Science.gov

Sample records for reduce clinical target

  1. Using Histopathology Breast Cancer Data to Reduce Clinical Target Volume Margins at Radiotherapy

    SciTech Connect

    Stroom, Joep Schlief, Angelique; Alderliesten, Tanja; Peterse, Hans; Bartelink, Harry; Gilhuijs, Kenneth

    2009-07-01

    Purpose: This study aimed to quantify the incidence and extension of microscopic disease around primary breast tumors in patients undergoing breast-conserving therapy (BCT), focusing on a potential application to reduce radiotherapy boost volumes. Methods and Materials: An extensive pathology tumor-distribution study was performed using 38 wide local excision specimens of BCT patients. Specimen orientation was recorded and microscopic findings reconstructed to assess the incidence of microscopic disease around the macroscopic tumor. A model of disease spread was built, showing probability of disease extension outside a treated volume (P{sub out,vol}). The model was applied in 10 new BCT patients. Taking asymmetry of tumor excision into account, new asymmetric margins for the clinical target volume of the boost (CTV{sub boost}) were evaluated that minimize the volume without increasing P{sub out,TTV} (TTV being total treated volume: V{sub surgery} + CTV{sub boost}). Potential reductions in CTV{sub boost} and TTV were evaluated. Results: Microscopic disease beyond the tumor boundary occurred isotropically at distances > 1 cm (intended surgical margin) and > 1.5 cm (intended TTV margin) in 53% and 36% of the excision specimens, respectively. In the 10 prospective patients, the average P{sub out,TTV} was, however, only 16% due to larger surgical margins than intended in some directions. Asymmetric CTV{sub boost} margins reduced the CTV{sub boost} and TTV by 27% (20 cc) and 12% (21 cc) on average, without compromising tumor coverage. Conclusions: Microscopic disease extension may occur beyond the current CTV{sub boost} in approximately one sixth of patients. An asymmetric CTV{sub boost} that corrects for asymmetry of the surgical excision has the potential to reduce boost volumes while maintaining tumor coverage.

  2. Targeting the Use of Pooled HIV RNA Screening to Reduce Cost in Health Department STD Clinics: New York City, 2009–2011

    PubMed Central

    Pathela, Preeti; Pirillo, Robert; Blank, Susan

    2015-01-01

    Objective Staff at public New York City sexually transmitted disease (STD) clinics screen patients for acute HIV infection (AHI) using pooled nucleic acid amplification tests. AHI screening is expensive but important for populations at high risk of acquiring HIV. We analyzed if targeting AHI screening in STD clinics could reduce program costs while maintaining AHI case detection. Methods From January 2009 through May 2010, we screened all patients with negative rapid HIV tests for AHI. Using risk information on cases detected during this universal screening period, we developed criteria for targeted AHI screening and compared case yields and testing costs during 12 months of universal screening (June 2009 through May 2010) vs. 12 months of targeted screening (June 2010 through May 2011). Results During the defined period of universal screening, we identified 40 AHI cases, and during targeted screening, we identified 35 AHI cases. Because of targeting efforts, the number needed to test to find one AHI case dropped from 1,631 to 254. With targeted screening, it cost an average of $4,535 per case detected and 39.3 cases were detected per 10,000 specimens; using universal screening, $29,088 was spent per case detected and 6.1 cases were detected per 10,000 specimens processed. Conclusion Targeted screening identified similar numbers of AHI cases as when screening all clinic patients seeking HIV testing, but at one-seventh the cost. PMID:25552758

  3. Community-Based Health Education Programs Designed to Improve Clinical Measures Are Unlikely to Reduce Short-Term Costs or Utilization Without Additional Features Targeting These Outcomes.

    PubMed

    Burton, Joe; Eggleston, Barry; Brenner, Jeffrey; Truchil, Aaron; Zulkiewicz, Brittany A; Lewis, Megan A

    2016-06-07

    Stakeholders often expect programs for persons with chronic conditions to "bend the cost curve." This study assessed whether a diabetes self-management education (DSME) program offered as part of a multicomponent initiative could affect emergency department (ED) visits, hospital stays, and the associated costs for an underserved population in addition to the clinical indicators that DSME programs attempt to improve. The program was implemented in Camden, New Jersey, by the Camden Coalition of Healthcare Providers to address disparities in diabetes care. Data used are from medical records and from patient-level information about hospital services from Camden's hospitals. Using multivariate regression models to control for individual characteristics, changes in utilization over time and changes relative to 2 comparison groups were assessed. No reductions in ED visits, inpatient stays, or costs for participants were found over time or relative to the comparison groups. High utilization rates and costs for diabetes are associated with longer term disease progression and its sequelae; thus, DSME or peer support may not affect these in the near term. Some clinical indicators improved among participants, and these might lead to fewer costly adverse health events in the future. DSME deployed at the community level, without explicit segmentation and targeting of high health care utilizers or without components designed to affect costs and utilization, should not be expected to reduce short-term medical needs for participating individuals or care-seeking behaviors such that utilization is reduced. Stakeholders must include financial outcomes in a program's design if those outcomes are to improve. (Population Health Management 20XX;XX:XXX-XXX).

  4. Targets set to reduce Lake Erie algae

    USGS Publications Warehouse

    Evans, Mary

    2016-01-01

    In February 2016, the Great Lakes Executive Committee, which oversees the implementation of the Great Lakes Water Quality Agreement (GLWQA) between the U.S. and Canada, approved phosphorus loading targets for Lake Erie to reduce the size of harmful algal blooms (HABs), reduce the presence of the low oxygen zone in the central basin, and protect nearshore water quality. The targets are set with respect to the nutrient loads calculated for 2008. To reduce the impacts of HABs on Lake Erie a target was set of a 40 percent reduction in total and soluble reactive phosphorus loads in the spring from two Canadian rivers and several Michigan and Ohio rivers, especially the Maumee River (https://binational.net/2016/02/22/ finalptargets-ciblesfinalesdep/). States and the province of Ontario are already developing Domestic Action Plans to accomplish the reductions and scientists are developing research and monitoring plans to assess progress.

  5. Targeting inflammation: multiple innovative ways to reduce prostaglandin E2

    PubMed Central

    Norberg, Jessica K; Sells, Earlphia; Chang, Hui-Hua; Alla, Srinivas R; Zhang, Shuxing; Meuillet, Emmanuelle J

    2014-01-01

    The PGE2 pathway is important in inflammation-driven diseases and specific targeting of the inducible mPGES-1 is warranted due to the cardiovascular problems associated with the long-term use of COX-2 inhibitors. This review focuses on patents issued on methods of measuring mPGES-1 activity, on drugs targeting mPGES-1 and on other modulators of free extracellular PGE2 concentration. Perspectives and conclusions regarding the status of these drugs are also presented. Importantly, no selective inhibitors targeting mPGES-1 have been identified and, despite the high number of published patents, none of these drugs have yet made it to clinical trials. PMID:24237030

  6. Targeting inflammation: multiple innovative ways to reduce prostaglandin E₂.

    PubMed

    Norberg, Jessica K; Sells, Earlphia; Chang, Hui-Hua; Alla, Srinivas R; Zhang, Shuxing; Meuillet, Emmanuelle J

    2013-03-01

    The PGE2 pathway is important in inflammation-driven diseases and specific targeting of the inducible mPGES-1 is warranted due to the cardiovascular problems associated with the long-term use of COX-2 inhibitors. This review focuses on patents issued on methods of measuring mPGES-1 activity, on drugs targeting mPGES-1 and on other modulators of free extracellular PGE2 concentration. Perspectives and conclusions regarding the status of these drugs are also presented. Importantly, no selective inhibitors targeting mPGES-1 have been identified and, despite the high number of published patents, none of these drugs have yet made it to clinical trials.

  7. Targeted proteomic strategy for clinical biomarker discovery.

    PubMed

    Schiess, Ralph; Wollscheid, Bernd; Aebersold, Ruedi

    2009-02-01

    The high complexity and large dynamic range of blood plasma proteins currently prohibit the sensitive and high-throughput profiling of disease and control plasma proteome sample sets large enough to reliably detect disease indicating differences. To circumvent these technological limitations we describe here a new two-stage strategy for the mass spectrometry (MS) assisted discovery, verification and validation of disease biomarkers. In an initial discovery phase N-linked glycoproteins with distinguishable expression patterns in primary normal and diseased tissue are detected and identified. In the second step the proteins identified in the initial phase are subjected to targeted MS analysis in plasma samples, using the highly sensitive and specific selected reaction monitoring (SRM) technology. Since glycosylated proteins, such as those secreted or shed from the cell surface are likely to reside and persist in blood, the two-stage strategy is focused on the quantification of tissue derived glycoproteins in plasma. The focus on the N-glycoproteome not only reduces the complexity of the analytes, but also targets an information-rich subproteome which is relevant for remote sensing of diseases in the plasma. The N-glycoprotein based biomarker discovery and validation workflow reviewed here allows for the robust identification of protein candidate panels that can finally be selectively monitored in the blood plasma at high sensitivity in a reliable, non-invasive and quantitative fashion.

  8. Reduced Brillouin backscatter in CO2 laser-target interaction

    NASA Astrophysics Data System (ADS)

    Ng, A.; Offenberger, A. A.; Karttunen, S. J.

    1981-02-01

    A substantially reduced Brillouin reflection has been found for CO2 laser-irradiated high-density gas targets. In contrast to the high reflectivity (60%) previously observed for underdense hydrogen plasma, total backscatter (stimulated plus specular) is found to peak at 30% for incident intensity 5 times 10 to the twelfth W per square centimeter and decrease thereafter to 18% at 10 to the thirteenth W per square centimeter. The ponderomotive effects are postulated to account for these observations.

  9. Clinical applications of targeted temperature management.

    PubMed

    Perman, Sarah M; Goyal, Munish; Neumar, Robert W; Topjian, Alexis A; Gaieski, David F

    2014-02-01

    Targeted temperature management (TTM) has been investigated experimentally and used clinically for over 100 years. The initial rationale for the clinical application of TTM, historically referred to as therapeutic hypothermia, was to decrease the metabolic rate, allowing the injured brain time to heal. Subsequent research demonstrated the temperature dependence of diverse cellular mechanisms including endothelial dysfunction, production of reactive oxygen species, and apoptosis. Consequently, modern use of TTM centers on neuroprotection following focal or global neurologic injury. Despite a solid basic science rationale for applying TTM in a variety of disease processes, including cardiac arrest, traumatic brain injury, ischemic stroke, neonatal ischemic encephalopathy, sepsis-induced encephalopathy, and hepatic encephalopathy, human efficacy data are limited and vary greatly from disease to disease. Ten years ago, two landmark investigations yielded high-quality data supporting the application of TTM in comatose survivors of out-of-hospital cardiac arrest. Additionally, TTM has been demonstrated to improve outcomes for neonatal patients with anoxic brain injury secondary to hypoxic ischemic encephalopathy. Trials are currently under way, or have yielded conflicting results in, examining the utility of TTM for the treatment of ischemic stroke, traumatic brain injury, and acute myocardial infarction. In this review, we place TTM in historic context, discuss the pathophysiologic rationale for its use, review the general concept of a TTM protocol for the management of brain injury, address some of the common side effects encountered when lowering human body temperature, and examine the data for its use in diverse disease conditions with in-depth examination of TTM for postarrest care and pediatric applications.

  10. Distributed Particle Filter for Target Tracking: With Reduced Sensor Communications

    PubMed Central

    Ghirmai, Tadesse

    2016-01-01

    For efficient and accurate estimation of the location of objects, a network of sensors can be used to detect and track targets in a distributed manner. In nonlinear and/or non-Gaussian dynamic models, distributed particle filtering methods are commonly applied to develop target tracking algorithms. An important consideration in developing a distributed particle filtering algorithm in wireless sensor networks is reducing the size of data exchanged among the sensors because of power and bandwidth constraints. In this paper, we propose a distributed particle filtering algorithm with the objective of reducing the overhead data that is communicated among the sensors. In our algorithm, the sensors exchange information to collaboratively compute the global likelihood function that encompasses the contribution of the measurements towards building the global posterior density of the unknown location parameters. Each sensor, using its own measurement, computes its local likelihood function and approximates it using a Gaussian function. The sensors then propagate only the mean and the covariance of their approximated likelihood functions to other sensors, reducing the communication overhead. The global likelihood function is computed collaboratively from the parameters of the local likelihood functions using an average consensus filter or a forward-backward propagation information exchange strategy. PMID:27618057

  11. Mining internal data to reduce clinical costs.

    PubMed

    Teffeteller, Scott L; Kish, Thomas M

    2012-12-01

    Hospitals and health systems should undertake the following steps in pinpointing areas for clinical cost reduction: Identify potential areas of opportunity through an analysis of top discharges. Use severity-adjusted data to review variability by case. Review length of stay and resource consumption at a high level. Examine granular charge data and practice patterns. Determine action steps for improvement.

  12. Reducing Risk with Clinical Decision Support

    PubMed Central

    Maloney, F.L.; Feblowitz, J.; Samal, L.; Sato, L.; Wright, A.

    2014-01-01

    Summary Objective Identify clinical opportunities to intervene to prevent a malpractice event and determine the proportion of malpractice claims potentially preventable by clinical decision support (CDS). Materials and Methods Cross-sectional review of closed malpractice claims over seven years from one malpractice insurance company and seven hospitals in the Boston area. For each event, clinical opportunities to intervene to avert the malpractice event and the presence or absence of CDS that might have a role in preventing the event, were assigned by a panel of expert raters. Compensation paid out to resolve a claim (indemnity), was associated with each CDS type. Results Of the 477 closed malpractice cases, 359 (75.3%) were categorized as substantiated and 195 (54%) had at least one opportunity to intervene. Common opportunities to intervene related to performance of procedure, diagnosis, and fall prevention. We identified at least one CDS type for 63% of substantiated claims. The 41 CDS types identified included clinically significant test result alerting, diagnostic decision support and electronic tracking of instruments. Cases with at least one associated intervention accounted for $40.3 million (58.9%) of indemnity. Discussion CDS systems and other forms of health information technology (HIT) are expected to improve quality of care, but their potential to mitigate risk had not previously been quantified. Our results suggest that, in addition to their known benefits for quality and safety, CDS systems within HIT have a potential role in decreasing malpractice payments. Conclusion More than half of malpractice events and over $40 million of indemnity were potentially preventable with CDS. PMID:25298814

  13. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status.

    PubMed

    van der Meel, Roy; Vehmeijer, Laurens J C; Kok, Robbert J; Storm, Gert; van Gaal, Ethlinn V B

    2013-10-01

    Since the introduction of Doxil® on the market nearly 20years ago, a number of nanomedicines have become part of treatment regimens in the clinic. With the exception of antibody-drug conjugates, these nanomedicines are all devoid of targeting ligands and rely solely on their physicochemical properties and the (patho)physiological processes in the body for their biodistribution and targeting capability. At the same time, many preclinical studies have reported on nanomedicines exposing targeting ligands, or ligand-targeted nanomedicines, yet none of these have been approved at this moment. In the present review, we provide a concise overview of 13 ligand-targeted particulate nanomedicines (ligand-targeted PNMs) that have progressed into clinical trials. The progress of each ligand-targeted PNM is discussed based on available (pre)clinical data. Main conclusions of these analyses are that (a) ligand-targeted PNMs have proven to be safe and efficacious in preclinical models; (b) the vast majority of ligand-targeted PNMs is generated for the treatment of cancer; (c) contribution of targeting ligands to the PNM efficacy is not unambiguously proven; and (d) targeting ligands do not cause localization of the PNM within the target tissue, but rather provide benefits in terms of target cell internalization and target tissue retention once the PNM has arrived at the target site. Increased understanding of the in vivo fate and interactions of the ligand-targeted PNMs with proteins and cells in the human body is mandatory to rationally advance the clinical translation of ligand-targeted PNMs. Future perspectives for ligand-targeted PNM approaches include the delivery of drugs that are unable or inefficient in passing cellular membranes, treatment of drug resistant tumors, targeting of the tumor blood supply, the generation of targeted vaccines and nanomedicines that are able to cross the blood-brain barrier.

  14. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis

    PubMed Central

    Mortensen, Martin B.; Kjolby, Mads; Gunnersen, Stine; Larsen, Jakob V.; Palmfeldt, Johan; Falk, Erling; Nykjaer, Anders; Bentzon, Jacob F.

    2014-01-01

    Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulatory role in lipoprotein metabolism. In a mouse model of atherosclerosis, deletion of Sort1 did not alter plasma cholesterol levels, but reduced the development of both early and late atherosclerotic lesions. We determined that sortilin is a high-affinity receptor for the proinflammatory cytokines IL-6 and IFN-γ. Moreover, macrophages and Th1 cells (both of which mediate atherosclerotic plaque formation) lacking sortilin had reduced secretion of IL-6 and IFN-γ, but not of other measured cytokines. Transfer of sortilin-deficient BM into irradiated atherosclerotic mice reduced atherosclerosis and systemic markers of inflammation. Together, these data demonstrate that sortilin influences cytokine secretion and that targeting sortilin in immune cells attenuates inflammation and reduces atherosclerosis. PMID:25401472

  15. Evolution of targeted therapies in cancer: opportunities and challenges in the clinic.

    PubMed

    Santhosh, Sam; Kumar, Prasanna; Ramprasad, Vedam; Chaudhuri, Amitabha

    2015-01-01

    Targeted therapies have changed the course of cancer treatment in recent years. By reducing toxicity and improving outcome, these new generations of precision medicines have extended patient lives beyond what could be achieved by the use of nontargeted therapies. In the last 2 years, several new molecular entities targeting signaling proteins and immune pathways have gone through successful clinical development resulting in their approval. These new targeted therapies require patient selection and the discovery of biomarkers of response. This review discusses the evolution of targeted therapies in cancer and challenges in translating the concepts into clinical practice.

  16. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer.

    PubMed

    Yan, Li-Xu; Liu, Yan-Hui; Xiang, Jian-Wen; Wu, Qi-Nian; Xu, Lei-Bo; Luo, Xin-Lan; Zhu, Xiao-Lan; Liu, Chao; Xu, Fang-Ping; Luo, Dong-Lan; Mei, Ping; Xu, Jie; Zhang, Ke-Ping; Chen, Jie

    2016-02-01

    We have previously shown that dysregulation of miR-21 functioned as an oncomiR in breast cancer. The aim of the present study was to elucidate the mechanisms by which miR-21 regulate breast tumor migration and invasion. We applied pathway analysis on genome microarray data and target-predicting algorithms for miR-21 target screening, and used luciferase reporting assay to confirm the direct target. Thereafter, we investigated the function of the target gene phosphoinositide-3-kinase, regulatory subunit 1 (α) (PIK3R1), and detected PIK3R1 coding protein (p85α) by immunohistochemistry and miR-21 by RT-qPCR on 320 archival paraffin-embedded tissues of breast cancer to evaluate the correlation of their expression with prognosis. First, we found that PIK3R1 suppressed growth, invasiveness, and metastatic properties of breast cancer cells. Next, we identified the PIK3R1 as a direct target of miR-21 and showed that it was negatively regulated by miR-21. Furthermore, we demonstrated that p85α overexpression phenocopied the suppression effects of antimiR-21 on breast cancer cell growth, migration and invasion, indicating its tumor suppressor role in breast cancer. On the contrary, PIK3R1 knockdown abrogated antimiR‑21-induced effect on breast cancer cells. Notably, antimiR-21 induction increased p85α, accompanied by decreased p-AKT level. Besides, antimiR-21/PIK3R1-induced suppression of invasiveness in breast cancer cells was mediated by reversing epithelial-mesenchymal transition (EMT). p85α downregulation was found in 25 (7.8%) of the 320 breast cancer patients, and was associated with inferior 5-year disease-free survival (DFS) and overall survival (OS). Taken together, we provide novel evidence that miR-21 knockdown suppresses cell growth, migration and invasion partly by inhibiting PI3K/AKT activation via direct targeting PIK3R1 and reversing EMT in breast cancer. p85α downregulation defined a specific subgroup of breast cancer with shorter 5-year DFS and OS

  17. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    SciTech Connect

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  18. Clinical science workshop: targeting the gut-liver-brain axis.

    PubMed

    Patel, Vishal C; White, Helen; Støy, Sidsel; Bajaj, Jasmohan S; Shawcross, Debbie L

    2016-12-01

    A clinical science workshop was held at the ISHEN meeting in London on Friday 11th September 2014 with the aim of thrashing out how we might translate what we know about the central role of the gut-liver-brain axis into targets which we can use in the treatment of hepatic encephalopathy (HE). This review summarises the integral role that inter-organ ammonia metabolism plays in the pathogenesis of HE with specific discussion of the roles that the small and large intestine, liver, brain, kidney and muscle assume in ammonia and glutamine metabolism. Most recently, the salivary and gut microbiome have been shown to underpin the pathophysiological changes which culminate in HE and patients with advanced cirrhosis present with enteric dysbiosis with small bowel bacterial overgrowth and translocation of bacteria and their products across a leaky gut epithelial barrier. Resident macrophages within the liver are able to sense bacterial degradation products initiating a pro-inflammatory response within the hepatic parenchyma and release of cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-8 into the systemic circulation. The endotoxemia and systemic inflammatory response that are generated predispose both to the development of infection as well as the manifestation of covert and overt HE. Co-morbidities such as diabetes and insulin resistance, which commonly accompany cirrhosis, may promote slow gut transit, promote bacterial overgrowth and increase glutaminase activity and may need to be acknowledged in HE risk stratification assessments and therapeutic regimens. Therapies are discussed which target ammonia production, utilisation or excretion at an individual organ level, or which reduce systemic inflammation and endotoxemia which are known to exacerbate the cerebral effects of ammonia in HE. The ideal therapeutic strategy would be to use an agent that can reduce hyperammonemia and reduce systemic inflammation or perhaps to adopt a combination of

  19. Strategies and Challenges in Clinical Trials Targeting Human Aging

    PubMed Central

    Newman, John C.; Milman, Sofiya; Hashmi, Shahrukh K.; Austad, Steve N.; Kirkland, James L.; Halter, Jeffrey B.

    2016-01-01

    Interventions that target fundamental aging processes have the potential to transform human health and health care. A variety of candidate drugs have emerged from basic and translational research that may target aging processes. Some of these drugs are already in clinical use for other purposes, such as metformin and rapamycin. However, designing clinical trials to test interventions that target the aging process poses a unique set of challenges. This paper summarizes the outcomes of an international meeting co-ordinated by the NIH-funded Geroscience Network to further the goal of developing a translational pipeline to move candidate compounds through clinical trials and ultimately into use. We review the evidence that some drugs already in clinical use may target fundamental aging processes. We discuss the design principles of clinical trials to test such interventions in humans, including study populations, interventions, and outcomes. As examples, we offer several scenarios for potential clinical trials centered on the concepts of health span (delayed multimorbidity and functional decline) and resilience (response to or recovery from an acute health stress). Finally, we describe how this discussion helped inform the design of the proposed Targeting Aging with Metformin study. PMID:27535968

  20. Target Context Specification Can Reduce Costs in Nonfocal Prospective Memory

    ERIC Educational Resources Information Center

    Lourenço, Joana S.; White, Katherine; Maylor, Elizabeth A.

    2013-01-01

    Performing a nonfocal prospective memory (PM) task results in a cost to ongoing task processing, but the precise nature of the monitoring processes involved remains unclear. We investigated whether target context specification (i.e., explicitly associating the PM target with a subset of ongoing stimuli) can trigger trial-by-trial changes in task…

  1. Enhancing outpatient clinics management software by reducing patients' waiting time.

    PubMed

    Almomani, Iman; AlSarheed, Ahlam

    The Kingdom of Saudi Arabia (KSA) gives great attention to improving the quality of services provided by health care sectors including outpatient clinics. One of the main drawbacks in outpatient clinics is long waiting time for patients-which affects the level of patient satisfaction and the quality of services. This article addresses this problem by studying the Outpatient Management Software (OMS) and proposing solutions to reduce waiting times. Many hospitals around the world apply solutions to overcome the problem of long waiting times in outpatient clinics such as hospitals in the USA, China, Sri Lanka, and Taiwan. These clinics have succeeded in reducing wait times by 15%, 78%, 60% and 50%, respectively. Such solutions depend mainly on adding more human resources or changing some business or management policies. The solutions presented in this article reduce waiting times by enhancing the software used to manage outpatient clinics services. Both quantitative and qualitative methods have been used to understand current OMS and examine level of patient's satisfaction. Five main problems that may cause high or unmeasured waiting time have been identified: appointment type, ticket numbering, doctor late arrival, early arriving patient and patients' distribution list. These problems have been mapped to the corresponding OMS components. Solutions to the above problems have been introduced and evaluated analytically or by simulation experiments. Evaluation of the results shows a reduction in patient waiting time. When late doctor arrival issues are solved, this can reduce the clinic service time by up to 20%. However, solutions for early arriving patients reduces 53.3% of vital time, 20% of the clinic time and overall 30.3% of the total waiting time. Finally, well patient-distribution lists make improvements by 54.2%. Improvements introduced to the patients' waiting time will consequently affect patients' satisfaction and improve the quality of health care services.

  2. Identification of clinical target areas in the brainstem of prion‐infected mice

    PubMed Central

    Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian

    2015-01-01

    Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251

  3. Targeting dormant micrometastases: rationale, evidence to date and clinical implications.

    PubMed

    Hurst, Robert E; Bastian, Anja; Bailey-Downs, Lora; Ihnat, Michael A

    2016-03-01

    In spite of decades of research, cancer survival has increased only modestly. This is because most research is based on models of primary tumors. Slow recognition has begun that disseminated, dormant cancer cells (micrometastatic cells) that are generally resistant to chemotherapy are the culprits in recurrence, and until these are targeted effectively we can expect only slow progress in increasing overall survival from cancer. This paper reviews efforts to understand the mechanisms by which cancer cells can become dormant, and thereby identify potential targets and drugs either on the market or in clinical trials that purport to prevent metastasis. This review targets the most recent literature because several excellent reviews have covered the literature from more than two years ago. The paper also describes recent work in the authors' laboratories to develop a screening-based approach that does not require understanding of mechanisms of action or the molecular target. Success of this approach shows that targeting micrometastatic cells is definitely feasible.

  4. Reduced OSM for Long Duration Targets: Individuation or Items Loaded into VSTM?

    ERIC Educational Resources Information Center

    Guest, Duncan; Gellatly, Angus; Pilling, Michael

    2012-01-01

    Typical studies of object substitution masking (OSM) employ a briefly presented search array. The target item is indicated by a cue/mask that surrounds but does not overlap the target and, compared to a common offset control condition, report of the target is reduced when the mask remains present after target offset. Given how little observers are…

  5. Clinical Trials Methods for Evaluation of Potential Reduced Exposure Products

    PubMed Central

    Hatsukami, Dorothy K.; Hanson, Karen; Briggs, Anna; Parascandola, Mark; Genkinger, Jeanine M.; O'Connor, Richard; Shields, Peter

    2009-01-01

    Potential reduced exposure tobacco products (PREPs) may have promise in reducing tobacco-related morbidity or mortality or may promote greater harm to individuals or the population. Critical to determining the risks or benefits from these products are valid human clinical trial PREP assessment methods. Assessment involves determining the effects of these products on biomarkers of exposure and of effect, which serve as proxies for harm, and assessing the potential for consumer uptake and abuse of the product. This article raises the critical methodological issues associated with PREP assessment, reviews the methods that have been used to assess PREPs, and describes the strengths and limitations of these methods. Additionally, recommendations for clinical trials PREP assessment methods and future research directions in this area based on this review and on the deliberations from a National Cancer Institute sponsored Clinical Trials PREP Methods Workshop are provided. PMID:19959672

  6. [Clinical to planning target volume margins in prostate cancer radiotherapy].

    PubMed

    Ramiandrisoa, F; Duvergé, L; Castelli, J; Nguyen, T D; Servagi-Vernat, S; de Crevoisier, R

    2016-10-01

    The knowledge of inter- and intrafraction motion and deformations of the intrapelvic target volumes (prostate, seminal vesicles, prostatectomy bed and lymph nodes) as well as the main organs at risk (bladder and rectum) allow to define rational clinical to planning target volume margins, depending on the different radiotherapy techniques and their uncertainties. In case of image-guided radiotherapy, prostate margins and seminal vesicles margins can be between 5 and 10mm. The margins around the prostatectomy bed vary from 10 to 15mm and those around the lymph node clinical target volume between 7 and 10mm. Stereotactic body radiotherapy allows lower margins, which are 3 to 5mm around the prostate. Image-guided and stereotactic body radiotherapy with adequate margins allow finally moderate or extreme hypofractionation.

  7. Targeting cancer epigenetics: Linking basic biology to clinical medicine.

    PubMed

    Shinjo, Keiko; Kondo, Yutaka

    2015-12-01

    Recent studies provide compelling evidence that epigenetic dysregulation is involved in almost every step of tumor development and progression. Differences in tumor behavior, which ultimately reflects clinical outcome, can be explained by variations in gene expression patterns generated by epigenetic mechanisms, such as DNA methylation. Therefore, epigenetic abnormalities are considered potential biomarkers and therapeutic targets. DNA methylation is stable at certain specific loci in cancer cells and predominantly reflects the characteristic clinicopathological features. Thus, it is an ideal biomarker for cancer screening, classification and prognostic purposes. Epigenetic treatment for cancers is based on the pharmacologic targeting of various core transcriptional programs that sustains cancer cell identity. Therefore, targeting aberrant epigenetic modifiers may be effective for multiple processes compared with using a selective inhibitor of aberrant single signaling pathway. This review provides an overview of the epigenetic alterations in human cancers and discusses about novel therapeutic strategies targeting epigenetic alterations.

  8. Reducing methylglyoxal as a therapeutic target for diabetic heart disease.

    PubMed

    Vulesevic, Branka; Milne, Ross W; Suuronen, Erik J

    2014-04-01

    Diabetes is a well-known risk factor for the development of cardiovascular diseases. Diabetes affects cardiac tissue through several different, yet interconnected, pathways. Damage to endothelial cells from direct exposure to high blood glucose is a primary cause of deregulated heart function. Toxic by-products of non-enzymatic glycolysis, mainly methylglyoxal, have been shown to contribute to the endothelial cell damage. Methylglyoxal is a precursor for advanced glycation end-products, and, although it is detoxified by the glyoxalase system, this protection mechanism fails in diabetes. Recent work has identified methylglyoxal as a therapeutic target for the prevention of cardiovascular complications in diabetes. A better understanding of the glyoxalase system and the effects of methylglyoxal may lead to more advanced strategies for treating cardiovascular complications associated with diabetes.

  9. Clinical Advancements in the Targeted Therapies against Liver Fibrosis

    PubMed Central

    Nagórniewicz, Beata; Prakash, Jai

    2016-01-01

    Hepatic fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins leading to liver dysfunction, is a growing cause of mortality worldwide. Hepatocellular damage owing to liver injury leads to the release of profibrotic factors from infiltrating inflammatory cells that results in the activation of hepatic stellate cells (HSCs). Upon activation, HSCs undergo characteristic morphological and functional changes and are transformed into proliferative and contractile ECM-producing myofibroblasts. Over recent years, a number of therapeutic strategies have been developed to inhibit hepatocyte apoptosis, inflammatory responses, and HSCs proliferation and activation. Preclinical studies have yielded numerous targets for the development of antifibrotic therapies, some of which have entered clinical trials and showed improved therapeutic efficacy and desirable safety profiles. Furthermore, advancements have been made in the development of noninvasive markers and techniques for the accurate disease assessment and therapy responses. Here, we focus on the clinical developments attained in the field of targeted antifibrotics for the treatment of liver fibrosis, for example, small molecule drugs, antibodies, and targeted drug conjugate. We further briefly highlight different noninvasive diagnostic technologies and will provide an overview about different therapeutic targets, clinical trials, endpoints, and translational efforts that have been made to halt or reverse the progression of liver fibrosis. PMID:27999454

  10. Recent advances in targeted proteomics for clinical applications.

    PubMed

    Domon, Bruno; Gallien, Sebastien

    2015-04-01

    MS-based approaches using targeted methods have been widely adopted by the proteomics community to study clinical questions such as the evaluation of biomarkers. At present, the most widely used targeted MS method is the SRM technique typically performed on a triple quadrupole instrument. However, the high analytical demands for performing clinical studies in combination with the extreme complexity of the samples involved are a serious challenge. The segmentation of the biomarker evaluation workflow has only partially alleviated these issues by differently balancing the analytical requirements and throughput at different stages of the process. The recent introduction of targeted high-resolution and accurate-mass analyses on fast sequencing mass spectrometers operated in parallel reaction monitoring (PRM) mode offers new avenues to conduct clinical studies and thus overcome some of the limitations of the triple quadrupole instrument. This article discusses the attributes and specificities of the PRM technique, in terms of experimental design, execution, and data analysis, and the implications for biomarker evaluation. The benefits of PRM on data quality and the impact on the consistency of results are highlighted and the definitive progress on the overall output of clinical studies, including high throughput, is discussed.

