Sample records for redox sensitive trace

  1. Trace elements at the intersection of marine biological and geochemical evolution

    USGS Publications Warehouse

    Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.

    2016-01-01

    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.

  2. A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments

    NASA Astrophysics Data System (ADS)

    Cole, Devon B.; Zhang, Shuang; Planavsky, Noah J.

    2017-10-01

    The enrichment and depletion of redox sensitive trace metals in marine sediments have been used extensively as paleoredox proxies. The trace metals in shale are comprised of both detrital (transported or particulate) and authigenic (precipitated, redox-driven) constituents, potentially complicating the use of this suite of proxies. Untangling the influence of these components is vital for the interpretation of enrichments, depletions, and isotopic signals of iron (Fe), chromium (Cr), uranium (U), and vanadium (V) observed in the rock record. Traditionally, a single crustal average is used as a cutoff for detrital input, and concentrations above or below this value are interpreted as redox derived authigenic enrichment or depletion, while authigenic isotopic signals are frequently corrected for an assumed detrital contribution. Building from an extensive study of soils across the continental United States - which upon transport will become marine sediments - and their elemental concentrations, we find large deviations from accepted crustal averages in redox-sensitive metals (Fe, Cr, U, V) compared to typical detrital tracers (Al, Ti, Sc, Th) and provide new estimates for detrital contributions to the ocean. The variability in these elemental ratios is present over large areas, comparable to the catchment-size of major rivers around the globe. This heterogeneity in detrital flux highlights the need for a reevaluation of how the detrital contribution is assessed in trace metal studies, and the use of confidence intervals rather than single average values, especially in local studies or in the case of small authigenic enrichments.

  3. Fish scales in sediments from off Callao, central Peru

    NASA Astrophysics Data System (ADS)

    Díaz-Ochoa, J. A.; Lange, C. B.; Pantoja, S.; De Lange, G. J.; Gutiérrez, D.; Muñoz, P.; Salamanca, M.

    2009-07-01

    We study fish scales as a proxy of fish abundance and preservation biases together with phosphorus from fish remains (P fish) in a sediment core retrieved off Callao, Peru (12°1'S, 77°42'W; water depth=179 m; core length=52 cm). We interpret our results as a function of changing redox conditions based on ratios of redox-sensitive trace elements (Cu/Al, Mo/Al, Ni/Al, Zn/Al, V/Al), terrigenous indicators (Fe in clays, Ti, Al), and biogenic proxies (CaCO 3, biogenic opal, total nitrogen, organic carbon, barite Ba). The core covers roughly 700 years of deposition, based on 210Pb activities extrapolated downcore and 14C dating at selected intervals. Our fish-scale record is dominated by anchovy ( Engraulis ringens) scales followed by hake ( Merluccius gayii) scales. The core presented an abrupt lithological change at 17 cm (corresponding to the early 19th century). Above that depth, it was laminated and was more organic-rich (10-15% organic carbon) than below, where the core was partly laminated and less organic-rich (<10%). The lithological shift coincides with abrupt changes in dry bulk density and in the contents of terrigenous and redox-sensitive trace elements, biogenic proxies, and fish scales. The remarkable increase in redox-sensitive trace elements in the upper 17 cm of the core suggests more reducing conditions when compared with deeper and older horizons, and is interpreted as an intensification of the oxygen minimum zone off Peru beginning in the early 19th century. Higher fish-scale contents and higher P fish/P total ratios were also observed within the upper 17 cm of the core. The behavior of biogenic proxies and redox-sensitive trace elements was similar; more reduced conditions corresponded to higher contents of CaCO 3, C org, total nitrogen and fish scales, suggesting that these proxies might convey an important preservation signal.

  4. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Quan, Tracy M.; van de Schootbrugge, Bas; Field, M. Paul; Rosenthal, Yair; Falkowski, Paul G.

    2008-06-01

    The Triassic-Jurassic (T-J) boundary was one of the largest but least understood mass extinction events in the Phanerozoic. We measured bulk organic nitrogen and carbon isotopes and trace metal concentrations from a core near Mingolsheim (Germany) to infer paleoenvironmental conditions associated with this event. Poorly fossiliferous claystones across the boundary have relatively low δ15N values and low concentrations of redox-sensitive elements, characteristic of an oxic environment with significant terrestrial input. The Early Jurassic features enrichment in δ15N coincident with high redox-sensitive element concentrations, indicating an increase in water column denitrification and decreased oxygen concentrations. These redox state variations are concordant with shifts in abundance and species composition in terrestrial and marine microflora. We propose that the mass extinction at the T-J boundary was caused by a series of events resulting in a long period of stratification, deep-water hypoxia, and denitrification in this region of the Tethys Ocean basin.

  5. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  6. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE PAGES

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  7. Diffusion of Redox-Sensitive Elements in Basalt at Different Oxygen Fugacities

    NASA Technical Reports Server (NTRS)

    Szumila, I.; Trail, D.; Danielson, L. R.

    2017-01-01

    The terrestrial planets and moons of our solar system have differentiated over a range of oxygen fugacity conditions. Basalts formed from magmas on the Earth cover a range of more oxidized states (from approximately IW (iron wustite) plus 2 to approximately FMQ (fayalite-magnetite-quartz) plus 3) than crustal rocks from Mars (IW to approximately IW plus 3), and basalts from the Moon are more reduced than both, ranging from IW to IW minus 2. The small body Vesta differentiated around IW minus 4. Characterization of redox sensitive elements' diffusivities will offer insight into behavior of these elements as a function of f (fugacity of) O2 for these planetary bodies. Here, we report a systematic study of the diffusion of redox-sensitive elements in basaltic melts with varying oxygen fugacities (fO2) for trace elements, V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Since fO2 is an intensive variable that is different for the reservoirs of various planets and moons in our solar system, it is important to characterize how changes in redox states will affect diffusion. We conducted experiments in a piston cylinder device at 1300 degrees Centigrade and 1 gigapascal, at the University of Rochester and NASA Johnson Space Center. We buffered some experiments at Ru-RuO2 (FMQ plus 6.00), and conducted other experiments within either a graphite or Mo capsule, which corresponds to fO2s of either FMQ minus1.2, or FMQ minus 3.00, respectively. Characterizing the diffusivities of redox sensitive elements at different fO2s is important because some elements, like Eu, have varying valence states, such as Eu (sup 2 plus) and Eu (sup 3 plus). Differences in charge and ion radii may lead to differences in diffusivities within silicate melts. This could, lead to formation of a Eu anomaly by diffusion, the magnitude of which may be controlled by the fO2. Characterization of trace element diffusion is also important in understanding trace element fractionation. We found, during the course of our investigation, that not only did the diffusivities of the redox sensitive elements change with fO2, but that the diffusivities of all other analyzed elements also changed. This indicates that not only do changes in valence influence trace elements diffusivities but that the structure of melt may have changed with varying oxygen fugacity, probably due to changes in the speciation of the major element Fe.

  8. Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Goldberg, Tatiana; Poulton, Simon W.; Wagner, Thomas; Kolonic, Sadat F.; Rehkämper, Mark

    2016-04-01

    During the Cretaceous greenhouse, episodes of widespread ocean deoxygenation were associated with globally occurring events of black shale deposition. Possibly the most pronounced of these oceanic anoxic events (OAE's) was the Cenomanian-Turonian OAE2 (∼94 Ma). However, although certain redox sensitive trace metals tend to be preferentially sequestered in sediments deposited under anoxic conditions, with Mo drawdown being specifically prone to euxinic settings, these elements are generally somewhat depleted in sediments deposited during OAE2. To understand the driving factors responsible for this depleted trace metal drawdown, we have studied a low latitude section from the proto-North Atlantic Ocean (Tarfaya S57), where existing biomarker and iron-sulphur data point to a dominantly euxinic water column, with periodic transitions to ferruginous (Fe-rich) water column conditions. We utilise a variety of redox proxies (Fe-speciation, redox sensitive trace metals and Mo isotopes), which, in combination, allows us to evaluate the detailed nature of ocean redox conditions and hence controls on trace metal drawdown. The results suggest that seawater δ98Mo values may have ranged between ∼0.6 and 1.1‰ during OAE2, likely connected to changes in the local Mo reservoir as a consequence of low and probably heterogeneous concentrations of Mo in the ocean. The very low Mo/TOC ratios at Tarfaya and elsewhere in the proto-North Atlantic may support a model in which deep-water circulation was partially restricted within and between the North Atlantic and other ocean basins. We propose that the combination of a low and possibly heterogeneous δ98Mo of seawater Mo, together with low Mo/TOC ratios, points to a large decrease in the global oceanic Mo reservoir during OAE2, reflecting a major global scale increase in Mo drawdown under persistent euxinic conditions.

  9. Thorium/U systematics of Precambrian deep-sea pelagic balck shales: implications for redox state of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Jia, Y.; McCulloch, M.; Charlotte, A.

    2003-12-01

    To address the question of the redox state of the Precambrian atmosphere-hydrosphere system via sediments requires measurement of redox sensitive trace elements, and inter-element ratios, in deep water black shales with a chemical sedimentary "hydrogenic" component. This approach is endorsed by recent progress in research of redox-sensitive trace metals records in late Proterozoic and Phanerozoic sedimentary rocks, which has provided important clues to how the redox state of depositional environments has changed over time. Many conventional studies, in contrast, have been on first cycle volcanogenic turbidites with a minimal hydrogenic input (Taylor and McLennan, 1995). Accordingly, we have analyzed the redox-sensitive, trace element compositions of the 2.1 Ga black shales in Birimian Blet, West Africa, and the 2.7 Ga Archean counterparts in Timmins, Canada, Tati Belt, Botswana, and Kanowna District, Western Australia. These pyrite-bearing black shales, which were originally argillaceous sediments containing organic matter and low in thermal maturity, were primarily deposited in the deep-sea pelagic environments. Th/U ratios are lower in the Proterozoic shales (0.38-0.82, average 0.67), and Archean shales (0.47-3.65, average 2.43) relative to "conventional" Archean upper crust (3.8), PAAS (4.7), or average upper continental crust (3.8). Calculated U concentrations from hydrogenic component are between 0.90 and 2.45 in the Proterozoic shales, and range from 0.06 to 0.96 for the Archean black shales. Given the conservative behavior of Th in the sedimentary cycle, variably low Th/U ratios in these Precambrian black shales signify that U6+, soluble in oxidized surface waters, was reduced to insoluble U4+ in reducing bottom waters, as in the contemporary Black Sea. The results are consistent with a locally to globally oxidized atmosphere-shallow hydrosphere pre-2.0 Ga. Taylor, S.R., and McLennan, S.C., 1995. The geochemical evolution of the continental crust: Reviews of Geophysics, v. 33. p. 241-265.

  10. Ancient Oceans Had Less Oxygen

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    The amount of dissolved oxygen in the oceans in the mid-Proterozoic period has evolutionary implications since essential trace metals are redox sensitive. The findings suggest that there is global lack of oxygen in seawater.

  11. Chasing Neoproterozoic Atmospheric Oxygen Ghosts

    NASA Astrophysics Data System (ADS)

    Bjerrum, C. J.; Canfield, D. E.; Dahl, T. W.

    2016-12-01

    Increasing atmospheric oxygen has been considered a necessary condition for the evolution of animal life for over half a century. While direct proxies for atmospheric oxygen are difficult to obtain, a number of indirect proxies have been giving us a ghost image of rising atmospheric oxygen at the close of the Precambrian. In this context, redox sensitive elements and isotopes represent the hallmark for a significant reduction in anoxic areas of the world ocean, implicating a significant rise of atmospheric oxygen during the Neoproterozoic. Here, we test to what degree redox sensitive elements in ancient marine sediments are proxies of atmospheric oxygen. We model the redox-chemical evolution of the shelf seas and ocean using a combination of 3D high resolution shelf sea models and a simpler global ocean biogeochemical model including climate weathering feedbacks, a free sea level and parameterized icecaps. We find that ecosystem evolution would have resulted in reorganization of the nutrient and redox balance of the shelf-ocean system causing a significant increase in oxygenated areas that permitted a boosting of trace metal concentrations in the remaining anoxic areas. While this reorganization takes place there is limited net change in the modelled atmospheric oxygen, warning us against interpreting changing trace metal concentrations and isotopes as reflecting a rise in atmospheric oxygen.

  12. In situ trace metal analysis of Neoarchaean--Ordovician shallow-marine microbial-carbonate-hosted pyrites.

    PubMed

    Gallagher, M; Turner, E C; Kamber, B S

    2015-07-01

    Pre-Cambrian atmospheric and oceanic redox evolutions are expressed in the inventory of redox-sensitive trace metals in marine sedimentary rocks. Most of the currently available information was derived from deep-water sedimentary rocks (black shale/banded iron formation). Many of the studied trace metals (e.g. Mo, U, Ni and Co) are sensitive to the composition of the exposed land surface and prevailing weathering style, and their oceanic inventory ultimately depends on the terrestrial flux. The validity of claims for increased/decreased terrestrial fluxes has remained untested as far as the shallow-marine environment is concerned. Here, the first systematic study of trace metal inventories of the shallow-marine environment by analysis of microbial carbonate-hosted pyrite, from ca. 2.65-0.52 Ga, is presented. A petrographic survey revealed a first-order difference in preservation of early diagenetic pyrite. Microbial carbonates formed before the 2.4 Ga great oxygenation event (GOE) are much richer in pyrite and contain pyrite grains of greater morphological variability but lesser chemical substitution than samples deposited after the GOE. This disparity in pyrite abundance and morphology is mirrored by the qualitative degree of preservation of organic matter (largely as kerogen). Thus, it seems that in microbial carbonates, pyrite formation and preservation were related to presence and preservation of organic C. Several redox-sensitive trace metals show interpretable temporal trends supporting earlier proposals derived from deep-water sedimentary rocks. Most notably, the shallow-water pyrite confirms a rise in the oceanic Mo inventory across the pre-Cambrian-Cambrian boundary, implying the establishment of efficient deep-ocean ventilation. The carbonate-hosted pyrite also confirms the Neoarchaean and early Palaeoproterozoic ocean had higher Ni concentration, which can now more firmly be attributed to a greater proportion of magnesian volcanic rock on land rather than a stronger hydrothermal flux of Ni. Additionally, systematic trends are reported for Co, As, and Zn, relating to terrestrial flux and oceanic productivity. © 2015 John Wiley & Sons Ltd.

  13. How Reducing was the Late Devonian Ocean? The Role of Extensive Expansion of Anoxia in Marine Biogeochemical Cycles of Redox Sensitive Metals.

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Jin, H.

    2017-12-01

    The evolution of Earth's biogeochemical cycles is intimately linked to the oxygenation of the oceans and atmosphere. The Late Devonian is no exception as its characterized with mass extinction and severe euxinia. Here we use concentrations of Molybdenum (Mo), Vanadium (V), Uranium (U) and Chromium (Cr) in organic rich black shales from the Lower Bakken Formation of the Williston Basin, to explore the relationship between extensive anoxia vs. euxinia and it's relation with massive release of oxygen in the ocean atmosphere system. XRF data from 4 core across the basin shows that modern ocean style Mo, U and Cr enrichments are observed throughout the Lower Bakken Formation, yet V is not enriched until later part of the formation. Given the coupling between redox-sensitive-trace element cycles and ocean redox, various models for Late Devonian ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients. Here, we examine the differing redox behavior of molybdenum and vanadium under an extreme anoxia and relatively low extent of euxinia. The model suggests that Late Devonian was perhaps extensively anoxic- 40-50% compared to modern seafloor area, and a very little euxinia. Mo enrichments extend up to 500 p.p.m. throughout the section, representative of a modern reducing ocean. However, coeval low V enrichments only support towards anoxia, where anoxia is a source of V, and a sink for Mo. Our model suggests that the oceanic V reservoir is extremely sensitive to perturbations in the extent of anoxic condition, particularly during post glacial times.

  14. Apatite/Melt Partitioning Experiments Reveal Redox Sensitivity to Cr, V, Mn, Ni, Eu, W, Th, and U

    NASA Technical Reports Server (NTRS)

    Righter, K.; Yang, S.; Humayun, M.

    2016-01-01

    Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.

  15. Ediacaran Redox Fluctuations

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  16. Increased Oxygenation of the Oceans Since the Mid-Cenozoic as Constrained by Cr/Co and Os/Ir Ratios in Oxic Pelagic Sediments

    NASA Astrophysics Data System (ADS)

    Hu, M.; Lee, C.

    2005-12-01

    In terms of redox, the marine sediments can be roughly divided into anoxic to suboxic sediments on the margins and oxic sediments in pelagic (open ocean) environments. The relative amounts of anoxic/suboxic sediments being deposited at any given time could be related to biological productivity and/or the efficiency of the ocean circulation system. How the depositional area of anoxic/suboxic deposition has changed through time is thus of concern. One way to track redox conditions is to investigate variations in the concentrations of redox sensitive trace metals. Most studies along these lines have focused on anoxic sediments. However, one problem with using anoxic sediments to study the global oceans is that such sediments are typically deposited in somewhat isolated basins, whose redox conditions may vary from basin to basin. An alternative approach, taken here, is to examine redox-sensitive elemental ratios in oxic pelagic sediments. This is motivated by the fact that pelagic sediments are more likely to reflect average ocean chemistry. In addition, the redox-sensitive metal contents of oxic sediments represent the complement to anoxic sediments. Choosing an appropriate redox-sensitive elemental ratio which eliminates dilution/concentration effects, requires the identification of trace metals that are preferentially precipitated in oxic conditions and those precipitated in more reducing conditions. Overall elemental behaviors were estimated by comparing hydrogenous or authigenic burial fluxes of various trace metals at given pelagic ODP sites to global riverine input fluxes. If the pelagic burial fluxes of a given element are significantly smaller than the riverine input flux, other burial outputs are implied, and it is hypothesized here that this element may precipitate in reducing conditions, such as in oceanic margin. If, on the other hand, the pelagic burial flux is equal to or greater than the riverine input flux, the implication is that oxic pelagic sediments must account for a significant proportion of the burial output of that element. In this case, we assume that this element is oxic-loving. Results of this work reveal that V, Cr, and Co may be particularly redox-sensitive: V and Cr precipitate in reducing environments while Co precipitates in more oxidizing environments. Results of our study, combined with existing data from the literature, show that Cr/Co ratios decrease with depth in DSDP596, 39, 801A, 319, 321, 465A, 577 in the N and S Pacific. After correcting for sedimentation rate, it is shown that the variation of Cr/Co versus time in all of these cores converge, which suggests that the variations in Cr/Co reflect a true variation in seawater composition. This also supported by the lack of sedimentation constrained by Cr/Co and Ce flux. Cr/Co remains low during the Cretaceous but begins to rise at ~25Ma across the entire Pacific. If the Cr/Co and Os/Ir ratio of inputs to the ocean have not changed much, this trend also matches that Os/Ir in the DSDP 596 site in the south Pacific. One interpretation of these results is that there has been a decrease in the area of anoxic/suboxic sedimentation beginning at this time. If correct, the implication is that there was a fundamental change in the redox conditions of the ocean in the mid-Cenozoic. We speculate that this might have been related to mid-Cenozoic global cooling, which may have increased the efficiency of the oceanic circulation system.

  17. TIC/TOC and Redox Sensitive Trace Element (RSTEs) Signals Indicating Redox Conditions of the Lower Part of the Cabo Formation Near Organya (Organya Basin), Catalunya, Spain

    NASA Astrophysics Data System (ADS)

    Herdocia, C.; Maurrasse, F. J.

    2017-12-01

    The thick (> 4.5 km) sedimentary succession of the Organya Basin includes the Cabo Formation [1] which is well exposed in the Cabo valley area and is characteristically composed of black to dark gray marlstones and limestones that accumulated during the greenhouse climate and contain variable amount of organic matter [2-4]. Here we present geochemical results to assess redox conditions of 35.6 m of the Cabo Formation near the Barremian / Aptian boundary, along Catalunya Route C-14, immediately north of the town of Organya. TOC values range between 1 wt% and 5.8 wt%, and peak in all black limestones (0.43 m, 4.38 m, 14.85 m, 29.95 m, and 35.6 m). These TOC values average about 2.0 wt %, except at a height of 0.43 m, where the TOC has a strong peak (5.78 wt%). TIC values oscillated between 86.7 wt% and 96.8 wt%, and averaged at 92.7 wt% and show a strong negative correlation with TOC (r = -0.78). Measured carbon isotope on the organic carbon fraction (δ13Corg) showed fluctuations that ranged from -24.41‰ to -22.15‰. The TOC and δ13Corg curves show a positive correlation (r = 0.58), suggesting that carbon sequestration in the basin followed the overall global signature. Redox sensitive trace elements (V, Ni, Cu, and Mo) correlate with TOC values (r > 0.6), suggesting that dysoxic conditions were responsible for the preservation of organic matter. Biolimiting trace elements (Fe, P) also correlate positively with redox trace elements, and both have highest concentrations at 14.85 m, in concurrence with a high TOC value (2.93 wt%) indicating high primary productivity at that level. Major elements (Al, Si, and Ti) also correlates slightly with TOC (Al: r = 0.39; Si: r = 0.36; Ti: r = 0.43). References: [1] García-Senz, J., 2002, PhD Thesis, University of Barcelona, 310 pp. [2] Bernaus, J.M., et al., 2003. Sedimentary Geology 159 (3-4), 177-201. [3] Caus, E., et al., 1990. Cret. Research 11, 313-320. [4] Sanchez-Hernandez, Y., Maurrasse, F.J-M.R. 2014. Chem.Geology 372, 12-31.

  18. Application of major and trace elements as well as boron isotopes for tracing hydrochemical processes: the case of Trifilia coastal karst aquifer, Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, G.

    2009-09-01

    The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.

  19. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    USGS Publications Warehouse

    Bullen, Thomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  20. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation

    NASA Astrophysics Data System (ADS)

    Sperling, Erik A.; Wolock, Charles J.; Morgan, Alex S.; Gill, Benjamin C.; Kunzmann, Marcus; Halverson, Galen P.; MacDonald, Francis A.; Knoll, Andrew H.; Johnston, David T.

    2015-07-01

    Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.

  1. Redox Sensitive Trace Element Enrichments of Organic Matter Rich Rocks (Kürnüç-Göynük/Bolu, Turkey)

    NASA Astrophysics Data System (ADS)

    Engin, H.; Sarı, A.; Koç, Ş.

    2012-04-01

    The oil shale deposits of Himmetoğlu and Hatıldağ nearby Göynük (Bolu/Türkiye) are well known oil shale deposits in Turkey. However, there is no detailed study about shale and marl type organic matter rich rocks of Kürnüç (Göynük (Bolu/Türkiye) currently available in the literature. This study aims to determine the enrichment of redox sensitive trace elements of organic matter rich rocks deposited at Kürnüç. The Kızılçay formation which outcrops in the vicinity of Kürnüç contains organic matter-rich rocks of marl and shale type. TOC %wt contents of Kürnüç vicinity rocks varies between 2,52-8,38 with an average of 6,13. The enrichments of S and Fe in these rocks and S% vs Fe% plot indicate the presence of pyrite and/or marcasite occurrences (r = 0,56). Also C-Fe-S relationship for the Kürnüç vicinity organic rich rocks suggest oxic and partially suboxic conditions. Some information about redox conditions of depositional environment of organic-rich rocks are obtained using redox sensitive element ratios such as V/(V+Ni), Ni/Co, U/Th and V/Sc. V/(V+Ni) ratios came out to be between 0,44-0,67, indicating suboxic-anoxic conditions; Ni/Co values are between 4,08-11,76, which indicates oxic-suboxic conditions; U/Th values are between 0,46-6,00, indicating suboxic-anoxic conditions; V/Sc values are between 5,53-24,50, pointing out oxic-suboxic condition. According to these values, Kürnüç vicinity organic matter-rich rocks are generally deposited in oxic to anoxic redox conditions. The redox sensitive elements Ni (20 - 129 ppm, with an average of 51,73 ppm), Co (0,2 - 20,6 ppm, with an average of 10,29 ppm), Cr (0,002 - 0,068%, with an average of 0,01%), Th (0,5 - 7,1 ppm, with an average of 4,02 ppm), Sc (1 - 13 ppm, with an average of 7,51 ppm), V (8 - 153 ppm, with an average of 70,55 ppm), U (0,6 - 35 ppm, with an average of 3,49 ppm) are obtained from the organic matter rich rocks. These elements are enriched 1-10 times relative to Average Shale, Coast of Peru, UCC (Upper Continental Crust), PAAS (Post Archean Average Shale), NASC (North American Shale Composit).

  2. Simulated Patterns of Unforced Centennial-Scale Climate Variability in the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2011-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  3. Cycling of Redox-Sensitive Trace Elements in the Lower Mississippi River Delta as a Function of River Stage and Sediment Heterogeneity

    NASA Astrophysics Data System (ADS)

    Telfeyan, K.; Breaux, A.; Kim, J.; Johannesson, K. H.; Kolker, A.; Cable, J. E.

    2015-12-01

    Telfeyan, K.1, Johannesson, K.H.1, Breaux, A.M.2,1, Kim, J.3, Kolker, A.S.2,1, Cable, J.E.31 Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA 2 Louisiana Universities Marine Consortium, Cocoderie, LA, USA 3 Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA The Mississippi River drains 40% of the continental United States and discharges 0.1 Pg sediment and an average of 18,400 m3 s-1 water annually to the Gulf of Mexico1. The flow of groundwater through the Mississippi River Delta (MRD) to the Gulf, however, has been largely understudied and is typically overlooked in MRD biogeochemical studies. Previous work demonstrated that sand-rich paleochannels that maintain a hydrologic connection to the Mississippi River could transport riverine water to the MRD2. We present data from biogeochemical surveys at 2 sites in the lower MRD to explore the effects of river-derived submarine groundwater discharge on the biogeochemistry of MRD wetlands. Lac des Allemands is a fresh water lake and Myrtle Grove is a brackish canal with variable salinities. Both are surrounded by extensive wetlands. Over the course of a year, surface water, shallow pore water, and deeper groundwaters were sampled to understand the cycling of redox-sensitive trace elements (Fe, Mn, V, As) and the potential supply from groundwater to surface water bodies. Major ion chemistry suggests that both Lac des Allemands and Myrtle Grove Canal receive river-derived terrestrial water at their heads, the flux of which varies as a function of river stage. However, the lateral flow through adjacent wetlands is altered as a function of sediment heterogeneity. Evidence for sulfate reduction exists in the near-surface sediment and at depth where a continuous vertical organic matter layer exists. In sand-rich layers, iron reduction buffers redox conditions, and V varies inversely with dissolved Fe. Concentrations of V and As are much greater in near-surface pore waters than in deeper groundwaters and in surface waters, suggesting that the subterranean estuary serves as a sink of these redox-sensitive trace elements. [1] Bianchi and Allison (2009) PNAS 1068085-8092. [2] Kolker et al. (2013) Journal of Hydrology 498 319-334.

  4. Transient deep-water oxygenation in the early Cambrian Nanhua Basin, South China

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Li, Chao; Zhou, Lian; Feng, LianJun; Algeo, Thomas J.; Zhang, FeiFei; Romaniello, Stephen; Jin, ChengSheng; Ling, HongFei; Jiang, ShaoYong

    2017-08-01

    Many late Neoproterozoic to early Cambrian fossils of multicellular eukaryotes, including those of benthic animals, are found preserved under anoxic and even euxinic bottom-water conditions, which is contradictory to the consensus that oxygen is essential to eukaryotes. To investigate this conundrum, we conducted an integrated study of iron speciation, redox-sensitive trace elements, and Mo isotopes (δ98Mo) on the black shale interval of the lower Cambrian Hetang Formation (∼535-521 Ma) at Lantian, South China, in which benthic sponge fossils are abundant in the lower member (LM) but absent in the upper member (UM). Iron speciation data point to uniformly anoxic-ferruginous conditions in the LM and euxinic conditions in the UM, whereas the trace-element and δ98Mo data show greater secular variation in redox conditions. The LM shows higher mean trace element concentrations (Mo: 108 ppm, U: 36 ppm, V: 791 ppm) and lower and more variable δ98Mo (+0.13 to +1.76‰) relative to the UM (Mo: 45 ppm, U: 18 ppm, V: 265 ppm, δ98Mo: +1.59 to +1.67‰), and ratios of redox-sensitive trace element concentrations to total organic carbon are significantly more variable and higher on average in the LM relative to the UM. The appearance of sponge fossils and lower δ98Mo values correlate strongly with gray (i.e., lighter-colored) layers in the LM. These patterns can best be interpreted as recording mainly euxinic conditions throughout deposition of the study units, with more intense background euxinia in the LM relative to the UM, but also with frequent transient oxygenation events in the LM that do not appear in the UM. The transient oxygenation events of the LM led to the initial colonization of the deep Nanhua Basin by sponges, and the termination of these events in the UM caused sponge faunas to disappear until a general rise in O2 levels later in the Cambrian permitted their return to deeper-water habitats. Our study also illustrates that multiple geochemical and paleobiological proxies exhibit different responses in 'poikiloredox' environments (i.e., characterized by small-scale spatial and high-frequency temporal variations), which can lead to apparent contradictions between metazoan fossil occurrences and their inferred watermass redox conditions.

  5. The elemental geochemistry of Lower Triassic shallow-marine carbonates from central Saudi Arabia: Implications for redox conditions in the immediate aftermath of the latest Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Eltom, Hassan A.; Abdullatif, Osman M.; Babalola, Lamidi O.

    2018-03-01

    The southern margin of the Tethys Ocean was occupied by a broad, shallow continental shelf during the Permian-Triassic boundary interval, with the area of present-day Saudi Arabia located from 10° to 30° south of the paleo-equator. The strata deposited in modern Saudi Arabia in the aftermath of the latest Permian mass extinction (LPME) are dominated by oolitic microbialite limestone (OML), which are overlain by skeletal oolitic limestones (SOL) capped by dolostones and dolomitic limestones (DDL). This succession reflects changes in depositional setting, which can be potentially tied to redox conditions using redox sensitive trace elements and rare earth elements (REEs). Statistical analyses reveals that trace elements and REEs are associated with detrital material, and possibly with diagenetic minerals as well. Proxies such as the Y/Ho, Pr/Pr*, Smn/Ybn, Lan/Smn and Lan/Ybn ratios indicate that REEs do not record a seawater-like pattern, and cannot be used as redox indicator. The presence of a normal marine fauna implies oxic conditions during deposition of the DDL and SOL units. However, the OML unit, which represents the immediate aftermath of LPME, lacks both a normal marine fauna and reliable geochemical signals, making it difficult to infer redox conditions in the depositional environment. Similar to published data from sections that reflect shallow marine condition in the LPME of the Tethys Ocean, chemical index of alteration values are consistently high throughout the study succession, suggesting globally intense chemical weathering in the aftermath of the LPME. As a result, geochemical redox proxies in shallow marine carbonates of the Tethys Ocean are likely to be contaminated by detrital material that have been generated by chemical weathering, and thus, other methods are required to determine depositional redox conditions.

  6. Rapid and Automated Analytical Methods for Redox Species Based on Potentiometric Flow Injection Analysis Using Potential Buffers

    PubMed Central

    Ohura, Hiroki; Imato, Toshihiko

    2011-01-01

    Two analytical methods, which prove the utility of a potentiometric flow injection technique for determining various redox species, based on the use of some redox potential buffers, are reviewed. The first is a potentiometric flow injection method in which a redox couple such as Fe(III)-Fe(II), Fe(CN)6 3−-Fe(CN)(CN)6 4−, and bromide-bromine and a redox electrode or a combined platinum-bromide ion selective electrode are used. The analytical principle and advantages of the method are discussed, and several examples of its application are reported. Another example is a highly sensitive potentiometric flow injection method, in which a large transient potential change due to bromine or chlorine as an intermediate, generated during the reaction of the oxidative species with an Fe(III)-Fe(II) potential buffer containing bromide or chloride, is utilized. The analytical principle and details of the proposed method are described, and examples of several applications are described. The determination of trace amounts of hydrazine, based on the detection of a transient change in potential caused by the reaction with a Ce(IV)-Ce(III) potential buffer, is also described. PMID:21584280

  7. Oxygen Oases Before and After the GOE: Insights From Metals and Models

    NASA Astrophysics Data System (ADS)

    Olson, S. L.; Reinhard, C. T.; Planavsky, N. J.; Lyons, T. W.; Roy, M.; Anbar, A. D.

    2014-12-01

    The evolution of oxygenic photosynthesis fundamentally changed the structure of the marine biosphere and the chemistry of Earth's ocean-atmosphere system. Atmospheric oxygenation, however, was decoupled from the onset of biological O2 production—possibly lagging by as much as half a billion years—and O2 remained low for two billion years following initial O2 accumulation. Although uncertainties remain regarding the fate of biogenic O2 during the Precambrian, it is becoming clear that the consequences of oxygenesis were both spatially and temporally variable. Several lines of evidence support the existence of aerobic ecosystems associated with O2 oases within an otherwise anoxic Archean ocean; however—with notable exceptions—atmospheric O2 remained low enough to severely curtail oxidative weathering processes on long-term average throughout the Archean. During the subsequent Great Oxidation Event (GOE) in the early Paleoproterozoic, atmospheric O2 irreversibly increased above the sensitivity thresholds of several well-established proxies, but the level at which O2 eventually stabilized remains unclear. Consequently, the dynamics of O2 cycling are poorly characterized both before and after the GOE. Nevertheless, recent analytical and numerical results suggest exceptionally low O2 levels that may have favored Archean-style O2 oases in the mid-Proterozoic. We used Fe speciation and trace metal records from Precambrian shales, including data from two new cores that target the 2.7 Ga Roy Hill Shale, to investigate pre- and post- GOE redox heterogeneity in Earth's surface environments. Fe speciation supports the reconstruction of local marine redox conditions, and, in this context, trace metals can allow glimpses of redox conditions beyond the local environment, which may have throttled the supply of key redox-sensitive trace metals to the ocean. Then, using O2 constraints derived from these inorganic proxies, we use an Earth System model to explore C, O, and nutrient cycling in the late Archean and into the mid-Proterozoic. Although our results allow profound perturbation to several biogeochemical cycles and the climate system as a result of the GOE, we find that the GOE may have had only minor significance for the long-term average O2 content of typical surface seawater in the Proterozoic.

  8. Robustness of fossil fish teeth for seawater neodymium isotope reconstructions under variable redox conditions in an ancient shallow marine setting

    NASA Astrophysics Data System (ADS)

    Huck, Claire E.; van de Flierdt, Tina; Jiménez-Espejo, Francisco J.; Bohaty, Steven M.; Röhl, Ursula; Hammond, Samantha J.

    2016-03-01

    Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth, and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources.

  9. Biogeochemical redox processes and their impact on contaminant dynamics

    USGS Publications Warehouse

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  10. Redox Regulation of Cell Contacts by Tricellulin and Occludin: Redox-Sensitive Cysteine Sites in Tricellulin Regulate Both Tri- and Bicellular Junctions in Tissue Barriers as Shown in Hypoxia and Ischemia.

    PubMed

    Cording, Jimmi; Günther, Ramona; Vigolo, Emilia; Tscheik, Christian; Winkler, Lars; Schlattner, Isabella; Lorenz, Dorothea; Haseloff, Reiner F; Schmidt-Ott, Kai M; Wolburg, Hartwig; Blasig, Ingolf E

    2015-11-01

    Tight junctions (TJs) seal paracellular clefts in epithelia/endothelia and form tissue barriers for proper organ function. TJ-associated marvel proteins (TAMPs; tricellulin, occludin, marvelD3) are thought to be relevant to regulation. Under normal conditions, tricellulin tightens tricellular junctions against macromolecules. Traces of tricellulin occur in bicellular junctions. As pathological disturbances have not been analyzed, the structure and function of human tricellulin, including potentially redox-sensitive Cys sites, were investigated under reducing/oxidizing conditions at 3- and 2-cell contacts. Ischemia, hypoxia, and reductants redistributed tricellulin from 3- to 2-cell contacts. The extracellular loop 2 (ECL2; conserved Cys321, Cys335) trans-oligomerized between three opposing cells. Substitutions of these residues caused bicellular localization. Cys362 in transmembrane domain 4 contributed to bicellular heterophilic cis-interactions along the cell membrane with claudin-1 and marvelD3, while Cys395 in the cytosolic C-terminal tail promoted homophilic tricellullar cis-interactions. The Cys sites included in homo-/heterophilic bi-/tricellular cis-/trans-interactions contributed to cell barrier tightness for small/large molecules. Tricellulin forms TJs via trans- and cis-association in 3-cell contacts, as demonstrated electron and quantified fluorescence microscopically; it tightens 3- and 2-cell contacts. Tricellulin's ECL2 specifically seals 3-cell contacts redox dependently; a structural model is proposed. TAMP ECL2 and claudins' ECL1 share functionally and structurally similar features involved in homo-/heterophilic tightening of cell-cell contacts. Tricellulin is a specific redox sensor and sealing element at 3-cell contacts and may compensate as a redox mediator for occludin loss at 2-cell contacts in vivo and in vitro. Molecular interaction mechanisms were proposed that contribute to tricellulin's function. In conclusion, tricellulin is a junctional redox regulator for ischemia-related alterations.

  11. The effect of aeration on the removal of wastewater-derived pharmaceutical residues from groundwater - a laboratory study.

    PubMed

    Burke, Victoria; Duennbier, Uwe; Massmann, Gudrun

    2013-01-01

    Several studies on waste- or drinking water treatment processes as well as on groundwater have recently shown that some pharmaceutical residues (PRs) are redox-sensitive. Hence, their (bio)degradation depends on the redox conditions prevalent in the aquifer. Groundwater, providing raw water for drinking water production, is often anoxic and aeration is a widespread treatment method applied mainly to eliminate unwanted iron and manganese from the water. As a side-effect, aeration may trigger the elimination of PRs. Within the present study the influence of aeration on the fate of a number of wastewater derived analgesics and their residues as well as several antimicrobial compounds was investigated. For this purpose, anoxic groundwater was transferred into stainless steel tanks, some of which were aerated while others were continuously kept anoxic. Results prove that the degradation of six phenazone type compounds is dependent on oxygen availability and compounds are efficiently removed under oxic conditions only. Concerning the antimicrobials, doxycycline and trimethoprim were better removed during aeration, whereas a slightly improved removal under anoxic conditions was observed for clindamycin, roxithromycin and clarithromycin. The study provides first laboratory proof of the redox-sensitivity of several organic trace pollutants. In addition, results demonstrate that aeration is an effective treatment for the elimination of a number of wastewater derived PRs.

  12. Trace metal cycling and 238U/235U in New Zealand's fjords: Implications for reconstructing global paleoredox conditions in organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Hinojosa, Jessica L.; Stirling, Claudine H.; Reid, Malcolm R.; Moy, Christopher M.; Wilson, Gary S.

    2016-04-01

    Reconstructing the history of ocean oxygenation provides insight into links between ocean anoxia, biogeochemical cycles, and climate. Certain redox-sensitive elements respond to changes in marine oxygen content through phase shifts and concomitant isotopic fractionation, providing new diagnostic proxies of past ocean hypoxia. Here we explore the behavior and inter-dependence of a suite of commonly utilized redox-sensitive trace metals (U, Mo, Fe, and Mn) and the emerging ;stable; isotope system of U (238U/235U, or δ238U) in New Zealand fjords. These semi-restricted basins have chemical conditions spanning the complete redox spectrum from fully oxygenated to suboxic to intermittently anoxic/euxinic. In the anoxic water column, U and Mo concentrations decrease, while Fe and Mn concentrations increase. Similarly, signals of past euxinic conditions can be found by U, Mo, Fe, and Mn enrichment in the underlying sediments. The expected U isotopic shift toward a lower δ238U in the anoxic water column due to U(VI)-U(IV) reduction is not observed; instead, water column δ238U profiles are consistent in fjords of all oxygen content, falling within previously reported ranges for open ocean seawater (δ238U = -0.42 ± 0.07‰). Additionally, surface sediment δ238U results show evidence for competing U isotope fractionation processes. One site indicates increased export of 238U from seawater to the underlying sediments (fractionation between aqueous seawater U and particulate sediment U, or ΔU(aq)-U(solid) = -0.25‰), consistent with redox-driven fractionation. Another site suggests potential U(VI) adsorption-driven fractionation, reflecting increased export of 235U from seawater to sediments (ΔU(aq)-U(solid) = 0.25‰). We discuss several potential factors that could alter δ238U in waters and sediments beyond redox-driven shifts, including adsorption to organic matter in waters of high primary productivity, reaction rates for competing processes of U adsorption and release, and isotopic constraints of U coming into the system from terrestrial environments. These potential complications should be understood and constrained through observations, experiments, and models before future application of δ238U as a global paleoredox tracer can achieve its full potential.

  13. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.

    PubMed

    Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D

    2017-02-01

    This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.

    PubMed

    Sun, Ming-An; Zhang, Qing; Wang, Yejun; Ge, Wei; Guo, Dianjing

    2016-08-24

    Reactive oxygen species can modify the structure and function of proteins and may also act as important signaling molecules in various cellular processes. Cysteine thiol groups of proteins are particularly susceptible to oxidation. Meanwhile, their reversible oxidation is of critical roles for redox regulation and signaling. Recently, several computational tools have been developed for predicting redox-sensitive cysteines; however, those methods either only focus on catalytic redox-sensitive cysteines in thiol oxidoreductases, or heavily depend on protein structural data, thus cannot be widely used. In this study, we analyzed various sequence-based features potentially related to cysteine redox-sensitivity, and identified three types of features for efficient computational prediction of redox-sensitive cysteines. These features are: sequential distance to the nearby cysteines, PSSM profile and predicted secondary structure of flanking residues. After further feature selection using SVM-RFE, we developed Redox-Sensitive Cysteine Predictor (RSCP), a SVM based classifier for redox-sensitive cysteine prediction using primary sequence only. Using 10-fold cross-validation on RSC758 dataset, the accuracy, sensitivity, specificity, MCC and AUC were estimated as 0.679, 0.602, 0.756, 0.362 and 0.727, respectively. When evaluated using 10-fold cross-validation with BALOSCTdb dataset which has structure information, the model achieved performance comparable to current structure-based method. Further validation using an independent dataset indicates it is robust and of relatively better accuracy for predicting redox-sensitive cysteines from non-enzyme proteins. In this study, we developed a sequence-based classifier for predicting redox-sensitive cysteines. The major advantage of this method is that it does not rely on protein structure data, which ensures more extensive application compared to other current implementations. Accurate prediction of redox-sensitive cysteines not only enhances our understanding about the redox sensitivity of cysteine, it may also complement the proteomics approach and facilitate further experimental investigation of important redox-sensitive cysteines.

  15. Ultrafast photodynamics of the indoline dye D149 adsorbed to porous ZnO in dye-sensitized solar cells.

    PubMed

    Rohwer, Egmont; Richter, Christoph; Heming, Nadine; Strauch, Kerstin; Litwinski, Christian; Nyokong, Tebello; Schlettwein, Derck; Schwoerer, Heinrich

    2013-01-14

    We investigate the ultrafast dynamics of the photoinduced electron transfer between surface-adsorbed indoline D149 dye and porous ZnO as used in the working electrodes of dye-sensitized solar cells. Transient absorption spectroscopy was conducted on the dye in solution, on solid state samples and for the latter in contact to a I(-)/I(3)(-) redox electrolyte typical for dye-sensitized solar cells to elucidate the effect of each component in the observed dynamics. D149 in a solution of 1:1 acetonitrile and tert-butyl alcohol shows excited-state lifetimes of 300±50 ps. This signature is severely quenched when D149 is adsorbed to ZnO, with the fastest component of the decay trace measured at 150±20 fs due to the charge-transfer mechanism. Absorption bands of the oxidized dye molecule were investigated to determine regeneration times which are in excess of 1 ns. The addition of the redox electrolyte to the system results in faster regeneration times, of the order of 1 ns. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sensitivity of trace element pyritization to pyrite oxidation processes

    NASA Astrophysics Data System (ADS)

    Moreira, Manuel; Díaz, Rut; Mendoza, Ursula; Capilla, Ramses; Böttcher, Michael; Luiza Albuquerque, Ana; Machado, Wilson

    2014-05-01

    Total trace elements concentration variability in marine sediments has been widely used as a proxy for redox conditions and marine paleoprodutivity. However, partial extraction procedures reduce influences of detrital sedimentary fractions, and information on trace element geochemical partitioning can contribute to provide comprehensive evidences on elemental sensitivity to particular processes. The potential effect of sedimentary pyrite re-oxidative cycling on the degree of trace metal pyritization (DTMP) has not been previously evaluated. This study investigates this effect in 4 sediment cores from the continental shelf under the influence of a tropical upwelling system (Cabo Frio, Brazil). The relation of DTMP with stable isotope signals (δ34SCRS) of chromium reducible sulfur, which becomes lighter in response to intense pyrite re-oxidative cycling in the study area, suggests high (As, Cd and Mn), low (Cu and Zn) or negligible (Cr and Ni) re-oxidation influences. The oldest, pyrite-richer sediments provide an apparent threshold for intense pyrite re-oxidation, after which most trace elements (As, Cd, Zn and Mn) presented more accentuated pyritization. A middle shelf core presented negative correlations of reactive (HCl-soluble) Mn, Cu and Ni with pyrite iron, suggesting Mn oxide (and associated metals) depletion in reaction with pyrite. Results provided evidences for coupled influences from both aerobic and anaerobic oxidative processes on trace elements incorporation into pyrite. Pyrite δ34S signatures under the oxic bottom water from the study area were similar to those from euxinic sedimentary environments, suggesting that pyrite re-oxidative cycling can affect trace element susceptibility to be incorporated and preserved into pyrite in a wide range of sedimentary conditions. The evaluation of trace elements sensitivity to these processes can contribute to improve the use of multiple DTMP data (e.g., as paleoredox proxies). Considering that S re-oxidative cycling is ubiquitous in many sedimentary conditions, such coupled use of DTMP and δ34SCRS proxies can be possibly applied to a large variety of sedimentary environments.

  17. Paleo-environmental conditions of the Early Cambrian Niutitang Formation in the Fenggang area, the southwestern margin of the Yangtze Platform, southern China: Evidence from major elements, trace elements and other proxies

    NASA Astrophysics Data System (ADS)

    Li, Jin; Tang, Shuheng; Zhang, Songhang; Xi, Zhaodong; Yang, Ning; Yang, Guoqiao; Li, Lei; Li, Yanpeng

    2018-06-01

    The Precambrian/Cambrian transition was a key time in Earth history, especially for marine biological evolution and oceanic chemistry. The redox-stratification with oxic shallow water and anoxic (even euxinic) deeper water in the Early Cambrian Yangtze Sea, which gradually became completely oxygenated, has been suggested as a possible trigger for the "Cambrian explosion" of biological diversity. However, for some areas in northern Guizhou where the exploration and research are lacking, identifying this pattern of redox-stratification by paleo-environmental analysis from borehole data is still in need. Here, we report a remarkable variation range in trace elements (Mo, V, U, Ni, Th, Co, Sc, Zn and Cu), molar Corg:P ratios and pyrite morphology from 27 core samples from one new drill hole (XY1, located in the Fenggang area, northern Guizhou) on the Yangtze Platform, South China. High levels of Ba (from 3242 ppm to 33,800 ppm) and total organic carbon (TOC; from 4% to 9.36%) in 15 core samples in the Lower Member (LM) of the Niutitang Formation indicated elevated primary productivity in the study area. Redox change was recorded based on enrichment factors (EFs) for RSTEs (Mo, U, and V), redox proxies (V/(V + Ni), Ni/Co, V/Sc and Th/U), Corg:P ratios and particle size of framboidal pyrite. These signatures demonstrate that the LM was deposited under anoxic conditions with sulfidic episodes, whereas the Upper Member (UM) of the Niutitang Formation was deposited under suboxic/oxic conditions with intermittently anoxic episodes. Mo/TOC ratios (from 3.72 to 39.86, mean 18.76) suggest weak-moderate water mass restriction. Mo-U covariation patterns (strong but variable enrichment of Mo and U; MoEF ranging from 31.45 to 257.97; UEF ranging from 4.68 to 39.07) in the LM show alternation of particulate shuttling and redox conditions occurred in the Early Cambrian Yangtze Sea, whereas Mo-U covariation patterns (moderate Mo enrichment but depletion or non-enrichment of U; mean MoEF: 7.29; mean UEF: 0.95) in the UM may indicate the combined influence of particulate shuttling and diagenetic diffusion of U via bioactivities, which result in low U values and an anoxic signature from frambiodal pyrite particle size (mean: 4.556 μm; median: 4.41 μm). Additionally, excess Ba (Baxs) concentration (33,800 ppm and 32,500 ppm) and association patterns of trace-metal enrichment in the LM indicate the existence of submarine hydrothermal events. In addition, during deposition of the UM, bioactivities indicated by Mo-U systematics and oxic conditions indicated by redox sensitive trace elements (RSTEs) and multiple-proxies, may be a cause of biological diversification recorded in the Early Cambrian. Finally, data in this record a progressive transition from anoxic bottom waters with euxinic episodes to overwhelming oxic conditions during Early Cambrian.

  18. Brain imaging in methamphetamine-treated mice using a nitroxide contrast agent for EPR imaging of the redox status and a gadolinium contrast agent for MRI observation of blood-brain barrier function.

    PubMed

    Emoto, M C; Yamato, M; Sato-Akaba, H; Yamada, K; Matsuoka, Y; Fujii, H G

    2015-01-01

    Methamphetamine (METH)-induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. The aims of the present study conducted in the mouse brain repetitively treated with METH were to (1) examine the redox status using the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethylpiperidine-1-oxyl (MCP) and (2) non-invasively visualize the brain redox status with electron paramagnetic resonance (EPR) imaging. The rate of reduction of MCP was measured from a series of temporal EPR images of mouse heads, and this rate was used to construct a two-dimensional map of rate constants called a "redox map." The obtained redox map clearly illustrated the change in redox balance in the METH-treated mouse brain that is a known result of oxidative damage. Biochemical assays also showed that the level of thiobarbituric acid-reactive substance, an index of lipid peroxidation, was increased in mouse brains by METH. The enhanced reduction in MCP observed in mouse brains was remarkably suppressed by treatment with the dopamine synthase inhibitor, α-methyl-p-tyrosine, suggesting that enhancement of the reduction reaction of MCP resulted from enzymatic reduction in the mitochondrial respiratory chain. Furthermore, magnetic resonance imaging (MRI) of METH-treated mice using a blood-brain barrier (BBB)-impermeable paramagnetic contrast agent revealed BBB dysfunction after treatment with METH for 7 days. MRI also indicated that the impaired BBB recovered after withdrawal of METH. EPR imaging and MRI are useful tools not only for following changes in the redox status and BBB dysfunction in mouse brains repeatedly administered METH, but also for tracing the drug effect after withdrawal of METH.

  19. Bottom-Water Conditions in a Marine Basin after the Cretaceous–Paleogene Impact Event: Timing the Recovery of Oxygen Levels and Productivity

    PubMed Central

    Sosa-Montes De Oca, Claudia; Martínez-Ruiz, Francisca; Rodríguez-Tovar, Francisco Javier

    2013-01-01

    An ultra-high-resolution analysis of major and trace element contents from the Cretaceous–Paleogene boundary interval in the Caravaca section, southeast Spain, reveals a quick recovery of depositional conditions after the impact event. Enrichment/depletion profiles of redox sensitive elements indicate significant geochemical anomalies just within the boundary ejecta layer, supporting an instantaneous recovery –some 102 years– of pre-impact conditions in terms of oxygenation. Geochemical redox proxies point to oxygen levels comparable to those at the end of the Cretaceous shortly after impact, which is further evidenced by the contemporary macrobenthic colonization of opportunistic tracemakers. Recovery of the oxygen conditions was therefore several orders shorter than traditional proposals (104–105 years), suggesting a probable rapid recovery of deep-sea ecosystems at bottom and in intermediate waters. PMID:24349232

  20. Role of antioxidants in redox regulation of diabetic cardiovascular complications.

    PubMed

    Turan, Belma

    2010-12-01

    Cardiovascular dysfunction is leading cause for the mortality of diabetic individuals, in part due to a specific cardiomyopathy, and due to altered endothelial dependent/independent vascular reactivity. Cardiovascular complications result from multiple parameters including glucotoxicity, lipotoxicity, fibrosis and mitochondrial uncoupling. Oxidative stress arises from an imbalance between the production of reactive oxygen and nitrogen species (ROS and RNS) and the capability of biological system to readily detoxify reactive intermediates. Several studies have reported beneficial effects of a therapy with antioxidant agents, including trace elements and other antioxidants, against the cardiovascular system dysfunction due to the diabetes. Antioxidants act through different mechanisms to prevent oxidant-induced cell damages acting either directly or indirectly. They can reduce the generation of ROS, scavenge ROS, or interfere with ROS-induced alterations. Modulating mitochondrial activity is an important possibility to control ROS production. Hence, the use of PPARα agonist to reduce fatty acid oxidation and of trace elements such as selenium as antioxidant and other antioxidants such as vitamins E and C, contribute to the prevention of diabetes-induced cardiovascular dysfunction. The paradigm that, inhibiting the overproduction of superoxides and peroxides would prevent cardiac dysfunction in diabetes has been difficult to verify using conventional antioxidants like vitamins E and C. That led to use of catalytic antioxidants such as SOD/CAT mimetics. Hence, well-tuned, balanced and responsive antioxidant defence systems are vital for proper prevention against diabetic damage. Myocardial cell death is observed in the hearts of diabetic patients and animal models; however, its importance in the development of diabetic cardiomyopathy is not completely understood. This review aims to summarize our present knowledge on various strategies to control oxidative stress and antagonize cardiovascular dysfunction during diabetes. In here, we consider aspects of redox signaling in the cardiovascular system, focusing on the molecular basis of redox sensing by proteins and the array of post-translational oxidative modifications that can occur. In addition, we discuss studies identify redox-sensitive cardiac proteins, as well as those assessing redox signalling in cardiovascular disease.

  1. Redox Regulation of Mitochondrial Function

    PubMed Central

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  2. Kinetics of steel slag leaching: Batch tests and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Chaurand, Perrine; Rose, Jerome

    2011-02-15

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can bemore » used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.« less

  3. Combined organic and inorganic geochemical reconstruction of paleodepositional conditions of a Pliocene sapropel from the eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rinna, J.; Warning, B.; Meyers, P. A.; Brumsack, H.-J.; Rullkötter, J.

    2002-06-01

    Layers of organic-carbon-rich sapropels in the sediment record of the Mediterranean Sea give evidence of repetitive changes in regional Plio-Pleistocene climate. Results from biomarker molecule and major and trace element analyses of closely spaced samples are used to reconstruct the conditions leading to deposition of a Pliocene sapropel at Ocean Drilling Program (ODP) Site 969 on the Mediterranean Ridge. Organic carbon concentrations increase from 0.2% outside the sapropel and peak to more than 30% within it. Major and trace elemental composition and biomarker-derived parameters indicate elevated productivity, depletion of water-column dissolved-oxygen content, and changes in sediment provenance in response to climatic changes. Budgets of rhenium, thallium, and other trace metals indicate that deep-water exchange between the Mediterranean subbasins and the Atlantic Ocean was not completely interrupted during sapropel formation. Enrichment factors of redox-sensitive and sulfide-forming trace metals as well as the presence of isorenieratene derivatives and high stanol/sterol ratios point to an extended zone of anoxic water masses. Depth profiles of biomarker compositions (sterols, long-chain alkenones, alkandiols and -ketols, fatty acids) indicate great floral diversity during deposition of a single sapropel and highlight the sensitive response of the marine community to variable environmental conditions. Changes in water mass circulation and eolian transport can be reconstructed by use of both lithogenic elements and average chain lengths of n-alkanes (ACL index).

  4. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment.

    PubMed

    Rosenwasser, Shilo; Graff van Creveld, Shiri; Schatz, Daniella; Malitsky, Sergey; Tzfadia, Oren; Aharoni, Asaph; Levin, Yishai; Gabashvili, Alexandra; Feldmesser, Ester; Vardi, Assaf

    2014-02-18

    Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of (15)N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.

  5. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    EPA Science Inventory

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  6. The geochemistry of redox sensitive trace metals in sediments

    NASA Astrophysics Data System (ADS)

    Morford, Jennifer L.; Emerson, Steven

    1999-06-01

    We analyzed the redox sensitive elements V, Mo, U, Re and Cd in surface sediments from the Northwest African margin, the U.S. Northwest margin and the Arabian Sea to determine their response under a range of redox conditions. Where oxygen penetrates 1 cm or less into the sediments, Mo and V diffuse to the overlying water as Mn is reduced and remobilized. Authigenic enrichments of U, Re and Cd are evident under these redox conditions. With the onset of sulfate reduction, all of the metals accumulate authigenically with Re being by far the most enriched. General trends in authigenic metal accumulation are described by calculating authigenic fluxes for the 3 main redox regimes: oxic, reducing where oxygen penetrates ≤1 cm, and anoxic conditions. Using a simple diagenesis model and global estimates of organic carbon rain rate and bottom water oxygen concentrations, we calculate the area of sediments below 1000 m water depth in which oxygen penetration is ≤1 cm to be 4% of the ocean floor. We conclude that sediments where oxygen penetrates ≤1 cm release Mn, V and Mo to seawater at rates of 140%-260%, 60%-150% and 5%-10% of their respective riverine fluxes, using the authigenic metal concentrations and accumulation rates from this work and other literature. These sediments are sinks for Re, Cd and U, with burial fluxes of 70%-140%, 30%-80% and 20%-40%, respectively, of their dissolved riverine inputs. We modeled the sensitivity of the response of seawater Re, Cd and V concentrations to changes in the area of reducing sediments where oxygen penetrates ≤1 cm. Our analysis suggests a negligible change in seawater Re concentration, whereas seawater concentrations of Cd and V could have decreased and increased, respectively, by 5%-10% over 20 kyr if the area of reducing sediments increased by a factor of 2 and by 10%-20% if the area increased by a factor of 3. The concentration variations for a factor of 2 increase in the area of reducing sediments are at about the level of uncertainty of Cd/Ca and V/Ca ratios observed in foraminifera shells over the last 40 kyr. This implies that the area of reducing sediments in the ocean deeper than 1000 m (4%) has not been greater than twice the present value in the recent past.

  7. Geochemistry of a marine phosphate deposit: A signpost to phosphogenesis

    USGS Publications Warehouse

    Piper, David Z.; Perkins, R.B.

    2014-01-01

    The Permian age Phosphoria Formation in southeastern Idaho and adjoining states represents possibly the largest marine phosphate deposit in the world. The Meade Peak Member, which contains the highest concentrations and amount of carbonate fluorapatite in the formation, was not significantly altered by mechanical reworking during deposition or subsequently by chemical weathering. Thus, its present composition reflects properties of the Phosphoria Sea that were critical to its accumulation and possibly to the accumulation of most major marine phosphate deposits. These properties included the chemistry of the water column, the hydrography, and the level of primary productivity. Calculated accumulation rates of the PO43− and trace nutrients – Cd, Cu, Ni, and Zn – recorded a dynamic upwelling rate of c.30 m year−1 that supported primary productivity of 2g C m−2day−1. High accumulation rates of the hydrogenous redox-sensitive trace metals – Cr, Mo, U, and V – reflect bottom-water redox conditions that were dominantly suboxic, maintained by a balance between the oxidation of ~ 8% of the organic detritus that settled out of the photic zone and advection of bottom water with a residence time of c.10 years. A limited flux into the basin of siliciclastic lithogenous debris contributed further to elevated concentrations of the seawater-derived sediment fractions.

  8. Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Benzerara, Karim; Kappler, Andreas

    2014-05-01

    Microbe-mineral interactions occur in diverse modern environments, from the deep sea and subsurface rocks to soils and surface aquatic environments. They may have played a central role in the geochemical cycling of major (e.g., C, Fe, Ca, Mn, S, P) and trace (e.g., Ni, Mo, As, Cr) elements over Earth's history. Such interactions include electron transfer at the microbe-mineral interface that left traces in the rock record. Geomicrobiology consists in studying interactions at these organic-mineral interfaces in modern samples and looking for traces of past microbe-mineral interactions recorded in ancient rocks. Specific tools are required to probe these interfaces and to understand the mechanisms of interaction between microbes and minerals from the scale of the biofilm to the nanometer scale. In this review, we focus on recent advances in electron microscopy, in particular in cryoelectron microscopy, and on a panel of electrochemical and synchrotron-based methods that have recently provided new understanding and imaging of the microbe-mineral interface, ultimately opening new fields to be explored.

  9. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment.

    PubMed

    Song, Yu; Cai, Han; Yin, Tingjie; Huo, Meirong; Ma, Ping; Zhou, Jianping; Lai, Wenfang

    2018-01-01

    Lung cancer is the primary cause of cancer-related death worldwide. A redox-sensitive nanocarrier system was developed for tumor-targeted drug delivery and sufficient drug release of the chemotherapeutic agent paclitaxel (PTX) for improved lung cancer treatment. The redox-sensitive nanocarrier system constructed from a hyaluronic acid-disulfide-vitamin E succinate (HA-SS-VES, HSV) conjugate was synthesized and PTX was loaded in the delivery system. The physicochemical properties of the HSV nanoparticles were characterized. The redox-sensitivity, tumor-targeting and intracellular drug release capability of the HSV nanoparticles were evaluated. Furthermore, in vitro and in vivo antitumor activity of the PTX-loaded HSV nanoparticles was investigated in a CD44 over-expressed A549 tumor model. This HSV conjugate was successfully synthesized and self-assembled to form nanoparticles in aqueous condition with a low critical micelle concentration of 36.3 μg mL -1 . Free PTX was successfully entrapped into the HSV nanoparticles with a high drug loading of 33.5% (w/w) and an entrapment efficiency of 90.6%. Moreover, the redox-sensitivity of the HSV nanoparticles was confirmed by particle size change of the nanoparticles along with in vitro release profiles in different reducing environment. In addition, the HA-receptor mediated endocytosis and the potency of redox-sensitivity for intracellular drug delivery were further verified by flow cytometry and confocal laser scanning microscopic analysis. The antitumor activity results showed that compared to redox-insensitive nanoparticles and Taxol ® , PTX-loaded redox-sensitive nanoparticles exhibited much greater in vitro cytotoxicity and apoptosis-inducing ability against CD44 over-expressed A549 tumor cells. In vivo, the PTX-loaded HSV nanoparticles possessed much higher antitumor efficacy in an A549 mouse xenograft model and demonstrated improved safety profile. In summary, our PTX-loaded redox-sensitive HSV nanoparticles demonstrated enhanced antitumor efficacy and improved safety of PTX. The results of our study indicated the redox-sensitive HSV nanoparticle was a promising nanocarrier for lung cancer therapy.

  10. Trace Element Geochemistry as a Tool for the Reconstruction of Upwelling Patterns at 12oS off Peru since the Last Glacial Maximum (LGM)

    NASA Astrophysics Data System (ADS)

    Boening, P.; Brumsack, H.; Wolf, A.

    2002-05-01

    Laminated sediments (core 106KL), recovered during R/V Sonne cruise 147 from the Peruvian upper slope mud lens at 12oS, were analyzed for bulk parameters (TOC, TIC, TS) and opal as well as major and trace element composition by XRF and ICP-MS in 5 cm intervals. The composition of the terrigenous-detrital sediment fraction is comparable to average shale. The sediments exhibit slight increases in biogenic silica (diatoms) and carbonate contents (foraminifera) in varying layers. The experimentally determined opal contents correlate well with Si/Al ratios. High TOC and P contents are due to enhanced primary productivity, high sedimentation rates and corresponding organic matter preservation under a strong OMZ. We distinguish between three different groups of elements: 1.) trace elements involved in bio-cycling (e.g. Cd, Ag, Ni, Cu) are highly enriched in the sediments due to their association with plankton, high sedimentation rates (preventing remobilization from the sediments) and fixation as sulfides. 2.) redox-sensitive elements (e.g. Re, Mo) are significantly enriched probably due to reduction and precipitation under suboxic/anoxic conditions. Diffusion of these elements from the water column into sub/anoxic sediments seems to be the controlling factor, besides sulfide precipitation. An average Re/Mo ratio of 1.3 indicates anoxic sedimentary conditions. Most trace elements correlate well with the TOC content presumably documenting productivity events. 3.) Al, Zr and Y are well correlated, presumably representing sporadic high-energy fluvial input from the continent or enhanced current velocities. The three element groups were used to reconstruct the upwelling patterns off Lima since the LGM: TOC content and Al-normalized trace element patterns from the bio/redox-sensitive fractions represent the signal from the water column, whereas Al, Y and Zr reflect the terrigenous input. During the LGM (about 17 ky BP) the site was hardly affected by upwelling as the upwelling cell was located more basinward. As the sea level rose during the Late Glacial (17-10 ky BP) the upwelling cell shifted towards the coast. The Early Holocene (10-5 ky BP) is not documented likely because strong currents (presumably the Peru counter current) eroded the slope. In the Late Holocene the upwelling cell was established at the site. However, a higher terrrigenous proportion and lower input from the water column suggest a basinward shifting of the upwelling cell during the Second Neoglacial (2000-2700 BP). Stronger Element/Al and TOC variabilities indicate the influence of El Nino during the Late Holocene.

