spectra. Therefore, we obtained additional observing time with IUE to monitor the system during the summer of 1991. Short-term changes continue to be seen in both the overall spectrum and individual line profiles. Work continues on this object. The second project was entitled 'the Distribution of Circumstellar Dust around Red Giants and Supergiants.' A number of cool evolved stars are surrounded by dust shells of sufficient angular size as to appear extended in the IRAS survey data. The aim of this project has been to convolve the predictions of the flux distribution from model dust shells with the IRAS beam profiles in order to reproduce the observed IRAS scans. At the time of the last status report, the cross-scan profiles of the IRAS detectors had just been added to the modeling procedure. For scans in which the star passed near the detector center, there was no significant variation in predicted scan profile for different detectors. Scans in which the detector did not pass over the bright central star had been anticipated to be particularly useful in determining the dust distribution; however, significant differences in the predicted scan profiles were seen for different detector profiles. For this reason, and due to the cross-talk effects discussed in the previous status report, further work on the scans not including a central star has been postponed in favor of further analysis of scans passing over the central star.

  11. Local conditions separating expansion from collapse in spherically symmetric models with anisotropic pressures

    NASA Astrophysics Data System (ADS)

    Mimoso, José P.; Le Delliou, Morgan; Mena, Filipe C.

    2013-08-01

    We investigate spherically symmetric spacetimes with an anisotropic fluid and discuss the existence and stability of a separating shell dividing expanding and collapsing regions. We resort to a 3+1 splitting and obtain gauge invariant conditions relating intrinsic spacetime quantities to properties of the matter source. We find that the separating shell is defined by a generalization of the Tolman-Oppenheimer-Volkoff equilibrium condition. The latter establishes a balance between the pressure gradients, both isotropic and anisotropic, and the strength of the fields induced by the Misner-Sharp mass inside the separating shell and by the pressure fluxes. This defines a local equilibrium condition, but conveys also a nonlocal character given the definition of the Misner-Sharp mass. By the same token, it is also a generalized thermodynamical equation of state as usually interpreted for the perfect fluid case, which now has the novel feature of involving both the isotropic and the anisotropic stresses. We have cast the governing equations in terms of local, gauge invariant quantities that are revealing of the role played by the anisotropic pressures and inhomogeneous electric part of the Weyl tensor. We analyze a particular solution with dust and radiation that provides an illustration of our conditions. In addition, our gauge invariant formalism not only encompasses the cracking process from Herrera and co-workers but also reveals transparently the interplay and importance of the shear and of the anisotropic stresses.

  12. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Ruan, Qifeng

    Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized Au nanospheres with molecular linkers. The plasmon resonances of the core/satellite nanostructures undergo red shifts in comparison to those of the sole Au cores, which is consistent with Mie theory analysis. As predicted by finite-difference time-domain simulations, the assembled core/satellite nanostructures exhibit large enhancements for Raman scattering. The facile growth of Au nanospheres and assembly of core/satellite nanostructures blaze a new way to the design of nanoarchitectures with desired plasmonic properties and functions. Coating semiconductors onto Au nanocrystals to form core shell configurations can increase the interactions between the two materials, benefiting from their large active interfacial area. The shell can also protect the Au nanocrystal core from aggregation, reshaping, and chemical corrosion. In this thesis, (Au nanocrystal core) (titania shell) nanostructures with tunable shell thicknesses were prepared by a facile wetchemistry method. Au nanocrystals with strong and tunable plasmon resonances in the visible and near-infrared regions can enhance and broaden the light utilization of TiO2 through the scattering/absorption enhancement, sensitization, and hot-electron injection. The integration of Au nanocrystals therefore hold the prospect of breaking the light-harvesting limit of TiO2 arising from its wide band gap. The resultant (Au core) (TiO2 shell) nanostructures were examined to be capable of efficiently generating reactive oxygen species under near-infrared resonant excitation. On the other hand, the transverse plasmon modes of Au nanorods, which are often too weak to be observed on scattering spectra, are enhanced by the TiO2 shell through energy transfer. With the increment of the shell thickness, the intensity of the transverse plasmon mode increases significantly and even becomes comparable with the longitudinal plasmon mode. Interestingly, both the transverse and longitudinal modes of the (Au core) (TiO2 shell) nanostructures exhibit asymmetric Fano line shapes. The Fano resonances result from the coupling between the core and shell, as understood by the mechanical oscillator model. Besides varying the shell thickness, the plasmonic bands of the core shell nanostructures can also be tailored by employing Au nanorods with different aspect ratios. The synthetically tunable plasmonic properties and synergistic interactions between the gold core and the titania shell make the hybrid nanostructure a multifunctional nanomaterial and ideal system for studying the plasmonic hybrid nanostructures.