  11. [Radiotherapy for cervix carcinomas: clinical target volume delineation].

    PubMed

    Gnep, K; Mazeron, R

    2013-10-01

    Concurrent chemoradiation followed by brachytherapy is currently the standard treatment for locally advanced cervix carcinomas. Modern radiation techniques require planning based on 3D images, and therefore an accurate delineation of target volumes. The clinical target volume (CTV) used for the different phases of treatment are now well defined, but are not always easy to delineate on a CT scan which is currently the standard examination for simulation in radiotherapy. MRI and PET-CT are routinely performed at diagnosis, and can be used to improve the accuracy of the delineation. The objective of this review is to describe the definitions and recommendations of CTV in the treatment of cervical cancer.

  12. Reducing youth exposure to alcohol ads: targeting public transit.

    PubMed

    Simon, Michele

    2008-07-01

    Underage drinking is a major public health problem. Youth drink more heavily than adults and are more vulnerable to the adverse effects of alcohol. Previous research has demonstrated the connection between alcohol advertising and underage drinking. Restricting outdoor advertising in general and transit ads in particular, represents an important opportunity to reduce youth exposure. To address this problem, the Marin Institute, an alcohol industry watchdog group in Northern California, conducted a survey of alcohol ads on San Francisco bus shelters. The survey received sufficient media attention to lead the billboard company, CBS Outdoor, into taking down the ads. Marin Institute also surveyed the 25 largest transit agencies; results showed that 75 percent of responding agencies currently have policies that ban alcohol advertising. However, as the experience in San Francisco demonstrated, having a policy on paper does not necessarily mean it is being followed. Communities must be diligent in holding accountable government officials, the alcohol industry, and the media companies through which advertising occurs.

  13. Clinical Application of Targeted Next Generation Sequencing for Colorectal Cancers

    PubMed Central

    Fontanges, Quitterie; De Mendonca, Ricardo; Salmon, Isabelle; Le Mercier, Marie; D’Haene, Nicky

    2016-01-01

    Promising targeted therapy and personalized medicine are making molecular profiling of tumours a priority. For colorectal cancer (CRC) patients, international guidelines made RAS (KRAS and NRAS) status a prerequisite for the use of anti-epidermal growth factor receptor agents (anti-EGFR). Daily, new data emerge on the theranostic and prognostic role of molecular biomarkers, which is a strong incentive for a validated, sensitive and broadly available molecular screening test in order to implement and improve multi-modal therapy strategy and clinical trials. Next generation sequencing (NGS) has begun to supplant other technologies for genomic profiling. Targeted NGS is a method that allows parallel sequencing of thousands of short DNA sequences in a single test offering a cost-effective approach for detecting multiple genetic alterations with a minimum amount of DNA. In the present review, we collected data concerning the clinical application of NGS technology in the setting of colorectal cancer. PMID:27999270

  14. Reducing Youth Exposure to Alcohol Ads: Targeting Public Transit

    PubMed Central

    2008-01-01

    Underage drinking is a major public health problem. Youth drink more heavily than adults and are more vulnerable to the adverse effects of alcohol. Previous research has demonstrated the connection between alcohol advertising and underage drinking. Restricting outdoor advertising in general and transit ads in particular, represents an important opportunity to reduce youth exposure. To address this problem, the Marin Institute, an alcohol industry watchdog group in Northern California, conducted a survey of alcohol ads on San Francisco bus shelters. The survey received sufficient media attention to lead the billboard company, CBS Outdoor, into taking down the ads. Marin Institute also surveyed the 25 largest transit agencies; results showed that 75 percent of responding agencies currently have policies that ban alcohol advertising. However, as the experience in San Francisco demonstrated, having a policy on paper does not necessarily mean it is being followed. Communities must be diligent in holding accountable government officials, the alcohol industry, and the media companies through which advertising occurs. PMID:18389374

  15. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    PubMed

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma.

  16. Target biomarker profile for the clinical management of paracetamol overdose.

    PubMed

    Vliegenthart, A D Bastiaan; Antoine, Daniel J; Dear, James W

    2015-09-01

    Paracetamol (acetaminophen) overdose is one of the most common causes of acute liver injury in the Western world. To improve patient care and reduce pressure on already stretched health care providers new biomarkers are needed that identify or exclude liver injury soon after an overdose of paracetamol is ingested. This review highlights the current state of paracetamol poisoning management and how novel biomarkers could improve patient care and save healthcare providers money. Based on the widely used concept of defining a target product profile, a target biomarker profile is proposed that identifies desirable and acceptable key properties for a biomarker in development to enable the improved treatment of this patient population. The current biomarker candidates, with improved hepatic specificity and based on the fundamental mechanistic basis of paracetamol-induced liver injury, are reviewed and their performance compared with our target profile.

  17. Targeting Neuroendocrine Prostate Cancer: Molecular and Clinical Perspectives

    PubMed Central

    Vlachostergios, Panagiotis J.; Papandreou, Christos N.

    2015-01-01

    Neuroendocrine prostate carcinoma, either co-present with the local adenocarcinoma disease or as a result of transdifferentiation later in time, was described as one major process of emerging resistance to androgen deprivation therapies, and at the clinical level it is consistent with the development of rapidly progressive visceral disease, often in the absence of elevated serum prostate-specific antigen level. Until present, platinum-based chemotherapy has been the only treatment modality, able to produce a fair amount of responses but of short duration. Recently, several efforts for molecular characterization of this lethal phenotype have resulted in identification of novel signaling factors involved in microenvironment interactions, mitosis, and neural reprograming as potential therapeutic targets. Ongoing clinical testing of specific inhibitors of these targets, for example, Aurora kinase A inhibitors, in carefully selected patients and exploitation of expression changes of the target before and after manipulation is anticipated to increase the existing data and facilitate therapeutic decision making at this late stage of the disease when hormonal manipulations, even with the newest androgen-directed therapies are no longer feasible. PMID:25699233

  18. Interobserver Variation of Clinical Target Volume Delineation in Gastric Cancer

    SciTech Connect

    Jansen, Edwin; Verheij, Marcel

    2010-07-15

    Purpose: To evaluate interobserver variability in clinical target volume (CTV) delineation in gastric cancer performed with the help of a delineation guide. Patients and Methods: Ten radiotherapy centers that participate in the CRITICS Phase III trial were provided with a delineation atlas, preoperative CT scans, a postoperative planning CT scan, and clinical information for a gastric cancer case and were asked to construct a CTV and create a dosimetric plan according to departmental policy. Results: The volumes of the CTVs and planning target volumes (PTVs) differed greatly, with a mean (SD) CTV volume of 392 (176) cm{sup 3} (range, 240-821cm{sup 3}) and PTV volume of 915 (312) cm{sup 3} (range, 634-1677cm{sup 3}). The overlapping volume was 376cm{sup 3} for the CTV and 890cm{sup 3} for the PTV. The greatest differences in the CTV were seen at the cranial and caudal parts. After planning, dose coverage of the overlapping PTV volume showed less variability than the CTV. Conclusion: In this series of 10 plans, variability of the CTV in postoperative chemoradiotherapy for gastric cancer is large. Strict and clear delineation guidelines should be provided, especially in Phase III multicenter studies. Adaptations of these guidelines should be evaluated in clinical studies.

  19. [Regional clinical audit, guideline targets, and local and regional benchmarks].

    PubMed

    Casino, F G; Lopez, T

    2005-01-01

    Regional clinical Audit, guideline Targets and local and regional Benchmarks In order to improve the quality of dialysis treatment, we have devised some routines, particularly suitable for electronic data management systems. First, we suggest a systematic monthly analysis of 10 common clinical performance measures (CPM), with the following guideline based targets: predialysis systolic blood pressure (SBP) < 140 mmHg; session length >/= 240 min; dialysis dose (spKt/V) >/=1.3; normalized protein catabolic rate (NPCR) >/=1.2 g/kg/d; hemoglobin (Hb) >/=11 g/dL; serum calcium (Ca) 8.4-9.5 mg/dL; serum phosphorus (P) 3.5-5.5 mg/dL; Ca x P /=20 mmol/L; serum potassium (K) 3.5-6.0 mmol/L. The Hb target should be reached in at least 85% of all maintenance hemodialysis (HD) patients in the unit; for all other targets, an arbitrary >/=80% is proposed. Since the above percentages are quite difficult to reach on a short-term basis, an intermediate local or regional standard (benchmark) could be devised as an average of the percentage of patients who actually reach the targets for each CPM at any dialysis unit in a given regional area; and therefore, from truly comparable patients. As an example, we simulated a regional audit by using the above targets with available data from 398 patients from southern Italy. A further step in this process was to find the cause(s) of failure in each patient who did not reach the targets. To this end, we suggest a systematic search of the well-known factors that could affect each CPM, for each failed patient. As an example, we screened all patients with Hb < 11 g/dL at a single unit, to establish the presence/absence of any common cause associated with inadequate response to epoetin treatment. Moreover, by using criteria for prescribing iron therapy or increasing epoetin dose, we found that some patients did not receive the appropriate therapy after blood sampling results. To avoid this possible

  20. Targeted Intraceptor Nanoparticle Therapy Reduces Angiogenesis and Fibrosis in Primate & Murine Macular Degeneration

    PubMed Central

    Luo, Ling; Zhang, Xiaohui; Hirano, Yoshio; Tyagi, Puneet; Barabás, Péter; Uehara, Hironori; Miya, Tadashi R.; Singh, Nirbhai; Archer, Bonnie; Qazi, Yureeda; Jackman, Kyle; Das, Subrata K.; Olsen, Thomas; Chennamaneni, Srinivas R.; Stagg, Brian C.; Ahmed, Faisal; Emerson, Lyska; Zygmunt, Kristen; Whitaker, Ross; Mamalis, Christina; Huang, Wei; Gao, Guangping; Srinivas, Sangly P.; Krizaj, David; Baffi, Judit; Ambati, Jayakrishna; Kompella, Uday B.; Ambati, Balamurali K.

    2013-01-01

    Monthly intraocular injections are widely used to deliver protein-based drugs that cannot cross the blood-retina barrier for the treatment of leading blinding diseases such as age-related macular degeneration (AMD). This invasive treatment carries significant risks, including bleeding, pain, infection, and retinal detachment. Further, current therapies are associated with a rate of retinal fibrosis and geographic atrophy significantly higher than that which occurs in the described natural history of AMD. A novel therapeutic strategy which improves outcomes in a less invasive manner, reduces risk, and provides long-term inhibition of angiogenesis and fibrosis is a felt medical need. Here we show that a single intravenous injection of targeted, biodegradable nanoparticles delivering a recombinant Flt23k intraceptor plasmid homes to neovascular lesions in the retina and regresses CNV in primate and murine AMD models. Moreover, this treatment suppressed subretinal fibrosis, which is currently not addressed by clinical therapies. Murine vision, as tested by OptoMotry©, significantly improved with nearly 40% restoration of visual loss induced by CNV. We found no evidence of ocular or systemic toxicity from nanoparticle treatment. These findings offer a nanoparticle-based platform for targeted, vitreous-sparing, extended-release, nonviral gene therapy. PMID:23464925

  1. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration.

    PubMed

    Luo, Ling; Zhang, Xiaohui; Hirano, Yoshio; Tyagi, Puneet; Barabás, Péter; Uehara, Hironori; Miya, Tadashi R; Singh, Nirbhai; Archer, Bonnie; Qazi, Yureeda; Jackman, Kyle; Das, Subrata K; Olsen, Thomas; Chennamaneni, Srinivas R; Stagg, Brian C; Ahmed, Faisal; Emerson, Lyska; Zygmunt, Kristen; Whitaker, Ross; Mamalis, Christina; Huang, Wei; Gao, Guangping; Srinivas, Sangly P; Krizaj, David; Baffi, Judit; Ambati, Jayakrishna; Kompella, Uday B; Ambati, Balamurali K

    2013-04-23

    Monthly intraocular injections are widely used to deliver protein-based drugs that cannot cross the blood-retina barrier for the treatment of leading blinding diseases such as age-related macular degeneration (AMD). This invasive treatment carries significant risks, including bleeding, pain, infection, and retinal detachment. Further, current therapies are associated with a rate of retinal fibrosis and geographic atrophy significantly higher than that which occurs in the described natural history of AMD. A novel therapeutic strategy which improves outcomes in a less invasive manner, reduces risk, and provides long-term inhibition of angiogenesis and fibrosis is a felt medical need. Here we show that a single intravenous injection of targeted, biodegradable nanoparticles delivering a recombinant Flt23k intraceptor plasmid homes to neovascular lesions in the retina and regresses CNV in primate and murine AMD models. Moreover, this treatment suppressed subretinal fibrosis, which is currently not addressed by clinical therapies. Murine vision, as tested by OptoMotry, significantly improved with nearly 40% restoration of visual loss induced by CNV. We found no evidence of ocular or systemic toxicity from nanoparticle treatment. These findings offer a nanoparticle-based platform for targeted, vitreous-sparing, extended-release, nonviral gene therapy.

  2. Clinical Implementation of Novel Targeted Therapeutics in Advanced Breast Cancer.

    PubMed

    Chamberlin, Mary D; Bernhardt, Erica B; Miller, Todd W

    2016-11-01

    The majority of advanced breast cancers have genetic alterations that are potentially targetable with drugs. Through initiatives such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), data can be mined to provide context for next-generation sequencing (NGS) results in the landscape of advanced breast cancer. Therapies for targets other than estrogen receptor alpha (ER) and HER2, such as cyclin-dependent kinases CDK4 and CDK6, were recently approved based on efficacy in patient subpopulations, but no predictive biomarkers have been found, leaving clinicians to continue a trial-and-error approach with each patient. Next-generation sequencing identifies potentially actionable alterations in genes thought to be drivers in the cancerous process including phosphatidylinositol 3-kinase (PI3K), AKT, fibroblast growth factor receptors (FGFRs), and mutant HER2. Epigenetically directed and immunologic therapies have also shown promise for the treatment of breast cancer via histone deacetylases (HDAC) 1 and 3, programmed T cell death 1 (PD-1), and programmed T cell death ligand 1 (PD-L1). Identifying biomarkers to predict primary resistance in breast cancer will ultimately affect clinical decisions regarding adjuvant therapy in the first-line setting. However, the bulk of medical decision-making is currently made in the secondary resistance setting. Herein, we review the clinical potential of PI3K, AKT, FGFRs, mutant HER2, HDAC1/3, PD-1, and PD-L1 as therapeutic targets in breast cancer, focusing on the rationale for therapeutic development and the status of clinical testing. J. Cell. Biochem. 117: 2454-2463, 2016. © 2016 Wiley Periodicals, Inc.

  3. Targeting annexin A2 reduces tumorigenesis and therapeutic resistance of nasopharyngeal carcinoma

    PubMed Central

    Chao, Pin-Zhir; Chiou, Jeng-Fong; Kuo, Chia-Chun; Lee, Fei-Peng; Lin, Yung-Feng; Sung, Yu-Hsuan; Lin, Yun-Tien; Li, Chang-Fan

    2015-01-01

    The expression of annexin A2 (ANXA2) in nasopharyngeal carcinoma (NPC) cells induces the immunosuppressive response in dendritic cells; however, the oncogenic effect and clinical significance of ANXA2 have not been fully investigated in NPC cells. Immunohistochemical staining for ANXA2 was performed in 61 patients and the association with clinicopathological status was determined. Short hairpin (sh)RNA knockdown of ANXA2 was used to examine cellular effects of ANXA2, by investigating alterations in cell proliferation, migration, invasion, adhesion, tube-formation assay, and chemo- and radiosensitivity assays were performed. RT-qPCR, Western blotting, and immunofluorescence were applied to determine molecular expression levels. Clinical association studies showed that the expression of ANXA2 was significantly correlated with metastasis (p = 0.0326) and poor survival (p = 0.0256). Silencing of ANXA2 suppressed the abilities of cell proliferation, adhesion, migration, invasion, and vascular formation in NPC cell. ANXA2 up-regulated epithelial-mesenchymal transition associated signal proteins. Moreover, ANXA2 reduced sensitivities to irradiation and chemotherapeutic drugs. These results define ANXA2 as a novel prognostic factor for malignant processes, and it can serve as a molecular target of therapeutic interventions for NPC. PMID:26196246

  4. Reduced Treatment-Emergent Sexual Dysfunction as a Potential Target in the Development of New Antidepressants

    PubMed Central

    Baldwin, David S.; Palazzo, M. Carlotta; Masdrakis, Vasilios G.

    2013-01-01

    Pleasurable sexual activity is an essential component of many human relationships, providing a sense of physical, psychological, and social well-being. Epidemiological and clinical studies show that depressive symptoms and depressive illness are associated with impairments in sexual function and satisfaction, both in untreated and treated patients. The findings of randomized placebo-controlled trials demonstrate that most of the currently available antidepressant drugs are associated with the development or worsening of sexual dysfunction, in a substantial proportion of patients. Sexual difficulties during antidepressant treatment often resolve as depression lifts but can endure over long periods and may reduce self-esteem and affect mood and relationships adversely. Sexual dysfunction during antidepressant treatment is typically associated with many possible causes, but the risk and type of dysfunction vary with differing compounds and should be considered when making decisions about the relative merits and drawbacks of differing antidepressants. A range of interventions can be considered when managing patients with sexual dysfunction associated with antidepressants, including the prescription of phosphodiesterase-5 inhibitors, but none of these approaches can be considered “ideal.” As treatment-emergent sexual dysfunction is less frequent with certain drugs, presumably related to differences in their pharmacological properties, and because current management approaches are less than ideal, a reduced burden of treatment-emergent sexual dysfunction represents a tolerability target in the development of novel antidepressants. PMID:23431429

  5. Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations

    PubMed Central

    Rider, Peleg; Carmi, Yaron

    2016-01-01

    Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra) and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically. PMID:28083070

  6. Multimodality molecular imaging--from target description to clinical studies.

    PubMed

    Schober, O; Rahbar, K; Riemann, B

    2009-02-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations.

  7. Biological targets for therapeutic interventions in COPD: clinical potential

    PubMed Central

    Pelaia, Girolamo; Vatrella, Alessandro; Gallelli, Luca; Renda, Teresa; Caputi, Mario; Maselli, Rosario; Marsico, Serafino A

    2006-01-01

    COPD is a widespread inflammatory respiratory disorder characterized by a progressive, poorly reversible airflow limitation. Currently available therapies are mostly based on those used to treat asthma. However, such compounds are not able to effectively reduce the gradual functional deterioration, as well as the ongoing airway and lung inflammation occurring in COPD patients. Therefore, there is an urgent need to improve the efficacy of the existing drug classes and to develop new treatments, targeting the main cellular and molecular mechanisms underlying disease pathogenesis. These therapeutic strategies will be highlighted in the present review. PMID:18046869

  8. Clinical actionability enhanced through deep targeted sequencing of solid tumors

    PubMed Central

    Chen, Ken; Meric-Bernstam, Funda; Zhao, Hao; Zhang, Qingxiu; Ezzeddine, Nader; Tang, Lin-ya; Qi, Yuan; Mao, Yong; Chen, Tenghui; Chong, Zechen; Zhou, Wanding; Zheng, Xiaofeng; Johnson, Amber; Aldape, Kenneth D.; Routbort, Mark J.; Luthra, Rajyalakshmi; Kopetz, Scott; Davies, Michael A.; de Groot, John; Moulder, Stacy; Vinod, Ravi; Farhangfar, Carol J.; Shaw, Kenna Mills; Mendelsohn, John; Mills, Gordon B.; Eterovic, Agda Karina

    2015-01-01

    Background Further advances of targeted cancer therapy require comprehensive in-depth profiling of somatic mutations that are present in subpopulations of tumor cells in a clinical tumor sample. However, it is unclear to what extent such intra-tumor heterogeneity is present and whether it may affect clinical decision making. To unravel this challenge, we established a deep targeted sequencing platform to identify potentially actionable DNA alterations in tumor samples. Methods We assayed 515 FFPE tumor samples and matched germline (475 patients) from 11 disease sites by capturing and sequencing all the exons in 201 cancer related genes. Mutations, indels and copy number data were reported. Results We obtained a 1000-fold average sequencing depth and identified 4794 non-synonymous mutations in the samples analyzed, which 15.2% were present at less than 10% allele frequency. Most of these low level mutations occurred at known oncogenic hotspots and are likely functional. Identifying low level mutations improved identification of mutations in actionable genes in 118 (24.84%) patients, among which 47 (9.8%) would otherwise be unactionable. In addition, acquiring ultra-high depth also ensured a low false discovery rate (less than 2.2%) from FFPE samples. Conclusion Our results were as accurate as a commercially available CLIA-compliant hotspot panel, but allowed the detection of a higher number of mutations in actionable genes. Our study revealed the critical importance of acquiring and utilizing high depth in profiling clinical tumor samples and presented a very useful platform for implementing routine sequencing in a cancer care institution. PMID:25626406

  9. Targeting Opioid-Induced Hyperalgesia in Clinical Treatment: Neurobiological Considerations.

    PubMed

    Arout, Caroline A; Edens, Ellen; Petrakis, Ismene L; Sofuoglu, Mehmet

    2015-06-01

    Opioid analgesics have become a cornerstone in the treatment of moderate to severe pain, resulting in a steady rise of opioid prescriptions. Subsequently, there has been a striking increase in the number of opioid-dependent individuals, opioid-related overdoses, and fatalities. Clinical use of opioids is further complicated by an increasingly deleterious profile of side effects beyond addiction, including tolerance and opioid-induced hyperalgesia (OIH), where OIH is defined as an increased sensitivity to already painful stimuli. This paradoxical state of increased nociception results from acute and long-term exposure to opioids, and appears to develop in a substantial subset of patients using opioids. Recently, there has been considerable interest in developing an efficacious treatment regimen for acute and chronic pain. However, there are currently no well-established treatments for OIH. Several substrates have emerged as potential modulators of OIH, including the N-methyl-D-aspartate and γ-aminobutyric acid receptors, and most notably, the innate neuroimmune system. This review summarizes the neurobiology of OIH in the context of clinical treatment; specifically, we review evidence for several pathways that show promise for the treatment of pain going forward, as prospective adjuvants to opioid analgesics. Overall, we suggest that this paradoxical state be considered an additional target of clinical treatment for chronic pain.

  10. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    PubMed Central

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2013-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  11. Frameworks for Proof-of-Concept Clinical Trials of Interventions That Target Fundamental Aging Processes.

    PubMed

    Justice, Jamie; Miller, Jordan D; Newman, John C; Hashmi, Shahrukh K; Halter, Jeffrey; Austad, Steve N; Barzilai, Nir; Kirkland, James L

    2016-11-01

    Therapies targeted at fundamental processes of aging may hold great promise for enhancing the health of a wide population by delaying or preventing a range of age-related diseases and conditions-a concept dubbed the "geroscience hypothesis." Early, proof-of-concept clinical trials will be a key step in the translation of therapies emerging from model organism and preclinical studies into clinical practice. This article summarizes the outcomes of an international meeting partly funded through the NIH R24 Geroscience Network, whose purpose was to generate concepts and frameworks for early, proof-of-concept clinical trials for therapeutic interventions that target fundamental processes of aging. The goals of proof-of-concept trials include generating preliminary signals of efficacy in an aging-related disease or outcome that will reduce the risk of conducting larger trials, contributing data and biological samples to support larger-scale research by strategic networks, and furthering a dialogue with regulatory agencies on appropriate registration indications. We describe three frameworks for proof-of-concept trials that target age-related chronic diseases, geriatric syndromes, or resilience to stressors. We propose strategic infrastructure and shared resources that could accelerate development of therapies that target fundamental aging processes.

  12. Frameworks for Proof-of-Concept Clinical Trials of Interventions That Target Fundamental Aging Processes

    PubMed Central

    Justice, Jamie; Miller, Jordan D.; Newman, John C.; Hashmi, Shahrukh K.; Halter, Jeffrey; Austad, Steve N.; Barzilai, Nir

    2016-01-01

    Therapies targeted at fundamental processes of aging may hold great promise for enhancing the health of a wide population by delaying or preventing a range of age-related diseases and conditions—a concept dubbed the “geroscience hypothesis.” Early, proof-of-concept clinical trials will be a key step in the translation of therapies emerging from model organism and preclinical studies into clinical practice. This article summarizes the outcomes of an international meeting partly funded through the NIH R24 Geroscience Network, whose purpose was to generate concepts and frameworks for early, proof-of-concept clinical trials for therapeutic interventions that target fundamental processes of aging. The goals of proof-of-concept trials include generating preliminary signals of efficacy in an aging-related disease or outcome that will reduce the risk of conducting larger trials, contributing data and biological samples to support larger-scale research by strategic networks, and furthering a dialogue with regulatory agencies on appropriate registration indications. We describe three frameworks for proof-of-concept trials that target age-related chronic diseases, geriatric syndromes, or resilience to stressors. We propose strategic infrastructure and shared resources that could accelerate development of therapies that target fundamental aging processes. PMID:27535966

  13. Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies.

    PubMed

    Li, Yanyan; Atkinson, Katharine; Zhang, Tao

    2017-03-12

    The cancer stem cell model claims that the initiation, maintenance, and growth of a tumor are driven by a small population of cancer cells termed cancer stem cells. Cancer stem cells possess a variety of phenotypes associated with therapeutic resistance and often cause recurrence of the diseases. Several strategies have been investigated to target cancer stem cells in a variety of cancers, such as blocking one or more self-renewal signaling pathways, reducing the expression of drug efflux and ATP-binding cassette efflux transporters, modulating epigenetic aberrations, and promoting cancer stem cell differentiation. A number of cell and animal studies strongly support the potential benefits of combining chemotherapeutic drugs with cancer stem cell targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This mini-review provides an updated discussion of these preclinical and clinical studies.

  14. Cardiorenal syndrome: pathophysiology and potential targets for clinical management.

    PubMed

    Hatamizadeh, Parta; Fonarow, Gregg C; Budoff, Matthew J; Darabian, Sirous; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2013-02-01

    Combined dysfunction of the heart and the kidneys, which can be associated with haemodynamic impairment, is classically referred to as cardiorenal syndrome (CRS). Cardiac pump failure with resulting volume retention by the kidneys, once thought to be the major pathophysiologic mechanism of CRS, is now considered to be only a part of a much more complicated phenomenon. Multiple body systems may contribute to the development of this pathologic constellation in an interconnected network of events. These events include heart failure (systolic or diastolic), atherosclerosis and endothelial cell dysfunction, uraemia and kidney failure, neurohormonal dysregulation, anaemia and iron disorders, mineral metabolic derangements including fibroblast growth factor 23, phosphorus and vitamin D disorders, and inflammatory pathways that may lead to malnutrition-inflammation-cachexia complex and protein-energy wasting. Hence, a pathophysiologically and clinically relevant classification of CRS based on the above components would be prudent. With the existing medical knowledge, it is almost impossible to identify where the process has started in any given patient. Rather, the events involved are closely interrelated, so that once the process starts at a particular point, other pathways of the network are potentially activated. Current therapies for CRS as well as ongoing studies are mostly focused on haemodynamic adjustments. The timely targeting of different components of this complex network, which may eventually lead to haemodynamic and vascular compromise and cause refractoriness to conventional treatments, seems necessary. Future studies should focus on interventions targeting these components.

  15. β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability

    PubMed Central

    Harford-Wright, Elizabeth; Bidère, Nicolas; Gavard, Julie

    2016-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM. PMID:27589691

  16. An Investigational RNAi Therapeutic Targeting Glycolate Oxidase Reduces Oxalate Production in Models of Primary Hyperoxaluria.

    PubMed

    Liebow, Abigail; Li, Xingsheng; Racie, Timothy; Hettinger, Julia; Bettencourt, Brian R; Najafian, Nader; Haslett, Patrick; Fitzgerald, Kevin; Holmes, Ross P; Erbe, David; Querbes, William; Knight, John

    2017-02-01

    Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk. In this report, we discuss the development of ALN-GO1, an investigational RNA interference (RNAi) therapeutic targeting glycolate oxidase, to deplete the substrate for oxalate synthesis. Subcutaneous administration of ALN-GO1 resulted in potent, dose-dependent, and durable silencing of the mRNA encoding glycolate oxidase and increased serum glycolate concentrations in wild-type mice, rats, and nonhuman primates. ALN-GO1 also increased urinary glycolate concentrations in normal nonhuman primates and in a genetic mouse model of PH1. Notably, ALN-GO1 reduced urinary oxalate concentration up to 50% after a single dose in the genetic mouse model of PH1, and up to 98% after multiple doses in a rat model of hyperoxaluria. These data demonstrate the ability of ALN-GO1 to reduce oxalate production in preclinical models of PH1 across multiple species and provide a clear rationale for clinical trials with this compound.

  17. Curcumin and insulin resistance-Molecular targets and clinical evidences.

    PubMed

    Jiménez-Osorio, Angélica Saraí; Monroy, Adriana; Alavez, Silvestre

    2016-11-12

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the main component of the Indian spice turmeric, has been used in traditional medicine to improve diabetes and its comorbidities. Since the last two decades, scientific research has shown that in addition to its antioxidant properties, curcumin could also work as protein homeostasis regulator and it is able to modulate other intracellular pathways. Curcumin supplementation has been proposed to improve insulin resistance (IR) through the activation of the insulin receptor and its downstream pathways in several experimental models, pointing out that its clinical use may be a good and innocuous strategy to improve IR-related diseases. IR is associated with many diseases and syndromes like carbohydrate intolerance, diabetes, metabolic syndrome, and cardiovascular disease. Therefore, it is imperative to identify safe therapeutic interventions aimed to reduce side effects that could lead the patient to leave the treatment. To date, many clinical trials have been carried out using turmeric and curcumin to improve metabolic syndrome, carbohydrate intolerance, diabetes, and obesity in individuals with IR. Results so far are inconclusive because dose, time of treatment, and type of curcumin can change the study outcome significantly. However, there is some clinical evidence suggesting a beneficial effect of curcumin on IR. In this review, we discuss the factors that could influence curcumin effects in clinical trials aimed to improve IR and related diseases, and the conclusions that can be drawn from results obtained so far. © 2016 BioFactors, 42(6):561-580, 2016.

  18. Reduced Toxicity Breast Cancer Therapy: Changing the Or to And in Dual Targeted Therapeutics

    DTIC Science & Technology

    2010-10-01

    targeted breast cancer therapeutics with the potentia l to dra matically improve speci ficity, reducing unwanted side effects . Here, we review our...of this work wa s to propose a new type of therapy activate d only in tumors presenting both a first AND second molecular target. Chemotherapy ...design (Figu re 1). With our light trigger system, we should be able to con trol th e position and the tim e of siRNA rele ase, lim iting any unwanted

  19. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.

    PubMed

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-06-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations.

  20. Robust energy enhancement of ultrashort pulse laser accelerated protons from reduced mass targets

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Metzkes, J.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Kraft, S. D.; Sauerbrey, R.; Schmidt, B.; Zier, M.; Schramm, U.

    2014-08-01

    This paper reports on a systematic investigation of the ultrashort pulse laser driven acceleration of protons from thin targets of finite size, so-called reduced mass targets (RMTs). Reproducible series of targets, manufactured with lithographic techniques, and varying in size, thickness, and mounting geometry, were irradiated with ultrashort (30 fs) laser pulses of intensities of about 8 × 1020 W cm-2. A robust maximum energy enhancement of almost a factor of two was found when comparing gold RMTs to reference irradiations of plain gold foils of the same thickness. Furthermore, a change of the thickness of these targets has less influence on the measured maximum proton energy when compared to standard foils, which, based on detailed particle-in-cell simulations, can be explained by the influence of the RMT geometry on the electron sheath. The performance gain was, however, restricted to lateral target sizes of greater than 50 µm, which can be attributed to edge and mounting structure influences.