  11. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.).

    PubMed

    Pan, Yunyu; Koopmans, Gerwin F; Bonten, Luc T C; Song, Jing; Luo, Yongming; Temminghoff, Erwin J M; Comans, Rob N J

    2016-12-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still limited. Here, a field-contaminated paddy soil was subjected to two flooding and drainage cycles in a pot experiment with two rice plant cultivars, exhibiting either high or low Cd accumulation characteristics. Flooding led to a strong vertical gradient in the redox potential (Eh). The pH and Mn, Fe, and dissolved organic carbon concentrations increased with decreasing Eh and vice versa. During flooding, trace metal solubility decreased markedly, probably due to sulfide mineral precipitation. Despite its low solubility, the Cd content in rice grains exceeded the food quality standards for both cultivars. Trace metal contents in different rice plant tissues (roots, stem, and leaves) increased at a constant rate during the first flooding and drainage cycle but decreased after reaching a maximum during the second cycle. As such, the high temporal variability in trace metal solubility was not reflected in trace metal uptake by rice plants over time. This might be due to the presence of aerobic conditions and a consequent higher trace metal solubility near the root surface, even during flooding. Trace metal solubility in the rhizosphere should be considered when linking water management to trace metal uptake by rice over time.

  12. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  13. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    PubMed Central

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  14. Understanding Biogeochemical Transformations Of Trace Elements In Multi Metal-Rich Geomaterials Under Stimulated Redox Conditions

    EPA Science Inventory

    Natural and anthropogenic influences on hydrological conditions can induce periodic or long-term reduced conditions in geologic materials. Such conditions can cause significant impacts on biogeochemical processes of trace elements in subsurface or near surface environments. The...

  15. Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    Szumila, Ian; Danielson, Lisa; Trail, Dustin

    2017-01-01

    Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures

  16. Potential Aquifer Vulnerability in Regions Down-Gradient from ...

    EPA Pesticide Factsheets

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies

  17. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    PubMed Central

    Liu, Pei; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response. PMID:25720653

  18. Biogeochemical Cycling of Fe, S, C, N, and Mo in the 3.2 Ga ocean: Constraints from DXCL-DP Black Shales from Pilbara, Western Australia

    NASA Astrophysics Data System (ADS)

    Yamaguchi, K. E.; Naraoka, H.; Ikehara, M.; Ito, T.; Kiyokawa, S.

    2014-12-01

    Records of geochemical cycling of bio-essential, redox-sensitive elements have keys to decipher mysteries of the co-evolution of Earth and life. To obtain insight into biogeochemical cycling of those elements and early evolution of microbial biosphere from high-quality samples, we drilled through Mesoarchean strata in coastal Pilbara (Dixon Island-Cleaverville Drilling Project, see Yamaguchi et al., 2009; Kiyokawa et al., 2012), and obtained 3.2 Ga old drillcores (CL1, CL2, and DX) of sulfide-rich black shales in the Cleaverville Group, Pilbara Supergroup. We conducted a systematic geochemical study involving sequential extractions of Fe, S, C, and N for phase-dependent contents (e.g., pyrite-Fe, reactive-Fe, highly reactive-Fe, unreactive-Fe, pyrite-S, sulfate-S, organic-S, elemental-S, Corg, Ccarb, Norg, and Nclay) and their stable isotope compositions, micro FT-IR and laser Raman spectroscopy for extracted kerogen, in addition to major and trace (redox-sensitive; e.g., Mo) element analysis, for >100 samples. Here we integrate our recent multidisciplinary investigations into the redox state of ocean and nature of microbial biosphere in the ocean 3.2 Ga ago. All of the obtained data are very difficult to explain only by geochemical processes in strictly anoxic environments, where both atmosphere and oceans were completely anoxic, like an environment before the inferred "Great Oxidation Event" when pO2 was lower than 0.00001 PAL (e.g., Holland, 1994). Our extensive data set consistently suggests that oxygenic photosynthesis, bacterial sulfate reduction, and microbially mediated redox-cycling of nitrogen, possibly involving denitrification and N2-fixation, are very likely to have been operating, and may be used as a strong evidence for at least local and temporal existence of oxidized environment as far back as 3.2 Ga ago. Modern-style biogeochemical cycling of Fe, S, C, N, and Mo has been operating since then. The atmosphere-hydrosphere system 3.2 Ga ago would have been sufficiently oxidized to allow redox-cycling of elements during deposition of the sediments, ~800 Ma earlier than commonly thought. Our suggestions have far-reaching and astrobiological implications for earlier evolution of the surface environment, especially redox state, and marine microbial biosphere.

  19. Benthic foraminiferal trace metal uptake: a field calibration from the Arabia Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Koho, K. A.; Reichart, G.-J.

    2012-04-01

    The Arabian Sea Oxygen Minimum Zone (OMZ) is sustained by high surface water productivity and relatively weak mid-depth water column ventilation. High primary productivity drives high respiration rates in the water column, causing severe oxygen depletion between ±150-1400 m water depths, with the oxygen concentrations falling below 2 μM in the core of the OMZ. Living (rose Bengal stained) benthic foraminifera were collected at 10-stations, covering a large bottom water oxygen concentration gradient from the Murray Ridge. This sub-marine ridge is located in the open marine environment of the Arabian Sea and thus not affected by large gradients in surface water productivity such as encountered at the continental margins. Since these sites thus receive similar organic fluxes, but are bathed in bottom waters with contrasting oxygen concentrations, pore water profiles mainly reflect bottom water oxygenation. The study sites represent a natural laboratory to investigate the impact of bottom water chemistry on trace metal incorporation in benthic foraminifera. Trace metal analyses by laser ablation ICP-MS allows detailed single chamber measurements of trace metal content, which can be related to in situ pore water geochemistry. Focus of this study is on redox sensitive trace metal (e.g. Mn, U) incorporation into foraminiferal test calcite in relation to pore water oxygen and carbonate chemistry.

  20. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells.

    PubMed

    Feldt, Sandra M; Gibson, Elizabeth A; Gabrielsson, Erik; Sun, Licheng; Boschloo, Gerrit; Hagfeldt, Anders

    2010-11-24

    Dye-sensitized solar cells (DSCs) with cobalt-based mediators with efficiencies surpassing the record for DSCs with iodide-free electrolytes were developed by selecting a suitable combination of a cobalt polypyridine complex and an organic sensitizer. The effect of the steric properties of two triphenylamine-based organic sensitizers and a series of cobalt polypyridine redox mediators on the overall device performance in DSCs as well as on transport and recombination processes in these devices was compared. The recombination and mass-transport limitations that, previously, have been found to limit the performance of these mediators were avoided by matching the properties of the dye and the cobalt redox mediator. Organic dyes with higher extinction coefficients than the standard ruthenium sensitizers were employed in DSCs in combination with outer-sphere redox mediators, enabling thinner TiO(2) films to be used. Recombination was reduced further by introducing insulating butoxyl chains on the dye rather than on the cobalt redox mediator, enabling redox couples with higher diffusion coefficients and more suitable redox potential to be used, simultaneously improving the photocurrent and photovoltage of the device. Optimization of DSCs sensitized with a triphenylamine-based organic dye in combination with tris(2,2'-bipyridyl)cobalt(II/III) yielded solar cells with overall conversion efficiencies of 6.7% and open-circuit potentials of more than 0.9 V under 1000 W m(-2) AM1.5 G illumination. Excellent performance was also found under low light intensity indoor conditions.

  1. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  2. Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments.

    PubMed

    Fan, Yichong; Ai, Hui-wang

    2016-04-01

    We recently reported a redox-sensitive red fluorescent protein, rxRFP1, which is one of the first genetically encoded red-fluorescent probes for general redox states in living cells. As individual cellular compartments have different basal redox potentials, we hereby describe a group of rxRFP1 mutants, showing different midpoint redox potentials for detection of redox dynamics in various subcellular domains, such as mitochondria, the cell nucleus, and endoplasmic reticulum (ER). When these redox probes were expressed and subcellularly localized in human embryonic kidney (HEK) 293 T cells, they responded to membrane-permeable oxidants and reductants. In addition, a mitochondrially localized rxRFP1 mutant, Mito-rxRFP1.1, was used to detect mitochondrial oxidative stress induced by doxorubicin-a widely used cancer chemotherapy drug. Our work has expanded the fluorescent protein toolkit with new research tools for studying compartmentalized redox dynamics and oxidative stress under various pathophysiological conditions.

  3. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  4. Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France)

    NASA Astrophysics Data System (ADS)

    Point, D.; Monperrus, M.; Tessier, E.; Amouroux, D.; Chauvaud, L.; Thouzeau, G.; Jean, F.; Amice, E.; Grall, J.; Leynaert, A.; Clavier, J.; Donard, O. F. X.

    2007-04-01

    In situ benthic chamber experiments were conducted in the Thau Lagoon that allowed the simultaneous determination of the benthic exchanges of trace metals (Cd, Co, Cu, Mn, Pb and U) and mercury species (iHg and MMHg). Fluxes of organotin compounds (MBT, DBT and TBT) were also investigated for the first time. The benthic incubations were performed during two campaigns at four stations that presented different macrobenthic and macrophytic species distribution and abundance (see [Thouzeau, G., Grall, J., Clavier, J., Chauvaud, L., Jean, F., Leynaert, A., Longpuirt, S., Amice, E., Amouroux, D., 2007. Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science 72 (3), 432 446.]). The results indicate that most of the flux intensity as well as the temporal and spatial variability can be explained by the combined influence of microscale and macroscale processes. Microscale changes were identified using Mn flux as a good indicator of the redox conditions at the sediment water interface, and by extension, as an accurate proxy of benthic fluxes for most trace metals and mercury species. We also observed that the redox gradient at the interface is promoted by both microbial and macrobenthic species activity that governs O2 budgets. Macroscale processes have been investigated considering macrobenthic organisms activity (macrofauna and macroalgal cover). The density of such macroorganisms is able to explain most of the spatial and temporal variability of the benthic metal fluxes within a specific site. A tentative estimation of the flux of metals and organometals associated with deposit feeder and suspension feeder activity was found to be in the range of the flux determined within the chambers for most considered elements. Furthermore, a light/dark incubation investigating a dense macroalgal cover present at the sediment surface illustrates the role of photosynthetic activity in controlling benthic exchanges. Significant changes in benthic flux intensity and/or direction were reported for all redox sensitive elements (Cd, Co, Cu, Mn, Pb, U, and iHg). For MMHg and organotin species, other complimentary processes such as photodegradation/uptake and hydrophobic absorption/desorption need to be considered. This work demonstrates that the processes governing benthic exchanges are complex and that benthic organisms play a major role in the significant seasonal, diurnal and spatial variability of trace metals and organometals benthic fluxes in the lagoon.

  5. Regulation of trace elements and redox status in striatum of adult rats by long-term aerobic exercise depends on iron uptakes.

    PubMed

    Wu, Hua-Bo; Xiao, De-Sheng

    2017-03-06

    We investigated the effects of aerobic exercise (AE) on trace element contents and redox status in the striatum of rats with different diet iron. Weaned female rats were randomly fed with iron-adequate diet (IAD), iron-deficient diet (IDD), and iron-overloaded diet (IOD). After feeding their respective diet for 1 month, the rats fed with same diet were divided into swimming and maintaining sedentary (S) group. After 3 months, the non-heme iron (NHI), Mn, Cu, and Zn in the striatum were measured. Meanwhile, malonaldehyde acid (MDA), total superoxide dismutase activity, hydroxyl radical scavenging activity, and total antioxidant capacity were also analyzed. As compared with respective S rats, Mn, Cu, and Zn contents were significantly decreased in IDDE, but no significantly changes could be seen in IADE or IODE. A negative correlation of NHI with Cu contents in IDDE and positive correlations of NHI with Cu, or Zn contents in IADE, or with Mn or Cu contents in IODE were observed. In addition, striatum MDA was significantly decreased and anti-oxidative variables were increased in IODE compared to IODS. Our results suggest that the modification of trace elements and redox status in the striatum of rats caused by AE depends on dietary iron contents and that AE may also regulate the metabolic relationship of iron storage with other trace elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Thiolate/disulfide organic redox couples for efficient organic dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Yan; Zheng, Hai-Kuo; Wang, Jian-Wen; Zhang, Le-Le; Han, Hui-Min; Wu, Ming-Xing

    2017-08-01

    A series of organic thiolate/disulfide redox couples based on benz-imidazole/othiazole/oxazole have been synthesized and applied to dye-sensitized solar cells (DSCs). Platinum (Pt) and carbon material are introduced as counter electrode (CE) catalysts towards this kind of organic redox couples regeneration and the photovoltaic performance of the DSCs using this organic redox couples has been investigated. The carbon CE shows high catalytic activity than Pt for the organic redox couples and the DSCs using carbon CE exhibit much higher efficiencies than those of the Pt CE-based devices.

  7. Redox-Responsive Biomimetic Polymeric Micelle for Simultaneous Anticancer Drug Delivery and Aggregation-Induced Emission Active Imaging.

    PubMed

    Hu, Jun; Zhuang, Weihua; Ma, Boxuan; Su, Xin; Yu, Tao; Li, Gaocan; Hu, Yanfei; Wang, Yunbing

    2018-05-10

    Intelligent polymeric micelles have been developed as potential nanoplatforms for efficient drug delivery and diagnosis. Herein, we successfully prepared redox-sensitive polymeric micelles combined aggregation-induced emission (AIE) imaging as an outstanding anticancer drug carrier system for simultaneous chemotherapy and bioimaging. The amphiphilic copolymer TPE-SS-PLAsp- b-PMPC could self-assemble into spherical micelles, and these biomimetic micelles exhibited great biocompatibility and remarkable ability in antiprotein adsorption, showing great potential for biomedical application. Anticancer drug doxorubicin (DOX) could be encapsulated during the self-assembly process, and these drug-loaded micelles showed intelligent drug release and improved antitumor efficacy due to the quick disassembly in response to high levels of glutathione (GSH) in the environment. Moreover, the intracellular DOX release could be traced through the fluorescent imaging of these AIE micelles. As expected, the in vivo antitumor study exhibited that these DOX-carried micelles showed better antitumor efficacy and less adverse effects than that of free DOX. These results strongly indicated that this smart biomimetic micelle system would be a prominent candidate for chemotherapy and bioimaging.

  8. Effects of boundary conditions on the cleaning efficiency of riverbank filtration and artificial groundwater recharge systems regarding bulk parameters and trace pollutants.

    PubMed

    Storck, Florian R; Schmidt, Carsten K; Wülser, Richard; Brauch, Heinz-Jürgen

    2012-01-01

    Drinking water is often produced from surface water by riverbank filtration (RBF) or artificial groundwater recharge (AGR). In this study, an AGR system was exemplarily investigated and results were compared with those of RBF systems, in which the effects of redox milieu, temperature and surface water discharge on the cleaning efficiency were evaluated. Besides bulk parameters such as DOC (dissolved organic carbon), organic trace pollutants including iodinated X-ray contrast media, personal care products, complexing agents, and pharmaceuticals were investigated. At all studied sites, levels of TOC (total organic carbon), DOC, AOX (adsorbable organic halides), SAC (spectral absorption coefficient at 254 nm), and turbidity were reduced significantly. DOC removal was stimulated at higher groundwater temperatures during AGR. Several substances were generally easily removable during both AGR and RBF, regardless of the site, season, discharge or redox regime. For some more refractory substances, however, removal efficiency turned out to be significantly influenced by redox conditions.

  9. Understanding the Marine Chromium Isotope Record from Modern and Ancient Carbonates

    NASA Astrophysics Data System (ADS)

    Parkinson, I. J.; Bonnand, P.; James, R. H.; Fairchild, I. J.; Dixon, S.

    2011-12-01

    Chromium isotopes may provide a powerful tool for reconstructing the redox state of ancient seawater because Cr isotope fractionation is large (up to 7% in δ53Cr) during the reduction of Cr(VI) to Cr(III) in natural waters [1]. Recent studies have demonstrated that although Cr(VI) is predicted to be the thermodynamically stable form in seawater (as CrO42-), significant amounts (5-20%) of Cr(III) may also be present in surface waters [2]. Therefore the δ53Cr of seawater could vary by up to 2%. Marine carbonates potentially provide a means to extracting information about the Cr isotopic composition of seawater in the geological past and we have developed a high-precision double-spike technique for analysing Cr isotopes in carbonates [3]. The δ53Cr of modern Bahamas Bank carbonates (+0.76%) is broadly consistent with these carbonates recording a seawater Cr signature. Moreover, these pure carbonates contain significant amounts of Cr (1-4 ppm), which indicates that Cr is strongly partitioned into calcium carbonate. Therefore carbonates are likely to provide a faithful record of the δ53Cr composition of seawater. Shallow marine carbonates from the Phanerozoic range in δ53Cr from +0.76 to +1.8%, and some Neoproterozoic carbonates also have heavy Cr isotopic compositions of +0.5 to +1.0 %. Such compositions may reflect changes in the inputs of Cr to the oceans and/or changes in the redox state of the oceans. However, to interpret Cr isotopic compositions in ancient carbonates additionally requires a careful assessment of their trace element contents. This study aims to demonstrate how a combination of redox sensitive trace elements, such as Ce, and Cr isotopes allow an assessment of the marine chromium isotope record. [1] Ellis et al., 2002, Science, 295, 2060-2062. [2] Connolly et al., 2006, Deep Sea Res. Part I, 2006 53, 1975-1988. [3] P. Bonnand, et al., 2011, J. Anal. At. Spectr., 26, 528-535.

  10. Tracing fluid transfer across subduction zones using iron and zinc stable isotopes

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Debret, B.; Pons, M. L.; Bouilhol, P.

    2016-12-01

    In subduction zones, serpentinite devolatilization within the downgoing slab and the fluids released play a fundamental role in volatile transfer as well as the redox evolution of the sub-arc mantle. Constraining subduction-related serpentinite devolatilisation is essential in order to better understand of the nature and composition of slab-derived fluids and fluid/rock interactions. Fe and Zn stable isotopes can trace fluid composition and speciation as isotope partitioning is driven by changes in oxidation state, coordination, and bonding environment. In the case of serpentinite devolatilisation, Fe isotope fractionation should reflect changes in Fe redox state and the formation of Fe-Cl- and SO42- complexes (Hill et al., GCA 2010); Zn isotope fractionation should be sensitive to complexation with CO32-, HS- and SO42- anions (Fujii et al., GCA 2011). We targeted samples from Western Alps ophiolite complexes, interpreted as remnants of serpentinized oceanic lithosphere metamorphosed and devolatilized during subduction (Hattori and Guillot, G3 2007; Debret et al., Chem. Geol. 2013). A striking negative correlation is present between bulk serpentinite Fe isotope composition and Fe3+/Fetot, with the highest grade samples displaying the heaviest Fe isotope compositions and lowest Fe3+/Fetot (Debret et al., Geology, 2016). The same samples also display a corresponding variation in Zn isotopes, with the highest grade samples displaying isotopically light compositions (Pons et al., in revision). The negative correlation between Fe and Zn isotopes and decrease in Fe3+/Fetot can explained by serpentinite sulfide breakdown and the release of fluids enriched in isotopically light Fe and heavy Zn sulphate complexes. The migration of these SOX-bearing fluids from the slab to the slab-mantle interface or mantle wedge has important implications for the redox evolution of the sub-arc mantle and the transport of metals from the subducting slab.

  11. Electrolytes Based on TEMPO–Co Tandem Redox Systems Outperform Single Redox Systems in Dye‐sensitized Solar Cells

    PubMed Central

    Cong, Jiayan; Hao, Yan; Boschloo, Gerrit

    2014-01-01

    Abstract A new TEMPO–Co tandem redox system with TEMPO and Co(bpy)3 2+/3+ has been investigated for the use in dye‐sensitized solar cells (DSSCs). A large open‐circuit voltage (V OC) increase, from 862 mV to 965 mV, was observed in the tandem redox system, while the short‐circuit current density (J SC) was maintained. The conversion efficiency was observed to increase from 7.1 % for cells containing the single Co(bpy)3 2+/3+ redox couple, to 8.4 % for cells containing the TEMPO–Co tandem redox system. The reason for the increase in V OC and overall efficiency is ascribed to the involvement of partial regeneration of the sensitizing dye molecules by TEMPO. This assumption can be verified through the observed much faster regeneration dynamics exhibited in the presence of the tandem system. Using the tandem redox system, the faster recombination problem of the single TEMPO redox couple is resolved and the mass‐transport of the metal‐complex‐based electrolyte is also improved. This TEMPO–Co tandem system is so far the most effienct tandem redox electrolyte reported not involving iodine. The current results show a promising future for tandem system as replacements for single redox systems in electrolytes for DSSCs. PMID:25504818

  12. Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.

    PubMed

    Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru

    2015-02-13

    Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    PubMed

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  14. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    PubMed

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ferritin-Triggered Redox Cycling for Highly Sensitive Electrochemical Immunosensing of Protein.

    PubMed

    Akanda, Md Rajibul; Ju, Huangxian

    2018-06-04

    Electrochemical immunoassay amplified with redox cycling has become a challenging topic in highly sensitive analysis of biomarkers. Here a ferritin-triggered redox cycling is reported by using a highly outersphere reaction-philic (OSR-philic) redox mediator ruthenium hexamine (Ru(NH3)63+) to perform the OSR-philic/innersphere reaction-philic (ISR-philic) controlled signal amplification. The screened mediator can meet the needs of lower E0 than ferritin, low reactivity with ISR-philic species, and quick electron exchange with ferritin redox couple. The ferritin-labeled antibody is firstly bounded to immunosensor surface by recognizing the target antigen capured by the immobilized primary antibody. The ferritin then mediates OSR-philic/ISR-philic transfer from Ru(NH3)63+/2+/immunosensor to ferritin-H2O2 redox system. The fast mediation and excellent resistant of highly OSR-philic Ru(NH3)63+ against radical oxygen species lead to highly sensitive electrochemical readout and high signal-to-background ratio. The proposed redox cycling greatly enhances the readout signal and the sensitivity of traditional ferritin-labelled sandwich immunoassay. Using Enteropathogenic Coli (E. Coli) antigen as a model analyte, the developed method shows excellent linearity over the concentration range from 10.0 pg/mL to 0.1 µg/mL and a detection limit of 10.0 fg/mL. The acceptable accuracy, good reproducibility and selectivity of the proposed immunoassay method in real samples indicate the superior practicability of the ferritin-triggered redox cycling.

  16. Biogeochemical Gradients in Wetland Sediments and their Effect on the Fate Trace Metals

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Choi, J.; Xu, S.

    2005-12-01

    The interactions between sediment biogeochemistry processes and higher plants play a major role on trace metal mobility in wetlands. Most wetland sediments are characterized by steep redox gradients, resulting from the sequential utilization of different electron acceptors during the degradation of organic matter provided by leaf litter and root turnover. Metals in wetland sediments may be immobilized due to precipitation or adsorption to different organic and inorganic sediment constituents. Adsorption onto iron, and manganese oxides, are important in the rhizosphere where iron oxyhydroxide plaques may form on the surface of roots. As the sediments becomes more reduced, bioavailable iron and manganese oxides are used as electron acceptor and are gradually depleted, resulting in the mobilization of some adsorbed species (i.e., As(V), phosphate, etc.), the reduction of some trace metals such as Cr(VI) (which is then immobilized as Cr(III)), and for more reduced conditions the immobilization of trace metals (i.e., Cd, Pb, Zn) as sulfides. Results from numerical simulations, laboratory experiments, and field measurements will be presented, showing how redox gradients and hence, trace-metal immobilization, in wetlands respond to external forcing functions such as changes in nutrient loading, plant distribution, seasonal and diurnal plant activity (specifically evapotranspiration and oxygen release), and temporal or spatial changes in the profile of iron and manganese oxides.

  17. TRANSPORT AND FATE OF AMMONIUM AND ITS IMPACT ON URANIUM AND OTHER TRACE ELEMENTS AT A FORMER URANIUM MILL TAILING SITE

    PubMed Central

    Miao, Ziheng; Nihat, Hakan; McMillan, Andrew Lee; Brusseau, Mark L.

    2013-01-01

    The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium-nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site. PMID:24357895

  18. Tracing redox processes during paleoclimatic changes in the Neoproterozoic: Stable chromium isotopic results from the Arroyo del Soldado Group (Ediacaran, Uruguay)

    NASA Astrophysics Data System (ADS)

    Frei, R.; Gaucher, C.

    2007-12-01

    Positive δ13C carbonate values, combined with the occurrence of Fe-rich cherts (oxide-facies BIF) and organic-rich black shales within the late Ediacaran (ca. 580-560 Ma) Yerbal Fm. of the Arroyo del Soldato Group (Uruguay) are compatible with paleoclimatic models which postulate that enhanced bioproductivity due to higher availability of nutrient (P, N, Fe) was essential for controlling Neoproterozoic glaciations. Tracing of associated redox processes (f.e. linked to oxygenation of bottom waters in restricted basins) that might have been responsible for the deposition of Fe-rich cherts (BIFs) is therefore an important tool to better understand the seawater changes during cold-warm periods. Besides the traditionally used Fe and Mo isotopic systems, the redox-sensitive element Cr (Cr(III); Cr(IV)) and its stable isotopes offer another complementary system to trace paleo-redox processes. We have applied Cr stable isotope systematics to a sequence of samples from a late Ediacaran sedimentary sequence in Uruguay, using a 52Cr-54Cr double spike (Schoenberg et al., Chem..Geol., subm.). The middle Yerbal Fm. is dominated by organic-rich, black shales and black dolostones (δ53Cr = -0.05‰), followed by organic-rich cherts (δ53Cr = +1.83 - +4.49 ‰) and BIF (δ53Cr = -0.31 +0.90 ‰) gradually changing into Fe-bearing, organic-rich cherts and shales (δ53Cr = -0.28 - -0.01 ‰), and another sequence with BIF and organic-rich cherts topped by carbonates of the lower Polanco Fm. (δ53Cr = -0.17 to -0.27 ‰). The strongly positively fractionated Cr isotopic signatures in organic-rich and Fe-rich cherts in the Yerbal Fm. may point to significant oxidation processes either directly in the seawater column and/or during early diagenetic processes at the sediment-water interface. While these strongly positive δ53Cr values are the first to be reported from Neoproterozoic sedimentary sequence, the exact nature of the chemical process that produced these anomalies is not yet understood. However, the occurrence of these anomalies in organic-rich and Fe-rich chemical sediments that were deposited in a period following a glacial (Gaskiers?) event is compatible with "Snowball Earth" scenarios whereby impulsive oxidation of the upper seawater was in response to ice cover retraction which allowed booming of the biosphere and concomitant oxidation of accumulated Fe2+ and subsequent precipitation of the Fe-oxyhydroxides to form the "BIF" during such epochs. Schoenberg et al. (subm.) The stable Cr isotope inventory of solid earth reservoirs determined by double-spike MC-ICP-MS. Chemical Geology

  19. Scaling up in the face of uncertainty - controls on trace gas fluxes in heterogeneous landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, E. S.; Helton, A. M.; Morse, J. L.; Poole, G. C.

    2013-12-01

    Wetlands are the dominant natural source of methane to the global atmosphere and can be important sites of either N2O emission or consumption. Changes in the spatial extent or inundation frequency and duration may lead to substantial shifts in the contribution of wetland ecosystems to global CH4 and N2O emissions. Trace gases are produced at the scale of individual microbes, each of which respond dynamically to the local availability of electron donors and acceptors. Within landscape patches, substrate supply and redox conditions are strongly controlled by variation in water table elevation and vertical hydrologic exchange. At the landscape scale, lateral exchange between patches and the extent and duration of inundation. Accurate estimates of trace gas emissions from wetlands are hard to estimate given the dynamic patterns of redox potential within the soil column and across the landscape that redistribute electron donors and acceptors both vertically and laterally. In five years of trace gas flux measurement and modeling at TOWER, a 440 ha restored wetland in coastal NC, we have developed both simulation and statistical models to estimate landscape level trace gas fluxes. Yet, because trace gas emissions are highly variable in both time and space, our qualitative and quantitative attempts at upscaling trace gas emissions typically generate estimates with extremely high uncertainty. In this talk we will explore the challenges inherent to the estimation of landscape scale trace gas fluxes at the scale of our individual ecosystem as well as the difficulties in extrapolating across multiple ecosystem studies.

  20. Contrasting Cu-Au and Sn-W Granite Metallogeny through the Zircon Geochemical and Isotopic Record

    NASA Astrophysics Data System (ADS)

    Gardiner, Nicholas; Hawkesworth, Chris; Robb, Laurence; Whitehouse, Martin; Roberts, Nick; Kirkland, Chris

    2017-04-01

    Magmatic genesis and evolution - mediated by geodynamic setting - exert a primary control on the propensity of granites to be metal fertile. A revolution in our understanding of these petrogenetic processes has been made through a range of mineral-based tools, most notably the common accessory mineral zircon. There is consequently considerable interest in whether the geochemical and isotopic compositions of zircon can be applied to metallogenic problems. The paired magmatic belts of Myanmar have broadly contrasting metallogenic affinities (Sn-W versus Cu-Au), and are interpreted to have formed on the accretionary margin of the subducting Neo-Tethys Ocean. They therefore present the opportunity to geochemically compare and contrast the zircon compositions in two end-member types of granite-hosted mineral deposits generated in collisional settings. We present an integrated zircon isotope (U-Pb, Lu-Hf, O) and trace element dataset that fingerprint: (a) source; (b) redox conditions; and (c) degree of fractionation. These variables all impact on magma fertility, and our key question to address is whether they can be reliably traced and calibrated within the Myanmar zircon record. Granitoid-hosted zircons from the I-type copper arc have juvenile ɛHf (+7 to +12) and mantle-like δ18O (5.3 ‰), whereas zircons from the S-type tin belt have low ɛHf (-7 to -13) and heavier δ18O (6.2-7.7 ‰). Plotting Hf versus U/Yb reaffirms that the tin belt magmas contain greater crustal contributions than the copper arc rocks. Links between whole rock Rb/Sr and zircon Eu/Eu* highlights that the latter can be used to monitor magma fractionation in systems that crystallize plagioclase (low Sr/Y). Ce/Ce* and Eu/Eu* in zircon are thus sensitive to redox and fractionation respectively, and can be used to evaluate the sensitivity of zircons to the metallogenic affinity of their host rocks. Tin contents that exceed the solubility limit are required in order to make a magmatic-hydrothermal deposit, and empirical observations suggest that this threshold may be marked by zircon Eu/Eu* values of ca. < 0.08. The isotope and trace element signatures of both magmatic and detrital zircons can be developed into a useful exploration tool.

  1. Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance

    PubMed Central

    Lee, Samuel; Kim, Soo Min

    2013-01-01

    Abstract The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes. Antioxid. Redox Signal. 18, 1165–1207. PMID:22607099

  2. The effects of chromium(VI) on the thioredoxin system: Implications for redox regulation

    PubMed Central

    Myers, Charles R.

    2014-01-01

    Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2. PMID:22542445

  3. The geochemical cycling of trace elements in a biogenic meromictic lake

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara

    1994-10-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).

  4. The geochemical cycling of trace elements in a biogenic meromictic lake

    USGS Publications Warehouse

    Balistrieri, L.S.; Murray, J.W.; Paul, B.

    1994-01-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.

  5. Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth's carbon cycle

    NASA Astrophysics Data System (ADS)

    Owens, Jeremy D.; Reinhard, Christopher T.; Rohrssen, Megan; Love, Gordon D.; Lyons, Timothy W.

    2016-09-01

    Understanding the global redox state of the oceans and its cause-and-effect relationship with periods of widespread organic-carbon deposition is vital to interpretations of Earth's climatic and biotic feedbacks during periods of expanded oceanic oxygen deficiency. Here, we present a compilation of new and published data from an organic-rich locality within the proto-North Atlantic Ocean during the Cenomanian-Turonian boundary event that shows a dramatic drawdown of redox-sensitive trace elements. Iron geochemistry independently suggests euxinic deposition (i.e., anoxic and sulfidic bottom waters) for the entire section, thus confirming its potential as an archive of global marine metal inventories. In particular, depleted molybdenum (Mo) and vanadium (V) concentrations effectively record the global expansion of euxinic and oxygen-deficient but non-sulfidic waters, respectively. The V drawdown precedes the OAE, fingerprinting an expansion of oxygen deficiency prior to an expansion of euxinia. Molybdenum drawdown, in contrast, is delayed with respect to V and coincides with the onset of OAE2. Parallel lipid biomarker analyses provide evidence for significant and progressive reorganization of marine microbial ecology during the OAE in this region of the proto-North Atlantic, with the smallest relative eukaryotic contributions to total primary production occurring during metal-depleted intervals. This relationship may be related to decreasing supplies of enzymatically important trace elements. Similarly, box modeling suggests that oceanic drawdown of Mo may have approached levels capable of affecting marine nitrogen fixation. Predictions of possible nitrogen stress on eukaryotic production, locally and globally, are consistent with the low observed levels of Mo and a rise in 2-methylhopane index values during the peak of the OAE. At the same time, the environmental challenge presented by low dissolved oxygen and euxinia coincides with increased turnover rates of radiolarian clades, calcareous nanofossils, and foraminifera, suggesting that the temporal patterns of anoxia/euxinia and associated nutrient limitation may have contributed to the fabric of OAE2-related turnover.

  6. A highly redox-heterogeneous ocean in South China during the early Cambrian (˜529-514 Ma): Implications for biota-environment co-evolution

    NASA Astrophysics Data System (ADS)

    Jin, Chengsheng; Li, Chao; Algeo, Thomas J.; Planavsky, Noah J.; Cui, Hao; Yang, Xinglian; Zhao, Yuanlong; Zhang, Xingliang; Xie, Shucheng

    2016-05-01

    The ;Cambrian Explosion; is known for rapid increases in the morphological disparity and taxonomic diversity of metazoans. It has been widely proposed that this biological event was a consequence of oxygenation of the global ocean, but this hypothesis is still under debate. Here, we present high-resolution Fe-S-C-Al-trace element geochemical records from the Jinsha (outer shelf) and Weng'an (outer shelf) sections of the early Cambrian Yangtze Platform, integrating these results with previously published data from six correlative sections representing a range of water depths (Xiaotan, Shatan, Dingtai, Yangjiaping, Songtao, and Longbizui). The integrated iron chemistry and redox-sensitive trace element data suggest that euxinic mid-depth waters dynamically coexisted with oxic surface waters and ferruginous deep waters during the earliest Cambrian, but that stepwise expansion of oxic waters commenced during Cambrian Stage 3 (∼ 521- 514 Ma). Combined with data from lower Cambrian sections elsewhere, including Oman, Iran and Canada, we infer that the global ocean exhibited a high degree of redox heterogeneity during the early Cambrian, consistent with low atmospheric oxygen levels (∼ 10- 40% of present atmospheric level, or PAL). A large spatial gradient in pyrite sulfur isotopic compositions (δ34Spy), which vary from a mean of - 12.0 ‰ in nearshore areas to + 22.5 ‰ in distal deepwater sections in lower Cambrian marine units of South China imply low concentrations and spatial heterogeneity of seawater sulfate, which is consistent with a limited oceanic sulfate reservoir globally. By comparing our reconstructed redox chemistry with fossil records from the lower Cambrian of South China, we infer that a stepwise oxygenation of shelf and slope environments occurred concurrently with a gradual increase in ecosystem complexity. However, deep waters remained anoxic and ferruginous even as macrozooplankton and suspension-feeding mesozooplankton appeared during Cambrian Stage 3. These findings suggest that the ;Cambrian Explosion; in South China may have been primarily a consequence of locally improved oxygenation of the ocean-surface layer rather than of the full global ocean. Our observations are inconsistent with predicted changes in ocean chemistry driven by early Cambrian animals, suggesting that the influence of early Cambrian animals on contemporaneous ocean chemistry, as proposed in previous studies, may be overly exaggerated.

  7. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes.

    PubMed

    Daeneke, Torben; Kwon, Tae-Hyuk; Holmes, Andrew B; Duffy, Noel W; Bach, Udo; Spiccia, Leone

    2011-03-01

    Dye-sensitized solar cells based on iodide/triiodide (I(-)/I(3)(-)) electrolytes are viable low-cost alternatives to conventional silicon solar cells. However, as well as providing record efficiencies of up to 12.0%, the use of I(-)/I(3)(-) in such solar cells also brings about certain limitations that stem from its corrosive nature and complex two-electron redox chemistry. Alternative redox mediators have been investigated, but these generally fall well short of matching the performance of conventional I(-)/I(3)(-) electrolytes. Here, we report energy conversion efficiencies of 7.5% (simulated sunlight, AM1.5, 1,000 W m(-2)) for dye-sensitized solar cells combining the archetypal ferrocene/ferrocenium (Fc/Fc(+)) single-electron redox couple with a novel metal-free organic donor-acceptor sensitizer (Carbz-PAHTDTT). These Fc/Fc(+)-based devices exceed the efficiency achieved for devices prepared using I(-)/I(3)(-) electrolytes under comparable conditions, revealing the great potential of ferrocene-based electrolytes in future dye-sensitized solar cells applications. This improvement results from a more favourable matching of the redox potential of the ferrocene couple with that of the new donor-acceptor sensitizer.

  8. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling

    PubMed Central

    Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar

    2017-01-01

    Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499

  9. Distribution and speciation of trace elements in iron and manganese oxide cave deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-10-24

    Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redoxmore » conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.« less

  10. Redox sensing: Orthogonal control in cell cycle and apoptosis signaling

    PubMed Central

    Jones, Dean P.

    2010-01-01

    Living systems have three major types of cell signaling systems that are dependent upon high-energy chemicals, redox environment and transmembranal ion gating mechanisms. Development of integrated systems biology descriptions of cell signaling require conceptual models incorporating all three. Recent advances in redox biology show that thiol/disulfide redox systems are regulated under dynamic, non-equilibrium conditions, progressively oxidized with the life cycle of cells and distinct in terms of redox potentials among subcellular compartments. The present article uses these observations as a basis to distinguish “redox-sensing” mechanisms, which are more global biologic redox control mechanisms, from “redox signaling”, which involves conveyance of discrete activating or inactivating signals. Both redox sensing and redox signaling use sulfur switches, especially cysteine (Cys) residues in proteins which are sensitive to reversible oxidation, nitrosylation, glutathionylation, acylation, sulfhydration or metal binding. Unlike specific signaling mechanisms, the redox-sensing mechanisms provide means to globally affect the rates and activities of the high-energy, ion gating and redox-signaling systems by controlling sensitivity, distribution, macromolecular interactions and mobility of signaling proteins. Effects mediated through Cys residues not directly involved in signaling means redox-sensing control can be orthogonal to the signaling mechanisms. This provides a capability to integrate signals according to cell cycle and physiologic state without fundamentally altering the signaling mechanisms. Recent findings that thiol/disulfide pools in humans are oxidized with age, environmental exposures and disease risk suggest that redox-sensing thiols could provide a central mechanistic link in disease development and progression. PMID:20964735

  11. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel.

    PubMed

    Yang, Xiaoye; Cai, Xiaoqing; Yu, Aihua; Xi, Yanwei; Zhai, Guangxi

    2017-06-15

    To remedy the problems riddled in cancer chemotherapy, such as poor solubility, low selectivity, and insufficient intra-cellular release of drugs, novel heparin-based redox-sensitive polymeric nanoparticles were developed. The amphiphilic polymer, heparin-alpha-tocopherol succinate (Hep-cys-TOS) was synthesized by grafting hydrophobic TOS to heparin using cystamine as the redox-sensitive linker, which could self-assemble into nanoparticles in phosphate buffer saline (PBS) with low critical aggregation concentration (CAC) values ranging from 0.026 to 0.093mg/mL. Paclitaxel (PTX)-loaded Hep-cys-TOS nanoparticles were prepared via a dialysis method, exhibiting a high drug-loading efficiency of 18.99%. Physicochemical properties of the optimized formulation were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM) and differential scanning calorimetry (DSC). Subsequently, the redox-sensitivity of Hep-cys-TOS nanoparticles was confirmed by the changes in size distribution, morphology and appearance after dithiothreitol (DTT) treatment. Besides, the in vitro release of PTX from Hep-cys-TOS nanoparticles also exhibited a redox-triggered profile. Also, the uptake behavior and pathways of coumarin 6-loaded Hep-cys-TOS nanoparticles were investigated, suggesting the nanoparticles could be taken into MCF-7 cells in energy-dependent, caveolae-mediated and cholesterol-dependent endocytosis manners. Later, MTT assays of different PTX-free and PTX-loaded formulations revealed the desirable safety of PTX-free nanoparticles and the enhanced anti-cancer activity of PTX-loaded Hep-cys-TOS nanoparticles (IC 50 =0.79μg/mL). Apoptosis study indicated the redox-sensitive formulation could induce more apoptosis of MCF-7 cells than insensitive one (55.2% vs. 41.7%), showing the importance of intracellular burst release of PTX. Subsequently, the hemolytic toxicity confirmed the safety of the nanoparticles for intravenous administration. The results indicated the developed redox-sensitive nanoparticles were promising as intracellular drug delivery vehicles for cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tracing iron-carbon redox from surface to core

    NASA Astrophysics Data System (ADS)

    McCammon, C. A.; Cerantola, V.; Bykova, E.; Kupenko, I.; Bykov, M.; Chumakov, A. I.; Rüffer, R.; Dubrovinsky, L. S.

    2017-12-01

    Numerous redox reactions separate the Earth's oxidised surface from its reduced core. Many involve iron, the Earth's most abundant element and the mantle's most abundant transition element. Most iron redox reactions (although not all) also involve other elements, including carbon, where iron-carbon interactions drive a number of important processes within the Earth, for example diamond formation. Many of the Earth's redox boundaries are sharp, much like the seismic properties that define them, for example between the lower mantle and the core. Other regions that appear seismically homogeneous, for example the lower mantle, harbour a wealth of reactions between oxidised and reduced phases of iron and carbon. We have undertaken many experiments at high pressure and high temperature on phases containing iron and carbon using synchrotron-based X-rays to probe structures and iron oxidation states. Results demonstrate the dominant role that crystal structures play in determining the stable oxidation states of iron and carbon, even when oxygen fugacity (and common sense) would suggest otherwise. Iron in bridgmanite, for example, occurs predominantly in its oxidised form (ferric iron) throughout the lower mantle, despite the inferred reducing conditions. Newly discovered structures of iron carbonate also stabilise ferric iron, while simultaneously reducing some carbon to diamond to balance charge. Other high-pressure iron carbonates appear to be associated with the emerging zoo of iron oxide phases, involving transitions between ferrous and ferric iron through the exchange of oxygen. The presentation will trace redox relations between iron and carbon from the Earth's surface to its core, with an emphasis on recent experimental results.

  13. Factors influencing the biogeochemistry of sedimentary carbon and phosphorus in the Sacramento-San Joaquin Delta

    USGS Publications Warehouse

    Nilsen, E.B.; Delaney, M.L.

    2005-01-01

    This study characterizes organic carbon (Corganic) and phosphorus (P) geochemistry in surface sediments of the Sacramento-San Joaquin Delta, California. Sediment cores were collected from five sites on a sample transect from the edge of the San Francisco Bay eastward to the freshwater Consumnes River. The top 8 cm of each core were analyzed (in 1-cm intervals) for Corganic, four P fractions, and redox-sensitive trace metals (uranium and manganese). Sedimentary Corganic concentrations and Corganic:P ratios decreased, while reactive P concentrations increased moving inland in the Delta. The fraction of total P represented by organic P increased inland, while that of authigenic P was higher bayward than inland reflecting increased diagenetic alteration of organic matter toward the bayward end of the transect. The redox indicator metals are consistent with decreasing sedimentary suboxia inland. The distribution of P fractions and C:P ratios reflect the presence of relatively labile organic matter in upstream surface sediments. Sediment C and P geochemistry is influenced by site-specific particulate organic matter sources, the sorptive power of the sedimentary material present, physical forcing, and early diagenetic transformations presumably driven by Corganic oxidation. ?? 2005 Estuarine Research Federation.

  14. Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status.

    PubMed

    Bergamo, Paolo; Volpe, Maria Grazia; Lorenzetti, Stefano; Mantovani, Alberto; Notari, Tiziana; Cocca, Ennio; Cerullo, Stefano; Di Stasio, Michele; Cerino, Pellegrino; Montano, Luigi

    2016-12-01

    The Campania region in Italy is facing an environmental crisis due to the illegal disposal of toxic waste. Herein, a pilot study (EcoFoodFertility initiative) was conducted to investigate the use of human semen as an early biomarker of pollution on 110 healthy males living in various areas of Campania with either high or low environmental impact. The semen from the "high impact" group showed higher zinc, copper, chromium and reduced iron levels, as well as reduced sperm motility and higher sperm DNA Fragmentation Index (DFI). Redox biomarkers (total antioxidant capacity, TAC, and glutathione, GSH) and the activity of antioxidant enzymes in semen were lower in the "high impact" group. The percentage of immotile spermatozoa showed a significant inverse correlation with TAC and GSH. Overall, several semen parameters (reduced sperm quality and antioxidant defenses, altered chemical element pattern), which were associated with residence in a high polluted environment, could be used in a further larger scale study, as early biomarkers of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.

    PubMed

    Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T

    2016-12-01

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.

  16. The Redox Dynamics of Iron in a Seasonally Waterlogged Forest Soil (Chaux Forest, Eastern France) Traced with Rare Earth Element Distribution Patterns

    NASA Astrophysics Data System (ADS)

    Steinmann, M.; Floch, A. L.; Lucot, E.; Badot, P. M.

    2014-12-01

    The oxyhydroxides of iron are common soil minerals and known to control the availability of various major and trace elements essential for biogeochemical processes. We present a study from acidic natural forest soils, where reducing redox conditions due to seasonal waterlogging lead to the dissolution of Fe-oxyhydroxides, and to the release of Fe to soil water. In order to study in detail the mechanism of redox cycling of Fe, we used Rare Earth Element (REE) distribution patterns, because an earlier study has shown that they are a suitable tool to identify trace metal sources during soil reduction in wetland soils (Davranche et al., 2011). The REE patterns of soil leachates obtained with the modified 3-step BCR extraction scheme of Rauret et al., (1999) were compared with those of natural soil water. The adsorbed fractions (F1 leach), the reducible fraction of the deepest soil horizon H4 (F2 leach, 50-120 cm), and the oxidizable fractions of horizons H2 to H4 (F3 leachs, 24-120 cm) yielded REE patterns almost identical to soil water (see figure), showing that the REE and trace metal content of soil water was mainly derived from the F1 pool, and from the F2 and F3 pools of the clay mineral-rich deep soil horizons. In contrast, the F2 leach mobilized mainly Fe-oxyhydroxides associated with organic matter of the surface soil and yielded REE patterns significantly different from those of soil water. These results suggest that the trace metal content of soil water in hydromorphic soils is primarily controlled by the clay fraction of the deeper soil horizons and not by organic matter and related Fe-oxyhydroxides of the surface soil. Additional analyses are in progress in order to verify whether the REE and trace metals of the deeper soil horizons were directly derived from clay minerals or from associated Fe-oxyhydroxide coatings. Refs cited: Davranche et al. (2011), Chem. Geol. 284; Rauret et al. (1999), J. Environ. Monit. 1.

  17. Mitochondrial Redox Signaling and Tumor Progression.

    PubMed

    Chen, Yuxin; Zhang, Haiqing; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2016-03-25

    Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as "tumor suppressors" or prevent excessive ROS to act as "tumor promoter". Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.

  18. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.

    PubMed

    Boschloo, Gerrit; Hagfeldt, Anders

    2009-11-17

    Dye-sensitized solar cells (DSCs) have gained widespread interest because of their potential for low-cost solar energy conversion. Currently, the certified record efficiency of these solar cells is 11.1%, and measurements of their durability and stability suggest lifetimes exceeding 10 years under operational conditions. The DSC is a photoelectrochemical system: a monolayer of sensitizing dye is adsorbed onto a mesoporous TiO(2) electrode, and the electrode is sandwiched together with a counter electrode. An electrolyte containing a redox couple fills the gap between the electrodes. The redox couple is a key component of the DSC. The reduced part of the couple regenerates the photo-oxidized dye. The formed oxidized species diffuses to the counter electrode, where it is reduced. The photovoltage of the device depends on the redox couple because it sets the electrochemical potential at the counter electrode. The redox couple also affects the electrochemical potential of the TiO(2) electrode through the recombination kinetics between electrons in TiO(2) and oxidized redox species. This Account focuses on the special properties of the iodide/triiodide (I(-)/I(3)(-)) redox couple in dye-sensitized solar cells. It has been the preferred redox couple since the beginning of DSC development and still yields the most stable and efficient DSCs. Overall, the iodide/triiodide couple has good solubility, does not absorb too much light, has a suitable redox potential, and provides rapid dye regeneration. But what distinguishes I(-)/I(3)(-) from most redox mediators is the very slow recombination kinetics between electrons in TiO(2) and the oxidized part of the redox couple, triiodide. Certain dyes adsorbed at TiO(2) catalyze this recombination reaction, presumably by binding iodine or triiodide. The standard potential of the iodide/triiodide redox couple is 0.35 V (versus the normal hydrogen electrode, NHE), and the oxidation potential of the standard DSC-sensitizer (Ru(dcbpy)(2)(NCS)(2)) is 1.1 V. The driving force for reduction of oxidized dye is therefore as large as 0.75 V. This process leads to the largest internal potential loss in DSC devices. We expect that overall efficiencies above 15% might be achieved if half of this internal potential loss could be gained. The regeneration of oxidized dye with iodide leads to the formation of the diiodide radical (I(2)(-*)). The redox potential of the I(2)(-*)/I(-) couple must therefore be considered when determining the actual driving force for dye regeneration. The formed I(2)(-*) disproportionates to I(3)(-) and I(-), which leads to a large loss in potential energy.

  19. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology.

    PubMed

    Wagener, Kerstin C; Kolbrink, Benedikt; Dietrich, Katharina; Kizina, Kathrin M; Terwitte, Lukas S; Kempkes, Belinda; Bao, Guobin; Müller, Michael

    2016-07-01

    Reactive oxygen species (ROS) and downstream redox alterations not only mediate physiological signaling but also neuropathology. For long, ROS/redox imaging was hampered by a lack of reliable probes. Genetically encoded redox sensors overcame this gap and revolutionized (sub)cellular redox imaging. Yet, the successful delivery of sensor-coding DNA, which demands transfection/transduction of cultured preparations or stereotaxic microinjections of each subject, remains challenging. By generating transgenic mice, we aimed to overcome limiting cultured preparations, circumvent surgical interventions, and to extend effectively redox imaging to complex and adult preparations. Our redox indicator mice widely express Thy1-driven roGFP1 (reduction-oxidation-sensitive green fluorescent protein 1) in neuronal cytosol or mitochondria. Negative phenotypic effects of roGFP1 were excluded and its proper targeting and functionality confirmed. Redox mapping by ratiometric wide-field imaging reveals most oxidizing conditions in CA3 neurons. Furthermore, mitochondria are more oxidized than cytosol. Cytosolic and mitochondrial roGFP1s reliably report cell endogenous redox dynamics upon metabolic challenge or stimulation. Fluorescence lifetime imaging yields stable, but marginal, response ranges. We therefore developed automated excitation ratiometric 2-photon imaging. It offers superior sensitivity, spatial resolution, and response dynamics. Redox indicator mice enable quantitative analyses of subcellular redox dynamics in a multitude of preparations and at all postnatal stages. This will uncover cell- and compartment-specific cerebral redox signals and their defined alterations during development, maturation, and aging. Cross-breeding with other disease models will reveal molecular details on compartmental redox homeostasis in neuropathology. Combined with ratiometric 2-photon imaging, this will foster our mechanistic understanding of cellular redox signals in their full complexity. Antioxid. Redox Signal. 25, 41-58.

  20. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology

    PubMed Central

    Wagener, Kerstin C.; Kolbrink, Benedikt; Dietrich, Katharina; Kizina, Kathrin M.; Terwitte, Lukas S.; Kempkes, Belinda; Bao, Guobin

    2016-01-01

    Abstract Aims: Reactive oxygen species (ROS) and downstream redox alterations not only mediate physiological signaling but also neuropathology. For long, ROS/redox imaging was hampered by a lack of reliable probes. Genetically encoded redox sensors overcame this gap and revolutionized (sub)cellular redox imaging. Yet, the successful delivery of sensor-coding DNA, which demands transfection/transduction of cultured preparations or stereotaxic microinjections of each subject, remains challenging. By generating transgenic mice, we aimed to overcome limiting cultured preparations, circumvent surgical interventions, and to extend effectively redox imaging to complex and adult preparations. Results: Our redox indicator mice widely express Thy1-driven roGFP1 (reduction–oxidation-sensitive green fluorescent protein 1) in neuronal cytosol or mitochondria. Negative phenotypic effects of roGFP1 were excluded and its proper targeting and functionality confirmed. Redox mapping by ratiometric wide-field imaging reveals most oxidizing conditions in CA3 neurons. Furthermore, mitochondria are more oxidized than cytosol. Cytosolic and mitochondrial roGFP1s reliably report cell endogenous redox dynamics upon metabolic challenge or stimulation. Fluorescence lifetime imaging yields stable, but marginal, response ranges. We therefore developed automated excitation ratiometric 2-photon imaging. It offers superior sensitivity, spatial resolution, and response dynamics. Innovation and Conclusion: Redox indicator mice enable quantitative analyses of subcellular redox dynamics in a multitude of preparations and at all postnatal stages. This will uncover cell- and compartment-specific cerebral redox signals and their defined alterations during development, maturation, and aging. Cross-breeding with other disease models will reveal molecular details on compartmental redox homeostasis in neuropathology. Combined with ratiometric 2-photon imaging, this will foster our mechanistic understanding of cellular redox signals in their full complexity. Antioxid. Redox Signal. 25, 41–58. PMID:27059697

  1. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  2. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling.

    PubMed

    Parker, Lewan; Trewin, Adam; Levinger, Itamar; Shaw, Christopher S; Stepto, Nigel K

    2018-04-01

    Redox homeostasis and redox-sensitive protein signaling play a role in exercise-induced adaptation. The effects of sprint-interval exercise (SIE), high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE), on post-exercise plasma redox status are unclear. Furthermore, whether post-exercise plasma redox status reflects skeletal muscle redox-sensitive protein signaling is unknown. In a randomized crossover design, eight healthy adults performed a cycling session of HIIE (5×4min at 75% W max ), SIE (4×30s Wingate's), and CMIE work-matched to HIIE (30min at 50% of W max ). Plasma hydrogen peroxide (H 2 O 2 ), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) activity, and catalase activity were measured immediately post, 1h, 2h and 3h post-exercise. Plasma redox status biomarkers were correlated with phosphorylation of skeletal muscle p38-MAPK, JNK, NF-κB, and IκBα protein content immediately and 3h post-exercise. Plasma catalase activity was greater with SIE (56.6±3.8Uml -1 ) compared to CMIE (42.7±3.2, p<0.01) and HIIE (49.0±5.5, p=0.07). Peak plasma H 2 O 2 was significantly (p<0.05) greater after SIE (4.6±0.6nmol/ml) and HIIE (4.1±0.4) compared to CMIE (3.3±0.5). Post-exercise plasma TBARS and SOD activity significantly (p<0.05) decreased irrespective of exercise protocol. A significant positive correlation was detected between plasma catalase activity and skeletal muscle p38-MAPK phosphorylation 3h post-exercise (r=0.40, p=0.04). No other correlations were detected (all p>0.05). Low-volume SIE elicited greater post-exercise plasma catalase activity compared to HIIE and CMIE, and greater H 2 O 2 compared to CMIE. Plasma redox status did not, however, adequately reflect skeletal muscle redox-sensitive protein signaling. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Paleo-Productivity across the Paleocene-Eocene Thermal Maximum, Walvis Ridge Transect (ODP Sites 1262, 1263, and 1266)

    NASA Astrophysics Data System (ADS)

    Chun, C. O.; Delaney, M. L.; Zachos, J. C.

    2005-12-01

    Walvis Ridge transect (Ocean Drilling Program (ODP) Leg 208) provides the first high-resolution depth-transect of deep-sea sediments recovered from the south Atlantic across the P/E boundary. A geographically restricted depth transect (~ 2.2 km, water depths between 2500 and 4770 m) allows us to constrain the surface waters by assuming marine productivity conditions in the overlying water column are similar across all sites. The sediment record will reveal variations for processes that are water-depth dependent. We use the geochemical tracers; biogenic barium, phosphorus, calcium carbonate, and the redox sensitive trace elements manganese and uranium, to reconstruct nutrient burial, paleoproductivity, and bottom water redox chemistry across the Paleocene-Eocene Thermal Maximum (PETM). We calculate our concentrations on a calcium carbonate-free basis to account for dilution by non-carbonate sediments. Trace metal enrichment factors (EFs) are calculated relative to bulk crustal averages. We chose three sites from the depth transect: the shallowest (Site 1263, 2717 m water depth), an intermediate site (Site 1266, 3798 m water depth), and the deepest site (Site 1262, 4755 m water depth). We sampled each site at a sample resolution of ~ 1-2 kyr for 5 m.y. centered at 55 Ma. Uranium EFs at the shallow site exhibits values ~ 5 pre-event and drop to values near crustal averages during and after the carbon isotope excursion (CIE). No dramatic changes in U EFs across the P/E boundary are recorded at the deep and intermediate sites. Mn EFs range between 2.9 -8.6 prior to the event across all three sites, suggesting an oxygenated depositional environment. At the boundary, Mn EFs drop to crustal averages at all sites, then gradually return to pre-event values, indicating more reducing environments during the CIE, a possible explanation for the benthic extinction event (BEE) observed across this transect. Ba excess and reactive phosphorus exhibit decreased concentrations during the CIE with gradual return to pre-event values at the shallowest and deepest sites. We will compare the paleo-productivity and redox chemistry response at the Walvis Ridge sites across the PETM.

  4. Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China

    USGS Publications Warehouse

    Li, Yangfang; Zhang, Tongwei; Ellis, Geoffrey S.; Shao, Deyong

    2017-01-01

    The main controlling factors of organic matter accumulation in the Upper Ordovician Wufeng–Lower Silurian Longmaxi Formations are complex and remain highly controversial. This study investigates the vertical variation of total organic carbon (TOC) content as well as major and trace element concentrations of four Ordovician–Silurian transition sections from the Upper Yangtze Platform of South China to reconstruct the paleoenvironment of these deposits and to improve our understanding of those factors that have influenced organic matter accumulation in these deposits.The residual TOC content of the Wufeng Formation averages 3.2% and ranges from 0.12 to 6.0%. The overlying lower Longmaxi Formation displays higher TOC content (avg. 4.4%), followed upsection by consistent and lower values that average 1.6% in the upper Longmaxi Formation. The concentration and covariation of redox-sensitive trace elements (Mo, U and V) suggest that organic-rich intervals of the Wufeng Formation accumulated under predominantly anoxic conditions. Organic-rich horizons of the lower Longmaxi Formation were deposited under strongly anoxic to euxinic conditions, whereas organic-poor intervals of the upper Longmaxi Formation accumulated under suboxic conditions. Positive correlations between redox proxies and TOC contents suggest that organic matter accumulation was predominantly controlled by preservation. Barium excess (Baxs) values indicate high paleoproductivity throughout the entire depositional sequence, with an increase in the lower Longmaxi Formation. Increased productivity may have been induced by enhanced P recycling, as evidenced by elevated Corg/Ptot ratios. Mo–U covariation and Mo/TOC values reveal that the Wufeng Formation was deposited under extremely restricted conditions, whereas the Longmaxi Formation accumulated under moderately restricted conditions. During the Late Ordovician, the extremely restricted nature of ocean circulation on the Upper Yangtze Platform in tandem with enhanced stratification of the water column promoted anoxic conditions favorable for the preservation of organic matter. During Early Silurian time, organic matter accumulation was principally controlled by changes in sea level, which affected terrigenous flux, redox conditions, and the degree of nutrition recycling.

  5. Selenium as a versatile center in fluorescence probe for the redox cycle between HClO oxidative stress and H2S repair.

    PubMed

    Lou, Zhangrong; Li, Peng; Han, Keli

    2015-01-01

    Selenium is a biologically important trace element and acts as an active center of glutathione peroxidase (GPx). GPx is the important antioxidant enzyme to protect organisms from oxidative damage via catalyzing the reaction between ROS and glutathione (GSH). Mimicking the oxidation-reduction cycles of the versatile selenium core in GPx, we can develop fluorescence probes to detect oxidation and reduction events in living systems. The cellular redox balance between hypochloric acid (HClO) and hydrogen sulfide (H2S) has broad implications in human health and diseases, such as Alzheimer's disease (AD). Therefore, to further investigate the roles of this redox balance and understand the pathogenesis of neurodegenerative diseases, it is necessary to detect the redox state between HClO and H2S in real time. We have developed a reversible fluorescence probe MPhSe-BOD for imaging of the redox cycle between HClO and H2S based on oxidation and reduction of selenide in living cells.

  6. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    De Carlo, Eric Heinen; Green, William J.

    2002-04-01

    We present data on the composition of water from Lake Vanda, Antarctica. Vanda and other lakes in the McMurdo Dry Valleys of Antarctica are characterized by closed basins, permanent ice covers, and deep saline waters. The meromictic lakes provide model systems for the study of trace metal cycling owing to their pristine nature and the relative simplicity of their biogeochemical systems. Lake Vanda, in the Wright Valley, is supplied by a single input, the Onyx River, and has no output. Water input to the lake is balanced by sublimation of the nearly permanent ice cap that is broken only near the shoreline during the austral summer. The water column is characterized by an inverse thermal stratification of anoxic warm hypersaline water underlying cold oxic freshwater. Water collected under trace-element clean conditions was analyzed for its dissolved and total rare earth element (REE) concentrations by inductively coupled plasma mass spectrometry. Depth profiles are characterized by low dissolved REE concentrations (La, Ce, <15 pM) in surface waters that increase slightly (La, 70 pM; Ce, 20 pM) with increasing depth to ∼55 m, the limit of the fresh oxic waters. Below this depth, a sharp increase in the concentrations of strictly trivalent REE (e.g., La, 5 nM) is observed, and a submaximum in redox sensitive Ce (2.6 nM) is found at 60- to 62-m depth. At a slightly deeper depth, a sharper Ce maximum is observed with concentrations exceeding 11 nM at a 67-m depth, immediately above the anoxic zone. The aquatic concentrations of REE reported here are ∼50-fold higher than previously reported for marine oxic/anoxic boundaries and are, to our knowledge, the highest ever observed at natural oxic/anoxic interfaces. REE maxima occur within stable and warm saline waters. All REE concentrations decrease sharply in the sulfidic bottom waters. The redox-cline in Lake Vanda is dominated by diffusional processes and vertical transport of dissolved species driven by concentration gradients. Furthermore, because the ultraoligotrophic nature of the lake limits the potential for organic phases to act as metal carriers, metal oxide coatings and sulfide phases appear to largely govern the distribution of trace elements. We discuss REE cycling in relation to the roles of redox reactions and competitive scavenging onto Mn- and Fe-oxides coatings on clay sized particles in the upper oxic water column and their release by reductive dissolution near the anoxic/oxic interface.

  7. Redox regulation of neuronal voltage-gated calcium channels.

    PubMed

    Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna

    2014-08-20

    Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain.

  8. Copper complexes as a source of redox active MRI contrast agents.

    PubMed

    Dunbar, Lynsey; Sowden, Rebecca J; Trotter, Katherine D; Taylor, Michelle K; Smith, David; Kennedy, Alan R; Reglinski, John; Spickett, Corinne M

    2015-10-01

    The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.