  13. Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals

    NASA Astrophysics Data System (ADS)

    Hansen, Andreas; Liakos, Dimitrios G.; Neese, Frank

    2011-12-01

    A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009), 10.1063/1.3086717; F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA/1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties.

  14. Strategies Toward Well-Defined Polymer Nanoparticles Inspired by Nature: Chemistry versus Versatility

    PubMed Central

    Elsabahy, Mahmoud; Wooley, Karen L.

    2014-01-01

    Polymeric nanoparticles are promising delivery platforms for various biomedical applications. One of the main challenges toward the development of therapeutic nanoparticles is the premature disassembly and release of the encapsulated drug. Among the different strategies to enhance the kinetic stability of polymeric nanoparticles, shell- and core-crosslinking have been shown to provide robust character, while creating a suitable environment for encapsulation of a wide range of therapeutics, including hydrophilic, hydrophobic, metallic, and small and large biomolecules, with gating of their release as well. The versatility of shell- and core-crosslinked nanoparticles is driven from the ease by which the structures of the shell- and core-forming polymers and crosslinkers can be modified. In addition, postmodification with cell-recognition moieties, grafting of antibiofouling polymers, or chemical degradation of the core to yield nanocages allow the use of these robust nanostructures as “smart” nanocarriers. The building principles of these multifunctional nanoparticles borrow analogy from the synthesis, supramolecular assembly, stabilization, and dynamic activity of the naturally driven biological nanoparticles such as proteins, lipoproteins, and viruses. In this review, the chemistry involved during the buildup from small molecules to polymers to covalently stabilized nanoscopic objects is detailed, with contrast of the strategies of the supramolecular assembly of polymer building blocks followed by intramicellar stabilization into shell-, core-, or core–shell-crosslinked knedel-like nanoparticles versus polymerization of polymers into nanoscopic molecular brushes followed by further intramolecular covalent stabilization events. The rational design of shell-crosslinked knedel-like nanoparticles is then elaborated for therapeutic packaging and delivery, with emphasis on the polymer chemistry aspects to accomplish the synthesis of such nanoparticulate systems. PMID:25574072

  15. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.

    PubMed

    Chen, Meng; Zhang, Ling; Yang, Bo; Gao, Mingxia; Zhang, Xiangmin

    2018-03-01

    Alkyne is unique, specific and biocompatible in the Raman-silent region of the cell, but there still remains a challenge to achieve ultrasensitive detection in living systems due to its weak Raman scattering. Herein, a terminal alkyne ((E)-2-[4-(ethynylbenzylidene)amino]ethane-1-thiol (EBAE)) with surface-enhanced Raman scattering is synthesized. The EBAE molecule possesses S- and C-termini, which can be directly bonded to gold nanoparticles and dopamine/silver by forming the Au-S chemical bond and the carbon-metal bond, respectively. The distance between Raman reporter and AuNPs/AgNPs can be reduced, contributing to forming hot-spot-based SERS substrate. The alkyne functionalized nanoparticles are based on Au core and encapsulating polydopamine shell, defined as Au-core and dopamine/Ag-shell (ACDS). The bimetallic ACDS induce strong SERS signals for molecular imaging that arise from the strong electromagnetic field. Furthermore, the EBAE provides a distinct peak in the cellular Raman-silent region with nearly zero background interference. The EBAE Raman signals could be tremendously enhanced when the Raman reporter is located at the middle of the Au-core and dopamine/Ag-shell. Therefore, this work could have huge potential benefits for the highly sensitive detection of intercellular information delivery by connecting the recognition molecules in biomedical diagnostics. Graphical abstract Terminal-alkyne-functionalized Au-core and silver/dopamine-shell nanotags for live-cell surface-enhanced Raman scattering imaging.

  16. Application of core-shell-structured CdTe@SiO2 quantum dots synthesized via a facile solution method for improving latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Han, Jiaxing; Lv, Caifeng; Wang, Qin; Zhang, Jun; Li, Qun; Bao, Liru; Li, Xin

    2012-10-01

    Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe@SiO2 quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe@SiO2 QDs are prepared via a simple solution-based approach using NH2NH2·H2O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe@SiO2 QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe@SiO2 QDs is largely enhanced by surface modification of the SiO2 shell. The CdTe@SiO2 QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe@SiO2 QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe@SiO2 QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.