  1. Attuning one's steps to visual targets reduces comfortable walking speed in both young and older adults.

    PubMed

    Peper, C Lieke E; de Dreu, Miek J; Roerdink, Melvyn

    2015-03-01

    Comfortable walking speed (CWS) is indicative of clinically relevant factors in the elderly, such as fall risk and mortality. Standard CWS tests involve walking on a straight, unobstructed surface, while in reality surfaces are uneven and cluttered and so walkers rely on visually guided adaptations to avoid trips or slips. Hence, the predictive value of CWS may be expected to increase when assessed for walking in more realistic (visually guided) conditions. We examined CWS in young (n=18) and older (n=18) adults for both overground and treadmill walking. Overground CWS was assessed using the 10-meter walk test with and without visual stepping targets. For treadmill walking, four conditions were examined: (i) uncued walking, and (ii-iv) cued walking with visual stepping targets where the inter-stepping target distance varied by 0%, 20%, or 40%. Pre-experimental measures were taken so that the average inter-stepping target distance could be adjusted for each belt speed based on each participant's self-selected gait characteristics. Results showed that CWS was significantly slower when stepping targets were present in both overground (p<.001) and treadmill walking (p<.001). Thus, attuning steps to visual targets significantly affected CWS, even when the patterning of these targets matched the participant's own gait pattern (viz. 0%-treadmill-walking condition). Results from the treadmill-walking task showed that the amount of variation in inter-stepping target distance did not differentially affect CWS. Our results suggest that it may be worthwhile in clinical assessments to not only determine walking speed using standard conditions but also in situations that require visually guided stepping.

  2. Targeted Toxins for Glioblastoma Multiforme: pre-clinical studies and clinical implementation

    PubMed Central

    Candolfi, Marianela; Kroeger, Kurt M.; Xiong, Weidong; Liu, Chunyan; Puntel, Mariana; Yagiz, Kader; Ghulam Muhammad, AKM; Mineharu, Yohei; Foulad, David; Wibowo, Mia; Assi, Hikmat; Baker, Gregory J.; Lowenstein, Pedro R.; Castro, Maria G.

    2011-01-01

    Glioblastoma multiforme (GBM) is most common primary brain tumor in adults. GBM is very aggressive due to its poor cellular differentiation and invasiveness, which makes complete surgical resection virtually impossible. Therefore, GBM’s invasive nature as well as its intrinsic resistance to current treatment modalities makes it a unique therapeutic challenge. Extensive examination of human GBM specimens has uncovered that these tumors overexpress a variety of receptors that are virtually absent in the surrounding non-neoplastic brain. Human GBMs overexpress receptors for cytokines, growth factors, ephrins, urokinase-type plasminogen activator (uPA), and transferrin, which can be targeted with high specificity by linking their ligands with highly cytotoxic molecules, such as Diptheria toxin and Pseudomonas exotoxin A. We review the preclinical development and clinical translation of targeted toxins for GBM. In view of the clinical experience, we conclude that although these are very promising therapeutic modalities for GBM patients, efforts should be focused on improving the delivery systems utilized in order to achieve better distribution of the immuno-toxins in the tumor/resection cavity. Delivery of targeted toxins using viral vectors would also benefit enormously from improved strategies for local delivery. PMID:21707497

  3. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    PubMed Central

    Smolej, Lukáš

    2015-01-01

    Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL) in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS) in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101) is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. PMID:25691812

  4. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab.

    PubMed

    Smolej, Lukáš

    2015-01-01

    Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL) in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS) in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101) is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL.

  5. Simulations of High-Intensity Short-Pulse Lasers Incident on Reduced Mass Targets

    NASA Astrophysics Data System (ADS)

    King, Frank W.

    This thesis presents the results of a series of fully kinetic particle-in-cell (PIC) simulations of reduced mass targets with pre-plasma subjected to high-intensity short-pulse lasers. The simulations are performed in one, two, and three dimensions. The results of these simulations show that the creation of an electrostatic collisionless ion shock in the preplasma controls the creation of an above solid density ion perturbation in the target bulk, and this determines the reduced mass target heating and deformation. The ion perturbation is initiated by a population of high-energy electrons that rapidly spread throughout the target and reflux. The perturbation spreads longitudinally and transversely through the target and results in compression followed by the destruction of the target. This deformation requires a kinetic treatment due to the generation of non-equilibrium particle distributions and the role of ballistic electrons and ions. Kinetic and fluid simulations are compared and both exhibit the basic features of the above solid density ion perturbation, but the magnitude of the effect and the speed of propagation vary significantly between the two methods. Kinetic simulations do not naturally include equation-of-state physics and other aspects of the problem. Both approaches are complementary. The requirements on spatial resolution, particle count, and other numerical parameters are addressed in this work. From these simulations, the behavior of the reduced mass targets is found to vary significantly depending on the laser focal spot size or the intensity of the laser pulse. This occurs even if the energy and power of the laser pulses are held constant. The number of dimensions used in the particle-in-cell simulations has been observed to have a significant effect on late-time heating of the target, but not during or shortly after laser excitation. This is due to the representation of the equilibration process as the initial population of laser heated

  6. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer's Disease

    PubMed Central

    Solfrizzi, Vincenzo; Imbimbo, Bruno P.; Lozupone, Madia; Santamato, Andrea; Zecca, Chiara; Barulli, Maria Rosaria; Bellomo, Antonello; Pilotto, Alberto; Daniele, Antonio; Greco, Antonio

    2016-01-01

    The failure of several Phase II/III clinical trials in Alzheimer's disease (AD) with drugs targeting β-amyloid accumulation in the brain fuelled an increasing interest in alternative treatments against tau pathology, including approaches targeting tau phosphatases/kinases, active and passive immunization, and anti-tau aggregation. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT+). MT chloride (methylene blue) was investigated in a 24-week Phase II clinical trial in 321 patients with mild to moderate AD that failed to show significant positive effects in mild AD patients, although long-term observations (50 weeks) and biomarker studies suggested possible benefit. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected AD patients and cerebral blood flow in mildly affected patients. Further clinical evidence will come from the large ongoing Phase III trials for the treatment of AD and the behavioral variant of frontotemporal dementia on a new form of this TAI, more bioavailable and less toxic at higher doses, called TRx0237. More recently, inhibitors of tau acetylation are being actively pursued based on impressive results in animal studies obtained by salsalate, a clinically used derivative of salicylic acid. PMID:27429978

  7. A Behavioral Intervention to Reduce Child Exposure to Indoor Air Pollution: Identifying Possible Target Behaviors

    ERIC Educational Resources Information Center

    Barnes, Brendon R.; Mathee, Angela; Shafritz, Lonna B.; Krieger, Laurie; Zimicki, Susan

    2004-01-01

    Indoor air pollution has been causally linked to acute lower respiratory infections in children younger than 5. The aim of this study was to identify target behaviors for a behavioral intervention to reduce child exposure to indoor air pollution by attempting to answer two research questions: Which behaviors are protective of child respiratory…

  8. Reducing Diagnostic Error with Computer-Based Clinical Decision Support

    ERIC Educational Resources Information Center

    Greenes, Robert A.

    2009-01-01

    Information technology approaches to delivering diagnostic clinical decision support (CDS) are the subject of the papers to follow in the proceedings. These will address the history of CDS and present day approaches (Miller), evaluation of diagnostic CDS methods (Friedman), and the role of clinical documentation in supporting diagnostic decision…

  9. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis.

    PubMed

    Reilly, Jacqueline E; Neighbors, Jeffrey D; Tong, Huaxiang; Henry, Michael D; Hohl, Raymond J

    2015-08-01

    The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase, reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100 %), adrenal glands (72 %), mesentery (22 %), liver (17 %), and the thoracic cavity (6 %). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed a reduction in adrenal gland tumors corresponding to a 54 % (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis.

  10. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis

    PubMed Central

    Reilly, Jacqueline E; Neighbors, Jeffrey D; Tong, Huaxiang; Henry, Michael D; Hohl, Raymond J

    2016-01-01

    The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase (GGDPS), reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100%), adrenal glands (72%), mesentery (22%), liver (17%), and the thoracic cavity (6%). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed areduction in adrenal gland tumors corresponding to a 54% (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis. PMID:26070429

  11. Reducing missing fracture clinic radiographs by entrusting them to patients.

    PubMed Central

    Calder, Peter R.; Hynes, Matthew C.; Goodier, W. David

    2004-01-01

    BACKGROUND: Missing radiographs in fracture clinics may compromise fracture management and lead to inappropriate use of clerical resources. METHODS: We prospectively compared the number of missing radiographs in two hospitals over a period of two months. In hospital A the radiographs were retained and in hospital B they were entrusted to the patients. RESULTS: At the completion of the study, entrusting patients with their radiographs resulted in statistically less radiographs missing from the clinic. PMID:15333169

  12. The World Health Organization's global target for reducing childhood stunting by 2025: rationale and proposed actions.

    PubMed

    de Onis, Mercedes; Dewey, Kathryn G; Borghi, Elaine; Onyango, Adelheid W; Blössner, Monika; Daelmans, Bernadette; Piwoz, Ellen; Branca, Francesco

    2013-09-01

    In 2012, the World Health Organization adopted a resolution on maternal, infant and young child nutrition that included a global target to reduce by 40% the number of stunted under-five children by 2025. The target was based on analyses of time series data from 148 countries and national success stories in tackling undernutrition. The global target translates to a 3.9% reduction per year and implies decreasing the number of stunted children from 171 million in 2010 to about 100 million in 2025. However, at current rates of progress, there will be 127 million stunted children by 2025, that is, 27 million more than the target or a reduction of only 26%. The translation of the global target into national targets needs to consider nutrition profiles, risk factor trends, demographic changes, experience with developing and implementing nutrition policies, and health system development. This paper presents a methodology to set individual country targets, without precluding the use of others. Any method applied will be influenced by country-specific population growth rates. A key question is what countries should do to meet the target. Nutrition interventions alone are almost certainly insufficient, hence the importance of ongoing efforts to foster nutrition-sensitive development and encourage development of evidence-based, multisectoral plans to address stunting at national scale, combining direct nutrition interventions with strategies concerning health, family planning, water and sanitation, and other factors that affect the risk of stunting. In addition, an accountability framework needs to be developed and surveillance systems strengthened to monitor the achievement of commitments and targets.

  13. Reducing emissions from agriculture to meet the 2 °C target.

    PubMed

    Wollenberg, Eva; Richards, Meryl; Smith, Pete; Havlík, Petr; Obersteiner, Michael; Tubiello, Francesco N; Herold, Martin; Gerber, Pierre; Carter, Sarah; Reisinger, Andrew; van Vuuren, Detlef P; Dickie, Amy; Neufeldt, Henry; Sander, Björn O; Wassmann, Reiner; Sommer, Rolf; Amonette, James E; Falcucci, Alessandra; Herrero, Mario; Opio, Carolyn; Roman-Cuesta, Rosa Maria; Stehfest, Elke; Westhoek, Henk; Ortiz-Monasterio, Ivan; Sapkota, Tek; Rufino, Mariana C; Thornton, Philip K; Verchot, Louis; West, Paul C; Soussana, Jean-François; Baedeker, Tobias; Sadler, Marc; Vermeulen, Sonja; Campbell, Bruce M

    2016-12-01

    More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr(-1) by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.

  14. CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical research.

    PubMed

    Perea, Silvio E; Baladron, Idania; Garcia, Yanelda; Perera, Yasser; Lopez, Adlin; Soriano, Jorge L; Batista, Noyde; Palau, Aley; Hernández, Ignacio; Farina, Hernán; Garcia, Idrian; Gonzalez, Lidia; Gil, Jeovanis; Rodriguez, Arielis; Solares, Margarita; Santana, Agueda; Cruz, Marisol; Lopez, Matilde; Valenzuela, Carmen; Reyes, Osvaldo; López-Saura, Pedro A; González, Carlos A; Diaz, Alina; Castellanos, Lila; Sanchez, Aniel; Betancourt, Lazaro; Besada, Vladimir; González, Luis J; Garay, Hilda; Gómez, Roberto; Gómez, Daniel E; Alonso, Daniel F; Perrin, Phillipe; Renualt, Jean-Yves; Sigman, Hugo; Herrera, Luis; Acevedo, Boris

    2011-10-01

    CK2 represents an oncology target scientifically validated. However, clinical research with inhibitors of the CK2-mediated phosphorylation event is still insufficient to recognize it as a clinically validated target. CIGB-300, an investigational peptide-based drug that targets the phosphoaceptor site, binds to a CK2 substrate array in vitro but mainly to B23/nucleophosmin in vivo. The CIGB-300 proapoptotic effect is preceded by its nucleolar localization, inhibition of the CK2-mediated phosphorylation on B23/nucleophosmin and nucleolar disassembly. Importantly, CIGB-300 shifted a protein array linked to apoptosis, ribosome biogenesis, cell proliferation, glycolisis, and cell motility in proteomic studies which helped to understand its mechanism of action. In the clinical ground, CIGB-300 has proved to be safe and well tolerated in a First-in-Human trial in women with cervical malignancies who also experienced signs of clinical benefit. In a second Phase 1 clinical trial in women with cervical cancer stage IB2/II, the MTD and DLT have been also identified in the clinical setting. Interestingly, in cervical tumors the B23/nucleophosmin protein levels were significantly reduced after CIGB-300 treatment at the nucleus compartment. In addition, expanded use of CIGB-300 in case studies has evidenced antitumor activity when administered as compassional option. Collectively, our data outline important clues on translational and clinical research from this novel peptide-based drug reinforcing its perspectives to treat cancer and paving the way to validate CK2 as a promising target in oncology.

  15. HaloPlex Targeted Resequencing for Mutation Detection in Clinical Formalin-Fixed, Paraffin-Embedded Tumor Samples.

    PubMed

    Moens, Lotte N J; Falk-Sörqvist, Elin; Ljungström, Viktor; Mattsson, Johanna; Sundström, Magnus; La Fleur, Linnéa; Mathot, Lucy; Micke, Patrick; Nilsson, Mats; Botling, Johan

    2015-11-01

    In recent years, the advent of massively parallel next-generation sequencing technologies has enabled substantial advances in the study of human diseases. Combined with targeted DNA enrichment methods, high sequence coverage can be obtained for different genes simultaneously at a reduced cost per sample, creating unique opportunities for clinical cancer diagnostics. However, the formalin-fixed, paraffin-embedded (FFPE) process of tissue samples, routinely used in pathology departments, results in DNA fragmentation and nucleotide modifications that introduce a number of technical challenges for downstream biomolecular analyses. We evaluated the HaloPlex target enrichment system for somatic mutation detection in 80 tissue fractions derived from 20 clinical cancer cases with paired tumor and normal tissue available in both FFPE and fresh-frozen format. Several modifications to the standard method were introduced, including a reduced target fragment length and two strand capturing. We found that FFPE material can be used for HaloPlex-based target enrichment and next-generation sequencing, even when starting from small amounts of DNA. By specifically capturing both strands for each target fragment, we were able to reduce the number of false-positive errors caused by FFPE-induced artifacts and lower the detection limit for somatic mutations. We believe that the HaloPlex method presented here will be broadly applicable as a tool for somatic mutation detection in clinical cancer settings.

  16. Laser coupling to reduced-scale targets at NIF Early Light

    SciTech Connect

    Hinkel, D E; Schneider, M B; Young, B K; Holder, J P; Langdon, A B; Baldis, H A; Bonanno, G; Bower, D E; Bruns, H C; Campbell, K M; Celeste, J R; Compton, S; Costa, R L; Dewald, E L; Dixit, S N; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A D; Emig, J A; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Henesian, M A; Holtmeier, G; James, D L; Jancaitis, K S; Kalantar, D H; Kamperschroer, J H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Landen, O L; Landon, M; Lee, F D; MacGowan, B J; Mackinnon, A J; Manes, K R; Marshall, C; May, M J; McDonald, J W; Menapace, J; Moses, S I; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Power, G D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P; Still, C H; Suter, L J; Tietbohl, G L; Turner, R E; VanWonterghem, B M; Wallace, R J; Warrick, A; Watts, P; Weber, F; Wegner, P J; Williams, E A; Young, P E

    2005-08-31

    Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technology 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.

  17. Bill restricts abortion blockades. Clinic violence is target of action.

    PubMed

    1993-11-17

    On November 16, 1993, the US Senate voted approval, by 69 to 30 members, to impose stiff penalties on those obstructing access to abortion clinics. The penalties include up to 1 year in jail and a $100,000 fine for first violent offenses. Obstruction without violence would lead to a fine of $10,000 and 6 months in jail. The legislation was deemed necessary after the murder of a doctor in Florida and the wounding of another doctor in Kansas. Democratic Senator Edward Kennedy said that those who do not obstruct access have nothing to fear. Support came not only from abortion rights advocates, but from those against lawlessness in the pro-life movement. Maryland's Democratic Senators Mikulski and Sarbanes and California's Democratic Senator Barbara Boxes supported the bill, as well as Attorney General Janet Reno and President Clinton. House Speaker Thomas S. Foley announced that the House would consider its version of the bill on November 18, 1993. The original version was changed to reduce fines for nonviolent offenders from $100,000 to $10,000. Opponents argued that the legislation treated peaceful protesters as felons, and was directed in a singular=sided way with no regard to civil disobedience by animal rights activists, antinuclear protesters, and AIDS activists. North Carolina Republican Senator Jesse Helms thought that the Supreme Court would find the bill unconstitutional. Other arguments were that civil disobedience should be allowed for anti-abortion protesters, as it was allowed for civil rights protesters such as Dr. Martin Luther King, Jr. Senator Kennedy pointed out the Dr. King was trying to secure a constitutional right, unlike anti-abortion protesters who were trying to deny a constitutional right.

  18. Reducing inadvertent clinical errors: Guidelines from functional analytic psychotherapy.

    PubMed

    Tsai, Mavis; Mandell, Tien; Maitland, Daniel; Kanter, Jonathan; Kohlenberg, Robert J

    2016-09-01

    Two common types of clinical errors, inadvertently reinforcing client problem behaviors or inadvertently punishing client improvements, are conceptualized from the viewpoint of Functional Analytic Psychotherapy (FAP), a treatment that harnesses the power of the therapeutic relationship. Understanding the functions of client behaviors such as incessant talking and over compliance can lead to more compassionate and effective intervention, and a functional analysis of seemingly problematic behaviors such as silence and lack of cooperation indicate how they may be client improvements. Suggestions are provided for how to more accurately conceptualize whether client behaviors are problems or improvements, and to increase awareness of therapist vulnerabilities that can lead to errors. While FAP is rooted in a functional contextual philosophy, the goal of this article is to offer a framework that crosses theoretical boundaries to decrease the likelihood of clinical errors and to facilitate client growth. (PsycINFO Database Record

  19. Molecular characterization of clinical Streptococcus pneumoniae isolates with reduced susceptibility to fluoroquinolones emerging in Italy.

    PubMed

    Montanari, Maria Pia; Tili, Emily; Cochetti, Ileana; Mingoia, Marina; Manzin, Aldo; Varaldo, Pietro Emanuele

    2004-01-01

    Fifteen Streptococcus pneumoniae clinical isolates with reduced fluoroquinolone susceptibility (defined as a ciprofloxacin MIC of > or = 4 microg/ml), all collected in Italy in 2000-2003, were typed and subjected to extensive molecular characterization to define the contribution of drug target alterations and efflux mechanisms to their resistance. Serotyping and pulsed-field gel electrophoresis analysis indicated substantial genetic unrelatedness among the 15 isolates, suggesting that the new resistance traits arise in multiple indigenous strains rather than through clonal dissemination. Sequencing of the quinolone resistance-determining regions of gyrA, gyrB, parC, and parE demonstrated that point mutations producing single amino acid changes were more frequent in topoisomerase IV (parC mutations in 14 isolates and parE mutations in 13) than in DNA gyrase subunits (gyrA mutations in 7 isolates and no gyrB mutations observed). No isolate displayed a quinolone efflux system susceptible to carbonyl cyanide m-chlorophenylhydrazone; conversely, four-fold or greater MIC reductions in the presence of reserpine were observed in all 15 isolates with ethidium bromide, in 13 with ulifloxacin, in 9 with ciprofloxacin, in 5 with norfloxacin, and in none with five other fluoroquinolones. The effect of efflux pump activity on the level and profile of fluoroquinolone resistance in our strains was minor compared with that of target site modifications. DNA mutations and/or efflux systems other than those established so far might contribute to the fluoroquinolone resistance expressed by our strains. Susceptibility profiles to nonquinolone class antibiotics and resistance-associated phenotypic and genotypic characteristics were also determined and correlated with fluoroquinolone resistance. A unique penicillin-binding protein profile was observed in all five penicillin-resistant isolates, whereas the same PBP profile as S. pneumoniae R6 was exhibited by all six penicillin

  20. Trends in pharmaceutical targeting of clinical indications: 1930-2013.

    PubMed

    Kinch, Michael S; Merkel, Janie; Umlauf, Sheila

    2014-11-01

    An analysis of FDA-approved new molecular entities (NMEs) reveals trends in therapeutic applications. Four groupings (infectious diseases, cardiovascular diseases, autoimmune/inflammatory diseases and cancer) capture more than 60% of NMEs. Infectious diseases are the most targeted indications. Near the turn of the new millennium, the rate of new approvals for infectious diseases decreased. The absolute and relative number of NMEs targeting psychiatric, neurological and pain/itch indications also declined. By contrast, NMEs targeting cancer have risen in the past two decades as have NMEs targeting orphan indications. These results suggest the drug development community has largely been responsive to public health and market needs. However, finite resources might indicate emphasis on some unmet needs could come at the cost of others.

  1. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor

    PubMed Central

    Gresnigt, Mark S.; Rekiki, Abdessalem; Rasid, Orhan; Savers, Amélie; Jouvion, Grégory; Dannaoui, Eric; Parlato, Marianna; Fitting, Catherine; Brock, Matthias; Cavaillon, Jean-Marc; van de Veerdonk, Frank L.; Ibrahim-Granet, Oumaïma

    2016-01-01

    Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2−/− mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis. PMID:27215684

  2. Interpretation modification training reduces social anxiety in clinically anxious children.

    PubMed

    Klein, Anke M; Rapee, Ronald M; Hudson, Jennifer L; Schniering, Carolyn A; Wuthrich, Viviana M; Kangas, Maria; Lyneham, Heidi J; Souren, Pierre M; Rinck, Mike

    2015-12-01

    The present study was designed to examine the effects of training in positive interpretations in clinically anxious children. A total of 87 children between 7 and 12 years of age were randomly assigned to either a positive cognitive bias modification training for interpretation (CMB-I) or a neutral training. Training included 15 sessions in a two-week period. Children with an interpretation bias prior to training in the positive training group showed a significant reduction in interpretation bias on the social threat scenarios after training, but not children in the neutral training group. No effects on interpretation biases were found for the general threat scenarios or the non-threat scenarios. Furthermore, children in the positive training did not self-report lower anxiety than children in the neutral training group. However, mothers and fathers reported a significant reduction in social anxiety in their children after positive training, but not after neutral training. This study demonstrated that clinically anxious children with a prior interpretation bias can be trained away from negative social interpretation biases and there is some evidence that this corresponds to reductions in social anxiety. This study also highlights the importance of using specific training stimuli.

  3. Combined Recipe for Clinical Target Volume and Planning Target Volume Margins

    SciTech Connect

    Stroom, Joep; Gilhuijs, Kenneth; Vieira, Sandra; Chen, Wei; Salguero, Javier; Moser, Elizabeth; Sonke, Jan-Jakob

    2014-03-01

    Purpose: To develop a combined recipe for clinical target volume (CTV) and planning target volume (PTV) margins. Methods and Materials: A widely accepted PTV margin recipe is M{sub geo} = aΣ{sub geo} + bσ{sub geo}, with Σ{sub geo} and σ{sub geo} standard deviations (SDs) representing systematic and random geometric uncertainties, respectively. On the basis of histopathology data of breast and lung tumors, we suggest describing the distribution of microscopic islets around the gross tumor volume (GTV) by a half-Gaussian with SD Σ{sub micro}, yielding as possible CTV margin recipe: M{sub micro} = ƒ(N{sub i}) × Σ{sub micro}, with N{sub i} the average number of microscopic islets per patient. To determine ƒ(N{sub i}), a computer model was developed that simulated radiation therapy of a spherical GTV with isotropic distribution of microscopic disease in a large group of virtual patients. The minimal margin that yielded D{sub min} <95% in maximally 10% of patients was calculated for various Σ{sub micro} and N{sub i}. Because Σ{sub micro} is independent of Σ{sub geo}, we propose they should be added quadratically, yielding for a combined GTV-to-PTV margin recipe: M{sub GTV-PTV} = √([aΣ{sub geo}]{sup 2} + [ƒ(N{sub i})Σ{sub micro}]{sup 2}) + bσ{sub geo}. This was validated by the computer model through numerous simultaneous simulations of microscopic and geometric uncertainties. Results: The margin factor ƒ(N{sub i}) in a relevant range of Σ{sub micro} and N{sub i} can be given by: ƒ(N{sub i}) = 1.4 + 0.8log(N{sub i}). Filling in the other factors found in our simulations (a = 2.1 and b = 0.8) yields for the combined recipe: M{sub GTV-PTV} = √((2.1Σ{sub geo}){sup 2} + ([1.4 + 0.8log(N{sub i})] × Σ{sub micro}){sup 2}) + 0.8σ{sub geo}. The average margin difference between the simultaneous simulations and the above recipe was 0.2 ± 0.8 mm (1 SD). Calculating M{sub geo} and M{sub micro} separately and adding them linearly overestimated PTVs by on

  4. Targeted epigenetic editing of SPDEF reduces mucus production in lung epithelial cells.

    PubMed

    Song, Juan; Cano-Rodriquez, David; Winkle, Melanie; Gjaltema, Rutger A F; Goubert, Désirée; Jurkowski, Tomasz P; Heijink, Irene H; Rots, Marianne G; Hylkema, Machteld N

    2017-03-01

    Airway mucus hypersecretion contributes to the morbidity and mortality in patients with chronic inflammatory lung diseases. Reducing mucus production is crucial for improving patients' quality of life. The transcription factor SAM-pointed domain-containing Ets-like factor (SPDEF) plays a critical role in the regulation of mucus production and, therefore, represents a potential therapeutic target. This study aims to reduce lung epithelial mucus production by targeted silencing SPDEF using the novel strategy, epigenetic editing. Zinc fingers and CRISPR/dCas platforms were engineered to target repressors (KRAB, DNA methyltransferases, histone methyltransferases) to the SPDEF promoter. All constructs were able to effectively suppress both SPDEF mRNA and protein expression, which was accompanied by inhibition of downstream mucus-related genes [anterior gradient 2 (AGR2), mucin 5AC (MUC5AC)]. For the histone methyltransferase G9A, and not its mutant or other effectors, the obtained silencing was mitotically stable. These results indicate efficient SPDEF silencing and downregulation of mucus-related gene expression by epigenetic editing, in human lung epithelial cells. This opens avenues for epigenetic editing as a novel therapeutic strategy to induce long-lasting mucus inhibition.

  5. A New Strategy to Reduce Influenza Escape: Detecting Therapeutic Targets Constituted of Invariance Groups.

    PubMed

    Lao, Julie; Vanet, Anne

    2017-03-02

    The pathogenicity of the different flu species is a real public health problem worldwide. To combat this scourge, we established a method to detect drug targets, reducing the possibility of escape. Besides being able to attach a drug candidate, these targets should have the main characteristic of being part of an essential viral function. The invariance groups that are sets of residues bearing an essential function can be detected genetically. They consist of invariant and synthetic lethal residues (interdependent residues not varying or slightly varying when together). We analyzed an alignment of more than 10,000 hemagglutinin sequences of influenza to detect six invariance groups, close in space, and on the protein surface. In parallel we identified five potential pockets on the surface of hemagglutinin. By combining these results, three potential binding sites were determined that are composed of invariance groups located respectively in the vestigial esterase domain, in the bottom of the stem and in the fusion area. The latter target is constituted of residues involved in the spring-loaded mechanism, an essential step in the fusion process. We propose a model describing how this potential target could block the reorganization of the hemagglutinin HA2 secondary structure and prevent viral entry into the host cell.

  6. A New Strategy to Reduce Influenza Escape: Detecting Therapeutic Targets Constituted of Invariance Groups

    PubMed Central

    Lao, Julie; Vanet, Anne

    2017-01-01

    The pathogenicity of the different flu species is a real public health problem worldwide. To combat this scourge, we established a method to detect drug targets, reducing the possibility of escape. Besides being able to attach a drug candidate, these targets should have the main characteristic of being part of an essential viral function. The invariance groups that are sets of residues bearing an essential function can be detected genetically. They consist of invariant and synthetic lethal residues (interdependent residues not varying or slightly varying when together). We analyzed an alignment of more than 10,000 hemagglutinin sequences of influenza to detect six invariance groups, close in space, and on the protein surface. In parallel we identified five potential pockets on the surface of hemagglutinin. By combining these results, three potential binding sites were determined that are composed of invariance groups located respectively in the vestigial esterase domain, in the bottom of the stem and in the fusion area. The latter target is constituted of residues involved in the spring-loaded mechanism, an essential step in the fusion process. We propose a model describing how this potential target could block the reorganization of the hemagglutinin HA2 secondary structure and prevent viral entry into the host cell. PMID:28257108

  7. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    PubMed Central

    Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R.; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F.; Kauffman, Kevin J.; Xing, Yiping; Shaw, Taylor E.; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K.

    2016-01-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  8. Carbapenem susceptibility breakpoints, clinical implications with the moving target.

    PubMed

    O'Donnell, J Nicholas; Miglis, Cristina M; Lee, Jane Y; Tuvell, Merika; Lertharakul, Tina; Scheetz, Marc H

    2016-01-01

    Carbapenems are primary agents used to treat a variety of Gram-negative multi-drug resistant infections. In parallel with increasing use, increasing resistance to carbapenem agents has manifested as increased minimum inhibitory concentrations (MICs). To attempt to improve clinical outcomes with carbapenems, the Clinical Laboratory Standards Institute and the Food Drug Administration decreased susceptibility breakpoints. The European equivalent expert committee, the European Committee on Antimicrobial Susceptibility Testing, also utilizes lower MIC susceptibility breakpoints. This review focuses on the rationale for recent breakpoint changes and the associated clinical outcomes for patients treated with carbapenems for infections with varying MICs proximal to the breakpoint. Supporting pharmacokinetics and pharmacodynamics that underpin the breakpoints are also reviewed.

  9. Texas hospitals share creative uses of non-clinical staff to reduce ER costs.

    PubMed

    2006-01-01

    Texas hospitals share creative uses of non-clinical staff to reduce ER costs. In central Texas, Christus Spohn Hospital and Seton Health Care are independently exploring the use of non-clinical staff to improve utilization of clinical and emergency services, but their existing programs employ different structures and outcomes measurements.

  10. Mesoporous Silica Coated Polydopamine Functionalized Reduced Graphene Oxide for Synergistic Targeted Chemo-Photothermal Therapy.

    PubMed

    Shao, Leihou; Zhang, Ruirui; Lu, Jianqing; Zhao, Caiyan; Deng, Xiongwei; Wu, Yan

    2017-01-18

    The integration of different therapies into a single nanoplatform has shown great promise for synergistic tumor treatment. Herein, mesoporous silica (MS) coated polydopamine functionalized reduced graphene oxide (pRGO) further modified with hyaluronic acid (HA) (pRGO@MS-HA) has been utilized as a versatile nanoplatform for synergistic targeted chemo-photothermal therapy against cancer. A facile and green chemical method is adopted for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) by using mussel inspired dopamine (DA) to enhance biocompatibility and the photothermal effect. Then, it was coated with mesoporous silica (MS) (pRGO@MS) to enhance doxorubicin (DOX) loading and be further modified with the targeting moieties hyaluronic acid (HA). The pH-dependent and near-infrared (NIR) laser irradiation-triggered DOX release from pRGO@MS(DOX)-HA is observed, which could enhance the chemo-photothermal therapy effect. In vitro experimental results confirm that pRGO@MS(DOX)-HA exhibits good dispersibility, excellent photothermal property, remarkable tumor cell killing efficiency, and specificity to target tumor cells. In vivo antitumor experiments further demonstrated that pRGO@MS(DOX)-HA could exhibit an excellent synergistic antitumor efficacy, which is much more distinct than any monotherapy. This work presents a novel nanoplatform which could load chemotherapy drugs with high efficiency and be used as light-mediated photothermal cancer therapy agent.