  9. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    PubMed

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-08-01

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Involvement of Redox State in the Aging of Drosophila melanogaster

    PubMed Central

    Radyuk, Svetlana N.; Sohal, Rajindar S.

    2013-01-01

    Abstract Significance: The main objective of this review was to provide an exposition of investigations, conducted in Drosophila melanogaster, on the role of reactive oxygen species and redox state in the aging process. While early transgenic studies did not clearly support the validity of the oxidative stress hypothesis of aging, predicated on the accumulation of structural damage, they spawned a broader search for redox-related effects that might impact the aging process. Recent Advances: Initial evidence implicating the thiol redox state as a possible causative factor in aging has been obtained in Drosophila. Overexpression of genes, such as GCL, G6PD, Prx2, and Prx5, which are involved in the maintenance of thiol redox homeostasis, has strong positive effects on longevity. Further, the depletion of peroxiredoxin activity in the mitochondria through the double knockdown of Prx5 and Prx3 not only results in a redox crisis but also elicits a rapid aging phenotype. Critical Issues: Herein, we summarize the present status of knowledge about the main components of the machinery controlling thiol redox homeostasis and describe how age-related redox fluctuations might impact aging more acutely through disruption of the redox-sensitive signaling mechanisms rather than via the simple accumulation of structural damage. Future Directions: Based on these initial insights into the plausible impact of redox fluctuations on redox signaling, future studies should focus on the pathways that have been explicitly implicated in aging, such as insulin signaling, TOR, and JNK/FOXO, with particular attention to elements that are redox sensitive. Antioxid. Redox Signal. 19, 788–803. PMID:23458359

  11. Thiol-based Redox Proteins in Brassica napus Guard Cell Abscisic Acid and Methyl Jasmonate Signaling

    PubMed Central

    Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C.; Assmann, Sarah M.; Chen, Sixue

    2014-01-01

    SUMMARY Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in different physiological processes. Little is known, however, about redox sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis (DIGE) and isotope-coded affinity tag (ICAT). In total, 65 and 118 potential redox responsive proteins were identified in ABA and MeJA treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of energy, stress and defense, and metabolism. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA and MeJA treated samples. A total of 44 cysteines was mapped in all the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a SNRK2 kinase and an isopropylmalate dehydrogenase were confirmed to be redox regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in guard cell ABA and MeJA signal transduction. PMID:24580573

  12. Redox Regulation of Neuronal Voltage-Gated Calcium Channels

    PubMed Central

    Jevtovic-Todorovic, Vesna

    2014-01-01

    Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125

  13. Geochemistry of organic carbon and trace elements in boreal stratified lakes during different seasons

    NASA Astrophysics Data System (ADS)

    Moreva, O. Y.; Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.

    2008-12-01

    Our knowledge of chemical fluxes in the system rock-soils-rivers-ocean of boreal and glacial landscapes is limited by the least studied part, i.e., the river water transformation between the lake and the river systems. Dissolved organic carbon (DOC), nutrients, major and trace elements are being leached from soil profile to the river but subjected to chemical transformation in the lakes due to phytoplankton and bacterial activity. As a result, many lakes in boreal regions are quite different in chemical composition compared to surrounding rivers and demonstrate important chemical stratification. The main processes responsible for chemical stratification in lakes are considered to be i) diffusion fluxes from the sediment to the bottom water accompanied by sulfate reduction and methanogenesis in the sediments and ii) dissolution/mineralization of precipitating organic matter (mineral fraction, detritus, plankton pellets) in the bottom layer horizons under anoxic conditions. Up to present time, distinguishing between two processes remains difficult. This paper is aimed at filling this gap via detailed geochemical analysis of DOC and trace elements in the water column profiles of three typical stratified lakes of Arkhangelsk region in Kenozersky National Parc (64° N) in winter (glacial) and in summer period. Concentration of most trace elements (Li, B, Al, Ti, V, Cr, Ni, Co, Zn, As, Rb, Sr, Y, Zr, Mo, Sb, Ba, REEs, Th, U) are not subjected to strong variations along the water column, despite the presence of strong or partial redox stratification. Apparently, these elements are not significantly controlled by production/mineralization processes and redox phenomena in the water column, or the influence of these processes is not pronounced under the control by the allochtonous river water input. In particularly, the stability of titanium and aluminum concentration along the depth profile and their independence of iron behavior suggest the important control by dissolved organic matter. Therefore, organo-ferric colloids controlling petrogenic elements speciation in soil and river waters are being replaced by autochthonous organic colloids in the lake system. The same observation is true for some heavy metals such as nickel, copper and zinc, whereas cobalt, as limiting component, is being strongly removed from the photic zone or it is coprecipitating with manganese hydroxide. Results of the present work allow quantitative evaluation of the role of redox processes in the bottom horizons and organic detritus degradation in the creation of chemical stratification of small lakes with high DOC concentration. Further insights on geochemical migration of trace elements in lakes require : i) study of colloidal speciation using in-situ dialysis; ii) monitoring the annual and seasonal dynamics of redox processes and TE concentration variation along the profile; iii) quantitative assessment of bacterial degradation of suspended OM and Mn and Fe redox reactions along the depth profile; iv) setting the sedimentary traps for evaluation of suspended material fluxes, and, v) thorough study of chemical composition of interstitial pore waters.

  14. Electrode Reactions Coupled with Chemical Reactions of Oxygen, Water and Acetaldehyde in an Ionic Liquid: New Approaches for Sensing Volatile Organic Compounds.

    PubMed

    Chi, Xiaowei; Tang, Yongan; Zeng, Xiangqun

    2016-10-20

    Water and oxygen are ubiquitous present in ambient conditions. This work studies the unique oxygen, trace water and a volatile organic compound (VOC) acetaldehyde redox chemistry in a hydrophobic and aprotic ionic liquid (IL), 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([Bmpy] [NTf 2 ]) by cyclic voltammetry and potential step methods. One electron oxygen reduction leads to superoxide radical formation in the IL. Trace water in the IL acts as a protic species that reacts with the superoxide radical. Acetaldehyde is a stronger protic species than water for reacting with the superoxide radical. The presence of trace water in the IL was also demonstrated to facilitate the electro-oxidation of acetaldehyde, with similar mechanism to that in the aqueous solutions. A multiple-step coupling reaction mechanism between water, superoxide radical and acetaldehyde has been described. The unique characteristics of redox chemistry of acetaldehyde in [Bmpy][NTf 2 ] in the presence of oxygen and trace water can be controlled by electrochemical potentials. By controlling the electrode potential windows, several methods including cyclic voltammetry, potential step methods (single-potential, double-potential and triple-potential step methods) were established for the quantification of acetaldehyde. Instead of treating water and oxygen as frustrating interferents to ILs, we found that oxygen and trace water chemistry in [Bmpy][NTf 2 ] can be utilized to develop innovative electrochemical methods for electroanalysis of acetaldehyde.

  15. Electrode Reactions Coupled with Chemical Reactions of Oxygen, Water and Acetaldehyde in an Ionic Liquid: New Approaches for Sensing Volatile Organic Compounds

    PubMed Central

    Chi, Xiaowei; Tang, Yongan; Zeng, Xiangqun

    2017-01-01

    Water and oxygen are ubiquitous present in ambient conditions. This work studies the unique oxygen, trace water and a volatile organic compound (VOC) acetaldehyde redox chemistry in a hydrophobic and aprotic ionic liquid (IL), 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([Bmpy] [NTf2]) by cyclic voltammetry and potential step methods. One electron oxygen reduction leads to superoxide radical formation in the IL. Trace water in the IL acts as a protic species that reacts with the superoxide radical. Acetaldehyde is a stronger protic species than water for reacting with the superoxide radical. The presence of trace water in the IL was also demonstrated to facilitate the electro-oxidation of acetaldehyde, with similar mechanism to that in the aqueous solutions. A multiple-step coupling reaction mechanism between water, superoxide radical and acetaldehyde has been described. The unique characteristics of redox chemistry of acetaldehyde in [Bmpy][NTf2] in the presence of oxygen and trace water can be controlled by electrochemical potentials. By controlling the electrode potential windows, several methods including cyclic voltammetry, potential step methods (single-potential, double-potential and triple-potential step methods) were established for the quantification of acetaldehyde. Instead of treating water and oxygen as frustrating interferents to ILs, we found that oxygen and trace water chemistry in [Bmpy][NTf2] can be utilized to develop innovative electrochemical methods for electroanalysis of acetaldehyde. PMID:29142331

  16. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Treesearch

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  17. Strontium and Trace Metals in the Mississippi River Mixing Zone

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Marcantonio, F.

    2001-12-01

    Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.

  18. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.

    PubMed

    Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F

    2018-05-22

    Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA

    DOE PAGES

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; ...

    2017-04-05

    Geochemical cycling of the redox-sensitive trace elements arsenic (As) and vanadium (V) was examined in shallow pore waters from a marsh in an interdistributary embayment of the lower Mississippi River Delta. In particular, we explore how redox changes with depth and distance from the Mississippi River affect As and V cycling in the marsh pore waters. Previous geophysical surveys and radon mass balance calculations suggested that Myrtle Grove Canal and bordering marsh receive fresh groundwater, derived in large part from seepage of the Mississippi River, which subsequently mixes with brackish waters of Barataria Bay. In addition, the redox geochemistry ofmore » pore waters in the wetlands is affected by Fe and S cycling in the shallow subsurface (0-20 cm). Sediments with high organic matter content undergo SO 4 2- reduction, a process ubiquitous in the shallow subsurface but largely absent at greater depths (~3 m). Instead, at depth, in the absence of organic-rich sediments, Fe concentrations are elevated, suggesting that reduction of Fe(III) oxides/oxyhydroxides buffers redox conditions. Arsenic and V cycling in the shallow subsurface are decoupled from their behavior at depth, where both V and As appear to be removed from solution by either diffusion or adsorption onto, or co-precipitation with, authigenic minerals within the deeper aquifer sediments. Pore water As concentrations are greatest in the shallow subsurface (e.g., up to 315 nmol kg -1 in the top ~20 cm of the sediment) but decrease with depth, reaching values <30 nmol kg -1 at depths between 3 and 4 m. Vanadium concentrations appear to be tightly coupled to Fe cycling in the shallow subsurface, but at depth, V may be adsorbed to clay or sedimentary organic matter (SOM). Diffusive fluxes are calculated to examine the export of trace elements from the shallow marsh pore waters to the overlying canal water that floods the marsh. The computed fluxes suggest that the shallow sediment serves as a source of Fe, Mn, and As to the surface waters, whereas the sediments act as a sink for V. Iron and Mn fluxes are substantial, ranging from 50 to 30,000 and 770 to 4,300 nmol cm -2 day -1, respectively, whereas As fluxes are much less, ranging from 2.1 to 17 nmol cm -2 day -1. Vanadium fluxes range from 3.0 nmol cm -2 day -1 directed into the sediment to 1.7 nmol cm -2 day -1 directed out of the sediment« less

  20. Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk

    Geochemical cycling of the redox-sensitive trace elements arsenic (As) and vanadium (V) was examined in shallow pore waters from a marsh in an interdistributary embayment of the lower Mississippi River Delta. In particular, we explore how redox changes with depth and distance from the Mississippi River affect As and V cycling in the marsh pore waters. Previous geophysical surveys and radon mass balance calculations suggested that Myrtle Grove Canal and bordering marsh receive fresh groundwater, derived in large part from seepage of the Mississippi River, which subsequently mixes with brackish waters of Barataria Bay. In addition, the redox geochemistry ofmore » pore waters in the wetlands is affected by Fe and S cycling in the shallow subsurface (0-20 cm). Sediments with high organic matter content undergo SO 4 2- reduction, a process ubiquitous in the shallow subsurface but largely absent at greater depths (~3 m). Instead, at depth, in the absence of organic-rich sediments, Fe concentrations are elevated, suggesting that reduction of Fe(III) oxides/oxyhydroxides buffers redox conditions. Arsenic and V cycling in the shallow subsurface are decoupled from their behavior at depth, where both V and As appear to be removed from solution by either diffusion or adsorption onto, or co-precipitation with, authigenic minerals within the deeper aquifer sediments. Pore water As concentrations are greatest in the shallow subsurface (e.g., up to 315 nmol kg -1 in the top ~20 cm of the sediment) but decrease with depth, reaching values <30 nmol kg -1 at depths between 3 and 4 m. Vanadium concentrations appear to be tightly coupled to Fe cycling in the shallow subsurface, but at depth, V may be adsorbed to clay or sedimentary organic matter (SOM). Diffusive fluxes are calculated to examine the export of trace elements from the shallow marsh pore waters to the overlying canal water that floods the marsh. The computed fluxes suggest that the shallow sediment serves as a source of Fe, Mn, and As to the surface waters, whereas the sediments act as a sink for V. Iron and Mn fluxes are substantial, ranging from 50 to 30,000 and 770 to 4,300 nmol cm -2 day -1, respectively, whereas As fluxes are much less, ranging from 2.1 to 17 nmol cm -2 day -1. Vanadium fluxes range from 3.0 nmol cm -2 day -1 directed into the sediment to 1.7 nmol cm -2 day -1 directed out of the sediment« less

  1. Trace Elements in Manganese Minerals as Potential Biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Lanza, N.; Clegg, S. M.; Cousin, A.; Forni, O.; Kirk, M. F.; Lamm, S. N.; Ollila, A.; Wiens, R. C.

    2017-12-01

    Observations from the Curiosity rover in Gale crater, Mars have shown the presence of high abundances of manganese (>3 wt% MnO) within sedimentary rocks throughout the traverse. Such high Mn abundances point to the past presence of abundant liquid water and strongly oxidizing conditions. On Earth, these types of environments are almost always habitable and are frequently inhabited by microbes. Given its close association with life and habitable environments on Earth, manganese has long been considered a potential biosignature for Mars. However, high concentrations of martian Mn have only recently been observed. In addition to the observations in Gale crater, high abundances of Mn have also been observed in Endeavor crater by the Opportunity rover and in the paired martian meteorites NWA 7034 and 7533 (`Black Beauty'), suggesting that Mn deposits may be more widespread on Mars than previously thought. The goal of this work is to determine whether there are unique signatures from rover payload instruments that can distinguish Mn-rich deposits as biogenic in origin (i.e., produced by life) from abiogenic Mn deposits. Importantly, Mn-oxides are known to scavenge trace metals from water because of their surface charge properties. We hypothesize that the presence and abundance of specific trace elements are the critical, distinguishing evidence for identifying the biogenic origin of Mn-bearing materials. A suite of natural rocks containing Mn-rich minerals with a range of Mn redox states was selected for analysis with laser-induced breakdown spectroscopy (LIBS). Samples with a biogenic origin had mixed valence redox states between Mn3+ and Mn4+ as inferred by mineralogy. Trace elements Ba, Li, Sr, and Rb were quantified and the presence or absence of Zn and Cu was ascertained by examining key LIBS peaks. Results show that samples with a known microbial origin had moderate Mn abundances >30 wt% MnO and higher Li and Ba. These results suggest that high Mn abundance alone is not sufficient evidence of a biosignatures. However, the presence of trace elements may help to infer the redox state of Mn, which may in turn point to samples that are more likely to have a biogenic origin.

  2. Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition.

    PubMed

    Bräutigam, Lars; Pudelko, Linda; Jemth, Ann-Sofie; Gad, Helge; Narwal, Mohit; Gustafsson, Robert; Karsten, Stella; Carreras Puigvert, Jordi; Homan, Evert; Berndt, Carsten; Berglund, Ulrika Warpman; Stenmark, Pål; Helleday, Thomas

    2016-04-15

    Cancer cells are commonly in a state of redox imbalance that drives their growth and survival. To compensate for oxidative stress induced by the tumor redox environment, cancer cells upregulate specific nononcogenic addiction enzymes, such as MTH1 (NUDT1), which detoxifies oxidized nucleotides. Here, we show that increasing oxidative stress in nonmalignant cells induced their sensitization to the effects of MTH1 inhibition, whereas decreasing oxidative pressure in cancer cells protected against inhibition. Furthermore, we purified zebrafish MTH1 and solved the crystal structure of MTH1 bound to its inhibitor, highlighting the zebrafish as a relevant tool to study MTH1 biology. Delivery of 8-oxo-dGTP and 2-OH-dATP to zebrafish embryos was highly toxic in the absence of MTH1 activity. Moreover, chemically or genetically mimicking activated hypoxia signaling in zebrafish revealed that pathologic upregulation of the HIF1α response, often observed in cancer and linked to poor prognosis, sensitized embryos to MTH1 inhibition. Using a transgenic zebrafish line, in which the cellular redox status can be monitored in vivo, we detected an increase in oxidative pressure upon activation of hypoxic signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine protected embryos with activated hypoxia signaling against MTH1 inhibition, suggesting that the aberrant redox environment likely causes sensitization. In summary, MTH1 inhibition may offer a general approach to treat cancers characterized by deregulated hypoxia signaling or redox imbalance. Cancer Res; 76(8); 2366-75. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Mobility of radionuclides and trace elements in soil from legacy NORM and undisturbed naturally 232Th-rich sites.

    PubMed

    Mrdakovic Popic, Jelena; Meland, Sondre; Salbu, Brit; Skipperud, Lindis

    2014-05-01

    Investigation of radionuclides (232Th and 238U) and trace elements (Cr, As and Pb) in soil from two legacy NORM (former mining sites) and one undisturbed naturally 232Th-rich site was conducted as a part of the ongoing environmental impact assessment in the Fen Complex area (Norway). The major objectives were to determine the radionuclide and trace element distribution and mobility in soils as well as to analyze possible differences between legacy NORM and surrounding undisturbed naturally 232Th-rich soils. Inhomogeneous soil distribution of radionuclides and trace elements was observed for each of the investigated sites. The concentration of 232Th was high (up to 1685 mg kg(-1), i.e., ∼7000 Bq kg(-1)) and exceeded the screening value for the radioactive waste material in Norway (1 Bq g(-1)). Based on the sequential extraction results, the majority of 232Th and trace elements were rather inert, irreversibly bound to soil. Uranium was found to be potentially more mobile, as it was associated with pH-sensitive soil phases, redox-sensitive amorphous soil phases and soil organic compounds. Comparison of the sequential extraction datasets from the three investigated sites revealed increased mobility of all analyzed elements at the legacy NORM sites in comparison with the undisturbed 232Th-rich site. Similarly, the distribution coefficients Kd (232Th) and Kd (238U) suggested elevated dissolution, mobility and transportation at the legacy NORM sites, especially at the decommissioned Nb-mining site (346 and 100 L kg(-1) for 232Th and 238U, respectively), while the higher sorption of radionuclides was demonstrated at the undisturbed 232Th-rich site (10,672 and 506 L kg(-1) for 232Th and 238U, respectively). In general, although the concentration ranges of radionuclides and trace elements were similarly wide both at the legacy NORM and at the undisturbed 232Th-rich sites, the results of soil sequential extractions together with Kd values supported the expected differences between sites as the consequences of previous mining operations. Hence, mobility and possible elevated bioavailability at the legacy NORM site could be expected and further risk assessment should take this into account when decisions about the possible intervention measures are made.

  4. Cost-driven materials selection criteria for redox flow battery electrolytes

    NASA Astrophysics Data System (ADS)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  5. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells.

    PubMed

    Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C; Assmann, Sarah M; Chen, Sixue

    2014-05-01

    Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging. In total, 65 and 118 potential redox-responsive proteins were identified in ABA- and MeJA-treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of 'energy', 'stress and defense' and 'metabolism'. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA- and MeJA-treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non-fermenting 1-related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox-regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  6. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis.

    PubMed

    Zhu, Zhongling; Du, Shuangshuang; Du, Yibo; Ren, Jing; Ying, Guoguang; Yan, Zhao

    2018-01-01

    Glutathione (GSH) and GSH-related enzymes constitute the most important defense system that protects cells from free radical, radiotherapy, and chemotherapy attacks. In this study, we aim to explore the potential role and regulatory mechanism of the GSH redox cycle in drug resistance in glioblastoma multiforme (GBM) cells. We found that temozolomide (TMZ)-resistant glioma cells displayed lower levels of endogenous reactive oxygen species and higher levels of total antioxidant capacity and GSH than sensitive cells. Moreover, the expression of glutathione reductase (GSR), the key enzyme of the GSH redox cycle, was higher in TMZ-resistant cells than in sensitive cells. Furthermore, silencing GSR in drug-resistant cells improved the sensitivity of cells to TMZ or cisplatin. Conversely, the over-expression of GSR in sensitive cells resulted in resistance to chemotherapy. In addition, the GSR enzyme partially prevented the oxidative stress caused by pro-oxidant L-buthionine -sulfoximine. The modulation of redox state by GSH or L-buthionine -sulfoximine regulated GSR-mediated drug resistance, suggesting that the action of GSR in drug resistance is associated with the modulation of redox homeostasis. Intriguingly, a trend toward shorter progress-free survival was observed among GBM patients with high GSR expression. These results indicated that GSR is involved in mediating drug resistance and is a potential target for improving GBM treatment. © 2017 International Society for Neurochemistry.

  7. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    PubMed Central

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  8. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1–3) which is related directly to its first hydrolysis constant, pK1 = 2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK1 = 5.0) and provides buffering and removal of Al by mineral precipitation from pH 4–5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.

  9. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective and Sensitive Detection of H2S: Synthesis, Spectra and Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhang, Changyu; Wang, Runyu; Cheng, Longhuai; Li, Bingjie; Xi, Zhen; Yi, Long

    2016-07-01

    Hydrogen sulfide (H2S) is an important signalling molecule with multiple biological functions. The reported H2S fluorescent probes are majorly based on redox or nucleophilic reactions. The combination usage of both redox and nucleophilic reactions could improve the probe’s selectivity, sensitivity and stability. Herein we report a new dual-reactable probe with yellow turn-on fluorescence for H2S detection. The sensing mechanism of the dual-reactable probe was based on thiolysis of NBD (7-nitro-1,2,3-benzoxadiazole) amine (a nucleophilic reaction) and reduction of azide to amine (a redox reaction). Compared with its corresponding single-reactable probes, the dual-reactable probe has higher selectivity and fluorescence turn-on fold with magnitude of multiplication from that of each single-reactable probe. The highly selective and sensitive properties enabled the dual-reactable probe as a useful tool for efficiently sensing H2S in aqueous buffer and in living cells.

  10. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge.

    PubMed

    Grünheid, Steffen; Amy, Gary; Jekel, Martin

    2005-09-01

    Bank filtration and artificial recharge provide an important drinking water source to the city of Berlin. Due to the practice of water recycling through a semi-closed urban water cycle, the introduction of effluent organic matter (EfOM) and persistent trace organic pollutants in the drinking water is of potential concern. In the work reported herein, the research objectives are to study the removal of bulk and trace organics at bank filtration and artificial recharge sites and to assess important factors of influence for the Berlin area. The monthly analytical program is comprised of dissolved organic carbon (DOC), UV absorbance (UVA254), liquid chromatography with organic carbon detection (LC-OCD), differentiated adsorbable organic halogens (AOX) and single organic compound analysis of a few model compounds. More than 1 year of monitoring was conducted on observation wells located along the flowpaths of the infiltrating water at two field sites that have different characteristics regarding redox conditions, travel time, and travel distance. Two transects are highlighted: one associated with a bank filtration site dominated by anoxic/anaerobic conditions with a travel time of up to 4-5 months, and another with an artificial recharge site dominated by aerobic conditions with a travel time of up to 50 days. It was found that redox conditions and travel time significantly influence the DOC degradation kinetics and the efficiency of AOX and trace compound removal.

  11. Novel insights into redox system and the mechanism of redox regulation.

    PubMed

    Wang, Xin; Hai, Chunxu

    2016-07-01

    In view of the critical role of redox system in numerous physiological and pathophysiological processes, it is important to clearly understand the family members and regulatory mechanism of redox system. In this work, we will systematically review the current data detailing the reactive oxygen species (ROS), enzymatic and non-enzymatic antioxidants and redox sensitive transcription factors and we give a brief description of redox-mediated epigenetic and post-translational regulation. We propose that the redox system functions as a "Redox Chain", consisting of "ROS-generating Enzyme Chain", "Combined Antioxidant Chain" and "Transcription Factor Chain". We suggest that an individualized assessment of the redox status in the body should be conducted for the redox intervention of a patient. The strategy of intervention is to maintain redox homeostasis via either facilitation of ROS signaling or enhancement of antioxidant defense. These findings provide valuable new insights into redox system and open up new paths for the control of redox-related disorders.

  12. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility

    NASA Astrophysics Data System (ADS)

    Loader, Matthew A.; Wilkinson, Jamie J.; Armstrong, Robin N.

    2017-08-01

    The redox sensitivity of Ce and Eu anomalies in zircon has been clearly demonstrated by experimental studies, and these may represent an important tool in the exploration for porphyry Cu deposits which are thought to be derived from oxidised magmas. These deposits are significant because they are the source of much of the world's copper and almost all of the molybdenum and rhenium, key elements in many modern technologies. However, Ce and Eu anomalies in zircon are also affected by the co-crystallisation of REE bearing phases, such as titanite. Here, we report the trace element chemistry of zircons from titanite-bearing intrusions associated with mineralisation at the world class Oyu Tolgoi porphyry Cu-Au deposit (Mongolia). Based on these data, we suggest that neither zircon Eu/Eu*, nor Ce4+/Ce3+ are robust proxies for melt redox conditions, because they are both too strongly dependent on melt REE concentrations, which are usually poorly constrained and controlled by the crystallisation of titanite and other REE-bearing phases. In spite of this, Eu/Eu* can broadly distinguish between fertile and barren systems, so may still be an indicator of porphyry magma fertility, and a useful tool for exploration.

  13. Sufficient oxygen for animal respiration 1,400 million years ago

    PubMed Central

    Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian; Bjerrum, Christian J.; Hammarlund, Emma U.; Costa, M. Mafalda; Connelly, James N.; Zhang, Baomin; Su, Jin; Canfield, Donald E.

    2016-01-01

    The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves. PMID:26729865

  14. A redox-mediated chromogenic reaction and application in immunoassay.

    PubMed

    Yu, Ru-Jia; Ma, Wei; Peng, Mao-Pan; Bai, Zhi-Shan; Long, Yi-Tao

    2016-08-31

    A novel redox-mediated chromogenic reaction was demonstrated based on the reaction between HAuCl4 and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which generate various color responses from red to green in the resulting solutions. Various redox substance could be used to mediate the reaction and trigger a distinct color response. We established a sensitive hydrogen peroxide colorimetric sensor based on the redox-mediated chromogenic reaction and depicted the application both in detection of enzyme and in an immunoassay. Combining the traditional chromogenic reagent with gold nanoparticles, our assay has the advantage in short response time (within three minutes), high sensitivity (10(-12) g mL(-1) for HBsAg) and stability. Copyright © 2016. Published by Elsevier B.V.

  15. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.

    PubMed

    Ying, Yi-Lun; Hu, Yong-Xu; Gao, Rui; Yu, Ru-Jia; Gu, Zhen; Lee, Luke P; Long, Yi-Tao

    2018-04-25

    Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron transfer dynamics in live cells.

  16. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.

    PubMed

    Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang

    2017-09-01

    Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

  17. Trace metal dynamics in floodplain soils of the river Elbe: a review.

    PubMed

    Schulz-Zunkel, Christiane; Krueger, Frank

    2009-01-01

    This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive.

  18. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.

    PubMed

    Brandes, Ralf P; Weissmann, Norbert; Schröder, Katrin

    2014-08-01

    The only known function of the Nox family of NADPH oxidases is the production of reactive oxygen species (ROS). Some Nox enzymes show high tissue-specific expression and the ROS locally produced are required for synthesis of hormones or tissue components. In the cardiovascular system, Nox enzymes are low abundant and function as redox-modulators. By reacting with thiols, nitric oxide (NO) or trace metals, Nox-derived ROS elicit a plethora of cellular responses required for physiological growth factor signaling and the induction and adaptation to pathological processes. The interactions of Nox-derived ROS with signaling elements in the cardiovascular system are highly diverse and will be detailed in this article, which is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System". Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    PubMed

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.

    2013-12-01

    Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net ecosystem fluxes of many climate-relevant trace gases, insight into the use of certain trace gases to estimate rates of more general biogeochemical processes is useful.

  1. TRACE ELEMENT BINDING DURING STRUCTURAL TRANSFORMATION IN IRON OXIDES

    EPA Science Inventory

    Iron (hydr)oxides often control the mobility of inorganic contaminants in soils and sediments. A poorly ordered form of ferrihydrite is commonly produced during rapid oxidation of ferrous iron at sharp redox fronts encountered during discharge of anoxic/suboxic waters into terre...

  2. Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils

    Treesearch

    Daniel Liptzin; Whendee L. Silver

    2015-01-01

    Humid tropical forest soils are characterized by warm temperatures, abundant rainfall, and high rates of biological activity that vary considerably in both space and time. These conditions, together with finely textured soils typical of humid tropical forests lead to periodic low redox conditions, even in well-drained upland environments. The relationship between redox...

  3. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    PubMed

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  4. Redox Signaling and Persistent Pulmonary Hypertension of the Newborn.

    PubMed

    Sharma, Megha; Afolayan, Adeleye J

    2017-01-01

    Reactive oxygen species (ROS) are redox-signaling molecules that are critically involved in regulating endothelial cell functions, host defense, aging, and cellular adaptation. Mitochondria are the major sources of ROS and important sources of redox signaling in pulmonary circulation. It is becoming increasingly evident that increased mitochondrial oxidative stress and aberrant signaling through redox-sensitive pathways play a direct causative role in the pathogenesis of many cardiopulmonary disorders including persistent pulmonary hypertension of the newborn (PPHN). This chapter highlights redox signaling in endothelial cells, antioxidant defense mechanism, cell responses to oxidative stress, and their contributions to disease pathogenesis.

  5. Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases.

    PubMed

    Sun, Qijuan; Luan, Lin; Arif, Muhammad; Li, Jiaxin; Dong, Quan-Jiang; Gao, Yuanyuan; Chi, Zhe; Liu, Chen-Guang

    2018-06-01

    The purpose of this study was to develop an oral nanocarrier as budesonide delivery system and to evaluate its therapeutic potential for inflammatory bowel disease (IBD). The nanoparticles (NPs) based on an amphiphilic inulin polymer with 4-aminothiophenol (ATP) grafted onto carboxymethyl inulin (CMI) were prepared. The particle sizes were about 210.18 nm and had the obvious pH/redox sensitive swelling transitions. The drug-release study of NPs <-- >in vitro showed a low release rate (about 45 wt%) in GSH-free media, whereas high release rate (about 80 wt%) in the media containing 20 mM GSH, exhibiting a redox-responsive property. Further in vivo experiments found the NPs tended to accumulate in inflamed sites, and exerted excellent therapeutic efficacy in comparison to drug suspension in colitis mice model. All the results demonstrated that the redox-sensitive NPs, based on amphiphilic inulin, may be used as colon-targeted drug delivery for the treatment of IBD. Copyright © 2017. Published by Elsevier Ltd.

  6. Optical cryoimaging of rat kidney and the effective role of chromosome 13 in salt-induced hypertension

    NASA Astrophysics Data System (ADS)

    Salehpour, F.; Yang, C.; Kurth, T.; Cowley, A. W.; Ranji, M.

    2015-03-01

    The objective of this work is to assess oxidative stress levels in salt-sensitive hypertension animal model using 3D optical cryoimager to image mitochondrial redox ratio. We studied Dahl salt-induced (SS) rats, and compared the results with a consomic SS rat strain (SSBN13). The SSBN13 strain was developed by the introgression of chromosome from the Brown Norway (BN) rat into the salt-sensitive (SS) genetic background and exhibits significant protection from salt induced hypertension1 . These two groups were fed on a high salt diet of 8.0% NaCl for one week. Mitochondrial redox ratio (NADH/FAD=NADH RR), was used as a quantitative marker of the oxidative stress in kidney tissue. Maximum intensity projected images and their corresponding histograms in each group were acquired from each kidney group. The result showed a 49% decrease in mitochondrial redox ratio of SS compared to SSBN13 translated to an increase in the level of oxidative stress of the tissue. Therefore, the results quantify oxidative stress levels and its effect on mitochondrial redox in salt sensitive hypertension.

  7. Redox modulation of plant developmental regulators from the class I TCP transcription factor family.

    PubMed

    Viola, Ivana L; Güttlein, Leandro N; Gonzalez, Daniel H

    2013-07-01

    TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP) transcription factors participate in plant developmental processes associated with cell proliferation and growth. Most members of class I, one of the two classes that compose the family, have a conserved cysteine at position 20 (Cys-20) of the TCP DNA-binding and dimerization domain. We show that Arabidopsis (Arabidopsis thaliana) class I proteins with Cys-20 are sensitive to redox conditions, since their DNA-binding activity is inhibited after incubation with the oxidants diamide, oxidized glutathione, or hydrogen peroxide or with nitric oxide-producing agents. Inhibition can be reversed by treatment with the reductants dithiothreitol or reduced glutathione or by incubation with the thioredoxin/thioredoxin reductase system. Mutation of Cys-20 in the class I protein TCP15 abolished its redox sensitivity. Under oxidizing conditions, covalently linked dimers were formed, suggesting that inactivation is associated with the formation of intermolecular disulfide bonds. Inhibition of class I TCP protein activity was also observed in vivo, in yeast (Saccharomyces cerevisiae) cells expressing TCP proteins and in plants after treatment with redox agents. This inhibition was correlated with modifications in the expression of the downstream CUC1 gene in plants. Modeling studies indicated that Cys-20 is located at the dimer interface near the DNA-binding surface. This places this residue in the correct orientation for intermolecular disulfide bond formation and explains the sensitivity of DNA binding to the oxidation of Cys-20. The redox properties of Cys-20 and the observed effects of cellular redox agents both in vitro and in vivo suggest that class I TCP protein action is under redox control in plants.

  8. Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family1[W][OA

    PubMed Central

    Viola, Ivana L.; Güttlein, Leandro N.; Gonzalez, Daniel H.

    2013-01-01

    TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP) transcription factors participate in plant developmental processes associated with cell proliferation and growth. Most members of class I, one of the two classes that compose the family, have a conserved cysteine at position 20 (Cys-20) of the TCP DNA-binding and dimerization domain. We show that Arabidopsis (Arabidopsis thaliana) class I proteins with Cys-20 are sensitive to redox conditions, since their DNA-binding activity is inhibited after incubation with the oxidants diamide, oxidized glutathione, or hydrogen peroxide or with nitric oxide-producing agents. Inhibition can be reversed by treatment with the reductants dithiothreitol or reduced glutathione or by incubation with the thioredoxin/thioredoxin reductase system. Mutation of Cys-20 in the class I protein TCP15 abolished its redox sensitivity. Under oxidizing conditions, covalently linked dimers were formed, suggesting that inactivation is associated with the formation of intermolecular disulfide bonds. Inhibition of class I TCP protein activity was also observed in vivo, in yeast (Saccharomyces cerevisiae) cells expressing TCP proteins and in plants after treatment with redox agents. This inhibition was correlated with modifications in the expression of the downstream CUC1 gene in plants. Modeling studies indicated that Cys-20 is located at the dimer interface near the DNA-binding surface. This places this residue in the correct orientation for intermolecular disulfide bond formation and explains the sensitivity of DNA binding to the oxidation of Cys-20. The redox properties of Cys-20 and the observed effects of cellular redox agents both in vitro and in vivo suggest that class I TCP protein action is under redox control in plants. PMID:23686421

  9. Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India

    NASA Astrophysics Data System (ADS)

    Vreeland, Heidi; Schauer, James J.; Russell, Armistead G.; Marshall, Julian D.; Fushimi, Akihiro; Jain, Grishma; Sethuraman, Karthik; Verma, Vishal; Tripathi, Sachi N.; Bergin, Michael H.

    2016-12-01

    Roadside trash burning is largely unexamined as a factor that influences air quality, radiative forcing, and human health even though it is ubiquitously practiced across many global regions, including throughout India. The objective of this research is to examine characteristics and redox activity of fine particulate matter (PM2.5) associated with roadside trash burning in Bangalore, India. Emissions from smoldering and flaming roadside trash piles (n = 24) were analyzed for organic and elemental carbon (OC/EC), brown carbon (BrC), and toxicity (i.e. redox activity, measured via the dithiothreitol "DTT" assay). A subset of samples (n = 8) were further assessed for toxicity by a cellular assay (macrophage assay) and also analyzed for trace organic compounds. Results show high variability of chemical composition and toxicity between trash-burning emissions, and characteristic differences from ambient samples. OC/EC ratios for trash-burning emissions range from 0.8 to 1500, while ambient OC/EC ratios were observed at 5.4 ± 1.8. Trace organic compound analyses indicate that emissions from trash-burning piles were frequently composed of aromatic di-acids (likely from burning plastics) and levoglucosan (an indicator of biomass burning), while the ambient sample showed high response from alkanes indicating notable representation from vehicular exhaust. Volume-normalized DTT results (i.e., redox activity normalized by the volume of air pulled through the filter during sampling) were, unsurprisingly, extremely elevated in all trash-burning samples. Interestingly, DTT results suggest that on a per-mass basis, fresh trash-burning emissions are an order of magnitude less redox-active than ambient air (13.4 ± 14.8 pmol/min/μgOC for trash burning; 107 ± 25 pmol/min/μgOC for ambient). However, overall results indicate that near trash-burning sources, exposure to redox-active PM can be extremely high.

  10. Imaging dynamic redox processes with genetically encoded probes.

    PubMed

    Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P

    2014-08-01

    Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The vanadium isotope compositions of subduction zone lavas

    NASA Astrophysics Data System (ADS)

    Tian, S.; Huang, F.

    2017-12-01

    Vanadium is a redox sensitive element with multiple oxidation states, and thus it has the potential to trace redox-related processes. With the advancement of analytical method for V isotopes, we are now able to recognize V isotope fractionation for igneous rocks. Subduction zones are critical zones on the Earth for the interaction between crust and mantle where undergo complex geological processes. However, V isotope data of subduction zone lavas are still rare except those reported in [1]. To investigate the V isotope variations of subduction zones and discuss the potential to apply V to trace mantle redox state. In this contribution, we report δ51V for three subduction zone lavas from Kamchatka, Lesser Antilles, and Aleutians which are characterized by well-documented magmatic evolutionary series. 47 arc lava samples have been analyzed and the δ51V data of them range from -0.91‰ to -0.53‰ (2sd = 0.10 ‰). Among these samples, primitive arc basalts with MgO > 6 wt. % have an average δ51V of -0.80 ± 0.15‰ (2sd, n = 20), broadly consistent with δ51V data of MORB [2, 3]. Within the single arc of Kamchatka, δ51V data of primitive basalts from the arc front to the back-arc is almost constant, suggesting limited influences of mantle melting and source heterogeneity on V isotopes. δ51V data of these samples show no correlation with Ba/Nb, suggesting that fluids have little impact on V isotopes. On the other hand, δ51V data of the more involved samples with MgO < 6 wt. % are negatively correlated with MgO contents, indicating that the 50V preferentially enters crystalline minerals, which produces heavier V isotope compositions of residual melts. Distinct to the observation showing 2‰ fractionation reported in [1], the magnitude of V isotope fractionation in arc lavas is much smaller (0.38‰) in this study. Future works are needed for better understanding the V isotope fractionation mechanisms of subduction zone lavas. [1]Prytulak et al., 2017, Geochem. Persp. Let. 3, 75-84. [2]Huang et al., 2016, Goldschmidt Abstracts. 1190. [3] Prytulak et al., 2013, EPSL. 365, 177-189.

  12. [Redox Molecular Imaging Using ReMI].

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Utsumi, Hideo

    2015-01-01

    Tissue redox status is one of the most important parameters to maintain homeostasis in the living body. Numerous redox reactions are involved in metabolic processes, such as energy production in the mitochondrial electron transfer system. A variety of intracellular molecules such as reactive oxygen species, glutathione, thioredoxins, NADPH, flavins, and ascorbic acid may contribute to the overall redox status in tissues. Breakdown of redox balance may lead to oxidative stress and can induce many pathological conditions such as cancer, neurological disorders, and aging. Therefore imaging of tissue redox status and monitoring antioxidant levels in living organisms can be useful in the diagnosis of disease states and assessment of treatment response. In vivo redox molecular imaging technology such as electron spin resonance imaging (ESRI), magnetic resonance imaging (MRI), and dynamic nuclear polarization (DNP)-MRI (redox molecular imaging; ReMI) is emerging as a viable redox status imaging modality. This review focuses on the application of magnetic resonance technologies using MRI or DNP-MRI and redox-sensitive contrast agents.

  13. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe.

    PubMed

    Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G

    2015-11-03

    Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite.

    PubMed

    Flynn, Elaine D; Catalano, Jeffrey G

    2018-06-05

    During biogeochemical iron cycling at redox interfaces, dissolved Fe(II) induces the recrystallization of Fe(III) oxides. Oxalate and other organic acids promote dissolution of these minerals and may also induce recrystallization. These processes may redistribute trace metals among the mineral bulk, mineral surface, and aqueous solution. However, the impact of interactions among organic acids, dissolved Fe(II), and iron oxide minerals on trace metal fate in such systems is unclear. The present study thus explores the effect of oxalate on Ni release from and incorporation into hematite and goethite in the absence and presence of Fe(II). When Ni is initially structurally incorporated into the iron oxides, both oxalate and dissolved Fe(II) promote the release of Ni to aqueous solution. When both species are present, their effects on Ni release are synergistic at pH 7 but inhibitory at pH 4, indicating that cooperative and competitive interactions vary with pH. In contrast, oxalate suppresses Ni incorporation into goethite and hematite during Fe(II)-induced recrystallization, decreasing the proportion of Ni substituting in a mineral structure by up to 36%. These observations suggest that at redox interfaces oxalate largely enhances trace metal mobility. In such settings, oxalate, and likely other organic acids, may thus enhance micronutrient availability and inhibit contaminant sequestration.

  15. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Feng, Dong; Liang, Qianyong; Xia, Zhen; Chen, Linying; Chen, Duofu

    2015-12-01

    Cold hydrocarbon seepage is a frequently observed phenomenon along continental margins worldwide. However, little is known about the impact of seeping fluids on the geochemical cycle of redox-sensitive elements. Pore waters from four gravity cores (D-8, D-5, D-7, and D-F) collected from cold-seep sites of the northern South China Sea were analyzed for SO42-, Mg2+, Ca2+, Sr2+, dissolved inorganic carbon (DIC), δ13CDIC, dissolved Fe, Mn, and trace elements (e.g. Mo, U). The sulfate concentration-depth profiles, δ13CDIC values and (ΔDIC+ΔCa2++ΔMg2+)/ΔSO42- ratios suggest that organoclastic sulfate reduction (OSR) is the dominant process in D-8 core. Besides OSR, anaerobic oxidation of methane (AOM) is partially responsible for depletion of sulfate at D-5 and D-7 cores. The sulfate consumption at D-F core is predominantly caused by AOM. The depth of sulfate-methane interface (SMI) and methane diffusive flux of D-F core are calculated to be ~7 m and 0.035 mol m-2 yr-1, respectively. The relatively shallow SMI and high methane flux at D-F core suggest the activity of gas seepage in this region. The concentrations of dissolved uranium (U) were inferred to decrease significantly within the iron reduction zone. It seems that AOM has limited influence on the U geochemical cycling. In contrast, a good correlation between the consumption of sulfate and the removal of molybdenum (Mo) suggests that AOM has a significantly influence on the geochemical cycle of Mo at cold seeps. Accordingly, cold seep environments may serve as an important potential sink in the marine geochemical cycle of Mo.

  16. Past and Present Weathering Recorded in Cretaceous Shale Samples from Colombia - Implications for Paleoenvironmental Reconstructions

    NASA Astrophysics Data System (ADS)

    Mahoney, C.; März, C.; Wagner, T.

    2016-12-01

    It is well known that for geochemical studies on ancient rocks, outcrop samples can be compromised by present-day weathering. This raises the fundamental question, if only outcrop samples are available, how reliable can paleoenvironmental reconstructions be? To answer this question, shale samples have been gathered from Cretaceous outcrops of the Eastern Cordillera of Colombia, and analysed by XRF and Fe speciation in order to investigate paleo-redox conditions in this margin basin of the Proto-Atlantic. The samples are consistently depleted (relative to average shale) in redox-related trace metals and in total Fe indicating oxic conditions, whereas Fe speciation (highly reactive over total Fe) indicates anoxic conditions. We ask if this depletion in trace metals and total Fe is due to a lack of primary supply from the depositional environment, or if is it caused by modern oxidative outcrop weathering in this tropical mountainous setting? Our results from artificial weathering experiments confirm that certain trace metals U, Zn and Mo are easily leached from the samples, whereas Fe is quantitatively retained in the samples due to conversion of pyrite and siderite to Fe oxides. Pristine samples from wells in the adjacent Middle Magdalena Valley Basin (MMV) also exhibit total Fe depletion, but are up to 2000-fold enriched in Mo. This combined evidence indicates that the depletion of trace metals may be due to contemporary weathering, but there has to be a paleoenvironmental reason behind the low total Fe signature. The Guiana Shield was the probable source of sediment to the Cretaceous basin. The Chemical Index of Alteration suggest the source of detrital material was initially highly weathered (average 83, maximum 95). Ancient laterites have been identified on the Guiana Shield, and retention of Fe in these laterites may explain the low Fe input into the Eastern Cordillera basin. These results confirm that trace metal-based redox proxies may be seriously affected by oxidative weathering in outcrops, and caution should be applied when using such samples. But it also appears that due to the extreme chemical weathering in the provenance area, the Eastern Cordillera basin (and adjacent MMV basin) was unusually Fe-depleted throughout the Cretaceous, and this geochemical signal is preserved even in weathered outcrop samples.

  17. Characterization of redox conditions in groundwater contaminant plumes

    NASA Astrophysics Data System (ADS)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  18. Redox-Directed Cancer Therapeutics: Molecular Mechanisms and Opportunities

    PubMed Central

    2009-01-01

    Abstract Redox dysregulation originating from metabolic alterations and dependence on mitogenic and survival signaling through reactive oxygen species represents a specific vulnerability of malignant cells that can be selectively targeted by redox chemotherapeutics. This review will present an update on drug discovery, target identification, and mechanisms of action of experimental redox chemotherapeutics with a focus on pro- and antioxidant redox modulators now in advanced phases of preclinal and clinical development. Recent research indicates that numerous oncogenes and tumor suppressor genes exert their functions in part through redox mechanisms amenable to pharmacological intervention by redox chemotherapeutics. The pleiotropic action of many redox chemotherapeutics that involves simultaneous modulation of multiple redox sensitive targets can overcome cancer cell drug resistance originating from redundancy of oncogenic signaling and rapid mutation. Moreover, some redox chemotherapeutics may function according to the concept of synthetic lethality (i.e., drug cytotoxicity is confined to cancer cells that display loss of function mutations in tumor suppressor genes or upregulation of oncogene expression). The impressive number of ongoing clinical trials that examine therapeutic performance of novel redox drugs in cancer patients demonstrates that redox chemotherapy has made the crucial transition from bench to bedside. Antioxid. Redox Signal. 11, 3013–3069. PMID:19496700

  19. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system

    PubMed Central

    Gostimskaya, Irina; Grant, Chris M.

    2016-01-01

    Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron–sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1M1L mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron–sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own. PMID:26898146

  20. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.

    PubMed

    Feng, Lingyan; Sivanesan, Arumugam; Lyu, Zhaozi; Offenhäusser, Andreas; Mayer, Dirk

    2015-04-15

    Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mantle redox evolution and the oxidation state of the Archean atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Eggler, D. H.; Raeburn, S. P.

    1993-01-01

    Current models predict that the early atmosphere consisted mostly of CO2, N2, and H2O, along with traces of H2 and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until approximately 2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.

  2. Selective separation of iron from uranium in quantitative determination of traces of uranium by alpha spectrometry in soil/sediment sample.

    PubMed

    Singhal, R K; Narayanan, Usha; Karpe, Rupali; Kumar, Ajay; Ranade, A; Ramachandran, V

    2009-04-01

    During this work, controlled redox potential methodology was adopted for the complete separation of traces of uranium from the host matrix of mixed hydroxide of Iron. Precipitates of Fe(+2) and Fe(+3) along with other transuranic elements were obtained from acid leached solution of soil by raising the pH to 9 with 14N ammonia solution. The concentration of the uranium observed in the soil samples was 200-600 ppb, whereas in sediment samples, the concentration range was 61-400 ppb.

  3. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.

    PubMed

    Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi

    2013-05-01

    Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oxidovanadium(IV/V) complexes as new redox mediators in dye-sensitized solar cells: a combined experimental and theoretical study.

    PubMed

    Apostolopoulou, Andigoni; Vlasiou, Manolis; Tziouris, Petros A; Tsiafoulis, Constantinos; Tsipis, Athanassios C; Rehder, Dieter; Kabanos, Themistoklis A; Keramidas, Anastasios D; Stathatos, Elias

    2015-04-20

    Corrosiveness is one of the main drawbacks of using the iodide/triiodide redox couple in dye-sensitized solar cells (DSSCs). Alternative redox couples including transition metal complexes have been investigated where surprisingly high efficiencies for the conversion of solar to electrical energy have been achieved. In this paper, we examined the development of a DSSC using an electrolyte based on square pyramidal oxidovanadium(IV/V) complexes. The oxidovanadium(IV) complex (Ph4P)2[V(IV)O(hybeb)] was combined with its oxidized analogue (Ph4P)[V(V)O(hybeb)] {where hybeb(4-) is the tetradentate diamidodiphenolate ligand [1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzenato}and applied as a redox couple in the electrolyte of DSSCs. The complexes exhibit large electron exchange and transfer rates, which are evident from electron paramagnetic resonance spectroscopy and electrochemistry, rendering the oxidovanadium(IV/V) compounds suitable for redox mediators in DSSCs. The very large self-exchange rate constant offered an insight into the mechanism of the exchange reaction most likely mediated through an outer-sphere exchange mechanism. The [V(IV)O(hybeb)](2-)/[V(V)O(hybeb)](-) redox potential and the energy of highest occupied molecular orbital (HOMO) of the sensitizing dye N719 and the HOMO of [V(IV)O(hybeb)](2-) were calculated by means of density functional theory electronic structure calculation methods. The complexes were applied as a new redox mediator in DSSCs, while the cell performance was studied in terms of the concentration of the reduced and oxidized form of the complexes. These studies were performed with the commercial Ru-based sensitizer N719 absorbed on a TiO2 semiconducting film in the DSSC. Maximum energy conversion efficiencies of 2% at simulated solar light (AM 1.5; 1000 W m(-2)) with an open circuit voltage of 660 mV, a short-circuit current of 5.2 mA cm(-2), and a fill factor of 0.58 were recorded without the presence of any additives in the electrolyte.

  5. Regional patterns of labile organic carbon flux in North American Arctic Margin (NAAM) as reflected by redox sensitive-elements distributions in sediments

    NASA Astrophysics Data System (ADS)

    Gobeil, C.; Kuzyk, Z. Z. A.; Goni, M. A.; Macdonald, R. W.

    2016-02-01

    Concentrations of elements (S, Mn, Mo, U, Cd, Re) providing insights on organic C metabolized through oxidative processes at the sea floor were measured in 27 sediment cores collected along a section extending from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of these elements were used to i) document the relative importance of aerobic versus anaerobic degradation of organic C in NAAM sediments, ii) infer variations in water column carbon flux and iii) estimate the importance of this margin as a sink for key elements in the Arctic and global ocean. Distributions of Mn, total S and reduced inorganic S demonstrated that most sediments along the NAAM had relatively thick (>1 cm) surface oxic layers, underlain by sediments with weakly reducing conditions and limited sulphate reduction. Strongly reducing conditions accompanied by substantial sedimentary pyrite burial occurred only in certain subregions, including the Bering-Chukchi Shelves, shallow portions of Barrow Canyon. Estimated accumulation rates of authigenic S, Mo, Cd and U, and total Re displayed marked spatial variability that was related to sedimentary redox conditions induced by the supply of labile C to the seabed, as shown by significant relationships between the accumulation rates and vertical C flux, estimated from regional primary production values and water depth at the coring sites. High primary production combined with shallow water columns drive elevated rates of authigenic trace element accumulation in sediments from the Bering-Chukchi Shelves whereas low production combined with moderately deep conditions drive low rates of accumulation in sediments in the Beaufort Shelf, Davis Strait and Canadian Archipelago. Using the average authigenic trace element accumulation rates in sediments from the various regions, we submit that the shelves along the NAAM margin are important sinks in global marine biogeochemical budgets.

  6. The influence of stream bed geomorphology on chemical species within the hyporheic zone over time and space

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Reeder, W. J.; Farrell, T. B.; Benner, S. G.; Tonina, D.; Feris, K. P.

    2017-12-01

    The hyporheic zone is well established as an important zone of biogeochemical activity in streams and rivers. Multiple large scale flume experiments were carried out to mimic bedform-controlled hyporheic zones in small streams. The laboratory setting allowed for geochemical measurement resolution and replicates that would not be possible in a natural setting. Two flume experiments that consisted of three small streams with variable sizes of bedform dunes were carried out in which chemical species were measured in the surface water and along hyporheic flow lines in the subsurface. The species measured included dissolved oxygen, pH, alkalinity, major cations (Na+, Mg2+, Ca2+, K+, Si4+, Al3+), anions (NO3-, NO2-, SO42-, PO43-, Cl-), and many trace elements (As, Sr, Co, Ni, Cu, Zn, Pb, U, V). Observed spatial and temporal trends reflect microbiological processes, changing redox conditions, and chemical weathering. In general, microbial respiration causes DO to decrease with residence time, leading to aerobic and anaerobic zones that influence redox-sensitive species and pH gradients that influence mineral solubility. Most other species concentrations, including those of major cations and trace elements, increase with residence time and generally decrease over time elapsed during the experiment. The different dune morphologies dictate flow velocities in the hyporheic zone; for most species, steeper dunes with higher velocities had lower concentrations at the end of the experiment, indicating the role of dune shape in the weathering rates of minerals in hyporheic sediment and the concentrations of dissolved species entering the surface water over time. Many of the observed trends can be applied, at least qualitatively, to understanding how these species will behave in natural settings. This insight will contribute to the understanding of many of the applications of the hyporheic zone (e.g. bioremediation, habitat, greenhouse gas emissions, etc.).

  7. Mineral Magnetic Properties of Partially Oxidized Siderite

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Hanckmann, W. J. F.; Spassov, S.; Behrends, T.

    2017-12-01

    Siderite (FeCO3) is an important mineral in iron redox cycling in the subsurface. It is often characterized geochemically by means of various sequential extraction schemes. However, a mineralogical siderite determination remains rather tedious, particularly when dealing with trace amounts and very fine particles, often the rule in soils and sediments. Here we explore the suitability of the very sensitive magnetic methods to this end, exploiting siderite's magnetic properties at low temperature. The basic magnetic properties of siderite are surprisingly poorly characterized. To contribute to this issue, we have synthesized siderite with varying amounts of ferric iron in a chemostat, next to the magnetic characterization of several siderites from mineral collections. By slowly adding ferrous iron perchlorate to a carbonate solution the synthesis could be tweaked in order to deliver products as crystalline as possible. Synthesis products were verified with XRD; at pH below 7 siderite was the dominant phase, at higher pH the mineral chukanovite (Fe2(OH)2CO3) was found. The degree of oxidation was measured wet-chemically with the ferrozine method. Samples appeared to be oxidized between 1 and 80%, most samples between 1 and 6%. The sequence of low temperature magnetic measurements (on an MPMS3 system) included 1) cooling in a field of 15 mT to 5 K, 2) warming of a 5 T IRM given at 5 K in zero field to 300 K, 3) cooling in a field of 5 T to 5 K, and 4) warming of the field-cooled 5 T IRM in zero field to 300 K. For mineral collection siderite also hysteresis loops were determined at several temperatures to determine the exchange bias field. Conform literature data siderite was found to have a magnetic ordering temperature of 38 K. Oxidation appears to smear out the remanence warming curves while also shifting the ordering temperature upward. Specific magnetic moments were found to vary distinctly, being both lower and higher than reference values. We relate this tentatively to grain size effects that play up since siderite is an antiferromagnet and far from saturation in a 5 T field. Standard addition experiments indicated that one per mil siderite can be traced rock-magnetically, enabling a check on sequential extraction schemes designed to allocate iron to several redox-sensitive pools in natural samples.

  8. POM-assisted electrochemical delignification and bleaching of chemical pulp

    Treesearch

    Helene Laroche; Mohini Sain; Carl Houtman; Claude Daneault

    2001-01-01

    A polyoxometalate-catalyzed electrochemical process has shown good selectivity in delignifying pulp. This breakthrough in redox catalysis shows promise for the development of a new environmentally benign technology for pulp bleaching. The electrochemical process, applied with a mildly alkaline electrolyte solution containing trace amounts of a vanadium-based...

  9. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    PubMed

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  10. Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress

    PubMed Central

    Imber, Marcel; Huyen, Nguyen Thi Thu; Pietrzyk-Brzezinska, Agnieszka J.; Loi, Vu Van; Hillion, Melanie; Bernhardt, Jörg; Thärichen, Lena; Kolšek, Katra; Saleh, Malek; Hamilton, Chris J.; Adrian, Lorenz; Gräter, Frauke; Wahl, Markus C.

    2018-01-01

    Abstract Aims: Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus. In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation. Results: The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap represents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H2O2) or NaOCl in vitro. Treatment with H2O2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed disulfide does not require major structural changes. Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus. Antioxid. Redox Signal. 28, 410–430. PMID:27967218

  11. Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress.

    PubMed

    Imber, Marcel; Huyen, Nguyen Thi Thu; Pietrzyk-Brzezinska, Agnieszka J; Loi, Vu Van; Hillion, Melanie; Bernhardt, Jörg; Thärichen, Lena; Kolšek, Katra; Saleh, Malek; Hamilton, Chris J; Adrian, Lorenz; Gräter, Frauke; Wahl, Markus C; Antelmann, Haike

    2018-02-20

    Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus. In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation. The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap represents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H 2 O 2 ) or NaOCl in vitro. Treatment with H 2 O 2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed disulfide does not require major structural changes. Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus. Antioxid. Redox Signal. 28, 410-430.

  12. Iodide-free ionic liquid with dual redox couples for dye-sensitized solar cells with high open-circuit voltage.

    PubMed

    Li, Chun-Ting; Lee, Chuan-Pei; Lee, Chi-Ta; Li, Sie-Rong; Sun, Shih-Sheng; Ho, Kuo-Chuan

    2015-04-13

    A novel ionic-liquid mediator, 1-butyl-3-{2-oxo-2-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]ethyl}-1H-imidazol-3-ium selenocyanate (ITSeCN), has been successfully synthesized for dye-sensitized solar cells (DSSCs). ITSeCN possesses dual redox channels, imidazolium-functionalized 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) and selenocyanate, which can serve as the cationic redox mediator and the anionic redox mediator, respectively. Therefore, ITSeCN has a favorable redox nature, which results in a more positive standard potential, larger diffusivity, and better kinetic heterogeneous rate constant than those of iodide. The DSSC with the ITSeCN electrolyte shows an efficiency of 8.38 % with a high open-current voltage (VOC ) of 854.3 mV, and this VOC value is about 150 mV higher than that for the iodide-based DSSC. Moreover, different electrocatalytic materials were employed to trigger the redox reaction of ITSeCN. The ITSeCN-based DSSC with the CoSe counter electrode achieved the best performance of 9.01 %, which suggested that transition-metal compound-type materials would be suitable for our newly synthesized ITSeCN mediator. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging

    PubMed Central

    2014-01-01

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054. PMID:25181601

  14. Redox status and pro-survival/pro-apoptotic protein expression in the early cardiac hypertrophy induced by experimental hyperthyroidism.

    PubMed

    Fernandes, R O; Dreher, G J; Schenkel, P C; Fernandes, T R G; Ribeiro, M F M; Araujo, A S R; Belló-Klein, A

    2011-10-01

    This study was conducted to analyse the redox status and redox-sensitive proteins that may contribute to a non-genomic mechanism of cardiac hypertrophy induction by hyperthyroidism. Wistar rats, treated with L-thyroxine (T4) during 2 weeks (12 mg·l(-1) in drinking water), presented cardiac hypertrophy (68% higher than control), without signals of liver or lung congestion. Myocardial reduction of the reduced glutathione: oxidized glutathione (GSSG) ratio (45%) (redox status) and elevation in hydrogen peroxide concentration (H(2) O(2) ) (28%) were observed in hyperthyroid as compared with the control. No significant difference was found in thioredoxin (Trx), Trx reductase activity and Nrf2 (a transcriptional factor) protein expression between groups. Redox-sensitive proteins, quantified using Western blot, presented the following results: increased p-ERK: total extracellular-regulated kinase (ERK) (200%) and Bax:Bcl-2 (62%) ratios and reduced total-Akt (63%) and p-Akt (53%) expressions in the hyperthyroid rats as compared with the control. The redox imbalance, associated with increased immunocontent of a protein related to maladaptative growth (ERK) and reduced immunocontent of protein related to cytoprotection/survival (Akt), may suggest that the molecular scenario could favour the decompensation process of cardiac hypertrophy induced by experimental hyperthyroidism. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Iron isotope biogeochemistry of Neoproterozoic marine shales

    NASA Astrophysics Data System (ADS)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by < 1 ‰ , suggesting that water column processes, namely the degree of oxidation of the ferrous seawater iron reservoir, control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size, allowing a higher degree of partial oxidation, irrespective of increasing environmental oxygen levels. Alternatively, increasing oxygen levels would have led to a higher proportion of Fe(II) being oxidized, without decreasing the initial size of the ferrous seawater iron pool. We consider the latter explanation as the most likely. According to this hypothesis, the δ 56Fe record reflects the redox evolution of Earth's surface environments. δ 56Fe values in pre-Sturtian samples significantly heavier than bulk crust and hydrothermal iron imply partial oxidation of a ferrous seawater iron reservoir. In contrast, mean δ 56Fe values closer to that of hydrothermal iron in post-Sturtian shales reflects oxidation of a larger proportion of the ferrous seawater iron reservoir, and by inference, higher environmental oxygen levels. Nevertheless, significant iron isotopic variation in post-Sturtian shales suggest redox heterogeneity and possibly a dominantly anoxic deep ocean, consistent with results from recent studies using iron speciation and redox sensitive trace metals. However, the interpretation of generally increasing environmental oxygen levels after the Sturtian glaciation highlights the need to better understand the sensitivity of different redox proxies to incremental changes in oxygen levels to enable us to reconcile results from different paleoredox proxies.

  16. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, I, included the following reports:Oxygen in the Solar System: Origins of Isotopic and Redox Complexity; The Origin of Oxygen Isotope Variations in the Early Solar System; Solar and Solar-Wind Oxygen Isotopes and the Genesis Mission; Solar 18O/17O and the Setting for Solar Birth; Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites; Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples; Tracing Meteorites to Their Sources Through Asteroid Spectroscopy; Redox Conditions Among the Terrestrial Planets; Redox Complexity in Martian Meteorites: Implications for Oxygen in the Terrestrial Planets; Implications of Sulfur Isotopes for the Evolution of Atmospheric Oxygen; Oxygen in the Outer Solar System; and On the Oxidation States of the Galilean Satellites: Implications for Internal Structures.

  17. Low concentrations of copper in drinking water increase AP-1 binding in the brain.

    PubMed

    Lung, Shyang; Li, Huihui; Bondy, Stephen C; Campbell, Arezoo

    2015-12-01

    Copper (Cu) in trace amounts is essential for biological organisms. However, dysregulation of the redox-active metal has been implicated in different neurological disorders such as Wilson's, Menkes', Alzheimer's, and Parkinson's diseases. Since many households use Cu tubing in the plumbing system, and corrosion causes the metal to leach into the drinking water, there may be adverse effects on the central nervous system connected with low-level chronic exposure. The present study demonstrates that treatment with a biologically relevant concentration of Cu for 3 months significantly increases activation of the redox-modulated transcription factor AP-1 in mouse brains. This was independent of an upstream kinase indicated in AP-1 activation. Another redox-active transcription factor, NF-κB, was not significantly modified by the Cu exposure. These results indicate that the effect of Cu on AP-1 is unique and may involve direct modulation of DNA binding. © The Author(s) 2012.

  18. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    PubMed

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  19. Duroquinone reduction during passage through the pulmonary circulation.