  17. A rule-based shell to hierarchically organize HST observations

    NASA Technical Reports Server (NTRS)

    Bose, Ashim; Gerb, Andrew

    1995-01-01

    An observing program on the Hubble Space Telescope (HST) is described in terms of exposures that are obtained by one or more of the instruments onboard the HST. These exposures are organized into a hierarchy of structures for purposes of efficient scheduling of observations. The process by which exposures get organized into the higher-level structures is called merging. This process relies on rules to determine which observations can be 'merged' into the same higher level structure, and which cannot. The TRANSformation expert system converts proposals for astronomical observations with HST into detailed observing plans. The conversion process includes the task of merging. Within TRANS, we have implemented a declarative shell to facilitate merging. This shell offers the following features: (1) an easy way of specifying rules on when to merge and when not to merge, (2) a straightforward priority mechanism for resolving conflicts among rules, (3) an explanation facility for recording the merging history, (4) a report generating mechanism to help users understand the reasons for merging, and (5) a self-documenting mechanism that documents all the merging rules that have been defined in the shell, ordered by priority. The merging shell is implemented using an object-oriented paradigm in CLOS. It has been a part of operational TRANS (after extensive testing) since July 1993. It has fulfilled all performance expectations, and has considerably simplified the process of implementing new or changed requirements for merging. The users are pleased with its report-generating and self-documenting features.

  18. An explicitly spin-free compact open-shell coupled cluster theory using a multireference combinatoric exponential ansatz: formal development and pilot applications.

    PubMed

    Datta, Dipayan; Mukherjee, Debashis

    2009-07-28

    In this paper, we present a comprehensive account of an explicitly spin-free compact state-universal multireference coupled cluster (CC) formalism for computing the state energies of simple open-shell systems, e.g., doublets and biradicals, where the target open-shell states can be described by a few configuration state functions spanning a model space. The cluster operators in this formalism are defined in terms of the spin-free unitary generators with respect to the common closed-shell component of all model functions (core) as vacuum. The spin-free cluster operators are either closed-shell-like n hole-n particle excitations (denoted by T(mu)) or involve excitations from the doubly occupied (nonvalence) orbitals to the singly occupied (valence) orbitals (denoted by S(e)(mu)). In addition, there are cluster operators with exchange spectator scatterings involving the valence orbitals (denoted by S(re)(mu)). We propose a new multireference cluster expansion ansatz for the wave operator with the above generally noncommuting cluster operators which essentially has the same physical content as the Jeziorski-Monkhorst ansatz with the commuting cluster operators defined in the spin-orbital basis. The T(mu) operators in our ansatz are taken to commute with all other operators, while the S(e)(mu) and S(re)(mu) operators are allowed to contract among themselves through the spectator valence orbitals. An important innovation of this ansatz is the choice of an appropriate automorphic factor accompanying each contracted composite of cluster operators in order to ensure that each distinct excitation generated by this composite appears only once in the wave operator. The resulting CC equations consist of two types of terms: a "direct" term and a "normalization" term containing the effective Hamiltonian operator. It is emphasized that the direct term is almost quartic in the cluster amplitudes, barring only a handful of terms and termination of the normalization term depends on the valence rank of the effective Hamiltonian operator and the excitation rank of the cluster operators at which the theory is truncated. Illustrative applications are presented by computing the state energies of neutral doublet radicals and doublet molecular cations and ionization energies of neutral molecules and comparing our results with the other open-shell CC theories, benchmark full CI results (when available) in the same basis, and the experimental results. Highly encouraging results show the efficacy of the method.

  19. First Encounters of the Close Kind: The Formation Process of Airline Flight Crews

    DTIC Science & Technology

    1987-01-01

    process and aircrew performance, Foushee notes an interesting etymological parallel: "Webster’s New Collegiate Dictionary (1961) defines cockpit as ’a...here combines applications from the physical science of chemistry and the modern science of computers. In chemistry , a shell is a space occupied by

  20. What Is An Expert System? ERIC Digest.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    This digest describes and defines the various components of an expert system, e.g., a computerized tool designed to enhance the quality and availability of knowledge required by decision makers. It is noted that expert systems differ from conventional applications software in the following areas: (1) the existence of the expert systems shell, or…

Top