  11. P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation

    PubMed Central

    Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya

    2016-01-01

    Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301

  12. Reducible hyaluronic acid-siRNA conjugate for target specific gene silencing.

    PubMed

    Park, Kitae; Yang, Jeong-A; Lee, Min-Young; Lee, Hwiwon; Hahn, Sei Kwang

    2013-07-17

    Despite wide applications of polymer-drug conjugates, there are only a few polymer-siRNA conjugates like poly(ethylene glycol) conjugated siRNA. In this work, reducible hyaluronic acid (HA)-siRNA conjugate was successfully developed for target specific systemic delivery of siRNA to the liver. The conjugation of siRNA to HA made it possible to form a compact nanocomplex of siRNA with relatively nontoxic linear polyethyleneimine (LPEI). After characterization of HA-siRNA conjugate by size exclusion chromatography (SEC) and gel electrophoresis, its complex formation with LPEI was investigated with a particle analyzer. The HA-siRNA/LPEI complex had a mean particle size of ca. 250 nm and a negative or neutral surface charge at physiological condition. The reducible HA-siRNA/LPEI complex showed a higher in vitro gene silencing efficiency than noncleavable HA-siRNA/LPEI complex. Furthermore, after systemic delivery, apolipoprotein B (ApoB) specific HA-siApoB/LPEI complex was target specifically delivered to the liver, which resulted in statistically significant reduction of ApoB mRNA expression in a dose dependent manner. The HA-siRNA conjugate can be effectively applied as a model system to the treatment of liver diseases using various siRNAs and relatively nontoxic polycations.

  13. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone

    PubMed Central

    Rabotyagov, Sergey S.; Campbell, Todd D.; White, Michael; Arnold, Jeffrey G.; Atwood, Jay; Norfleet, M. Lee; Kling, Catherine L.; Gassman, Philip W.; Valcu, Adriana; Richardson, Jeffrey; Turner, R. Eugene; Rabalais, Nancy N.

    2014-01-01

    A seasonally occurring summer hypoxic (low oxygen) zone in the northern Gulf of Mexico is the second largest in the world. Reductions in nutrients from agricultural cropland in its watershed are needed to reduce the hypoxic zone size to the national policy goal of 5,000 km2 (as a 5-y running average) set by the national Gulf of Mexico Task Force’s Action Plan. We develop an integrated assessment model linking the water quality effects of cropland conservation investment decisions on the more than 550 agricultural subwatersheds that deliver nutrients into the Gulf with a hypoxic zone model. We use this integrated assessment model to identify the most cost-effective subwatersheds to target for cropland conservation investments. We consider targeting of the location (which subwatersheds to treat) and the extent of conservation investment to undertake (how much cropland within a subwatershed to treat). We use process models to simulate the dynamics of the effects of cropland conservation investments on nutrient delivery to the Gulf and use an evolutionary algorithm to solve the optimization problem. Model results suggest that by targeting cropland conservation investments to the most cost-effective location and extent of coverage, the Action Plan goal of 5,000 km2 can be achieved at a cost of $2.7 billion annually. A large set of cost-hypoxia tradeoffs is developed, ranging from the baseline to the nontargeted adoption of the most aggressive cropland conservation investments in all subwatersheds (estimated to reduce the hypoxic zone to less than 3,000 km2 at a cost of $5.6 billion annually). PMID:25512489

  14. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone.

    PubMed

    Rabotyagov, Sergey S; Campbell, Todd D; White, Michael; Arnold, Jeffrey G; Atwood, Jay; Norfleet, M Lee; Kling, Catherine L; Gassman, Philip W; Valcu, Adriana; Richardson, Jeffrey; Turner, R Eugene; Rabalais, Nancy N

    2014-12-30

    A seasonally occurring summer hypoxic (low oxygen) zone in the northern Gulf of Mexico is the second largest in the world. Reductions in nutrients from agricultural cropland in its watershed are needed to reduce the hypoxic zone size to the national policy goal of 5,000 km(2) (as a 5-y running average) set by the national Gulf of Mexico Task Force's Action Plan. We develop an integrated assessment model linking the water quality effects of cropland conservation investment decisions on the more than 550 agricultural subwatersheds that deliver nutrients into the Gulf with a hypoxic zone model. We use this integrated assessment model to identify the most cost-effective subwatersheds to target for cropland conservation investments. We consider targeting of the location (which subwatersheds to treat) and the extent of conservation investment to undertake (how much cropland within a subwatershed to treat). We use process models to simulate the dynamics of the effects of cropland conservation investments on nutrient delivery to the Gulf and use an evolutionary algorithm to solve the optimization problem. Model results suggest that by targeting cropland conservation investments to the most cost-effective location and extent of coverage, the Action Plan goal of 5,000 km(2) can be achieved at a cost of $2.7 billion annually. A large set of cost-hypoxia tradeoffs is developed, ranging from the baseline to the nontargeted adoption of the most aggressive cropland conservation investments in all subwatersheds (estimated to reduce the hypoxic zone to less than 3,000 km(2) at a cost of $5.6 billion annually).

  15. Hallmarks of hyperthermia in driving the future of clinical hyperthermia as targeted therapy: translation into clinical application.

    PubMed

    Issels, Rolf; Kampmann, Eric; Kanaar, Roland; Lindner, Lars H

    2016-01-01

    Regional hyperthermia is described as a targeted therapy and the definitions of six hallmarks of hyperthermia are proposed, representing the pleiotropic effect of this therapeutic modality to counteract tumour growth and progression. We recommend the considerations of these hallmarks in the design of clinical trials involving regional hyperthermia as targeted therapy. Randomised clinical studies using loco-regional hyperthermia as an adjuvant to radiotherapy or to chemotherapy for locally advanced tumours demonstrate the benefit of the combination compared to either of the standard treatments alone for tumour response, disease control, and patient survival outcome. These impressive results were obtained from proof-of-concept trials for superficial or deep-seated malignancies in unselected patients. None of these trials was designed as tailored approaches for the treatment of specified targets or to select potentially more sensitive subpopulations of patients using eligibility criteria. Based upon clinical examples of targeted chemotherapy, some guidelines are described for the successful development of targeted therapeutic combinations. We also retrospectively analyse the stepwise process of generating an ongoing new clinical trial using hyperthermia as targeted therapy to evade DNA repair in combination with a DNA damaging anticancer agent to implement this new vision.

  16. Connexins and pannexins: from biology towards clinical targets.

    PubMed

    Meda, Paolo; Haefliger, Jacques-Antoine

    2016-01-01

    Efficient cell communication is a prerequisite for the coordinated function of tissues and organs. In vertebrates, this communication is mediated by a variety of mechanisms, including the exchange of molecules between cells, and between cells and the extracellular medium, via membrane channels made of connexin and pannexin proteins. These channels are a necessary component of all human tissues. Here, we review the biological essentials of the connexin and pannexin families, and the roles of these proteins in the function of cells which are central to major human diseases. We then discuss how connexins and pannexins participate in human pathology, and the clinical perspectives that this knowledge opens.

  17. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases.

    PubMed

    Brennan, Frank R; Cauvin, Annick; Tibbitts, Jay; Wolfreys, Alison

    2014-05-01

    An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and

  18. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.

    PubMed

    Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2016-01-01

    Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.

  19. [Clinical to target volume margins determination in radiotherapy for anal cancers].

    PubMed

    Libois, V; Mahé, M-A; Rio, E; Maingon, P

    2016-10-01

    There are very few data on the expansion from the clinical target volume (CTV) to the planning target volume (PTV) in the anal cancer treatment. This article aims to collect the different elements needed for the construction of a PTV from scientific data based on a literature analysis. We reviewed the articles published in the medical literature from the last 20years. They concerned setup errors and internal organ mobility of the different volumes of patients treated by conformational radiotherapy and intensity-modulated radiotherapy (anal canal, meso-rectum, common, intern and extern, inguinal and pre-sacral lymph nodes). CTV to PTV margins admitted in the guidelines and atlas of consensus groups (SFRO, RTOG, AGITG) are from 0.7 to 1cm in all directions, based on expert's opinions but not on scientific data. There are no specific studies on the canal anal mobility. Most of the data are from other pelvis cancers (gynecologic, rectum and prostate). Setup errors can be reduced by daily imaging. Patient repositioning and immobilization modalities are mostly local habits rather than scientific consensus. A three-dimensional 1cm margin is generally admitted. Margins reduction must be careful and has to be assessed.

  20. Targeted filtering reduces the complexity of UHPLC-Orbitrap-HRMS data to decipher polyphenol polymerization.

    PubMed

    Vallverdú-Queralt, Anna; Meudec, Emmanuelle; Eder, Matthias; Lamuela-Raventos, Rosa M; Sommerer, Nicolas; Cheynier, Véronique

    2017-07-15

    UHPLC-LTQ-Orbitrap-high resolution mass spectrometry (HRMS) was applied to investigate complex polymeric polyphenols, before and after acid-catalysed depolymerisation in the presence of a nucleophile (phloroglucinol). Reaction products of (-)-epicatechin with acetaldehyde formed in model solution were selected for a proof-of concept experiment. The complexity of the UHPLC-HRMS dataset obtained after 4h incubation was reduced with petroleomics-inspired strategies using Van Krevelen diagrams and modified Kendrick mass defect filtering targeting ethyl-epicatechin (C17H16O6) units. Combining these approaches with mass fragmentation and phloroglucinolysis allowed us to describe reaction of epicatechin and acetaldehyde. More than 65 compounds were found, including the homogeneous bridged derivatives (up to the undecamer), vinyl and ethanol adducts, and xanthene and xanthylium salt derivatives which were identified for the first time.

  1. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts.

    PubMed

    Griffin, Carly; Karnik, Aditya; McNulty, James; Pandey, Siyaram

    2011-01-01

    The naturally occurring Amaryllidaceae alkaloid pancratistatin exhibits potent apoptotic activity against a large panel of cancer cells lines and has an insignificant effect on noncancerous cell lines, although with an elusive cellular target. Many current chemotherapeutics induce apoptosis via genotoxic mechanisms and thus have low selectivity. The observed selectivity of pancratistatin for cancer cells promoted us to consider the hypothesis that this alkaloid targets cancer cell mitochondria rather than DNA or its replicative machinery. In this study, we report that pancratistatin decreased mitochondrial membrane potential and induced apoptotic nuclear morphology in p53-mutant (HT-29) and wild-type p53 (HCT116) colorectal carcinoma cell lines, but not in noncancerous colon fibroblast (CCD-18Co) cells. Interestingly, pancratistatin was found to be ineffective against mtDNA-depleted (ρ(0)) cancer cells. Moreover, pancratistatin induced cell death in a manner independent of Bax and caspase activation, and did not alter β-tubulin polymerization rate nor cause double-stranded DNA breaks. For the first time we report the efficacy of pancratistatin in vivo against human colorectal adenocarcinoma xenografts. Intratumor administration of pancratistatin (3 mg/kg) caused significant reduction in the growth of subcutaneous HT-29 tumors in Nu/Nu mice (n = 6), with no apparent toxicity to the liver or kidneys as indicated by histopathologic analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Altogether, this work suggests that pancratistatin may be a novel mitochondria-targeting compound that selectively induces apoptosis in cancer cells and significantly reduces tumor growth.

  2. Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission.

    PubMed

    Vazquez-Prokopec, Gonzalo M; Montgomery, Brian L; Horne, Peter; Clennon, Julie A; Ritchie, Scott A

    2017-02-01

    The widespread transmission of dengue viruses (DENV), coupled with the alarming increase of birth defects and neurological disorders associated with Zika virus, has put the world in dire need of more efficacious tools for Aedes aegypti-borne disease mitigation. We quantitatively investigated the epidemiological value of location-based contact tracing (identifying potential out-of-home exposure locations by phone interviews) to infer transmission foci where high-quality insecticide applications can be targeted. Space-time statistical modeling of data from a large epidemic affecting Cairns, Australia, in 2008-2009 revealed a complex pattern of transmission driven primarily by human mobility (Cairns accounted for ~60% of virus transmission to and from residents of satellite towns, and 57% of all potential exposure locations were nonresidential). Targeted indoor residual spraying with insecticides in potential exposure locations reduced the probability of future DENV transmission by 86 to 96%, compared to unsprayed premises. Our findings provide strong evidence for the effectiveness of combining contact tracing with residual spraying within a developed urban center, and should be directly applicable to areas with similar characteristics (for example, southern USA, Europe, or Caribbean countries) that need to control localized Aedes-borne virus transmission or to protect pregnant women's homes in areas with active Zika transmission. Future theoretical and empirical research should focus on evaluation of the applicability and scalability of this approach to endemic areas with variable population size and force of DENV infection.

  3. Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission

    PubMed Central

    Vazquez-Prokopec, Gonzalo M.; Montgomery, Brian L.; Horne, Peter; Clennon, Julie A.; Ritchie, Scott A.

    2017-01-01

    The widespread transmission of dengue viruses (DENV), coupled with the alarming increase of birth defects and neurological disorders associated with Zika virus, has put the world in dire need of more efficacious tools for Aedes aegypti–borne disease mitigation. We quantitatively investigated the epidemiological value of location-based contact tracing (identifying potential out-of-home exposure locations by phone interviews) to infer transmission foci where high-quality insecticide applications can be targeted. Space-time statistical modeling of data from a large epidemic affecting Cairns, Australia, in 2008–2009 revealed a complex pattern of transmission driven primarily by human mobility (Cairns accounted for ~60% of virus transmission to and from residents of satellite towns, and 57% of all potential exposure locations were nonresidential). Targeted indoor residual spraying with insecticides in potential exposure locations reduced the probability of future DENV transmission by 86 to 96%, compared to unsprayed premises. Our findings provide strong evidence for the effectiveness of combining contact tracing with residual spraying within a developed urban center, and should be directly applicable to areas with similar characteristics (for example, southern USA, Europe, or Caribbean countries) that need to control localized Aedes-borne virus transmission or to protect pregnant women’s homes in areas with active Zika transmission. Future theoretical and empirical research should focus on evaluation of the applicability and scalability of this approach to endemic areas with variable population size and force of DENV infection. PMID:28232955

  4. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion

    PubMed Central

    Alonso, Florian; Domingos-Pereira, Sonia; Le Gal, Loïc; Derré, Laurent; Meda, Paolo; Jichlinski, Patrice; Nardelli-Haefliger, Denise; Haefliger, Jacques-Antoine

    2016-01-01

    Endothelial connexin40 (Cx40) contributes to regulate the structure and function of vessels. We have examined whether the protein also modulates the altered growth of vessels in tumor models established in control mice (WT), mice lacking Cx40 (Cx40−/−), and mice expressing the protein solely in endothelial cells (Tie2-Cx40). Tumoral angiogenesis and growth were reduced, whereas vessel perfusion, smooth muscle cell (SMC) coverage and animal survival were increased in Cx40−/− but not Tie2-Cx40 mice, revealing a critical involvement of endothelial Cx40 in transformed tissues independently of the hypertensive status of Cx40−/− mice. As a result, Cx40−/− mice bearing tumors survived significantly longer than corresponding controls, including after a cytotoxic administration. Comparable observations were made in WT mice injected with a peptide targeting Cx40, supporting the Cx40 involvement. This involvement was further confirmed in the absence of Cx40 or by peptide-inhibition of this connexin in aorta-sprouting, matrigel plug and SMC migration assays, and associated with a decreased expression of the phosphorylated form of endothelial nitric oxide synthase. The data identify Cx40 as a potential novel target in cancer treatment. PMID:26883111

  5. Review: Targeting trachoma: Strategies to reduce the leading infectious cause of blindness.

    PubMed

    Baneke, Alex

    2012-03-01

    The World Health Organisation (WHO) estimated that in 2002, 1.3 million people were blind due to trachoma, an eye infection caused by Chlamydia trachomatis. This review examines the evidence behind current strategies to reduce the global burden of trachoma. Trachoma disappeared from most western nations before the advent of antibiotics, probably due to improvements in water, sanitation and hygiene. The current effort to target trachoma, headed by the WHO and the Alliance for the Global Elimination of Trachoma by 2020, is called the SAFE (Surgery, Antibiotics, Facial cleanliness and Environmental improvement) strategy. Surgery for trachoma is more cost effective than extra-capsular cataract surgery and can reverse trichiasis (in-growing eyelashes), but needs to be repeated every few years. A single oral dose of azithromycin can eliminate trachoma infection, but cannot be used in infants under 6 months old, and needs to be given every few years in communities with a high prevalence of disease. Improved health education and facial hygiene has been linked to a lower incidence of trachoma, but the evidence is less clear than for surgery and antibiotics. Pit latrines and spraying with permethrin insecticide may reduce the spread of trachoma via eye-seeking flies.

  6. Cyclophosphamide followed by intravenous targeted busulfan for allogeneic hematopoietic cell transplantation: pharmacokinetics and clinical outcomes

    PubMed Central

    Rezvani, Andrew R.; McCune, Jeannine S.; Storer, Barry E.; Batchelder, Ami; Kida, Aiko; Deeg, H. Joachim; McDonald, George B.

    2013-01-01

    Targeted busulfan/cyclophosphamide (TBU/CY) for allogeneic hematopoietic cell transplantation (HCT) carries a high risk of sinusoidal obstruction syndrome (SOS) in patients transplanted for myelofibrosis. We tested the hypothesis that reversing the sequence of administration (from TBU/CY to CY/TBU) will reduce SOS and day +100 non-relapse mortality (NRM). We enrolled 51 patients with myelofibrosis (n=20), acute myeloid leukemia (AML, n=20), or myelodysplastic syndrome (MDS, n=11) in a prospective trial of CY/TBU conditioning for HCT. Cyclophosphamide 60 mg/kg/day IV for two days was followed by daily IV BU for four days, targeted to a concentration at steady state (Css) of 800–900 ng/mL. CY/TBU-conditioned patients had higher exposure to CY (p<0.0001) and lower exposure to 4-hydroxyCY (p<0.0001) compared to TBU/CY-conditioned patients. Clinical outcomes were compared with controls (n=271) conditioned with TBU/CY for the same indications. In patients with myelofibrosis, CY/TBU conditioning was associated with a significantly reduced incidence of SOS (0% vs. 30% after TBU/CY, p=0.006), while SOS incidence was low in both cohorts with AML/MDS. Day +100 mortality was significantly lower in the CY/TBU cohort (2% vs. 13%, p=0.01). CY/TBU conditioning markedly impacted CY pharmacokinetics and was associated with significantly lower incidences of SOS and day +100 mortality, suggesting that CY/TBU is superior to TBU/CY as conditioning for patients with myelofibrosis. PMID:23583825

  7. Inhibition of the mammalian target of rapamycin complex 1 signaling pathway reduces itch behaviour in mice.

    PubMed

    Obara, Ilona; Medrano, Maria C; Signoret-Genest, Jérémy; Jiménez-Díaz, Lydia; Géranton, Sandrine M; Hunt, Stephen P

    2015-08-01

    Activated mammalian target of rapamycin (P-mTOR) has been shown to maintain the sensitivity of subsets of small-diameter primary afferent A-nociceptors. Local or systemic inhibition of the mTOR complex 1 (mTORC1) pathway reduced punctate mechanical and cold sensitivity in neuropathic pain and therefore offered a new approach to chronic pain control. In this study, we have investigated the effects of the rapamycin analog temsirolimus (CCI-779) on itch. Bouts of scratching induced by the histamine-dependent pruritogenic compound 48/80 and histamine-independent pruritogens, chloroquine and SLIGRL-NH2, injected intradermally were significantly reduced by local (intradermal) or systemic (intraperitoneal, i.p.) pretreatment with CCI-779. We also investigated the action of metformin, a drug taken to control type 2 diabetes and recently shown to inhibit mTORC1 in vivo. Although the response to nonhistaminergic stimuli was reduced at all of the time points tested, scratching to compound 48/80 was modified by metformin only when the drug was injected 24 hours before this pruritogen. We also examined the colocalization of P-mTOR with gastrin-releasing peptide, a putative marker for some itch-sensitive primary afferents, and found that P-mTOR was coexpressed in less than 5% of gastrin-releasing peptide-positive fibers in the mouse skin. Taken together, the data highlight the role that P-mTOR-positive A-fibers play in itch signaling and underline the importance of the mTORC1 pathway in the regulation of homeostatic primary afferent functions such as pain and itch. The actions of the antidiabetic drug metformin in ameliorating nonhistamine-mediated itch also suggest a new therapeutic route for the control of this category of pruritus.

  8. Stromal cell derived factor-1 (SDF-1) targeting reperfusion reduces myocardial infarction in isolated rat hearts.

    PubMed

    Jang, Young-Ho; Kim, June-Hong; Ban, Changill; Ahn, Kyohan; Cheong, Jae-Hun; Kim, Hyung-Hoi; Kim, Jung-Soo; Park, Yong-Hyun; Kim, Jun; Chun, Kook-Jin; Lee, Gyeong-Ho; Kim, Miju; Kim, Cheolmin; Xu, Zhelong

    2012-10-01

    Recent studies have shown that stromal cell derived factor-1 (SDF-1), first known as a cytokine involved in recruiting stem cells into injured organs, confers myocardial protection in myocardial infarction, which is not dependent on stem cell recruitment but related with modulation of ischemia-reperfusion (I/R) injury. However, the effect of SDF has been studied only in a preischemic exposure model, which is not clinically relevant if SDF is to be used as a therapeutic agent. Our study was aimed at evaluating whether or not SDF-1 confers cardioprotection during the reperfusion period. Hearts from SD rats were isolated and perfused with the Langendorff system. Proximal left coronary artery ligation, reperfusion, and SDF perfusion in KH buffer was done according to study protocol. Area of necrosis (AN) relative to area at risk (AR) was the primary endpoint of the study. Significant reduction of AN/AR by SDF in an almost dose-dependent manner was noted during both the preischemic exposure and reperfusion periods. In particular, infusion of a high concentration of SDF (25 nM/L) resulted in a dramatic reduction of infarct size, which was greater than that achieved with ischemic pre- or postconditioning. SDF perfusion during reperfusion was associated with a similar significant reduction of infarct size as preischemic SDF exposure. Further studies are warranted to assess the potential of SDF as a therapeutic agent for reducing I/R injury in clinical practice.

  9. A target-controlled infusion regimen for reducing remifentanil-induced coughs

    PubMed Central

    Kim, Jong-Yeop; Chae, Yun Jeong; Kim, Jin-Soo; Park, Yoon-Jeong

    2012-01-01

    Background This study evaluates the effectiveness of the target-controlled infusion (TCI) of remifentanil through stepwise increases in the effect-site concentration (Ceff) in preventing coughs. Methods In a preliminary study, we randomly selected 140 patients to receive remifentanil through two-step increases in Ceff (1.0 ng/ml to 4.0 ng/ml: Group R1-4; 2.0 ng/ml to 4.0 ng/ml: Group R2-4). Based on the results of the preliminary study, we employed another sample of 140 patients and implemented a three-step increase in TCI (1.0 ng/ml to 2.0 ng/ml to 4.0 ng/ml: Group R1-2-4). We then compared this treatment with direct targeting based on 4.0 ng/ml TCI (Group R4). We recorded the episodes of coughs, rating them as mild (1-2), moderate (3-4), or severe (5 or more). Results In Group R1-4, one patient (1.5%) coughed during the first step, and five (7.3%) coughed during the second step. In Group R2-4, nine (13.2%) coughed during the first step, but none coughed during the next step. Only one patient had a mild cough during the three-step increase in TCI, that is, patients in Group R1-2-4 were significantly less likely to cough than those in Group R4 (P < 0.001). Conclusions Stepwise increases in the TCI of remifentanil reduced the incidence of remifentanil-induced coughing, and the three-step increase in TCI nearly eliminated remifentanil-induced coughing. PMID:22870362

  10. AMPA GluA1-flip targeted oligonucleotide therapy reduces neonatal seizures and hyperexcitability

    PubMed Central

    Lykens, Nicole M.; Reddi, Jyoti M.

    2017-01-01

    Glutamate-activated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) mediate the majority of excitatory neurotransmission in brain and thus are major drug targets for diseases associated with hyperexcitability or neurotoxicity. Due to the critical nature of AMPA-Rs in normal brain function, typical AMPA-R antagonists have deleterious effects on cognition and motor function, highlighting the need for more precise modulators. A dramatic increase in the flip isoform of alternatively spliced AMPA-R GluA1 subunits occurs post-seizure in humans and animal models. GluA1-flip produces higher gain AMPA channels than GluA1-flop, increasing network excitability and seizure susceptibility. Splice modulating oligonucleotides (SMOs) bind to pre-mRNA to influence alternative splicing, a strategy that can be exploited to develop more selective drugs across therapeutic areas. We developed a novel SMO, GR1, which potently and specifically decreased GluA1-flip expression throughout the brain of neonatal mice lasting at least 60 days after single intracerebroventricular injection. GR1 treatment reduced AMPA-R mediated excitatory postsynaptic currents at hippocampal CA1 synapses, without affecting long-term potentiation or long-term depression, cellular models of memory, or impairing GluA1-dependent cognition or motor function in mice. Importantly, GR1 demonstrated anti-seizure properties and reduced post-seizure hyperexcitability in neonatal mice, highlighting its drug candidate potential for treating epilepsies and other neurological diseases involving network hyperexcitability. PMID:28178321

  11. SU-E-J-34: Clinical Evaluation of Targeting Accuracy and Tractogrphy Delineation of Radiosurgery

    SciTech Connect

    Juh, R; Suh, T; Kim, Y; Han, J; Kim, C; Oh, C; Kim, D

    2014-06-01

    Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 male, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodose line underwent 1.5Tesla MR trigeminal nerve . Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.

  12. Distorted Coarse Axon Targeting and Reduced Dendrite Connectivity Underlie Dysosmia after Olfactory Axon Injury

    PubMed Central

    Iwata, Ryo; Fujimoto, Satoshi; Aihara, Shuhei

    2016-01-01

    The glomerular map in the olfactory bulb (OB) is the basis for odor recognition. Once established during development, the glomerular map is stably maintained throughout the life of an animal despite the continuous turnover of olfactory sensory neurons (OSNs). However, traumatic damage to OSN axons in the adult often leads to dysosmia, a qualitative and quantitative change in olfaction in humans. A mouse model of dysosmia has previously indicated that there is an altered glomerular map in the OB after the OSN axon injury; however, the underlying mechanisms that cause the map distortion remain unknown. In this study, we examined how the glomerular map is disturbed and how the odor information processing in the OB is affected in the dysosmia model mice. We found that the anterior–posterior coarse targeting of OSN axons is disrupted after OSN axon injury, while the local axon sorting mechanisms remained. We also found that the connectivity of mitral/tufted cell dendrites is reduced after injury, leading to attenuated odor responses in mitral/tufted cells. These results suggest that existing OSN axons are an essential scaffold for maintaining the integrity of the olfactory circuit, both OSN axons and mitral/tufted cell dendrites, in the adult. PMID:27785463

  13. Microinterventions Targeting Regulatory Focus and Regulatory Fit Selectively Reduce Dysphoric and Anxious Mood

    PubMed Central

    Strauman, Timothy J.; Socolar, Yvonne; Kwapil, Lori; Cornwell, James F. M.; Franks, Becca; Sehnert, Steen; Higgins, E. Tory

    2015-01-01

    Depression and generalized anxiety, separately and as comorbid states, continue to represent a significant public health challenge. Current cognitive-behavioral treatments are clearly beneficial but there remains a need for continued development of complementary interventions. This manuscript presents two proof-of-concept studies, in analog samples, of “microinterventions” derived from regulatory focus and regulatory fit theories and targeting dysphoric and anxious symptoms. In Study 1, participants with varying levels of dysphoric and/or anxious mood were exposed to a brief intervention either to increase or to reduce engagement in personal goal pursuit, under the hypothesis that dysphoria indicates under-engagement of the promotion system whereas anxiety indicates over-engagement of the prevention system. In Study 2, participants with varying levels of dysphoric and/or anxious mood received brief training in counterfactual thinking, under the hypothesis that inducing individuals in a state of promotion failure to generate subtractive counterfactuals for past failures (a non-fit) will lessen their dejection/depression-related symptoms, whereas inducing individuals in a state of prevention failure to generate additive counterfactuals for past failures (a non-fit) will lessen their agitation/anxiety-related symptoms. In both studies, we observed discriminant patterns of reduction in distress consistent with the hypothesized links between dysfunctional states of the two motivational systems and dysphoric versus anxious symptoms. PMID:26163353

  14. Extraction of aqueous minerals on Mars using CRISM based Targeted Reduced Data Records

    NASA Astrophysics Data System (ADS)

    Gurunadham, R.; Kumar, S.

    2014-11-01

    Many scientific studies have been carried out to extract the aqueous mineral signatures on the surface of Mars, which has a record of all minerals such as silicates form by magmatic processes and aqueous minerals in the presence of watery environment. To observe these watery conditions, a visible/shortwave infrared mineral mapping camera on Mars Reconnaissance Orbiter (MRO) called Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is used. The aim of this research is to extract the aqueous minerals on Mars using CRISM sensor. Gale Crater is selected for this study because of its past liquid water history.Gale is ~154 km in diameter and centered near 5.3° S, 138° E. Gale Crater has an interior mound named as "Aeolis Mons", which is nearly 100 km wide and 5 km high, consisting of layered sulfates and phyllosilicates. The CRISM reflectance (I/F) targeted reduced data records data of Gale crater, FRT000233AC, centred at 4°25' S and 137°20' E with high spatial (18 m, 35 m / pixel) and spectral resolution (362-1020 nm (VNIR), 1002-3920 nm (IR), 655 nm / channel) with 545 bands is acquired for this study. The detection and quantification of minerals has been carried out by using a model called modified Gaussian model (MGM). MGM is an approach that uses modified Gaussians in wave number space to model absorption shapes and fits them to a reflectance spectrum.

  15. Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies

    PubMed Central

    Matsuoka, Tasuku; Yashiro, Masakazu

    2016-01-01

    Pancreatic cancer is the fourth most common cause of cancer deaths worldwide. Although recent therapeutic developments for patients with pancreatic cancer have provided survival benefits, the outcomes for patients with pancreatic cancer remain unsatisfactory. Molecularly targeted cancer therapy has advanced in the past decade with the use of a number of pathways as candidates of therapeutic targets. This review summarizes the molecular features of this refractory disease while focusing on the recent clinical and experimental findings on pancreatic cancer. It also discusses the data supporting current standard clinical outcomes, and offers conclusions that may improve the management of pancreatic cancer in the future. PMID:26811624

  16. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma.