    PubMed

    Audi, Said H; Bongard, Robert D; Dawson, Christopher A; Siegel, David; Roerig, David L; Merker, Marilyn P

    2003-11-01

    The lungs can substantially influence the redox status of redox-active plasma constituents. Our objective was to examine aspects of the kinetics and mechanisms that determine pulmonary disposition of redox-active compounds during passage through the pulmonary circulation. Experiments were carried out on rat and mouse lungs with 2,3,5,6-tetramethyl-1,4-benzoquinone [duroquinone (DQ)] as a model amphipathic quinone reductase substrate. We measured DQ and durohydroquinone (DQH2) concentrations in the lung venous effluent after injecting, or while infusing, DQ or DQH2 into the pulmonary arterial inflow. The maximum net rates of DQ reduction to DQH2 in the rat and mouse lungs were approximately 4.9 and 2.5 micromol. min(-1).g dry lung wt(-1), respectively. The net rate was apparently the result of freely permeating access of DQ and DQH2 to tissue sites of redox reactions, dominated by dicumarol-sensitive DQ reduction to DQH2 and cyanide-sensitive DQH2 reoxidation back to DQ. The dicumarol sensitivity along with immunodetectable expression of NAD(P)H-quinone oxidoreductase 1 (NQO1) in the rat lung tissue suggest cytoplasmic NQO1 as the dominant site of DQ reduction. The effect of cyanide on DQH2 oxidation suggests that the dominant site of oxidation is complex III of the mitochondrial electron transport chain. If one envisions DQ as a model compound for examining the disposition of amphipathic NQO1 substrates in the lungs, the results are consistent with a role for lung NQO1 in determining the redox status of such compounds in the circulation. For DQ, the effect is conversion of a redox-cycling, oxygen-activating quinone into a stable hydroquinone.

  20. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-08

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Soo Kang, Jin; Park, Min-Ah; Kim, Jae-Yup; Ha Park, Sun; Young Chung, Dong; Yu, Seung-Ho; Kim, Jin; Park, Jongwoo; Choi, Jung-Woo; Jae Lee, Kyung; Jeong, Juwon; Jae Ko, Min; Ahn, Kwang-Soon; Sung, Yung-Eun

    2015-05-01

    Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye-sensitized solar cells (DSCs), with a conversion efficiency (η) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, η = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (η = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (η = 2.80%) when applied to CdSe-based QDSCs.

  2. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells.

    PubMed

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO 2 affects plant growth and productivity. CO 2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO 2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO 2 ) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO 2 responses.

  3. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells

    PubMed Central

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses. PMID:28184230

  4. Activator Protein-1: redox switch controlling structure and DNA-binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-pointmore » redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.« less

  5. Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark)

    NASA Astrophysics Data System (ADS)

    Ludvigsen, L.; Albrechtsen, H.-J.; Heron, G.; Bjerg, P. L.; Christensen, T. H.

    1998-10-01

    The distribution of anaerobic microbial redox processes was investigated along a 305 m long transect of a shallow landfill-leachate polluted aquifer. By unamended bioassays containing sediment and groundwater, 37 samples were investigated with respect to methane production, sulfate, iron, and manganese reduction, and denitrification. Methane production was restricted to the most reduced part of the plume with rates of 0.003-0.055 nmol CH 4/g dry weight/day. Sulfate reduction was observed at rates of maximum 1.8 nmol SO 42-/g dry weight/day along with methane production in the plume, but sulfate reduction was also observed further downgradient of the landfill. Iron reduction at rates of 5-19 nmol Fe(II)/g dry weight/day was observed in only a few samples, but this may be related to a high detection limit for the iron reducing bioassay. Manganese reduction at rates of maximum 2.4 nmol Mn(II)/g dry weight/day and denitrification at rates of 0.2-37 nmol N 2O-N/g dry weight/day were observed in the less reduced part of the plume. All the redox processes were microbial processes. In many cases, several redox processes took place simultaneously, but in all samples one process dominated accounting for more than 70% of the equivalent carbon conversion. The bioassays showed that the redox zones in the plume identified from the groundwater composition (e.g. as methanogenic and sulfate reducing) locally hosted also other redox processes (e.g. iron reduction). This may have implications for the potential of the redox zone to degrade trace amounts of organic chemicals and suggests that unamended bioassays may be an important supplement to other approaches in characterizing the redox processes in an anaerobic plume.

  6. Redox responses are preserved across muscle fibres with differential susceptibility to aging.

    PubMed

    Smith, Neil T; Soriano-Arroquia, Ana; Goljanek-Whysall, Katarzyna; Jackson, Malcolm J; McDonagh, Brian

    2018-04-15

    Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two metabolically distinct skeletal muscles, quadriceps and soleus, from adult and old mice. Our results indicate that the global proteomic changes with age in skeletal muscles are dependent on fibre type. However, redox specific changes are preserved across muscle types and accompanied with a reduction in the number of redox sensitive Cysteine residues. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol

    PubMed Central

    Chan, Hon Fai; Lin, Zhixiu; Wang, Yitao

    2018-01-01

    Brusatol (Bru) exhibits promising anticancer effects, with both proliferation inhibition and chemoresistance amelioration activity. However, the poor solubility and insufficient intracellular delivery of Bru greatly restrict its application. Herein, to simultaneously utilize the advantages of Pluronics as drug carriers and tumor microenvironment-responsive drug release profiles, a flexible amphiphilic copolymer with a polymer skeleton, that is, Pluronic® F68 grafting with linoleic acid moieties by redox-reducible disulfide bonds (F68-SS-LA), was synthesized. After characterization by 1H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, the redox-sensitive F68-SS-LA micelles were self-assembled in a much lower critical micelle concentration than that of the unmodified F68 copolymer. Bru was loaded in micelles (Bru/SS-M) with high loading efficiency, narrow size distribution, and excellent storage stability. The redox-sensitive Bru/SS-M exhibited rapid particle dissociation and drug release in response to a redox environment. Based on the enhanced cellular internalization, Bru/SS-M achieved higher cytotoxicity in both Bel-7402 and MCF-7 cells compared with free Bru and nonreducible micelles. The improved anticancer effect was attributed to the remarkably decreased mitochondrial membrane potential and increased reactive oxygen species level as well as apoptotic rate. These results demonstrated that F68-SS-LA micelles possess great potential as an efficient delivery vehicle for Bru to promote its anticancer efficiency via an oxidation pathway. PMID:29491708

  8. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Och, Lawrence M.; Shields-Zhou, Graham A.

    2012-01-01

    The oxygen content of the Earth's surface environment is thought to have increased in two broad steps: the Great Oxygenation Event (GOE) around the Archean-Proterozoic boundary and the Neoproterozoic Oxygenation Event (NOE), during which oxygen possibly accumulated to the levels required to support animal life and ventilate the deep oceans. Although the concept of the GOE is widely accepted, the NOE is less well constrained and its timing and extent remain the subjects of debate. We review available evidence for the NOE against the background of major climatic perturbations, tectonic upheaval related to the break-up of the supercontinent Rodinia and reassembly into Gondwana, and, most importantly, major biological innovations exemplified by the Ediacarian Biota and the Cambrian 'Explosion'. Geochemical lines of evidence for the NOE include perturbations to the biogeochemical cycling of carbon. Generally high δ 13C values are possibly indicative of increased organic carbon burial and the release of oxidative power to the Earth's surface environment after c. 800 Ma. A demonstrably global and primary record of extremely negative δ 13C values after about 580 Ma strongly suggests the oxidation of a large dissolved organic carbon pool (DOC), the culmination of which around c. 550 Ma coincided with an abrupt diversification of Ediacaran macrobiota. Increasing 87Sr/ 86Sr ratios toward the Neoproterozoic-Cambrian transition indicates enhanced continental weathering which may have fuelled higher organic production and burial during the later Neoproterozoic. Evidence for enhanced oxidative recycling is given by the increase in sulfur isotope fractionation between sulfide and sulfate, exceeding the range usually attained by sulfate reduction alone, reflecting an increasing importance of the oxidative part in the sulfur cycle. S/C ratios attained a maximum during the Precambrian-Cambrian transition, further indicating higher sulfate concentrations in the ocean and a transition from dominantly pyrite burial to sulfate burial after the Neoproterozoic. Strong evidence for the oxygenation of the deep marine environment has emerged through elemental approaches over the past few years which were able to show significant increases in redox-sensitive trace-metal (notably Mo) enrichment in marine sediments not only during the GOE but even more pronounced during the inferred NOE. In addition to past studies involving Mo enrichment, which has been extended and further substantiated in the current review, we present new compilations of V and U concentrations in black shales throughout Earth history that confirm such a rise and further support the NOE. With regard to ocean ventilation, we also review other sedimentary redox indicators, such as iron speciation, molybdenum isotopes and the more ambiguous REE patterns. Although the timing and extent of the NOE remain the subjects of debate and speculation, we consider the record of redox-sensitive trace-metals and C and S contents in black shales to indicate delayed ocean ventilation later in the Cambrian on a global scale with regard to rising oxygen levels in the atmosphere which likely rose during the Late Neoproterozoic.

  9. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    PubMed

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

    PubMed

    Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying

    2014-10-03

    With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.

  11. mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling

    PubMed Central

    Hämäläinen, Riikka H.; Ahlqvist, Kati J.; Ellonen, Pekka; Lepistö, Maija; Logan, Angela; Otonkoski, Timo; Murphy, Michael P.; Suomalainen, Anu

    2015-01-01

    Summary mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H2O2, reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function. PMID:26027936

  12. A high-resolution record of Holocene millennial-scale oscillations of surface water, foraminiferal paleoecology and sediment redox chemistry in the SE Brazilian margin

    NASA Astrophysics Data System (ADS)

    Dias, B. B.; Barbosa, C. F.; Albuquerque, A. L.; Piotrowski, A. M.

    2014-12-01

    Holocene millennial-scale oscillations and Bond Events (Bond et al. 1997) are well reported in the North Atlantic as consequence of fresh water input and weaking of the Atlantic Meridional Overturning Circulation (AMOC). It has been hypothesized that the effect of weaking of AMOC would lead to warming in the South Atlantic due to "heat piracy", causing surface waters to warm and a reorganization of surface circulation. There are few reconstructions of AMOC strength in the South Atlantic, and none with a high resolution Holocene record of changes of productivity and the biological pump. We reconstruct past changes in the surface water mass hydrography, productivity, and sediment redox changes in high-resolution in the core KCF10-01B, located 128 mbsl water depth off Cabo Frio, Brazil, a location where upwelling is strongly linked to surface ocean hydrography. We use Benthic Foraminiferal Accumulation Rate (BFAR) to reconstruct productivity, which reveals a 1.3kyr cyclicity during the mid- and late-Holocene. The geochemistry of trace and rare earth elements on foraminiferal Fe-Mn oxide coatings show changes in redox-sensitive elements indicating that during periods of high productivity there were more reducing conditions in sediment porewaters, producing a Ce anomaly and reduction and re-precipitation of Mn oxides. Bond events 1-7 were identified by a productivity increase along with reducing sediment conditions which was likely caused by Brazil Current displacement offshore allowing upwelling of the nutritive bottom water South Atlantic Central Waters (SACW) to the euphotic zone and a stronger local biological pump. In a global context, correlation with other records show that this occurred during weakened AMOC and southward displacement of the ITCZ. We conclude that Bond climatic events and millennial-scale variability of AMOC caused sea surface hydrographic changes off the Brazilian Margin leading to biological and geochemical changes recorded in coastal records. The 8.2kyr climatic event is reported here for the first time in South American coastal sediment records as high productivity conditions and a rapid change in porewater redox chemistry.

  13. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes.

    PubMed

    Lismont, Celien; Walton, Paul A; Fransen, Marc

    2017-01-01

    To gain additional insight into how specific cell organelles may participate in redox signaling, it is essential to have access to tools and methodologies that are suitable to monitor spatiotemporal differences in the levels of different reactive oxygen species (ROS) and the oxidation state of specific redox couples. Over the years, the use of genetically encoded fluorescent redox indicators with a ratiometric readout has constantly gained in popularity because they can easily be targeted to various subcellular compartments and monitored in real time in single cells. Here we provide step-by-step protocols and tips for the successful use of roGFP2, a redox-sensitive variant of the enhanced green fluorescent protein, to monitor changes in glutathione redox balance and hydrogen peroxide homeostasis in the cytosol, peroxisomes, and mitochondria of mammalian cells.

  14. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    PubMed

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Mo isotopes as redox indicators for the Southern Tethys during the PETM

    NASA Astrophysics Data System (ADS)

    Wouters, H.; Dickson, A.; Porcelli, D.; Hesselbo, S. P.; van den Boorn, S.; Gomez, V. G.; Mutterlose, J.

    2014-12-01

    As several ocean and climate models predict a decline in dissolved ocean oxygen concentrations associated with future global warming [1], recent research is increasingly focusing on past episodes of low ocean oxygen levels. Trace metals are generally enriched in organic-rich sediments deposited under such low oxygen conditions, and the concentration and isotopic signatures of several of these elements (e.g. Mo, U, Cr) may be applied as proxies to reconstruct the processes involved in these redox changes [2,3]. This project investigates the use of the molybdenum isotope system as a proxy for redox changes during an interval of abrupt environmental change spanning the Paleocene/Eocene boundary (the Paleocene/Eocene Thermal Maximum, PETM, ~56 Ma). The PETM is characterized by global warming and environmental and ecological changes including decreased ocean oxygen levels [4]. Study of the PETM can therefore offer us a valuable insight into how marine ecosystems and biogeochemical cycles may respond to future climate changes, and the predicted decrease of oxygen concentrations in seawater. The molybdenum concentrations and isotope compositions of organic-rich sediments spanning the PETM have been obtained from a Jordan oil shale drill core (OS-28). The obtained δ98/95Mo isotopic ratios range between -0.12‰ and 1.59‰ and coincide with significant fluctuations in trace metal abundances. The data together demonstrate that the global environmental changes associated with the PETM were manifest in the Jordanian basin as significant changes in basin hydrography and dissolved oxygen levels.

  16. Glutathione and redox signaling in substance abuse.

    PubMed

    Uys, Joachim D; Mulholland, Patrick J; Townsend, Danyelle M

    2014-07-01

    Throughout the last couple decades, the cause and consequences of substance abuse has expanded to identify the underlying neurobiological signaling mechanisms associated with addictive behavior. Chronic use of drugs, such as cocaine, methamphetamine and alcohol leads to the formation of oxidative or nitrosative stress (ROS/RNS) and changes in glutathione and redox homeostasis. Of importance, redox-sensitive post-translational modifications on cysteine residues, such as S-glutathionylation and S-nitrosylation could impact on the structure and function of addiction related signaling proteins. In this commentary, we evaluate the role of glutathione and redox signaling in cocaine-, methamphetamine- and alcohol addiction and conclude by discussing the possibility of targeting redox pathways for the therapeutic intervention of these substance abuse disorders. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability.

    PubMed

    Voisin, Tiphaine; Bourinet, Emmanuel; Lory, Philippe

    2016-07-01

    In this study, we describe a new knock-in (KI) mouse model that allows the study of the H191-dependent regulation of T-type Cav3.2 channels. Sensitivity to zinc, nickel and ascorbate of native Cav3.2 channels is significantly impeded in the dorsal root ganglion (DRG) neurons of this KI mouse. Importantly, we describe that this H191-dependent regulation has discrete but significant effects on the excitability properties of D-hair (down-hair) cells, a sub-population of DRG neurons in which Cav3.2 currents prominently regulate excitability. Overall, this study reveals that the native H191-dependent regulation of Cav3.2 channels plays a role in the excitability of Cav3.2-expressing neurons. This animal model will be valuable in addressing the potential in vivo roles of the trace metal and redox modulation of Cav3.2 T-type channels in a wide range of physiological and pathological conditions. Cav3.2 channels are T-type voltage-gated calcium channels that play important roles in controlling neuronal excitability, particularly in dorsal root ganglion (DRG) neurons where they are involved in touch and pain signalling. Cav3.2 channels are modulated by low concentrations of metal ions (nickel, zinc) and redox agents, which involves the histidine 191 (H191) in the channel's extracellular IS3-IS4 loop. It is hypothesized that this metal/redox modulation would contribute to the tuning of the excitability properties of DRG neurons. However, the precise role of this H191-dependent modulation of Cav3.2 channel remains unresolved. Towards this goal, we have generated a knock-in (KI) mouse carrying the mutation H191Q in the Cav3.2 protein. Electrophysiological studies were performed on a subpopulation of DRG neurons, the D-hair cells, which express large Cav3.2 currents. We describe an impaired sensitivity to zinc, nickel and ascorbate of the T-type current in D-hair neurons from KI mice. Analysis of the action potential and low-threshold calcium spike (LTCS) properties revealed that, contrary to that observed in WT D-hair neurons, a low concentration of zinc and nickel is unable to modulate (1) the rheobase threshold current, (2) the afterdepolarization amplitude, (3) the threshold potential necessary to trigger an LTCS or (4) the LTCS amplitude in D-hair neurons from KI mice. Together, our data demonstrate that this H191-dependent metal/redox regulation of Cav3.2 channels can tune neuronal excitability. This study validates the use of this Cav3.2-H191Q mouse model for further investigations of the physiological roles thought to rely on this Cav3.2 modulation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. Inverting Residual Self-Potential Data for Redox Potentials of Contaminant Plumes

    NASA Astrophysics Data System (ADS)

    Linde, N.; Revil, A.

    2007-05-01

    Self-potential (SP) data can be separated into a streaming potential component that is associated with pore water flow and a redox potential component, which is sensitive to differences in the redox potentials of organic-rich contaminant plumes and the surroundings. This work presents the first inversion method that uses residual SP (i.e., corrected for the streaming potential component) to invert for the redox potentials of contaminant plumes. We consider a two-layered electrical conductivity structure, where the boundary corresponds to the water table. We assume that the electrical dipole sources are associated with microbial breakdown of contaminants at the water table. This geobattery model is hypothesized to exist (1) because the water table is associated with a strong redox gradient between highly reducing conditions within the contaminated groundwater (due to biodegradation and oxygen depletion) and the oxidized vadose zone, and (2) because the microbial biofilms and precipitation of metallic particles can provide an electron conductor to complete the circuit required for the geobattery. The inverse method was applied to residual SP estimated from SP measurements collected at the ground surface in the vicinity of the Entressen landfill, South of France. The estimated redox potentials correlate well with in situ measurements (correlation coefficient is 0.93) and the estimated amplitudes of the redox potentials are similar to those measured in situ. A sensitivity analysis reveals that meaningful estimates of the redox potential can be derived even if the electrical conductivity structure is only known within an order of magnitude. These results provide further evidence that the SP method can be useful to monitor the spreading of contaminants around landfills and to evaluate the efficiency of remediation programs.

  19. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy.

    PubMed

    Burgess, Mark; Hernández-Burgos, Kenneth; Cheng, Kevin J; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-06-21

    Elucidating the impact of interactions between the electrolyte and electroactive species in redox active polymers is key to designing better-performing electrodes for electrochemical energy storage and conversion. Here, we present on the improvement of the electrochemical activity of poly(para-nitrostyrene) (PNS) in solution and as a film by exploiting the ionic interactions between reduced PNS and K(+), which showed increased reactivity when compared to tetrabutylammonium (TBA(+))- and Li(+)-containing electrolytes. While cyclic voltammetry enabled the study of the effects of cations on the electrochemical reversibility and the reduction potential of PNS, scanning electrochemical microscopy (SECM) provided new tools to probe the ionic and redox reactivity of this system. Using an ion-sensitive Hg SECM tip allowed to probe the ingress of ions into PNS redox active films, while surface interrogation SECM (SI-SECM) measured the specific kinetics of PNS and a solution phase mediator in the presence of the tested electrolytes. SI-SECM measurements illustrated that the interrogation kinetics of PNS in the presence of K(+) compared to TBA(+) and Li(+) are greatly enhanced under the same surface concentration of adsorbed radical anion, exhibiting up to a 40-fold change in redox kinetics. We foresee using this new application of SECM methods for elucidating optimal interactions that enhance polymer reactivity for applications in redox flow batteries.

  20. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  1. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding*

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.

    2015-01-01

    Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799

  2. Redox-sensitive dendrimersomes assembled from amphiphilic Janus dendrimers for siRNA delivery.

    PubMed

    Du, Xiao-Jiao; Wang, Ze-Yu; Wang, Yu-Cai

    2018-06-14

    The development of delivery systems for small interfering RNA (siRNA) plays a key role in its clinical application. As the major delivery systems for siRNA, cationic polymer- or lipid-based vehicles are plagued by inherent issues. As proof of concept, a disulfide bond-containing amphiphilic Janus dendrimer (ssJD), which could be conveniently synthesized and readily scaled up with high reproducibility, was explored as a siRNA delivery system to circumvent these issues. The cationic hydrophilic head of this Janus dendrimer ensured strong and stable binding with negatively charged siRNA via electrostatic interactions, and the loaded siRNA was rapidly released from the obtained complexes under a redox environment. Therefore, after efficient internalization into tumor cells, redox-sensitive dendrimersome (RSDs)/siRNA exhibited significantly improved gene silencing efficacy.

  3. Highly sensitive and selective determination of redox states of coenzymes Q9 and Q10 in mice tissues: Application of orbitrap mass spectrometry.

    PubMed

    Pandey, Renu; Riley, Christopher L; Mills, Edward M; Tiziani, Stefano

    2018-06-29

    Coenzyme Q (CoQ) is a redox active molecule that plays a fundamental role in mitochondrial energy generation and functions as a potent endogenous antioxidant. Redox ratio of CoQ has been suggested as a good marker of mitochondrial dysfunction and oxidative stress. Nevertheless, simultaneous measurement of redox states of CoQ is challenging owing to its hydrophobicity and instability of the reduced form. In order to improve the analytical methodology, paying special attention to this instability, we developed a highly sensitive and selective high-resolution/accurate-mass (HR/AM) UHPLC-MS/MS method for the rapid determination of redox states of CoQ 9 and CoQ 10 by ultra-performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry. CoQs were extracted using hexane with the addition of butylated hydroxytoluene to limit oxidation during sample preparation. Chromatographic separation of the analytes was achieved on a Kinetex C 18 column with the isocratic elution of 5 mM ammonium formate in 2-propanol/methanol (60:40) within 4 min. A full MS/all ion fragmentation (AIF) acquisition mode with mass accuracy < 5 ppm was used for detection and determination of redox states of CoQ 9 and CoQ 10 in healthy mice tissues using reduced and oxidized CoQ 4 as internal standards. The validated method showed good linearity (r 2  ≥ 0.9991), intraday, inter-day precision (CVs ≤ 11.9%) and accuracy (RE ≤±15.2%). In contrast to existing methods, the current method offers enhanced sensitivity (up to 52 fold) with LOD and LOQ ranged from 0.01 to 0.49 ng mL -1 and 0.04-1.48 ng mL -1 , respectively. Moreover, we evaluated various diluents to investigate bench top stability (at 4 °C) of targeted analytes in tissue samples during LC-MS assay up to 24 h. Ethanol was determined to be an optimum diluent without any significant oxidation of reduced CoQ up to 24 h. The developed method offers a rapid, highly sensitive and selective strategy for the measurement of redox states of CoQs in clinical studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis.

    PubMed

    Jafri, Azliana Jusnida Ahmad; Arfuzir, Natasha Najwa Nor; Lambuk, Lidawani; Iezhitsa, Igor; Agarwal, Renu; Agarwal, Puneet; Razali, Norhafiza; Krasilnikova, Anna; Kharitonova, Maria; Demidov, Vasily; Serebryansky, Evgeny; Skalny, Anatoly; Spasov, Alexander; Yusof, Ahmad Pauzi Md; Ismail, Nafeeza Mohd

    2017-01-01

    Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL -1 ). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL -1 ) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control

    PubMed Central

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J.; Richardson, David J.

    2012-01-01

    Abstract Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments. Antioxid. Redox Signal. 16, 819–852. PMID:22098259

  6. Organelle Redox of CF and CFTR-Corrected Airway Epithelia

    PubMed Central

    Schwarzer, Christian; Illek, Beate; Suh, Jung H.; Remington, S. James; Fischer, Horst; Machen, Terry E.

    2014-01-01

    In cystic fibrosis reduced CFTR function may alter redox properties of airway epithelial cells. Redox-sensitive GFP (roGFP1) and imaging microscopy were used to measure redox potentials of cytosol, ER, mitochondria and cell surface of cystic fibrosis nasal epithelial cells and CFTR-corrected cells. We also measured glutathione and cysteine thiol redox states in cell lysates and apical fluids to provide coverage over a range of redox potentials and environments that might be affected by CFTR. As measured with roGFP1, redox potentials at the cell surface (~ -207 ±8 mV) and in the ER (~ -217 ±1 mV) and rates of regulation of the apical fluid and ER lumen following DTT treatment were similar for CF and CFTR-corrected cells. CF and CFTR-corrected cells had similar redox potentials in mitochondria (-344 ±9 mV) and cytosol (-322 ±7 mV). Oxidation of carboxy-dichlorodihydrofluoresceindiacetate and of apical Amplex Red occurred at equal rates in CF and CFTR-corrected cells. Glutathione and cysteine redox couples in cell lysates and apical fluid were equal in CF and CFTR-corrected cells. These quantitative estimates of organelle redox potentials combined with apical and cell measurements using small molecule couples confirmed there were no differences in redox properties of CF and CFTR-corrected cells. PMID:17603939

  7. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  8. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    EPA Science Inventory

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  9. Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells

    EPA Science Inventory

    Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...

  10. Iron chemistry of Hawaiian rainforest soil solution: Biogeochemical implications of multiple Fe redox cycles

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Chorover, J.; Chadwick, O.

    2003-12-01

    Iron (Fe)-oxides are important sorbents for nutrients, pollutants and natural organic matter (NOM). When flucutations in soil oxygen status exist, Fe can cycle through reduced and oxidized forms and thus greatly affect the aqueous conc. of nutrients and metals. We are examining the influence of oscillating oxic/anoxic conditions on Fe-oxide formation and biogeochemical processes (microbial community composition, and carbon, nutrient and trace metal availability). Our work makes use of a natural rainfall gradient ranging from 2.2 to 4.2 m mean annual precipitation (MAP) on the island of Maui, Hawaii, USA. All sites developed on a 400ky basaltic lava flow and comprise soils under similar vegetation. Solid phase Fe concentration and oxidation state vary systematically across this rainfall gradient with a sharp decrease in pedogenic Fe between 2.8 m and 3.5 m MAP that corresponds with an Eh of 330 mV (1-yr ave.). Fe isotopic composition and Fe-oxide associated rare earth elements (REE) also suggest a shift from ligand-promoted to redutive Fe dissolution with increasing rainfall. To examine the effects of multiple Fe oxidation/reduction cycles, we constructed a set of redox-stat reactors that maintain Eh values within a set range by small Eh-triggered additions of oxygen. Triplicate soil slurry reactors are subjected to redox (Eh) oscillations such that Fe is repeatedly cycled from oxidized to reduced forms. During our current experiment, we measure pH and Eh dynamics and monitor the distribution of Fe(II) and Fe(III), major ion and anion concentrations, a range of trace metals including the REE, and total organic carbon (TOC) in three Stokes-effective particle size fractions (<0.45 mm, <0.1 mm, and <0.02 mm) by cascade centrifugation and a <3000 MW fraction isolated via ultra-filtration. Each sample is then sequentially extracted in dilute (0.5 M) HCl and acid-ammonium oxalate. Concurrently, CO2 release is measured and DNA fingerprinting is used to track changes in the microbial community. Prior to implementing the rigorous sampling procedure above, we completed two preliminary reactor experiments focusing only on Fe distribution between aqueous, HCl, and oxalate extractions. These experiments illustrated (1) a distinct threshold for Fe oxidation at ~ 350 mV in the soils (pH 5) and (2) multiple redox cycles increased the HCl-extractable Fe(III) fraction relative to initial conditions. Unexpectedly, this increase occurred predominantly during reducing cycles-perhaps indicating a weakening of Fe-oxide structures during initiation of reducing conditions or oxidation of Fe(II) by NO3. By integrating Fe analysis with trace metal and microbial characterization in triplicate reactors, we will verify this increase in HCl-extractable Fe(III), and assess the impacts of Fe redox oscillation on biogeochemical processes.

  11. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione.

    PubMed

    Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun

    2017-12-16

    Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.

    PubMed

    Wani, Revati; Murray, Brion W

    2017-01-01

    Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein-protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.

  13. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    PubMed

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  14. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise

    PubMed Central

    Wakabayashi, Ken-ichi; King, Stephen M.

    2006-01-01

    Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility. PMID:16754958

  15. Redox signaling in cardiovascular health and disease

    PubMed Central

    Madamanchi, Nageswara R.; Runge, Marschall S.

    2013-01-01

    Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyper-activation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia–reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD. PMID:23583330

  16. Activator Protein-1: redox switch controlling structure and DNA-binding.

    PubMed

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Redox proteomics for the assessment of redox-related posttranslational regulation in plants.

    PubMed

    Mock, Hans-Peter; Dietz, Karl-Josef

    2016-08-01

    The methodological developments of in vivo and in vitro protein labeling and subsequent detection enable sensitive and specific detection of redox modifications. Such methods are presently applied to diverse cells and tissues, subproteomes and developmental as well as environmental conditions. The chloroplast proteome is particularly suitable for such kind of studies, because redox regulation of chloroplast proteins is well established, many plastid proteins are abundant, redox network components have been inventoried in great depth, and functional consequences explored. Thus the repertoire of redox-related posttranslational modifications on the one hand side and their abundance on the other pose a challenge for the near future to understand their contribution to physiological regulation. The various posttranslational redox modifications are introduced, followed by a description of the available proteomics methods. The significance of the redox-related posttranslational modification is exemplarily worked out using established examples from photosynthesis. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016. Published by Elsevier B.V.

  18. Trace Element Cycling in Lithogenic Particles at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Morton, P. L.; Weisend, R.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Trace element cycling in marine particles is influenced by atmospheric deposition, vertical export, biological uptake and remineralization, scavenging, and lateral transport processes. To investigate the cycling of lithogenic particles in the central North Pacific Ocean, surface and vertical profile samples of marine suspended particulate matter (SPM) were collected July-August 2012 during the HOE-DYLAN cruises at Station ALOHA. In the late summer, atmospheric dust inputs from the Gobi desert (which peak during the spring, April-May) were sparse, as indicated by low surface particulate Ti (pTi) concentrations. In contrast, surface pAl concentrations did not follow pTi trends as expected, but appear to be dominated by scavenging/uptake of dissolved Al during diatom blooms. Surface pMn concentrations were low, but vertical profiles of pMn and pMn/pTi reveal a strong sedimentary source at 200 m, originating from the Hawaiian continental shelf through a combination of redox mobilization and resuspension processes. The redox active elements Ce and Co can have chemistries similar to that of Mn, but in these samples the pCe and pCo distributions were distinct from Mn and each other in both surface trends and vertical profiles. Surface pREE (e.g., La, Ce, Pr) were highest during the earliest sampling events and quickly decreased to consistently low concentrations, while vertical distributions were characterized by scavenging onto biotic particles and mid-depth inputs. The surface particulate Co trend is similar to those of pAl and pP, while the pCo vertical profiles reflect surface enrichment but low concentrations and little variability at depth. A second, complementary poster is also being presented which examines the biological influence over particulate trace element cycling (Weisend et al., "Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA").

  19. High-Temperature Controlled Redox Crystallization Studies

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1985-01-01

    The crystallization of silicates containing redox sensitive ions (e.g., Fe, Ti, Ce) must be performed under controlled and known redox conditions in order to obtain the maximum scientific benefit from experimental study. Furthermore, many compositions crystallize dense phases which settle during ground-based experiments. This settling influences the texture and chemical evolution of the crystallizing system. The purpose of this investigation is to develop a test system in which controlled redox experiments can be performed in the microgravity environment. The system will use solid ceramic oxygen electrolyte cells for control, measurements, and production of the required redox conditions. A preliminary design for a prototype is developed, the electrolyte and furnace tested, and a tentative protocol for experiment developed. The control parameter is to be established and a laboratory prototype built.

  20. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach.

    PubMed

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2016-07-27

    Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.

  1. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis.

    PubMed

    Lalonde, Stefan V; Konhauser, Kurt O

    2015-01-27

    The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above ∼10(-5) times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE.

  2. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis

    PubMed Central

    Konhauser, Kurt O.

    2015-01-01

    The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above ∼10−5 times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE. PMID:25583484

  3. Early diagenesis and trace element accumulation in North American Arctic margin sediments

    NASA Astrophysics Data System (ADS)

    Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.

    2017-04-01

    Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate early diagenesis in sediments along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production combined with a shallow water column (average 64 m) leads to high rates of authigenic trace element accumulation in sediments from the Bering-Chukchi shelves. High to moderate primary production combined with deep water (average 610 m) leads to moderate rates of authigenic trace element accumulation in sediments from Lancaster Sound. Low to very low primary production combined with moderate water depths (average 380 m) leads to low rates of authigenic trace element accumulation in sediments in the Beaufort Shelf, Davis Strait and Canadian Archipelago. Authigenic Mo accumulation rates show a significant relationship with vascular plant input to the sediments, implying that terrestrial organic matter contributes significantly to metabolism in Arctic margin sediments. Our results suggest that the broad and shallow shelf of the Chukchi Sea, which has high productivity sustained by imported nutrients, contributes disproportionately to global biogeochemical cycles.

  4. Redox Signaling and Bioenergetics Influence Lung Cancer Cell Line Sensitivity to the Isoflavone ME-344

    PubMed Central

    Manevich, Yefim; Reyes, Leticia; Britten, Carolyn D.; Townsend, Danyelle M.

    2016-01-01

    ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index. PMID:27255112

  5. Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.

    PubMed

    Kassaye, Yetneberk A; Skipperud, Lindis; Meland, Sondre; Dadebo, Elias; Einset, John; Salbu, Brit

    2012-10-26

    To evaluate critical trace element loads in native vegetation and calculate soil-to-plant transfer factors (TFs), 11 trace elements (Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb and Mn) have been determined in leaves of 9 taxonomically verified naturally growing terrestrial plant species as well as in soil samples collected around 3 Ethiopian Rift Valley lakes (Koka, Ziway and Awassa). The Cr concentration in leaves of all the plant species was higher than the "normal" range, with the highest level (8.4 mg per kg dw) being observed in Acacia tortilis from the Lake Koka area. Caper species (Capparis fascicularis) and Ethiopian dogstooth grass (Cynodon aethiopicus) from Koka also contained exceptionally high levels of Cd (1 mg per kg dw) and Mo (32.8 mg per kg dw), respectively. Pb, As and Cu concentrations were low in the plant leaves from all sites. The low Cu level in important fodder plant species (Cynodon aethiopicus, Acacia tortilis and Opuntia ficus-indicus) implies potential deficiency in grazing and browsing animals. Compared to the Canadian environmental quality guideline and maximum allowable concentration in agricultural soils, the total soil trace element concentrations at the studied sites are safe for agricultural crop production. Enrichment factor was high for Zn in soils around Lakes Ziway and Awassa, resulting in moderate to high transfer of Zn to the studied plants. A six step sequential extraction procedure on the soils revealed a relatively high mobility of Cd, Se and Mn. Strong association of most trace elements with the redox sensitive fraction and mineral lattice was also confirmed by partial redundancy analysis. TF (mg per kg dw plants/mg per kg dw soil) values based on the total (TF(total)) and mobile fractions (TF(mobile)) of soil trace element concentrations varied widely among elements and plant species, with the averaged TF(total) and TF(mobile) values ranging from 0.01-2 and 1-60, respectively. Considering the mobile fraction in soils should be available to plants, TF(mobile) values could reflect trace elements transfer to plants in the most realistic way. However, the present study indicates that TF(total) values also reflect the transfer of elements such as Mn, Cd and Se to plants more realistically than TF(mobile) values did.

  6. Redox proteomics of tomato in response to Pseudomonas syringae infection

    PubMed Central

    Balmant, Kelly Mayrink; Parker, Jennifer; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2015-01-01

    Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation–reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses. PMID:26504582

  7. A High-Voltage Molecular-Engineered Organic Sensitizer-Iron Redox Shuttle Pair: 1.4 V DSSC and 3.3 V SSM-DSSC Devices.

    PubMed

    Rodrigues, Roberta R; Cheema, Hammad; Delcamp, Jared H

    2018-05-04

    The development of high voltage solar cells is an attractive way to use sunlight for solar-to-fuel devices, multijunction solar-to-electric systems, and to power limited-area consumer electronics. By designing a low-oxidation-potential organic dye (RR9)/redox shuttle (Fe(bpy) 3 3+/2+ ) pair for dye-sensitized solar-cell (DSSC) devices, the highest single device photovoltage (1.42 V) has been realized for a DSSC not relying on doped TiO 2 . Additionally, Fe(bpy) 3 3+/2+ offers a robust, readily tunable ligand platform for redox potential tuning. RR9 can be regenerated with a low driving force (190 mV), and by utilizing the RR9/Fe(bpy) 3 3+/2+ redox shuttle pair in a subcell for a sequential series multijunction (SSM)-DSSC system, one of the highest known three subcell photovoltage was attained for any solar-cell technology (3.34 V, >1.0 V per subcell). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  9. Redox-Responsive Fluorescent Probes with Different Design Strategies.

    PubMed

    Lou, Zhangrong; Li, Peng; Han, Keli

    2015-05-19

    In an aerobic organism, reactive oxygen species (ROS) are an inevitable metabolic byproduct. Endogenously produced ROS have a significant role in physiological processes, but excess ROS can cause oxidative stress and can damage tissue. Cells possess elaborate mechanisms to regulate their internal redox status. The intracellular redox homeostasis plays an essential role in maintaining cellular function. However, moderate alterations in redox balance can accompany major transitions in a cell's life cycle. Because of the role of ROS in physiology and in pathology, researchers need new tools to study redox chemistry in biological systems.In recent years, researchers have made remarkable progress in developing new, highly sensitive and selective fluorescent probes that respond to redox changes, and in this Account we highlight related research, primarily from our own group. We present an overview of the design, photophysical properties, and fluorescence transduction mechanisms of reported molecules that probe redox changes. We have designed and synthesized a series of fluorescent probes for redox cycles in biological systems relying on the active center of glutathione peroxidase (GPx). We have also constructed probes based on the oxidation and reduction of hydroquinone and of 2,2,6,6-tetramethylpiperidinooxy (TEMPO). Most of these probes exhibit high sensitivity and good selectivity, absorb in the near-infrared, and respond rapidly. Such probes are useful for confocal fluorescence microscopy, a dynamic imaging technique that could allow researchers to observe biologically important ROS and antioxidants in real time. This technique and these probes provide potentially useful tools for exploring the generation, transport, physiological function, and pathogenic mechanisms of ROS and antioxidants.We also describe features that could improve the properties of redox-responsive fluorescent probes: greater photostability; rapid, dynamic, cyclic and ratiometric responses; and broader absorption in the near-IR region. In addition, fluorescent probes that include organochalcogens such as selenium and tellurium show promise for a new class of fluorescent redox probes that are both chemically stable and robustly reversible. However, further investigations of the chemical and fluorescence transduction mechanisms of selenium-based probes in response to ROS are needed.

  10. Following Carbon Isotopes from Methane to Molecules

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.

  11. The geochemical record of the last 17,000 years in the Guaymas Basin, Gulf of California

    USGS Publications Warehouse

    Dean, W.E.

    2006-01-01

    Sediments deposited on the western slope of the Guaymas Basin in the central Gulf of California are composed predominantly of detrital clastic material and biogenic silica (biopal), with minor organic material (average of 2.8% organic carbon) and calcium carbonate. The CaCO3 is derived from calcareous plankton and is highly variable ranging from 0% to 16%. In general, the CaCO3 content of the sediments varies inversely with the biopal content, reflecting the relative abundance of calcareous and siliceous plankton in the photic zone. Siliceous plankton dominate when winds are predominantly out of the northwest producing strong upwelling. Calcareous plankton indicates weak southeasterly winds that bring warm, tropical Pacific surface water into the Gulf. Based mainly on relative abundances of biopal and CaCO3, the sediments deposited over the last 17,000 years in the western Guaymas Basin can be divided into five intervals. In general, the sediments in the intervals with high biopal and low CaCO3 are laminated, but this is not always true. Unlike most other continental margins of the world with well-developed oxygen minimum zones where highest concentrations of organic carbon and redox-sensitive trace metals occur in laminated sediments, the laminated sediments on the anoxic slope of the western Guaymas Basin do not always have the highest concentrations of organic carbon and trace metals such as Mo and Cd.

  12. In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume, 1. Experimental conditions and fate of phenolic compounds

    NASA Astrophysics Data System (ADS)

    Nielsen, Per H.; Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas H.

    1995-11-01

    The transformation of specific organic compounds was investigated by in situ and laboratory experiments in an anaerobic landfill leachate pollution plume at four different distances from the landfill. This paper presents the experimental conditions in the in situ microcosm and laboratory batch microcosm experiments performed and the results on the fate of 7 phenolic compounds. Part 2 of this series of papers, also published in this issue, presents the results on the fate of 8 aromatic compounds and 4 chlorinated aliphatic compounds. The redox conditions in the plume were characterized as methanogenic, Fe(III)-reducing and NO 3--reducing by the redox sensitive species present in groundwater and sediment and by bioassays. With a few exceptions the aquifer redox conditions were maintained throughout the experiments as monitored by redox sensitive species present in groundwater during the experiments, by redox sensitive species present in the sediment after the experiments and by bioassays performed after the experiments. Transformation of nitrophenol was very fast close to the landfill in strongly reducing conditions, while transformation was slower in the more oxidized part of the plume. Lag phases for the nitrophenols were short (maximum 10 days). Phenol was only transformed in the more distant part of the plume in experiments where NO 3-, Fe(III) and Mn(IV) reduction was dominant. Lag phases for phenol were either absent or lasted up to 2 months. Dichlorophenols were only transformed in experiments representing strongly reducing, presumably methanogenic, redox conditions close to the landfill after lag phases of up to 3 months. Transformation of o-cresol was not observed in any of the experiments throughout the plume. Generally, there was good accordance between the results obtained by in situ and laboratory experiments, both concerning redox conditions and the fate of the phenolic compounds. However, for phenol and 2,4-dichlorophenol, transformation was observed in some in situ experiments but not in the corresponding laboratory experiments. In some experiments, this coul be explained by differences in the redox conditions developing during the experiments. Nitrophenols were apparently transformed abiotically in the most reduced part of the plume, at 2 m from the landfill.

  13. Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense.

    PubMed

    Gupta, Namrata; Gupta, Ankush; Kumar, Santosh; Mishra, Rajeev; Singh, Chhaya; Tripathi, Anil Kumar

    2014-01-01

    Azospirillum brasilense harbors two redox-sensitive Zinc-binding anti-sigma (ZAS) factors (ChrR1 and ChrR2), which negatively regulate the activity of their cognate extra-cytoplasmic function (ECF) σ factors (RpoE1 and RpoE2) by occluding their binding to the core enzyme. Both pairs of RpoE-ChrR control responses to photooxidative stress. The aim of this study was to investigate whether the two RpoE-ChrR pairs cross-talk while responding to the stress. In silico analysis showed a high sequence similarity between ChrR1 and ChrR2 proteins, but differences in redox sensitivity. Using in silico and in vitro methods of protein-protein interaction, we have shown that both ChrR1 and ChrR2 proteins physically bind to their noncognate RpoE proteins. Restoration of the phenotypes of chrR1::Tn5 and chrR2::Km mutants related to carotenoid biosynthesis and photooxidative stress tolerance by expressing chrR1 or chrR2 provided in vivo evidence for the cross-talk. In addition, up- or down-regulation of several identical proteins by expressing chrR1 or chrR2 in the chrR1::Tn5 mutant provided another in vivo evidence for the cross-talk. Although multiple redox-sensitive ZAS anti-σ factors occur in some Gram-positive bacteria, no cross-talk is reported among them. We report here, for the first time, that the two ZAS anti-σ factors of A. brasilense also interact with their noncognate σ factors and affect gene expression. The two redox-sensitive ZAS anti-σ factors in A. brasilense may interact with their cognate as well as noncognate ECF σ factors to play an important role in redox homeostasis by facilitating recovery from the oxidative stress.

  14. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Cao, Yanwu; Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Peer, Dan; Zhao, Yanjun

    2015-03-01

    Nanoscale drug delivery platforms have been developed over the past four decades that have shown promising clinical results in several types of cancer and inflammatory disorders. These nanocarriers carrying therapeutic payloads are maximizing the therapeutic outcomes while minimizing adverse effects. Yet one of the major challenges facing drug developers is the dilemma of premature versus on-demand drug release, which influences the therapeutic regiment, efficacy and potential toxicity. Herein, we report on redox-sensitive polymer-drug conjugate micelles for on-demand intracellular delivery of a model active agent, curcumin. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a disulfide bond or ester bond (control), respectively. The self-assembled redox-sensitive micelles exhibited a hydrodynamic size of 115.6 ± 5.9 (nm) with a zeta potential of -10.6 ± 0.7 (mV). The critical micelle concentration was determined at 6.7 ± 0.4 (μg mL-1). Under sink conditions with a mimicked redox environment (10 mM dithiothreitol), the extent of curcumin release at 48 h from disulfide bond-linked micelles was nearly three times higher compared to the control micelles. Such rapid release led to a lower half maximal inhibitory concentration (IC50) in HeLa cells at 18.5 ± 1.4 (μg mL-1), whereas the IC50 of control micelles was 41.0 ± 2.4 (μg mL-1). The cellular uptake study also revealed higher fluorescence intensity for redox-sensitive micelles. In conclusion, the redox-sensitive polymeric conjugate micelles could enhance curcumin delivery while avoiding premature release, and achieving on-demand release under the high glutathione concentration in the cell cytoplasm. This strategy opens new avenues for on-demand drug release of nanoscale intracellular delivery platforms that ultimately might be translated into pre-clinical and future clinical practice.

  15. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery.

    PubMed

    Cao, Yanwu; Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Peer, Dan; Zhao, Yanjun

    2015-03-20

    Nanoscale drug delivery platforms have been developed over the past four decades that have shown promising clinical results in several types of cancer and inflammatory disorders. These nanocarriers carrying therapeutic payloads are maximizing the therapeutic outcomes while minimizing adverse effects. Yet one of the major challenges facing drug developers is the dilemma of premature versus on-demand drug release, which influences the therapeutic regiment, efficacy and potential toxicity. Herein, we report on redox-sensitive polymer-drug conjugate micelles for on-demand intracellular delivery of a model active agent, curcumin. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a disulfide bond or ester bond (control), respectively. The self-assembled redox-sensitive micelles exhibited a hydrodynamic size of 115.6 ± 5.9 (nm) with a zeta potential of -10.6 ± 0.7 (mV). The critical micelle concentration was determined at 6.7 ± 0.4 (μg mL(-1)). Under sink conditions with a mimicked redox environment (10 mM dithiothreitol), the extent of curcumin release at 48 h from disulfide bond-linked micelles was nearly three times higher compared to the control micelles. Such rapid release led to a lower half maximal inhibitory concentration (IC50) in HeLa cells at 18.5 ± 1.4 (μg mL(-1)), whereas the IC50 of control micelles was 41.0 ± 2.4 (μg mL(-1)). The cellular uptake study also revealed higher fluorescence intensity for redox-sensitive micelles. In conclusion, the redox-sensitive polymeric conjugate micelles could enhance curcumin delivery while avoiding premature release, and achieving on-demand release under the high glutathione concentration in the cell cytoplasm. This strategy opens new avenues for on-demand drug release of nanoscale intracellular delivery platforms that ultimately might be translated into pre-clinical and future clinical practice.

  16. Breast Cancer Redox Heterogeneity Detectable with Chemical Exchange Satruation Transfer (CEST) MRI

    PubMed Central

    Cai, Kejia; Xu, He N.; Singh, Anup; Moon, Lily; Haris, Mohammad; Reddy, Ravinder; Li, Lin

    2014-01-01

    Purpose Tissue redox state is an important mediator of various biological processes in health and diseases such as cancer. Previously, we discovered that the mitochondrial redox state of ex vivo tissues detected by redox scanning (an optical imaging method) revealed interesting tumor redox state heterogeneity that could differentiate tumor aggressiveness. Because the noninvasive chemical exchange saturation transfer (CEST) MRI can probe the proton transfer and generate contrasts from endogenous metabolites, we aim to investigate if the in vivo CEST contrast is sensitive to proton transfer of the redox reactions so as to reveal the tissue redox states in breast cancer animal models. Procedures CEST MRI has been employed to characterize tumor metabolic heterogeneity and correlated with the redox states measured by the redox scanning in two human breast cancer mouse xenograft models, MDA-MB-231 and MCF-7. The possible biological mechanism on the correlation between the two imaging modalities was further investigated by phantom studies where the reductants and the oxidants of the representative redox reactions were measured. Results The CEST contrast is found linearly correlated with NADH concentration and the NADH redox ratio with high statistical significance, where NADH is the reduced form of nicotinamide adenine dinucleotide. The phantom studies showed that the reductants of the redox reactions have more CEST contrast than the corresponding oxidants, indicating that higher CEST effect corresponds to the more reduced redox state. Conclusions This preliminary study suggests that CEST MRI, once calibrated, might provide a novel noninvasive imaging surrogate for the tissue redox state and a possible diagnostic biomarker for breast cancer in the clinic. PMID:24811957

  17. Breast cancer redox heterogeneity detectable with chemical exchange saturation transfer (CEST) MRI.

    PubMed

    Cai, Kejia; Xu, He N; Singh, Anup; Moon, Lily; Haris, Mohammad; Reddy, Ravinder; Li, Lin Z

    2014-10-01

    Tissue redox state is an important mediator of various biological processes in health and diseases such as cancer. Previously, we discovered that the mitochondrial redox state of ex vivo tissues detected by redox scanning (an optical imaging method) revealed interesting tumor redox state heterogeneity that could differentiate tumor aggressiveness. Because the noninvasive chemical exchange saturation transfer (CEST) MRI can probe the proton transfer and generate contrasts from endogenous metabolites, we aim to investigate if the in vivo CEST contrast is sensitive to proton transfer of the redox reactions so as to reveal the tissue redox states in breast cancer animal models. CEST MRI has been employed to characterize tumor metabolic heterogeneity and correlated with the redox states measured by the redox scanning in two human breast cancer mouse xenograft models, MDA-MB-231 and MCF-7. The possible biological mechanism on the correlation between the two imaging modalities was further investigated by phantom studies where the reductants and the oxidants of the representative redox reactions were measured. The CEST contrast is found linearly correlated with NADH concentration and the NADH redox ratio with high statistical significance, where NADH is the reduced form of nicotinamide adenine dinucleotide. The phantom studies showed that the reductants of the redox reactions have more CEST contrast than the corresponding oxidants, indicating that higher CEST effect corresponds to the more reduced redox state. This preliminary study suggests that CEST MRI, once calibrated, might provide a novel noninvasive imaging surrogate for the tissue redox state and a possible diagnostic biomarker for breast cancer in the clinic.

  18. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  19. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.

    PubMed

    Putker, Marrit; O'Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

  20. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

    PubMed Central

    Putker, Marrit; O’Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping. PMID:26810072

  1. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo.

    PubMed

    Yu, Fabiao; Li, Peng; Wang, Bingshuai; Han, Keli

    2013-05-22

    The redox homeostasis between peroxynitrite and glutathione is closely associated with the physiological and pathological processes, e.g. vascular tissue prolonged relaxation and smooth muscle preparations, attenuation hepatic necrosis, and activation matrix metalloproteinase-2. We report a near-infrared fluorescent probe based on heptamethine cyanine, which integrates with telluroenzyme mimics for monitoring the changes of ONOO(-)/GSH levels in cells and in vivo. The probe can reversibly respond to ONOO(-) and GSH and exhibits high selectivity, sensitivity, and mitochondrial target. It is successfully applied to visualize the changes of redox cycles during the outbreak of ONOO(-) and the antioxidant GSH repair in cells and animal. The probe would provide a significant advance on the redox events involved in the cellular redox regulation.

  2. Biological Relevance of Free Radicals and Nitroxides.

    PubMed

    Prescott, Christopher; Bottle, Steven E

    2017-06-01

    Nitroxides are stable, kinetically-persistent free radicals which have been successfully used in the study and intervention of oxidative stress, a critical issue pertaining to cellular health which results from an imbalance in the levels of damaging free radicals and redox-active species in the cellular environment. This review gives an overview of some of the biological processes that produce radicals and other reactive oxygen species with relevance to oxidative stress, and then discusses interactions of nitroxides with these species in terms of the use of nitroxides as redox-sensitive probes and redox-active therapeutic agents.

  3. How Redox Fluctuation Shapes Microbial Community Structure and Mineral-Organic Matter Relationships in a Humid Tropical Forest Soil

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Bhattacharyya, A.; Lin, Y.; Tfaily, M. M.; Paša-Tolić, L.; Chu, R. K.; Silver, W. L.; Nico, P. S.; Pett-Ridge, J.

    2016-12-01

    Wet tropical soils can alternate frequently between fully oxygenated and anaerobic conditions, constraining both the metabolism of tropical soil microorganisms, and the mineral-organic matter relationships that regulate many aspects of soil C cycling. Tropical forests are predicted to experience a 2-5°C temperature increase and substantial differences in the amount and timing of rainfall in the coming half century. Yet we have a poor understanding of how soil microbial activity and C cycling in these systems will respond to changes in environmental variability caused by climate change. Using a 44 day redox manipulation and isotope tracing experiment with soils from the Luquillo Experimental Forest, Puerto Rico, we examined patterns of tropical soil microorganisms, metabolites and soil chemistry when soils were exposed to different redox regimes - static oxic, static anoxic, high frequency redox fluctuation (4 days oxic, 4 days anoxic), or low frequency redox fluctuation (8 days oxic, 4 days anoxic). Replicate microcosms were harvested throughout the incubation to understand how changes in redox oscillation frequency altered microbial community structure and activity, organic matter turnover and fate, and soil chemistry. While gross soil respiration was highest in static oxic soils, respiration derived from added litter was highest in static anoxic soils, suggesting that decomposition of preexisting SOM was limited by O2 availability in the anoxic treatment. Microbial communities responded to shifting O2 availability in the different treatments, resulting in significant differences in DOC concentration and molecular composition (measured by FTICR-MS). DOC and Fe2+ concentrations were positively correlated for all four redox treatments, and rapidly increased following oscillation from oxic to anoxic conditions. These results, along with parallel studies of biogeochemical responses (Fe speciation, pH, P availability), suggest a highly responsive microbial and geochemical system, where the frequency of low-redox events controls exchanges of C between mineral-sorbed and aqueous pools.

  4. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    NASA Astrophysics Data System (ADS)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  5. Metal Deposition Along the Peru Margin Since the Last Glacial Maximum: Evidence For Regime Change at \\sim 6ka

    NASA Astrophysics Data System (ADS)

    Tierney, J.; Cleaveland, L.; Herbert, T.; Altabet, M.

    2004-12-01

    The Peru Margin upwelling zone plays a key role in regulating marine biogeochemical cycles, particularly the fate of nitrate. High biological productivity and low oxygen waters fed into the oxygen minimum zone result in intense denitrification in the modern system, the consequences of which are global in nature. It has been very difficult, however, to study the paleoclimatic history of this region because of the poor preservation of carbonate in Peru Margin sediments. Here we present records of trace metal accumulation from two cores located in the heart of the suboxic zone off the central Peru coast. Chronology comes from multiple AMS 14C dates on the alkenone fraction of the sediment, as well as correlation using major features of the \\delta 15N record in each core. ODP Site 1228 provides a high resolution, continuous sediment record from the Recent to about 14ka, while gravity core W7706-41k extends the record to the Last Glacial Maximum. Both cores were sampled at a 100 yr resolution, then analyzed for % N, \\delta 15N, alkenones, and trace metal concentration. Analysis of redox-sensitive metals (Mo and V) alongside metals associated with changes in productivity (Ni and Zn) provides perspective on the evolution of the upwelling system and distinguishes the two major factors controlling the intensity of the oxygen minimum zone. The trace metal record exhibits a notable increase in the intensity and variability of low oxygen waters and productivity beginning around 6ka and extending to the present. Within this most recent 6ka interval, the data suggest fluctuations in oxygenation and productivity occur on 1000 yr timescales. Our core records, therefore, suggest that the Peru Margin upwelling system strengthened significantly during the mid to late Holocene.

  6. Assessment of major ions and trace elements in groundwater supplied to the Monterrey metropolitan area, Nuevo León, Mexico.

    PubMed

    Mora, Abrahan; Mahlknecht, Jürgen; Rosales-Lagarde, Laura; Hernández-Antonio, Arturo

    2017-08-01

    The Monterrey metropolitan area (MMA) is the third greatest urban area and the second largest economic city of Mexico. More than four million people living in this megacity use groundwater for drinking, industrial and household purposes. Thus, major ion and trace element content were assessed in order to investigate the main hydrochemical properties of groundwater and determine if groundwater of the area poses a threat to the MMA population. Hierarchical cluster analysis using all the groundwater chemical data showed five groups of water. The first two groups were classified as recharge waters (Ca-HCO 3 ) coming from the foothills of mountain belts. The third group was also of Ca-HCO 3 water type flowing through lutites and limestones. Transition zone waters of group four (Ca-HCO 3 -SO 4 ) flow through the valley of Monterrey, whereas discharge waters of group 5 (Ca-SO 4 ) were found toward the north and northeast of the MMA. Principal component analysis performed in groundwater data indicates four principal components (PCs). PC1 included major ions Si, Co, Se, and Zn, suggesting that these are derived by rock weathering. Other trace elements such as As, Mo, Mn, and U are coupled in PC2 because they show redox-sensitive properties. PC3 indicates that Pb and Cu could be the less mobile elements in groundwater. Although groundwater supplied to MMA showed a high-quality, high mineralized waters of group 5 have NO 3 - concentrations higher than the maximum value proposed by international guidelines and SO 4 2- , NO 3 - , and total dissolved solid concentrations higher than the maximum levels allowed by the Mexican normative.

  7. Halocarbons and other trace heteroatomic organic compounds in volcanic gases from Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.

    2013-01-01

    Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.

  8. Redox proteomics screening cellular factors associated with oxidative stress in hepatocarcinogenesis.

    PubMed

    Zhou, Li; Wen, Ji; Huang, Zhao; Nice, Edouard C; Huang, Canhua; Zhang, Haiyuan; Li, Qifu

    2017-03-01

    Liver cancer is a major global health problem being the sixth most common cancer and the third cause of cancer-related death, with hepatocellular carcinoma (HCC) representing more than 90% of primary liver cancers. Mounting evidence suggests that, compared with their normal counterparts, many types of cancer cell have increased levels of ROS. Therefore, cancer cells need to combat high levels of ROS, especially at early stages of tumor development. Recent studies have revealed that ROS-mediated regulation of redox-sensitive proteins (redox sensors) is involved in the pathogenesis and/or progression of many human diseases, including cancer. Unraveling the altered functions of redox sensors and the underlying mechanisms in hepatocarcinogenesis is critical for the development of novel cancer therapeutics. For this reason, redox proteomics has been developed for the high-throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for the treatment of HCC. In this review, we will briefly introduce several novel redox proteomics techniques that are currently available to study various oxidative modifications in hepatocarcinogenesis and summarize the most important discoveries in the study of redox processes related to the development and progression of HCC. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Redox Regulation of Cell Survival

    PubMed Central

    Trachootham, Dunyaporn; Lu, Weiqin; Ogasawara, Marcia A.; Valle, Nilsa Rivera-Del

    2008-01-01

    Abstract Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant cell death and contribute to disease development. This review focuses on the roles of key transcription factors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox systems regulate the functions of these molecules. The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases. Antioxid. Redox Signal. 10, 1343–1374. PMID:18522489

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q; Zavarin, M; Rose, T P

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions used during these experiments were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, the radionuclide distribution coefficients varied with the mineralogical composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases formore » {sup 99}Tc and {sup 237}Np in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for {sup 99}Tc, which tends to be mobile under oxidizing conditions. Unlike other redox-sensitive radionuclides, iodine sorption may decrease under reducing conditions when I{sup -} is the predominant species. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing redox conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH){sub 4}. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides {sup 99}Tc and {sup 237}Np, which are commonly identified as long-term dose contributors in the risk assessment in various nuclear facilities.« less

  11. Hypothetical Modeling of Redox Conditions Within a Complex Ground-Water Flow Field in a Glacial Setting

    USGS Publications Warehouse

    Feinstein, Daniel T.; Thomas, Mary Ann

    2009-01-01

    This report describes a modeling approach for studying how redox conditions evolve under the influence of a complex ground-water flow field. The distribution of redox conditions within a flow system is of interest because of the intrinsic susceptibility of an aquifer to redox-sensitive, naturally occurring contaminants - such as arsenic - as well as anthropogenic contaminants - such as chlorinated solvents. The MODFLOW-MT3D-RT3D suite of code was applied to a glacial valley-fill aquifer to demonstrate a method for testing the interaction of flow patterns, sources of reactive organic carbon, and availability of electron acceptors in controlling redox conditions. Modeling results show how three hypothetical distributions of organic carbon influence the development of redox conditions in a water-supply aquifer. The distribution of strongly reduced water depends on the balance between the rate of redox reactions and the capability of different parts of the flow system to transmit oxygenated water. The method can take account of changes in the flow system induced by pumping that result in a new distribution of reduced water.

  12. Dynamic Redox Regulation of IL-4 Signaling.

    PubMed

    Dwivedi, Gaurav; Gran, Margaret A; Bagchi, Pritha; Kemp, Melissa L

    2015-11-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation.

  13. Mitochondrial Energy Metabolism and Redox Signaling in Brain Aging and Neurodegeneration

    PubMed Central

    Yin, Fei; Boveris, Alberto

    2014-01-01

    Abstract Significance: The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. Recent Advances: The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. Critical Issues: This review focuses on a coordinated metabolic network—cytosolic signaling, transcriptional regulation, and mitochondrial function—that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. Future Directions: Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371. PMID:22793257

  14. Dynamic Redox Regulation of IL-4 Signaling

    PubMed Central

    Dwivedi, Gaurav; Gran, Margaret A.; Bagchi, Pritha; Kemp, Melissa L.

    2015-01-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation. PMID:26562652

  15. From climate change to molecular response: redox proteomics of ozone-induced responses in soybean

    USDA-ARS?s Scientific Manuscript database

    Ozone (O3) causes significant agricultural losses with soybean being highly sensitive to this oxidant. Here we assess the effect of elevated seasonal O3 exposure on the total and redox proteomes of soybean. To understand the molecular responses to O3 exposure, soybean grown at the Soybean Free Air C...

  16. Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.

    PubMed

    Bu, Hongmei; Song, Xianfang; Guo, Fen

    2017-01-15

    Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of Mycobacterium tuberculosis

    PubMed Central

    Saini, Vikram; Cumming, Bridgette M.; Guidry, Loni; Lamprecht, Dirk; Adamson, John H.; Reddy, Vineel P.; Chinta, Krishna C.; Mazorodzo, James; Glasgow, Joel N.; Richard-Greenblatt, Melissa; Gomez-Velasco, Anaximandro; Bach, Horacio; Av-Gay, Yossef; Eoh, Hyungjin; Rhee, Kyu; Steyn, Adrie J.C.

    2016-01-01

    SUMMARY The mechanisms by which Mycobacterium tuberculosis (Mtb) maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT) and mycothiol (MSH) are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping, but distinct functions of EGT and MSH. Lastly, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity. PMID:26774486

  18. Antioxidant responses and cellular adjustments to oxidative stress.

    PubMed

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.

  19. Rab7-a novel redox target that modulates inflammatory pain processing.

    PubMed

    Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim

    2017-07-01

    Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.

  20. Redox Signaling and Bioenergetics Influence Lung Cancer Cell Line Sensitivity to the Isoflavone ME-344.

    PubMed

    Manevich, Yefim; Reyes, Leticia; Britten, Carolyn D; Townsend, Danyelle M; Tew, Kenneth D

    2016-08-01

    ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. The provenance of low-calcic black shales

    NASA Astrophysics Data System (ADS)

    Quinby-Hunt, M. S.; Wilde, P.