    PubMed

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben; Palumbo, Antonio; Gay, Francesca; Laubach, Jacob P; Malavasi, Fabio; Avet-Loiseau, Hervé; Mateos, Maria-Victoria; Sonneveld, Pieter; Lokhorst, Henk M; Richardson, Paul G

    2016-02-11

    Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM, and preliminary results from studies with relapsed/refractory patients have shown enhanced therapeutic efficacy when daratumumab and isatuximab are combined with other agents. Furthermore, although elotuzumab (anti-SLAMF7) has no single agent activity in advanced MM, randomized trials in relapsed/refractory MM have demonstrated significantly improved progression-free survival when elotuzumab is added to lenalidomide-dexamethasone or bortezomib-dexamethasone. Importantly, there has been no significant additive toxicity when these monoclonal antibodies are combined with other anti-MM agents, other than infusion-related reactions specific to the therapeutic antibody. Prevention and management of infusion reactions is important to avoid drug discontinuation, which may in turn lead to reduced efficacy of anti-MM therapy. Therapeutic antibodies interfere with several laboratory tests. First, interference of therapeutic antibodies with immunofixation and serum protein electrophoresis assays may lead to underestimation of complete response. Strategies to mitigate interference, based on shifting the therapeutic antibody band, are in development. Furthermore, daratumumab, and probably also other CD38-targeting antibodies, interfere with blood compatibility testing and thereby complicate the safe release of blood products. Neutralization of the therapeutic CD38 antibody or CD38 denaturation on reagent red blood cells mitigates daratumumab interference with transfusion laboratory serologic tests. Finally, therapeutic antibodies may complicate flow cytometric evaluation of normal and neoplastic plasma cells, since the therapeutic antibody can affect the availability of the epitope for binding

  17. Statistical inference on censored data for targeted clinical trials under enrichment design.

    PubMed

    Chen, Chen-Fang; Lin, Jr-Rung; Liu, Jen-Pei

    2013-01-01

    For the traditional clinical trials, inclusion and exclusion criteria are usually based on some clinical endpoints; the genetic or genomic variability of the trial participants are not totally utilized in the criteria. After completion of the human genome project, the disease targets at the molecular level can be identified and can be utilized for the treatment of diseases. However, the accuracy of diagnostic devices for identification of such molecular targets is usually not perfect. Some of the patients enrolled in targeted clinical trials with a positive result for the molecular target might not have the specific molecular targets. As a result, the treatment effect may be underestimated in the patient population truly with the molecular target. To resolve this issue, under the exponential distribution, we develop inferential procedures for the treatment effects of the targeted drug based on the censored endpoints in the patients truly with the molecular targets. Under an enrichment design, we propose using the expectation-maximization algorithm in conjunction with the bootstrap technique to incorporate the inaccuracy of the diagnostic device for detection of the molecular targets on the inference of the treatment effects. A simulation study was conducted to empirically investigate the performance of the proposed methods. Simulation results demonstrate that under the exponential distribution, the proposed estimator is nearly unbiased with adequate precision, and the confidence interval can provide adequate coverage probability. In addition, the proposed testing procedure can adequately control the size with sufficient power. On the other hand, when the proportional hazard assumption is violated, additional simulation studies show that the type I error rate is not controlled at the nominal level and is an increasing function of the positive predictive value. A numerical example illustrates the proposed procedures.

  18. Clinical Evaluation of Stereotactic Target Localization Using 3-Tesla MRI for Radiosurgery Planning

    SciTech Connect

    MacFadden, Derek; Zhang Beibei; Brock, Kristy K.; Hodaie, Mojgan; Laperriere, Normand; Schwartz, Michael; Tsao, May; Stainsby, Jeffrey; Lockwood, Gina; Mikulis, David; Menard, Cynthia

    2010-04-15

    Purpose: Increasing the magnetic resonance imaging (MRI) field strength can improve image resolution and quality, but concerns remain regarding the influence on geometric fidelity. The objectives of the present study were to spatially investigate the effect of 3-Tesla (3T) MRI on clinical target localization for stereotactic radiosurgery. Methods and Materials: A total of 39 patients were enrolled in a research ethics board-approved prospective clinical trial. Imaging (1.5T and 3T MRI and computed tomography) was performed after stereotactic frame placement. Stereotactic target localization at 1.5T vs. 3T was retrospectively analyzed in a representative cohort of patients with tumor (n = 4) and functional (n = 5) radiosurgical targets. The spatial congruency of the tumor gross target volumes was determined by the mean discrepancy between the average gross target volume surfaces at 1.5T and 3T. Reproducibility was assessed by the displacement from an averaged surface and volume congruency. Spatial congruency and the reproducibility of functional radiosurgical targets was determined by comparing the mean and standard deviation of the isocenter coordinates. Results: Overall, the mean absolute discrepancy across all patients was 0.67 mm (95% confidence interval, 0.51-0.83), significantly <1 mm (p < .010). No differences were found in the overall interuser target volume congruence (mean, 84% for 1.5T vs. 84% for 3T, p > .4), and the gross target volume surface mean displacements were similar within and between users. The overall average isocenter coordinate discrepancy for the functional targets at 1.5T and 3T was 0.33 mm (95% confidence interval, 0.20-0.48), with no patient-specific differences between the mean values (p >.2) or standard deviations (p >.1). Conclusion: Our results have provided clinically relevant evidence supporting the spatial validity of 3T MRI for use in stereotactic radiosurgery under the imaging conditions used.

  19. Advances in clinical next-generation sequencing: target enrichment and sequencing technologies.

    PubMed

    Ballester, Leomar Y; Luthra, Rajyalakshmi; Kanagal-Shamanna, Rashmi; Singh, Rajesh R

    2016-01-01

    The huge parallel sequencing capabilities of next generation sequencing technologies have made them the tools of choice to characterize genomic aberrations for research and diagnostic purposes. For clinical applications, screening the whole genome or exome is challenging owing to the large genomic area to be sequenced, associated costs, complexity of data, and lack of known clinical significance of all genes. Consequently, routine screening involves limited markers with established clinical relevance. This process, referred to as targeted genome sequencing, requires selective enrichment of the genomic areas comprising these markers via one of several primer or probe-based enrichment strategies, followed by sequencing of the enriched genomic areas. Here, the authors review current target enrichment approaches and next generation sequencing platforms, focusing on the underlying principles, capabilities, and limitations of each technology along with validation and implementation for clinical testing.

  20. Inflammatory therapeutic targets in coronary atherosclerosis—from molecular biology to clinical application

    PubMed Central

    Linden, Fabian; Domschke, Gabriele; Erbel, Christian; Akhavanpoor, Mohammadreza; Katus, Hugo A.; Gleissner, Christian A.

    2014-01-01

    Atherosclerosis is the leading cause of death worldwide. Over the past two decades, it has been clearly recognized that atherosclerosis is an inflammatory disease of the arterial wall. Accumulating data from animal experiments have supported this hypothesis, however, clinical applications making use of this knowledge remain scarce. In spite of optimal interventional and medical therapy, the risk for recurrent myocardial infarction remains by about 20% over 3 years after acute coronary syndromes, novel therapies to prevent atherogenesis or treat atherosclerosis are urgently needed. This review summarizes selected potential molecular inflammatory targets that may be of clinical relevance. We also review recent and ongoing clinical trails that target inflammatory processes aiming at preventing adverse cardiovascular events. Overall, it seems surprising that translation of basic science into clinical practice has not been a great success. In conclusion, we propose to focus on specific efforts that promote translational science in order to improve outcome and prognosis of patients suffering from atherosclerosis. PMID:25484870

  1. Review of novel therapeutic targets for improving heart failure treatment based on experimental and clinical studies

    PubMed Central

    Bonsu, Kwadwo Osei; Owusu, Isaac Kofi; Buabeng, Kwame Ohene; Reidpath, Daniel Diamond; Kadirvelu, Amudha

    2016-01-01

    Heart failure (HF) is a major public health priority due to its epidemiological transition and the world’s aging population. HF is typified by continuous loss of contractile function with reduced, normal, or preserved ejection fraction, elevated vascular resistance, fluid and autonomic imbalance, and ventricular dilatation. Despite considerable advances in the treatment of HF over the past few decades, mortality remains substantial. Pharmacological treatments including β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone antagonists have been proven to prolong the survival of patients with HF. However, there are still instances where patients remain symptomatic, despite optimal use of existing therapeutic agents. This understanding that patients with chronic HF progress into advanced stages despite receiving optimal treatment has increased the quest for alternatives, exploring the roles of additional pathways that contribute to the development and progression of HF. Several pharmacological targets associated with pathogenesis of HF have been identified and novel therapies have emerged. In this work, we review recent evidence from proposed mechanisms to the outcomes of experimental and clinical studies of the novel pharmacological agents that have emerged for the treatment of HF. PMID:27350750

  2. Comparison of FDA Approved Kinase Targets to Clinical Trial Ones: Insights from Their System Profiles and Drug-Target Interaction Networks

    PubMed Central

    Xu, Jingyu; Wang, Panpan; Yang, Hong; Li, Yinghong; Yu, Chunyan; Tian, Yubin

    2016-01-01

    Kinase is one of the most productive classes of established targets, but the majority of approved drugs against kinase were developed only for cancer. Intensive efforts were therefore exerted for releasing its therapeutic potential by discovering new therapeutic area. Kinases in clinical trial could provide great opportunities for treating various diseases. However, no systematic comparison between system profiles of established targets and those of clinical trial ones was conducted. The reveal of probable difference or shift of trend would help to identify key factors defining druggability of established targets. In this study, a comparative analysis of system profiles of both types of targets was conducted. Consequently, the systems profiles of the majority of clinical trial kinases were identified to be very similar to those of established ones, but percentages of established targets obeying the system profiles appeared to be slightly but consistently higher than those of clinical trial targets. Moreover, a shift of trend in the system profiles from the clinical trial to the established targets was identified, and popular kinase targets were discovered. In sum, this comparative study may help to facilitate the identification of the druggability of established drug targets by their system profiles and drug-target interaction networks. PMID:27547755

  3. Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research.

    PubMed

    Forte, Amalia; Rinaldi, Barbara; Berrino, Liberato; Rossi, Francesco; Galderisi, Umberto; Cipollaro, Marilena

    2014-12-01

    Restenosis is the pathophysiological process occurring in 10-15% of patients submitted to revascularization procedures of coronary, carotid and peripheral arteries. It can be considered as an excessive healing reaction of the vascular wall subjected to arterial/venous bypass graft interposition, endarterectomy or angioplasty. The advent of bare metal stents, drug-eluting stents and of the more recent drug-eluting balloons, have significantly reduced, but not eliminated, the incidence of restenosis, which remains a clinically relevant problem. Biomedical research in pre-clinical animal models of (re)stenosis, despite its limitations, has contributed enormously to the identification of processes involved in restenosis progression, going well beyond the initial dogma of a primarily proliferative disease. Although the main molecular and cellular mechanisms underlying restenosis have been well described, new signalling molecules and cell types controlling the progress of restenosis are continuously being discovered. In particular, microRNAs and vascular progenitor cells have recently been shown to play a key role in this pathophysiological process. In addition, the advanced highly sensitive high-throughput analyses of molecular alterations at the transcriptome, proteome and metabolome levels occurring in injured vessels in animal models of disease and in human specimens serve as a basis to identify novel potential therapeutic targets for restenosis. Molecular analyses are also contributing to the identification of reliable circulating biomarkers predictive of post-interventional restenosis in patients, which could be potentially helpful in the establishment of an early diagnosis and therapy. The present review summarizes the most recent and promising therapeutic strategies identified in experimental models of (re)stenosis and potentially translatable to patients subjected to revascularization procedures.

  4. Targeting the schizophrenia genome: a fast track strategy from GWAS to clinic

    PubMed Central

    Lencz, T; Malhotra, A K

    2015-01-01

    The Psychiatric Genomics Consortium–Schizophrenia Workgroup (PGC–SCZ) has recently published a genomewide association study (GWAS) identifying >100 genetic loci, encompassing a total of 341 protein-coding genes, attaining genomewide significance for susceptibility to schizophrenia. Given the extremely long time (12–15 years) and expense (>$1 billion) associated with the development of novel drug targets, repurposing of drugs with known and validated targets may be the most expeditious path toward deriving clinical utility from these GWAS findings. In the present study, we examined all genes within loci implicated by the PGC–SCZ GWAS against databases of targets of both approved and registered pharmaceutical compounds. We identified 20 potential schizophrenia susceptibility genes that encode proteins that are the targets of approved drugs. Of these, we prioritized genes/targets that are of clear neuropsychiatric interest and that are also sole members of the linkage disequilibrium block surrounding a PGC–SCZ GWAS hit. In addition to DRD2, 5 genes meet these criteria: CACNA1C, CACNB2, CACNA1I, GRIN2A and HCN1. An additional 20 genes coding for proteins that are the targets of drugs in registered clinical trials, but without approved indications, were also identified. Although considerable work is still required to fully explicate the biological implications of the PGC–SCZ GWAS results, pathways related to these known, druggable targets may represent a promising starting point. PMID:25869805

  5. F8-SIP mediated targeted photodynamic therapy leads to microvascular dysfunction and reduced glioma growth.

    PubMed

    Acker, G; Palumbo, A; Neri, D; Vajkoczy, P; Czabanka, M

    2016-08-01

    The extra domain A (ED A) of fibronectin has been identified as a tumor vessel specific neovascular marker in glioma. Antibody based vascular targeting against ED A of fibronectin allows precise accumulation of photosensitizer in glioma microvasculature and thereby promises to overcome drawbacks of current photodynamic therapy (PDT) for glioma treatment. Our aim was to characterize microcirculatory consequences of F8-small immunoprotein (SIP) mediated PDT by intravital microscopy (IVM) and to analyze the effects on glioma growth. For IVM SF126 glioma cells were implanted into dorsal skinfold-chamber of nude mice. PDT was performed after intravenous injection of photosensitizer (PS)-coupled F8-SIP or PBS (n = 4). IVM was performed before and after PDT for 4 days. Analysis included total and functional (TVD, FVD) vessel densities, perfusion index (PI), microvascular permeability and blood flow rate (Q). To assess tumor growth SF126 glioma cells were implanted subcutaneously. PDT was performed as a single and repetitive treatment after PS-F8-SIP injection (n = 5). Subcutaneous tumors were treated after uncoupled F8-SIP injection as control group (n = 5). PDT induced microvascular stasis and thrombosis with reduced FVD (24 h: 115.98 ± 0.7 vs. 200.8 ± 61.9 cm/cm(2)) and PI (39 ± 11 vs. 70 ± 10 %), whereas TVD was not altered (298 ± 39.2 vs. 278.2 ± 51 cm/cm(2)). Microvascular dysfunction recovered 4 days after treatment. Microvascular dysfunction led to a temporary reduction of glioma growth in the first 48 h after treatment with complete recovery 5 days after treatment. Repetitive PDT resulted in sustained reduction of tumor growth. F8-SIP mediated PDT leads to microvascular dysfunction and reduced glioma growth in a preclinical glioma model with recovery of microcirculation 4 days after treatment. Repetitive application of PDT overcomes microvascular recovery and leads to prolonged antiglioma effects.

  6. Reducing HIV infection in people who inject drugs is impossible without targeting recently-infected subjects

    PubMed Central

    Vasylyeva, Tetyana I.; Friedman, Samuel R.; Lourenco, Jose; Gupta, Sunetra; Hatzakis, Angelos; Pybus, Oliver G.; Katzourakis, Aris; Smyrnov, Pavlo; Karamitros, Timokratis; Paraskevis, Dimitrios; Magiorkinis, Gkikas

    2016-01-01

    Objective: Although our understanding of viral transmission among people who inject drugs (PWID) has improved, we still know little about when and how many times each injector transmits HIV throughout the duration of infection. We describe HIV dynamics in PWID to evaluate which preventive strategies can be efficient. Design: Due to the notably scarce interventions, HIV-1 spread explosively in Russia and Ukraine in 1990s. By studying this epidemic between 1995 and 2005, we characterized naturally occurring transmission dynamics of HIV among PWID. Method: We combined publicly available HIV pol and env sequences with prevalence estimates from Russia and Ukraine under an evolutionary epidemiology framework to characterize HIV transmissibility between PWID. We then constructed compartmental models to simulate HIV spread among PWID. Results: In the absence of interventions, each injector transmits on average to 10 others. Half of the transmissions take place within 1 month after primary infection, suggesting that the epidemic will expand even after blocking all the post–first month transmissions. Primary prevention can realistically target the first month of infection, and we show that it is very efficient to control the spread of HIV-1 in PWID. Treating acutely infected on top of primary prevention is notably effective. Conclusion: As a large proportion of transmissions among PWID occur within 1 month after infection, reducing and delaying transmissions through scale-up of harm reduction programmes should always form the backbone of HIV control strategies in PWID. Growing PWID populations in the developing world, where primary prevention is scarce, constitutes a public health time bomb. PMID:27824626

  7. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    SciTech Connect

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-02-15

    Introduction: This study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. Methods: The CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error and random error set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. Results: The margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. Conclusions: The delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors.

  8. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites

    PubMed Central

    Naito, Yuki; Hino, Kimihiro; Bono, Hidemasa; Ui-Tei, Kumiko

    2015-01-01

    Summary: CRISPRdirect is a simple and functional web server for selecting rational CRISPR/Cas targets from an input sequence. The CRISPR/Cas system is a promising technique for genome engineering which allows target-specific cleavage of genomic DNA guided by Cas9 nuclease in complex with a guide RNA (gRNA), that complementarily binds to a ∼20 nt targeted sequence. The target sequence requirements are twofold. First, the 5′-NGG protospacer adjacent motif (PAM) sequence must be located adjacent to the target sequence. Second, the target sequence should be specific within the entire genome in order to avoid off-target editing. CRISPRdirect enables users to easily select rational target sequences with minimized off-target sites by performing exhaustive searches against genomic sequences. The server currently incorporates the genomic sequences of human, mouse, rat, marmoset, pig, chicken, frog, zebrafish, Ciona, fruit fly, silkworm, Caenorhabditis elegans, Arabidopsis, rice, Sorghum and budding yeast. Availability: Freely available at http://crispr.dbcls.jp/. Contact: y-naito@dbcls.rois.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25414360

  9. The impact of patient support programs on adherence, clinical, humanistic, and economic patient outcomes: a targeted systematic review

    PubMed Central

    Ganguli, Arijit; Clewell, Jerry; Shillington, Alicia C

    2016-01-01

    Background Patient support programs (PSPs), including medication management and counseling, have the potential to improve care in chronic disease states with complex therapies. Little is known about the program’s effects on improving clinical, adherence, humanistic, and cost outcomes. Purpose To conduct a targeted review describing medical conditions in which PSPs have been implemented; support delivery components (eg, face-to-face, phone, mail, and internet); and outcomes associated with implementation. Data sources MEDLINE – 10 years through March 2015 with supplemental handsearching of reference lists. Study selection English-language trials and observational studies of PSPs providing at minimum, counseling for medication management, measurement of ≥1 clinical outcome, and a 3-month follow-up period during which outcomes were measured. Data extraction Program characteristics and related clinical, adherence, humanistic, and cost outcomes were abstracted. Study quality and the overall strength of evidence were reviewed using standard criteria. Data synthesis Of 2,239 citations, 64 studies met inclusion criteria. All targeted chronic disease processes and the majority (48 [75%]) of programs offered in-clinic, face-to-face support. All but 9 (14.1%) were overseen by allied health care professionals (eg, nurses, pharmacists, paraprofessionals). Forty-one (64.1%) reported at least one significantly positive clinical outcome. The most frequent clinical outcome impacted was adherence, where 27 of 41 (66%) reported a positive outcome. Of 42 studies measuring humanistic outcomes (eg, quality of life, functional status), 27 (64%) reported significantly positive outcomes. Only 15 (23.4%) programs reported cost or utilization-related outcomes, and, of these, 12 reported positive impacts. Conclusion The preponderance of evidence suggests a positive impact of PSPs on adherence, clinical and humanistic outcomes. Although less often measured, health care utilization and

  10. Clinical Trials: D-Methionine to Reduce Noise-Induced Hearing Loss. Phase 3

    DTIC Science & Technology

    2014-03-01

    placebo-controlled Phase 3 clinical trial of oral D-met to reduce noise-induced hearing loss (NIHL) and tinnitus . The goal of the study is to...primary objective of this study is to determine the efficacy of D-Met in preventing NIHL or reducing tinnitus secondary to a minimum of 500 rounds...an oral, orange flavored suspension of D-methionine can prevent noise-induced hearing loss (NIHL) and tinnitus in our troops. Hypotheses

  11. Phase 3 Clinical Trials: D-Methionine to Reduce Noise-Induced Hearing Loss

    DTIC Science & Technology

    2013-03-01

    Phase 3 clinical trial of oral D-met to reduce noise-induced hearing loss (NIHL) and tinnitus . The goal of the study is to develop a safe, oral...this study is to determine the efficacy of D- Met in preventing NIHL or reducing tinnitus secondary to a minimum of 500 rounds of M-16 weapons training...and tinnitus in our troops. Hypotheses: Primary Hypothesis: Administration of oral D-methionine prior to and during weapons training will

  12. Use of clinical simulations for patient education: targeting an untapped audience.

    PubMed

    Siwe, Karin; Berterö, Carina; Pugh, Carla; Wijma, Barbro

    2009-01-01

    In most cases, the health professional has been the target for simulation based learning curricula. We have developed a simulation based curriculum for patient education. In our curriculum lay-women learn how to perform the clinical female pelvic examination using a manikin-based trainer. Learner assessments show that prior negative expectations turned into positive expectations regarding future pelvic examinations.

  13. Access to a polymerase chain reaction assay method targeting 13 respiratory viruses can reduce antibiotics: a randomised, controlled trial

    PubMed Central

    2011-01-01

    Background Viral respiratory infections are common worldwide and range from completely benign disease to life-threatening illness. Symptoms can be unspecific, and an etiologic diagnosis is rarely established because of a lack of suitable diagnostic tools. Improper use of antibiotics is common in this setting, which is detrimental in light of the development of bacterial resistance. It has been suggested that the use of diagnostic tests could reduce antibiotic prescription rates. The objective of this study was to evaluate whether access to a multiplex polymerase chain reaction (PCR) assay panel for etiologic diagnosis of acute respiratory tract infections (ARTIs) would have an impact on antibiotic prescription rate in primary care clinical settings. Methods Adult patients with symptoms of ARTI were prospectively included. Nasopharyngeal and throat swabs were analysed by using a multiplex real-time PCR method targeting thirteen viruses and two bacteria. Patients were recruited at 12 outpatient units from October 2006 through April 2009, and samples were collected on the day of inclusion (initial visit) and after 10 days (follow-up visit). Patients were randomised in an open-label treatment protocol to receive a rapid or delayed result (on the following day or after eight to twelve days). The primary outcome measure was the antibiotic prescription rate at the initial visit, and the secondary outcome was the total antibiotic prescription rate during the study period. Results A total sample of 447 patients was randomised. Forty-one were excluded, leaving 406 patients for analysis. In the group of patients randomised for a rapid result, 4.5% (9 of 202) of patients received antibiotics at the initial visit, compared to 12.3% (25 of 204) (P = 0.005) of patients in the delayed result group. At follow-up, there was no significant difference between the groups: 13.9% (28 of 202) in the rapid result group and 17.2% (35 of 204) in the delayed result group (P = 0

  14. Comparative results of an obesity clinic and a commercial weight-reducing organization.

    PubMed

    Willians, A E; Duncan, B

    1976-05-22

    Members of a commercial weight-reducing organization achieved, on average, almost double the weight loss of patients attending an obestiy clinic, where an extensive regime of drugs and other therapies was offered. It is suggested that medical expertise could be used to supplement the benefits for patients attending community groups, rather than in the individual treatment of obesity.

  15. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    SciTech Connect

    Morace, A.; Bellei, C.; Patel, P. K.; Bartal, T.; Kim, J.; Beg, F. N.; Willingale, L.; Maksimchuk, A.; Krushelnick, K.; Wei, M. S.; Batani, D.; Piovella, N.; Stephens, R. B.

    2013-07-29

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  16. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    NASA Astrophysics Data System (ADS)

    Morace, A.; Bellei, C.; Bartal, T.; Willingale, L.; Kim, J.; Maksimchuk, A.; Krushelnick, K.; Wei, M. S.; Patel, P. K.; Batani, D.; Piovella, N.; Stephens, R. B.; Beg, F. N.

    2013-07-01

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  17. Mechanism of Reduced Susceptibility to Fosfomycin in Escherichia coli Clinical Isolates.

    PubMed

    Ohkoshi, Yasuo; Sato, Toyotaka; Suzuki, Yuuki; Yamamoto, Soh; Shiraishi, Tsukasa; Ogasawara, Noriko; Yokota, Shin-Ichi

    2017-01-01

    In recent years, multidrug resistance of Escherichia coli has become a serious problem. However, resistance to fosfomycin (FOM) has been low. We screened E. coli clinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 μg/mL) in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fos genes) and mutations in murA that underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P) transporter and sn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P of uhpT that encodes G6P transporter expression. Nucleotide sequences of the uhpT, uhpA, glpT, ptsI, and cyaA shared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction of uhpT function is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations in murA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear.

  18. Mechanism of Reduced Susceptibility to Fosfomycin in Escherichia coli Clinical Isolates

    PubMed Central

    Ohkoshi, Yasuo; Sato, Toyotaka; Suzuki, Yuuki; Yamamoto, Soh; Shiraishi, Tsukasa; Ogasawara, Noriko

    2017-01-01

    In recent years, multidrug resistance of Escherichia coli has become a serious problem. However, resistance to fosfomycin (FOM) has been low. We screened E. coli clinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 μg/mL) in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fos genes) and mutations in murA that underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P) transporter and sn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P of uhpT that encodes G6P transporter expression. Nucleotide sequences of the uhpT, uhpA, glpT, ptsI, and cyaA shared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction of uhpT function is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations in murA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear. PMID:28197413

  19. Limbic, associative, and motor territories within the targets for deep brain stimulation: potential clinical implications.

    PubMed

    Sudhyadhom, Atchar; Bova, Frank J; Foote, Kelly D; Rosado, Christian A; Kirsch-Darrow, Lindsey; Okun, Michael S

    2007-07-01

    The use of deep brain stimulation (DBS) has recently been expanding for the treatment of many neurologic disorders such as Parkinson disease, dystonia, essential tremor, Tourette's syndrome, cluster headache, epilepsy, depression, and obsessive compulsive disorder. The target structures for DBS include specific segregated territories within limbic, associative, or motor regions of very small subnuclei. In this review, we summarize current clinical techniques for DBS, the cognitive/mood/motor outcomes, and the relevant neuroanatomy with respect to functional territories within specific brain targets. Future development of new techniques and technology that may include a more direct visualization of "motor" territories within target structures may prove useful for avoiding side effects that may result from stimulation of associative and limbic regions. Alternatively, newer procedures may choose and specifically target non-motor territories for chronic electrical stimulation.

  20. Targeting apoptosis: preclinical and early clinical experience with mapatumumab, an agonist monoclonal antibody targeting TRAIL-R1.

    PubMed

    Moretto, Patricia; Hotte, Sébastien J

    2009-03-01

    In spite of the advances in survival with chemotherapy and radiotherapy, many cancer patients continue to experience failure with treatments. Advances in molecular oncology and the development of numerous targeted therapies, used by themselves or in combination with at present available treatments such as chemotherapy and radiation, will hopefully improve the fate of these patients. It has been well understood for many years now that deregulation of apoptosis is a major hallmark of cancer cells. Mapatumumab, a fully human agonistic monoclonal antibody to TNF-related apoptosis-inducing ligand receptor 1, has been developed to induce apoptosis in cancer cells although having minimal effects on normal cells. This paper reviews the preclinical and early clinical data of this exciting new agent and discusses options for future development of mapatumumab, mostly in combinations with other therapies.

  1. Immunological and Clinical Effects of Vaccines Targeting p53-Overexpressing Malignancies

    PubMed Central

    Vermeij, R.; Leffers, N.; van der Burg, S. H.; Melief, C. J.; Daemen, T.; Nijman, H. W.

    2011-01-01

    Approximately 50% of human malignancies carry p53 mutations, which makes it a potential antigenic target for cancer immunotherapy. Adoptive transfer with p53-specific cytotoxic T-lymphocytes (CTL) and CD4+ T-helper cells eradicates p53-overexpressing tumors in mice. Furthermore, p53 antibodies and p53-specific CTLs can be detected in cancer patients, indicating that p53 is immunogenic. Based on these results, clinical trials were initiated. In this paper, we review immunological and clinical responses observed in cancer patients vaccinated with p53 targeting vaccines. In most trials, p53-specific vaccine-induced immunological responses were observed. Unfortunately, no clinical responses with significant reduction of tumor-burden have occurred. We will elaborate on possible explanations for this lack of clinical effectiveness. In the second part of this paper, we summarize several immunopotentiating combination strategies suitable for clinical use. In our opinion, future p53-vaccine studies should focus on addition of these immunopotentiating regimens to achieve clinically effective therapeutic vaccination strategies for cancer patients. PMID:21541192

  2. A Preliminary Controlled Comparison of Programs Designed to Reduce Risk of Eating Disorders Targeting Perfectionism and Media Literacy

    ERIC Educational Resources Information Center

    Wilksch, Simon M.; Durbridge, Mitchell R.; Wade, Tracey D.

    2008-01-01

    The study aims to find out whether programs targeting perfectionism and media literacy are more effective than control classes in reducing eating disorder risk factors. Finding reveals that perfectionism programs are well suited to individuals of mid- to late adolescent age and shows the importune of making prevention programs developmentally…

  3. An Integrated Approach to Change the Outcome Part II: Targeted Neuromuscular Training Techniques to Reduce Identified ACL Injury Risk Factors

    PubMed Central

    Myer, Gregory D.; Ford, Kevin R.; Brent, Jensen L.; Hewett, Timothy E.

    2014-01-01

    Prior reports indicate that female athletes who demonstrate high knee abduction moments (KAMs) during landing are more responsive to neuromuscular training designed to reduce KAM. Identification of female athletes who demonstrate high KAM, which accurately identifies those at risk for noncontact anterior cruciate ligament (ACL) injury, may be ideal for targeted neuromuscular training. Specific neuromuscular training targeted to the underlying biomechanical components that increase KAM may provide the most efficient and effective training strategy to reduce noncontact ACL injury risk. The purpose of the current commentary is to provide an integrative approach to identify and target mechanistic underpinnings to increased ACL injury in female athletes. Specific neuromuscular training techniques will be presented that address individual algorithm components related to high knee load landing patterns. If these integrated techniques are employed on a widespread basis, prevention strategies for noncontact ACL injury among young female athletes may prove both more effective and efficient. PMID:22580980

  4. Dependable and Efficient Clinical Molecular Diagnosis of Chinese RP Patient with Targeted Exon Sequencing

    PubMed Central

    Yin, Xiaobei; Dou, Hongliang; Zhao, Lin; Chen, Ningning; Zhang, Jinlu; Zhang, Huirong; Li, Genlin; Ma, Zhizhong

    2015-01-01

    Retinitis pigmentosa (RP) is the most common inherited retinal disease. It is a clinically and genetically heterogeneous disorder, which is why it is particularly challenging to diagnose. The aim of this study was to establish a targeted next-generation sequencing (NGS) approach for the comprehensive, rapid, and cost-effective clinical molecular diagnosis of RP. A specific hereditary eye disease enrichment panel (HEDEP) based on exome capture technology was used to collect the protein coding regions of 371 targeted hereditary eye disease genes, followed by high-throughput sequencing on the Illumina HiSeq2000 platform. From a cohort of 34 Chinese RP families, 13 families were successfully diagnosed; thus, the method achieves a diagnostic rate of approximately 40%. Of 16 pathogenic mutations identified, 11 were novel. Our study demonstrates that targeted capture sequencing offers a rapid and effective method for the molecular diagnosis of RP, which helps to provide a more accurate clinical diagnosis and paves the way for genetic counseling, family planning, and future gene-targeted treatment. PMID:26496393

  5. Dependable and Efficient Clinical Molecular Diagnosis of Chinese RP Patient with Targeted Exon Sequencing.

    PubMed

    Yang, Liping; Cui, Hui; Yin, Xiaobei; Dou, Hongliang; Zhao, Lin; Chen, Ningning; Zhang, Jinlu; Zhang, Huirong; Li, Genlin; Ma, Zhizhong

    2015-01-01

    Retinitis pigmentosa (RP) is the most common inherited retinal disease. It is a clinically and genetically heterogeneous disorder, which is why it is particularly challenging to diagnose. The aim of this study was to establish a targeted next-generation sequencing (NGS) approach for the comprehensive, rapid, and cost-effective clinical molecular diagnosis of RP. A specific hereditary eye disease enrichment panel (HEDEP) based on exome capture technology was used to collect the protein coding regions of 371 targeted hereditary eye disease genes, followed by high-throughput sequencing on the Illumina HiSeq2000 platform. From a cohort of 34 Chinese RP families, 13 families were successfully diagnosed; thus, the method achieves a diagnostic rate of approximately 40%. Of 16 pathogenic mutations identified, 11 were novel. Our study demonstrates that targeted capture sequencing offers a rapid and effective method for the molecular diagnosis of RP, which helps to provide a more accurate clinical diagnosis and paves the way for genetic counseling, family planning, and future gene-targeted treatment.