    1991-04-01

    The elemental concentration of sedimentary rocks depends on the varying reactivity of each element as it goes from the source through weathering, deposition, diagenesis, lithification, and even low rank metamorphism. However, non-reactive components of detrital particles ideally are characteristic of the original igneous source and thus are useful in provenance studies. To determine the source of detrital granitic and volcanic components of low-calcic (<1% CaCO3) marine black shales, the concentrations of apparently non-reactive (i.e. unaffected by diagenetic, redox and/or low-rank metamorphic processes) trace elements were examined using standard trace element discrimination diagrams developed for igneous rocks. The chemical data was obtained by neutron activation analyses of about 200 stratigraphically well-documented black shale samples from the Cambrian through the Jurassic. A La-Th-Sc ternary diagram distinguishes among contributions from the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). All the low-calcic black shales cluster within the region of the upper crust. Th-Hf-Co ternary diagrams also are commonly used to distinguish among the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). As Co is redox sensitive in black shale environments, it was necessary to substitute an immobile element (i.e. example Rb) in the diagram. With this substitution of black shales all cluster in the region of the upper continental crust. To determine the provenance of the granitic component (Pearce et al. 1984), plots of Ta vs Yb and Rb vs Yb + Ta shows a cluster at the junction of the boundaries separating the volcanic arc granite (VAG), syn-collision granite (syn-COLG), and within-plate granite (WPG) fields. The majority fall within the VAG field. There are no occurrences of ocean ridge granite (ORG). The minimal contribution of basalts to marine black shales is confirmed by the ternary Wood diagram Th-Hf/3-Ta (Wood et al. 1979). The black shales plot in a cluster in a high Th region outside the various basalt fields, which suggests contribution from the continental crust.

  2. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China

    NASA Astrophysics Data System (ADS)

    Gregory, Daniel D.; Lyons, Timothy W.; Large, Ross R.; Jiang, Ganqing; Stepanov, Aleksandr S.; Diamond, Charles W.; Figueroa, Maria C.; Olin, Paul

    2017-11-01

    The trace element content of pyrite is a recently developed proxy for metal abundance in paleo-oceans. Previous studies have shown that the results broadly match those of whole rock studies through geologic time. However, no detailed study has evaluated the more traditional proxies for ocean chemistry for comparison to pyrite trace element data from the same samples. In this study we compare pyrite trace element data from 14 samples from the Wuhe section of the Ediacaran-age Doushantuo Formation, south China, measured by laser ablation inductively coupled plasma mass spectrometry with new and existing whole rock trace element concentrations; total organic carbon; Fe mineral speciation; S isotope ratios; and pyrite textural relationships. This approach allows for comparison of data for individual trace elements within the broader environmental context defined by the other chemical parameters. The results for discrete pyrite analyses show that several chalcophile and siderophile elements (Ag, Sb, Se, Pb, Cd, Te, Bi, Mo, Ni, and Au) vary among the samples with patterns that mirror those of the independent whole rock data. A comparison with existing databases for sedimentary and hydrothermal pyrite allows us to discriminate between signatures of changing ocean conditions and those of known hydrothermal sources. In the case of the Wuhe samples, the observed patterns for trace element variation point to primary marine controls rather than higher temperature processes. Specifically, our new data are consistent with previous arguments for pulses of redox sensitive trace elements interpreted to be due to marine oxygenation against a backdrop of mostly O2-poor conditions in the Ediacaran ocean-with important implications for the availability of bioessential elements. The agreement between the pyrite and whole rock data supports the use of trace element content of pyrite as a tracer of ocean chemistry in ways that complement existing approaches, while also opening additional windows of opportunity. For example, unlike the potential vulnerability of whole rock data to secondary alteration, the pyrite record may survive greenschist facies metamorphism. Furthermore, early-formed pyrite can be identified through textural relationships as a proxy of primary marine chemistry even in the presence of hydrothermal overprints on whole rock chemistry via secondary fluids. Finally, pyrite analyses may allow for the possibility of more quantitative interpretations of the ancient ocean once the elemental partitioning between the mineral and host fluids are better constrained. Collectively, these advances can greatly increase the number of basins that may be investigated for early ocean chemistry, especially those of Precambrian age.

  3. pH and redox-responsive mixed micelles for enhanced intracellular drug release.

    PubMed

    Cai, Mengtan; Zhu, Kun; Qiu, Yongbin; Liu, Xinrong; Chen, Yuanwei; Luo, Xianglin

    2014-04-01

    In order to prepare pH and redox sensitive micelles, amphiphilic copolymers of poly (epsilon-caprolactone)-b-poly(2-(diethylamino) ethyl methacrylate) (PCL-PDEA) and disulfide-linked poly(ethyl glycol)-poly(epsilon-caprolactone) (mPEG-SS-PCL) were synthesized. The double-sensitive micelles were prepared simply by solvent-evaporating method with the mixed two copolymers. The pH sensitivity of the mixed micelles was confirmed by the change of micelle diameter/diameter distribution measured by dynamic lighting scattering (DLS) and the redox sensitivity of the mixed micelles was testified by the change of micellar morphous observed by scanning electron microscope (SEM). In vitro drug release showed that drug-loaded mixed micelles (mass ratio 5:5) could achieve above 90% of drug release under low pH and reducing condition within 10h. Moreover, the drug-loaded mixed micelles (mass ratio 5:5) showed the largest cellular toxicity compared with other drug-loaded micelles, while blank mixed micelles exhibited no toxicity. These results meant that the mixed micelles composed by the two amphiphilic copolymers can enhance intracellular drug release. It is concluded that the newly developed mixed micelles can serve as a potential drug delivery system for anticancer drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Acridine Orange Conjugated Polymersomes for Simultaneous Nuclear Delivery of Gemcitabine and Doxorubicin to Pancreatic Cancer Cells.

    PubMed

    Anajafi, Tayebeh; Scott, Michael D; You, Seungyong; Yang, Xiaoyu; Choi, Yongki; Qian, Steven Y; Mallik, Sanku

    2016-03-16

    Considering the systemic toxicity of chemotherapeutic agents, there is an urgent need to develop new targeted drug delivery systems. Herein, we have developed a new nuclear targeted, redox sensitive, drug delivery vehicle to simultaneously deliver the anticancer drugs gemcitabine and doxorubicin to the nuclei of pancreatic cancer cells. We prepared polymeric bilayer vesicles (polymersomes), and actively encapsulated the drug combination by the pH gradient method. A redox-sensitive polymer (PEG-S-S-PLA) was incorporated to sensitize the formulation to reducing agent concentration. Acridine orange (AO) was conjugated to the surface of the polymersomes imparting nuclear localizing property. The polymersomes' toxicity and efficacy were compared with those of a free drug combination using monolayer and three-dimensional spheroid cultures of pancreatic cancer cells. We observed that the redox sensitive, nuclear-targeted polymersomes released more than 60% of their encapsulated contents in response to 50 mM glutathione. The nanoparticles are nontoxic; however, the drug encapsulated vesicles have significant toxicity. The prepared formulation can increase the drug's therapeutic index by delivering the drugs directly to the cells' nuclei, one of the key organelles in the cells. This study is likely to initiate research in targeted nuclear delivery using other drug formulations in other types of cancers.

  5. Proteome-wide Light/Dark Modulation of Thiol Oxidation in Cyanobacteria Revealed by Quantitative Site-specific Redox Proteomics*

    PubMed Central

    Guo, Jia; Nguyen, Amelia Y.; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J.; Moore, Ronald J.; Jacobs, Jon M.; Monroe, Matthew E.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.; Qian, Wei-Jun

    2014-01-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  6. Linking mitochondrial bioenergetics to insulin resistance via redox biology

    PubMed Central

    Fisher-Wellman, Kelsey H.; Neufer, P. Darrell

    2012-01-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H2O2) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal to ultimately decrease insulin sensitivity. H2O2 is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight as to how H2O2 emission may be linked via redox biology to the etiology of insulin resistance. PMID:22305519

  7. Redox modulation of A-type K+ currents in pain-sensing dorsal root ganglion neurons.

    PubMed

    Hsieh, Chi-Pan

    2008-06-06

    Redox modulation of fast inactivation has been described in certain cloned A-type voltage-gated K(+) (Kv) channels in expressing systems, but the effects remain to be demonstrated in native neurons. In this study, we examined the effects of cysteine-specific redox agents on the A-type K(+) currents in acutely dissociated small diameter dorsal root ganglion (DRG) neurons from rats. The fast inactivation of most A-type currents was markedly removed or slowed by the oxidizing agents 2,2'-dithio-bis(5-nitropyridine) (DTBNP) and chloramine-T. Dithiothreitol, a reducing agent for the disulfide bond, restored the inactivation. These results demonstrated that native A-type K(+) channels, probably Kv1.4, could switch the roles between inactivating and non-inactivating K(+) channels via redox regulation in pain-sensing DRG neurons. The A-type channels may play a role in adjusting pain sensitivity in response to peripheral redox conditions.

  8. Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib.

    PubMed

    Ivanova, Donika; Zhelev, Zhivko; Lazarova, Dessislava; Getsov, Plamen; Bakalova, Rumiana; Aoki, Ichio

    2018-03-01

    Recent studies provided convincing evidence for the anticancer activity of combined application of vitamin C and pro-vitamin K3 (menadione). The molecular pathways underlying this process are still not well established. The present study aimed to investigate the effect of the combination of vitamin C plus pro-vitamin K3 on the redox status of leukemia and normal lymphocytes, as well as their sensitizing effect for a variety of anticancer drugs. Cytotoxicity of the substances was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by fluorescein isothiocyanate-annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen and nitrogen species and protein-carbonyl products. Combined administration of 300 μM vitamin C plus 3 μM pro-vitamin K3 reduced the viability of leukemia lymphocytes by ~20%, but did not influence the viability of normal lymphocytes. All combinations of anticancer drug plus vitamins C and K3 were characterized by synergistic cytotoxicity towards Jurkat cells, compared to cells treated with drug alone for 24 h. In the case of barasertib and everolimus, this synergistic cytotoxicity increased within 72 hours. It was accompanied by strong induction of apoptosis, but a reduction of level of hydroperoxides and moderately increased protein-carbonyl products in leukemia cells. Leukemia lymphocytes were more sensitive to combined administration of anticancer drug (everolimus or barasertib) plus vitamins C and K3, compared to normal lymphocytes. The combination of vitamin C plus K3 seems to be a powerful redox system that could specifically influence redox homeostasis of leukemia cells and sensitize them to conventional chemotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Biophoton detection and low-intensity light therapy: a potential clinical partnership.

    PubMed

    Tafur, Joseph; Van Wijk, Eduard P A; Van Wijk, Roeland; Mills, Paul J

    2010-02-01

    Low-intensity light therapy (LILT) is showing promise in the treatment of a wide variety of medical conditions. Concurrently, our knowledge of LILT mechanisms continues to expand. We are now aware of LILT's potential to induce cellular effects through, for example, accelerated ATP production and the mitigation of oxidative stress. In clinical use, however, it is often difficult to predict patient response to LILT. It appears that cellular reduction/oxidation (redox) state may play a central role in determining sensitivity to LILT and may help explain variability in patient responsiveness. In LILT, conditions associated with elevated reactive oxygen species (ROS) production, e.g. diabetic hyperglycemia, demonstrate increased sensitivity to LILT. Consequently, assessment of tissue redox conditions in vivo may prove helpful in identifying responsive tissues. A noninvasive redox measure may be useful in advancing investigation in LILT and may one day be helpful in better identifying responsive patients. The detection of biophotons, the production of which is associated with cellular redox state and the generation of ROS, represents just such an opportunity. In this review, we will present the case for pursuing further investigation into the potential clinical partnership between biophoton detection and LILT.

  10. Biophoton Detection and Low-Intensity Light Therapy: A Potential Clinical Partnership

    PubMed Central

    Van Wijk, Eduard P.A.; Van Wijk, Roeland; Mills, Paul J.

    2010-01-01

    Abstract Low-intensity light therapy (LILT) is showing promise in the treatment of a wide variety of medical conditions. Concurrently, our knowledge of LILT mechanisms continues to expand. We are now aware of LILT's potential to induce cellular effects through, for example, accelerated ATP production and the mitigation of oxidative stress. In clinical use, however, it is often difficult to predict patient response to LILT. It appears that cellular reduction/oxidation (redox) state may play a central role in determining sensitivity to LILT and may help explain variability in patient responsiveness. In LILT, conditions associated with elevated reactive oxygen species (ROS) production, e.g. diabetic hyperglycemia, demonstrate increased sensitivity to LILT. Consequently, assessment of tissue redox conditions in vivo may prove helpful in identifying responsive tissues. A noninvasive redox measure may be useful in advancing investigation in LILT and may one day be helpful in better identifying responsive patients. The detection of biophotons, the production of which is associated with cellular redox state and the generation of ROS, represents just such an opportunity. In this review, we will present the case for pursuing further investigation into the potential clinical partnership between biophoton detection and LILT. PMID:19754267

  11. A highly oxidized atmosphere-ocean system and oceanic molybdenum drawdown during the Paleoproterozoic

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Ito, T.; Suzuki, K.; Anbar, A. D.; Gordon, G. W.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.

    2014-12-01

    Multiple lines of evidence suggest that the first major oxidation of the atmosphere-ocean system occurred during the Paleoproterozoic. However, the course of this redox transition remains elusive. A number of large Mn deposits are distributed in Paleoproterozoic sedimentary successions. As Mn is a redox-sensitive element characterized by high redox potential, knowledge of the Mn cycle in Paleoproterozoic seawater may provide insight into redox evolution during this period. Here, we investigate the Mn cycle in Paleoproterozoic seawater based on the Re-Os and Mo isotope compositions, and the abundance of major and trace elements, in Mn-rich sedimentary rocks from the Nsuta deposit of the Birimian Supergroup, Ghana. The Mn ore is composed mainly of rhodochrosite and is distributed at the boundaries between sedimentary rocks and tholeiitic volcanic rocks. The Re-Os isochron age (2217 ± 100 Ma) we obtained was consistent with U-Pb zircon ages of the volcanic rocks. The manganophile elements, except for Mo, show no enrichment, which is similar to modern hydrothermal Mn oxides. The PAAS-normalized REE compositions show positive Ce anomaly, indicative of Ce enrichment due to the oxidation of Ce(III) by Mn(IV). These findings suggest that Mn ore formed from primary precipitation of Mn oxides from hydrothermal fluids as they were mixed with bottom seawater at ~2.2 Ga. Thus, the bottom seawater would have been sufficiently oxygenated for the precipitation of Mn oxides at ~2.2 Ga. The Nsuta ore samples exhibit slight Mo enrichment, but Mo/Mn ratios are orders of magnitude lower than those in modern hydrothermal Mn oxides. We also found that the Mo isotopes in the Nsuta ore are ~0.7‰ heavier than those in modern hydrothermal and hydrogenous Mn oxides. As Mo in hydrothermal Mn oxides is sourced primarily from seawater (Goto et al., in prep), these results may reflect smaller oceanic Mo inventory and heavier seawater Mo isotope composition at 2.2 Ga than those of present-day. Our calculation using a simple mass balance model suggests that substantial removal of light Mo by Mn oxides may have caused such oceanic conditions. Our findings are consistent with the recently proposed 'oxygen overshoot' model (Bekker and Holland, 2012) and low Mo contents in ~2.2-Ga black shales and sedimentary pyrites (e.g., Scott et al., 2008).

  12. Reactive Oxygen Species are Ubiquitous along Subsurface Redox Gradients

    NASA Astrophysics Data System (ADS)

    Nico, P. S.; Yuan, X.; Davis, J. A.; Dwivedi, D.; Williams, K. H.; Bhattacharyya, A.; Fox, P. M.

    2016-12-01

    Reactive oxygen species (hydroxyl radical, superoxide, hydrogen peroxide, etc.) are known to be important intermediates in many biological and earth system processes. They have been particularly well studied in the realms of atmospheric chemistry and aquatic photochemistry. However, recently there is increasing evidence that they are also present in impactful quantities in dark systems as a result of both biotic and abiotic reactions. Herein we will present a complementary suite of laboratory and field studies examining the presence and production of hydrogen peroxide under relevant subsurface conditions. The laboratory work examines the redox cycling between reduced organic matter, molecular oxygen, and Fe which results in not only the production of hydrogen peroxide and oxidation of organic functional groups but also the maintenance of steady-state concentration of Fe(II) under fully oxygenated aqueous conditions. The field studies involve three distinct locations, namely a shallow subsurface aquifer, a hyporheic zone redox gradient across a river meander, and a hillside shale seep. In all cases detectable quantities (tens of nanomolar) of hydrogen peroxide were measured. In general, concentrations peak under transitional redox conditions where there is the simultaneous presence of reduced Fe, organic matter, and at least trace dissolved oxygen. Many, but not all, of the observed dynamics in hydrogen peroxide production can be reproduced by a simple kinetic model representing the reactions between Fe, organic matter, and molecular oxygen, but many questions remain regarding the role of microorganisms and other redox active chemical species in determining the detected hydrogen peroxide concentrations. The consistent detection of hydrogen peroxide at these disparate locations supports the hypothesis that hydrogen peroxide, and by extension, the entire suite of reactive oxygen species are ubiquitous along subsurface redox gradients.

  13. Diverse stoichiometry of dissolved trace metals in the Indian Ocean

    PubMed Central

    Thi Dieu Vu, Huong; Sohrin, Yoshiki

    2013-01-01

    Trace metals in seawater are essential to organisms and important as tracers of various processes in the ocean. However, we do not have a good understanding of the global distribution and cycling of trace metals, especially in the Indian Ocean. Here we report the first simultaneous, full-depth, and basin-scale section-distribution of dissolved (D) Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Indian Ocean. Our data reveal widespread co-limitation for phytoplankton production by DFe and occurrence of redox-related processes. The stoichiometry of the DM/phosphorus ratio agrees within a factor of 5 between deep waters in the Indian and Pacific, whereas it shows variability up to a factor of 300 among water masses within the Indian Ocean. This indicates that a consistent mechanism controls the stoichiometry in the deep waters, which are significantly depleted in Mn, Fe, and Co compared to requirements for phytoplankton.

  14. Thiol redox transitions in cell signaling: a lesson from N-acetylcysteine.

    PubMed

    Parasassi, Tiziana; Brunelli, Roberto; Costa, Graziella; De Spirito, Marco; Krasnowska, Ewa; Lundeberg, Thomas; Pittaluga, Eugenia; Ursini, Fulvio

    2010-06-29

    The functional status of cells is under the control of external stimuli affecting the function of critical proteins and eventually gene expression. Signal sensing and transduction by messengers to specific effectors operate by post-translational modification of proteins, among which thiol redox switches play a fundamental role that is just beginning to be understood. The maintenance of the redox status is, indeed, crucial for cellular homeostasis and its dysregulation towards a more oxidized intracellular environment is associated with aberrant proliferation, ultimately related to diseases such as cancer, cardiovascular disease, and diabetes. Redox transitions occur in sensitive cysteine residues of regulatory proteins relevant to signaling, their evolution to metastable disulfides accounting for the functional redox switch. N-acetylcysteine (NAC) is a thiol-containing compound that is able to interfere with redox transitions of thiols and, thus, in principle, able to modulate redox signaling. We here review the redox chemistry of NAC, then screen possible mechanisms to explain the effects observed in NAC-treated normal and cancer cells; such effects involve a modification of global gene expression, thus of functions and morphology, with a leitmotif of a switch from proliferation to terminal differentiation. The regulation of thiol redox transitions in cell signaling is, therefore, proposed as a new tool, holding promise not only for a deeper explanation of mechanisms, but indeed for innovative pharmacological interventions.

  15. Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters.

    PubMed

    Breckwoldt, Michael O; Armoundas, Antonis A; Aon, Miguel A; Bendszus, Martin; O'Rourke, Brian; Schwarzländer, Markus; Dick, Tobias P; Kurz, Felix T

    2016-03-22

    Redox switches are important mediators in neoplastic, cardiovascular and neurological disorders. We recently identified spontaneous redox signals in neurons at the single mitochondrion level where transients of glutathione oxidation go along with shortening and re-elongation of the organelle. We now have developed advanced image and signal-processing methods to re-assess and extend previously obtained data. Here we analyze redox and pH signals of entire mitochondrial populations. In total, we quantified the effects of 628 redox and pH events in 1797 mitochondria from intercostal axons and neuromuscular synapses using optical sensors (mito-Grx1-roGFP2; mito-SypHer). We show that neuronal mitochondria can undergo multiple redox cycles exhibiting markedly different signal characteristics compared to single redox events. Redox and pH events occur more often in mitochondrial clusters (medium cluster size: 34.1 ± 4.8 μm(2)). Local clusters possess higher mitochondrial densities than the rest of the axon, suggesting morphological and functional inter-mitochondrial coupling. We find that cluster formation is redox sensitive and can be blocked by the antioxidant MitoQ. In a nerve crush paradigm, mitochondrial clusters form sequentially adjacent to the lesion site and oxidation spreads between mitochondria. Our methodology combines optical bioenergetics and advanced signal processing and allows quantitative assessment of entire mitochondrial populations.

  16. Unusual thiol-based redox metabolism of parasitic flukes.

    PubMed

    Tripathi, Timir; Suttiprapa, Sutas; Sripa, Banchob

    2017-08-01

    Parasitic flukes are exposed to free radicals and, to a greater extent, reactive oxygen species (ROS) during their life cycle. Despite being relentlessly exposed to ROS released by activated immune cells, these parasites can survive for many years in the host. Cellular thiol-based redox metabolism plays a crucial role in parasite survival within their hosts. Evidence shows that oxidative stress and redox homeostasis maintenance are important clinical and pathobiochemical as well as effective therapeutic principles in various diseases. The characterization of redox and antioxidant enzymes is likely to yield good target candidates for novel drugs and vaccines. The absence of active catalase in fluke parasites offers great potential for the development of chemotherapeutic agents that act by perturbing the redox equilibrium of the cell. One of the redox-sensitive enzymes, thioredoxin glutathione reductase (TGR), has been accepted as a drug target against blood fluke infections, and related clinical trials are in progress. TGR is the sole enzyme responsible for Trx and GSH reduction in parasitic flukes. The availability of helminth genomes has accelerated the research on redox metabolism of flukes; however, significant achievements have yet to be attained. The present review summarizes current knowledge on the redox and antioxidant system of the parasitic flukes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Kynurenine pathway metabolites and enzymes involved in redox reactions.

    PubMed

    González Esquivel, D; Ramírez-Ortega, D; Pineda, B; Castro, N; Ríos, C; Pérez de la Cruz, V

    2017-01-01

    Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD + , which is involved in many metabolic pathways. De novo biosynthesis of NAD + is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Optical redox imaging indices discriminate human breast cancer from normal tissues

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2016-11-01

    Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues (p<0.05). The redox ratio Fp/(NADH + Fp) was ˜27% higher in the cancerous tissues (p<0.05). Additionally, Fp, or NADH, or the redox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients.

  19. Optical redox imaging indices discriminate human breast cancer from normal tissues

    PubMed Central

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2016-01-01

    Abstract. Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues (p<0.05). The redox ratio Fp/(NADH + Fp) was ∼27% higher in the cancerous tissues (p<0.05). Additionally, Fp, or NADH, or the redox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients. PMID:27896360

  20. Organic photochemical storage of solar energy. Progress report, July 1, 1977--Feburary 28, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G. II

    1978-03-01

    The prospects for driving endoergic reactions of simple, relatively abundant organic chemicals by photochemical means have been examined. Strategies for utilization of light of varying wavelength involve sensitization mechanisms which depend on the redox properties of energy storing substrates and photosensitizers. Of principal interest is valence isomerization which can be induced by electron donor-acceptor interaction between substrate and sensitizer in an excited complex or exciplex. Photophysical studies show that potentially isomerizable substrates efficiently intercept redox photosensitizers. The quenching of emission of electron acceptor sensitizers by non conjugated hydrocarbon dienes is indeed a function of the reduction potential of the acceptorsmore » (a series of aromatics with varying absorption characteristics) and the oxidation potentials of the substrates. Electron deficient dienes have been shown alternatively to be efficient quenchers of excited donor sensitizers. That exciplexes are formed between isomerizable substrates and donor or acceptor sensitizers has been confirmed by emission spectroscopy. The rearrangement of hexamethyldewarbenzene, a model exciplex isomerization has been examined in some detail.« less

  1. Chemostratigraphy of the Gohan Formation in the eastern central Korea : implications for the Capitanian environmental change

    NASA Astrophysics Data System (ADS)

    Kwon, Hyosang; Lee, Yong Il; Lim, Hyoun Soo

    2017-04-01

    The Gohan Formation in the Pyeongan Supergroup in central eastern Korea was deposited in a marginal marine to terrestrial setting in the Capitanian. It is 450 m thick and comprises alternation of gray-greenish medium-grained sandstone and mudrock. A detailed carbon isotope profile along with some paleoenvironmental proxies are presented for the Gohan Formation at Danyang site. CN ratios of organic matters reveal the presence of both vascular and non vascular plants. Excursion of carbon isotope ratios represents disturbance of carbon cycle. Carbon isotope values indicated a 3‰ negative excursion in the lower part of the studied section. This can be interpreted carbon cycle disturbance from the Capitanian extinction event. Mercury concentration is a proxy of volcanic activity. The horizon of a mercury peak near the bottom of the section is consistent with that of negative carbon isotope excursion and the coincidence between negative carbon isotope excursion and high mercury concentration may represent the influence from Emeishan volcanism, which has been regarded as a possible cause of the Capitanian extiction. Two more mercury peaks are noted in the upper part of the section but they are not related to carbon cycle disturbance which suggests effect of local volcanic eruptions as supported by the presence of volcanic rock fragments in coarse-grained sediment. Trace metal redox proxies indicate that the depositional basin was ventillated. TOC values tend to increase when the concentration of redox elements rise. However, the TOC and trace metal redox proxies trends are observed to behave independently of changes in carbon isotope and mercury concentrations suggesting transitions in local paleoenvironmental conditions.

  2. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems.

    PubMed

    Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C

    2018-05-28

    This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.

  3. Detection of thiol-based redox switch processes in parasites - facts and future.

    PubMed

    Rahbari, Mahsa; Diederich, Kathrin; Becker, Katja; Krauth-Siegel, R Luise; Jortzik, Esther

    2015-05-01

    Malaria and African trypanosomiasis are tropical diseases caused by the protozoa Plasmodium and Trypanosoma, respectively. The parasites undergo complex life cycles in the mammalian host and insect vector, during which they are exposed to oxidative and nitrosative challenges induced by the host immune system and endogenous processes. Attacking the parasite's redox metabolism is a target mechanism of several known antiparasitic drugs and a promising approach to novel drug development. Apart from this aspect, oxidation of cysteine residues plays a key role in protein-protein interaction, metabolic responses to redox events, and signaling. Understanding the role and dynamics of reactive oxygen species and thiol switches in regulating cellular redox homeostasis is crucial for both basic and applied biomedical approaches. Numerous techniques have therefore been established to detect redox changes in parasites including biochemical methods, fluorescent dyes, and genetically encoded probes. In this review, we aim to give an insight into the characteristics of redox networks in the pathogens Plasmodium and Trypanosoma, including a comprehensive overview of the consequences of specific deletions of redox-associated genes. Furthermore, we summarize mechanisms and detection methods of thiol switches in both parasites and discuss their specificity and sensitivity.

  4. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  5. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication.

    PubMed

    Shlomai, Joseph

    2010-11-01

    Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.

  6. Enhanced bimolecular exchange reaction through programmed coordination of a five-coordinate oxovanadium complex for efficient redox mediation in dye-sensitized solar cells.

    PubMed

    Oyaizu, Kenichi; Hayo, Noriko; Sasada, Yoshito; Kato, Fumiaki; Nishide, Hiroyuki

    2013-12-07

    Electrochemical reversibility and fast bimolecular exchange reaction found for VO(salen) gave rise to a highly efficient redox mediation to enhance the photocurrent of a dye-sensitized solar cell, leading to an excellent photovoltaic performance with a conversion efficiency of 5.4%. A heterogeneous electron-transfer rate constant at an electrode (k0) and a second-order rate constant for an electron self-exchange reaction (k(ex)) were proposed as key parameters that dominate the charge transport property, which afforded a novel design concept for the mediators based on their kinetic aspects.

  7. Crataegus special extract WS 1442 causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of endothelial NO synthase but not via activation of estrogen receptors.

    PubMed

    Anselm, Eric; Socorro, Vanesca Frota Madeira; Dal-Ros, Stéphanie; Schott, Christa; Bronner, Christian; Schini-Kerth, Valérie B

    2009-03-01

    This study determined whether the Crataegus (Hawthorn species) special extract WS 1442 stimulates the endothelial formation of nitric oxide (NO), a vasoprotective factor, and characterized the underlying mechanism. Vascular reactivity was assessed in porcine coronary artery rings, reactive oxygen species (ROS) formation in artery sections by microscopy, and phosphorylation of Akt and endothelial NO synthase (eNOS) in endothelial cells by Western blot analysis. WS 1442 caused endothelium-dependent relaxations in coronary artery rings, which were reduced by N-nitro-L-arginine (a competitive inhibitor of NO synthase) and by charybdotoxin plus apamin (two inhibitors of endothelium-derived hyperpolarizing factor-mediated responses). Relaxations to WS 1442 were inhibited by intracellular ROS scavengers and inhibitors of Src and PI3-kinase, but not by an estrogen receptor antagonist. WS 1442 stimulated the endothelial formation of ROS in artery sections, and a redox-sensitive phosphorylation of Akt and eNOS in endothelial cells. WS 1442 induced endothelium-dependent NO-mediated relaxations of coronary artery rings through the redox-sensitive Src/PI3-kinase/Akt-dependent phosphorylation of eNOS.

  8. Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification.

    PubMed

    Jiang, Bingying; Wang, Min; Chen, Ying; Xie, Jiaqing; Xiang, Yun

    2012-02-15

    We demonstrated a new strategy for highly sensitive electrochemical detection of cocaine by using two engineered aptamers in connection to redox-recycling signal amplification. The graphene/AuNP nanocomposites were electrochemically deposited on a screen printed carbon electrode to enhance the electron transfers. The cocaine primary binding aptamers were self-assembled on the electrode surface through sulfur-Au interactions. The presence of the target cocaine and the biotin-modified secondary binding aptamers leads to the formation of sandwich complexes on the electrode surface. The streptavidin-conjugated alkaline phosphatases (ALPs) were used as labels to generate quantitative signals. The addition of the ALP substrate and the co-reactant NADH results in the formation of a redox cycle between the enzymatic product and the electrochemically oxidized species and the signal is thus significantly amplified. Because of the effective modification of the sensing surface and signal amplification, low nanomolar (1 nM) detection limit for cocaine is achieved. The proposed aptamer-based sandwich sensing approach for amplified detection of cocaine thus opens new opportunities for highly sensitive determination of other small molecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Mobility of major and trace elements in a coupled groundwater-surface water system: Merced River, CA

    NASA Astrophysics Data System (ADS)

    Wildman, R. A.; Domagalski, J. L.; Hering, J. G.

    2004-12-01

    Trace element transport in coupled surface water/groundwater systems is controlled not only by advective flow, but also by redox reactions that affect the partitioning of various elements between mobile and immobile phases. These processes have been examined in the context of a field project conducted by the U.S. Geological Survey (USGS) as part of the National Water-Quality Assessment (NAWQA) program. The Merced River flows out of Yosemite National Park and the Sierra Nevada foothills and into California's Central Valley, where it joins the San Joaquin River. Our field site is approximately twenty river kilometers from the confluence with the San Joaquin River. This deep alluvial plain has minimal topography. Agricultural development characterizes the land surrounding this reach of river; consequently, the hydrology is heavily influenced by irrigation. Riverbed groundwater samples were collected from ten wells aligned in two transects across the river located approximately 100 m apart. The wells were sampled from depths of 0.5 m, 1 m, and 3 m below the sediment-water interface. Groundwater flowpath samples were taken from wells positioned on a path perpendicular to the river and located 100 m, 500 m, and 1000 m from the river. The saturated groundwater system exists from 7 to 40 m below the surface and is confined below by a clay layer. Each well location samples from 3-5 depths in this surface aquifer. Samples were collected in December 2003, March-April, June-July, and October 2004. This served to provide an evenly-spaced sampling frequency over the course of a year, and also to allow observation of trends coinciding with the onset of winter, the spring runoff, and early and late summer irrigation. An initial survey of the elements in the riverbed samples was conducted using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS). Elements for further study were selected based on variability in this survey, either with respect to depth or location, as well as to cover a range of expected geochemical behaviors. Further ICP-MS measurements focused on eight elements: strontium, barium, uranium, molybdenum, manganese, iron, phosphorus, and bromine. Bromine is a conservative tracer. Molybdenum, manganese, and iron will precipitate when oxidized, and uranium will precipitate when reduced. Strontium and barium are not redox-active but may be affected by dissolution-precipitation and sorption reactions. Phosphorus is a nutrient that will cycle actively in areas of biological productivity. Generally, these elements appear to behave as expected based on physical waterflow and assumed redox conditions. The two transects of wells across the river bracket a zone of known denitrification, which implies that sediment conditions favor oxidation upriver and reduction downriver. This trend is borne out both by the redox-sensitive elements at each transect, and by the strontium and barium, which bind to precipitated iron and manganese oxides in oxidizing conditions and are released into the dissolved state in reducing conditions. The flowpath samples appear to be enriched in strontium, phosphorus, and bromine when compared to the riverbed samples, and they are depleted in manganese and iron.

  10. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle

    DOE PAGES

    Kramer, Philip A.; Duan, Jicheng; Gaffrey, Matthew J.; ...

    2018-05-23

    Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 minmore » after the last stimulation and processed for redox proteomics assay of S-glutathionylation.« less

  11. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Philip A.; Duan, Jicheng; Gaffrey, Matthew J.

    Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 minmore » after the last stimulation and processed for redox proteomics assay of S-glutathionylation.« less

  12. Subcellular Redox Signaling.

    PubMed

    Zhu, Liping; Lu, Yankai; Zhang, Jiwei; Hu, Qinghua

    2017-01-01

    Oxidative and antioxidative system of cells and tissues maintains a balanced state under physiological conditions. A disruption in this balance of redox status has been associated with numerous pathological processes. Reactive oxygen species (ROS) as a major redox signaling generates in a spatiotemporally dependent manner. Subcellular organelles such as mitochondria, endoplasmic reticulum, plasma membrane and nuclei contribute to the production of ROS. In addition to downstream effects of ROS signaling regulated by average ROS changes in cytoplasm, whether subcelluar ROS mediate biological effect(s) has drawn greater attentions. With the advance in redox-sensitive probes targeted to different subcellular compartments, the investigation of subcellular ROS signaling and its associated cellular function has become feasible. In this review, we discuss the subcellular ROS signaling, with particular focus on mechanisms of subcellular ROS production and its downstream effects.

  13. S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation.

    PubMed

    Jerng, Henry H; Pfaffinger, Paul J

    2014-01-01

    Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed, and that the S-glutathionylation mechanism may play a previously unappreciated role in mediating excitability changes and neuropathologies associated with ROS.

  14. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple.

    PubMed

    Daeneke, Torben; Uemura, Yu; Duffy, Noel W; Mozer, Attila J; Koumura, Nagatoshi; Bach, Udo; Spiccia, Leone

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Disulfide proteomics of rice cultured cells in response to OsRacl and probenazole-related immune signaling pathway in rice.

    PubMed

    Morino, Kazuko; Kimizu, Mayumi; Fujiwara, Masayuki

    2016-01-01

    Reactive oxygen species (ROS) production is an early event in the immune response of plants. ROS production affects the redox-based modification of cysteine residues in redox proteins, which contribute to protein functions such as enzymatic activity, protein-protein interactions, oligomerization, and intracellular localization. Thus, the sensitivity of cysteine residues to changes in the cellular redox status is critical to the immune response of plants. We used disulfide proteomics to identify immune response-related redox proteins. Total protein was extracted from rice cultured cells expressing constitutively active or dominant-negative OsRacl, which is a key regulator of the immune response in rice, and from rice cultured cells that were treated with probenazole, which is an activator of the plant immune response, in the presence of the thiol group-specific fluorescent probe monobromobimane (mBBr), which was a tag for reduced proteins in a differential display two-dimensional gel electrophoresis. The mBBr fluorescence was detected by using a charge-coupled device system, and total protein spots were detected using Coomassie brilliant blue staining. Both of the protein spots were analyzed by gel image software and identified using MS spectrometry. The possible disulfide bonds were identified using the disulfide bond prediction software. Subcellular localization and bimolecular fluorescence complementation analysis were performed in one of the identified proteins: Oryza sativa cold shock protein 2 (OsCSP2). We identified seven proteins carrying potential redox-sensitive cysteine residues. Two proteins of them were oxidized in cultured cells expressing DN-OsRac1, which indicates that these two proteins would be inactivated through the inhibition of OsRac1 signaling pathway. One of the two oxidized proteins, OsCSP2, contains 197 amino acid residues and six cysteine residues. Site-directed mutagenesis of these cysteine residues revealed that a Cys 140 mutation causes mislocalization of a green fluorescent protein fusion protein in the root cells of rice. Bimolecular fluorescence complementation analysis revealed that OsCSP2 is localized in the nucleus as a homo dimer in rice root cells. The findings of the study indicate that redox-sensitive cysteine modification would contribute to the immune response in rice.

  16. An UV-vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics.

    PubMed

    Chen, Wei; Liu, Xiao-Yang; Qian, Chen; Song, Xiang-Ning; Li, Wen-Wei; Yu, Han-Qing

    2015-02-15

    Phenazines are widely distributed in the environment and play an important role in various biological processes to facilitate microbial metabolism and electron transfer. In this work, an efficient and reliable spectroelectrochemical method is developed to quantitatively detect 1-hydroxyphenazine (1-OHPZ), a representative phenazine, and explore its redox characteristics. This approach is based on the sensitive absorption change of 1-OHPZ in response to its changes under redox state in rapid electrochemical reduction. The redox reaction of 1-OHPZ in aqueous solution is a proton-coupled electron transfer process, with a reversible one-step 2e(-)/2H(+) transfer reaction. This spectroelectrochemical approach exhibits good linear response covering two magnitudes to 1-OHPZ with a detection limit of 0.48µM, and is successfully applied to detect 1-OHPZ from a mixture of phenazines produced by Pseudomonas aeruginosa cultures. This method might also be applicable in exploring the abundance and redox processes of a wide range of other redox-active molecules in natural and engineered environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.

    PubMed

    Görlin, Mikaela; Ferreira de Araújo, Jorge; Schmies, Henrike; Bernsmeier, Denis; Dresp, Sören; Gliech, Manuel; Jusys, Zenonas; Chernev, Petko; Kraehnert, Ralph; Dau, Holger; Strasser, Peter

    2017-02-08

    Ni-Fe oxyhydroxides are the most active known electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolytes and are therefore of great scientific and technological importance in the context of electrochemical energy conversion. Here we uncover, investigate, and discuss previously unaddressed effects of conductive supports and the electrolyte pH on the Ni-Fe(OOH) catalyst redox behavior and catalytic OER activity, combining in situ UV-vis spectro-electrochemistry, operando electrochemical mass spectrometry (DEMS), and in situ cryo X-ray absorption spectroscopy (XAS). Supports and pH > 13 strongly enhanced the precatalytic voltammetric charge of the Ni-Fe oxyhydroxide redox peak couple, shifted them more cathodically, and caused a 2-3-fold increase in the catalytic OER activity. Analysis of DEMS-based faradaic oxygen efficiency and electrochemical UV-vis traces consistently confirmed our voltammetric observations, evidencing both a more cathodic O 2 release and a more cathodic onset of Ni oxidation at higher pH. Using UV-vis, which can monitor the amount of oxidized Ni +3/+4 in situ, confirmed an earlier onset of the redox process at high electrolyte pH and further provided evidence of a smaller fraction of Ni +3/+4 in mixed Ni-Fe centers, confirming the unresolved paradox of a reduced metal redox activity with increasing Fe content. A nonmonotonic super-Nernstian pH dependence of the redox peaks with increasing Fe content-displaying Pourbaix slopes as steep as -120 mV/pH-suggested a two proton-one electron transfer. We explain and discuss the experimental pH effects using refined coupled (PCET) and decoupled proton transfer-electron transfer (PT/ET) schemes involving negatively charged oxygenate ligands generated at Fe centers. Together, we offer new insight into the catalytic reaction dynamics and associated catalyst redox chemistry of the most important class of alkaline OER catalysts.

  18. Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars

    NASA Astrophysics Data System (ADS)

    Geller, Michael D.; Ntziachristos, Leonidas; Mamakos, Athanasios; Samaras, Zissis; Schmitz, Debra A.; Froines, John R.; Sioutas, Constantinos

    Particulate matter (PM) originating from mobile sources has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease, and an array of environmental problems, including global warming and acid rain. Till date, however, it is not clear which physical characteristics or chemical constituents of PM are significant contributors to the magnitude of the health risk. This study sought to determine the relationship between physical and chemical characteristics of PM while quantitatively measuring samples for redox activity of diesel and gasoline particulate emissions from passenger vehicles typically in use in Europe. The main objective was to relate PM chemistry to the redox activity in relation to vehicle type and driving cycle. Our results showed a high degree of correlation between several PM species, including elemental and organic carbon, low molecular weight polycyclic aromatic hydrocarbons, and trace metals such as lithium, beryllium, nickel and zinc, and the redox activity of PM, as measured by a quantitative chemical assay, the dithiothreitol (DTT) assay. The reduction in PM mass or number emission factors resulting from the various engine configurations, fuel types and/or after-treatment technologies, however, was non-linearly related to the decrease in overall PM redox activity. While the PM mass emission rate from the diesel particle filter (DPF)-equipped vehicle was on average approximately 25 times lower than that of the conventional diesel, the redox potential was only eight times lower, which makes the per mass PM redox potential of the DPF vehicle about three times higher. Thus, a strategy aimed at protecting public health and welfare by reducing total vehicle mass and number emissions may not fully achieve the desired goal of preventing the health consequences of PM exposure. Further, study of the chemical composition and interactions between various chemical species may yield greater insights into the toxicity of the PM content of vehicle exhaust.

  19. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to the atmosphere.

  20. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, W. R.; Bothner, Michael H.

    2015-01-01

    To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment–water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.

  1. High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles.

    PubMed

    Hao, Feng; Dong, Pei; Zhang, Jing; Zhang, Yongchang; Loya, Phillip E; Hauge, Robert H; Li, Jianbao; Lou, Jun; Lin, Hong

    2012-01-01

    Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs.

  2. A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-sensitized solar cells

    PubMed Central

    Hao, Yan; Yang, Wenxing; Zhang, Lei; Jiang, Roger; Mijangos, Edgar; Saygili, Yasemin; Hammarström, Leif; Hagfeldt, Anders; Boschloo, Gerrit

    2016-01-01

    Photoelectrochemical approach to solar energy conversion demands a kinetic optimization of various light-induced electron transfer processes. Of great importance are the redox mediator systems accomplishing the electron transfer processes at the semiconductor/electrolyte interface, therefore affecting profoundly the performance of various photoelectrochemical cells. Here, we develop a strategy—by addition of a small organic electron donor, tris(4-methoxyphenyl)amine, into state-of-art cobalt tris(bipyridine) redox electrolyte—to significantly improve the efficiency of dye-sensitized solar cells. The developed solar cells exhibit efficiency of 11.7 and 10.5%, at 0.46 and one-sun illumination, respectively, corresponding to a 26% efficiency improvement compared with the standard electrolyte. Preliminary stability tests showed the solar cell retained 90% of its initial efficiency after 250 h continuous one-sun light soaking. Detailed mechanistic studies reveal the crucial role of the electron transfer cascade processes within the new redox system. PMID:28000672

  3. A Multi-Proxy Paradigm in the Pursuit of Ocean Paleoredox

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Duan, Y.; Kendall, B.; Reinhard, C.; Severmann, S.; Lyons, T. W.

    2011-12-01

    The geologic record provides abundant evidence for variations in ocean oxygenation throughout Earth history. Expansion of ocean anoxic zones is expected in the future as a consequence of global climate change, with attendant effects on global nutrient inventories, carbon cycling and fluxes of trace greenhouse gases to the atmosphere. Therefore, studying ancient ocean redox variations not only teaches us about the history of the Earth system, but also provides insights into how the system may respond to analogous human perturbations. However, the extent, duration, causes, and consequences of most past variations are poorly understood. This problem motivates the development of paleoredox proxies, including novel stable isotope systems such as Mo, Fe, U and Tl. Experience with these emerging isotope systems demonstrates great promise but also many challenges. The Mo isotope system is illustrative. To first order, the geochemical cycling and isotope systematics of this element are straightforward, making it a useful proxy. However, critical unresolved issues include: (a) uncertainties in the ocean inputs through time; (b) ambiguities about fractionation mechanisms; (c) inadequate understanding of how modern analogs map to ancient systems. Similar challenges confront all the novel isotope systems. The way forward requires integration of multiple isotopic proxies, as well as information gleaned from careful analyses of element concentrations. For example, an episode of Mo enrichment in the 2.5 Ga Mt. McRae Shale is generally interpreted as resulting from buildup of Mo in seawater due to oxidative weathering. This enrichment is therefore thought to indicate a "whiff" of O2 in the environment prior to the Great Oxidation Event that began at 2.4 Ga. Molybdenum isotopes are consistent with this interpretation. However, Mo enrichment due to enhanced input from low-T hydrothermal sources in an anoxic regime cannot be completely excluded given the current state of knowledge of Mo isotope systematics from such sources. By considering sedimentary Fe enrichments together with Fe isotopes, we find that the Mo enrichment correlates with the telltale signature of a shelf-to-basin Fe redox "shuttle". Uranium isotopes also exhibit variations indicative of redox transformations. This multi-proxy dataset therefore paints a robust picture of trace metal redox cycling consistent with the "whiff" interpretation.

  4. A new metabolomic assay to examine inflammation and redox pathways following LPS challenge

    PubMed Central

    2012-01-01

    Background Shifts in intracellular arginine (Arg) and sulfur amino acid (SAA) redox metabolism modulate macrophage activation, polarization and phenotype. Despite their importance in inflammation and redox regulatory pathways, comprehensive analysis of these metabolic networks was not previously possible with existing analytical methods. Methods The Arg/thiol redox LC-MS/MS metabolomics assay permits simultaneous assessment of amino acids and derivative products generated from Arg and SAA metabolism. Using this assay, LPS-induced changes in macrophage amino acid metabolism were monitored to identify pathway shifts during activation and their linkage to cellular redox regulation. Results Metabolite concentrations most significantly changed after treatment of a macrophage-like cell line (RAW) with LPS for 24 hrs were citrulline (Cit) (48-fold increase), ornithine (Orn) (8.5-fold increase), arginine (Arg) (66% decrease), and aspartic acid (Asp) (73% decrease). The ratio Cit + Orn/Arg + Asp (CO/AA) was more sensitive to LPS stimulation than other amino acid ratios commonly used to measure LPS-dependent inflammation (e.g., SAM/SAH, GSH/GSSG) and total media NOx. The CO/AA ratio was also the first ratio to change significantly after LPS treatment (4 hrs). Changes in the overall metabolomic profile over time indicated that metabolic pathways shifted from Arg catabolism to thiol oxidation. Conclusions Simultaneous quantification of Arg and SAA metabolic pathway shifts following LPS challenge of macrophage indicate that, in this system, the Arg-Citrulline/NO cycle and arginase pathways are the amino acid metabolic pathways most sensitive to LPS-challenge. The cellular (Cit + Orn)/(Arg + Asp) ratio, which summarizes this pathway, was more responsive to lower concentrations of LPS and responded earlier than other metabolic biomarkers of macrophage activation including GSH redox. It is suggested that the CO/AA ratio is a redox- independent early biomarker of macrophage activation. The ability to measure both the CO/AA and GSH-redox ratios simultaneously permits quantification of the relative effects of LPS challenge on macrophage inflammation and oxidative stress pathways. The use of this assay in humans is discussed, as are clinical implications. PMID:23036094

  5. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    ¨hler number seemed to overestimate the actual transition as indicated by multiple secondary electron acceptors, illustrating the gradient nature of anaerobic transition. Temporal flux variability in low-flux morphologies generated a much greater range in hyporheic redox conditions compared to high-flux zones, and chemical responses to changing flux rates were consistent with those predicted from the empirical relationship between redox condition and residence time. The Raz tracer revealed that hyporheic flow paths have strong net aerobic respiration, particularly at higher residence time, but this reactive exchange did not affect the net stream signal at the reach scale.

  6. Redox Pathways as Drug Targets in Microaerophilic Parasites.

    PubMed

    Leitsch, David; Williams, Catrin F; Hrdý, Ivan

    2018-05-25

    The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia jointly cause hundreds of millions of infections in humans every year. Other microaerophilic parasites such as Tritrichomonas foetus and Spironucleus spp. pose a relevant health problem in veterinary medicine. Unfortunately, vaccines against these pathogens are unavailable, but their microaerophilic lifestyle opens opportunities for specifically developed chemotherapeutics. In particular, their high sensitivity towards oxygen can be exploited by targeting redox enzymes. This review focusses on the redox pathways of microaerophilic parasites and on drugs, either already in use or currently in the state of development, which target these pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Hydrogen peroxide - production, fate and role in redox signaling of tumor cells.

    PubMed

    Lennicke, Claudia; Rahn, Jette; Lichtenfels, Rudolf; Wessjohann, Ludger A; Seliger, Barbara

    2015-09-14

    Hydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called "redox signaling" includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities. In comparison to normal cells, cancer cells are characterized by an increased H2O2 production rate and an impaired redox balance thereby affecting the microenvironment as well as the anti-tumoral immune response. This article reviews the current knowledge about the intracellular production of H2O2 along with redox signaling pathways mediating either the growth or apoptosis of tumor cells. In addition it will be discussed how the targeting of H2O2-linked sources and/or signaling components involved in tumor progression and survival might lead to novel therapeutic targets.

  8. Association of Serum Concentration of Different Trace Elements with Biomarkers of Systemic Oxidant Status in Dairy Cattle.

    PubMed

    Abuelo, Angel; Hernandez, Joaquín; Alves-Nores, Víctor; Benedito, José L; Castillo, Cristina

    2016-12-01

    There has been some recent criticism about the reliability of the assays commonly used to measure oxidant status in cattle, because some recent publications suggested that the concentration of different trace elements influences the results of these assays. The aim of this study was to test the correlation in 502 bovine serum samples between the concentration of several trace elements (Br, Co, Cr, Cu, Fe, I, Mn, Mo, Ni, Se, Sr, V and Zn) and markers of oxidant status (reactive oxygen species (ROS) and total serum antioxidant capacity (SAC)). The Oxidative Stress index (OSi) was also calculated as ROS/SAC. Some significant correlations were found, although weak (|ρ| < 0.50). Therefore, the relationships observed might be attributed to the different pro- and antioxidant effect of the different elements rather than to the assays detecting these elements instead of the oxidised molecules or total antioxidant potential, respectively. The OSi was poorly correlated (|ρ| ≤ 0.36) with the concentration of the studied trace elements, and therefore, its use is recommended to assess shifts in the systemic redox balance.

  9. The H-bond network surrounding the pyranopterins modulates redox cooperativity in the molybdenum-bisPGD cofactor in arsenite oxidase.

    PubMed

    Duval, Simon; Santini, Joanne M; Lemaire, David; Chaspoul, Florence; Russell, Michael J; Grimaldi, Stephane; Nitschke, Wolfgang; Schoepp-Cothenet, Barbara

    2016-09-01

    While the molybdenum cofactor in the majority of bisPGD enzymes goes through two consecutive 1-electron redox transitions, previous protein-film voltammetric results indicated the possibility of cooperative (n=2) redox behavior in the bioenergetic enzyme arsenite oxidase (Aio). Combining equilibrium redox titrations, optical and EPR spectroscopies on concentrated samples obtained via heterologous expression, we unambiguously confirm this claim and quantify Aio's redox cooperativity. The stability constant, Ks, of the Mo(V) semi-reduced intermediate is found to be lower than 10(-3). Site-directed mutagenesis of residues in the vicinity of the Mo-cofactor demonstrates that the degree of redox cooperativity is sensitive to H-bonding interactions between the pyranopterin moieties and amino acid residues. Remarkably, in particular replacing the Gln-726 residue by Gly results in stabilization of (low-temperature) EPR-observable Mo(V) with KS=4. As evidenced by comparison of room temperature optical and low temperature EPR titrations, the degree of stabilization is temperature-dependent. This highlights the importance of room-temperature redox characterizations for correctly interpreting catalytic properties in this group of enzymes. Geochemical and phylogenetic data strongly indicate that molybdenum played an essential biocatalytic roles in early life. Molybdenum's redox versatility and in particular the ability to show cooperative (n=2) redox behavior provide a rationale for its paramount catalytic importance throughout the evolutionary history of life. Implications of the H-bonding network modulating Molybdenum's redox properties on details of a putative inorganic metabolism at life's origin are discussed. Copyright © 2016. Published by Elsevier B.V.

  10. Feasibility of assessing health state by detecting redox state of human body based on Chinese medicine constitution.

    PubMed

    Li, Ling-Ru; Wang, Qi; Wang, Ji; Wang, Qian-Fei; Yang, Ling-Ling; Zheng, Lu-Yu; Zhang, Yan

    2016-08-01

    This article discussed the feasibility of assessing health state by detecting redox state of human body. Firstly, the balance of redox state is the basis of homeostasis, and the balance ability of redox can reflflect health state of human body. Secondly, the redox state of human body is a sensitive index of multiple risk factors of health such as age, external environment and psychological factors. It participates in the occurrence and development of multiple diseases involving metabolic diseases and nervous system diseases, and can serve as a cut-in point for treatment of these diseases. Detecting the redox state of high risk people is signifificantly important for early detection and treatment of disease. The blood plasma and urine could be selected to detect, which is convenient. It is pointed that the indexes not only involve oxidation product and antioxidant enzyme but also redox couple. Chinese medicine constitution reflflects the state of body itself and the ability of adapting to external environment, which is consistent with the connotation of health. It is found that there are nine basic types of constitution in Chinese population, which provides a theoretical basis of health preservation, preventive treatment of disease and personalized treatment. With the combination of redox state detection and the Chinese medicine constitution theory, the heath state can be systemically assessed by conducting large-scale epidemiological survey with classifified detection on redox state of human body.

  11. Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.

    PubMed

    Zhang, Long-Bin; Tang, Li; Ying, Sheng-Hua; Feng, Ming-Guang

    2016-07-01

    Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2-4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx1-3 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe(3+)-inclusive medium perhaps due to elevated transcripts of two Fe(3+) transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen.

  12. Tumor Xenograft Response to Redox-Active Therapies Assessed by Magnetic Resonance Imaging Using a Thiol-Bearing DOTA Complex of Gadolinium1

    PubMed Central

    Guntle, Gerald P; Jagadish, Bhumasamudram; Mash, Eugene A; Powis, Garth; Dorr, Robert T; Raghunand, Natarajan

    2012-01-01

    Gd-LC6-SH is a thiol-bearing DOTA complex of gadolinium designed to bind plasma albumin at the conserved Cys34 site. The binding of Gd-LC6-SH shows sensitivity to the presence of competing thiols. We hypothesized that Gd-LC6-SH could provide magnetic resonance imaging (MRI) enhancement that is sensitive to tumor redox state and that the prolonged retention of albumin-bound Gd-LC6-SH in vivo can be exploited to identify a saturating dose above which the shortening of MRI longitudinal relaxation time (T1) of tissue is insensitive to the injected gadolinium dose. In the Mia-PaCa-2 pancreatic tumor xenograft model in SCID mice, both the small-molecule Gd-DTPA-BMA and the macromolecule Galbumin MRI contrast agents produced dose-dependent decreases in tumor T1. By contrast, the decreases in tumor T1 provided by Gd-LC6-SH at 0.05 and 0.1 mmol/kg were not significantly different at longer times after injection. SCID mice bearing Mia-PaCa-2 or NCI-N87 tumor xenografts were treated with either the glutathione synthesis inhibitor buthionine sulfoximine or the thiol-oxidizing anticancer drug Imexon, respectively. In both models, there was a significantly greater increase in tumor R1 (=1/T1) 60 minutes after injection of Gd-LC6-SH in drug-treated animals relative to saline-treated controls. In addition, Mercury Orange staining for nonprotein sulfhydryls was significantly decreased by drug treatment relative to controls in both tumor models. In summary, these studies show that thiol-bearing complexes of gadolinium such as Gd-LC6-SH can serve as redox-sensitive MRI contrast agents for detecting differences in tumor redox status and can be used to evaluate the effects of redox-active drugs. PMID:22741038

  13. The Intracellular Redox Stress Caused by Hexavalent Chromium is Selective for Proteins that Have Key Roles in Cell Survival and Thiol Redox Control

    PubMed Central

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2011-01-01

    Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival. PMID:21237240

  14. Engineering Folate-Targeting Diselenide-containing Triblock Copolymer as a Redox-Responsive Shell-sheddable Micelle for Antitumor Therapy In Vivo.

    PubMed

    Behroozi, Farnaz; Abdkhodaie, Mohammad-Jafar; Sadeghi Abandansari, Hamid; Satarian, Leila; Molazem, Mohammad; Al-Jamal, Khuloud T; Baharvand, Hossein

    2018-06-18

    The oxidation-reduction (redox)-responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA) 2 ]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic-hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC) in an aqueous environment. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the micelles were spherical with an average diameter of 120 nm. The insoluble anticancer drug paclitaxel (PTX) was loaded into micelles, and its triggered release behavior under different redox conditions was verified. Folate-targeting micelles showed an enhanced uptake in 4T1 breast cancer cells and in vitro cytotoxicity by flow cytometry and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, respectively. Delayed tumor growth was confirmed in the subcutaneously implanted 4T1 breast cancer in mice after intraperitoneal injection. The proposed redox-responsive copolymer offers a new type of biomaterial for drug delivery into cancer cells in vivo. On-demand drug actuation is highly desired. Redox-responsive polymeric DDSs have been shown to be able to respond and release their cargo in a selective manner when encountering a significant change in the potential difference, such as that present between cancerous and healthy tissues. This study offers an added advantage to the field of redox-responsive polymers by reporting a new type of shell-sheddable micelle based on an amphiphilic triblock co-polymer, containing diselenide as a redox-sensitive linkage. The linkage was smartly located at the hydrophilic-hydrophilic bridge in the co-polymer offering complete collapse of the micelle when exposed to the right trigger. The system was able to delay tumor growth and reduce toxicity in a breast cancer tumor model following intraperitoneal injection in mice. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.

    PubMed

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-03-14

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.

  16. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation

    PubMed Central

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology. PMID:23492768

  17. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum.

    PubMed

    Soares Moretti, Ana Iochabel; Martins Laurindo, Francisco Rafael

    2017-03-01

    Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets. Copyright © 2016. Published by Elsevier Inc.

  18. Biomarker-specific conjugated nanopolyplexes for the active coloring of stem-like cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Lee, Eugene; Choi, Jihye; Haam, Seungjoo; Suh, Jin-Suck; Yang, Jaemoon

    2016-06-01

    Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.

  19. Mössbauer spectroscopic studies on the iron forms of deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Drodt, M.; Trautwein, A. X.; König, I.; Suess, E.; Koch, C. Bender

    Mössbauer spectroscopy was applied to characterize the valence states Fe(II) and Fe(III) in sedimentary minerals from a core of the Peru Basin. The procedure in unraveling this information includes temperature-dependent measurements from 275 K to very low temperature (300 mK) in zero-field and also at 4.2 K in an applied field (up to 6.2 T) and by mathematical procedures (least-squares fits and spectral simulations) in order to resolve individual spectral components. The depth distribution of the amount of Fe(II) is about 11% of the total Fe to a depth of 19 cm with a subsequent steep increase (within 3 cm) to about 37%, after which it remains constant to the lower end of the sediment core (at about 40 cm). The steep increase of the amount of Fe(II) defines a redox boundary which coincides with the position where the tan/green color transition of the sediment occurs. The isomer shifts and quadrupole splittings of Fe(II) and Fe(III) in the sediment are consistent with hexacoordination by oxygen or hydroxide ligands as in oxide and silicate minerals. Goethite and traces of hematite are observed only above the redox boundary, with a linear gradient extending from about 20% of the total Fe close to the sediment surface to about zero at the redox boundary. The superparamagnetic relaxation behavior allows to estimate the order of magnitude for the size of the largest goethite and hematite particles within the particle-site distribution, e.g. 170 Å and 50 Å, respectively. The composition of the sediment spectra recorded at 300 mK in zero-field, apart from the contributions due to goethite and hematite, resembles that of the sheet silicates smectite, illite and chlorite, which have been identified as major constituents of the sediment in the <2 μm fraction by X-ray diffraction. The specific ``ferromagnetic'' type of magnetic ordering in the sediment, as detected at 4.2 K in an applied field, also resembles that observed in sheet silicates and indicates that both Fe(II) and Fe(III) are involved in magnetic ordering. This ``ferromagnetic'' behavior is probably due to the double-exchange mechanism known from other mixed-valence Fe(II)-Fe(III) systems. A significant part of the clay-mineral iron is redox sensitive. It is proposed that the color change of the sediment at the redox boundary from tan to green is related to the increase of Fe(II)-Fe(III) pairs in the layer silicates, because of the intervalence electron transfer bands which are caused by such pairs.

  20. Spatial distribution pattern of vanadium in hydric landscapes

    NASA Astrophysics Data System (ADS)

    Fiedler, Sabine; Breuer, Jörn; Palmer, Iris; Berger, Jochen

    2010-05-01

    The geochemical behavior of the trace element vanadium (V) is strongly influenced by its oxidation state (+2 to +5). Consequently, oxidation/reduction reactions play an important role in controlling the mobilization and immobilization of V in soils. Translocation processes of V within soil profiles (pedons), including podzolization and clay illuviation, are well-documented. With regard to its lateral redistribution in landscapes, V is widely regarded as being immobile. Our investigation focused on the fate of V along a moisture gradient in different temperate humid spruce forest ecosystems in Southwest Germany (MAP 1,200-1,600 mm, MAT 6°C). The areas under investigation are characterized by lateral water flow, caused by a physically pre-weathered periglacial layer with poor water-permeability characteristics at the interface between pedo- and lithosphere. We selected different catenas derived from sandstone, gneiss, and granite, respectively. The soil associations occur along moderately inclined slopes and include common forest soils of three redox categories: an anaerobic Histosol, oxic Cambisols, and Stagnosols with an intermediate redox state. The soils are linked to each other by the lateral subsurface transport of solutes, which allows the investigation of the horizontal (i.e. within pedons) and lateral redistribution (i.e. between pedons) of the redox-sensitive elements V and iron (Fe). The redox potential of V and Fe in different soil depths along the hydrological pathway was both measured in the field and subsequently analyzed in 48 soil horizons to deduce the total content of V and Fe using aqua-regia digestion and element spectrometry (ICP-OES and ICP-MS). The different parent materials result in significant differences in V content. The V content in the sandstone soils (0.2 - 30 mg kg-1) was lower than the V content in granite and gneiss soils (up to 75 and 100 mg kg-1, respectively). Our results demonstrate that V is a highly mobile element in hydric landscapes. Independent from the parent material, we found a distinct spatial pattern of V, which reflected that of the local redox environment: Horizons/pedons with oxic conditions revealed a positive correlation between V content and Fe content. In this case, iron oxides act as an important sink for dissolved V which originated from other locations of the catena. Poorly drained soils, such as Stagnosols for example, promote both Fe and V reduction, which is coupled to their removal from the pedons by leaching. It can be demonstrated that the element-specific Eh window for differential reduction is very narrow. The spatial distribution of both elements shows that high V contents are often associated with low Fe contents. It is therefore assumed that a reducing environment promotes Fe3+ reduction, while maintaining while maintaining V stable.

  1. A dual marker label free electrochemical assay for Flavivirus dengue diagnosis.

    PubMed

    Santos, Adriano; Bueno, Paulo R; Davis, Jason J

    2018-02-15

    Dengue is a RNA viral illness of the genus Flavivirus which can cause, depending on the pervasiveness of the infection, hemorrhagic dengue fever or dengue shock syndrome. Herein we present an electrochemical label free approach enabling the rapid sensitive quantification of NS1 and IgG (supporting an ability to distinguish primary and secondary infections). Using a bifunctional SAM containing PEG moieties and a tethered redox thiol, both markers are detectable across clinically relevant levels by label free impedance derived redox capacitance. A subsequent frequency specific immittance function approach enables assaying (within seconds) with no impairment of analytical quality (linearity, sensitivity and variance). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.

  3. Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling

    PubMed Central

    Ryu, Shin-Young; Jhun, Bong Sook; Hurst, Stephen

    2014-01-01

    Abstract Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006. PMID:24180309

  4. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at <10-5 present atmospheric O2).2 As a result, it is difficult to quantify O2 concentrations implied by observed trace metal variations. As a first step toward providing more quantitative constraints on late Archean pO2, we conducted laboratory studies of pyrite and molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our results provide new empirical data that should allow for more precise quantitative constraints on atmospheric pO2 based on the sedimentary rock record. 1Anbar, A.D. et al., 2007. Science, 317, i. 5846: 1903-1906. 2Williamson & Rimstidt, 1994. Geochim. et Cosmochim. Acta, 58, n. 24: 5443-5454. 3Lehner et al., 2015. PLoS ONE, 10, n. 6: 1-15.

  5. Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar.

    PubMed

    Gardiner, Nicholas J; Hawkesworth, Chris J; Robb, Laurence J; Whitehouse, Martin J; Roberts, Nick M W; Kirkland, Christopher L; Evans, Noreen J

    2017-04-07

    Granitoid-hosted mineral deposits are major global sources of a number of economically important metals. The fundamental controls on magma metal fertility are tectonic setting, the nature of source rocks, and magma differentiation. A clearer understanding of these petrogenetic processes has been forged through the accessory mineral zircon, which has considerable potential in metallogenic studies. We present an integrated zircon isotope (U-Pb, Lu-Hf, O) and trace element dataset from the paired Cu-Au (copper) and Sn-W (tin) magmatic belts in Myanmar. Copper arc zircons have juvenile εHf (+7.6 to +11.5) and mantle-like δ 18 O (5.2-5.5‰), whereas tin belt zircons have low εHf (-7 to -13) and heavier δ 18 O (6.2-7.7‰). Variations in zircon Hf and U/Yb reaffirm that tin belt magmas contain greater crustal contributions than copper arc rocks. Links between whole-rock Rb/Sr and zircon Eu/Eu* highlight that the latter can monitor magma fractionation in these systems. Zircon Ce/Ce* and Eu/Eu* are sensitive to redox and fractionation respectively, and here are used to evaluate zircon sensitivity to the metallogenic affinity of their host rock. Critical contents of Sn in granitic magmas, which may be required for the development of economic tin deposits, are marked by zircon Eu/Eu* values of ca. ≤0.08.

  6. Interpreting ambiguous 'trace' results in Schistosoma mansoni CCA Tests: Estimating sensitivity and specificity of ambiguous results with no gold standard.

    PubMed

    Clements, Michelle N; Donnelly, Christl A; Fenwick, Alan; Kabatereine, Narcis B; Knowles, Sarah C L; Meité, Aboulaye; N'Goran, Eliézer K; Nalule, Yolisa; Nogaro, Sarah; Phillips, Anna E; Tukahebwa, Edridah Muheki; Fleming, Fiona M

    2017-12-01

    The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous 'trace' result between 'positive' and 'negative', and much debate has focused on interpretation of traces results. We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d'Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence.

  7. Optical imaging the redox status change during cell apoptosis

    NASA Astrophysics Data System (ADS)

    Su, Ting; Zhang, Zhihong; Lin, Juqiang; Luo, Qingming

    2007-02-01

    Many cellular events involve the alteration in redox equilibrium, globally or locally. In many cases, excessive reactive oxygen species (ROS) production is the underlying cause. Several green fluoresecence protein based indicators are constructed to measure redox status in cells, e.g, rxYFP and roGFPs, which allow real time detection. reduction and oxidization-sensitive GFP (RoGFPs) are more useful due to ratiometric variation by excitation, making the measurement more accurate. Utilizing one of those roGFPs called roGFP1, we establish a mitochondrial redox state probing platform in HeLa cells with laser scan confocal microscopy (LSCM) as detection system. Control experiments confirmed that our platform could produce stable ratiometric values, which made the data more accurately reflect the real environmental changes of redox status that roGFP1 probed. Using exogenous H IIO II and DTT, we evaluated the reactivity and reversibility of roGFP1. The minimal hydrogen peroxide concentration that roGFP1 could show detectable ratiometric changes in our system was about 200μM. Preliminarily applying our platform to exploring the redox status during apoptosis, we observed an increase in ratiometric, suggesting an excessive ROS production.

  8. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.

    PubMed

    Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi

    2018-01-20

    Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.

  9. Redox rhythm reinforces the circadian clock to gate immune response.

    PubMed

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  10. Real-time electrochemical LAMP: a rational comparative study of different DNA intercalating and non-intercalating redox probes.

    PubMed

    Martin, Alexandra; Bouffier, Laurent; Grant, Kathryn B; Limoges, Benoît; Marchal, Damien

    2016-06-20

    We present a comparative study of ten redox-active probes for use in real-time electrochemical loop-mediated isothermal amplification (LAMP). Our main objectives were to establish the criteria that need to be fulfilled for minimizing some of the current limitations of the technique and to provide future guidelines in the search for ideal redox reporters. To ensure a reliable comparative study, each redox probe was tested under similar conditions using the same LAMP reaction and the same entirely automatized custom-made real-time electrochemical device (designed for electrochemically monitoring in real-time and in parallel up to 48 LAMP samples). Electrochemical melt curve analyses were recorded immediately at the end of each LAMP reaction. Our results show that there are a number of intercalating and non-intercalating redox compounds suitable for real-time electrochemical LAMP and that the best candidates are those able to intercalate strongly into ds-DNA but not too much to avoid inhibition of the LAMP reaction. The strongest intercalating redox probes were finally shown to provide higher LAMP sensitivity, speed, greater signal amplitude, and cleaner-cut DNA melting curves than the non-intercalating molecules.

  11. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in themore » subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.« less

  12. An FeIII Azamacrocyclic Complex as a pH-Tunable Catholyte and Anolyte for Redox-Flow Battery Applications.

    PubMed

    Tsitovich, Pavel B; Kosswattaarachchi, Anjula M; Crawley, Matthew R; Tittiris, Timothy Y; Cook, Timothy R; Morrow, Janet R

    2017-11-02

    A reversible Fe 3+ /Fe 2+ redox couple of an azamacrocyclic complex is evaluated as an electrolyte with a pH-tunable potential range for aqueous redox-flow batteries (RFBs). The Fe III complex is formed by 1,4,7-triazacyclononane (TACN) appended with three 2-methyl-imidazole donors, denoted as Fe(Tim). This complex exhibits pH-sensitive redox couples that span E 1/2 (Fe 3+ /Fe 2+ )=317 to -270 mV vs. NHE at pH 3.3 and pH 12.8, respectively. The 590 mV shift in potential and kinetic inertness are driven by ionization of the imidazoles at various pH values. The Fe 3+ /Fe 2+ redox is proton-coupled at alkaline conditions, and bulk electrolysis is non-destructive. The electrolyte demonstrates high charge/discharge capacities at both acidic and alkaline conditions throughout 100 cycles. Given its tunable redox, fast electrochemical kinetics, exceptional stability/cyclability, this complex is promising for the design of aqueous RFB catholytes and anolytes that utilize the earth-abundant element iron. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Vegetarian diets and public health: biomarker and redox connections.

    PubMed

    Benzie, Iris F F; Wachtel-Galor, Sissi

    2010-11-15

    Vegetarian diets are rich in antioxidant phytochemicals. However, they may not act as antioxidants in vivo, and yet still have important signaling and regulatory functions. Some may act as pro-oxidants, modulating cellular redox tone and oxidizing redox sensitive sites. In this review, evidence for health benefits of vegetarian diets is presented from different perspectives: epidemiological, biomarker, evolutionary, and public health, as well as antioxidant. From the perspective of molecular connections between diet and health, evidence of a role for plasma ascorbic acid as a biomarker for future disease risk is presented. Basic concepts of redox-based cell signaling are presented, and effects of antioxidant phytochemicals on signaling, especially via redox tone, sulfur switches and the Antioxidant Response Element (ARE), are explored. Sufficient scientific evidence exists for public health policy to promote a plant-rich diet for health promotion. This does not need to wait for science to provide all the answers as to why and how. However, action and interplay of dietary antioxidants in the nonequilibrium systems that control redox balance, cell signaling, and cell function provide rich ground for research to advance understanding of orthomolecular nutrition and provide science-based evidence to advance public health in our aging population.

  14. Interaction between heavy metals and thiol-linked redox reactions in germination.

    PubMed

    Smiri, M; Chaoui, A; Ferjani, E E

    2010-09-15

    Thioredoxin (TRX) proteins perform important biological functions in cells by changing the redox state of proteins via dithiol disulfide exchange. Several systems are able to control the activity, stability, and correct folding of enzymes through dithiol/disulfide isomerization reactions including the enzyme protein disulfide-isomerase, the glutathione-dependent glutaredoxin system, and the thioredoxin systems. Plants have devised sophisticated mechanisms to cope with biotic and abiotic stresses imposed by their environment. Among these mechanisms, those collectively referred to as redox reactions induced by endogenous systems. This is of agronomical importance since a better knowledge of the involved mechanisms can offer novel means for crop protection. In the plant life cycle, the seed and seedling stages are key developmental stages conditioning the final yield of crops. Both are very sensitive to heavy metal stress. Plant redox reactions are principally studied on adult plant organs and there is only very scarce informations about the onset of redox regulation at the level of seed germination. In the here presented study, we discussed the importance of redox proteins in plant cell metabolism and defence. Special focus is given to TRX, which are involved in detoxification of ROS and also to their targets.

  15. Validation of an intermediate-complexity model for simulating marine biogeochemistry under anoxic conditions in the modern Black Sea

    NASA Astrophysics Data System (ADS)

    Romaniello, Stephen J.; Derry, Louis A.

    2010-08-01

    We test the ability of a new 1-D intermediate-complexity box model (ICBM) that includes process-based C, N, P, O, and S biogeochemistry to simulate profiles and fluxes of biogeochemically reactive species across a wide range of ocean redox states. The ICBM was developed to simulate whole ocean processes for paleoceanographic applications and has been tested with data from the modern global ocean. Here we adapt the circulation submodel of the ICBM to simulate water mass exchange and eddy diffusion processes in the Black Sea but make only very minor changes to the biogeochemical submodel. We force the model with estimated natural and anthropogenic inputs of tracers and nutrients to the Black Sea and compare the results of the simulations to modern observations. Ventilation of the Black Sea is modeled by depth-dependent entrainment of Cold Intermediate Layer water into Bosphorus plume water and subsequent intrusion into deep layers. The simulated profiles of circulation tracers θ, salinity, CFC-12, and radiocarbon agree well with available data, suggesting that the model does a reasonable job of representing physical exchange. Vertical profiles of biogeochemically active components are in good overall agreement with observations. The lack of trace metal (Mn and Fe) cycling in the model results in some discrepancies between the simulated profiles and observation across the suboxic zone; however, the overall redox balance is not sensitive to this difference. We compare modeled basin-wide biogeochemical fluxes to available estimates, but in a number of cases uncertainties in modern budgets limit our ability to test the model rigorously. In agreement with earlier work we find that fixed N losses via thiodenitrification are likely a major pathway in the Black Sea N cycle. Overall, the same biogeochemical submodel used to simulate the modern global ocean appears to perform well in simulating Black Sea processes without requiring significant modification. The ability of a single model to perform across a wide range of redox states is an important prerequisite for applying the ICBM to deep time paleoceanographic problems. The model source code is available as MATLAB™ 7 m-files provided as auxiliary material.

  16. Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types.

    PubMed

    Selvaggio, Gianluca; Coelho, Pedro M B M; Salvador, Armindo

    2018-05-01

    The system (PTTRS) formed by typical 2-Cys peroxiredoxins (Prx), thioredoxin (Trx), Trx reductase (TrxR), and sulfiredoxin (Srx) is central in antioxidant protection and redox signaling in the cytoplasm of eukaryotic cells. Understanding how the PTTRS integrates these functions requires tracing phenotypes to molecular properties, which is non-trivial. Here we analyze this problem based on a model that captures the PTTRS' conserved features. We have mapped the conditions that generate each distinct response to H 2 O 2 supply rates (v sup ), and estimated the parameters for thirteen human cell types and for Saccharomyces cerevisiae. The resulting composition-to-phenotype map yielded the following experimentally testable predictions. The PTTRS permits many distinct responses including ultra-sensitivity and hysteresis. However, nearly all tumor cell lines showed a similar response characterized by limited Trx-S - depletion and a substantial but self-limited gradual accumulation of hyperoxidized Prx at high v sup . This similarity ensues from strong correlations between the TrxR, Srx and Prx activities over cell lines, which contribute to maintain the Prx-SS reduction capacity in slight excess over the maximal steady state Prx-SS production. In turn, in erythrocytes, hepatocytes and HepG2 cells high v sup depletes Trx-S - and oxidizes Prx mainly to Prx-SS. In all nucleated human cells the Prx-SS reduction capacity defined a threshold separating two different regimes. At sub-threshold v sup the cytoplasmic H 2 O 2 concentration is determined by Prx, nM-range and spatially localized, whereas at supra-threshold v sup it is determined by much less active alternative sinks and μM-range throughout the cytoplasm. The yeast shows a distinct response where the Prx Tsa1 accumulates in sulfenate form at high v sup . This is mainly due to an exceptional stability of Tsa1's sulfenate. The implications of these findings for thiol redox regulation and cell physiology are discussed. All estimates were thoroughly documented and provided, together with analytical approximations for system properties, as a resource for quantitative redox biology. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Redox-sensitive micelles assembled from amphiphilic mPEG-PCL-SS-DTX conjugates for the delivery of docetaxel.

    PubMed

    Zhang, Huiyuan; Wang, Kaiming; Zhang, Pei; He, Wenxiu; Song, Aixin; Luan, Yuxia

    2016-06-01

    Docetaxel (DTX) can produce anti-tumor effects by inhibiting cell growth and inducing apoptosis. However, the poor solubility of DTX restricts its application and its clinical formulation has caused serious adverse reaction due to the use of Tween-80. In the present study, DTX was conjugated to an amphiphilic di-block polymer to solve these problems. Methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) was selected as the polymer skeleton and a redox sensitive disulfide bond was used as the linker between DTX and mPEG-PCL. The synthesized mPEG-PCL-SS-DTX conjugates were characterized by (1)H-nuclear magnetic resonance ((1)H NMR) and Fourier transform infrared spectroscopy (FTIR). Interestingly, the mPEG-PCL-SS-DTX conjugates could self-assemble into micelles in aqueous solution. The critical micelle concentration (CMC) of mPEG-PCL-SS-DTX micelles was about 2.3mgL(-1) determined using pyrene molecule fluorescent probe method while the size of mPEG-PCL-SS-DTX micelles was determined to be ca. 17.6nm and 116.0nm with a bimodal distribution by dynamic light scattering (DLS). The in vitro release results indicated that the as-prepared micelles exhibited a sustained release profile with good redox sensitive properties. In particular, the hemolytic toxicity test indicated the as-prepared mPEG-PCL-SS-DTX micelles had negligible hemolytic activity, demonstrating their safety in drug delivery system. Cytotoxicity assay of the mPEG-PCL-SS-DTX micelles verified their highly enhanced cytotoxicity to MCF-7/A and A549 cells. These results thus demonstrated that the present redox-sensitive mPEG-PCL-SS-DTX micelle was an efficient and safe sustained drug delivery system in the biomedical area. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A redox-based mechanism for nitric oxide-induced inhibition of DNA synthesis in human vascular smooth muscle cells

    PubMed Central

    Bundy, Ruth E; Marczin, Nándor; Chester, Adrian H; Yacoub, Magdi

    2000-01-01

    The current study explored potential redox mechanisms of nitric oxide (NO)-induced inhibition of DNA synthesis in cultured human and rat aortic smooth muscle cells.Exposure to S-nitrosothiols, DETA-NONOate and NO itself inhibited ongoing DNA synthesis and S phase progression in a concentration-dependent manner, as measured by thymidine incorporation and flow cytometry. Inhibition by NO donors occurred by release of NO, as detected by chemiluminescence and judged by the effects of NO scavengers, haemoglobin and cPTIO.Co-incubation with redox compounds, N-acetyl-L-cysteine, glutathione and L-ascorbic acid prevented NO inhibition of DNA synthesis. These observations suggest that redox agents may alternatively attenuate NO bioactivity extracellularly, interfere with intracellular actions of NO on the DNA synthesis machinery or restore DNA synthesis after established inhibition by NO.Recovery of DNA synthesis after inhibition by NO was similar with and without redox agents suggesting that augmented restoration of DNA synthesis is an unlikely mechanism to explain redox regulation.Study of extracellular interactions revealed that all redox agents potentiated S-nitrosothiol decomposition and NO release.Examination of intracellular NO bioactivity showed that as opposed to attenuation of NO inhibition of DNA synthesis by redox agents, there was no inhibition (potentiation in the presence of ascorbic acid) of soluble guanylate cyclase (sGC) activation judged by cyclic GMP accumulation in rat cells.These data provide evidence that NO-induced inhibition of ongoing DNA synthesis is sensitive to redox environment. Redox processes might protect the DNA synthesis machinery from inhibition by NO, in the setting of augmented liberation of biologically active NO from NO donors. PMID:10742309

  19. Identification and In Silico Analysis of Major Redox Modulated Proteins from Brassica juncea Seedlings Using 2D Redox SDS PAGE (2-Dimensional Diagonal Redox Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis).

    PubMed

    Chaurasia, Satya Prakash; Deswal, Renu

    2017-02-01

    The thiol-disulphide exchange regulates the activity of proteins by redox modulation. Many studies to analyze reactive oxygen species (ROS), particularly, hydrogen peroxide (H 2 O 2 ) induced changes in the gene expression have been reported, but efforts to detect H 2 O 2 modified proteins are comparatively few. Two-dimensional diagonal redox sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used to detect polypeptides which undergo thiol-disulphide exchange in Brassica juncea seedlings following H 2 O 2 (10 mM) treatment for 30 min. Eleven redox responsive polypeptides were identified which included cruciferin, NLI [Nuclear LIM (Lin11, Isl-1 & Mec-3 domains)] interacting protein phosphatase, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) large subunit, and myrosinase. Redox modulation of RuBisCO large subunit was further confirmed by western blotting. However, the small subunit of RuBisCO was not affected by these redox changes. All redox modulated targets except NLI interacting protein (although it contains two cysteines) showed oxidation sensitive cysteines by in silico analysis. Interestingly, interactome of cruciferin and myrosinase indicated that they may have additional function(s) beside their well-known roles in the seedling development and abiotic stress respectively. Cruciferin showed interactions with stress associated proteins like defensing-like protein 192 and 2-cys peroxiredoxin. Similarly, myrosinase showed interactions with nitrilase and cytochrome p450 which are involved in nitrogen metabolism and/or hormone biosynthesis. This simple procedure can be used to detect major stress mediated redox changes in other plants.

  20. An anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark: 2. Deduction of anaerobic (methanogenic, sulfate-, and Fe (III)-reducing) redox conditions

    NASA Astrophysics Data System (ADS)

    Albrechtsen, Hans-JøRgen; Bjerg, Poul L.; Ludvigsen, Liselotte; Rügge, Kirsten; Christensen, Thomas H.

    1999-04-01

    Redox conditions may be environmental factors which affect the fate of the xenobiotic organic compounds. Therefore the redox conditions were characterized in an anaerobic, leachate-contaminated aquifer 15-60 m downgradient from the Grindsted Landfill, Denmark, where an field injection experiment was carried out. Furthermore, the stability of the redox conditions spatially and over time were investigated, and different approaches to deduce the redox conditions were evaluated. The redox conditions were evaluated in a set of 20 sediment and groundwater samples taken from locations adjacent to the sediment samples. Samples were investigated with respect to groundwater chemistry, including hydrogen and volatile fatty acids (VFAs) and sediment geochemistry, and bioassays were performed. The groundwater chemistry, including redox sensitive species for a large number of samples, varied over time during the experimental period of 924 days owing to variations in the leachate from the landfill. However, no indication of change in the redox environment resulting from the field injection experiment or natural variation was observed in the individual sampling points. The methane, Fe(II), hydrogen, and VFA groundwater chemistry parameters strongly indicated a Fe(III)-reducing environment. This was further supported by the bioassays, although methane production and sulfate-reduction were also observed in a few samples close to the landfill. On the basis of the calculated carbon conversion, Fe(III) was the dominant electron acceptor in the region of the aquifer, which was investigated. Because of the complexity of a landfill leachate plume, several redox processes may occur simultaneously, and an array of methods must be applied for redox characterization in such multicomponent systems.

  1. Remodulating effect of doxorubicin on the state of iron-containing proteins, and redox characteristics of tumor with allowance for its sensitivity to cytostatic agents.

    PubMed

    Chekhun, V F; Lozovska, Yu V; Burlaka, A P; Ganusevich, L I; Shvets, Yu V; Lukyanova, N Yu; Todor, I M; Tregubova, N A; Naleskina, L A

    2016-01-01

    The study was aimed at determining the changes of metal-containing proteins in blood serum and tumor tissue of animals with parental and doxorubicin-resistant strains of Walker-256 carcinosarcoma before and after the cytostatic administration. It has been shown that upon doxorubicin action the levels of total iron and transferrin in the tissues from the both groups of animals decreased while that of ferritine simultaneously increased with more pronounced pattern in the group of animals with resistant tumor strain. It has been shown that upon the action of doxorubicin in tumor tissue of animals with different sensitivity to the cytostatic there could be observed oppositely directed changes in the redox state of these cells that in turn determined the content of “ free iron” complexes, RO S generation and concentration of active forms of matrix metaloproteinase- 2 and matrix metaloproteinase-9, namely, the increase of these indexes in animals with parental strain and their decrease in animals with the resistant one. So, our study has demonstrated the remodulating effect of doxorubicin on the state of metal-containing proteins and redox characteristics of tumor dependent on its sensitivity to cytostatic, at the levels of the tumor and an organism. These data may serve as a criterion for the development of programs for the correction of malfunction of iron metabolism aimed at elevating tumor sensitivity to cytostatic agents.

  2. Targeting the Oxidative Stress Response System of Fungi with Redox-Potent Chemosensitizing Agents

    PubMed Central

    Kim, Jong H.; Chan, Kathleen L.; Faria, Natália C. G.; Martins, M. de L.; Campbell, Bruce C.

    2012-01-01

    The cellular antioxidant system is a target in the antifungal action of amphotericin B (AMB) and itraconazole (ITZ), in filamentous fungi. The sakAΔ mutant of Aspergillus fumigatus, a mitogen-activated protein kinase (MAPK) gene deletion mutant in the antioxidant system, was found to be more sensitive to AMB or ITZ than other A. fumigatus strains, a wild type and a mpkCΔ mutant (a MAPK gene deletion mutant in the polyalcohol sugar utilization system). Complete fungal kill (≥99.9%) by ITZ or AMB was also achieved by much lower dosages for the sakAΔ mutant than for the other strains. It appears msnA, an Aspergillus ortholog to Saccharomyces cerevisiae MSN2 (encoding a stress-responsive C2H2-type zinc-finger regulator) and sakA and/or mpkC (upstream MAPKs) are in the same stress response network under tert-butyl hydroperoxide (t-BuOOH)-, hydrogen peroxide (H2O2)- or AMB-triggered toxicity. Of note is that ITZ-sensitive yeast pathogens were also sensitive to t-BuOOH, showing a connection between ITZ sensitivity and antioxidant capacity of fungi. Enhanced antifungal activity of AMB or ITZ was achieved when these drugs were co-applied with redox-potent natural compounds, 2,3-dihydroxybenzaldehyde, thymol or salicylaldehyde, as chemosensitizing agents. We concluded that redox-potent compounds, which target the antioxidant system in fungi, possess a chemosensitizing capacity to enhance efficacy of conventional drugs. PMID:22438852

  3. Iodine/iodide-free dye-sensitized solar cells.

    PubMed

    Yanagida, Shozo; Yu, Youhai; Manseki, Kazuhiro

    2009-11-17

    Dye-sensitized solar cells (DSSCs) are built from nanocrystalline anatase TiO(2) with a 101 crystal face (nc-TiO(2)) onto which a dye is absorbed, ruthenium complex sensitizers, fluid I(-)/I(3)(-) redox couples with electrolytes, and a Pt-coated counter electrode. DSSCs have now reached efficiencies as high as 11%, and G24 Innovation (Cardiff, U.K.) is currently manufacturing them for commercial use. These devices offer several distinct advantages. On the basis of the electron lifetime and diffusion coefficient in the nc-TiO(2) layer, DSSCs maintain a diffusion length on the order of several micrometers when the dyed-nc-TiO(2) porous layer is covered by redox electrolytes of lithium and/or imidazolium iodide and their polyiodide salts. The fluid iodide/iodine (I(-)/I(3)(-)) redox electrolytes can infiltrate deep inside the intertwined nc-TiO(2) layers, promoting the mobility of the nc-TiO(2) layers and serving as a hole-transport material of DSSCs. As a result, these materials eventually give a respectable photovoltaic performance. On the other hand, fluid I(-)/I(3)(-) redox shuttles have certain disadvantages: reduced performance control and long-term stability and incompatibility with some metallic component materials. The I(-)/I(3)(-) redox shuttle shows a significant loss in short circuit current density and a slight loss in open circuit voltage, particularly in highly viscous electrolyte-based DSSC systems. Iodine can also act as an oxidizing agent, corroding metals, such as the grid metal Ag and the Pt mediator on the cathode, especially in the presence of water and oxygen. In addition, the electrolytes (I(-)/I(3)(-)) can absorb visible light (lambda = approximately 430 nm), leading to photocurrent loss in the DSSC. Therefore, the introduction of iodide/iodine-free electrolytes or hole-transport materials (HTMs) could lead to cost-effective alternatives to TiO(2) DSSCs. In this Account, we discuss the iodide/iodine-free redox couple as a substitute for the fluid I(-)/I(3)(-) redox shuttle. We also review the adaptation of solid-state HTMs to the iodide/iodine-free solid-state DSSCs with an emphasis on their pore filling and charge mobility in devices and the relationship of those values to the performance of the resulting iodide/iodine-free DSSCs. We demonstrate how the structures of the sensitizing dye molecules and additives of lithium or imidazolium salts influence device performance. In addition, the self-organizing molecular interaction for electronic contact of HTMs to dye molecules plays an important role in unidirectional charge diffusion at interfaces. The poly(3,4-ethylenedioxythiophene) (PEDOT)-based DSSCs, which we obtain through photoelectrochemical polymerization (PEP) using 3-alkylthiophen-bearing ruthenium dye, HRS-1, and bis-EDOT, demonstrates the importance of nonbonding interface contact (e.g., pi-pi-stacking) for the successful inclusion of HTMs.

  4. Development of an Assay for the Detection of PrPres in Blood and Urine Based on PMCA Assay and ELISA Methods

    DTIC Science & Technology

    2008-09-01

    the Origen Analyzer (BioVeris), the DELFIA (Wallac/PE) and the MPD ELISA ( BioTraces ). BioTraces had the most sensitive assay in which 125I was used...investigations we decided to abandon the BioTraces assay and focused on a more practical and also sensitive assay provided by the Origen Analyzer

  5. Geochemistry of East Antarctic Margin Sediments Spanning the Eocene Oligocene Transition.

    NASA Astrophysics Data System (ADS)

    Light, J. J.; Passchier, S.

    2016-12-01

    The Eocene Oligocene Transition (EOT) 34 million years ago (Ma), marked the global climate change from greenhouse to icehouse, and the full establishment of the East Antarctic Ice Sheet (EAIS). The initiation of the EAIS during the EOT is believed to have been a step-wise transition; however, data resolution is low and merits the need for further study. The purpose of this study is to expand upon existing knowledge of EAIS dynamics spanning the EOT by creating a higher resolution geochemical record of cores taken from continental shelf sites 1166 in Prydz Bay and U1360 from the Wilkes Land margin. We used Inductively Coupled Plasma Optical Emission Spectrometry and Mass Spectrometry (ICP-OES/ ICP-MS) to determine the bulk chemical composition of samples. Results were used to calculate the Chemical Index of Alteration (CIA), Al2O3/TiO2 ratios, and trace elemental variation down core. CIA values for the early Oligocene in Site U1360 indicate an arid colder environment less likely to be chemically weathered. In contrast, Hole 1166A shows values similar to average shales that increase up core and abruptly decrease at the overlying Neogene diamict, suggesting a warmer more humid environment at Prydz Bay during the late Eocene. Al2O3/TiO2 ratios were used to evaluate mud provenance changes at each site. At site 1166 redox sensitive elements (Cr, Ni, and V) show similar down core distributions to one another. The changes in elemental intensities are likely being controlled by factors such as sediment provenance, changes in redox conditions and surficial weathering. We expect the outcomes of this study to allow us to interpret regional depositional environments at a higher resolution, as well as to shed light on the EAIS's step-wise initiation.

  6. Multiple Controls on the Paleoenvironment of the Early Cambrian Marine Black Shales in the Sichuan Basin, SW China: Geochemical and Organic Carbon Isotopic Evidence

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, G.; Dong, D.; Wang, Y.

    2016-12-01

    In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V+Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.

  7. Green Rust: Structure, Redox Reaction Mechanisms, Transformation and Colloidal Behaviour

    NASA Astrophysics Data System (ADS)

    Stipp, S.; Skovbjerg, L.; Christiansen, B.; Hansson, E.; Utsunomiya, S.; Schild, D.; Geckeis, H.; Ewing, R.

    2006-05-01

    Green rust (GR) forms where pH is neutral to basic, iron concentration is high and oxidation potential provides a small amount of Fe(III). GR is best known from metallic iron corrosion but it has also been reported in soil. It typically forms nano-particles, so surface area is high. It has a layered structure and is reactive, adsorbing species on its surface, providing exchange of interlayer ions, and allowing reaction of redox active species. Corroding stainless-steel canisters in a concrete and steel radioactive waste repository would offer geochemical conditions for GR formation. We used surface-sensitive and high resolution techniques (atomic force microscopy, AFM, transmission electron microscopy, TEM, X-ray photoelectron spectroscopy, XPS) to supplement data from traditional methods (X-ray diffraction, XRD, and wet chemistry). The purpose was to refine structural and compositional parameters for green rust sulfate; to define trace component uptake mechanisms; and to assess potential mobility of GR colloids and thus, sorbed radionuclides. Green rust reduced dissolved Np(V), Cr(VI) and Se(VI), rapidly decreasing solution concentration. High resolution TEM and AFM images showed that chromate penetrates GR interlayers to a distance of about 100 nm from crystal edges. It reduces to Cr(III), blocking further movement and GR transforms topotactically to Cr- goethite, thus immobilising the contaminant in a phase significantly less soluble than pure goethite. Further oxidation results in dissolution of GR and growth of more Cr-goethite. In-situ AFM imaging showed that GR can nucleate and grow both in solution and on minerals typical of fractures in granite, i.e. graphite, muscovite, biotite, quartz and amorphous silica. Particles are more likely to stick to each other or to a substrate than to remain monodispersed.

  8. Water-Chemistry and On-Site Sulfur-Speciation Data for Selected Springs in Yellowstone National Park, Wyoming, 1996-1998

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Schoonen, Martin A.A.; Xu, Yong

    2001-01-01

    Fifty-eight water analyses are reported for samples collected from 19 hot springs and their overflow drainages and one ambient-temperature acid stream in Yellowstone National Park (YNP) during 1996-98. These water samples were collected and analyzed as part of research investigations on microbially mediated sulfur oxidation in stream waters and sulfur redox speciation in hot springs in YNP and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. The research on sulfur redox speciation in hot springs is a collaboration with the State University of New York at Stony Brook, Northern Arizona University, and the U.S. Geological Survey (USGS). One ambient-temperature acidic stream system, Alluvium Creek and its tributaries in Brimstone Basin, was studied in detail. Analyses were performed adjacent to the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability and preservability of the constituent. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity and F were determined within a few days of sample collection by titration and by ion-selective electrode, respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by ion chromatography (IC). Concentrations of Cl, SO4, and Br were determined by IC within a few days of sample collection. Concentrations of Fe(II) and Fe(total) were determined by ultraviolet/visible spectrophotometry within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li, Na, and K were determined by flame atomic absorption (Li) and emission (Na, K) spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), Mg, Mn, Ni, Pb, Si, Sr, V, and Zn were determined by inductively-coupled plasma optical emission spectrometry. Trace concentrations of Cd, Se, As(total), Ni, and Pb were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation using a flow-injection analysis system.

  9. Co-Ordination Compounds as Sensitizers for Percussion Cap Compositions

    DTIC Science & Technology

    1949-01-01

    table. TABLE III Time elapsed (hours) Mixture Sensitivity* (inches/ £ lb.) Ballistic Pendulum » Power coefficient C. of V. of trace lengths...dimension C = 50-52. The power co-efficient is obtained by dividing the average trace length for 10 of the caps under trial by the average trace ...resulting in a high C. of V. The trace lengths as measured were as follows: 8.25, 8.30, 4.55, 10.65, 9.55, 9.0C, 8.46, 8.42, 8.21, 8.34 inches. The

  10. Method for remote detection of trace contaminants

    DOEpatents

    Simonson, Robert J.; Hance, Bradley G.

    2003-09-09

    A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.

  11. Redox driven conductance changes for resistive memory

    NASA Astrophysics Data System (ADS)

    Shoute, Lian C. T.; Pekas, Nikola; Wu, Yiliang; McCreery, Richard L.

    2011-03-01

    The relationship between bias-induced redox reactions and resistance switching is considered for memory devices containing TiO2 or a conducting polymer in "molecular heterojunctions" consisting of thin (2-25 nm) films of covalently bonded molecules, polymers, and oxides. Raman spectroscopy was used to monitor changes in the oxidation state of polythiophene in Au/P3HT/SiO2/Au devices, and it was possible to directly determine the formation and stability of the conducting polaron state of P3HT by applied bias pulses [P3HT = poly(3-hexyl thiophene)]. Polaron formation was strongly dependent on junction composition, particularly on the interfaces between the polymer, oxide, and electrodes. In all cases, trace water was required for polaron formation, leading to the proposal that water reduction acts as a redox counter-reaction to polymer oxidation. Polaron stability was longest for the case of a direct contact between Au and SiO2, implying that catalytic water reduction at the Au surface generated hydroxide ions which stabilized the cationic polaron. The spectroscopic information about the dependence of polaron stability on device composition will be useful for designing and monitoring resistive switching memory based on conducting polymers, with or without TiO2 present.

  12. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.

    PubMed

    Lee, Chi Fung; Chavez, Juan D; Garcia-Menendez, Lorena; Choi, Yongseon; Roe, Nathan D; Chiao, Ying Ann; Edgar, John S; Goo, Young Ah; Goodlett, David R; Bruce, James E; Tian, Rong

    2016-09-20

    Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts. These findings have a high translational potential as the pharmacologic strategy of increasing NAD(+) precursors are feasible in humans. © 2016 American Heart Association, Inc.

  13. REDOX-SENSITIVE TRANSCRIPTION FACTORS EGR-1 AND SP1 IN THE PATHOGENESIS OF EXPERIMENTAL GASTRIC ULCER.

    PubMed

    Beregovyi, S M; Chervinska, T M; Dranitsina, A S; Szabo, S; Tolstanova, G M

    2015-01-01

    Changes in redox status of gastric mucosa cells are the main pathogenic factor of gastric erosion and gastric ulcer development. Pro-oxidants can affect cell transcription activity via changes in redox-sensitive transcription factors. Egr-1 and Sp-1 may regulate the transcription of genes that are associated with the pathogenesis of gastric ulcer (growthfactors, cell cycle regulators, etc.). The aim of the present study was to reveal the possible involvement of zinc-finger transcriptionfactors Egr-1 & Sp-1 in the molecular mechanisms underlying gastric lesions caused by aspirin administration and stress. Gastric ulcer was induced in male rats (180-220 g) by immobilization stress combined with water-immersion (IMO-WI) or aspirin gavage (10 mg/100 g). The rats were euthanized 20 min, 1 hour, or 3 hours following the ulcerogenic factor exposure. Protein expression was determined by Western blot analysis and RT-PCR; levels of SH-groups of proteins were determined by method of Ellman et al. Development of gastric ulcer lesions was associated with twofold (P < 0.05) decrease in concentration of protein SH-groups in the rat gastric mucosa. These changes were accompanied by significant (P < 0.05) increase in the expression of Egr-1 mRNA and protein in both gastric ulcer models, and the changes in IMO-WI were more profound. Increased levels of Egr-1 were associated with the decrease in SpI protein levels. We showed for the first time the competitive interaction between redox-sensitive transcription factors Egr-1 and Sp1 in the early phases of gastric ulcer development, which might facilitate inducible transcriptional activity of Egr-1 at the expense of reduction in Sp1 activity.

  14. Dye-sensitized solar cells using ionic liquids as redox mediator

    NASA Astrophysics Data System (ADS)

    Denizalti, Serpil; Ali, Abdulrahman Khalaf; Ela, Çağatay; Ekmekci, Mesut; Erten-Ela, Sule

    2018-01-01

    In this research, the influence of ionic liquid on the conversion efficiency, incident photons to converted electrons (IPCE) and performance of fabricated solar cell was investigated using various ionic liquids. Ionic liquids with different substituents and ions were prepared and used as redox mediators in dye-sensitized solar cells (DSSCs). Ionic liquids were characterized 1H and 13C NMR spectra. We practically investigated the performance of ionic liquid salts were used as the mobile ions and found that the efficiencies of DSSCs were increased up to 40% comparing commercial electrolyte system. The ionic liquid compounds were incorporated in DSSCs to obtain an efficient charge transfer, solving the corrosion problem of platinum layer in counter electrode compared to commercial electrolyte.

  15. A comparison of thiolated and disulfide-crosslinked polyethylenimine for nonviral gene delivery.

    PubMed

    Aravindan, Latha; Bicknell, Katrina A; Brooks, Gavin; Khutoryanskiy, Vitaliy V; Williams, Adrian C

    2013-09-01

    Branched polyethylenimine (25 kDa) is thiolated and compared with redox-sensitive crosslinked derivatives. Both polymers thiol contents are assessed; the thiolated polymers have 390-2300 mmol SH groups/mol, whereas the crosslinked polymers have lower thiol contents. Cytotoxicity assays show that both modified polymers give lower hemolysis than unmodified PEI. Increased thiol content increases gene transfer efficiency but also elevates cytotoxicity. Crosslinking improves plasmid DNA condensation and enhances transfection efficiency, but extensive crosslinking overstabilizes the polyplexes and decreases transfection, emphasizing the need to balance polyplex stabilization and unpacking. Thus, at low levels of crosslinking, 25 kDa PEI can be an efficient redox-sensitive carrier system. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Transport of chromium and selenium in the suboxic zone of a shallow aquifer: Influence of redox and adsorption reactions

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Waite, T.D.

    1994-01-01

    Breakthrough of Cr(VI) (chromate), Se(VI) (selenate), and O2 (dissolved oxygen) was observed in tracer tests conducted in a shallow, sand and gravel aquifer with mildly reducing conditions. Loss of Cr, probably due to reduction of Cr(VI) to Cr(III) and irreversible sorption of Cr(III), occurred along with slight retardation of Cr(VI), owing to reversible sorption. Reduction of Se(VI) and O2 was thermodynamically feasible but did not occur, indicating conditions, were unfavorable to microbial reduction. Cr(VI) reduction by constituents of aquifer sediments did not achieve local equilibrium during transport. The reduction rate was probably limited by incomplete contact between Cr(VI) transported along predominant flow paths and reductants located in regions within aquifer sediments of comparatively low permeability. Scatter in the amount of Cr reduction calculated from individual breakthrough curves at identical distances downgradient probably resulted from heterogeneities in the distribution of reductants in the sediments. Predictive modeling of the transport and fate of redox-sensitive solutes cannot be based strictly on thermodynamic considerations; knowledge of reaction rates is critical. Potentially important mass transfer rate limitations between solutes and reactants in sediments as well as heterogeneities in the distribution of redox properties in aquifers complicate determination of limiting rates for use in predictive simulations of the transport of redox-sensitive contaminants in groundwater.

  17. Novel Dual Mitochondrial and CD44 Receptor Targeting Nanoparticles for Redox Stimuli-Triggered Release

    NASA Astrophysics Data System (ADS)

    Wang, Kaili; Qi, Mengjiao; Guo, Chunjing; Yu, Yueming; Wang, Bingjie; Fang, Lei; Liu, Mengna; Wang, Zhen; Fan, Xinxin; Chen, Daquan

    2018-02-01

    In this work, novel mitochondrial and CD44 receptor dual-targeting redox-sensitive multifunctional nanoparticles (micelles) based on oligomeric hyaluronic acid (oHA) were proposed. The amphiphilic nanocarrier was prepared by (5-carboxypentyl)triphenylphosphonium bromide (TPP), oligomeric hyaluronic acid (oHA), disulfide bond, and curcumin (Cur), named as TPP-oHA-S-S-Cur. The TPP targeted the mitochondria, the antitumor drug Cur served as a hydrophobic core, the CD44 receptor targeting oHA worked as a hydrophilic shell, and the disulfide bond acted as a connecting arm. The chemical structure of TPP-oHA-S-S-Cur was characterized by 1HNMR technology. Cur was loaded into the TPP-oHA-S-S-Cur micelles by self-assembly. Some properties, including the preparation of micelles, morphology, redox sensitivity, and mitochondrial targeting, were studied. The results showed that TPP-oHA-S-S-Cur micelles had a mean diameter of 122.4 ± 23.4 nm, zeta potential - 26.55 ± 4.99 mV. In vitro release study and cellular uptake test showed that TPP-oHA-S-S-Cur micelles had redox sensibility, dual targeting to mitochondrial and CD44 receptor. This work provided a promising smart multifunctional nanocarrier platform to enhance the solubility, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs.

  18. A simple, fast and accurate in-situ method to measure the rate of transport of redox species through membranes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Meddings, Nina; Owen, John R.; Garcia-Araez, Nuria

    2017-10-01

    Lithium ion conducting membranes are important to protect the lithium metal electrode and act as a barrier to crossover species such as polysulphides in Li-S systems, redox mediators in Li-O2 cells or dissolved cathode species or electrolyte oxidation products in high voltage Li-ion batteries. We present an in-situ method for measuring permeability of membranes to crossover redox species. The method employs a 'Swagelok' cell design equipped with a glassy carbon working electrode, in which redox species are placed initially in the counter electrode compartment only. Permeability through the membrane, which separates working and counter electrodes, is determined using a square wave voltammetry technique that allows the concentration of crossover redox species to be evaluated over time with very high precision. We test the method using a model and well-behaved electrochemical system to demonstrate its sensitivity, reproducibility and reliability relative to alternative approaches. This new method offers advantages in terms of small electrolyte volume, and simple, fast, quantitative and in-situ measurement.

  19. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin.

    PubMed

    Zabel, Robert; Weber, Günther

    2016-02-01

    Small sulfur-containing compounds are involved in several important biochemical processes, including-but not limited to-redox regulation and drug conjugation/detoxification. While methods for stable redox pairs of such compounds (thiols/disulfides) are available, analytical data on more labile and short-lived redox intermediates are scarce, due to highly challenging analytical requirements. In this study, we employ the direct combination of reagentless electrochemical oxidation and mass spectrometric (EC-MS) identification for monitoring oxidation reactions of cysteine, N-acetylcysteine, methionine, and glutathione under simulated physiological conditions (pH 7.4, 37 °C). For the first time, all theoretically expected redox intermediates-with only one exception-are detected simultaneously and in situ, including sulfenic, sulfinic, and sulfonic acids, disulfides, thiosulfinates, thiosulfonates, and sulfoxides. By monitoring the time/potential-dependent interconversion of sulfur species, mechanistic oxidation routes are confirmed and new reactions detected, e.g., sulfenamide formation due to reaction with ammonia from the buffer. Furthermore, our results demonstrate a highly significant impact of cisplatin on the redox reactivity of sulfur species. Namely, the amount of thiol oxidation to sulfonic acid via sulfenic and sulfinic acid intermediates is diminished for glutathione in the presence of cisplatin in favor of the disulfide formation, while for N-acetylcysteine the contrary applies. N-acetylcysteine is the only ligand which displays enhanced oxidation currents upon cisplatin addition, accompanied by increased levels of thiosulfinate and thiosulfonate species. This is traced back to thiol reactivity and highlights the important role of sulfenic acid intermediates, which may function as a switch between different oxidation routes.

  20. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.

    PubMed

    Liao, Peng; Yuan, Songhu; Wang, Dengjun

    2016-10-18

    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  1. Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling.

    PubMed

    Putker, Marrit; Vos, Harmjan R; van Dorenmalen, Kim; de Ruiter, Hesther; Duran, Ana G; Snel, Berend; Burgering, Boudewijn M T; Vermeulen, Michiel; Dansen, Tobias B

    2015-01-01

    Reduction-oxidation (redox) signaling, the translation of an oxidative intracellular environment into a cellular response, is mediated by the reversible oxidation of specific cysteine thiols. The latter can result in disulfide formation between protein hetero- or homodimers that alter protein function until the local cellular redox environment has returned to the basal state. We have previously shown that this mechanism promotes the nuclear localization and activity of the Forkhead Box O4 (FOXO4) transcription factor. In this study, we sought to investigate whether redox signaling differentially controls the human FOXO3 and FOXO4 paralogs. We present evidence that FOXO3 and FOXO4 have acquired paralog-specific cysteines throughout vertebrate evolution. Using a proteome-wide screen, we identified previously unknown redox-dependent FOXO3 interaction partners. The nuclear import receptors Importin-7 (IPO7) and Importin-8 (IPO8) form a disulfide-dependent heterodimer with FOXO3, which is required for its reactive oxygen species-induced nuclear translocation. FOXO4 does not interact with IPO7 or IPO8. IPO7 and IPO8 control the nuclear import of FOXO3, but not FOXO4, in a redox-sensitive and disulfide-dependent manner. Our findings suggest that evolutionary acquisition of cysteines has contributed to regulatory divergence of FOXO paralogs, and that phylogenetic analysis can aid in the identification of cysteines involved in redox signaling.

  2. Redox state of recycled crustal lithologies in the convective upper mantle constrained using oceanic basalt CO2-trace element systematics

    NASA Astrophysics Data System (ADS)

    Eguchi, J.; Dasgupta, R.

    2017-12-01

    Investigating the redox state of the convective upper mantle remains challenging as there is no way of retrieving samples from this part of the planet. Current views of mantle redox are based on Fe3+/∑Fe of minerals in mantle xenoliths and thermodynamic calculations of fO2 [1]. However, deep xenoliths are only recoverable from continental lithospheric mantle, which may have different fO2s than the convective oceanic upper mantle [1]. To gain insight on the fO2 of the deep parts of the oceanic upper mantle, we probe CO2-trace element systematics of basalts that have been argued to receive contributions from subducted crustal lithologies that typically melt deeper than peridotite. Because CO2 contents of silicate melts at graphite saturation vary with fO2 [2], we suggest CO2-trace element systematics of oceanic basalts which sample deep heterogeneities may provide clues about the fO2 of the convecting mantle containing embedded heterogeneities. We developed a new model to predict CO2 contents in nominally anhydrous silicate melts from graphite- to fluid-saturation over a range of P (0.05- 5 GPa), T (950-1600 °C), and composition (foidite-rhyolite). We use the model to calculate CO2 content as a function of fO2 for partial melts of lithologies that vary in composition from rhyolitic sediment melt to silica-poor basaltic melt of pyroxenites. We then use modeled CO2 contents in mixing calculations with partial melts of depleted mantle to constrain the fO2 required for partial melts of heterogeneities to deliver sufficient CO2 to explain CO2-trace element systematics of natural basalts. As an example, Pitcairn basalts, which show evidence of a subducted crustal component [3] require mixing of 40% of partial melts of a garnet pyroxenite at ΔFMQ -1.75 at 3 GPa. Mixing with a more silicic composition such as partial melts of a MORB-eclogite cannot deliver enough CO2 at graphite saturation, so in this scenario fO2 must be above the EMOG/D buffer at 4 GPa. Results suggest convecting upper mantle may be more oxidized than continental lithospheric mantle, and fO2 profiles of continental lithospheric mantle may not be applicable to convective upper mantle.[1] Frost, D, McCammon, C. 2008. An Rev E & P Sci. (36) p.389-420; [2] Holloway, J, et al. 1992. Eu J. Min. (4) p. 105-114; [3] Woodhead, J, Devey C. 1993. EPSL. (116) p. 81-99.

  3. Copper tolerance and virulence in bacteria

    PubMed Central

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  4. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Yong; Chen, Yong-Quan; Ling, Hong-Fei; Yang, Jing-Hong; Feng, Hong-Zhen; Ni, Pei

    2006-08-01

    The Lower Cambrian black shale sequence of the Niutitang Formation in the Yangtze Platform, South China, hosts an extreme metal-enriched sulfide ore bed that shows >10,000 times enrichment in Mo, Ni, Se, Re, Os, As, Hg, and Sb and >1,000 times enrichment in Ag, Au, Pt, and Pd, when compared to average upper continental crust. We report in this paper trace- and rare-earth-element concentrations and Pb-Pb isotope dating for the Ni-Mo-PGE-Au sulfide ores and their host black shales. Both the sulfide ores and their host black shales show similar trace-element distribution patterns with pronounced depletion in Th, Nb, Hf, Zr, and Ti, and extreme enrichment in U, Ni, Mo, and V compared to average upper crust. The high-field-strength elements, such as Zr, Hf, Nb, Ta, Sc, Th, rare-earth elements, Rb, and Ga, show significant inter-element correlations and may have been derived mainly from terrigenous sources. The redox sensitive elements, such as V, Ni, Mo, U, and Mn; base metals, such as Cu, Zn, and Pb; and Sr and Ba may have been derived from mixing of seawater and venting hydrothermal sources. The chondrite-normalized REE patterns, positive Eu and Y anomalies, and high Y/Ho ratios for the Ni-Mo-PGE-Au sulfide ores are also suggestive for their submarine hydrothermal-exhalative origin. A stepwise acid-leaching Pb-Pb isotope analytical technique has been employed for the Niutitang black shales and the Ni-Mo-PGE-Au sulfide ores, and two Pb-Pb isochron ages have been obtained for the black shales (531±24 Ma) and for the Ni-Mo-PGE-Au sulfide ores (521±54 Ma), respectively, which are identical and overlap within uncertainty, and are in good agreement with previously obtained ages for presumed age-equivalent strata.

  5. Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: Changing sediment provenance and basin hydrography over the past 20,000 years

    USGS Publications Warehouse

    Piper, David Z.; Calvert, S.E.

    2011-01-01

    The elemental geochemistry of Late Pleistocene and Holocene sediments of the Black Sea, recovered in box cores from the basin margins and a 5-m gravity core from the central abyssal region of the basin, identifies two terrigenous sediment sources over the last 20 kyrs. One source region includes Anatolia and the southern Caucasus; the second region is the area drained by rivers entering the Black Sea from Eastern Europe. Alkali metal:Al and heavy:light rare-earth element ratios reveal that the relative contribution of the two sources shifted abruptly every few thousand years during the late glacial and early Holocene lacustrine phase of the basin. The shifts in source were coeval with changes in the lake level as determined from the distribution of quartz and the heavy mineral-hosted trace elements Ti and Zr.The geochemistry of the abyssal sediments further recorded a sequence of changes to the geochemistry of the water column following the lacustrine phase, when high salinity Mediterranean water entered the basin beginning 9.3 kyrs BP. Bottom water that had been oxic throughout the lake phase became anoxic at approximately 8.4 kyrs BP, as recorded by the accumulation from the water column of several redox-sensitive trace metals (Mo, Re, U). The accumulation of organic carbon and several trace nutrients (Cd, Cu, Ni, Zn) increased sharply ca. 0.4 kyrs later, at 8.0 kyrs BP, reflecting an increase of primary productivity. Its increase was coeval with a shift in the dinoflagellate ecology from stenohaline to euryhaline assemblages. During this profound environmental change from the lacustrine to the marine phase, the accumulation rate of the lithogenous sediment fraction decreased as much as 10-fold in response to the rise of the water level in the basin from a low stand ca. 9.3 ka to its current level.

  6. Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: Changing sediment provenance and basin hydrography over the past 20,000 years

    USGS Publications Warehouse

    Piper, D.Z.; Calvert, S.E.

    2011-01-01

    The elemental geochemistry of Late Pleistocene and Holocene sediments of the Black Sea, recovered in box cores from the basin margins and a 5-m gravity core from the central abyssal region of the basin, identifies two terrigenous sediment sources over the last 20. kyrs. One source region includes Anatolia and the southern Caucasus; the second region is the area drained by rivers entering the Black Sea from Eastern Europe. Alkali metal:Al and heavy:light rare-earth element ratios reveal that the relative contribution of the two sources shifted abruptly every few thousand years during the late glacial and early Holocene lacustrine phase of the basin. The shifts in source were coeval with changes in the lake level as determined from the distribution of quartz and the heavy mineral-hosted trace elements Ti and Zr. The geochemistry of the abyssal sediments further recorded a sequence of changes to the geochemistry of the water column following the lacustrine phase, when high salinity Mediterranean water entered the basin beginning 9.3. kyrs BP. Bottom water that had been oxic throughout the lake phase became anoxic at approximately 8.4. kyrs BP, as recorded by the accumulation from the water column of several redox-sensitive trace metals (Mo, Re, U). The accumulation of organic carbon and several trace nutrients (Cd, Cu, Ni, Zn) increased sharply ca. 0.4. kyrs later, at 8.0. kyrs BP, reflecting an increase of primary productivity. Its increase was coeval with a shift in the dinoflagellate ecology from stenohaline to euryhaline assemblages. During this profound environmental change from the lacustrine to the marine phase, the accumulation rate of the lithogenous sediment fraction decreased as much as 10-fold in response to the rise of the water level in the basin from a low stand ca. 9.3. ka to its current level.

  7. Mobility of nutrients and trace metals during weathering in the late Archean

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible dissolved Cr in Archean river water. However, amorphous Cr(OH)3 representing easily-weatherable Cr-bearing minerals dissolved totally during the weathering simulations, resulting in concentrations of Cr(III) in the river water of up to 0.14 μmolar, higher than at the present-day. Late Archean weathering of accessory chalcopyrite produced chalcocite and bornite, and extremely low concentrations of Cu (<10-15 molar) because of the low solubilities of the copper sulfides. However, pulses of either O2,g or HNO3 produced native copper, chalcocite, and bornite, much more hematite, and river water containing levels of dissolved Cu comparable to the present-day. Copper mineralogy predicted by weathering models might provide a new correlation with evidence from studies of copper mineral evolution. Overall, our results implied that the redox state of the atmosphere, the pH of surface waters, and the availability of easily-weatherable minerals are all important factors controlling the dissolution of trace elements in river water. Interpretation of the sedimentary signatures of trace elements should consider not only the redox state but also the pH and availability of accessory minerals.

  8. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    PubMed Central

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  9. The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination?

    PubMed

    Queiroz, Hermano M; Nóbrega, Gabriel N; Ferreira, Tiago O; Almeida, Leandro S; Romero, Thais B; Santaella, Sandra T; Bernardino, Angelo F; Otero, Xosé L

    2018-05-10

    In November 2015, the largest socio-environmental disaster in the history of Brazil occurred when approximately 50 million m 3 of mine tailings were released into the Doce River (SE Brazil), during the greatest failure of a tailings dam worldwide. The mine tailings passed through the Doce River basin, reaching the ecologically important estuary 17 days later. On the arrival of the mine wastes to the coastal area, contamination levels in the estuarine soils were measured to determine the baseline level of contamination and to enable an environmental risk assessment. Soil and tailings samples were collected and analyzed to determine the redox potential (Eh), pH, grain size and mineralogical composition, total metal contents (Fe, Mn, Cr, Zn, Ni, Cu, Pb and Co) and organic matter content. The metals were fractionated to elucidate the mechanisms governing the trace metal dynamics. The mine tailings are mostly composed of Fe (mean values for Fe: 45,200 ± 2850; Mn: 433 ± 110; Cr: 63.9 ± 15.1; Zn: 62.4 ± 28.4; Ni: 24.7 ± 10.4; Cu: 21.3 ± 4.6; Pb: 20.2 ± 4.6 and Co: 10.7 ± 4.8 mg kg -1 ), consisting of Fe-oxyhydroxides (goethite, hematite); kaolinite and quartz. The metal contents of the estuarine soils, especially the surface layers, indicate trace metal enrichment caused by the tailings. However, the metal contents were below threshold levels reported in Brazilian environmental legislation. Despite the fact that only a small fraction (<2%) of the metals identified are readily bioavailable (i.e. soluble and exchangeable fraction), trace metals associated with Fe oxyhydroxides contributed between 69.8 and 87.6% of the total contents. Control of the trace metal dynamics by Fe oxyhydroxides can be ephemeral, especially in wetland soils in which the redox conditions oscillate widely. Indeed, the physicochemical conditions (Eh < 100 mV and circumneutral pH) of estuarine soils favor Fe reduction microbial pathways, which will probably increase the trace metal bioavailability and contamination risk. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Physiological and hydrological controls on mineral redox cycling by long-range electron transport by bacteria in anaerobic sediments

    NASA Astrophysics Data System (ADS)

    Michelson, K.; Werth, C. J.; Sanford, R. A.; Valocchi, A. J.

    2016-12-01

    The cycling of iron and manganese oxides plays a critical role in the bioavailability of trace elements and macronutrients, the flux of carbon across terrestrial and atmospheric ecosystems, and the remediation of groundwater contaminated by toxic metals and radionuclides. Bacteria control one half of the redox cycle as the primary drivers of iron and manganese reduction in anaerobic soils and sediments. However, Fe(III) and Mn(IV) are almost exclusively present under anaerobic conditions as insoluble oxides, the reduction of which are facilitated by extracellular electron transport via conductive `nanowires', electron shuttling, and direct contact with outer membrane cytochromes. Our research focus is on the relative contribution of nanowires and electron shuttles under different physiological and hydrological conditions, which remains unexplored. We present a novel microfluidic platform that allows us to directly observe these phenomena under a controlled environment representative of groundwater conditions, monitor the metabolic activity and redox state of bacteria, and determine the presence of reduced products in-situ using Raman spectroscopy. Using Geobacter sulfurreducens and Shewanella oneidensis as model metal-reducing bacteria, and insoluble manganese dioxide (i.e. birnessite) as an electron acceptor, we show that 1) electron shuttling is more effective under static conditions 2) the presence of exogenous shuttles allows efficient electron transport under all flow regimes 3) redox potential of the bulk medium exerts significant control over reduction by both nanowires and electron shuttles 4) shuttling is amplified by orders of magnitude in nanopores.

  11. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2014-12-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the interface oxic - anoxic zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that produced by modern large, mat-forming, sulphide-oxidizing bacteria, belonging mostly to Trichichnus-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  12. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-04-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic-anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  13. Fossilized bioelectric wire – the trace fossil Trichichnus

    PubMed Central

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-01-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic–anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized “electric wire”. PMID:26290671

  14. Effects of TiO2 and TiC Nanofillers on the Performance of Dye Sensitized Solar Cells Based on the Polymer Gel Electrolyte of a Cobalt Redox System.

    PubMed

    Venkatesan, Shanmuganathan; Liu, I-Ping; Chen, Li-Tung; Hou, Yi-Chen; Li, Chiao-Wei; Lee, Yuh-Lang

    2016-09-21

    Polymer gel electrolytes (PGEs) of cobalt redox system are prepared for dye sensitized solar cell (DSSC) applications. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is used as a gelator of an acetonitrile (ACN) liquid electrolyte containing tris(2,2'-bipyridine)cobalt(II/III) redox couple. Titanium dioxide (TiO2) and titanium carbide (TiC) nanoparticles are utilized as nanofillers (NFs) of this PGE, and the effects of the two NFs on the conductivity of the PGEs, charge-transfer resistances at the electrode/PGE interface, and the performance of the gel-state DSSCs are studied and compared. The results show that the presence of TiC NFs significantly increases the conductivity of the PGE and decreases the charge-transfer resistance at the Pt counter-electrode (CE)/PGE interface. Therefore, the gel-state DSSC utilizing TiC NFs can achieve a conversion efficiency (6.29%) comparable to its liquid counterpart (6.30%), and, furthermore, the cell efficiency can retain 94% of its initial value after a 1000 h stability test at 50 °C. On the contrary, introduction of TiO2 NFs in the PGE causes a decrease of cell performances. It shows that the presence of TiO2 NFs increases the charge-transfer resistance at the Pt CE/PGE interface, induces the charge recombination at the photoanode/PGE interface, and, furthermore, causes a dye desorption in a long-term-stability test. These results are different from those reported for the iodide redox system and are ascribed to a specific attractive interaction between TiO2 and cobalt redox ions.

  15. The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes

    PubMed Central

    Hiltscher, Heiko; Rudnik, Radoslaw; Shaikhali, Jehad; Heiber, Isabelle; Mellenthin, Marina; Meirelles Duarte, Iuri; Schuster, Günter; Kahmann, Uwe; Baier, Margarete

    2014-01-01

    The rimb1 (redox imbalanced 1) mutation was mapped to the RCD1 locus (radical-induced cell death 1; At1g32230) demonstrating that a major factor involved in redox-regulation genes for chloroplast antioxidant enzymes and protection against photooxidative stress, RIMB1, is identical to the regulator of disease response reactions and cell death, RCD1. Discovering this link let to our investigation of its regulatory mechanism. We show in yeast that RCD1 can physically interact with the transcription factor Rap2.4a which provides redox-sensitivity to nuclear expression of genes for chloroplast antioxidant enzymes. In the rimb1 (rcd1-6) mutant, a single nucleotide exchange results in a truncated RCD1 protein lacking the transcription factor binding site. Protein-protein interaction between full-length RCD1 and Rap2.4a is supported by H2O2, but not sensitive to the antioxidants dithiotreitol and ascorbate. In combination with transcript abundance analysis in Arabidopsis, it is concluded that RCD1 stabilizes the Rap2.4-dependent redox-regulation of the genes encoding chloroplast antioxidant enzymes in a widely redox-independent manner. Over the years, rcd1-mutant alleles have been described to develop symptoms like chlorosis, lesions along the leaf rims and in the mesophyll and (secondary) induction of extra- and intra-plastidic antioxidant defense mechanisms. All these rcd1 mutant characteristics were observed in rcd1-6 to succeed low activation of the chloroplast antioxidant system and glutathione biosynthesis. We conclude that RCD1 protects plant cells from running into reactive oxygen species (ROS)-triggered programs, such as cell death and activation of pathogen-responsive genes (PR genes) and extra-plastidic antioxidant enzymes, by supporting the induction of the chloroplast antioxidant system. PMID:25295044

  16. Surface display of roGFP for monitoring redox status of extracellular microenvironments in Shewanella oneidensis biofilms.

    PubMed

    Sivakumar, Krishnakumar; Mukherjee, Manisha; Cheng, Hsin-I; Zhang, Yingdan; Ji, Lianghui; Cao, Bin

    2015-03-01

    Biofilms are the most ubiquitous and resilient form of microbial life on earth. One most important feature of a biofilm is the presence of a self-produced matrix, which creates highly heterogeneous and dynamic microenvironments within biofilms. Redox status in biofilm microenvironments plays a critical role in biofilm development and function. However, there is a lack of non-intrusive tools to quantify extracellular redox status of microenvironments within a biofilm matrix. In this study, using Shewanella oneidensis as a model organism, we demonstrated a novel approach to monitor extracellular redox status in biofilm microenvironments. Specifically, we displayed a redox sensitive fluorescence protein roGFP onto the cell surface of S. oneidensis by fusing it to the C-terminus of BpfA, a large surface protein, and used the surface displayed roGFP as a sensor to quantify the extracellular redox status in the matrix of S. oneidensis biofilms. The fusion of roGFP into BpfA has no negative impacts on cell growth and biofilm formation. Upon exposure to oxidizing agents such as H2 O2 , Ag(+) , and SeO3 (2-) , S. oneidensis BpfA-roGFP cells exhibited a characteristic fluorescence of roGFP. Proteinase treatment assay and super-resolution structured illumination microscopy confirmed the surface localization of BpfA-roGFP. We further used the surface displayed roGFP monitored the extracellular redox status in the matrix at different depths of a biofilm exposed to H2 O2 . This study provides a novel approach to non-invasively monitor extracellular redox status in microenvironments within biofilms, which can be used to understand redox responses of biofilms to environmental perturbations. © 2014 Wiley Periodicals, Inc.