  6. EGFR-Targeting as a Biological Therapy: Understanding Nimotuzumab's Clinical Effects

    PubMed Central

    Perez, Rolando; Moreno, Ernesto; Garrido, Greta; Crombet, Tania

    2011-01-01

    Current clinical trials of epidermal growth factor receptor (EGFR)-targeted therapies are mostly guided by a classical approach coming from the cytotoxic paradigm. The predominant view is that the efficacy of EGFR antagonists correlates with skin rash toxicity and induction of objective clinical response. Clinical benefit from EGFR-targeted therapies is well documented; however, chronic use in advanced cancer patients has been limited due to cumulative and chemotherapy-enhanced toxicity. Here we analyze different pieces of data from mechanistic and clinical studies with the anti-EGFR monoclonal antibody Nimotuzumab, which provides several clues to understand how this antibody may induce a biological control of tumor growth while keeping a low toxicity profile. Based on these results and the current state of the art on EGFR-targeted therapies, we discuss the need to evaluate new therapeutic approaches using anti-EGFR agents, which would have the potential of transforming advanced cancer into a long-term controlled chronic disease. PMID:24212794

  7. CD40-targeted adenoviral cancer vaccines: the long and winding road to the clinic

    PubMed Central

    Hangalapura, Basav N.; Timares, Laura; Oosterhoff, Dinja; Scheper, Rik J.; Curiel, David T.; de Gruijl, Tanja D.

    2012-01-01

    Summary The ability of Dendritic Cells (DC) to orchestrate innate and adaptive immune responses has been exploited to develop potent anti-cancer immunotherapies. Recent clinical trials exploring the efficacy of ex vivo modified autologous DC-based vaccines have reported some promising results. However, in vitro generation of autologous DC for clinical administration, their loading with tumor associated antigens (TAA) and their activation, is laborious and expensive, and, due to interindividual variability in the personalized vaccines, poorly standardized. An attractive alternative approach is to load resident DC in vivo by targeted delivery of TAA , using viral vectors and activating them simultaneously. To this end we have constructed genetically modified Adenoviral (Ad) vectors and bispecific adaptor molecules to retarget Ad vectors encoding TAA to the CD40 receptor on DC. Preclinical human and murine studies conducted so far have clearly demonstrated the suitability of a “two-component”, i.e. Ad and adaptor molecule, configuration for targeted modification of DC in vivo for cancer immunotherapy. This review summarizes recent progress in the development of CD40-targeted Ad-based cancer vaccines and highlights pre-clinical issues in clinical translation of this approach. PMID:22228547

  8. Radiosensitizers in Pancreatic Cancer – Preclinical and Clinical Exploits with Molecularly Targeted Agents

    PubMed Central

    Walker, Amanda J.; Alcorn, Sara; Narang, Amol; Nugent, Katriana; Wild, Aaron T.; Herman, Joseph M.; Tran, Phuoc T.

    2013-01-01

    There has been an explosion in the number of molecularly targeted agents engineered to inhibit specific molecular pathways driving the tumorigenic phenotype in cancer cells. Some of these molecularly targeted agents have demonstrated robust clinical effects, but few result in meaningful durable responses. Therapeutic radiation is used to treat a majority of cancer patients with recent technologic and pharmacologic enhancements, leading to improvements in the therapeutic ratio for cancer care. Radiotherapy has a very specific role in select cases of postoperative and locally advanced pancreatic cancer patients, but control of metastatic disease still appears to be the major limiting factor behind improvements in cure. Recent rapid autopsy pathologic findings suggest a sub-group of advanced pancreatic cancer patients where death is caused from local disease progression and who would thus benefit from improved local control. One promising approach is to combine molecularly targeted agents with radiotherapy to improve tumor response rates and likelihood of durable local control. We review suggested recommendations on the investigation of molecularly targeted agents as radiosensitizers from preclinical studies to implementation in phase I–II clinical trials. We then discuss a select set of molecularly targeted therapies that we believe show promise as radiosensitizers in the treatment of pancreatic cancer. PMID:24331186

  9. Two visual targets for the price of one? Pupil dilation shows reduced mental effort through temporal integration.

    PubMed

    Wolff, Michael J; Scholz, Sabine; Akyürek, Elkan G; van Rijn, Hedderik

    2015-02-01

    In dynamic sensory environments, successive stimuli may be combined perceptually and represented as a single, comprehensive event by means of temporal integration. Such perceptual segmentation across time is intuitively plausible. However, the possible costs and benefits of temporal integration in perception remain underspecified. In the present study pupil dilation was analyzed as a measure of mental effort. Observers viewed either one or two successive targets amidst distractors in rapid serial visual presentation, which they were asked to identify. Pupil dilation was examined dependent on participants' report: dilation associated with the report of a single target, of two targets, and of an integrated percept consisting of the features of both targets. There was a clear distinction between dilation observed for single-target reports and integrations on the one side, and two-target reports on the other. Regardless of report order, two-target reports produced increased pupil dilation, reflecting increased mental effort. The results thus suggested that temporal integration reduces mental effort and may thereby facilitate perceptual processing.

  10. Targeting Carcinoembryonic Antigen with DNA Vaccination: On-Target Adverse Events Link with Immunological and Clinical Outcomes

    PubMed Central

    Chudley, Lindsey; Stasakova, Jana; Thirdborough, Stephen; King, Andrew; Lloyd-Evans, Paul; Buxton, Emily; Edwards, Ceri; Halford, Sarah; Bateman, Andrew; O’Callaghan, Ann; Clive, Sally; Anthoney, Alan; Jodrell, Duncan I.; Weinschenk, Toni; Simon, Petra; Sahin, Ugur; Thomas, Gareth J.; Stevenson, Freda K.; Ottensmeier, Christian H.

    2017-01-01

    Purpose We have clinically evaluated a DNA fusion vaccine to target the HLA-A*0201 binding peptide CAP-1 from carcinoembryonic antigen (CEA605–613) linked to an immunostimulatory domain (DOM) from fragment C of tetanus toxin. Experimental Design Twenty-seven patients with CEA-expressing carcinomas were recruited: 15 patients with measurable disease (Arm-I) and 12 patients without radiological evidence of disease (Arm-II). Six intramuscular vaccinations of naked DNA (1mg/dose) were administered up to week 12. Clinical and immunological follow-up was to week 64 or clinical/radiological disease. Results DOM-specific immune responses demonstrated successful vaccine delivery. All patients without measurable disease compared to 60% with advanced disease responded immunologically, while 58% and 20% expanded anti-CAP-1 CD8+ T-cells, respectively. CAP-1-specific T-cells were only detectable in the blood post-vaccination, but could also be identified in previously resected cancer tissue. The gastrointestinal adverse event diarrhea was reported by 48% of patients and linked to more frequent decreases in CEA (p<0.001) and improved global immunological responses (anti-DOM responses of greater magnitude (p<0.001), frequency (p=0.004) and duration) compared to patients without diarrhea. In advanced disease patients, decreases in CEA were associated with better overall survival (HR=0.14, p=0.017). CAP-1 peptide was detectable on MHC class I of normal bowel mucosa and primary colorectal cancer tissue by mass-spectrometry, offering a mechanistic explanation for diarrhea through CD8+ T-cell attack. Conclusions Our data suggest that DNA vaccination is able to overcome peripheral tolerance in normal and tumor tissue and warrants testing in combination studies, for example, by vaccinating in parallel to treatment with an anti-PD1 antibody. PMID:27091407

  11. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions.

    PubMed

    Barata, Pedro; Sood, Anil K; Hong, David S

    2016-11-01

    Recent advances in RNA delivery and target selection provide unprecedented opportunities for cancer treatment, especially for cancers that are particularly hard to treat with existing drugs. Small interfering RNAs, microRNAs, and antisense oligonucleotides are the most widely used strategies for silencing gene expression. In this review, we summarize how these approaches were used to develop drugs targeting RNA in human cells. Then, we review the current state of clinical trials of these agents for different types of cancer and outcomes from published data. Finally, we discuss lessons learned from completed studies and future directions for this class of drugs.

  12. Genetic and epigenetic heterogeneity of epithelial ovarian cancer and the clinical implications for molecular targeted therapy.

    PubMed

    Bai, Huimin; Cao, Dongyan; Yang, Jiaxin; Li, Menghui; Zhang, Zhenyu; Shen, Keng

    2016-04-01

    Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and tumoural heterogeneity (TH) has been blamed for treatment failure. The genomic and epigenomic atlas of EOC varies significantly with tumour histotype, grade, stage, sensitivity to chemotherapy and prognosis. Rapidly accumulating knowledge about the genetic and epigenetic events that control TH in EOC has facilitated the development of molecular-targeted therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors, designed to target homologous recombination, are poised to change how breast cancer susceptibility gene (BRCA)-related ovarian cancer is treated. Epigenetic treatment regimens being tested in clinical or preclinical studies could provide promising novel treatment approaches and hope for improving patient survival.

  13. Targeting the Tumor Microenvironment: From Understanding Pathways to Effective Clinical Trials

    PubMed Central

    Fang, Hua; DeClerck, Yves A.

    2013-01-01

    It is clear that tumor cells do not act alone but in close interaction with the extracellular matrix and with stromal cells in the tumor microenvironment (TME). As our understanding of tumor cell-stroma interactions increased over the last two decades, significant efforts have been made to develop agents that interfere with these interactions. Here, we discuss four different therapeutic strategies that target the TME, focusing on agents that are at the most advanced stage of preclinical or clinical development. We end this review by outlining some of the lessons we have learned so far from the development of TME-targeting agents. PMID:23913938

  14. Targeting medullary thyroid carcinomas with bispecific antibodies and bivalent haptens. Results and clinical perspectives.

    PubMed

    Rouvier, E; Gautherot, E; Meyer, P; Barbet, J

    1997-01-01

    The present article reviews the clinical trials that have been performed in recurrent medullary thyroid carcinoma patients with the Affinity Enhancement System. This technique uses bispecific antibodies to target radiolabelled bivalent haptens to tumour cells. Its sensitivity in the detection of known tumour sites is high (90%) and this technique also achieves good sensitivity (61%) in the detection of occult disease as revealed by abnormal thyrocalcitonin blood levels. Due to its high targeting capacity, this technique is now considered for use as a therapeutic agent in medullary thyroid carcinoma patients.

  15. NCCN Work Group Report: Designing Clinical Trials in the Era of Multiple Biomarkers and Targeted Therapies

    PubMed Central

    Venook, Alan P.; Arcila, Maria E.; Benson, Al B.; Berry, Donald A.; Camidge, David Ross; Carlson, Robert W.; Choueiri, Toni K.; Guild, Valerie; Kalemkerian, Gregory P.; Kurzrock, Razelle; Lovly, Christine M.; McKee, Amy E.; Morgan, Robert J.; Olszanski, Anthony J.; Redman, Mary W.; Stearns, Vered; McClure, Joan; Birkeland, Marian L.

    2016-01-01

    Defining treatment susceptible or resistant populations of cancer patients through the use of genetically defined biomarkers has revolutionized cancer care in recent years for some disease/patient groups. Research continues to show that histologically defined diseases are diverse in their expression of unique mutations or other genetic alterations, however, which presents both opportunities for the development of personalized cancer treatments, but increased difficulty in testing these therapies because potential patient populations are divided into ever-smaller numbers. To address some of the growing challenges in biomarker development and clinical trial design, NCCN assembled a group of experts across specialties and solid tumor disease types to begin to define the problems and to consider alternate ways of designing clinical trials in the era of multiple biomarkers and targeted therapies. Results from that discussion are presented, focusing on issues of clinical trial design from the perspective of statisticians, clinical researchers, regulators, pathologists and information developers. PMID:25361808

  16. Antibacterials Developed to Target a Single Organism: Mechanisms and Frequencies of Reduced Susceptibility to the Novel Anti-Clostridium difficile Compounds Fidaxomicin and LFF571.

    PubMed

    Leeds, Jennifer A

    2016-02-01

    Clostridium difficile is the most common cause of antibacterial-associated diarrhea. Clear clinical presentation and rapid diagnostics enable targeted therapy for C. difficile infection (CDI) to start quickly. CDI treatment includes metronidazole and vancomycin (VAN). Despite decades of use for CDI, no clinically meaningful resistance to either agent has emerged. Fidaxomicin (FDX), an RNA polymerase inhibitor, is also approved to treat CDI. Mutants with reduced susceptibility to FDX have been selected in vitro by single and multistep methods. Strains with elevated FDX minimum inhibitory concentrations (MICs) were also identified from FDX-treated patients in clinical trials. LFF571 is an exploratory agent that inhibits EF-Tu. In a proof-of-concept study, LFF571 was safe and effective for treating CDI. Spontaneous mutants with reduced susceptibility to LFF571 were selected in vitro in a single step, but not via serial passage. Although there are several agents in development for treatment of CDI, this review summarizes the frequencies and mechanisms of C. difficile mutants displaying reduced susceptibility to FDX or LFF71.

  17. Long-Term Effects of a Personality-Targeted Intervention to Reduce Alcohol Use in Adolescents

    ERIC Educational Resources Information Center

    Conrod, Patricia J.; Castellanos-Ryan, Natalie; Mackie, Clare

    2011-01-01

    Objective: To examine the long-term effects of a personality-targeted intervention on drinking quantity and frequency (QF), problem drinking, and personality-specific motivations for alcohol use in early adolescence. Method: A randomized control trial was carried out with 364 adolescents (median age 14) recruited from 13 secondary schools with…

  18. Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses.

    PubMed

    Chen, Qin; Deng, Huanhuan; Brauth, Steven E; Ding, Li; Tang, Yezhong

    2012-01-01

    Both visual and infrared (IR) senses are utilized in prey targeting by pit vipers. Visual and IR inputs project to the contralateral optic tectum where they activate both multimodal and bimodal neurons. A series of ocular and pit organ occlusion experiments using the short-tailed pit viper (Gloydius brevicaudus) were conducted to investigate the role of visual and IR information during prey targeting. Compared with unoccluded controls, snakes with either both eyes or pit organs occluded performed more poorly in hunting prey although such subjects still captured prey on 75% of trials. Subjects with one eye and one pit occluded on the same side of the face performed as well as those with bilateral occlusion although these subjects showed a significant targeting angle bias toward the unoccluded side. Performance was significantly poorer when only a single eye or pit was available. Interestingly, when one eye and one pit organ were occluded on opposite sides of the face, performance was poorest, the snakes striking prey on no more than half the trials. These results indicate that, visual and infrared information are both effective in prey targeting in this species, although interference between the two modalities occurs if visual and IR information is restricted to opposite sides of the brain.

  19. Clinical efforts to reduce myocardial infarct size--the next step.

    PubMed

    Braunwald, Eugene

    2011-01-01

    Prompt myocardial reperfusion reduces infarct size in patients experiencing coronary occlusion. However, its clinical value is limited because reperfusion also causes ischemic myocardial reperfusion injury (IMRI). Considerable research to reduce IMRI has been conducted. Three interventions appear to be promising: 1) myocardial conditioning, which consists of repetitive occlusions of coronary or other arteries prior to or at the time of myocardial reperfusion; 2) the administration of cyclosporine A; and 3) the administration of adenosine. A plan for the testing of these interventions in patients with acute myocardial infarction is described.

  20. Potential Therapeutic Strategies for Alzheimer's Disease Targeting or Beyond β-Amyloid: Insights from Clinical Trials

    PubMed Central

    Jia, Qiutian; Qing, Hong

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease. PMID:25136630

  1. Preparation of near-infrared-labeled targeted contrast agents for clinical translation

    NASA Astrophysics Data System (ADS)

    Olive, D. Michael

    2011-03-01

    Targeted fluorophore-labeled contrast agents are moving toward translation to human surgical use. To prepare for future clinical use, we examined the performance of potential ligands targeting the epidermal growth factor receptor, α5β3 integrins, and GLUT transporters for their suitability as directed contrast agents. Each agent was labeled with IRDye 800CW, and near-infrared dye with excitation/emission wavelengths of 789/805 nm, which we determined had favorable toxicity characteristics. The probe molecules examined consisted of Affibodies, nanobodies, peptides, and the sugar 2-deoxy-D-glucose. Each probe was tested for specific and non-specific binding in cell based assays. All probe types showed good performance in mouse models for detecting either spontaneous tumors or tumor xenografts in vivo. Each of the probes tested show promise for future human clinical studies.

  2. Guidelines for delineation of lymphatic clinical target volumes for high conformal radiotherapy: head and neck region

    PubMed Central

    2011-01-01

    The success of radiotherapy depends on the accurate delineation of the clinical target volume. The delineation of the lymph node regions has most impact, especially for tumors in the head and neck region. The purpose of this article was the development an atlas for the delineation of the clinical target volume for patients, who should receive radiotherapy for a tumor of the head and neck region. Literature was reviewed for localisations of the adjacent lymph node regions and their lymph drain in dependence of the tumor entity. On this basis the lymph node regions were contoured on transversal CT slices. The probability for involvement was reviewed and a recommendation for the delineation of the CTV was generated. PMID:21854585

  3. Clinical Evaluation of Targeting Accuracy of Gamma Knife Radiosurgery in Trigeminal Neuralgia

    SciTech Connect

    Massager, Nicolas Abeloos, Laurence; Devriendt, Daniel; Op de Beeck, Marc; Levivier, Marc

    2007-12-01

    Purpose: The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgical treatment with the Leksell Gamma Knife for trigeminal neuralgia. We also studied the applied radiation dose within the area of focal contrast enhancement on the trigeminal nerve root following radiosurgery. Methods and Materials: From an initial group of 78 patients with trigeminal neuralgia treated with gamma knife radiosurgery using a 90-Gy dose, we analyzed a subgroup of 65 patients for whom 6-month follow-up MRI showed focal contrast enhancement of the trigeminal nerve. Follow-up MRI was spatially coregistered to the radiosurgical planning MRI. Target accuracy was assessed from deviation of the coordinates of the intended target compared with the center of enhancement on postoperative MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was 0.91 mm in Euclidean space. The radiation doses fitting within the borders of the contrast enhancement of the trigeminal nerve root ranged from 49 to 85 Gy (median value, 77 {+-} 8.7 Gy). Conclusions: The median deviation found in clinical assessment of gamma knife treatment for trigeminal neuralgia is low and compatible with its high rate of efficiency. Focal enhancement of the trigeminal nerve after radiosurgery occurred in 83% of our patients and was not associated with clinical outcome. Focal enhancement borders along the nerve root fit with a median dose of 77 {+-} 8.7 Gy.

  4. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy.

    PubMed

    Durrant, L G; Noble, P; Spendlove, I

    2012-02-01

    Research into aberrant glycosylation and over-expression of glycolipids on the surface of the majority of cancers, coupled with a knowledge of glycolipids as functional molecules involved in a number of cellular physiological pathways, has provided a novel area of targets for cancer immunotherapy. This has resulted in the development of a number of vaccines and monoclonal antibodies that are showing promising results in recent clinical trials.

  5. Challenges in the design of clinically useful brain-targeted drug nanocarriers.

    PubMed

    Costantino, L; Boraschi, D; Eaton, M

    2014-01-01

    Nowadays, the delivery of drugs by means of intravenously administered nanosized drug carriers - polymerdrug conjugates, liposomes and micelles, is technically possible. These delivery systems are mainly designed for tumour therapy, and accumulate passively into tumours by means of the well known EPR effect. Targeted nanocarriers, that additionally contain ligands for receptors expressed on cell surfaces, are also widely studied but products of this kind are not marketed, and only a few are in clinical trial. Polymeric nanoparticles (Np) able to deliver drugs to the CNS were pioneered in 1995; a number of papers have been published dealing with brain-targeted drug delivery using polymeric Np able to cross the BBB, mainly for the treatment of brain tumours. At present, however, the translation potential of these Np seems to have been exceeded by targeted liposomes, a platform based on a proven technology. This drug delivery system entered clinical trials soon after its discovery, while the challenges in formulation, characterization and manufacturing of brain-targeted polymeric Np and the cost/benefit ratio could be the factors that have prevented their development. A key issue is that it is virtually impossible to define the in vivo fate of polymers, especially in the brain, which is a regulatory requirement; perhaps this is why no progress has been made. The most advanced Np for brain tumours treatment will be compared here with the published data available for those in clinical trial for tumours outside the CNS, to highlight the knowledge gaps that still penalise these delivery systems. At present, new approaches for brain tumours are emerging, such as lipid Np or the use of monoclonal antibody (mAb)-drug conjugates, which avoid polymers. The success or failure in the approval of the polymeric Np currently in clinical trials will certainly affect the field. At present, the chances of their approval appear to be very low.

  6. [Cardiovascular prevention: could the polypill reduce the risk of clinical inertia and poor compliance?].

    PubMed

    Scheen, A J; Lefebvre, P J; Kulbertus, H

    2010-01-01

    The concept of "polypill" for cardiovascular prevention was introduced in 2003 in a landmark paper of the British Medical Journal. A model based on results provided by evidence-based medicine suggested that a "polypill", that contains a statin, three blood pressure lowering drugs (each at half standard dose), aspirin and folic acid, would result in an 80% reduction in the incidence of coronary and cerebrovascular events, while being associated with a good tolerance profile and offering a favourable cost-effectiveness ratio. The present paper aims at presenting the new advances dealing with this new paradigm in cardiovascular prevention. We will present the progresses of the "polypill" concept since 2003, the results of a first controlled clinical trial, the pharmaceutical feasibility for routine clinical use and the potential pharmaco-economical impacts of such a strategy. The "polypill" may offer a solution to avoid physician's clinical inertia and reduce patients's lack of compliance, two drawbacks in the field of cardiovascular prevention.

  7. Target Salt 2025: A Global Overview of National Programs to Encourage the Food Industry to Reduce Salt in Foods

    PubMed Central

    Webster, Jacqui; Trieu, Kathy; Dunford, Elizabeth; Hawkes, Corinna

    2014-01-01

    Reducing population salt intake has been identified as a priority intervention to reduce non-communicable diseases. Member States of the World Health Organization have agreed to a global target of a 30% reduction in salt intake by 2025. In countries where most salt consumed is from processed foods, programs to engage the food industry to reduce salt in products are being developed. This paper provides a comprehensive overview of national initiatives to encourage the food industry to reduce salt. A systematic review of the literature was supplemented by key informant questionnaires to inform categorization of the initiatives. Fifty nine food industry salt reduction programs were identified. Thirty eight countries had targets for salt levels in foods and nine countries had introduced legislation for some products. South Africa and Argentina have both introduced legislation limiting salt levels across a broad range of foods. Seventeen countries reported reductions in salt levels in foods—the majority in bread. While these trends represent progress, many countries have yet to initiate work in this area, others are at early stages of implementation and further monitoring is required to assess progress towards achieving the global target. PMID:25195640

  8. Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods.

    PubMed

    Webster, Jacqui; Trieu, Kathy; Dunford, Elizabeth; Hawkes, Corinna

    2014-08-21

    Reducing population salt intake has been identified as a priority intervention to reduce non-communicable diseases. Member States of the World Health Organization have agreed to a global target of a 30% reduction in salt intake by 2025. In countries where most salt consumed is from processed foods, programs to engage the food industry to reduce salt in products are being developed. This paper provides a comprehensive overview of national initiatives to encourage the food industry to reduce salt. A systematic review of the literature was supplemented by key informant questionnaires to inform categorization of the initiatives. Fifty nine food industry salt reduction programs were identified. Thirty eight countries had targets for salt levels in foods and nine countries had introduced legislation for some products. South Africa and Argentina have both introduced legislation limiting salt levels across a broad range of foods. Seventeen countries reported reductions in salt levels in foods-the majority in bread. While these trends represent progress, many countries have yet to initiate work in this area, others are at early stages of implementation and further monitoring is required to assess progress towards achieving the global target.

  9. ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance.

    PubMed

    Ye, Mingxiang; Zhang, Xinxin; Li, Nan; Zhang, Yong; Jing, Pengyu; Chang, Ning; Wu, Jianxiong; Ren, Xinling; Zhang, Jian

    2016-03-15

    During the past decade, more than 10 targetable oncogenic driver genes have been validated in non-small cell lung cancer (NSCLC). Anaplastic lymphoma kinase (ALK) and ROS1 kinase are two new driver genes implicated in ALK- and ROS1-rearranged NSCLC. Inhibition of ALK and ROS1 by crizotinib has been reported to be highly effective and well tolerated in these patients. However, resistance to crizotinib emerges years after treatment, and increasing efforts have been made to overcome this issue. Here, we review the biology of ALK and ROS1 and their roles in cancer progression. We also summarize the ongoing and completed clinical trials validating ALK and ROS1 as targets for cancer treatment. In the last section of the review, we will discuss the molecular mechanisms of crizotinib resistance and focus approaches to overcome it. This review describes an exciting new area of research and may provide new insights for targeted cancer therapies.

  10. Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics

    PubMed Central

    Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun

    2014-01-01

    Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy. PMID:24672796

  11. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update.

    PubMed

    Takebe, Naoko; Miele, Lucio; Harris, Pamela Jo; Jeong, Woondong; Bando, Hideaki; Kahn, Michael; Yang, Sherry X; Ivy, S Percy

    2015-08-01

    During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents.

  12. The potential and hurdles of targeted alpha therapy - clinical trials and beyond.

    PubMed

    Elgqvist, Jörgen; Frost, Sofia; Pouget, Jean-Pierre; Albertsson, Per

    2014-01-14

    This article presents a general discussion on what has been achieved so far and on the possible future developments of targeted alpha (α)-particle therapy (TAT). Clinical applications and potential benefits of TAT are addressed as well as the drawbacks, such as the limited availability of relevant radionuclides. Alpha-particles have a particular advantage in targeted therapy because of their high potency and specificity. These features are due to their densely ionizing track structure and short path length. The most important consequence, and the major difference compared with the more widely used β(-)-particle emitters, is that single targeted cancer cells can be killed by self-irradiation with α-particles. Several clinical trials on TAT have been reported, completed, or are on-going: four using (213)Bi, two with (211)At, two with (225)Ac, and one with (212)Pb/(212)Bi. Important and conceptual proof-of-principle of the therapeutic advantages of α-particle therapy has come from clinical studies with (223)Ra-dichloride therapy, showing clear benefits in castration-resistant prostate cancer.

  13. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update

    PubMed Central

    Miele, Lucio; Harris, Pamela Jo; Jeong, Woondong; Bando, Hideaki; Kahn, Michael; Yang, Sherry X.

    2015-01-01

    During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents. PMID:25850553

  14. The Potential and Hurdles of Targeted Alpha Therapy – Clinical Trials and Beyond

    PubMed Central

    Elgqvist, Jörgen; Frost, Sofia; Pouget, Jean-Pierre; Albertsson, Per

    2013-01-01

    This article presents a general discussion on what has been achieved so far and on the possible future developments of targeted alpha (α)-particle therapy (TAT). Clinical applications and potential benefits of TAT are addressed as well as the drawbacks, such as the limited availability of relevant radionuclides. Alpha-particles have a particular advantage in targeted therapy because of their high potency and specificity. These features are due to their densely ionizing track structure and short path length. The most important consequence, and the major difference compared with the more widely used β−-particle emitters, is that single targeted cancer cells can be killed by self-irradiation with α-particles. Several clinical trials on TAT have been reported, completed, or are on-going: four using 213Bi, two with 211At, two with 225Ac, and one with 212Pb/212Bi. Important and conceptual proof-of-principle of the therapeutic advantages of α-particle therapy has come from clinical studies with 223Ra-dichloride therapy, showing clear benefits in castration-resistant prostate cancer. PMID:24459634

  15. A Miniaturized Chemical Proteomic Approach for Target Profiling of Clinical Kinase Inhibitors in Tumor Biopsies

    PubMed Central

    Chamrád, Ivo; Rix, Uwe; Stukalov, Alexey; Gridling, Manuela; Parapatics, Katja; Müller, André C.; Altiok, Soner; Colinge, Jacques; Superti-Furga, Giulio; Haura, Eric B.; Bennett, Keiryn L.

    2014-01-01

    While targeted therapy based on the idea of attenuating the activity of a preselected, therapeutically relevant protein has become one of the major trends in modern cancer therapy, no truly specific targeted drug has been developed and most clinical agents have displayed a degree of polypharmacology. Therefore, the specificity of anticancer therapeutics has emerged as a highly important but severely underestimated issue. Chemical proteomics is a powerful technique combining postgenomic drug-affinity chromatography with high-end mass spectrometry analysis and bioinformatic data processing to assemble a target profile of a desired therapeutic molecule. Due to high demands on the starting material, however, chemical proteomic studies have been mostly limited to cancer cell lines. Herein, we report a down-scaling of the technique to enable the analysis of very low abundance samples, as those obtained from needle biopsies. By a systematic investigation of several important parameters in pull-downs with the multikinase inhibitor bosutinib, the standard experimental protocol was optimized to 100 µg protein input. At this level, more than 30 well-known targets were detected per single pull-down replicate with high reproducibility. Moreover, as presented by the comprehensive target profile obtained from miniaturized pull-downs with another clinical drug, dasatinib, the optimized protocol seems to be extendable to other drugs of interest. Sixty distinct human and murine targets were finally identified for bosutinib and dasatinib in chemical proteomic experiments utilizing core needle biopsy samples from xenotransplants derived from patient tumor tissue. Altogether, the developed methodology proves robust and generic and holds many promises for the field of personalized health care. PMID:23901793

  16. Reduced-order model for underwater target identification using proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Ramesh, Sai Sudha; Lim, Kian Meng

    2017-03-01

    Research on underwater acoustics has seen major development over the past decade due to its widespread applications in domains such as underwater communication/navigation (SONAR), seismic exploration and oceanography. In particular, acoustic signatures from partially or fully buried targets can be used in the identification of buried mines for mine counter measures (MCM). Although there exist several techniques to identify target properties based on SONAR images and acoustic signatures, these methods first employ a feature extraction method to represent the dominant characteristics of a data set, followed by the use of an appropriate classifier based on neural networks or the relevance vector machine. The aim of the present study is to demonstrate the applications of proper orthogonal decomposition (POD) technique in capturing dominant features of a set of scattered pressure signals, and subsequent use of the POD modes and coefficients in the identification of partially buried underwater target parameters such as its location, size and material density. Several numerical examples are presented to demonstrate the performance of the system identification method based on POD. Although the present study is based on 2D acoustic model, the method can be easily extended to 3D models and thereby enables cost-effective representations of large-scale data.

  17. Neurooncology clinical trial design for targeted therapies: Lessons learned from the North American Brain Tumor Consortium

    PubMed Central

    Chang, Susan M.; Lamborn, Kathleen R.; Kuhn, John G.; Yung, W.K. Alfred; Gilbert, Mark R.; Wen, Patrick Y.; Fine, Howard A.; Mehta, Minesh P.; DeAngelis, Lisa M.; Lieberman, Frank S.; Cloughesy, Timothy F.; Robins, H. Ian; Abrey, Lauren E.; Prados, Michael D.

    2008-01-01

    The North American Brain Tumor Consortium (NABTC) is a multi-institutional consortium with the primary objective of evaluating novel therapeutic strategies through early phase clinical trials. The NABTC has made substantial changes to the design and methodology of its trials since its inception in 1994. These changes reflect developments in technology, new types of therapies, and advances in our understanding of tumor biology and biological markers. We identify the challenges of early clinical assessment of therapeutic agents by reviewing the clinical trial effort of the NABTC and the evolution of the protocol template used to design trials. To better prioritize effort and allocation of patient resources and funding, we propose an integrated clinical trial design for the early assessment of efficacy of targeted therapies in neurooncology. This design would mandate tissue acquisition prior to therapeutic intervention with the drug, allowing prospective evaluation of its effects. It would also include a combined phase 0/I pharmacokinetic study to determine the safety and biologically optimal dose of the agent and to verify successful modulation of the target prior to initiating a larger, phase II efficacy study. PMID:18559968

  18. Clinical immunotherapy of B-cell malignancy using CD19-targeted CAR T-cells.

    PubMed

    Maher, John

    2014-02-01

    The CD19 molecule is ubiquitously expressed throughout all stages of B-cell differentiation, but is not found on haemopoietic stem cells. Since most B-cell leukaemias and lymphomas retain CD19 expression, it represents an excellent target for immunotherapy of these malignant disorders. Over the past 10 years, compelling pre-clinical evidence has accrued to indicate that expression of a CD19-targeted chimeric antigen receptor (CAR) in peripheral blood T-cells exerts therapeutic efficacy in diverse models of B-cell malignancy. Building on this, clinical studies are ongoing in several centres in which autologous CD19-specific CAR T-cells are undergoing evaluation in patients with acute and chronic B-cell leukaemia and refractory lymphoma. Early data have generated considerable excitement, providing grounds to speculate that CAR-based immunotherapy will radically alter existing management paradigms in B-cell malignancy. The focus of this mini-review is to evaluate these emerging clinical data and to speculate on clinical prospects for this new therapeutic modality.

  19. Phase I clinical study of vascular targeting fluorescent cationic liposomes in head and neck cancer.

    PubMed

    Strieth, Sebastian; Dunau, Christoph; Kolbow, Kristina; Knuechel, Ruth; Michaelis, Uwe; Ledderose, Hannelore; Eichhorn, Martin E; Strelczyk, Donata; Tschiesner, Uta; Wollenberg, Barbara; Dellian, Marc

    2013-03-01

    The aim of this first-time-in-human non-randomized dose-escalating prospective phase I clinical trial was to analyze safety of two doses of fluorescent rhodamine-labeled cationic liposomes (LDF01) in head and neck squamous cell carcinoma (HNSCC). Patients had resectable UICC stadium I-IV A HNSCCs. LDF01 was administered before tumor resection under general anesthesia as an intravenous infusion with effective lipid doses of 0.5 or 2 mg/kg b.w., respectively. In addition to clinical monitoring for safety assessment, tumor biopsies were taken during the surgical procedure for fluorescence histological analysis. Eight patients were assigned to the two dose groups. During safety follow-up no clinically relevant adverse events occurred. Fluorescence histology revealed some evidence of favorable selectivity of LDF01 for tumor microvessels in the high-dose group. LDF01 is safe applied as infusion at both tested dose levels. Furthermore, LDF01 can be detected in the vicinity of tumor cells and could be assigned to the microvessel target in individual HNSSC cases. Detailed analysis of targeting properties of LDF01 has to be performed in upcoming clinical phase II trials.

  20. Laser Coupling to Reduced-Scale Targets at the Early Light Program of the National Ignition Facility

    SciTech Connect

    Hinkel, D E; Schneider, M B; Baldis, H A; Bower, D; Campbell, K M; Celeste, J R; Compton, S; Costa, R; Dewald, E L; Dixit, S; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A; Emig, J; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Holder, J P; Holtmeier, G; James, L; Jancaitis, K S; Kalantar, D H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Kamperschroer, J; Landen, O L; Landon, M; Langdon, A B; Lee, F D; MacGowan, B J; MacKinnon, A J; Manes, K R; May, M J; McDonald, J W; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P T; Still, C H; Suter, L J; Turner, R E; Wallace, R J; Warrick, A; Watts, P; Weber, F; Williams, E A; Young, B K; Young, P E

    2004-11-18

    A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. This hot environment is produced with a laser by depositing maximum energy into a small, high-Z can. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility, under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.

  1. Precision Medicine for Molecularly Targeted Agents and Immunotherapies in Early-Phase Clinical Trials

    PubMed Central

    Lopez, Juanita; Harris, Sam; Roda, Desam; Yap, Timothy A

    2015-01-01

    Precision medicine in oncology promises the matching of genomic, molecular, and clinical data with underlying mechanisms of a range of novel anticancer therapeutics to develop more rational and effective antitumor strategies in a timely manner. However, despite the remarkable progress made in the understanding of novel drivers of different oncogenic processes, success rates for the approval of oncology drugs remain low with substantial fiscal consequences. In this article, we focus on how recent rapid innovations in technology have brought greater clarity to the biological and clinical complexities of different cancers and advanced the development of molecularly targeted agents and immunotherapies in clinical trials. We discuss the key challenges of identifying and validating predictive biomarkers of response and resistance using both tumor and surrogate tissues, as well as the hurdles associated with intratumor heterogeneity. Finally, we outline evolving strategies employed in early-phase trial designs that incorporate omics-based technologies. PMID:26609214

  2. Reducing the blame culture through clinical audit in nuclear medicine: a mixed methods study

    PubMed Central

    Ross, P; Hubert, J

    2017-01-01

    Objectives To identify the barriers and facilitators of doctors’ engagement with clinical audit and to explore how and why these factors influenced doctors’ decisions to engage with the NHS National Clinical Audit Programme. Design A single-embedded case study. Mixed methods sequential approach with explorative pilot study and follow-up survey. Pilot study comprised 13 semi-structured interviews with purposefully selected consultant doctors over a six-month period. Interview data coded and analysed using directed thematic content analysis with themes compared against the study’s propositions. Themes derived from the pilot study informed the online survey question items. Exploratory factor analysis using STATA and descriptive statistical methods applied to summarise findings. Data triangulation techniques used to corroborate and validate findings across the different methodological techniques. Setting NHS National PET-CT Clinical Audit Programme. Participants Doctors reporting on the Audit Programme. Main Outcome measures Extent of engagement with clinical audit, factors that influence engagement with clinical audit. Results Online survey: 58/59 doctors responded (98.3%). Audit was found to be initially threatening (79%); audit was reassuring (85%); audit helped validate professional competence (93%); participation in audit improved reporting skills (76%). Three key factors accounted for 97.6% of the variance in survey responses: (1) perception of audit’s usefulness, (2) a common purpose, (3) a supportive blame free culture of trust. Factor 1 influenced medical engagement most. Conclusions The study documents performance feedback as a key facilitator of medical engagement with clinical audit. It found that medical engagement with clinical audit was associated with reduced levels of professional anxiety and higher levels of perceived self-efficacy. PMID:28210493

  3. Neuron-targeted copolymers with sheddable shielding blocks synthesized using a reducible, RAFT-ATRP double-head agent.

    PubMed

    Wei, Hua; Schellinger, Joan G; Chu, David S H; Pun, Suzie H

    2012-10-10

    Adaptation of in vitro optimized polymeric gene delivery systems for in vivo use remains a significant challenge. Most in vivo applications require particles that are sterically stabilized, which significantly compromises transfection efficiency of materials shown to be effective in vitro. We present a multifunctional well-defined block copolymer that forms particles useful for cell targeting, reversible shielding, endosomal release, and DNA condensation. We show that targeted and stabilized particles retain transfection efficiencies comparable to the nonstabilized formulations. A novel, double-head agent that combines a reversible addition-fragmentation chain transfer agent and an atom transfer radical polymerization initiator through a disulfide linkage is used to synthesize a well-defined cationic block copolymer containing a hydrophilic oligoethyleneglycol and a tetraethylenepentamine-grafted polycation. This material effectively condenses plasmid DNA into salt-stable particles that deshield under intracellular reducing conditions. In vitro transfection studies show that the reversibly shielded polyplexes afford up to 10-fold higher transfection efficiencies than the analogous stably shielded polymer in four different mammalian cell lines. To compensate for reduced cell uptake caused by the hydrophilic particle shell, a neuron-targeting peptide is further conjugated to the terminus of the block copolymer. Transfection of neuron-like, differentiated PC-12 cells demonstrates that combining both targeting and deshielding in stabilized particles yields formulations that are suitable for in vivo delivery without compromising in vitro transfection efficiency and are thus promising carriers for in vivo gene delivery applications.

  4. Dual actions of albumin packaging and tumor targeting enhance the antitumor efficacy and reduce the cardiotoxicity of doxorubicin in vivo

    PubMed Central

    Zheng, Ke; Li, Rui; Zhou, Xiaolei; Hu, Ping; Zhang, Yaxin; Huang, Yunmei; Chen, Zhuo; Huang, Mingdong

    2015-01-01

    Doxorubicin (DOX) is an effective chemotherapy drug used to treat different types of cancers. However, DOX has severe side effects, especially life-threatening cardiotoxicity. We herein report a new approach to reduce the toxicity of DOX by embedding DOX inside human serum albumin (HSA). HSA is further fused by a molecular biology technique with a tumor-targeting agent, amino-terminal fragment of urokinase (ATF). ATF binds with a high affinity to urokinase receptor, which is a cell-surface receptor overexpressed in many types of tumors. The as-prepared macromolecule complex (ATF–HSA:DOX) was not as cytotoxic as free DOX to cells in vitro, and was mainly localized in cell cytosol in contrast to DOX that was localized in cell nuclei. However, in tumor-bearing mice, ATF–HSA:DOX was demonstrated to have an enhanced tumor-targeting and antitumor efficacy compared with free DOX. More importantly, histopathological examinations of the hearts from the mice treated with ATF–HSA:DOX showed a significantly reduced cardiotoxicity compared with hearts from mice treated with free DOX. These results demonstrate the feasibility of this approach in reducing the cardiotoxicity of DOX while strengthening its antitumor efficacy. Such a tumor-targeted albumin packaging strategy can also be applied to other antitumor drugs. PMID:26346331

  5. Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1

    PubMed Central

    Schessl, Joachim; Taratuto, Ana L.; Sewry, Caroline; Battini, Roberta; Chin, Steven S.; Maiti, Baijayanta; Dubrovsky, Alberto L.; Erro, Marcela G.; Espada, Graciela; Robertella, Monica; Saccoliti, Maria; Olmos, Patricia; Bridges, Leslie R.; Standring, Peter; Hu, Ying; Zou, Yaqun; Swoboda, Kathryn J.; Scavina, Mena; Goebel, Hans-Hilmar; Mitchell, Christina A.; Flanigan, Kevin M.; Muntoni, Francesco

    2009-01-01

    We recently identified the X-chromosomal four and a half LIM domain gene FHL1 as the causative gene for reducing body myopathy, a disorder characterized by progressive weakness and intracytoplasmic aggregates in muscle that exert reducing activity on menadione nitro-blue-tetrazolium (NBT). The mutations detected in FHL1 affected highly conserved zinc coordinating residues within the second LIM domain and lead to the formation of aggregates when transfected into cells. Our aim was to define the clinical and morphological phenotype of this myopathy and to assess the mutational spectrum of FHL1 mutations in reducing body myopathy in a larger cohort of patients. Patients were ascertained via the detection of reducing bodies in muscle biopsy sections stained with menadione-NBT followed by clinical, histological, ultrastructural and molecular genetic analysis. A total of 11 patients from nine families were included in this study, including seven sporadic patients with early childhood onset disease and four familial cases with later onset. Weakness in all patients was progressive, sometimes rapidly so. Respiratory failure was common and scoliosis and spinal rigidity were significant in some of the patients. Analysis of muscle biopsies confirmed the presence of aggregates of FHL1 positive material in all biopsies. In two patients in whom sequential biopsies were available the aggregate load in muscle sections appeared to increase over time. Ultrastructural analysis revealed that cytoplasmic bodies were regularly seen in conjunction with the reducing bodies. The mutations detected were exclusive to the second LIM domain of FHL1 and were found in both sporadic as well as familial cases of reducing body myopathy. Six of the nine mutations affected the crucial zinc coordinating residue histidine 123. All mutations in this residue were de novo and were associated with a severe clinical course, in particular in one male patient (H123Q). Mutations in the zinc coordinating residue

  6. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    SciTech Connect

    Chang, Eric L. . E-mail: echang@mdanderson.org; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-05-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r {sup 2} 0.0007; p = 0.3). For patients with edema >75 cm{sup 3}, the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm{sup 3}, using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema.

  7. Nasal Methicillin-Resistant Staphylococcus aureus (MRSA) PCR Testing Reduces the Duration of MRSA-Targeted Therapy in Patients with Suspected MRSA Pneumonia.

    PubMed

    Baby, Nidhu; Faust, Andrew C; Smith, Terri; Sheperd, Lyndsay A; Knoll, Laura; Goodman, Edward L

    2017-04-01

    The objective of this study was to evaluate the impact of pharmacist-ordered methicillin-resistant Staphylococcus aureus (MRSA) PCR testing on the duration of empirical MRSA-targeted antibiotic therapy in patients with suspected pneumonia. This is a retrospective analysis of patients who received vancomycin or linezolid for suspected pneumonia before and after the implementation of a pharmacist-driven protocol for nasal MRSA PCR testing. Patients were included if they were adults of >18 years of age and initiated on vancomycin or linezolid for suspected MRSA pneumonia. The primary endpoint was the duration of vancomycin or linezolid therapy. After screening 368 patients, 57 patients met inclusion criteria (27 pre-PCR and 30 post-PCR). Baseline characteristics were similar between the two groups, with the majority of patients classified as having health care-associated pneumonia (68.4%). The use of the nasal MRSA PCR test reduced the mean duration of MRSA-targeted therapy by 46.6 h (74.0 ± 48.9 h versus 27.4 ± 18.7 h; 95% confidence interval [CI], 27.3 to 65.8 h; P < 0.0001). Fewer patients in the post-PCR group required vancomycin serum levels and dose adjustment (48.1% versus 16.7%; P = 0.02). There were no significant differences between the pre- and post-PCR groups regarding days to clinical improvement (1.78 ± 2.52 versus 2.27 ± 3.34; P = 0.54), length of hospital stay (11.04 ± 9.5 versus 8.2 ± 7.8; P = 0.22), or hospital mortality (14.8% versus 6.7%; P = 0.41). The use of nasal MRSA PCR testing in patients with suspected MRSA pneumonia reduced the duration of empirical MRSA-targeted therapy by approximately 2 days without increasing adverse clinical outcomes.

  8. [Impact on evaluation of clinical efficacy of traditional Chinese medicine for level in soft targets of processing technology].

    PubMed

    Shao, Ming-Yi; Wei, Ming; Yan, Bo-Hua

    2014-04-01

    Traditional Chinese medicine (TCM) is a very practical subject, which has its unique theoretical system and clinical characteristics. In the course of clinical practice, the exact clinical efficacy is the key of existence and development. But the existing evaluation system is difficult to objectively evaluate the clinical efficacy of TCM. Therefore, how to objectively evaluate the clinical efficacy and get definitive evidence is the focus of the evaluation of clinical efficacy of TCM. Relative to modern medicine, TCM is more concerned about the changes of feelings and clinical symptoms of the patient in the course of the evolution of the disease. Soft targets mainly used for the evaluation of the clinical efficacy of symptoms and functional activity of the disease. The level in soft targets of processing technology is often used methods in clinical evaluation. But it has often produced the phenomenon which the results of the evaluation is mutual contradiction, which will ultimately affect the effect of evaluation of clinical efficacy of TCM. In order to better evaluate the clinical efficacy of TCM, in the process of adoption of soft targets, it clearly identify it's role, highlighting the characteristics of interventions on disease, and as much as possibly avoid the level in soft targets of processing technology to real assess clinical efficacy of TCM.

  9. Targeting and Reducing Noise Trauma-Induced Tinnitus and Hearing Loss

    DTIC Science & Technology

    2010-08-01

    various times (right away to several days) and with different regimens ( pulse or taper) to rats following noise-trauma. We report on the effect of...reliable presence of another stimulus just before the burst will reduce the startle reflex (this is called pre- pulse inhibition). In our case, a...randomly. For a rat with normal hearing the ratio of gap to nogap startle reflex (whether measured by maximal amplitude or RMS of the startle

  10. Targeting Alcohol Misuse: A Promising Strategy for Reducing Military Sexual Assaults?

    DTIC Science & Technology

    2014-01-01

    Operations Enduring Free - dom and Iraqi Freedom (not shown in the figure): From 1998 to 2008, reports of binge drinking increased by 12 percent (Bray...constraints that prohibit stud- ies that would result in physical aggression and possible injury, most experiments rely on a variant of the Taylor...Einolf, 2009). Finally, among college women who engage in binge drinking, those who have reported taking “harm reduc- tion” steps to ensure safe drinking

  11. Pediatric Targeted Therapy: Clinical Feasibility of Personalized Diagnostics in Children with Relapsed and Progressive Tumors.

    PubMed

    Selt, Florian; Deiß, Alica; Korshunov, Andrey; Capper, David; Witt, Hendrik; van Tilburg, Cornelis M; Jones, David T W; Witt, Ruth; Sahm, Felix; Reuss, David; Kölsche, Christian; Ecker, Jonas; Oehme, Ina; Hielscher, Thomas; von Deimling, Andreas; Kulozik, Andreas E; Pfister, Stefan M; Witt, Olaf; Milde, Till

    2016-07-01

    The "pediatric targeted therapy" (PTT) program aims to identify the presence and activity of druggable targets and evaluate the clinical benefit of a personalized treatment approach in relapsed or progressive tumors on an individual basis. 10 markers (HDAC2, HR23B, p-AKT, p-ERK, p-S6, p-EGFR, PDGFR-alpha/beta, p53 and BRAFV600E) were analyzed by immunohistochemistry. Pediatric patients with tumors independent of the histological diagnosis, with relapse or progression after treatment according to standard protocols were included. N = 61/145 (42%) cases were eligible for analysis between 2009 and 2013, the most common entities being brain tumors. Immunohistochemical stainings were evaluated by the H-Score (0-300). In 93% of the cases potentially actionable targets were identified. The expressed or activated pathways were histone deacetylase (HDACs; 83.0% of cases positive), EGFR (87.2%), PDGFR (75.9%), p53 (50.0%), MAPK/ERK (43.3%) and PI3K/mTOR (36.1%). Follow-up revealed partial or full implementation of PTT results in treatment decision-making in 41% of the cases. Prolonged disease stabilization responses in single cases were noticed, however, response rates did not differ from cases treated with other modalities. Further studies evaluating the feasibility and clinical benefit of personalized diagnostic approaches using paraffin material are warranted.

  12. Current HER2 Testing Recommendations and Clinical Relevance as a Predictor of Response to Targeted Therapy.

    PubMed

    Ballinger, Tarah J; Sanders, Melinda E; Abramson, Vandana G

    2015-06-01

    Clinical decision-making in the treatment of breast cancer depends on an accurate determination and understanding of human epidermal growth factor receptor 2 (HER2) status. The guidelines for HER2 testing were recently updated in late 2013, but limitations continue to exist in the interpretation and clinical application of results when the tumor specimens do not fall neatly into positive or negative categories with immunohistochemistry and fluorescence in situ hybridization testing. The issues, including discordance between pathologists or laboratories, polysomy, and genetic heterogeneity, present challenging situations that are difficult to translate into clinical significance. The present review discussed the changes in the updated American Society of Clinical Oncology/College of American Pathologists guidelines, the clinical relevance of complex issues in HER2 testing, and the implications of the results on the response to HER2-targeted therapies. Great advances have been made in the treatment of HER2-positive breast cancer; however, the challenge remains to determine the best testing analysis that will identify patients who will benefit the most from these therapies.

  13. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents

    PubMed Central

    Matter, Alex

    2015-01-01

    This review starts with a brief history of drug discovery & development, and the place of Asia in this worldwide effort discussed. The conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. The importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. The most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. The factors to consider before starting a new drug discovery & development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials. PMID:26779369

  14. The efficacy of targeted Health Agents education to reduce the duration of untreated psychosis in a rural population

    PubMed Central

    Padilla, Eduardo; Molina, Juan; Kamis, Danielle; Calvo, Maria; Stratton, Lee; Strejilevich, Sergio; Aleman, Gabriela Gonzalez; Guerrero, Gonzalo; Bourdieu, Mercedes; Conesa, Horacio A.; Escobar, Javier I.; de Erausquin, Gabriel A.

    2014-01-01

    The duration of untreated psychosis (DUP) is a key determinant in the severity of symptoms in patients with schizophrenia. DUP is a modifiable factor that if reduced can improve patient outcome and treatment response. We sought to decrease DUP in rural Argentina by instituting annual training of local health agents to better identify signs of mental illness and offer earlier intervention. DUP was estimated using Schedules of Clinical Assessment in Neuropsychiatry (SCAN). Ongoing training was correlated with a reduction in DUP. Reducing DUP through better screening can decrease the psychosocial burden of disease and improve the trajectory of psychosis. PMID:25439394

  15. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.

    PubMed

    Hu, Yanfang; He, Liang; Ding, Jianxun; Sun, Diankui; Chen, Li; Chen, Xuesi

    2016-06-25

    Graphene-based nanocarriers show great potential in photo-chemotherapy, however, to prepare desired reduced graphene oxide (rGO) nanoparticles in a facile way is still a challenge. Herein, a novel strategy has been presented to prepare rGO nanoparticle using dextran (Dex) as a reducing agent. In this strategy, Dex was directly conjugated on rGO by hydrogen bond and then self-assemble to form rGO/Dex nanoparticles. After decorated by dextran, rGO-based nanoparticles not only show excellent biocompatibility but also can load anticancer drug for photo-chemotherapy. The data of fourier transform infrared (FT-IR) analysis, Raman spectrum analysis, thermos-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), the transmission electron microscope (TEM) image and dynamic light scattering (DLS) measurements powerfully proved that the stable rGO-based nanoparticles with desired nanosize have been successfully prepared. To verify the photo-chemotherapy, anticancer drug, doxorubicin (DOX), has been loaded on rGO/Dex nanoparticles (rGO/DOX/Dex). And RGD, a kind of oligopeptide which can improve the intracellular uptake by αvβ3 recognition, also has been introduced (rGO/DOX/RDex). Compared with single chemotherapy, rGO/DOX/Dex and rGO/DOX/RDex combining the local specific chemotherapy and external near-infrared (NIR) photo-thermal therapy show higher therapeutic efficacy, endowing the desired rGO-based nanoparticle with great potential for cancer treatments.

  16. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine

    PubMed Central

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-01-01

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)—that is, the biomass produced per unit of water transpired—has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En. Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE. PMID:27457942

  17. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.

    PubMed

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-08-09

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.

  18. Clinical Use of Virtual Reality Distraction System to Reduce Anxiety and Pain in Dental Procedures

    PubMed Central

    Gao, Kenneth; Wiederhold, Brenda K.

    2014-01-01

    Abstract Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety. PMID:24892198

  19. Clinical use of virtual reality distraction system to reduce anxiety and pain in dental procedures.

    PubMed

    Wiederhold, Mark D; Gao, Kenneth; Wiederhold, Brenda K

    2014-06-01

    Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety.

  20. Sevoflurane reduces clinical disease in a mouse model of multiple sclerosis

    PubMed Central

    2012-01-01

    Background Inhalational anesthetics have been shown to influence T cell functions both in vitro and in vivo, in many cases inducing T cell death, suggesting that exposure to these drugs could modify the course of an autoimmune disease. We tested the hypothesis that in mice immunized to develop experimental autoimmune encephalomyelitis (EAE), a well established model of multiple sclerosis (MS), treatment with the commonly used inhalational anesthetic sevoflurane would attenuate disease symptoms. Methods C57Bl6 female mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide residues 35 to 55 to induce a chronic demyelinating disease. At day 10 after immunization, the mice were subjected to 2 h of 2.5% sevoflurane in 100% oxygen, or 100% oxygen, alone. Following treatment, clinical scores were monitored up to 4 weeks, after which brain histology was performed to measure the effects on astrocyte activation and lymphocyte infiltration. Effects of sevoflurane on T cell activation were studied using splenic T cells isolated from MOG peptide-immunized mice, restimulated ex vivo with MOG peptide or with antibodies to CD3 and CD28, and in the presence of different concentrations of sevoflurane. T cell responses were assessed 1 day later by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for proliferation, lactate dehydrogenase (LDH) release for cell death, and inflammatory activation by production of interleukin (IL)-17 and interferon (IFN)γ. Results Clinical scores in the oxygen-treated group increased until day 28 at which time they showed moderate to severe disease (average clinical score of 2.9). In contrast, disease progression in the sevoflurane-treated group increased to 2.1 at day 25, after which it remained unchanged until the end of the study. Immunohistochemical analysis revealed reduced numbers of infiltrating leukocytes and CD4+ cells in the CNS of the sevoflurane-treated mice, as well as reduced glial cell activation

  1. Neprilysin Inhibition in Heart Failure with Reduced Ejection Fraction: A Clinical Review.

    PubMed

    King, Jordan B; Bress, Adam P; Reese, Austin D; Munger, Mark A

    2015-09-01

    There has been a 10-year hiatus in the approval of a new pharmacotherapy for patients with chronic heart failure with a reduced ejection fraction (HFrEF). Combining an angiotensin receptor blocker, valsartan, with sacubitril, an inhibitor of neprilysin, results in increasing levels of natriuretic peptides that counterbalance high circulating levels of neurohormones in HFrEF. This has resulted in the development of a new agent, LCZ696. A comprehensive overview of LCZ696, its pharmacology, its role in the pathophysiology of HFrEF, completed and future clinical trial information, specific critical issues, and the place of LCZ696 in HFrEF therapy are presented.

  2. Personalized medicine in metastatic non-small-cell lung cancer: promising targets and current clinical trials

    PubMed Central

    Black, A.; Morris, D.

    2012-01-01

    Non-small-cell lung cancer (nsclc) remains the leading cause of cancer-related death globally, with most patients presenting with non-curable disease. Platinum-based doublet chemotherapy has been the cornerstone of treatment for patients with advanced-stage disease and has resulted in a modest increase in overall survival (on the order of an incremental 2 months increased survival per decade) and quality of life. Improved knowledge of the molecular signalling pathways found in nsclc has led to the development of biomarkers with associated targeted therapeutics, thus changing the treatment paradigm for many nsclc patients. In this review, we present a summary of many of the currently investigated nsclc targets, discuss their current clinical trial status, and provide commentary as to the likelihood of their success making a positive impact for nsclc patients. PMID:22787415

  3. Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges

    PubMed Central

    Hoshida, Yujin; Fuchs, Bryan C.; Tanabe, Kenneth K.

    2013-01-01

    Chronic fibrotic liver diseases such as viral hepatitis eventually develop liver cirrhosis, which causes occurrence of hepatocellular carcinoma (HCC). Given the limited therapeutic efficacy in advanced HCC, prevention of HCC development could be an effective strategy for improving patient prognosis. However, there is still no established therapy to meet the goal. Studies have elucidated a wide variety of molecular mechanisms and signaling pathways involved in HCC development. Genetically-engineered or chemically-treated experimental models of cirrhosis and HCC have been developed and shown their potential value in investigating molecular therapeutic targets and diagnostic biomarkers for HCC prevention. In this review, we overview potential targets of prevention and currently available experimental models, and discuss strategies to translate the findings into clinical practice. PMID:22873223

  4. Targeting HIV clinical training with maps: lessons from the Pacific AIDS Education and Training Center.

    PubMed

    Myers, Janet; Bernstein, Mona; Morin, Stephen F; Reyes, Michael

    2007-12-01

    Public health providers are increasingly called on to do more with fewer resources. Aiming to help HIV clinical training providers in 15 local sites to better target their efforts, the Pacific AIDS Education and Training Center (PAETC) implemented a method for integrating disparate information, such as program-level evaluation and publicly available health services data, into one combined and useful format. The resulting local area profiles were distributed to each training site and were updated annually for 2 years. As a result, local training teams adopted data-based approaches to doing their work. Training managers and faculty reported that data presented in spatial formats (i.e., maps) were most helpful for targeting their outreach and training. In addition to achieving the aim of supporting better programs, the project increased capacity for using data to support all aspects of training and education, from grant writing to strategic planning.

  5. Lean mean fat reducing "ghrelin" machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity.

    PubMed

    Schellekens, Harriët; Dinan, Timothy G; Cryan, John F

    2010-01-01

    Obesity has reached epidemic proportions not only in Western societies but also in the developing world. Current pharmacological treatments for obesity are either lacking in efficacy and/or are burdened with adverse side effects. Thus, novel strategies are required. A better understanding of the intricate molecular pathways controlling energy homeostasis may lead to novel therapeutic intervention. The circulating hormone, ghrelin represents a major target in the molecular signalling regulating food intake, appetite and energy expenditure and its circulating levels often display aberrant signalling in obesity. Ghrelin exerts its central orexigenic action mainly in the hypothalamus and in particular in the arcuate nucleus via activation of specific G-protein coupled receptors (GHS-R). In this review we describe current pharmacological models of how ghrelin regulates food intake and how manipulating ghrelin signalling may give novel insight into developing better and more selective anti-obesity drugs. Accumulating data suggests multiple ghrelin variants and additional receptors exist to play a role in energy metabolism and these may well play an important role in obesity. In addition, the recent findings of hypothalamic GHS-R crosstalk and heterodimerization may add to the understanding of the complexity of bodyweight regulation.

  6. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth

    PubMed Central

    Lee, Kang-In; Whang, Jake; Choi, Han-Gyu; Son, Yeo-Jin; Jeon, Haet Sal; Back, Yong Woo; Park, Hye-Soo; Paik, Seungwha; Park, Jeong-Kyu; Choi, Chul Hee; Kim, Hwa-Jung

    2016-01-01

    Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication. PMID:27901051

  7. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging.

    PubMed

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A; Ehlerding, Emily B; Goel, Shreya; Sun, Haiyan; England, Christopher G; Nickles, Robert J; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-07-07

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-(1st)PEG-(2nd)PEG). The nanoconjugates exhibited a prolonged blood circulation half-life (∼27.7 h) and remarkable tumor accumulation (>11 %ID g(-1)) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-(1st)PEG-(2nd)PEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.

  8. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A.; Ehlerding, Emily B.; Goel, Shreya; Sun, Haiyan; England, Christopher G.; Nickles, Robert J.; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-06-01

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-1stPEG-2ndPEG). The nanoconjugates exhibited a prolonged blood circulation half-life (~27.7 h) and remarkable tumor accumulation (>11 %ID g-1) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-1stPEG-2ndPEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.

  9. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis

    PubMed Central

    Kusminski, Christine M.; Sun, Kai; Sharma, Ankit X.; Pearson, Mackenzie J.; Sifuentes, Angelika J.; McDonald, Jeffrey G.; Gordillo, Ruth; Scherer, Philipp E.

    2015-01-01

    Sphingolipids have garnered attention for their role in insulin resistance and lipotoxic cell death. Aberrant accumulation of ceramides correlates with hepatic insulin resistance and steatosis. To further investigate the tissue-specific effects of local changes in ceramidase activity, we have developed transgenic mice inducibly expressing acid ceramidase, to trigger the deacylation of ceramides. This represents the first inducible genetic model that acutely manipulates ceramides in adult mouse tissues. Hepatic overexpression of acid ceramidase prevents hepatic steatosis and prompts improvements in insulin action in liver and adipose tissue. Conversely, overexpression of acid ceramidase within adipose tissue prevents hepatic steatosis and insulin resistance. Induction of ceramidase activity in either tissue promotes a lowering of hepatic ceramides and reduced activation of the ceramide-activated protein kinase C isoform PKC-zeta. These observations suggest the existence of a rapidly acting "crosstalk" between liver and adipose tissue sphingolipids, critically regulating glucose metabolism and hepatic lipid uptake. PMID:26190650

  10. Targeting apoptosis in solid tumors: the role of bortezomib from preclinical to clinical evidence.

    PubMed

    Russo, Antonio; Fratto, Maria E; Bazan, Viviana; Schiró, Valentina; Agnese, Valentina; Cicero, Giuseppe; Vincenzi, Bruno; Tonini, Giuseppe; Santini, Daniele

    2007-12-01

    The ubiquitin-proteasome pathway is the main proteolytic system present in the nucleus and cytoplasm of all eukaryotic cells. Apoptosis activation induced by ubiquitin-proteasome pathway inhibition makes the proteasome a new target of anticancer therapy. Bortezomib is the first proteasome inhibitor to be approved by the US FDA; in 2003 as a third line and in 2005 as a second line therapy for the treatment of multiple myeloma only. This review focuses on the use of bortezomib, not only in its therapeutic role but also, more specifically, in its biologic role and discusses the most recent applications of the drug in solid tumors, both at a preclinical and clinical level.

  11. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer.

    PubMed

    Scheiermann, Julia; Klinman, Dennis M

    2014-11-12

    Synthetic oligonucleotides (ODN) that express unmethylated "CpG motifs" trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer.

  12. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer

    PubMed Central

    Scheiermann, Julia; Klinman, Dennis M.