  17. High-throughput measurements of the optical redox ratio using a commercial microplate reader.

    PubMed

    Cannon, Taylor M; Shah, Amy T; Walsh, Alex J; Skala, Melissa C

    2015-01-01

    There is a need for accurate, high-throughput, functional measures to gauge the efficacy of potential drugs in living cells. As an early marker of drug response in cells, cellular metabolism provides an attractive platform for high-throughput drug testing. Optical techniques can noninvasively monitor NADH and FAD, two autofluorescent metabolic coenzymes. The autofluorescent redox ratio, defined as the autofluorescence intensity of NADH divided by that of FAD, quantifies relative rates of cellular glycolysis and oxidative phosphorylation. However, current microscopy methods for redox ratio quantification are time-intensive and low-throughput, limiting their practicality in drug screening. Alternatively, high-throughput commercial microplate readers quickly measure fluorescence intensities for hundreds of wells. This study found that a commercial microplate reader can differentiate the receptor status of breast cancer cell lines (p < 0.05) based on redox ratio measurements without extrinsic contrast agents. Furthermore, microplate reader redox ratio measurements resolve response (p < 0.05) and lack of response (p > 0.05) in cell lines that are responsive and nonresponsive, respectively, to the breast cancer drug trastuzumab. These studies indicate that the microplate readers can be used to measure the redox ratio in a high-throughput manner and are sensitive enough to detect differences in cellular metabolism that are consistent with microscopy results.

  18. Imaging in real-time with FRET the redox response of tumorigenic cells to glutathione perturbations in a microscale flow†

    PubMed Central

    Lin, Chunchen; Kolossov, Vladimir L.; Tsvid, Gene; Trump, Lisa; Henry, Jennifer Jo; Henderson, Jerrod L.; Rund, Laurie A.; Kenis, Paul J.A.; Schook, Lawrence B.; Gaskins, H. Rex; Timp, Gregory

    2012-01-01

    Despite the potential benefits of selective redox-modulating strategies for cancer therapy, an efficacious methodology for testing therapies remains elusive because of the difficulty in measuring intracellular redox potentials over time. In this report, we have incorporated a new FRET-based biosensor to follow in real time redox-sensitive processes in cells transformed to be tumorigenic and cultured in a microfluidic channel. A microfluidic network was used to control micro-scale flow near the cells and at the same time deliver drugs exogenously. Subsequently, the response of a redox homeostasis circuit was tested, namely reduced glutathione (GSH)/oxidized glutathione(GSSG), to diamide, a thiol oxidant, and two drugs used for cancer therapies: BSO (l-buthionine-[SR]-sulfoximine) and BCNU (carmustine). The main outcome from these experiments is a comparison of the temporal depletion and recovery of GSH in single living cells in real-time. These data demonstrate that mammalian cells are capable of restoring a reduced intracellular redox environment in minutes after an acute oxidative insult is removed. This recovery is significantly delayed by (i) the inhibition of GSH biosynthesis by BSO; (ii) the inactivation of glutathione reductase by BCNU; and (iii) in tumorigenic cells relative to an isogenic non-tumorigenic control cell line. PMID:21183971

  19. Synthesis and characterization of redox-active ferric nontronite

    DOE PAGES

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; ...

    2017-07-12

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; but, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. Here, we demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  20. The effects of the biogeochemical properties of clay minerals on the Pb sorption and desorption in various redox condition

    NASA Astrophysics Data System (ADS)

    Koo, T. H.; Kim, J. Y.; Kim, J. W.

    2016-12-01

    The fate and transportation of hazardous trace metal in soil environment can be controlled by various factors including temperature, geological location, properties of bed rock or sediment, human behavior, and biogeochemical reactions. The sorption and desorption process is one of the major process for control the transportation of trace metal in soil-water system. Nonetheless, few studies were focused on the biological controlling parameters, particularly redox reaction of structural metal of clay minerals. Thus, the objective of the present study is to investigate the correlation between the sorption and desorption reaction of Pb and biogeochemical properties of clay minerals. The effects of redox state of structural Fe and layer charge of the minerals on the migration/speciation of Pb at the various geochemical environment will be elucidated. The Fe-rich smectite, nontronite (NAu-1), and bulk soil samples which were collected from abandoned mine areas were reduced by microbial respiration by Shewanella Oneidensis MR-1 and/or Na-dithionite to various oxidation state of structural Fe. Then the Pb-stock solution made with common lead and nitric acid were spiked into the mineral/soil slurry with various Pb concentration to test the sorption and desorption reaction upto 7 days. The reaction was stopped at each time point by freezing the pellet and supernatant separately after centrifugation. Then the concentration and stable isotope ratio of Pb in the supernatant were measured using Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Multicollector (MC)-ICP-MS. The structural as well as chemical modification on nontronite and bulk soil sample were measured using x-ray diffraction (XRD), scanning electron microscopy (SEM) and wet chemistry analysis. The changes in Pb species in supernatant by sorption and desorption and its consequences on the clay structural/biogeochemical properties will be discussed.

  1. Fate of redox-sensitive elements in two different East-African wetland systems

    NASA Astrophysics Data System (ADS)

    Glasner, Björn; Fiedler, Sabine

    2017-04-01

    We expect that an intensified cropping alters soil pH and Eh, and negatively affects the production potential of wetlands. Therefore, we investigated the redox-conditions in combination with the fate of different redox-sensitive elements in two prototypical wetland systems that show a high potential for food production in East-Africa. While the floodplains (observed near Ifakara, Kilombero District/Tanzania) serve as major crop producing areas in the region, the Inland Valleys (observed in Namulonge, Central District/Uganda) show a high potential for future production. Both systems have been divided into three positions; the fringe near to the slope, the center near to the river and the middle in between these two positions. In order to get a better understanding of the two systems we installed continuously measuring redox-electrodes in three different positions within both systems. Additionally, the fate of mineral elements was measured using ion-exchange resins with an installation period of 3-4 months. At the Tanzanian field sites the Eh-potential shows one major dry period with moderately reducing to well drained conditions in all sampling depths (10, 30, and 50 cm below ground) in all three positions during the measuring period from March 2015 to Dec 2016. Starting with the rains the Eh-potential drops from 700 mV (in 10 and 30 cm depth) to reducing conditions at all three sites - with intermediate brakes in the middle and fringe positions, showing that there has been no rain during these periods. At the Ugandan field sites the Eh-potential shows more fluctuations during the measuring period, especially in the center position in 2015 ( 750 to -200 mV in 30 and 50 cm depth). Having just the Eh-potential from the first 30 cm below ground it is not really possible to differentiate between dry- and rainy-seasons at the sites. The fate of redox-sensitive elements (Fe, Mn, and P) does not always correlate with the overall Eh-conditions (median) of the installation period. Short time events may play a crucial role in the fate of these elements.

  2. Degradation of Redox-Sensitive Proteins including Peroxiredoxins and DJ-1 is Promoted by Oxidation-induced Conformational Changes and Ubiquitination

    NASA Astrophysics Data System (ADS)

    Song, In-Kang; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jihye; Shin, Dong-Hae; Lee, Kong-Joo

    2016-10-01

    Reactive oxygen species (ROS) are key molecules regulating various cellular processes. However, what the cellular targets of ROS are and how their functions are regulated is unclear. This study explored the cellular proteomic changes in response to oxidative stress using H2O2 in dose- and recovery time-dependent ways. We found discernible changes in 76 proteins appearing as 103 spots on 2D-PAGE. Of these, Prxs, DJ-1, UCH-L3 and Rla0 are readily oxidized in response to mild H2O2 stress, and then degraded and active proteins are newly synthesized during recovery. In studies designed to understand the degradation process, multiple cellular modifications of redox-sensitive proteins were identified by peptide sequencing with nanoUPLC-ESI-q-TOF tandem mass spectrometry and the oxidative structural changes of Prx2 explored employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS). We found that hydrogen/deuterium exchange rate increased in C-terminal region of oxidized Prx2, suggesting the exposure of this region to solvent under oxidation. We also found that Lys191 residue in this exposed C-terminal region of oxidized Prx2 is polyubiquitinated and the ubiquitinated Prx2 is readily degraded in proteasome and autophagy. These findings suggest that oxidation-induced ubiquitination and degradation can be a quality control mechanism of oxidized redox-sensitive proteins including Prxs and DJ-1.

  3. Aiding and abetting roles of NOX oxidases in cellular transformation

    PubMed Central

    Block, Karen; Gorin, Yves

    2013-01-01

    NADPH oxidases of the NADPH oxidase (NOX) family are dedicated reactive oxygen species-generating enzymes that broadly and specifically regulate redox-sensitive signalling pathways that are involved in cancer development and progression. They act at specific cellular membranes and microdomains through the activation of oncogenes and the inactivation of tumour suppressor proteins. In this Review, we discuss primary targets and redox-linked signalling systems that are influenced by NOX-derived ROS, and the biological role of NOX oxidases in the aetiology of cancer. PMID:22918415

  4. Protein Thiol Redox Signaling in Monocytes and Macrophages.

    PubMed

    Short, John D; Downs, Kevin; Tavakoli, Sina; Asmis, Reto

    2016-11-20

    Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.

  5. Nanowire Aptasensors for Electrochemical Detection of Cell-Secreted Cytokines.

    PubMed

    Liu, Ying; Rahimian, Ali; Krylyuk, Sergiy; Vu, Tam; Crulhas, Bruno; Stybayeva, Gulnaz; Imanbekova, Meruyert; Shin, Dong-Sik; Davydov, Albert; Revzin, Alexander

    2017-11-22

    Cytokines are small proteins secreted by immune cells in response to pathogens/infections; therefore, these proteins can be used in diagnosing infectious diseases. For example, release of a cytokine interferon (IFN)-γ from T-cells is used for blood-based diagnosis of tuberculosis (TB). Our lab has previously developed an atpamer-based electrochemical biosensor for rapid and sensitive detection of IFN-γ. In this study, we explored the use of silicon nanowires (NWs) as a way to create nanostructured electrodes with enhanced sensitivity for IFN-γ. Si NWs were covered with gold and were further functionalized with thiolated aptamers specific for IFN-γ. Aptamer molecules were designed to form a hairpin and in addition to terminal thiol groups contained redox reporter molecules methylene blue. Binding of analyte to aptamer-modified NWs (termed here nanowire aptasensors) inhibited electron transfer from redox reporters to the electrode and caused electrochemical redox signal to decrease. In a series of experiments we demonstrate that NW aptasensors responded 3× faster and were 2× more sensitive to IFN-γ compared to standard flat electrodes. Most significantly, NW aptasensors allowed detection of IFN-γ from as few as 150 T-cells/mL while ELISA did not pick up signal from the same number of cells. One of the challenges faced by ELISA-based TB diagnostics is poor performance in patients whose T-cell numbers are low, typically HIV patients. Therefore, NW aptasensors developed here may be used in the future for more sensitive monitoring of IFN-γ responses in patients coinfected with HIV/TB.

  6. Redox-sensitive Pluronic F127-tocopherol micelles: synthesis, characterization, and cytotoxicity evaluation

    PubMed Central

    Liu, Yuling; Fu, Sai; Lin, Longfei; Cao, Yuhong; Xie, Xi; Yu, Hua; Chen, Meiwan; Li, Hui

    2017-01-01

    Pluronic F127 (F127), an amphiphilic triblock copolymer, has been shown to have significant potential for drug delivery, as it is able to incorporate hydrophobic drugs and self-assemble into nanosize micelles. However, it suffers from dissociation upon dilution owing to the relatively high critical micelle concentration and lack of stimuli-responsive behavior. Here, we synthesized the α-tocopherol (TOC) modified F127 polymer (F127-SS-TOC) via a redox-sensitive disulfide bond between F127 and TOC, which formed stable micelles at relatively low critical micelle concentration and was sensitive to the intracellular redox environment. The particle size and zeta potential of the F127-SS-TOC micelles were 51.87±6.39 nm and -8.43±2.27 mV, respectively, and little changes in both particle size and zeta potential were observed within 7 days at room temperature. With 10 mM dithiothreitol stimulation, the F127-SS-TOC micelles rapidly dissociated followed by a significant change in size, which demonstrated a high reduction sensitivity of the micelles. In addition, the micelles showed a high hemocompatibility even at a high micelle concentration (1,000 μg/mL). Low cytotoxicity of the F127-SS-TOC micelles at concentrations ranging from 12.5 μg/mL to 200 μg/mL was also found on both Bel 7402 and L02 cells. Overall, our results demonstrated F127-SS-TOC micelles as a stable and safe aqueous formulation with a considerable potential for drug delivery. PMID:28435248

  7. Effect of Donor Strength and Bulk on Thieno[3,4-b]-pyrazine-Based Panchromatic Dyes in Dye-Sensitized Solar Cells.

    PubMed

    Liyanage, Nalaka P; Cheema, Hammad; Baumann, Alexandra R; Zylstra, Alexa R; Delcamp, Jared H

    2017-06-22

    Near-infrared-absorbing organic dyes are critically needed in dye-sensitized solar cells (DSCs). Thieno[3,4-b]pyrazine (TPz) based dyes can access the NIR spectral region and show power conversion efficiencies (PCEs) of up to 8.1 % with sunlight being converted at wavelengths up to 800 nm for 17.6 mA cm -2 of photocurrent in a co-sensitized DSC device. Precisely controlling dye excited-state energies is critical for good performances in NIR DSCs. Strategies to control TPz dye energetics with stronger donor groups and TPz substituent choice are evaluated here. Additionally, donor size influence versus dye loading on TPz dyes is analyzed with respect to the TiO 2 surface protection designed to prevent recombination of electrons in TiO 2 with the redox shuttle. Importantly, the dyes evaluated were demonstrated to work well with low Li + concentration electrolytes, with iodine and cobalt redox shuttle systems, and efficiently as part of co-sensitized devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Applications of Quantum Cascade Laser Scanners for Remote Detection of Chemical and Biological Threats and Weapons of Mass Destruction

    DTIC Science & Technology

    2014-07-09

    Rivera. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection , International Journal of Spectroscopy, (09 2012): 0. doi: 10.1155...Highly Sensitive Filter Paper Substrate for SERS Field Detection of Trace Threat Chemicals”, PITTCON-2013: Forensic Analysis in the Lab and Crime Scene...the surface. In addition, built-in algorithms were used for nearly real-time sample detection . Trace and bulk concentrations of the other substances

  9. A compartmentalized solute transport model for redox zones in contaminated aquifers: 2. Field‐scale simulations

    USGS Publications Warehouse

    Abrams , Robert H.; Loague, Keith

    2000-01-01

    This paper, the second of two parts [see Abrams and Loague, this issue], reports the field‐scale application of COMPTRAN (compartmentalized solute transport model) for simulating the development of redox zones. COMPTRAN is fully developed and described in the companion paper. Redox zones, which are often delineated by the relative concentrations of dissolved oxygen, have been observed around the globe. The distribution of other redox‐sensitive species is affected by redox zonation. At the U.S. Geological Survey's Cape Cod research site, an anoxic zone containing high concentrations of dissolved iron has been observed. Field data were abstracted from the Cape Cod site for the one‐dimensional and two‐dimensional COMPTRAN simulations reported in this paper. The purpose of the concept‐development simulations was to demonstrate that the compartmentalized approach reported by Abrams et al. [1998] can be linked with a solute transport model to simulate field‐scale phenomena. The results presented in this paper show that COMPTRAN successfully simulated the development of redox zones at the field scale, including trends in pH and alkalinity. Thermodynamic constraints were used to prevent lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium among all redox species. Empirical methods of reaction inhibition were not needed for the simulations conducted for this study. COMPTRAN can be extended easily to include additional compartments and reactions and is capable of handling complex velocity fields in more than one dimension.

  10. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  11. Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing

    NASA Astrophysics Data System (ADS)

    Lin, Psang Dain; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat's eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  12. Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing

    NASA Astrophysics Data System (ADS)

    Dain Lin, Psang; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat ?s eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  13. Redox control of plant growth and development.

    PubMed

    Kocsy, Gábor; Tari, Irma; Vanková, Radomíra; Zechmann, Bernd; Gulyás, Zsolt; Poór, Péter; Galiba, Gábor

    2013-10-01

    Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Impacts of chemical gradients on microbial community structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less

  15. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants.

    PubMed

    Ortega-Villasante, Cristina; Burén, Stefan; Blázquez-Castro, Alfonso; Barón-Sola, Ángel; Hernández, Luis E

    2018-04-05

    Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Impacts of chemical gradients on microbial community structure

    DOE PAGES

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.; ...

    2017-01-17

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less

  17. Impacts of chemical gradients on microbial community structure

    PubMed Central

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc

    2017-01-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems. PMID:28094795

  18. Impacts of chemical gradients on microbial community structure.

    PubMed

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc

    2017-04-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.

  19. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis.

    PubMed

    Pacl, Hayden T; Reddy, Vineel P; Saini, Vikram; Chinta, Krishna C; Steyn, Adrie J C

    2018-07-01

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.

  20. Olivine-hosted melt inclusions as an archive of redox heterogeneity in magmatic systems

    NASA Astrophysics Data System (ADS)

    Hartley, Margaret E.; Shorttle, Oliver; Maclennan, John; Moussallam, Yves; Edmonds, Marie

    2017-12-01

    The redox state of volcanic products determines their leverage on the oxidation of Earth's oceans and atmosphere, providing a long-term feedback on oxygen accumulation at the planet's surface. An archive of redox conditions in volcanic plumbing systems from a magma's mantle source, through crustal storage, to eruption, is carried in pockets of melt trapped within crystals. While melt inclusions have long been exploited for their capacity to retain information on a magma's history, their permeability to fast-diffusing elements such as hydrogen is now well documented and their retention of initial oxygen fugacities (fO2) could be similarly diffusion-limited. To test this, we have measured Fe3+/ΣFe by micro-XANES spectroscopy in a suite of 65 olivine-hosted melt inclusions and 9 matrix glasses from the AD 1783 Laki eruption, Iceland. This eruption experienced pre-eruptive mixing of chemically diverse magmas, syn-eruptive degassing at the vent, and post-eruptive degassing during lava flow up to 60 km over land, providing an ideal test of whether changes in the fO2 of a magma may be communicated through to its cargo of crystal-hosted melt inclusions. Melt inclusions from rapidly quenched tephra samples have Fe3+/ΣFe of 0.206 ± 0.008 (ΔQFM of +0.7 ± 0.1), with no correlation between their fO2 and degree of trace element enrichment or differentiation. These inclusions preserve the redox conditions of the mixed pre-eruptive Laki magma. When corrected for fractional crystallisation to 10 wt.% MgO, these inclusions record a parental magma [Fe3+/ΣFe](10) of 0.18 (ΔQFM of +0.4), significantly more oxidised than the Fe3+/ΣFe of 0.10 that is often assumed for Icelandic basalt magmas. Melt inclusions from quenched lava selvages are more reduced than those from the tephra, having Fe3+/ΣFe between 0.133 and 0.177 (ΔQFM from -0.4 to +0.4). These inclusions have approached equilibrium with their carrier lava, which has been reduced by sulfur degassing. The progressive re-equilibration of fO2 between inclusions and carrier melts occurs on timescales of hours to days, causing a drop in the sulfur content at sulfide saturation (SCSS) and driving the exsolution of immiscible sulfide globules in the inclusions. Our data demonstrate the roles of magma mixing, progressive re-equilibration, and degassing in redox evolution within magmatic systems, and the open-system nature of melt inclusions to fO2 during these processes. Redox heterogeneity present at the time of inclusion trapping may be overprinted by rapid re-equilibration of melt inclusion fO2 with the external environment, both in the magma chamber and during slow cooling in lava at the surface. This can decouple the melt inclusion archives of fO2, major and trace element chemistry, and mask associations between fO2, magmatic differentiation and mantle source heterogeneity unless the assembly of diverse magmas is rapidly followed by eruption. Our tools for understanding the redox conditions of magmas are thus limited; however, careful reconstruction of pre- and post-eruptive magmatic history has enabled us to confirm the relatively oxidised nature of ocean island-type mantle compared to that of mid-ocean ridge mantle.

  1. A novel versatile microbiosensor for local hydrogen detection by means of scanning photoelectrochemical microscopy.

    PubMed

    Zhao, Fangyuan; Conzuelo, Felipe; Hartmann, Volker; Li, Huaiguang; Stapf, Stefanie; Nowaczyk, Marc M; Rögner, Matthias; Plumeré, Nicolas; Lubitz, Wolfgang; Schuhmann, Wolfgang

    2017-08-15

    The development of a versatile microbiosensor for hydrogen detection is reported. Carbon-based microelectrodes were modified with a [NiFe]-hydrogenase embedded in a viologen-modified redox hydrogel for the fabrication of a sensitive hydrogen biosensor By integrating the microbiosensor in a scanning photoelectrochemical microscope, it was capable of serving simultaneously as local light source to initiate photo(bio)electrochemical reactions while acting as sensitive biosensor for the detection of hydrogen. A hydrogen evolution biocatalyst based on photosystem 1-platinum nanoparticle biocomplexes embedded into a specifically designed redox polymer was used as a model for proving the capability of the developed hydrogen biosensor for the detection of hydrogen upon localized illumination. The versatility and sensitivity of the proposed microbiosensor as probe tip allows simplification of the set-up used for the evaluation of complex electrochemical processes and the rapid investigation of local photoelectrocatalytic activity of biocatalysts towards light-induced hydrogen evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase and sweet potato peroxidase.

    PubMed

    Castillo, Jaime; Gáspár, Szilveszter; Sakharov, Ivan; Csöregi, Elisabeth

    2003-05-01

    Amperometric biosensors for glucose, ethanol, and biogenic amines (putrescine) were constructed using oxidase/peroxidase bienzyme systems. The H(2)O(2) produced by the oxidase in reaction with its substrate is converted into a measurable signal via a novel peroxidase purified from sweet potato peels. All developed biosensors are based on redox hydrogels formed of oxidases (glucose oxidase, alcohol oxidase, or amine oxidase) and the newly purified sweet potato peroxidase (SPP) cross-linked to a redox polymer. The developed electrodes were characterized (sensitivity, stability, and performances in organic medium) and compared with similarly built ones using the 'classical' horseradish peroxidase (HRP). The SPP-based electrodes displayed higher sensitivity and better detection limit for putrescine than those using HRP and were also shown to retain their activity in organic phase much better than the HPR based ones. The importance of attractive or repulsive electrostatic interactions between the peroxidases and oxidases (determined by their isoelectric points) were found to play an important role in the sensitivity of the obtained sensors.

  3. Monitoring of oxidation steps of ascorbic acid redox reaction by kinetics-sensitive voltcoulometry in unsupported and supported aqueous solutions and real samples.

    PubMed

    Orlický, Jozef; Gmucová, Katarína; Thurzo, Ilja; Pavlásek, Juraj

    2003-04-01

    Aqueous solutions of ascorbic acid in unsupported and supported aqueous solutions and real samples were studied by the kinetics-sensitive double-step voltcoulommetric method with the aim to contribute to a better understanding of its behavior in biological systems. The data obtained from measurements made on analytes prepared in the laboratory, as well as those made on real samples (some commercial orange drinks, flash of the fresh fruits) point to the redox reaction of L-ascorbic acid (L-AH2) being very sensitive to both the presence of dissolved gaseous species (O2, CO2) and the ionic strenght in the analyte. Either the dissolved gaseous species, or the higher ionic strength caused by both the presence of supporting electrolyte and increased total concentration of ascorbic acid, respectively, give birth to the degradation of L-AH2. Naturally, the highest percentage of L-AH2 was spotted in fresh fruit.

  4. Novel fiber optic-based needle redox imager for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Kanniyappan, Udayakumar; Xu, He N.; Tang, Qinggong; Gaitan, Brandon; Liu, Yi; Li, Lin Z.; Chen, Yu

    2018-02-01

    Despite various technological advancements in cancer diagnosis, the mortality rates were not decreased significantly. We aim to develop a novel optical imaging tool to assist cancer diagnosis effectively. Fluorescence spectroscopy/imaging is a fast, rapid, and minimally invasive technique which has been successfully applied to diagnosing cancerous cells/tissues. Recently, the ratiometric imaging of intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), as pioneered by Britton Chance and the co-workers in 1950-70's, has gained much attention to quantify the physiological parameters of living cells/tissues. The redox ratio, i.e., FAD/(FAD+NADH) or FAD/NADH, has been shown to be sensitive to various metabolic changes in in vivo and in vitro cells/tissues. Optical redox imaging has also been investigated for providing potential imaging biomarkers for cancer transformation, aggressiveness, and treatment response. Towards this goal, we have designed and developed a novel fiberoptic-based needle redox imager (NRI) that can fit into an 11G clinical coaxial biopsy needle for real time imaging during clinical cancer surgery. In the present study, the device is calibrated with tissue mimicking phantoms of FAD and NADH along with various technical parameters such as sensitivity, dynamic range, linearity, and spatial resolution of the system. We also conducted preliminary imaging of tissues ex vivo for validation. We plan to test the NRI on clinical breast cancer patients. Once validated this device may provide an effective tool for clinical cancer diagnosis.

  5. Intrinsic fluorescence biomarkers in cells treated with chemopreventive drugs

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Nathaniel D.; Brands, William R.; Zou, Changping; Brewer, Molly A.; Utzinger, Urs

    2005-03-01

    Non-invasive monitoring of cellular metabolism offers promising insights into areas ranging from biomarkers for drug activity to cancer diagnosis. Fluorescence spectroscopy can be utilized in order to exploit endogenous fluorophores, typically metabolic co-factors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), and estimate the redox status of the sample. Fluorescence spectroscopy was applied to follow metabolic changes in epithelial ovarian cells as well as bladder epithelial cancer cells during treatment with a chemopreventive drug that initiates cellular quiescence. Fluorescence signals consistent with NADH, FAD, and tryptophan were measured to monitor cellular activity, redox status, and protein content. Cells were treated with varying concentrations of N-4-(hydroxyphenyl) retinamide (4-HPR) and measured in a stable environment with a sensitive fluorescence spectrometer. A subset of measurements was completed on a low concentration of cells to demonstrate feasibility for medical application such as in bladder or ovary washes. Results suggest that all of the cells responded with similar dose dependence but started at different estimated redox ratio baseline levels correlating with cell cycle, growth inhibition, and apoptosis assays. NADH and tryptophan related fluorescence changed significantly while FAD related fluorescence remained unaltered. Fluorescence data collected from approximately 1000 - 2000 cells, comparable to a bladder or ovary wash, was measurable and useful for future experiments. This study suggests that future intrinsic biomarker measurements may need to be most sensitive to changes in NADH and tryptophan related fluorescence while using FAD related fluorescence to help estimate the baseline redox ratio and predict response to chemopreventive agents.

  6. Cocaine-Induced Adaptations in Cellular Redox Balance Contributes to Enduring Behavioral Plasticity

    PubMed Central

    Uys, Joachim D; Knackstedt, Lori; Hurt, Phelipe; Tew, Kenneth D; Manevich, Yefim; Hutchens, Steven; Townsend, Danyelle M; Kalivas, Peter W

    2011-01-01

    Impaired glutamate homeostasis in the nucleus accumbens has been linked to cocaine relapse in animal models, and results in part from cocaine-induced downregulation of the cystine–glutamate exchanger. In addition to regulating extracellular glutamate, the uptake of cystine by the exchanger is a rate-limiting step in the synthesis of glutathione (GSH). GSH is critical for balancing cellular redox in response to oxidative stress. Cocaine administration induces oxidative stress, and we first determined if downregulated cystine–glutamate exchange alters redox homeostasis in rats withdrawn from daily cocaine injections and then challenged with acute cocaine. Among the daily cocaine-induced changes in redox homeostasis were an increase in protein S-glutathionylation and a decrease in expression of GSH-S-transferase pi (GSTpi). To mimic reduced GSTpi, a genetic mouse model of GSTpi deletion or pharmacological inhibition of GSTpi by administering ketoprofen during daily cocaine administration was used. The capacity of cocaine to induce conditioned place preference or locomotor sensitization was augmented, indicating that reducing GSTpi may contribute to cocaine-induced behavioral neuroplasticity. Conversely, an acute cocaine challenge after withdrawal from daily cocaine elicited a marked increase in accumbens GSTpi, and the expression of behavioral sensitization to a cocaine challenge injection was inhibited by ketoprofen pretreatment; supporting a protective effect by the acute cocaine-induced rise in GSTpi. Together, these data indicate that cocaine-induced oxidative stress induces changes in GSTpi that contribute to cocaine-induced behavioral plasticity. PMID:21796101

  7. Effect of Reduction of Redox Modifications of Cys-Residues in the Na,K-ATPase α1-Subunit on Its Activity

    PubMed Central

    Dergousova, Elena A.; Petrushanko, Irina Yu.; Klimanova, Elizaveta A.; Mitkevich, Vladimir A.; Ziganshin, Rustam H.; Lopina, Olga D.; Makarov, Alexander A.

    2017-01-01

    Sodium-potassium adenosine triphosphatase (Na,K-ATPase) creates a gradient of sodium and potassium ions necessary for the viability of animal cells, and it is extremely sensitive to intracellular redox status. Earlier we found that regulatory glutathionylation determines Na,K-ATPase redox sensitivity but the role of basal glutathionylation and other redox modifications of cysteine residues is not clear. The purpose of this study was to detect oxidized, nitrosylated, or glutathionylated cysteine residues in Na,K-ATPase, evaluate the possibility of removing these modifications and assess their influence on the enzyme activity. To this aim, we have detected such modifications in the Na,K-ATPase α1-subunit purified from duck salt glands and tried to eliminate them by chemical reducing agents and the glutaredoxin1/glutathione reductase enzyme system. Detection of cysteine modifications was performed using mass spectrometry and Western blot analysis. We have found that purified Na,K-ATPase α1-subunit contains glutathionylated, nitrosylated, and oxidized cysteines. Chemical reducing agents partially eliminate these modifications that leads to the slight increase of the enzyme activity. Enzyme system glutaredoxin/glutathione reductase, unlike chemical reducing agents, produces significant increase of the enzyme activity. At the same time, the enzyme system deglutathionylates native Na,K-ATPase to a lesser degree than chemical reducing agents. This suggests that the enzymatic reducing system glutaredoxin/glutathione reductase specifically affects glutathionylation of the regulatory cysteine residues of Na,K-ATPase α1-subunit. PMID:28230807

  8. Exploring Step‐by‐Step Assembly of Nanoparticle:Cytochrome Biohybrid Photoanodes

    PubMed Central

    Hwang, Ee Taek; Orchard, Katherine L.; Hojo, Daisuke; Beton, Joseph; Lockwood, Colin W. J.; Adschiri, Tadafumi

    2017-01-01

    Abstract Coupling light‐harvesting semiconducting nanoparticles (NPs) with redox enzymes has been shown to create artificial photosynthetic systems that hold promise for the synthesis of solar fuels. High quantum yields require efficient electron transfer from the nanoparticle to the redox protein, a property that can be difficult to control. Here, we have compared binding and electron transfer between dye‐sensitized TiO2 nanocrystals or CdS quantum dots and two decaheme cytochromes on photoanodes. The effect of NP surface chemistry was assessed by preparing NPs capped with amine or carboxylic acid functionalities. For the TiO2 nanocrystals, binding to the cytochromes was optimal when capped with a carboxylic acid ligand, whereas for the CdS QDs, better adhesion was observed for amine capped ligand shells. When using TiO2 nanocrystals, dye‐sensitized with a phosphonated bipyridine Ru(II) dye, photocurrents are observed that are dependent on the redox state of the decaheme, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the decaheme conduit. In contrast, when CdS NPs are used, photocurrents are not dependent on the redox state of the decaheme, consistent with a model in which electron transfer from CdS to the photoanode bypasses the decaheme protein. These results illustrate that although the organic shell of NPs nanoparticles crucially affects coupling with proteinaceous material, the coupling can be difficult to predict or engineer. PMID:28920010

  9. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    PubMed

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VK Q , prepared by coupling vitamin K 3 , also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VK Q is non-emissive, while upon reduction to the hydroquinone form, B-VK QH 2 , BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VK Q as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  10. Cause and Effects of Fluorocarbon Degradation in Electronics and Opto-Electronic Systems

    NASA Technical Reports Server (NTRS)

    Predmore, Roamer E.; Canham, John S.

    2002-01-01

    Trace degradation of fluorocarbon or halocarbon materials must be addressed in their application in sensitive systems. As the dimensions and/or tolerances of components in a system decrease, the sensitivity of the system to trace fluorocarbon or halocarbon degradation products increases. Trace quantities of highly reactive degradation products from fluorocarbons have caused a number of failures of flight hardware. It is of utmost importance that the risk of system failure, resulting from trace amounts of reactive fluorocarbon degradation products be addressed in designs containing fluorocarbon or halocarbon materials. Thermal, electrical, and mechanical energy input into the system can multiply the risk of failure.

  11. Optical imaging of radiation-induced metabolic changes in radiation-sensitive and resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Alhallak, Kinan; Jenkins, Samir V.; Lee, David E.; Greene, Nicholas P.; Quinn, Kyle P.; Griffin, Robert J.; Dings, Ruud P. M.; Rajaram, Narasimhan

    2017-06-01

    Radiation resistance remains a significant problem for cancer patients, especially due to the time required to definitively determine treatment outcome. For fractionated radiation therapy, nearly 7 to 8 weeks can elapse before a tumor is deemed to be radiation-resistant. We used the optical redox ratio of FAD/(FAD+NADH) to identify early metabolic changes in radiation-resistant lung cancer cells. These radiation-resistant human A549 lung cancer cells were developed by exposing the parental A549 cells to repeated doses of radiation (2 Gy). Although there were no significant differences in the optical redox ratio between the parental and resistant cell lines prior to radiation, there was a significant decrease in the optical redox ratio of the radiation-resistant cells 24 h after a single radiation exposure (p=0.01). This change in the redox ratio was indicative of increased catabolism of glucose in the resistant cells after radiation and was associated with significantly greater protein content of hypoxia-inducible factor 1 (HIF-1α), a key promoter of glycolytic metabolism. Our results demonstrate that the optical redox ratio could provide a rapid method of determining radiation resistance status based on early metabolic changes in cancer cells.

  12. Broad control of disulfide stability through microenvironmental effects and analysis in complex redox environments.

    PubMed

    Wu, Chuanliu; Wang, Shuo; Brülisauer, Lorine; Leroux, Jean-Christophe; Gauthier, Marc A

    2013-07-08

    Disulfide bonds stabilize the tertiary- and quaternary structure of proteins. In addition, they can be used to engineer redox-sensitive (bio)materials and drug-delivery systems. Many of these applications require control of the stability of the disulfide bond. It has recently been shown that the charged microenvironment of the disulfide can be used to alter their stability by ∼3 orders of magnitude in a predictable and finely tunable manner at acidic pH. The aim of this work is to extend these findings to physiological pH and to demonstrate the validity of this approach in complex redox milieu. Disulfide microenvironments were manipulated synergistically with steric hindrance herein to control disulfide bond stability over ∼3 orders of magnitude at neutral pH. Control of disulfide stability through microenvironmental effects could also be observed in complex redox buffers (including serum) and in the presence of cells. Such fine and predictable control of disulfide properties is not achievable using other existing approaches. These findings provide easily implementable and general tools for controlling the responsiveness of biomaterials and drug delivery systems toward various local endogenous redox environments.

  13. Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing

    PubMed Central

    Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.

    2014-01-01

    Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050

  14. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.

    PubMed

    Ahmed, Khan Behlol Ayaz; Senthilnathan, Rajendran; Megarajan, Sengan; Anbazhagan, Veerappan

    2015-10-01

    Owing to the benign nature, plant extracts mediated green synthesis of metal nanoparticles (NPs) is rapidly expanding. In this study, we demonstrated the successful green synthesis of silver nanoparticles (AgNPs) by utilizing natural sunlight and redox protein complex composed of ferredoxin-NADP(+) reductase (FNR) and ferredoxin (FD). The capping and stabilization of the AgNPs by the redox protein was confirmed by Fourier transform infrared spectroscopy. Light and redox protein is the prerequisite factor for the formation of AgNPs. The obtained result shows that the photo generated free radicals by the redox protein is responsible for the reduction of Ag(+) to Ag(0). Transmission electron microscopy revealed the formation of spherical AgNPs with size ranging from 10 to 15 nm. As-prepared AgNPs exhibit excellent catalytic activity toward the degradation of hazardous organic dyes, such as methylene blue, methyl orange and methyl red. These bio-inspired AgNPs is highly sensitive and selective in sensing hazardous mercury ions in the water at micromolar concentration. In addition, FNR/FD extract stabilized AgNPs showed good antimicrobial activity against gram positive and gram negative bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Redox-regulated chaperones.

    PubMed

    Kumsta, Caroline; Jakob, Ursula

    2009-06-09

    Redox regulation of stress proteins, such as molecular chaperones, guarantees an immediate response to oxidative stress conditions. This review focuses on the two major classes of redox-regulated chaperones, Hsp33 in bacteria and typical 2-Cys peroxiredoxins in eukaryotes. Both proteins employ redox-sensitive cysteines, whose oxidation status directly controls their affinity for unfolding proteins and therefore their chaperone function. We will first discuss Hsp33, whose oxidative stress-induced disulfide bond formation triggers the partial unfolding of the chaperone, which, in turn, leads to the exposure of a high-affinity binding site for unfolded proteins. This rapid mode of activation makes Hsp33 essential for protecting bacteria against severe oxidative stress conditions, such as hypochlorite (i.e., bleach) treatment, which leads to widespread protein unfolding and aggregation. We will compare Hsp33 to the highly abundant eukaryotic typical 2-Cys peroxiredoxin, whose oxidative stress-induced sulfinic acid formation turns the peroxidase into a molecular chaperone in vitro and presumably in vivo. These examples illustrate how proteins use reversible cysteine modifications to rapidly adjust to oxidative stress conditions and demonstrate that redox regulation plays a vital role in protecting organisms against reactive oxygen species-mediated cell death.

  16. Glutathione Efflux and Cell Death

    PubMed Central

    2012-01-01

    Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858

  17. Cycling of oxyanion-forming trace elements in groundwaters from a freshwater deltaic marsh

    NASA Astrophysics Data System (ADS)

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; Kolker, Alexander S.; Cable, Jaye E.; Johannesson, Karen H.

    2018-05-01

    Pore waters and surface waters were collected from a freshwater system in southeastern Louisiana to investigate the geochemical cycling of oxyanion-forming trace elements (i.e., Mo, W, As, V). A small bayou (Bayou Fortier) receives input from a connecting lake (Lac des Allemands) and groundwater input at the head approximately 5 km directly south of the Mississippi River. Marsh groundwaters exchange with bayou surface water but are otherwise relatively isolated from outside hydrologic forcings, such as tides, storms, and effects from local navigation canals. Rather, redox processes in the marsh groundwaters appear to drive changes in trace element concentrations. Elevated dissolved S(-II) concentrations in marsh groundwaters suggest greater reducing conditions in the late fall and winter as compared to the spring and late summer. The data suggest that reducing conditions in marsh groundwaters initiate the dissolution of Fe(III)/Mn(IV) oxide/hydroxide minerals, which releases adsorbed and/or co-precipitated trace elements into solution. Once in solution, the fate of these elements is determined by complexation with aqueous species and precipitation with iron sulfide minerals. The trace elements remain soluble in the presence of Fe(III)- and SO42-- reducing conditions, suggesting that either kinetic limitations or complexation with aqueous ligands obfuscates the correlation between V and Mo sequestration in sediments with reducing or euxinic conditions.

  18. Nuclear microscopy of diffuse plaques in the brains of transgenic mice

    NASA Astrophysics Data System (ADS)

    Rajendran, Reshmi; Ren, Minqin; Casadesus, Gemma; Smith, Mark A.; Perry, George; Huang, En; Ong, Wei Yi; Halliwell, Barry; Watt, Frank

    2005-04-01

    Using nuclear microscopy, extracellular diffuse amyloid deposits in fresh unstained brain tissue from Alzheimer's disease transgenic mice Tg2576 have been identified and analyzed for trace element content. Off-axis scanning transmission ion microscopy (STIM) images can be obtained which are similar to the images produced using direct STIM. Since the proton beam current required for off-axis STIM is compatible with PIXE and RBS, we can identify the plaque location and analyze for trace elements simultaneously. Analysis of the diffuse plaques showed an increase in the transition metals iron and zinc compared with the surrounding area of comparable areal density. This supports the theory that redox interactions between Aβ and metals could be at the heart of a pathological feedback system wherein Aβ amyloidosis and oxidative stress promote each other, possibly via Fenton chemistry.

  19. Detection of non-absorbing charge dynamics via refractive index change in dye-sensitized solar cells.

    PubMed

    Kuwahara, Shota; Hata, Hiroaki; Taya, Soichiro; Maeda, Naotaka; Shen, Qing; Toyoda, Taro; Katayama, Kenji

    2013-04-28

    The carrier dynamics in dye-sensitized solar cells was investigated by using the transient grating, in addition to the transient absorption method and transient photocurrent method on the order of microseconds to seconds. The signals for the same sample were obtained under a short-circuit condition to compare the carrier dynamics via refractive index change with the transient photocurrent measurement. Optically silent carrier dynamics by transient absorption have been successfully observed via a refractive index change. The corresponding signal components were originated from the charge dynamics at the solid/liquid interface, especially on the liquid side; rearrangement or diffusion motion of charged redox species occurred when the injected electrons were trapped at the TiO2 surface and when the electron-electrolyte recombination occurred at the interface. The assignments were confirmed from the dependence on the viscosity of the solvent and the presence of 4-tert-butyl pyridine. As the viscosity of the solvent increased, the rearrangement and the motion of the charged redox species were delayed. Since the rearrangement dynamics was changed by the presence of 4-tert-butyl pyridine, it affected not only the TiO2 surface but also the redox species close to the interface.

  20. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery.

    PubMed

    Curcio, Manuela; Diaz-Gomez, Luis; Cirillo, Giuseppe; Concheiro, Angel; Iemma, Francesca; Alvarez-Lorenzo, Carmen

    2017-08-01

    pH/redox dual-responsive nanogels (DEX-SS) were prepared by precipitation polymerization of methacrylated dextran (DEXMA), 2-aminoethylmethacrylate (AEMA) and N,N'-bis(acryloyl)cystamine (BAC), and then loaded with methotrexate (MTX). Nanogels were spherical and exhibited homogeneous size distribution (460nm, PDI<0.30) as observed using dynamic light scattering (DLS) and scanning electron microscopy (SEM). DEX-SS were sensitive to the variations of pH and redox environment. Nanogels incubated in buffer pH 5.0 containing 10mM glutathione (GSH) synergistically increased the mean diameter and the PDI to 750nm and 0.42, respectively. In vitro release experiments were performed at pH 7.4 and 5.0 with and without GSH. The cumulative release of MTX in pH 5.0 medium with 10mMGSH was 5-fold higher than that recorded at pH 7.4 without GSH. Fibroblasts and tumor cells were used to tests the effects of blank DEX-SS and MTX@DEX-SS nanogels on cell viability. Remarkable influence of pH on nanogels internalization into HeLa cells was evidenced by means of confocal microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization of poly methyl methaacrylate and reduced graphene oxide composite for application as electrolyte in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shrivatsav, Roshan; Mahalingam, Vignesh; Lakshmi Narayanan, E. R.; Naveen Balaji, N.; Balu, Murali; Krishna Prasad, R.; Kumaresan, Duraisamy

    2018-04-01

    Quasi-solid state iodide/triiodide redox electrolyte containing reduced graphene oxide and poly (methyl methaacrylate) (RGO-PMMA) composites for the fabrication of more durable, high performance dye sensitized solar cells are prepared. The morphological analysis of prepared RGO-PMMA composites showed formation of spherical like morphologies of RGO dispersed PMMA particles with their macroscopic inter-particle networks having voids. The x ray diffraction and electrical conductivity studies showed the addition of 1 wt% of filler RGO into amorphous PMMA matrix increased the electrical conductivity of the polymer composite about three orders of magnitude from 10‑7 and 10‑4 S cm‑1. Further, the photovoltaic current-voltage analysis of DSSCs with different RGO-PMMA composite based iodide/triiodide redox electrolytes showed the highest power conversion efficiency of 5.38% and the fill factor 0.63 for 2% RGO-PMMA electrolyte. The EIS analysis showed an increased recombination resistance (Rct2) at TiO2 electrode/dye/electrolyte interface due to the better electrical conductivity of RGO with good ionic conductivity in 2% RGO-PMMA composite based redox electrolyte boosted the generation of a high current density and fill factor in their DSSCs.

  2. North Pacific deglacial hypoxic events linked to abrupt ocean warming

    USGS Publications Warehouse

    Praetorius, Summer K; Mix, Alan C.; Davies, Maureen H.; Wolhowe, Matthew D; Addison, Jason A.; Prahl, Frederick G

    2015-01-01

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition1, 2, 3, 4. The mechanisms driving this hypoxia remain under debate1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4–5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals12, 13, and enhanced 15N/14N ratio of organic matter13, collectively suggest association with high export production. A decrease in 18O/16O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming.

  3. Conformation switching of an aptamer based on cocaine enhancement on a surface of modified GCE.

    PubMed

    Shahdost-Fard, Faezeh; Roushani, Mahmoud

    2016-07-01

    An ultrasensitive aptasensor was fabricated as an electrochemical nanotool based on the conformation switching of an aptamer (Apt). The Apt which was covalently attached on the surface of a glassy carbon electrode (GCE) covered with cadmium telluride (CdTe) quantum dots (QDs) works as a unique modifier for assaying cocaine. The Apt was combined with cocaine to form a three-way junction complex; this complex increased the steric hindrance of the modified GCE surface and resulted in a variation of the corresponding current of a redox probe. In the present study, DPV technique for cocaine detection was applied and resulted in an unprecedented detection limit (LOD) of 5.0±0.1pmolL(-1), which is more sensitive than previously reported methods. One of the greatest advantages of this aptasensor is the elimination of enzymes or antibodies. It is also relatively a highly sensitive, simple, reproducible, and controllable nanotool. Likewise, it can be easily miniaturized, which is a necessary condition for the high-throughput system and on-site applications. The offered nanotool has a great promise for the routine analysis of the ultra-trace amounts of cocaine, which is important for law enforcement and clinical medicine. It is notable to say that further attempts are under way in our laboratory for the construction of other aptasensors with higher performance for specific targets such as the detection of methadone (MTD) and ibuprofen (IBP). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spectroscopic analysis of autofluorescence distribution in digestive organ for unstained metabolism-based tumor detection

    NASA Astrophysics Data System (ADS)

    Arimoto, Hidenobu; Iwata, Atsushi; Kagawa, Keiichiro; Sanomura, Yoji; Yoshida, Shigeto; Kawahito, Shoji; Tanaka, Shinji

    2017-02-01

    Auto fluorescence distribution of coenzymes NADH and FAD is investigated for the unstained tumor detection using an [?] originally designed confocal spectroscope. The tumor region in digestive organ can be determined by evaluating the redox index which is defined as the raio of NADH and FAD concentration. However, the redox index is largely influenced by the presence of collagen in the submucosal layer because its auto fluorescence spectrum overlaps considerably with that of NADH. Therefore, it is necessary to know in advance the distribution of NADH, FAD, and collagen in the mucosal layer. The purpose of our study is to investigate the vertical distribution of the redox index in tissue using depth-sensitive auto fluorescence spectroscopy. The experimental procedure and the results are presented.

  5. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities

    PubMed Central

    Lubos, Edith; Loscalzo, Joseph

    2011-01-01

    Abstract Reactive oxygen species, such as superoxide and hydrogen peroxide, are generated in all cells by mitochondrial and enzymatic sources. Left unchecked, these reactive species can cause oxidative damage to DNA, proteins, and membrane lipids. Glutathione peroxidase-1 (GPx-1) is an intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide to water to limit its harmful effects. Certain reactive oxygen species, such as hydrogen peroxide, are also essential for growth factor-mediated signal transduction, mitochondrial function, and maintenance of normal thiol redox-balance. Thus, by limiting hydrogen peroxide accumulation, GPx-1 also modulates these processes. This review explores the molecular mechanisms involved in regulating the expression and function of GPx-1, with an emphasis on the role of GPx-1 in modulating cellular oxidant stress and redox-mediated responses. As a selenocysteine-containing enzyme, GPx-1 expression is subject to unique forms of regulation involving the trace mineral selenium and selenocysteine incorporation during translation. In addition, GPx-1 has been implicated in the development and prevention of many common and complex diseases, including cancer and cardiovascular disease. This review discusses the role of GPx-1 in these diseases and speculates on potential future therapies to harness the beneficial effects of this ubiquitous antioxidant enzyme. Antioxid. Redox Signal. 15, 1957–1997. PMID:21087145

  6. Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U.

    PubMed

    Viehweger, Katrin; Geipel, Gerhard; Bernhard, Gert

    2011-12-01

    Uranium (U) as a redox-active heavy metal can cause various redox imbalances in plant cells. Measurements of the cellular glutathione/glutathione disulfide (GSH/GSSG) by HPLC after cellular U contact revealed an interference with this essential redox couple. The GSH content remained unaffected by 10 μM U whereas the GSSG level immediately increased. In contrast, higher U concentrations (50 μM) drastically raised both forms. Using the Nernst equation, it was possible to calculate the half-cell reduction potential of 2GSH/GSSG. In case of lower U contents the cellular redox environment shifted towards more oxidizing conditions whereas the opposite effect was obtained by higher U contents. This indicates that U contact causes a consumption of reduced redox equivalents. Artificial depletion of GSH by chlorodinitrobenzene and measuring the cellular reducing capacity by tetrazolium salt reduction underlined the strong requirement of reduced redox equivalents. An additional element of cellular U detoxification mechanisms is the complex formation between the heavy metal and carboxylic functionalities of GSH. Because two GSH molecules catalyze electron transfers each with one electron forming a dimer (GSSG) two UO(2) (2+) are reduced to each UO(2) (+) by unbound redox sensitive sulfhydryl moieties. UO(2) (+) subsequently disproportionates to UO(2) (2+) and U(4+). This explains that in vitro experiments revealed a reduction to U(IV) of only around 33% of initial U(VI). Cellular U(IV) was transiently detected with the highest level after 2 h of U contact. Hence, it can be proposed that these reducing processes are an important element of defense reactions induced by this heavy metal.

  7. Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness.

    PubMed

    Scala, Alessandra; Mirabella, Rossana; Goedhart, Joachim; de Vries, Michel; Haring, Michel A; Schuurink, Robert C

    2017-11-01

    This work adds a new player, HER2, downstream of the perception of E-2-hexenal, a green leaf volatile, and shows that E-2-hexenal specifically changes the redox status of the mitochondria. It is widely accepted that plants produce and respond to green leaf volatiles (GLVs), but the molecular components involved in transducing their perception are largely unknown. The GLV E-2-hexenal inhibits root elongation in seedlings and, using this phenotype, we isolated E-2-hexenal response (her) Arabidopsis thaliana mutants. Using map-based cloning we positioned the her2 mutation to the At5g63620 locus, resulting in a phenylalanine instead of serine on position 223. Knockdown and overexpression lines of HER2 confirmed the role of HER2, which encodes an oxidoreductase, in the responsiveness to E-2-hexenal. Since E-2-hexenal is a reactive electrophile species, which are known to influence the redox status of cells, we utilized redox sensitive GFP2 (roGFP2) to determine the redox status of E-2-hexenal-treated root cells. Since the signal peptide of HER2 directed mCherry to the mitochondria, we targeted the expression of roGFP2 to this organelle besides the cytosol. E-2-hexenal specifically induced a change in the redox status in the mitochondria. We did not see a difference in the redox status in her2 compared to wild-type Arabidopsis. Still, the mitochondrial redox status did not change with Z-3-hexenol, another abundant GLV. These results indicate that HER2 is involved in transducing the perception of E-2-hexenal, which changes the redox status of the mitochondria.

  8. Redox Fluctuations Increase the Contribution of Lignin to Soil Respiration

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Silver, W. L.; Timokhin, V.; Hammel, K.

    2014-12-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia has long been thought to suppress lignin decomposition, yet variation in oxygen (O2) availability in surface soils accompanying moisture fluctuations could potentially stimulate this process by generating reactive oxygen species via coupled biotic and abiotic iron (Fe) redox cycling. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl and propyl Cβ) to provide highly sensitive and specific measures of lignin mineralization not previously employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration, and cumulative methoxyl C mineralization was equivalent under static aerobic and fluctuating redox conditions despite lower total C mineralization in the latter treatment. Contributions of the highly stable Cβ to mineralization were also equivalent in static aerobic and fluctuating redox treatments during periods of O2 exposure, and nearly doubled in the fluctuating treatment after normalizing to cumulative O2 exposure. Oxygen fluctuations drove substantial net Fe reduction and oxidation, implying that reactive oxygen species generated during abiotic Fe oxidation likely contributed to the elevated contribution of lignin to C mineralization. Iron redox cycling provides a mechanism for lignin breakdown in soils that experience conditions unfavorable for canonical lignin-degrading organisms, and provides a potential mechanism for lignin depletion in soil organic matter during late-stage decomposition. Thus, close couplings between soil moisture, redox fluctuations, and lignin breakdown provide potential a link between climate variability and the biochemical composition of soil organic matter with important implications for soil C budgets.

  9. Tailoring the structure of metal oxide nanostructures towards enhanced sensing properties for environmental applications.

    PubMed

    Yang, Mingqing; He, Junhui

    2012-02-15

    The present article reviews recent works in our laboratory about the sensing properties to toxic gases using nanostructured WO(3), TiO(2), FTiO(2), and CuO functionalized quartz crystal microbalance (QCM) sensors. WO(3) and TiO(2) functionalized QCM sensors have much shorter response time than those functionalized by conventional hydrogen-bond acidic branched copolymers for detection of dimethyl methylphosphonate (DMMP). FTiO(2) functionalized QCM sensors can improve the gas sensing characteristics by shortening the response time but at the price of partial irreversibility. The sensing mechanism was examined by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Varied CuO nanostructures were synthesized by simple modulation of reaction conditions. All the as-prepared CuO was applied on QCM resonators and explored for HCN sensing. Surprisingly, responses of all the sensors to HCN were found to be in an opposite direction as compared with other common volatile substances, offering excellent selectivity for HCN detection. The sensitivity was very high, and the response and recovery were very fast. Comparison of the specific surface areas of CuO nanostructures showed that CuO of higher surface area is more sensitive than that of lower surface area, indicating that the specific surface area of these CuO nanostructures plays an important role in the sensitivity of related sensors. Based on experimental results, a sensing mechanism was proposed in which a surface redox reaction occurs between CuO and Cu(2)O on the CuO nanostructures reversibly upon contact with HCN and air, respectively. The CuO functionalized QCM sensors are considered to be a promising candidate for trace HCN gas detection in practical applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Extending roGFP Emission via Förster-Type Resonance Energy Transfer Relay Enables Simultaneous Dual Compartment Ratiometric Redox Imaging in Live Cells.

    PubMed

    Norcross, Stevie; Trull, Keelan J; Snaider, Jordan; Doan, Sara; Tat, Kiet; Huang, Libai; Tantama, Mathew

    2017-11-22

    Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.

  11. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering

    NASA Astrophysics Data System (ADS)

    Yang, Wanli; Devereaux, Thomas P.

    2018-06-01

    Recent advances in battery science and technology have triggered both the challenges and opportunities on studying the materials and interfaces in batteries. Here, we review the recent demonstrations of soft X-ray spectroscopy for studying the interfaces and electrode materials. The focus of this review is on the recently developed mapping of resonant inelastic X-ray scattering (mRIXS) as a powerful probe of battery chemistry with superior sensitivity. Six different channels of soft X-ray absorption spectroscopy (sXAS) are introduced for different experimental purposes. Although conventional sXAS channels remain effective tools for quantitative analysis of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS in both cationic and anionic redox studies. Particularly, based on experimental findings in various electrodes, we show that sXAS is unreliable for studying oxygen redox. We then demonstrate the mRIXS as a reliable technique for fingerprinting oxygen redox and summarize several crucial observations. We conclude that mRIXS is the tool-of-choice to study both the practical issue on reversibility of oxygen redox and the fundamental nature of bulk oxygen states. We hope this review clarifies the popular misunderstanding on oxygen sXAS results of oxide electrodes, and establishes a reliable technique for detecting oxygen redox through mRIXS.

  12. Redox Regulation of the Superoxide Dismutases SOD3 and SOD2 in the Pulmonary Circulation.

    PubMed

    Hernandez-Saavedra, Daniel; Swain, Kalin; Tuder, Rubin; Petersen, Steen V; Nozik-Grayck, Eva

    2017-01-01

    When evaluating the role of redox-regulating signaling in pulmonary vascular diseases, it is intriguing to consider the modulation of key antioxidant enzymes like superoxide dismutase (SOD) because SOD isoforms are regulated by redox reactions, and, in turn, modulate downstream redox sensitive processes. The emerging field of redox biology is built upon understanding the regulation and consequences of tightly controlled and specific reduction-oxidation reactions that are critical for diverse cellular processes including cell signaling. Of relevance, both the site of production of specific reactive oxygen and nitrogen species and the site of the antioxidant defenses are highly compartmentalized within the cell. For example, superoxide is generated during oxidative phosphorylation in the mitochondria as well as by a number of enzymatic sources within the cytosol and at the cell membrane. In the pulmonary circulation, these sources include the mitochondrial electron transport chain, NADPH oxidases (NOX1-4, Duox1,2), nitric oxide synthases, and xanthine oxidase; this important topic has been thoroughly reviewed recently [1]. In parallel with these different cellular sites of superoxide production, the three SOD isoforms are also specifically localized to the cytosol (SOD1), mitochondria (SOD2) or extracellular compartment (SOD3). This chapter focuses on the role of redox mechanisms regulating SOD2 and SOD3, with an emphasis on these processes in the setting of pulmonary hypertension.

  13. Effect of parameters in moving average method for event detection enhancement using phase sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum

    2017-04-01

    We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.

  14. Origin of enormous trace metal enrichments in weathering mantles of Jurassic carbonates: evidence from Sr, Nd and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.; Perrone, T.; Morvan, G.

    2013-12-01

    Weathering mantels are widespread worldwide and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved carbonate rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual content of associated trace elements in this type of weathering mantle. For instance, these enrichments can represent about five times the content of the underlying Bajocian to Oxfordian limestone/marl complexes, which have been relatively poorly studied compared to weathering mantle developed on magmatic bedrocks. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources (saprolite, Bajocian silty marls and limestones, atmospheric particles deposition...). Of special interest has also been the origin of trace metals and the processes causing their enrichments. Especially Rare Earth Element (REE) distribution patterns and Sr, Nd and Pb isotope ratios are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments shall help to identify mobile phases in the soil system. This may inform on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. Trace metal migration and enrichments were studied on a cambisol developing on an underlying Jurassic limestone. The base is strongly enriched among others in rare earth elements (ΣREE: 2640ppm) or redox-sensitive elements such as Fe (44 wt.%), V (920ppm), Cr (700ppm), Zn (550ppm), As (260ppm), Co (45ppm) and Cd (2.4ppm). The underlying limestone and marl show, compared to average world carbonates, enrichments in the same elements and trace element distribution patterns similar to the soil suggesting their close genetic relationship. Pb, Sr and Nd isotope data allow to identify three principal components in the soil: a silicate-rich phase at close to the surface, a strongly trace metal enriched component at the bottom of the soil profile and an anthropogenic, atmosphere- derived component detected in the soil leachates. The isotopic mixing curves defined by the soil samples point to the close genetic connection between upper and lowermost soil horizons. The Nd isotopic composition of the leachates of all soil horizons are in contrast to the untreated soil and residual soil samples very homogeneous suggesting that the leachable phases of the upper and lower soil horizons are genetically connected. The downward migration of the trace metals is stopped at this soil level due to the presence of important secondary calcite precipitations, smectite and Fe-oxide accumulations. Mass balance calculations indicate that the enrichment process goes along with a volume increase relative to the bottom soil horizons.

  15. Spatial and Temporal Control of Surfactant Systems

    PubMed Central

    Liu, Xiaoyang; Abbott, Nicholas L.

    2011-01-01

    This paper reviews some recent progress on approaches leading to spatial and temporal control of surfactant systems. The approaches revolve around the use of redox-active and light-sensitive surfactants. Perspectives are presented on experiments that have realized approaches for active control of interfacial properties of aqueous surfactant systems, reversible control of microstructures and nanostructures formed within bulk solutions, and in situ manipulation of the interactions of surfactants with polymers, DNA and proteins. A particular focus of this review is devoted to studies of amphiphiles that contain the redox-active group ferrocene – reversible control of the oxidation state of ferrocene leads to changes in the charge/hydrophobicity of these amphiphiles, resulting in substantial changes in their self-assembly. Light-sensitive surfactants containing azobenzene, which undergo changes in shape/polarity upon illumination with light, are a second focus of this review. Examples of both redox-active and light-sensitive surfactants that lead to large (> 20mN/m) and spatially localized (~mm) changes in surface tensions on a time scale of seconds are presented. Systems that permit reversible transformations of bulk solution nanostructures – such as micelle-to-vesicle transitions or monomer-to-micelle transitions – are also described. The broad potential utility of these emerging classes of amphiphiles are illustrated by the ability to drive changes in functional properties of surfactant systems, such as rheological properties and reversible solubilization of oils, as well as the ability to control interactions of surfactants with biomolecules to modulate their transport into cells. PMID:19665723

  16. Colloidal graphene quantum dots incorporated with a Cobalt electrolyte in a dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lim, Hyuna

    The utilization of sun light as a renewable energy source has been pursued for a long time, but the ultimate goal of developing inexpensive and highly efficient photovoltaic devices remains elusive. To address this problem, colloidal graphene quantum dots (GQDs) were synthesized and used as a new sensitizer in dye sensitized solar cells (DSCs). Not only do the GQDs have a well-defined structure, but their large absorptivity, tunable bandgap, and size- and functional group-dependent redox potentials make them promising candidates for photovoltaic applications. Because volatile organic solvents in electrolyte solutions hinder long-term use and mass production of DSC devices, imidazolium based ionic liquids (ILs) were investigated. Cobalt-bipyridine complexes were successfully synthesized and characterized for use as new redox shuttles in DSCs. In the tested DSCs, J-V (current density-voltage) curves illustrate that the short circuit current and fill factor decrease significantly as the active area in the TiO2 photo anode increases. Dark current measurement indicated that the diode factor is bigger than one, which is different from the conventional p-n junction type solar cells, due to the high efficiency of photoelectron injection. The variation of the diode factor in dark and in light would show various types of recombination behaviors in DSCs. The performance of the DSC stained by GQDs incorporated with the cobalt redox couple was tested, but further study to improve the efficiency and to understand photochemical reaction in the DSCs is needed.

  17. A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system.

    PubMed

    Archer, Stephen L; Michelakis, Evangelos D; Thébaud, Bernard; Bonnet, Sebastien; Moudgil, Rohit; Wu, Xi-Chen; Weir, E Kenneth

    2006-01-01

    Mammals possess a specialized O2-sensing system (SOS), which compensates for encounters with hypoxia that occur during development, disease, and at altitude. Consisting of the resistance pulmonary arteries (PA), ductus arteriosus, carotid body, neuroepithelial body, systemic arteries, fetal adrenomedullary cell and fetoplacental arteries, the SOS optimizes O2-uptake and delivery. Hypoxic pulmonary vasoconstriction (HPV), a vasomotor response of resistance PAs to alveolar hypoxia, optimizes ventilation/perfusion matching and systemic pO2. Though modulated by the endothelium, HPV's core mechanism resides in the smooth muscle cell (SMC). The Redox Theory proposes that HPV results from the coordinated action of a redox sensor (proximal mitochondrial electron transport chain) which generates a diffusible mediator (a reactive O2 species, ROS) that regulates effector proteins (voltage-gated K(v) channels). Hypoxic withdrawal of ROS inhibits K(v)1.5 and K(v)2.1, depolarizes PASMCs, activates voltage-gated Ca2+ channels, increasing Ca2+ influx and causing vasoconstriction. Hypoxia's effect on ROS (decrease vs. increase) and the molecular origins of ROS (mitochondria vs. NADPH oxidase) remains controversial. Distal to this pathway, Rho kinase regulates the contractile apparatus' sensitivity to Ca2+. Also, a role for cADP ribose as a redox-regulated mediator of intracellular Ca2+ release has been proposed. Despite tissue heterogeneity in the SOS's output (vasomotion versus neurosecretion), O2-sensitive K+ channels constitute a conserved effector mechanism. Disorders of the O2-sensing may contribute to diseases, such as pulmonary hypertension.

  18. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    PubMed

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids. Copyright © 2013. Published by Elsevier Inc.

  19. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  20. Optical impedance spectroscopy with single-mode electro-active-integrated optical waveguides.

    PubMed

    Han, Xue; Mendes, Sergio B

    2014-02-04

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s(-1). Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW's provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox process (e.g., fmol/cm(2), 0.1% of a full protein monolayer). This experimental approach, when combined with the analytical formalism described here, brings additional sensitivity, accuracy, and simplicity to electro-chemical analysis and is expected to become a useful tool in investigations of redox processes.

  1. Unraveling the redox evolution of the Yangtze Block across the Precambrian/Cambrian transition

    NASA Astrophysics Data System (ADS)

    Diamond, C. W.; Zhang, F.; Chen, Y.; Lyons, T. W.

    2016-12-01

    Rocks preserved on the South China Craton have played a critical role in refining our understanding of the co-evolution of life and Earth's surface environments in the Late Neoproterozoic and earliest Paleozoic. From the earliest metazoan embryos to the many examples of exceptional preservation throughout the Cambrian Explosion, South China has preserved an outstanding record of animal evolution across this critical transition. Similarly, rocks preserved in South China hold key insights into the changing ocean chemistry that accompanied this extraordinary time. Recent work form Sahoo and others (2016, Geobiology) used redox sensitive metal enrichments in the Ediacaran Doushantuo Formation to demonstrate that the redox state of the Latest Neoproterozoic oceans was highly dynamic, rather than stably oxygenated or anoxic as had both been suggested previously. In an attempt to follow on from this and other studies, we have examined samples from a drill core taken in eastern Guizhou capturing deep-water facies of the Liuchapo and Jiumenchong formations, which contain the Precambrian/Cambrian boundary. In addition to containing the boundary, the sampled interval contains an enigmatic, widespread horizon that is strongly enriched in Ni and Mo. We have taken a multi-proxy approach in our investigation of this layer, the possible implications it has for the strata above and below (i.e., how its presence affects their utility as archives of paleo-redox conditions), and what those strata can tell us about local and global redox conditions during this pivotal time in Earth's history. Our Fe speciation data indicate that conditions were sulfidic at this location throughout the majority of the sampled interval. While redox sensitive metal concentrations are dramatically enriched in the Ni/Mo interval, their concentrations return to modest enrichments above it and continue to decrease upward. This trend suggests that while the conditions that favored extreme enrichment during the deposition of the Ni/Mo layer may have continued to provide a source of metals above the layer itself, by the time this source was exhausted, the background reservoir of these metals was low, sufficient only to provide small enrichments - consistent with the notion that deep ocean anoxia was a regular, if not dominant, feature of the Cambrian world.

  2. Glutathione S-Transferase P-Mediated Protein S-Glutathionylation of Resident Endoplasmic Reticulum Proteins Influences Sensitivity to Drug-Induced Unfolded Protein Response

    PubMed Central

    Ye, Zhi-Wei; Zhang, Jie; Ancrum, Tiffany; Manevich, Yefim; Townsend, Danyelle M.

    2017-01-01

    Abstract Aims: S-glutathionylation of cysteine residues, catalyzed by glutathione S-transferase Pi (GSTP), alters structure/function characteristics of certain targeted proteins. Our goal is to characterize how S-glutathionylation of proteins within the endoplasmic reticulum (ER) impact cell sensitivity to ER-stress inducing drugs. Results: We identify GSTP to be an ER-resident protein where it demonstrates both chaperone and catalytic functions. Redox based proteomic analyses identified a cluster of proteins cooperatively involved in the regulation of ER stress (immunoglobulin heavy chain-binding protein [BiP], protein disulfide isomerase [PDI], calnexin, calreticulin, endoplasmin, sarco/endoplasmic reticulum Ca2+-ATPase [SERCA]) that individually co-immunoprecipitated with GSTP (implying protein complex formation) and were subject to reactive oxygen species (ROS) induced S-glutathionylation. S-glutathionylation of each of these six proteins was attenuated in cells (liver, embryo fibroblasts or bone marrow dendritic) from mice lacking GSTP (Gstp1/p2−/−) compared to wild type (Gstp1/p2+/+). Moreover, Gstp1/p2−/− cells were significantly more sensitive to the cytotoxic effects of the ER-stress inducing drugs, thapsigargin (7-fold) and tunicamycin (2-fold). Innovation: Within the family of GST isozymes, GSTP has been ascribed the broadest range of catalytic and chaperone functions. Now, for the first time, we identify it as an ER resident protein that catalyzes S-glutathionylation of critical ER proteins within this organelle. Of note, this can provide a nexus for linkage of redox based signaling and pathways that regulate the unfolded protein response (UPR). This has novel importance in determining how some drugs kill cancer cells. Conclusions: Contextually, these results provide mechanistic evidence that GSTP can exert redox regulation in the oxidative ER environment and indicate that, within the ER, GSTP influences the cellular consequences of the UPR through S-glutathionylation of a series of key interrelated proteins. Antioxid. Redox Signal. 26, 247–261. PMID:26838680

  3. The logic of kinetic regulation in the thioredoxin system

    PubMed Central

    2011-01-01

    Background The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system. Results Analysis of a realistic computational model of the Escherichia coli thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models. Conclusions Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions. PMID:21266044

  4. Interpreting ambiguous ‘trace’ results in Schistosoma mansoni CCA Tests: Estimating sensitivity and specificity of ambiguous results with no gold standard

    PubMed Central

    Donnelly, Christl A.; Fenwick, Alan; Kabatereine, Narcis B.; Knowles, Sarah C. L.; Meité, Aboulaye; N'Goran, Eliézer K.; Nalule, Yolisa; Nogaro, Sarah; Phillips, Anna E.; Tukahebwa, Edridah Muheki; Fleming, Fiona M.

    2017-01-01

    Background The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous ‘trace’ result between ‘positive’ and ‘negative’, and much debate has focused on interpretation of traces results. Methodology/Principle findings We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d’Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Conclusions Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence. PMID:29220354

  5. Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, Southwestern India.

    PubMed

    Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N

    2014-04-01

    The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.

  6. Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review.

    PubMed

    Homoky, William B; Weber, Thomas; Berelson, William M; Conway, Tim M; Henderson, Gideon M; van Hulten, Marco; Jeandel, Catherine; Severmann, Silke; Tagliabue, Alessandro

    2016-11-28

    Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment-water boundary on many TEI cycles, and underline the fact that our knowledge of the source-sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment-water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.

  7. Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review

    NASA Astrophysics Data System (ADS)

    Homoky, William B.; Weber, Thomas; Berelson, William M.; Conway, Tim M.; Henderson, Gideon M.; van Hulten, Marco; Jeandel, Catherine; Severmann, Silke; Tagliabue, Alessandro

    2016-11-01

    Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment-water boundary on many TEI cycles, and underline the fact that our knowledge of the source-sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment-water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  8. Quantifying trace element and isotope fluxes at the ocean–sediment boundary: a review

    PubMed Central

    Berelson, William M.; Severmann, Silke

    2016-01-01

    Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment–water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment–water boundary on many TEI cycles, and underline the fact that our knowledge of the source–sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment–water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035270

  9. Arsenic speciation and trace element analysis of the volcanic río Agrio and the geothermal waters of Copahue, Argentina.

    PubMed

    Farnfield, Hannah R; Marcilla, Andrea L; Ward, Neil I

    2012-09-01

    Surface water originating from the Copahue volcano crater-lake was analysed for total arsenic and four arsenic species: arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MA(V)) and dimethylarsinic acid (DMA(V)) and other trace elements (Fe, Mn, V, Cr, Ni, Zn). A novel in-field technique for the preconcentration and separation of four arsenic species was, for the first time, used for the analysis of geothermal and volcanic waters. Total arsenic levels along the río Agrio ranged from <0.2-3783 μg/l As(T). The highest arsenic levels were recorded in the el Vertedero spring (3783 μg/l As(T)) on the flank of the Copahue volcano, which feeds the acidic río Agrio. Arsenite (H(3)AsO(3)) predominated along the upper río Agrio (78.9-81.2% iAs(III)) but the species distribution changed at lago Caviahue and arsenate (H(2)AsO(4)(-)) became the main species (51.4-61.4% iAs(V)) up until Salto del Agrio. The change in arsenic species is potentially a result of an increase in redox potential and the formation of iron-based precipitates. Arsenic speciation showed a statistically significant correlation with redox potential (r=0.9697, P=0.01). Both total arsenic and arsenic speciation displayed a statistically significant correlation with vanadium levels along the river (r=0.9961, P=0.01 and r=0.8488, P=0.05, respectively). This study highlights that chemical speciation analysis of volcanic waters is important in providing ideas on potential chemical toxicity. Furthermore there is a need for further work evaluating how arsenic (and other trace elements), released in volcanic and geothermal streams/vents, impacts on both biota and humans (via exposure in thermal pools or consuming commercial drinking water). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria.

    PubMed

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P; Yi, Ling; Kaler, Stephen G; Lutsenko, Svetlana; Ralle, Martina

    2016-08-05

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria,more » whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).« less

  12. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria*

    PubMed Central

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P.; Yi, Ling; Kaler, Stephen G.; Lutsenko, Svetlana; Ralle, Martina

    2016-01-01

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). PMID:27226607

  13. Lightning and Life on Exoplanets

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude with a discussion on a promising alternative to lightning driven prebiotic chemistry, ultraviolet light (UV) driven chemistry, and will discuss why a UV source breaking bonds seems more effective than lightning shocks at producing a variety of prebiotic species.

  14. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria

    PubMed Central

    Mailloux, Ryan J.; Treberg, Jason R.

    2015-01-01

    At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2·-) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite criteria to serve as an effective posttranslational modification that controls protein function. PMID:26773874

  15. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.

    PubMed

    Mailloux, Ryan J; Treberg, Jason R

    2016-08-01

    At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2(·-)) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite criteria to serve as an effective posttranslational modification that controls protein function. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Effects of redox conditions on the adsorption of dissolved organic matter to soil minerals and differently aged paddy soils

    NASA Astrophysics Data System (ADS)

    Sauerwein, Meike; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten

    2010-05-01

    Effects of redox conditions on the adsorption of dissolved organic matter to soil minerals and differently aged paddy soils Meike Sauerwein1, Alexander Hanke2, Klaus Kaiser3, Karsten Kalbitz2 1) Dept. of Soil Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany, meike.sauerwein@gmail.com 2) Institute of ecosystem dynamics and biodiversity, University of Amsterdam, 1018 WV, Netherlands, a.hanke@uva.nl, k.kalbitz@uva.nl 3) Soil Sciences, Martin Luther University Halle, 06099 Halle, Germany, klaus.kaiser@landw.uni-halle.de Current knowledge on dissolved organic matter (DOM) in soils is based mainly on observations and experiments in aerobic environments. Adsorption to soil minerals is an important mechanism of DOM retention and stabilization against microbial decay under oxic conditions. Under anoxic conditions where hydrous iron oxides, the potential main adsorbents of DOM, possibly dissolve, the importance of adsorption seems questionable. Therefore, we studied the adsorption of DOM to selected soil minerals and to mineral soils under oxic and anoxic conditions. In detail, we tested the following hypotheses: 1. Minerals and soils adsorb less DOM under anoxic conditions than under oxic ones. 2. The reduced adsorption under anoxic conditions is result of the smaller adsorption to hydrous Fe oxides whereas adsorption to clay minerals and Al hydroxides is not sensitive to changes in redox conditions 3. DOM adsorption will increase with the number of redox cycles, thus time of soil formation, due to increasing contents of poorly crystalline Fe oxides. This will, however, cause a stronger sensitivity to redox changes as poor crystalline Fe oxides are more reactive. 4. Aromatic compounds, being preferentially adsorbed under oxic conditions, will be less strongly adsorbed under anoxic conditions. We chose paddy soils as models because their periodically and regular exposure to changing redox cycles, with anoxic conditions during the rice growing period and oxic conditions during harvest and growth of other crops. Soils of a unique chronosequence of paddy soils (50, 300, 700 and 2000 years) in China were studied in direct comparison to non-paddy soils of the same age. In additions, selected soil minerals (goethite, ferrihydrite, amorphous Al hydroxide, hydrobiotite, nontronite and ripodolite), differing in their response to changes in redox conditions, were studied in order to indentify those mineral constituents responsible for redox-induced changes in DOM adsorption to the test soils. The DOM for the adsorption was extracted from composted rice straw as a surrogate for DOM percolating in paddy soils. Batch adsorption experiments were carried out with DOM pre-incubated to give oxic and anoxic conditions and maintaining these redox conditions during the whole procedure. The redox potential resulting from anoxic pre-incubation was about 100 mV, thus in the range of Fe reduction. Besides of dissolved organic carbon (DOC), we determined changes in the composition of DOM by the specific UV absorbance. We also analyzed main cations, anions and redox-sensitive elements to give a comprehensive picture of the effects of changing redox conditions on the dynamics of organic C, N, P, S, Fe and Al. First results indicated indeed less adsorption of DOM to Fe oxides under anoxic than under oxic conditions, with a more pronounced effect for ferrihydrite than for goethite. Maximum adsorption of DOM was more than 50% larger under oxic than under anoxic conditions. The effect was less pronounced but still detectable for clay minerals such as hydrobiotite, nontronite, and ripodolite. The specific UV absorbance of DOM contact with minerals was 20-50% stronger under anoxic than under oxic conditions. These changes in DOM composition indicated that preferential adsorption of aromatic compounds might be limited to aerated soils. We conclude that adsorption, although less strong than under oxic conditions, is an important mechanism of DOM retention also under anoxic conditions. Decreasing amounts of adsorbed DOM and changes in its composition might result in a less effective sorptive stabilization against microbial decay under anoxic than under oxic conditions.

  17. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge

    USGS Publications Warehouse

    Houghton, J.L.; Shanks, Wayne C.; Seyfried, W.E.

    2004-01-01

    The Bent Hill massive sulfide deposit and ODP Mound deposit in Middle Valley at the northernmost end of the Juan de Fuca Ridge are two of the largest modern seafloor hydrothermal deposits yet explored. Trace metal concentrations of sulfide minerals, determined by laser-ablation ICP-MS, were used in conjunction with mineral paragenetic studies and thermodynamic calculations to deduce the history of fluid-mineral reactions during sulfide deposition. Detailed analyses of the distribution of metals in sulfides indicate significant shifts in the physical and chemical conditions responsible for the trace element variability observed in these sulfide deposits. Trace elements (Mn, Co, Ni, As, Se, Ag, Cd, Sb, Pb, and Bi) analyzed in a representative suite of 10 thin sections from these deposits suggest differences in conditions and processes of hydrothermal alteration resulting in mass transfer of metals from the center of the deposits to the margins. Enrichments of some trace metals (Pb, Sb, Cd, Ag) in sphalerite at the margins of the deposits are best explained by dissolution/reprecipitation processes consistent with secondary remineralization. Results of reaction-path models clarify mechanisms of mass transfer during remineralization of sulfide deposits due to mixing of hydrothermal fluids with seawater. Model results are consistent with patterns of observed mineral paragenesis and help to identify conditions (pH, redox, temperature) that may be responsible for variations in trace metal concentrations in primary and secondary minerals. Differences in trace metal distributions throughout a single deposit and between nearby deposits at Middle Valley can be linked to the history of metal mobilization within this active hydrothermal system that may have broad implications for sulfide ore formation in other sedimented and unsedimented ridge systems. ?? 2004 Elsevier Ltd.

  18. Using Tidal Fluctuation-Induced Dynamics of Radium Isotopes (224Ra, 223Ra, and 228Ra) to Trace the Hydrodynamics and Geochemical Reactions in a Coastal Groundwater Mixing Zone

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Jiao, Jiu Jimmy; Liang, Wenzhao; Luo, Xin

    2018-04-01

    The reactive transport of radium isotopes (224Ra, 223Ra, and 228Ra) in coastal groundwater mixing zones (CGMZs) is sensitive to shifts of redox conditions and geochemical reactions induced by tidal fluctuation. This study presents a spatial distribution and temporal variation of radium isotopes in the CGMZ for the first time. Results show that the activity of radium isotopes in the upper saline plume (USP) is comparatively low due to a short residence time and mixing loss induced by the infiltration of low radium seawater whereas the activity of radium isotopes in the salt wedge (SW) is comparatively high due to a long residence time in the aquifer. The spatial distribution of radium isotopes is determined by the partitioning of radium isotopes, groundwater residence time, and relative ingrowth rates of radium isotopes. In addition, the variation of radium isotopes in the USP lags slightly (˜0 h) whereas the fluctuation of radium isotopes in the SW lags significantly (˜12 h) behind sea level oscillation. Tidal fluctuation affects the partitioning of radium isotopes through controlling seawater infiltration and subsequently influences the dynamics of radium isotopes in the USP. Concurrently, seawater infiltration significantly affects geochemical processes such as the production of nutrients and total alkalinity. Therefore, radium dynamics in the USP have implications for these geochemical processes. The variation of radium isotopes in the USP also has potential implications for transformation of trace metals such as iron and manganese because of the close affinity of radium isotopes to manganese and iron oxides.

  19. The Early Toarcian oceanic anoxic event: Paleoenvironmental and paleoclimatic change across the Alpine Tethys (Switzerland)

    NASA Astrophysics Data System (ADS)

    Fantasia, Alicia; Föllmi, Karl B.; Adatte, Thierry; Spangenberg, Jorge E.; Montero-Serrano, Jean-Carlos

    2018-03-01

    Paleoenvironmental and paleoclimatic change associated with the Toarcian oceanic anoxic event (T-OAE) was evaluated in five successions located in Switzerland. They represent different paleogeographic settings across the Alpine Tethys: the northern shelf (Gipf, Riniken and Rietheim), the Sub-Briançonnais basin (Creux de l'Ours), and the Lombardian basin (Breggia). The multi-proxy approach chosen (whole-rock and clay mineralogy, phosphorus, major and trace elements) shows that local environmental conditions modulated the response to the T-OAE across the Alpine Tethys. On the northern shelf and in the Sub-Briançonnais basin, high kaolinite contents and detrital proxies (detrital index, Ti, Zr, Si) in the T-OAE interval suggest a change towards a warmer and more humid climate coupled with an increase in the chemical weathering rates. In contrast, low kaolinite content in the Lombardian basin is likely related to a more arid climate along the southern Tethys margin and/or to a deeper and more distal setting. Redox-sensitive trace-element (V, Mo, Cu, Ni) enrichments in the T-OAE intervals reveal that dysoxic to anoxic conditions developed on the northern shelf, whereas reducing conditions were less severe in the Sub-Briançonnais basin. In the Lombardian basin well-oxygenated bottom water conditions prevailed. Phosphorus (P) speciation analysis was performed at Riniken and Creux de l'Ours. This is the first report of P speciation data for T-OAE sections, clearly suggesting that high P contents during this time interval are mainly linked to the presence of an authigenic phases and fish remains. The development of oxygen-depleted conditions during the T-OAE seems to have promoted the release of the organic-bound P back into the water column, thereby further sustaining primary productivity in a positive feedback loop.

  20. NREL Scientist Maria Ghirardi Named AAAS Fellow | News | NREL

    Science.gov Websites

    extreme sensitivity of the hydrogenase enzyme to oxygen, one of the byproducts of photosynthesis. Ghirardi pathways in photosynthesis, and in deconvoluting the metabolic partners of a crucial redox enzyme

  1. Within-Category VOT Affects Recovery from "Lexical" Garden-Paths: Evidence against Phoneme-Level Inhibition

    ERIC Educational Resources Information Center

    McMurray, Bob; Tanenhaus, Michael K.; Aslin, Richard N.

    2009-01-01

    Spoken word recognition shows gradient sensitivity to within-category voice onset time (VOT), as predicted by several current models of spoken word recognition, including TRACE (McClelland, J., & Elman, J. (1986). The TRACE model of speech perception. "Cognitive Psychology," 18, 1-86). It remains unclear, however, whether this sensitivity is…

  2. Europium anomalies in plagioclase-free deep arc cumulates constrain the redox evolution of arc magmas

    NASA Astrophysics Data System (ADS)

    Tang, M.; Erdman, M.; Eldridge, G.; Lee, C. T.

    2017-12-01

    Arc lavas are generally more oxidized than mid-ocean-ridge basalts, but how arc lavas acquire their oxidized signatures remains poorly understood. Iron oxidation state in melts have been used to suggest that fluids released from subducted slab may oxidize the sub-arc mantle and produce oxidized arc magmas from the source (e.g., Carmichael, 1991; Kelley and Cottrell), but redox-sensitive trace element and Fe isotope signatures of basalts also suggest that oxidation may happen during magma differentiation (e.g., Dauphas et al., 2009; Lee et al., 2005, 2010). One potential problem, however, is that all of these studies, represent indirect constraints on the primary, pre-erupted magma oxidation state. Here, we examine the Eu systematics of primitive, deep-seated (>45-80 km) arc cumulates, which provide the most direct constraint on arc magmas before they rise into the crust. The ratio of Eu2+/Eu3+ is a function of fo2, temperature and composition. Eu2+ is more incompatible than Eu3+ except in plagioclase. Combining Eu partitioning in minerals and experimentally calibrated Eu oxybarometer (Burnham et al., 2015) allows the application of mineral Eu anomalies in constraining magma redox conditions. The cumulates are represented by garnet-bearing pyroxenites from Arizona, USA and are arc cumulates. Because they derive from depths > 60 km, plagioclase was never present during their petrogenesis, hence any Eu anomalies reflect the effects of oxygen fugacity. We find that the most primitive cumulates have negative Eu anomalies in garnet and clinopyroxene (Eu/Eu*<1), despite the fact that depths of differentiation were too high to stabilize plagioclase. We further show that garnet and clinopyroxene Eu/Eu* increases with differentiation (decreasing Mg#), consistent with Eu2+ being more incompatible than Eu3+. Based on the Eu oxybarometer calibrated by Burnham et al. (2015), the Eu deficits in the most primitive cumulate (Mg# = 77) suggest crystallization at Dlogfo2 of FMQ-1, similar to that of mid-ocean-ridge basalts. Crystal fractionation modelling shows that the increasing Eu/Eu* in the evolved cumulates require fo2 to increase by at least 2 log units as the fractionated cumulate Mg# decreases from 77 to 53. These observations suggest that the oxidized nature of arc magmas occurs during intracrustal differentiation.

  3. Euxinia prior to end-Permian main extinction at Xiaojiaba section, Sichuan Province, South China

    NASA Astrophysics Data System (ADS)

    Wei, H.; Algeo, T. J.; Chen, D.; Yu, H.

    2013-12-01

    Redox conditions in the global ocean prior to, during, and following the end-Permian mass extinction at 252.28 Ma remain contentious. Previous studies in western Australia, South China, and East Greenland have shown that photic-zone euxinia was present at least intermittently from the early Changhsingian through the Dienerian1-3. Here we report a study of organic carbon isotopes, pyrite sulfur isotopes, TOC, pyritic sulfur content, REE, and major and trace elements from the Upper Permian Xiaojiaba section in the Chaotian district of Guangyuan City, Sichuan Province, China. During the Permian-Triassic transition, this section was located on the northwestern margin of the South China Block, facing the Paleo-Tethys Ocean. Our results indicate that suboxic conditions prevailed during the Wuchiapingian and suboxic to anoxic conditions with several pulses of euxinia during the Changhsingian. δ13Corg values are mostly -28‰ to -26‰ but show three positive excursions (to -22‰) prior to the end-Permian mass extinction horizon. These positive excursions are associated with higher Spy concentrations (to ~1%). δ34Spy values are variable (from -41‰ to +5‰) but show a sharp negative excursion in the late Changhsingian (to -43.4‰) that coincided with the most positive δ13Corg values. This horizon is also associated with increases in Eu/Eu*, Baxs, ∑REE, Si, and redox-sensitive metals such as V. These patterns reflect linkage of the C and S cycles during the latest Permian, possibly in response to redox controls. The observed positive excursions in δ13Corg may be due to organic inputs from green sulfur bacteria, which exhibit a smaller photosynthetic fractionation (-12.5‰4) than eukaryotic algae. The pronounced negative excursion of δ34Spy corresponds to a sulfate-sulfide S isotope fractionation of about -60‰, suggesting a large flux of syngenetic framboidal pyrite, which would be indicative of euxinic water-column conditions. We infer that the euxinia prior to the main extinction horizon may have been caused by oceanic oxygen-minimum zone expansion and upward movement of the chemocline5. The coupled increases in Eu/Eu* and Baxs may record hydrothermal influence, possibly accompanied by increased ocean acidity and high seawater temperatures. Collectively, our results document major changes in seawater chemistry during the Changhsingian prior to the main end-Permian crisis.

  4. Cr isotope stratigraphy of Ediacaran cap dolostones, Doushantuo Formation, South China

    NASA Astrophysics Data System (ADS)

    Rodler, Alexandra; Hohl, Simon V.; Guo, Qingjun; Frei, Robert

    2016-04-01

    The Yangtze Platform in South China is considered a key site for studying Neoproterozoic ocean oxygenation. The chromium isotope composition (δ53Cr) of marine carbonates has shown to be a sensitive tracer of changing (paleo)redox conditions and was previously linked to photosynthetic activity (1). We applied this emerging proxy to cap dolostones of a deep water and a shallow marine carbonate section pertaining to the Doushantuo Formation that have previously been used to constrain the redox evolution of Ediacaran seawater (2,3). Postglacial detrital contamination and diagenetic alteration appear to have influenced the δ53Cr values of Doushantuo cap dolostones as evidenced by systematic changes in δ53Cr and Cr concentrations coupled with several geochemical tracers. We use Al concentrations as indicator of detrital contamination and to calculate the authigenic Cr isotope composition. Further, we hypothesis that post-depositional remobilization of Cr might have resulted in the loss of heavy Cr isotopes and the retention of light Cr isotopes during precipitation of secondary carbonates. This scenario is supported by a decrease in δ53Cr values that is correlated with a loss of Sr and increasingly light δ18Ocarb signals, which would indicate meteoric fluid/rock interaction and diagenetic alteration by continental basin fluids. However, some cap dolostones may still show pristine Ediacaran seawater signals with positively fractionated δ53Cr (relative to bulk silicate Earth; 4), 87Sr/86Sr close to Ediacaran seawater values and a pronounced negative Ce anomaly. These tracers reveal light pulses of enhanced postglacial oxidative weathering during cap dolostone deposition. The Cr isotope composition of Ediacaran cap dolostones pertaining to the Doushantuo Formation trace changes in past redox conditions, where fine-scale δ53Cr fluctuations are perhaps a result of detrital contamination and diagenetic alteration balanced against a signal of oxidative weathering. Although, a careful assessment of detrital contamination and diagenetic alteration is necessary, we propose that using the stable Cr isotope system can provide valuable information and further enhance our understanding of Neoproterozoic ocean oxygenation, past weathering regimes as well as past climate and environmental changes. References: (1) Frei et al. (2011) EPSL 312, 114-125. (2) Guo et al. (2007) Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 140-157. (3) Hohl et al. (2015) GCA 163, 262-278. (4) Schoenberg et al. (2008) Chem. Geology 249, 294-306.

  5. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steill, Jeffrey D.; Huang, Haifeng; Hoops, Alexandra A.

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to thesemore » species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.« less

  6. Microbial Influences on Trace Metal Cycling in a Meromictic Lake, Fayetteville Green Lake, NY

    NASA Astrophysics Data System (ADS)

    Zerkle, A. L.; House, C.; Kump, L.

    2002-12-01

    Microorganisms can exist in aquatic environments at very high cell densities of up to 1011 cells/L, and can accumulate significant quantities of trace metals. Bacteria actively take up bioactive trace metals, including Fe, Zn, Mn, Co, Ni, Cu, and Mo, which function as catalytic centers in metalloproteins and metal-activated enzymes involved in virtually all cellular functions. In addition, bacteria may catalyze the release of trace metals from inorganic substrates by processes such as the reduction of iron and manganese oxides, suggesting that trace metal distributions within a natural environment dominated by microbial processes may be controlled primarily by microbial ecology. Fayetteville Green Lake (FGL), NY, is a permanently stratified meromictic lake that has a well-oxygenated surface water mass (mixolimnion) overlying a relatively stagnant, anoxic deep water mass (monimolimnion). A chemocline separates the water masses at around 20m depth, where oxygen concentrations decrease and sulfate and methane concentrations increase. In addition, previous studies have indicated that trace metals such as V, Cr, Co, Mn, and Fe reach elevated concentrations at the chemocline. Using fluorescent in situ hybridization (FISH) of FGL samples from depths of up to 40m with bacterial and archaeal probes, we have shown that fluctuating redox conditions within the FGL water column correlate with significant variations in the composition and distribution of microbial populations with depth. The mixolimnion is dominated by Eubacteria, with increasing concentrations of Archaea in the lower anoxic zone. Increases in microbial cell densities coincide with increases in trace metals at the chemocline, suggesting microbial activity may be responsible for trace metal release at this boundary. 16S rRNA PCR cloning techniques are currently being used to identify dominant microbial populations at various levels within the FGL water column. Future studies will focus on the potential for these dominant microorganisms to influence trace metal cycling and bioavailability in the FGL water column.

  7. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: Implications for the Mo/W of the bulk silicate Moon

    NASA Astrophysics Data System (ADS)

    Leitzke, F. P.; Fonseca, R. O. C.; Sprung, P.; Mallmann, G.; Lagos, M.; Michely, L. T.; Münker, C.

    2017-09-01

    We present results of high-temperature olivine-melt, pyroxene-melt and plagioclase-melt partitioning experiments aimed at investigating the redox transition of Mo in silicate systems. Data for a series of other minor and trace elements (Sc, Ba, Sr, Cr, REE, Y, HFSE, U, Th and W) were also acquired to constrain the incorporation of Mo in silicate minerals. All experiments were carried out in vertical tube furnaces at 1 bar and temperatures ranging from ca. 1220 to 1300 °C. Oxygen fugacity was controlled via CO-CO2 gas mixtures and varied systematically from 5.5 log units below to 1.9 log units above the fayalite-magnetite-quartz (FMQ) redox buffer thereby covering the range in oxygen fugacities of terrestrial and lunar basalt genesis. Molybdenum is shown to be volatile at oxygen fugacities above FMQ and that its compatibility in pyroxene and olivine increases three orders of magnitude towards the more reducing conditions covered in this study. The partitioning results show that Mo is dominantly tetravalent at redox conditions below FMQ-4 and dominantly hexavalent at redox conditions above FMQ. Given the differences in oxidation states of the terrestrial (oxidized) and lunar (reduced) mantles, molybdenum will behave significantly differently during basalt genesis in the Earth (i.e. highly incompatible; average DMoperidotite/melt ∼ 0.008) and Moon (i.e. moderately incompatible/compatible; average DMoperidotite/melt ∼ 0.6). Thus, it is expected that Mo will strongly fractionate from W during partial melting in the lunar mantle, given that W is broadly incompatible at FMQ-5. Moreover, the depletion of Mo and the Mo/W range in lunar samples can be reproduced by simply assuming a primitive Earth-like Mo/W for the bulk silicate Moon. Such a lunar composition is in striking agreement with the Moon being derived from the primitive terrestrial mantle after core formation on Earth.

  8. Non-invasive in vivo characterization of skin wound healing using label-free multiphoton microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jones, Jake D.; Majid, Fariah; Ramser, Hallie; Quinn, Kyle P.

    2017-02-01

    Non-healing ulcerative wounds, such as diabetic foot ulcers, are challenging to diagnose and treat due to their numerous possible etiologies and the variable efficacy of advanced wound care products. Thus, there is a critical need to develop new quantitative biomarkers and diagnostic technologies that are sensitive to wound status in order to guide care. The objective of this study was to evaluate the utility of label-free multiphoton microscopy for characterizing wound healing dynamics in vivo and identifying potential differences in diabetic wounds. We isolated and measured an optical redox ratio of FAD/(NADH+FAD) autofluorescence to provide three-dimensional maps of local cellular metabolism. Using a mouse model of wound healing, in vivo imaging at the wound edge identified a significant decrease in the optical redox ratio of the epidermis (p≤0.0103) between Days 3 through 14 compared to Day 1. This decrease in redox ratio coincided with a decrease in NADH fluorescence lifetime and thickening of the epithelium, collectively suggesting a sensitivity to keratinocyte hyperproliferation. In contrast to normal wounds, we have found that keratinocytes from diabetic wounds remain in a proliferative state at later time points with a lower redox ratio at the wound edge. Microstructural organization and composition was also measured from second harmonic generation imaging of collagen and revealed differences between diabetic and non-diabetic wounds. Our work demonstrates label-free multiphoton microscopy offers potential to provide non-invasive structural and functional biomarkers associated with different stages of skin wound healing, which may be used to detect delayed healing and guide treatment.

  9. Simultaneous quantitation of oxidized and reduced glutathione via LC-MS/MS: An insight into the redox state of hematopoietic stem cells.

    PubMed

    Carroll, Dustin; Howard, Diana; Zhu, Haining; Paumi, Christian M; Vore, Mary; Bondada, Subbarao; Liang, Ying; Wang, Chi; St Clair, Daret K

    2016-08-01

    Cellular redox balance plays a significant role in the regulation of hematopoietic stem-progenitor cell (HSC/MPP) self-renewal and differentiation. Unregulated changes in cellular redox homeostasis are associated with the onset of most hematological disorders. However, accurate measurement of the redox state in stem cells is difficult because of the scarcity of HSC/MPPs. Glutathione (GSH) constitutes the most abundant pool of cellular antioxidants. Thus, GSH metabolism may play a critical role in hematological disease onset and progression. A major limitation to studying GSH metabolism in HSC/MPPs has been the inability to measure quantitatively GSH concentrations in small numbers of HSC/MPPs. Current methods used to measure GSH levels not only rely on large numbers of cells, but also rely on the chemical/structural modification or enzymatic recycling of GSH and therefore are likely to measure only total glutathione content accurately. Here, we describe the validation of a sensitive method used for the direct and simultaneous quantitation of both oxidized and reduced GSH via liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) in HSC/MPPs isolated from bone marrow. The lower limit of quantitation (LLOQ) was determined to be 5.0ng/mL for GSH and 1.0ng/mL for GSSG with lower limits of detection at 0.5ng/mL for both glutathione species. Standard addition analysis utilizing mouse bone marrow shows that this method is both sensitive and accurate with reproducible analyte recovery. This method combines a simple extraction with a platform for the high-throughput analysis, allows for efficient determination of GSH/GSSG concentrations within the HSC/MPP populations in mouse, chemotherapeutic treatment conditions within cell culture, and human normal/leukemia patient samples. The data implicate the importance of the modulation of GSH/GSSG redox couple in stem cells related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry.

    PubMed

    Renault, Christophe; Nicole, Lionel; Sanchez, Clément; Costentin, Cyrille; Balland, Véronique; Limoges, Benoît

    2015-04-28

    In this work, we demonstrate that chronoabsorptometry and more specifically cyclic voltabsorptometry are particularly well suited techniques for acquiring a comprehensive understanding of the dynamics of electron transfer/charge transport within a transparent mesoporous semiconductive metal oxide film loaded with a redox-active dye. This is illustrated with the quantitative analysis of the spectroelectrochemical responses of two distinct heme-based redox probes adsorbed in highly-ordered mesoporous TiO2 thin films (prepared from evaporation-induced self-assembly, EISA). On the basis of a finite linear diffusion-reaction model as well as the establishment of the analytical expressions governing the limiting cases, it was possible to quantitatively analyse, predict and interpret the unusual voltabsorptometric responses of the adsorbed redox species as a function of the potential applied to the semiconductive film (i.e., as a function of the transition from an insulating to a conductive state or vice versa). In particular, we were able to accurately determine the interfacial charge transfer rates between the adsorbed redox species and the porous semiconductor. Another important and unexpected finding, inferred from the voltabsorptograms, is an interfacial electron transfer process predominantly governed by the extended conduction band states of the EISA TiO2 film and not by the localized traps in the bandgap. This is a significant result that contrasts those previously observed for dye-sensitized solar cells formed of randomly sintered TiO2 nanoparticles, a behaviour that was ascribed to a particularly low density of localized surface states in EISA TiO2. The present methodology also provides a unique and straightforward access to an activation-driving force relationship according to the Marcus theory, thus opening new opportunities not only to investigate the driving-force effects on electron recombination dynamics in dye-sensitized solar cells but also to study the electron transfer/transport mechanisms in heterogeneous photoelectrocatalytic systems combining nanostructured semiconductor electrodes and heterogeneous redox-active catalysts.

  11. Dynamic changes in the distribution and time course of blood-brain barrier-permeative nitroxides in the mouse head with EPR imaging: visualization of blood flow in a mouse model of ischemia.

    PubMed

    Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G

    2014-09-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Mechanisms of Hop Inhibition Include the Transmembrane Redox Reaction▿

    PubMed Central

    Behr, Jürgen; Vogel, Rudi F.

    2010-01-01

    In this work, a novel mechanistic model of hop inhibition beyond the proton ionophore action toward (beer spoiling) bacteria was developed. Investigations were performed with model systems using cyclic voltammetry for the determination of redox processes/conditions in connection with growth challenges with hop-sensitive and -resistant Lactobacillus brevis strains in the presence of oxidants. Cyclic voltammetry identified a transmembrane redox reaction of hop compounds at low pH (common in beer) and in the presence of manganese (present in millimolar levels in lactic acid bacteria). The antibacterial action of hop compounds could be extended from the described proton ionophore activity, lowering the intracellular pH, to pronounced redox reactivity, causing cellular oxidative damage. Accordingly, a correlation between the resistance of L. brevis strains to a sole oxidant to their resistance to hop could not be expected and was not detected. However, in connection with our recent study concerning hop ionophore properties and the resistance of hop-sensitive and -tolerant L. brevis strains toward proton ionophores (J. Behr and R. F. Vogel, J. Agric. Food Chem. 57:6074-6081, 2009), we suggest that both ionophore and oxidant resistance are required for survival under hop stress conditions and confirmed this correlation according to the novel mechanistic model. In consequence, the expression of several published hop resistance mechanisms involved in manganese binding/transport and intracellular redox balance, as well as that of proteins involved in oxidative stress under “highly reducing” conditions (cf. anaerobic cultivation and “antioxidative” hop compounds in the growth medium), is now comprehensible. Accordingly, hop resistance as a multifactorial dynamic property at least implies distinct resistance levels against two different mechanisms of hop inhibition, namely, proton ionophore-induced and oxidative stress-induced mechanisms. Beyond this specific model of hop inhibition, these investigations provide general insight on the role of electrophysiology and ion homeostasis in bacterial stress responses to membrane-active drugs. PMID:19880646

  13. Infant word recognition: Insights from TRACE simulations☆

    PubMed Central

    Mayor, Julien; Plunkett, Kim

    2014-01-01

    The TRACE model of speech perception (McClelland & Elman, 1986) is used to simulate results from the infant word recognition literature, to provide a unified, theoretical framework for interpreting these findings. In a first set of simulations, we demonstrate how TRACE can reconcile apparently conflicting findings suggesting, on the one hand, that consonants play a pre-eminent role in lexical acquisition (Nespor, Peña & Mehler, 2003; Nazzi, 2005), and on the other, that there is a symmetry in infant sensitivity to vowel and consonant mispronunciations of familiar words (Mani & Plunkett, 2007). In a second series of simulations, we use TRACE to simulate infants’ graded sensitivity to mispronunciations of familiar words as reported by White and Morgan (2008). An unexpected outcome is that TRACE fails to demonstrate graded sensitivity for White and Morgan’s stimuli unless the inhibitory parameters in TRACE are substantially reduced. We explore the ramifications of this finding for theories of lexical development. Finally, TRACE mimics the impact of phonological neighbourhoods on early word learning reported by Swingley and Aslin (2007). TRACE offers an alternative explanation of these findings in terms of mispronunciations of lexical items rather than imputing word learning to infants. Together these simulations provide an evaluation of Developmental (Jusczyk, 1993) and Familiarity (Metsala, 1999) accounts of word recognition by infants and young children. The findings point to a role for both theoretical approaches whereby vocabulary structure and content constrain infant word recognition in an experience-dependent fashion, and highlight the continuity in the processes and representations involved in lexical development during the second year of life. PMID:24493907

  14. Infant word recognition: Insights from TRACE simulations.

    PubMed

    Mayor, Julien; Plunkett, Kim

    2014-02-01

    The TRACE model of speech perception (McClelland & Elman, 1986) is used to simulate results from the infant word recognition literature, to provide a unified, theoretical framework for interpreting these findings. In a first set of simulations, we demonstrate how TRACE can reconcile apparently conflicting findings suggesting, on the one hand, that consonants play a pre-eminent role in lexical acquisition (Nespor, Peña & Mehler, 2003; Nazzi, 2005), and on the other, that there is a symmetry in infant sensitivity to vowel and consonant mispronunciations of familiar words (Mani & Plunkett, 2007). In a second series of simulations, we use TRACE to simulate infants' graded sensitivity to mispronunciations of familiar words as reported by White and Morgan (2008). An unexpected outcome is that TRACE fails to demonstrate graded sensitivity for White and Morgan's stimuli unless the inhibitory parameters in TRACE are substantially reduced. We explore the ramifications of this finding for theories of lexical development. Finally, TRACE mimics the impact of phonological neighbourhoods on early word learning reported by Swingley and Aslin (2007). TRACE offers an alternative explanation of these findings in terms of mispronunciations of lexical items rather than imputing word learning to infants. Together these simulations provide an evaluation of Developmental (Jusczyk, 1993) and Familiarity (Metsala, 1999) accounts of word recognition by infants and young children. The findings point to a role for both theoretical approaches whereby vocabulary structure and content constrain infant word recognition in an experience-dependent fashion, and highlight the continuity in the processes and representations involved in lexical development during the second year of life.

  15. Biomonitoring of Urban Pollution Using Silicon-Accumulating Species, Phyllostachys aureosulcata 'Aureocaulis'.

    PubMed

    Morina, Filis; Vidović, Marija; Srećković, Tatjana; Radović, Vesela; Veljović-Jovanović, Sonja

    2017-12-01

    We investigated metal accumulation in bamboo leaves during three seasons at three urban locations differing in pollution levels. The higher content of Cu, Pb, and Zn in the leaves was in correlation with the highest bioavailable content of these elements in the soil at the most polluted location. The content of leaf trace elements was higher in summer and autumn compared to spring. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed that Si accumulation in bamboo leaves was the highest in epidermis and vascular tissue, and was co-localized with trace metals. Analysis of phytoliths showed co-deposition of Al, C, and Si, implying the involvement of Si in metal detoxification. Compared to a common urban tree, linden, bamboo showed better capacity to maintain cellular redox homeostasis under deteriorated environmental conditions. The results suggest that bamboo can be efficiently used for biomonitoring of air and soil metal pollution and remediation in urban areas.

  16. Redox-controlled molecular permeability of composite-wall microcapsules

    NASA Astrophysics Data System (ADS)

    Ma, Yujie; Dong, Wen-Fei; Hempenius, Mark A.; Möhwald, Helmuth; Julius Vancso, G.

    2006-09-01

    Many smart materials in bioengineering, nanotechnology and medicine allow the storage and release of encapsulated drugs on demand at a specific location by an external stimulus. Owing to their versatility in material selection, polyelectrolyte multilayers are very promising systems in the development of microencapsulation technologies with permeation control governed by variations in the environmental conditions. Here, organometallic polyelectrolyte multilayer capsules, composed of polyanions and polycations of poly(ferrocenylsilane) (PFS), are introduced. Their preparation involved layer-by-layer self-assembly onto colloidal templates followed by core removal. PFS polyelectrolytes feature redox-active ferrocene units in the main chain. Incorporation of PFS into the capsule walls allowed us to explore the effects of a new stimulus, that is, changing the redox state, on capsule wall permeability. The permeability of these capsules could be sensitively tuned via chemical oxidation, resulting in a fast capsule expansion accompanied by a drastic permeability increase in response to a very small trigger. The substantial swelling could be suppressed by the application of an additional coating bearing common redox-inert species of poly(styrene sulfonate) (PSS-) and poly(allylamine hydrochloride) (PAH+) on the outer wall of the capsules. Hence, we obtained a unique capsule system with redox-controlled permeability and swellability with a high application potential in materials as well as in bioscience.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  18. S-Glutathionylation and Redox Protein Signaling in Drug Addiction

    PubMed Central

    Womersley, Jacqueline S.; Uys, Joachim D.

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. PMID:26809999

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; but, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. Here, we demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  20. S-Glutathionylation and Redox Protein Signaling in Drug Addiction.

    PubMed

    Womersley, Jacqueline S; Uys, Joachim D

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. Copyright © 2016. Published by Elsevier Inc.

  1. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues

    NASA Astrophysics Data System (ADS)

    Fernández Ferrari, M. Celeste; Schausberger, Peter

    2013-06-01

    Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.

  2. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues.

    PubMed

    Fernández Ferrari, M Celeste; Schausberger, Peter

    2013-06-01

    Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.

  3. The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally

    PubMed Central

    Park, Dan M.; Akhtar, Md. Sohail; Ansari, Aseem Z.; Landick, Robert; Kiley, Patricia J.

    2013-01-01

    Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis. PMID:24146625

  4. The Central Role of Amino Acids in Cancer Redox Homeostasis: Vulnerability Points of the Cancer Redox Code

    PubMed Central

    Vučetić, Milica; Cormerais, Yann; Parks, Scott K.; Pouysségur, Jacques

    2017-01-01

    A fine balance in reactive oxygen species (ROS) production and removal is of utmost importance for homeostasis of all cells and especially in highly proliferating cells that encounter increased ROS production due to enhanced metabolism. Consequently, increased production of these highly reactive molecules requires coupling with increased antioxidant defense production within cells. This coupling is observed in cancer cells that allocate significant energy reserves to maintain their intracellular redox balance. Glutathione (GSH), as a first line of defense, represents the most important, non-enzymatic antioxidant component together with the NADPH/NADP+ couple, which ensures the maintenance of the pool of reduced GSH. In this review, the central role of amino acids (AAs) in the maintenance of redox homeostasis in cancer, through GSH synthesis (cysteine, glutamate, and glycine), and nicotinamide adenine dinucleotide (phosphate) production (serine, and glutamine/glutamate) are illustrated. Special emphasis is placed on the importance of AA transporters known to be upregulated in cancers (such as system xc-light chain and alanine-serine-cysteine transporter 2) in the maintenance of AA homeostasis, and thus indirectly, the redox homeostasis of cancer cells. The role of the ROS varies (often described as a “two-edged sword”) during the processes of carcinogenesis, metastasis, and cancer treatment. Therefore, the context-dependent role of specific AAs in the initiation, progression, and dissemination of cancer, as well as in the redox-dependent sensitivity/resistance of the neoplastic cells to chemotherapy are highlighted. PMID:29312889

  5. (U) Second-Order Sensitivity Analysis of Uncollided Particle Contributions to Radiation Detector Responses Using Ray-Tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favorite, Jeffrey A.

    The Second-Level Adjoint Sensitivity System (2nd-LASS) that yields the second-order sensitivities of a response of uncollided particles with respect to isotope densities, cross sections, and source emission rates is derived in Refs. 1 and 2. In Ref. 2, we solved problems for the uncollided leakage from a homogeneous sphere and a multiregion cylinder using the PARTISN multigroup discrete-ordinates code. In this memo, we derive solutions of the 2nd-LASS for the particular case when the response is a flux or partial current density computed at a single point on the boundary, and the inner products are computed using ray-tracing. Both themore » PARTISN approach and the ray-tracing approach are implemented in a computer code, SENSPG. The next section of this report presents the equations of the 1st- and 2nd-LASS for uncollided particles and the first- and second-order sensitivities that use the solutions of the 1st- and 2nd-LASS. Section III presents solutions of the 1st- and 2nd-LASS equations for the case of ray-tracing from a detector point. Section IV presents specific solutions of the 2nd-LASS and derives the ray-trace form of the inner products needed for second-order sensitivities. Numerical results for the total leakage from a homogeneous sphere are presented in Sec. V and for the leakage from one side of a two-region slab in Sec. VI. Section VII is a summary and conclusions.« less

  6. Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-03-26

    Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less

  7. Caenorhabditis elegans as Model System in Pharmacology and Toxicology: Effects of Flavonoids on Redox-Sensitive Signalling Pathways and Ageing

    PubMed Central

    Koch, Karoline; Havermann, Susannah; Büchter, Christian

    2014-01-01

    Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research. PMID:24895670

  8. Optically transparent cathode for Co(III/II) mediated dye-sensitized solar cells based on graphene oxide.

    PubMed

    Kavan, Ladislav; Yum, Jun-Ho; Graetzel, Michael

    2012-12-01

    Thin semitransparent films were fabricated on F-doped SnO(2) (FTO) from single-layer graphene oxide (GO) either pure or in a composite with graphene nanoplatelets. Electrocatalytic activity of prepared films was tested for the Co(bpy)(3)(3+/2+) redox couple in acetonitrile electrolyte solution. Pristine GO showed almost no activity, resembling the properties of basal plane pyrolytic graphite. However, electrochemical performance of graphene oxide improved dramatically upon chemical reduction with hydrazine and/or heat treatment. All GO-containing films were firmly bonded to FTO, which contrasted with the poor adhesion of sole graphene nanoplatelets to this support. The activity loss during long-term aging was considerably improved, too. Enhanced stability of GO-containing films together with high electrocatalytic activity is beneficial for application in a new generation of dye-sensitized solar cells employing Co(bpy)(3)(3+/2+) as the redox shuttle.

  9. Redox sensitivity of the MyD88 immune signaling adapter.

    PubMed

    Stottmeier, Benjamin; Dick, Tobias P

    2016-12-01

    The transcription factor nuclear factor-κB (NF-κB) mediates expression of key genes involved in innate immunity and inflammation. NF-κB activation has been repeatedly reported to be modulated by hydrogen peroxide (H 2 O 2 ). Here, we show that the NF-κB-activating signaling adapter myeloid differentiation primary response gene 88 (MyD88) is highly sensitive to oxidation by H 2 O 2 and may be redox-regulated in its function, thus facilitating an influence of H 2 O 2 on the NF-κB signaling pathway. Upon oxidation, MyD88 forms distinct disulfide-linked conjugates which are reduced by the MyD88-interacting oxidoreductase nucleoredoxin (Nrx). MyD88 cysteine residues functionally modulate MyD88-dependent NF-κB activation, suggesting a link between MyD88 thiol oxidation state and immune signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. An interference-free glucose biosensor based on an anionic redox polymer-mediated enzymatic oxidation of glucose.

    PubMed

    Deng, Huimin; Shen, Wei; Gao, Zhiqiang

    2013-07-22

    Herein a novel strategy for the construction of an amperometric biosensor for highly sensitive and selective determination of glucose is described. The biosensor is made of a biocomposite membrane of glucose oxidase (GOx) and an Os(bpy)2 (bpy=2,2'-bipyridine)-based anionic redox polymer (Os-RP) mediator. The biosensor is fabricated through the co-immobilization of GOx and the Os-RP on the surface of a glassy carbon electrode by a simple one-step chemical crosslinking process. The crosslinked Os-RP/GOx composite membrane shows excellent catalytic activity toward the oxidation of glucose. Under optimal experimental conditions, a linear correlation between the oxidation current of glucose in amperometry at 0.25 V (vs. Ag/AgCl) and glucose concentration up to 10 mM with a sensitivity of 16.5 μA mM(-1) cm(-2) and a response time <5 s. Due to the presence of anionic sulfonic acid groups in the backbone of the redox polymer, the biosensor exhibits excellent selectivity to glucose in the presence of ascorbic acid and uric acid. The low hydrophobicity of the composite membrane also effectively retards the transport of molecular oxygen within the membrane. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Regulation of NF-κB-Induced Inflammatory Signaling by Lipid Peroxidation-Derived Aldehydes

    PubMed Central

    Yadav, Umesh C. S.; Ramana, Kota V.

    2013-01-01

    Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE), acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-κB and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-κB signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases. PMID:23710287

  12. Molybdenum isotope fractionation during complexation with organic matter in the Critical Zone

    NASA Astrophysics Data System (ADS)

    King, E. K.; Pett-Ridge, J. C.; Perakis, S. S.

    2016-12-01

    Molybdenum (Mo) is a micronutrient and a redox sensitive trace metal that also forms strong complexes with organic matter (OM). The fractionation of Mo in sediments associated with adsorption onto both iron (Fe) and manganese (Mn) (oxyhydr)oxides under oxic conditions and sulfide phases under euxinic conditions has been used to constrain redox conditions in the ocean. Additionally, Mo isotope dynamics in terrestrial systems can shed light on the pedogenic mechanisms driving the riverine Mo isotopic composition and how atmospheric inputs alter the trace metal budget and isotopic composition of soils. As a result of these studies, it has been hypothesized that multiple mechanisms are responsible for fractionating Mo isotopes. In particular, Mo fractionation during adsorption onto OM is unknown, despite the fact this mechanism is 3x to more than 20x greater than adsorption onto Fe- and Mn- (oxyhydr)oxides across a range of soil types from Oregon, Iceland, and Hawaii1-3 (Marks et al., 2015; Siebert et al., 2015; King et al., 2016). In this study, we measured Mo adsorption and isotopic fractionation onto insolubilized humic acid (IHA), a proxy for OM, as a function of both adsorption time (2-170 h) and pH (2-7). Preliminary results suggest that for the time series experiment, Mo adsorption onto IHA increased from 35% to 64% and a plateau was reached after 24 hours. The average Mo isotope fractionation between the solution and the IHA was Δ98Mosolution-IHA = 1.8 ± 0.3‰. For the pH series experiment, the average Mo isotope fractionation was Δ98Mosolution-IHA = 2.0 ± 0.2‰. Next, we compared the Mo isotopic composition of foliage, O-horizon, and surface soil from 12 sites in the Oregon Coast Range to better understand the impact of OM on Mo isotope dynamics in natural samples. The potential isotopic offset between dissolved and adsorbed Mo onto OM is of the same order of magnitude and direction as fractionation onto Fe- and Mn- (oxyhydr)oxides such as ferrihydrite, hematite, and birnessite which have Δ98Mosolution-oxide values of 1.1‰, 2.2‰, and 1.8‰, respectively (Goldberg et al., 2009; Wasylenki et al., 2011). These results have important implications for the interpretation of the sedimentary Mo record, its use as a paleoredox tracer, and its potential to record changes in the terrestrial weathering environment.

  13. The extracellular redox state modulates mitochondrial function, gluconeogenesis, and glycogen synthesis in murine hepatocytes.

    PubMed

    Nocito, Laura; Kleckner, Amber S; Yoo, Elsia J; Jones Iv, Albert R; Liesa, Marc; Corkey, Barbara E

    2015-01-01

    Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: β-hydroxybutyrate (βOHB)/acetoacetate (Acoc), reduced glutathione (GSH)/oxidized glutathione (GSSG), and cysteine/cystine. Exposure to a more oxidized ratio via extracellular βOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular βOHB/Acoc led to increased NAD(P)H and maximal mitochondrial respiratory capacity in hepatocytes. Greater βOHB/Acoc ratios were also associated with decreased β-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of βOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases.

  14. The Extracellular Redox State Modulates Mitochondrial Function, Gluconeogenesis, and Glycogen Synthesis in Murine Hepatocytes

    PubMed Central

    Nocito, Laura; Kleckner, Amber S.; Yoo, Elsia J.; Jones IV, Albert R.; Liesa, Marc; Corkey, Barbara E.

    2015-01-01

    Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: β-hydroxybutyrate (βOHB)/acetoacetate (Acoc), reduced glutathione (GSH)/oxidized glutathione (GSSG), and cysteine/cystine. Exposure to a more oxidized ratio via extracellular βOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular βOHB/Acoc led to increased NAD(P)H and maximal mitochondrial respiratory capacity in hepatocytes. Greater βOHB/Acoc ratios were also associated with decreased β-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of βOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases. PMID:25816337

  15. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Bernstein, Hans C.; Melnicki, Matthew R.

    ABSTRACT Photobiologically synthesized hydrogen (H 2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H 2production, a highly perplexing phenomenon because H 2evolving enzymes are O 2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve tomore » prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.« less

  16. Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle

    PubMed Central

    Lewis, Philip; Sheehan, David; Soares, Renata; Varela Coelho, Ana; O'Halloran, Ken D.

    2015-01-01

    Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease. PMID:25941492

  17. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia

    NASA Astrophysics Data System (ADS)

    Sheen, Alex I.; Kendall, Brian; Reinhard, Christopher T.; Creaser, Robert A.; Lyons, Timothy W.; Bekker, Andrey; Poulton, Simon W.; Anbar, Ariel D.

    2018-04-01

    Emerging geochemical evidence suggests that the atmosphere-ocean system underwent a significant decrease in O2 content following the Great Oxidation Event (GOE), leading to a mid-Proterozoic ocean (ca. 2.0-0.8 Ga) with oxygenated surface waters and predominantly anoxic deep waters. The extent of mid-Proterozoic seafloor anoxia has been recently estimated using mass-balance models based on molybdenum (Mo), uranium (U), and chromium (Cr) enrichments in organic-rich mudrocks (ORM). Here, we use a temporal compilation of concentrations for the redox-sensitive trace metal rhenium (Re) in ORM to provide an independent constraint on the global extent of mid-Proterozoic ocean anoxia and as a tool for more generally exploring how the marine geochemical cycle of Re has changed through time. The compilation reveals that mid-Proterozoic ORM are dominated by low Re concentrations that overall are only mildly higher than those of Archean ORM and significantly lower than many ORM deposited during the ca. 2.22-2.06 Ga Lomagundi Event and during the Phanerozoic Eon. These temporal trends are consistent with a decrease in the oceanic Re inventory in response to an expansion of anoxia after an interval of increased oxygenation during the Lomagundi Event. Mass-balance modeling of the marine Re geochemical cycle indicates that the mid-Proterozoic ORM with low Re enrichments are consistent with extensive seafloor anoxia. Beyond this agreement, these new data bring added value because Re, like the other metals, responds generally to low-oxygen conditions but has its own distinct sensitivity to the varying environmental controls. Thus, we can broaden our capacity to infer nuanced spatiotemporal patterns in ancient redox landscapes. For example, despite the still small number of data, some mid-Proterozoic ORM units have higher Re enrichments that may reflect a larger oceanic Re inventory during transient episodes of ocean oxygenation. An improved understanding of the modern oceanic Re cycle and a higher temporal resolution for the Re compilation will enable further tests of these hypotheses regarding changes in the surficial Re geochemical cycle in response to variations in atmosphere-ocean oxygenation. Nevertheless, the existing Re compilation and model results are in agreement with previous Cr, Mo, and U evidence for pervasively anoxic and ferruginous conditions in mid-Proterozoic oceans.

  18. Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea

    NASA Astrophysics Data System (ADS)

    Huang, S.; Conte, M. H.

    2009-01-01

    Elemental composition of the particle flux at the Oceanic Flux Program (OFP) time-series site off Bermuda was measured from January 2002 to March 2005. Eighteen elements (Mg, Al, Si, P, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba and Pb) in sediment trap material from 500, 1500 and 3200 m depths were quantified using fusion-HR-ICPMS. Positive Matrix Factorization (PMF) was used to elucidate sources, elemental associations and processes that affect geochemical behavior in the water column. Results provide evidence for intense elemental cycling between the sinking flux material and the dissolved and suspended pools within mesopelagic and bathypelagic waters. Biological processing and remineralization rapidly deplete the sinking flux material in organic matter and associated elements (N, P, Cd, Zn) between 500 and 1500 m depth. Suspended particle aggregation, authigenic mineral precipitation, and chemical scavenging enriches the flux material in lithogenic minerals, barite and redox sensitive elements (Mn, Co, V, Fe). A large increase in the flux of lithogenic elements is observed with depth and confirms that the northeast Sargasso is a significant sink for advected continental materials, likely supplied via Gulf Stream circulation. PMF resolved major sources that contribute to sinking flux at all depths (carbonate, high-Mg carbonate, opal, organic matter, lithogenic material, and barite) as well as additional depth-specific elemental associations that contribute about half of the compositional variability in the flux. PMF solutions indicate close geochemical associations of barite-opal, Cd-P, Zn-Co, Zn-Pb and redox sensitive elements in the sinking flux material at 500 m depth. Major reorganizations of element associations occur as labile carrier phases break down and elements redistribute among new carrier phases deeper in the water column. Factor scores show strong covariation and similar temporal phasing among the three trap depths and indicate a tight coupling in particle flux compositional variability throughout the water column. Seasonality in flux composition is primarily driven by dilution of the lithogenic component with freshly-produced biogenic material during the late winter primary production maximum. Temporal trends in scores reveal subtle non-seasonal changes in flux composition occurring on month long timescales. This non-seasonal variability may be driven by changes in the biogeochemical properties of intermediate water masses that pass through the region and which affect rates of chemical scavenging and/or aggregation within the water column.

  19. Effects of dietary lipid, vitamins and minerals on total amounts and redox status of glutathione and ubiquinone in tissues of Atlantic salmon (Salmo salar): a multivariate approach.

    PubMed

    Hamre, Kristin; Torstensen, Bente E; Maage, Amund; Waagbø, Rune; Berge, Rolf K; Albrektsen, Sissel

    2010-10-01

    The hypothesis of the present study was that Atlantic salmon (Salmo salar) would respond to large variations in supplementation of dietary pro- and antioxidants, and marine lipid, with adjustment of the endogenously synthesised antioxidants, glutathione (GSH) and ubiquinone (UQ). An experiment with 2(7-3) reduced factorial design (the number of cases reduced systematically from 2(7) (full design) to 2(4) (reduced design)) was conducted, where vitamins, minerals and lipid were supplemented in the diet at high and low levels. For the vitamins and minerals the high levels were chosen to be just below anticipated toxic levels and the low levels were just above the requirement (vitamin C, 30 and 1000 mg/kg; vitamin E, 70 and 430 mg/kg; Fe, 70 and 1200 mg/kg; Cu, 8 and 110 mg/kg; Mn, 12 and 200 mg/kg). For astaxanthin, the dietary levels were 10 and 50 mg/kg and for lipid, 150 and 330 g/kg. The experiment was started with post-smolts (148 (sd 17 g)) and lasted for 5 months. The only effect on GSH was a minor increase ( < 10 %) in total concentration in the liver in response to high dietary lipid. GSH redox state was not affected. UQ responded to dietary lipid, astaxanthin and vitamin E, both with regard to total concentration and redox state. Except for an effect of Fe on plasma GSH, the trace elements and vitamin C had no effect on tissue levels and oxidation state of GSH and UQ. This shows that the endogenous redox state is quite robust with regard to variation of dietary pro- and antioxidants in Atlantic salmon.

  20. A geochemical model of the Peru Basin deep-sea floor—and the response of the system to technical impacts

    NASA Astrophysics Data System (ADS)

    König, Iris; Haeckel, Matthias; Lougear, André; Suess, Erwin; Trautwein, Alfred X.

    A geochemical model of the Peru Basin deep-sea floor, based on an extensive set of field data as well as on numerical simulations, is presented. The model takes into account the vertical oscillations of the redox zonation that occur in response to both long-term (glacial/interglacial) and short-term (El Niño Southern Oscillation (ENSO) time scale) variations in the depositional flux of organic matter. Field evidence of reaction between the pore water NO 3- and an oxidizable fraction of the structural Fe(II) in the clay mineral content of the deep-sea sediments is provided. The conditions of formation and destruction of reactive clay Fe(II) layers in the sea floor are defined, whereby a new paleo-redox proxy is established. Transitional NO 3- profile shapes are explained by periodic contractions and expansions of the oxic zone (ocean bottom respiration) on the ENSO time scale. The near-surface oscillations of the oxic-suboxic boundary constitute a redox pump mechanism of major importance with respect to diagenetic trace metal enrichments and manganese nodule formation, which may account for the particularly high nodule growth rates in this ocean basin. These conditions are due to the similar depth ranges of both the O 2 penetration in the sea floor and the bioturbated high reactivity surface layer (HRSL), all against the background of ENSO-related large variations in depositional C org flux. Removal of the HRSL in the course of deep-sea mining would result in a massive expansion of the oxic surface layer and, thus, the shut down of the near-surface redox pump for centuries, which is demonstrated by numerical modeling.

Top