    2014-01-01

    Synthetic oligonucleotides (ODN) that express unmethylated “CpG motifs” trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer. PMID:24975812

  13. Risks and benefits of reducing target volume margins in breast tangent radiotherapy.

    PubMed

    Basaula, Deepak; Quinn, Alexandra; Walker, Amy; Batumalai, Vikneswary; Kumar, Shivani; Delaney, Geoff P; Holloway, Lois

    2017-02-27

    This study investigates the potential benefits of planning target volume (PTV) margin reduction for whole breast radiotherapy in relation to dose received by organs at risk (OARs), as well as reductions in radiation-induced secondary cancer risk. Such benefits were compared to the increased radiation-induced secondary cancer risk attributed from increased ionizing radiation imaging doses. Ten retrospective patients' computed tomography datasets were considered. Three computerized treatment plans with varied PTV margins (0, 5 and 10 mm) were created for each patient complying with the Radiation Therapy Oncology Group (RTOG) 1005 protocol requirements. The BEIR VII lifetime attributable risk (LAR) model was used to estimate secondary cancer risk to OARs. The LAR was assessed for all treatment plans considering (a) doses from PTV margin variation and (b) doses from two (daily and weekly) kilovoltage cone beam computed tomography (kV CBCT) imaging protocols during the course of treatment. We found PTV margins from largest to smallest resulted in a mean OAR relative dose reduction of 31% (heart), 28% (lung) and 23% (contralateral breast) and the risk of radiation-induced secondary cancer by a relative 23% (contralateral breast) and 22% (contralateral lung). Daily image-guidance using kV CBCT increased the risk of radiation induced secondary cancer to the contralateral breast and contralateral lung by a relative 1.6-1.9% and 1.9-2.5% respectively. Despite the additional dose from kV CBCT for the two considered imaging protocols, smaller PTV margins would still result in an overall reduction in secondary cancer risk.

  14. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis.

    PubMed

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D; Browse, John

    2015-05-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies.

  15. Perspectives on the design of clinical trials for targeted therapies and immunotherapy in veterinary oncology.

    PubMed

    Marconato, Laura; Buracco, Paolo; Aresu, Luca

    2015-08-01

    The field of oncology research has undergone major changes in recent years. Progress in molecular and cellular biology has led to a greater understanding of the cellular pathways and mechanisms of cell proliferation and tissue invasion associated with cancer. New classes of cancer therapies are becoming available or are in development but these new agents require a paradigm shift in the design of oncology clinical trials. This review provides an overview of clinical trial designs for the development of tumour vaccines and targeted therapeutic agents. In addition, some of the successes, limitations and challenges of these trials are discussed, with a special emphasis on the difficulties and particularities that are encountered in veterinary medicine compared to similar work in human patients.

  16. How do CARs work?: Early insights from recent clinical studies targeting CD19.

    PubMed

    Davila, Marco L; Brentjens, Renier; Wang, Xiuyan; Rivière, Isabelle; Sadelain, Michel

    2012-12-01

    Second-generation chimeric antigen receptors (CARs) are powerful tools to redirect antigen-specific T cells independently of HLA-restriction. Recent clinical studies evaluating CD19-targeted T cells in patients with B-cell malignancies demonstrate the potency of CAR-engineered T cells. With results from 28 subjects enrolled by five centers conducting studies in patients with chronic lymphocytic leukemia (CLL) or lymphoma, some insights into the parameters that determine T-cell function and clinical outcome of CAR-based approaches are emerging. These parameters involve CAR design, T-cell production methods, conditioning chemotherapy as well as patient selection. Here, we discuss the potential relevance of these findings and in particular the interplay between the adoptive transfer of T cells and pre-transfer patient conditioning.

  17. Clinically relevant HOCl concentrations reduce clot retraction rate via the inhibition of energy production in platelet mitochondria.

    PubMed

    Misztal, T; Rusak, T; Tomasiak, M

    2014-12-01

    Using porcine blood, we examined the impact of hypochlorite, product of activated inflammatory cells, on clot retraction (CR), an important step of hemostasis. We found that, in vitro, HOCl is able to reduce CR rate and enlarge final clot size in whole blood (t.c. 100 μM), platelet-rich plasma (PRP) threshold concentration (t.c. 50 μM), and an artificial system (washed platelets and fibrinogen) (t.c. 25 nM). Combination of low HOCl and peroxynitrite concentrations resulted in synergistic inhibition of CR by these stressors. Concentrations of HOCl completely inhibiting CR failed to affect the kinetics of coagulation measured in PRP and in platelet-free plasma. Concentrations of HOCl reducing CR rate in PRP augmented production of lactate, inhibited consumption of oxygen by platelets, and decreased total adenosine triphosphate (ATP) content in PRP-derived clots. In an artificial system, concentrations of HOCl resulting in inhibition of CR (25-100 nM) reduced mitochondrial transmembrane potential and did not affect actin polymerization in thrombin-stimulated platelets. These concentrations of HOCl failed to affect the adhesion of washed platelets to fibrinogen and to evoke sustained calcium signal, thus excluding stressor action on glycoprotein IIb/IIIa receptors. Exogenously added Mg-ATP almost completely recovered HOCl-mediated retardation of CR. Concentrations of HOCl higher than those affecting CR reduced thromboelastometric variables (maximum clot firmness and α angle). We conclude that low clinically relevant HOCl concentrations may evoke the inhibition of CR via the reduction of platelet contractility resulted from malfunction of platelet mitochondria. At the inflammatory conditions, CR may be the predominant HOCl target.

  18. Late-stage clinical development in lower urogenital targets: sexual dysfunction

    PubMed Central

    Azam, Usman

    2006-01-01

    In recent years, late-stage clinical drug development that primarily focuses on urogenital targets has centered around four areas of medical need (both unmet need and aiming to improve on existing therapies). These include male sexual dysfunction (MSD), female sexual dysfunction (FSD), prostatic pathology (neoplastic, pre-neoplasitic, and non-neoplastic), and improvement in lower urinary tract symptoms. Despite the regulatory approval of compounds to treat erectile dysfunction (ED), benign prostatic hyperplasia, a number of treatments for overactive bladder, and stress urinary incontinence, there remains a deficiency in addressing a number of conditions that arise out of pathophysiological dysfunction resulting in lower urogenital tract sexual conditions. In terms of late-stage clinical development, significant progress has most recently been made in MSD development, especially in understanding further a common and complex sexual dysfunction – that of premature ejaculation. The search also continues for compounds that improve ED in terms of better efficacy and superior safety profile compared to the currently marketed phosphodiesterase-5-inhibitors. Whilst there are no approved medications to treat the subtypes of FSD, there has been significant progress in attempting to better understand how to appropriately assess treatment benefit in clinical trial settings for this difficult to diagnose and treat condition. This review will focus on late-stage human clinical development pertaining to MSD and FSD. PMID:16465180

  19. Health Outcomes in Acromegaly: Depression and Anxiety are Promising Targets for Improving Reduced Quality of Life

    PubMed Central

    Geraedts, Victor Jacobus; Dimopoulou, Christina; Auer, Matthias; Schopohl, Jochen; Stalla, Günter Karl; Sievers, Caroline

    2015-01-01

    Introduction: Remission criteria of acromegaly are based on biochemical variables, i.e., normalization of increased hormone levels. However, the established reduction in Quality of Life (QoL) is suggested to be independent of biochemical control. The aim of this study was to test which aspects predict QoL best in acromegaly. Methods/design: This is a prospective cohort study in 80 acromegalic patients, with a cross-sectional and longitudinal part. The main outcome measure was health-related QoL, measured by a generic and a disease-specific questionnaire (the SF-36 and AcroQoL). Main predictors were age, gender, biochemical control, disease characteristics, treatment modalities, and psychopathology. Results: Our cohort of 80 acromegalics had a mean age 54.7 ± 12.3 years with an average disease duration of 10.8 ± 10.0 years. Ratio macro-/microadenoma was 54/26. In adjusted mixed method models, we found that psychopathology significantly predicts QoL in acromegaly (in models including the variables age, gender, disease duration, tumor size, basal hormone levels, relevant treatment modalities, and relevant comorbidities), with a higher degree of psychopathology indicating a lower QoL (depression vs. AcroQoL: B = −1.175, p < 0.001, depression vs. SF-36: B = −1.648, p < 0.001, anxiety vs. AcroQoL: B = −0.399, p < 0.001, anxiety vs. SF-36: B = −0.661, p < 0.001). The explained variances demonstrate superiority of psychopathology over biochemical control and other variables in predicting QoL in our models. Discussion: Superiority of psychopathology over biochemical control calls for a more extensive approach regarding diagnosing depression and anxiety in pituitary adenomas to improve QoL. Depressive symptoms and anxiety are modifiable factors that might provide valuable targets for possible future treatment interventions. PMID:25610427

  20. Neuron-targeted copolymers with sheddable shielding blocks synthesized using a reducible, RAFT-ATRP double-head agent

    PubMed Central

    Wei, Hua; Schellinger, Joan G.; Chu, David S.H.

    2012-01-01

    Successful adaptation of in vitro optimized polymeric gene delivery systems for in vivo use remains a significant challenge. Most in vivo applications require particles that are sterically stabilized but doing so significantly compromises transfection efficiency of materials shown to be effective in vitro. In this communication, we present a multi-functional well-defined block copolymer that forms particles with the following properties: cell targeting, reversible shielding, endosomal release, and DNA condensation. We show that targeted and stabilized particles retain transfection efficiencies comparable to the non-stabilized formulations. The block copolymers are synthesized using a novel, double-head agent (CPADB-SS-iBuBr) that combines a RAFT CTA and an ATRP initiator through a disulfide linkage. Using this double-head agent, a well-defined cationic block copolymer P(OEGMA)15-SS-P(GMA-TEPA)50 containing a hydrophilic oligoethyleneglycol (OEG) block and a tetraethylenepentamine (TEPA)-grafted polycation block was synthesized. This material effectively condenses plasmid DNA into salt-stable particles that deshield under intracellular reducing conditions. In vitro transfection studies showed that the reversibly shielded polyplexes afforded up 10-fold higher transfection efficiencies compared to the analogous stably-shielded polymer in four different mammalian cell lines. To compensate for reduced cell uptake caused by the hydrophilic particle shell, a neuron-targeting peptide was further conjugated to the terminus of theP(OEGMA) block. Transfection of neuron-like, differentiated PC-12 cells demonstrated that combining both targeting and deshielding in stabilized particles yields formulations that are suitable for in vivo delivery without compromising in vitro transfection efficiency. These materials are therefore promising carriers for in vivo gene delivery applications. PMID:23013485

  1. KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude pulmonary oedema in rats

    PubMed Central

    She, Jun; Goolaerts, Arnaud; Shen, Jun; Bi, Jing; Tong, Lin; Gao, Lei; Song, Yuanlin; Bai, Chunxue

    2012-01-01

    High altitude pulmonary oedema (HAPE) severely affects non-acclimatized individuals and is characterized by alveolar flooding with protein- rich oedema as a consequence of blood-gas barrier disruption. Limited choice for prophylactic treatment warrants effective therapy against HAPE. Keratinocyte growth factor-2 (KGF-2) has shown efficiency in preventing alveolar epithelial cell DNA damages in vitro. In the current study, the effects of KGF-2 intratracheal instillation on mortality, lung liquid balance and lung histology were evaluated in our previously developed rat model of HAPE. We found that pre-treatment with KGF-2 (5 mg/kg) significantly decreased mortality, improved oxygenation and reduced lung wet-to-dry weight ratio by preventing alveolar-capillary barrier disruption demonstrated by histological examination and increasing alveolar fluid clearance up to 150%. In addition, KGF-2 significantly inhibited decrease of transendothelial permeability after exposure to hypoxia, accompanied by a 10-fold increase of Akt activity and inhibited apoptosis in human pulmonary microvascular endothelial cells, demonstrating attenuated endothelial apoptosis might contribute to reduction of endothelial permeability. These results showed the efficacy of KGF-2 on inhibition of endothelial cell apoptosis, preservation of alveolar-capillary barrier integrity and promotion of pulmonary oedema absorption in HAPE. Thus, KGF-2 may represent a potential drug candidate for the prevention of HAPE. PMID:22568566

  2. Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs.

    PubMed

    Tate, Alan D; Antonelli, Patrick J; Hannabass, Kyle R; Dirain, Carolyn O

    2017-03-01

    Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.

  3. Total renal denervation reduces sympathoexcitation to different target organs in a model of chronic kidney disease.

    PubMed

    Veiga, Glaucia L; Nishi, Erika E; Estrela, Heder F; Lincevicius, Gisele S; Gomes, Guiomar N; Simões Sato, Alex Y; Campos, Ruy R; Bergamaschi, Cássia T

    2017-05-01

    It is known that increased sympathetic nerve activity in chronic kidney disease (CKD) progressively worsens kidney function and hypertension. We tested the hypothesis that total renal denervation contributes to reduce sympathetic activation to different beds and improves renal function in 5/6 nephrectomy model of CKD in male Wistar rats. After eight weeks of 5/6 nephrectomy surgery there was an increase in mean arterial pressure (CKD 179±22mmHg, n=6 vs. control animals 108±9; p<0.05, n=6) with no changes in heart rate (HR). Sympathetic nerve activity was increased at different levels to the remaining kidney, splanchnic and lumbar beds compared to control (CTL) group (CKD rSNA: 150±50, n=9 vs. CTL 96±15, n=9; CKD sSNA: 129±51, n=5 vs. CTL 34±14, n=6; CKD lSNA: 203±35, n=8 vs. CTL 146±21, spikes/s, n=7, p<0.05). Three weeks after total renal denervation (DNX) MAP was normalized in the CKD rats (124±19mmHg, n=5, p<0.05), with no change in HR. The lSNA was normalized (151±40, n=5, vs. CKD 203±35 spikes/s, n=8) and sSNA was decreased in 49% (64±34, n=5 vs. CKD 129±51 spikes/s, n=5, p<0.05). Renal function, assessed by creatinine plasma levels was improved after renal denervation (CKD 1.50±0.64, n=8; vs. CKD+DNX 0.82±0.22mg/mL, n=8, p<0.05). These findings demonstrate that renal nerves contribute to the maintenance of hypertension in CKD by increasing sympathoexcitation to other beds.

  4. Magnetic Nanoparticle-Mediated Targeting of Cell Therapy Reduces In-Stent Stenosis in Injured Arteries.

    PubMed

    Polyak, Boris; Medved, Mikhail; Lazareva, Nina; Steele, Lindsay; Patel, Tirth; Rai, Ahmad; Rotenberg, Menahem Y; Wasko, Kimberly; Kohut, Andrew R; Sensenig, Richard; Friedman, Gary

    2016-09-19

    Although drug-eluting stents have dramatically reduced the recurrence of restenosis after vascular interventions, the nonselective antiproliferative drugs released from these devices significantly delay reendothelialization and vascular healing, increasing the risk of short- and long-term stent failure. Efficient repopulation of endothelial cells in the vessel wall following injury may limit complications, such as thrombosis, neoatherosclerosis, and restenosis, through reconstitution of a luminal barrier and cellular secretion of paracrine factors. We assessed the potential of magnetically mediated delivery of endothelial cells (ECs) to inhibit in-stent stenosis induced by mechanical injury in a rat carotid artery stent angioplasty model. ECs loaded with biodegradable superparamagnetic nanoparticles (MNPs) were administered at the distal end of the stented artery and localized to the stent using a brief exposure to a uniform magnetic field. After two months, magnetic localization of ECs demonstrated significant protection from stenosis at the distal part of the stent in the cell therapy group compared to both the proximal part of stent in the cell therapy group and the control (stented, nontreated) group: 1.7-fold (p < 0.001) less reduction in lumen diameter as measured by B-mode and color Doppler ultrasound, 2.3-fold (p < 0.001) less reduction in the ratios of peak systolic velocities as measured by pulsed wave Doppler ultrasound, and 2.1-fold (p < 0.001) attenuation of stenosis as determined through end point morphometric analysis. The study thus demonstrates that magnetically assisted delivery of ECs is a promising strategy for prevention of vessel lumen narrowing after stent angioplasty procedure.

  5. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels

    PubMed Central

    Jiang, Xian-cheng; Bruce, Can; Mar, Jefferson; Lin, Min; Ji, Yong; Francone, Omar L.; Tall, Alan R.

    1999-01-01

    It has been proposed that the plasma phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids and cholesterol from triglyceride-rich lipoproteins (TRL) into high-density lipoproteins (HDL). To evaluate the in vivo role of PLTP in lipoprotein metabolism, we used homologous recombination in embryonic stem cells and produced mice with no PLTP gene expression. Analysis of plasma of F2 homozygous PLTP–/– mice showed complete loss of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, and partial loss of free cholesterol transfer activities. Moreover, the in vivo transfer of [3H]phosphatidylcholine ether from very-low-density proteins (VLDL) to HDL was abolished in PLTP–/– mice. On a chow diet, PLTP–/– mice showed marked decreases in HDL phospholipid (60%), cholesterol (65%), and apo AI (85%), but no significant change in non-HDL lipid or apo B levels, compared with wild-type littermates. On a high-fat diet, HDL levels were similarly decreased, but there was also an increase in VLDL and LDL phospholipids (210%), free cholesterol (60%), and cholesteryl ester (40%) without change in apo B levels, suggesting accumulation of surface components of TRL. Vesicular lipoproteins were shown by negative-stain electron microscopy of the free cholesterol– and phospholipid-enriched IDL/LDL fraction. Thus, PLTP is the major factor facilitating transfer of VLDL phospholipid into HDL. Reduced plasma PLTP activity causes markedly decreased HDL lipid and apoprotein, demonstrating the importance of transfer of surface components of TRL in the maintenance of HDL levels. Vesicular lipoproteins accumulating in PLTP–/– mice on a high-fat diet could influence the development of atherosclerosis. PMID:10079112

  6. Targeting the NLRP3 Inflammasome to Reduce Diet-Induced Metabolic Abnormalities in Mice

    PubMed Central

    Chiazza, Fausto; Couturier-Maillard, Aurélie; Benetti, Elisa; Mastrocola, Raffaella; Nigro, Debora; Cutrin, Juan C; Serpe, Loredana; Aragno, Manuela; Fantozzi, Roberto; Ryffel, Bernard; Collino, Massimo

    2015-01-01

    Although the molecular links underlying the causative relationship between chronic low-grade inflammation and insulin resistance are not completely understood, compelling evidence suggests a pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Here we tested the hypothesis that either a selective pharmacological inhibition or a genetic downregulation of the NLRP3 inflammasome results in reduction of the diet-induced metabolic alterations. Male C57/BL6 wild-type mice and NLRP3−/− littermates were fed control diet or high-fat, high-fructose diet (HD). A subgroup of HD-fed wild-type mice was treated with the NLRP3 inflammasome inhibitor BAY 11-7082 (3 mg/kg intraperitoneally [IP]). HD feeding increased plasma and hepatic lipids and impaired glucose homeostasis and renal function. Renal and hepatic injury was associated with robust increases in profibrogenic markers, while only minimal fibrosis was recorded. None of these metabolic abnormalities were detected in HD-fed NLRP3−/− mice, and they were dramatically reduced in HD-mice treated with the NLRP3 inflammasome inhibitor. BAY 11-7082 also attenuated the diet-induced increase in NLRP3 inflammasome expression, resulting in inhibition of caspase-1 activation and interleukin (IL)-1β and IL-18 production (in liver and kidney). Interestingly, BAY 11-7082, but not gene silencing, inhibited nuclear factor (NF)-κB nuclear translocation. Overall, these results demonstrate that the selective pharmacological modulation of the NLRP3 inflammasome attenuates the metabolic abnormalities and the related organ injury/dysfunction caused by chronic exposure to HD, with effects similar to those obtained by NLRP3 gene silencing. PMID:26623925

  7. Targeting notch signaling pathway in cancer: clinical development advances and challenges.

    PubMed

    Takebe, Naoko; Nguyen, Dat; Yang, Sherry X

    2014-02-01

    Notch signaling plays an important role in development and cell fate determination, and it is deregulated in human hematologic malignancies and solid tumors. This review includes a brief introduction of the relevant pathophysiology of Notch signaling pathway and primarily focuses on the clinical development of promising agents that either obstruct Notch receptor cleavages such as γ-secretase inhibitors (GSIs) or interfere with the Notch ligand-receptor interaction by monoclonal antibodies (mAbs). Antitumor activity by GSIs and mAbs administered as single agent in early phases of clinical trials has been observed in advanced or metastatic thyroid cancer, non-small cell lung cancer, intracranial tumors, sarcoma or desmoid tumors, colorectal cancer with neuroendocrine features, melanoma and ovarian cancer. A number of mechanism-based adverse events particularly gastrointestinal toxicities emerged and mitigation strategies are developed after testing multiple GSIs and Notch targeting mAbs. We also discuss pharmacodynamic biomarkers in conjunction with methods of assessment of the molecular target inhibition validation. Biomarkers of efficacy or benefit may be of importance for a successful development of this class of drugs.

  8. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma

    PubMed Central

    Richter, Joshua; Neparidze, Natalia; Zhang, Lin; Nair, Shiny; Monesmith, Tamara; Sundaram, Ranjini; Miesowicz, Fred; Dhodapkar, Kavita M.

    2013-01-01

    Natural killer T (iNKT) cells can help mediate immune surveillance against tumors in mice. Prior studies targeting human iNKT cells were limited to therapy of advanced cancer and led to only modest activation of innate immunity. Clinical myeloma is preceded by an asymptomatic precursor phase. Lenalidomide was shown to mediate antigen-specific costimulation of human iNKT cells. We treated 6 patients with asymptomatic myeloma with 3 cycles of combination of α-galactosylceramide–loaded monocyte-derived dendritic cells and low-dose lenalidomide. Therapy was well tolerated and led to reduction in tumor-associated monoclonal immunoglobulin in 3 of 4 patients with measurable disease. Combination therapy led to activation-induced decline in measurable iNKT cells and activation of NK cells with an increase in NKG2D and CD56 expression. Treatment also led to activation of monocytes with an increase in CD16 expression. Each cycle of therapy was associated with induction of eosinophilia as well as an increase in serum soluble IL2 receptor. Clinical responses correlated with pre-existing or treatment-induced antitumor T-cell immunity. These data demonstrate synergistic activation of several innate immune cells by this combination and the capacity to mediate tumor regression. Combination therapies targeting iNKT cells may be of benefit toward prevention of cancer in humans (trial registered at clinicaltrials.gov: NCT00698776). PMID:23100308

  9. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma.

    PubMed

    Richter, Joshua; Neparidze, Natalia; Zhang, Lin; Nair, Shiny; Monesmith, Tamara; Sundaram, Ranjini; Miesowicz, Fred; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2013-01-17

    Natural killer T (iNKT) cells can help mediate immune surveillance against tumors in mice. Prior studies targeting human iNKT cells were limited to therapy of advanced cancer and led to only modest activation of innate immunity. Clinical myeloma is preceded by an asymptomatic precursor phase. Lenalidomide was shown to mediate antigen-specific costimulation of human iNKT cells. We treated 6 patients with asymptomatic myeloma with 3 cycles of combination of α-galactosylceramide-loaded monocyte-derived dendritic cells and low-dose lenalidomide. Therapy was well tolerated and led to reduction in tumor-associated monoclonal immunoglobulin in 3 of 4 patients with measurable disease. Combination therapy led to activation-induced decline in measurable iNKT cells and activation of NK cells with an increase in NKG2D and CD56 expression. Treatment also led to activation of monocytes with an increase in CD16 expression. Each cycle of therapy was associated with induction of eosinophilia as well as an increase in serum soluble IL2 receptor. Clinical responses correlated with pre-existing or treatment-induced antitumor T-cell immunity. These data demonstrate synergistic activation of several innate immune cells by this combination and the capacity to mediate tumor regression. Combination therapies targeting iNKT cells may be of benefit toward prevention of cancer in humans.

  10. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases

    PubMed Central

    Ochoa-Cortes, Fernando; Turco, Fabio; Linan-Rico, Andromeda; Soghomonyan, Suren; Whitaker, Emmett; Wehner, Sven; Cuomo, Rosario

    2015-01-01

    Abstract: The word “glia” is derived from the Greek word “γλοια,” glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the “reactive glial phenotype” is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor–α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential. PMID:26689598

  11. Reactive Oxygen-Related Diseases: Therapeutic Targets and Emerging Clinical Indications

    PubMed Central

    Daiber, Andreas; Maghzal, Ghassan J.; Di Lisa, Fabio; Kaludercic, Nina; Leach, Sonia; Cuadrado, Antonio; Jaquet, Vincent; Seredenina, Tamara; Krause, Karl H.; López, Manuela G.; Stocker, Roland

    2015-01-01

    Abstract Significance: Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. Recent Advances: We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. Critical Issues: Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. Future Directions: Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171–1185. PMID:26583264

  12. Targeted Next-Generation Sequencing for Clinical Diagnosis of 561 Mendelian Diseases

    PubMed Central

    Kong, Xiangdong; Guo, Xueqin; Sun, Yan; Man, Jianfen; Du, Lique; Zhu, Hui; Qu, Zelan; Tian, Ping; Mao, Bing; Yang, Yun

    2015-01-01

    Background Targeted next-generation sequencing (NGS) is a cost-effective approach for rapid and accurate detection of genetic mutations in patients with suspected genetic disorders, which can facilitate effective diagnosis. Methodology/Principal Findings We designed a capture array to mainly capture all the coding sequence (CDS) of 2,181 genes associated with 561 Mendelian diseases and conducted NGS to detect mutations. The accuracy of NGS was 99.95%, which was obtained by comparing the genotypes of selected loci between our method and SNP Array in four samples from normal human adults. We also tested the stability of the method using a sample from normal human adults. The results showed that an average of 97.79% and 96.72% of single-nucleotide variants (SNVs) in the sample could be detected stably in a batch and different batches respectively. In addition, the method could detect various types of mutations. Some disease-causing mutations were detected in 69 clinical cases, including 62 SNVs, 14 insertions and deletions (Indels), 1 copy number variant (CNV), 1 microdeletion and 2 microduplications of chromosomes, of which 35 mutations were novel. Mutations were confirmed by Sanger sequencing or real-time polymerase chain reaction (PCR). Conclusions/Significance Results of the evaluation showed that targeted NGS enabled to detect disease-causing mutations with high accuracy, stability, speed and throughput. Thus, the technology can be used for the clinical diagnosis of 561 Mendelian diseases. PMID:26274329

  13. Adjuvant treatment with tumor-targeting Salmonella typhimurium A1-R reduces recurrence and increases survival after liver metastasis resection in an orthotopic nude mouse model.

    PubMed

    Murakami, Takashi; Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2015-12-08

    Colon cancer liver metastasis is often the lethal aspect of this disease. Well-isolated metastases are candidates for surgical resection, but recurrence is common. Better adjuvant treatment is therefore needed to reduce or prevent recurrence. In the present study, HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used to establish liver metastases in nude mice. Mice with a single liver metastasis were randomized into bright-light surgery (BLS) or the combination of BLS and adjuvant treatment with tumor-targeting S. typhimurium A1-R. Residual tumor fluorescence after BLS was clearly visualized at high magnification by fluorescence imaging. Adjuvant treatment with S. typhimurium A1-R was highly effective to increase survival and disease-free survival after BLS of liver metastasis. The results suggest the future clinical potential of adjuvant S. typhimurium A1-R treatment after liver metastasis resection.

  14. New Developments in Salivary Gland Pathology: Clinically Useful Ancillary Testing and New Potentially Targetable Molecular Alterations.

    PubMed

    Griffith, Christopher C; Schmitt, Alessandra C; Little, James L; Magliocca, Kelly R

    2017-03-01

    Accurate diagnosis of salivary gland tumors can be challenging because of the many diagnostic entities, the sometimes extensive morphologic overlap, and the rarity of most tumor types. Ancillary testing is beginning to ameliorate some of these challenges through access to newer immunohistochemical stains and fluorescence in situ hybridization probes, which can limit differential diagnostic considerations in some cases. These ancillary testing strategies are especially useful in small biopsy samples, including aspiration cytology. Molecular techniques are also expanding our understanding of salivary gland tumor pathology and are helping to identify potential targets that may improve treatment for some of these tumors. Here, we summarize the clinical use of new immunohistochemical markers in our practice and review the current understanding of chromosomal rearrangements in salivary gland tumor pathology, emphasizing the prospects for exploiting molecular alterations in salivary gland tumors for diagnosis and targeted therapy. We find that immunohistochemistry and fluorescence in situ hybridization are powerful tools toward the diagnosis of salivary gland tumors, especially when used in a systematic manner based on morphologic differential-diagnostic considerations. As new targeted therapies emerge, it will become increasingly vital to incorporate appropriate molecular testing into the pathologic evaluation of salivary gland cancers.

  15. Concordance of preclinical and clinical pharmacology and toxicology of monoclonal antibodies and fusion proteins: soluble targets

    PubMed Central

    Martin, Pauline L; Bugelski, Peter J

    2012-01-01

    Monoclonal antibodies (mAbs) and fusion proteins directed towards soluble targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 14 currently approved mAbs and fusion proteins targeted to soluble targets. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency ‘Scientific Discussions’ and United States Food and Drug Administration ‘Pharmacology/Toxicology Reviews’ and package inserts (United States Prescribing Information). Data on the following approved biopharmaceuticals were included: adalimumab, anakinra, bevacizumab, canakinumab, certolizumab pegol, denosumab, eculizumab, etanercept, golimumab, infliximab, omalizumab, ranibizumab, rilonacept and ustekinumab. Some related biopharmaceuticals in late-stage development were also included for comparison. Good concordance with human pharmacodynamics was found for both non-human primates (NHPs) receiving the human biopharmaceutical and mice receiving rodent homologues (surrogates). In contrast, there was limited concordance for human adverse effects in genetically deficient mice, mice receiving surrogates or NHPs receiving the human pharmaceutical. In summary, the results of this survey show that although both mice and NHPs have good predictive value for human pharmacodynamics, neither species have good predictive value for human adverse effects. No evidence that NHPs have superior predictive value was found. PMID:22168335

  16. [Clinical care of lung cancer patients with body image changes after targeted therapy].

    PubMed

    Chan, Jui-Chun; Liao, Yu-Chien; Lee, Yun-Hsiang; Lai, Yeur-Hur

    2014-08-01

    Lung cancer has a relatively short survival prognosis and advanced disease progression. Therefore, targeted therapy has become one of the most frequent treatments of this disease. Targeted therapy has several features that effectively extend the survival period; is easy to apply and use; and has fewer side effects than chemotherapy. Therefore, this therapy approach has become the preferred choice of patients with advanced lung cancer. However, current targeted therapies like Iressa and Tarceva produce side effects such as skin dryness and acneiform eruption that may bother patients. These side effects may further cause patient concern over negative changes in their body image, and these concerns may influence their work and social lives. Additionally, some patients treated with targeted therapy worry about their chances of survival if they reduce or stop the medication to avoid the side effects. Consequently, patients may struggle with both physical and psychological impacts, and may have problems sustaining a good quality of life. This article focuses on delivering relevant information to patients receiving targeted therapy who suffer from dermatological toxicity and damage to their body image. We demonstrate an assessment tool and information to help patients cope with physical and psychosocial issues through daily skin care routines, mental / psychological supports, and cognitive behavior therapy. These measures may help patients rebuild a positive self-concept. We plan to develop further associated training to provide professionals / care providers with the appropriate knowledge and skills to care for cancer patients in a resource-limited environment so that they may improve the quality of nursing care for patients with body image changes.

  17. Clinical roundtable monograph: CD30 in lymphoma: its role in biology, diagnostic testing, and targeted therapy.

    PubMed

    Sotomayor, Eduardo M; Young, Ken H; Younes, Anas

    2014-04-01

    CD30, a member of the tumor necrosis factor receptor superfamily, is a transmembrane glycoprotein receptor consisting of an extracellular domain, a transmembrane domain, and an intracellular domain. CD30 has emerged as an important molecule in the field of targeted therapy because its expression is generally restricted to specific disease types and states. The major cancers with elevated CD30 expression include Hodgkin lymphoma and anaplastic large T-cell lymphoma, and CD30 expression is considered essential to the differential diagnosis of these malignancies. Most commonly, CD30 expression is detected and performed by immunohistochemical staining of biopsy samples. Alternatively, flow cytometry analysis has also been developed for fresh tissue and cell aspiration specimens, including peripheral blood and bone marrow aspirate. Over the past several years, several therapeutic agents were developed to target CD30, with varying success in clinical trials. A major advance in the targeting of CD30 was seen with the development of the antibody-drug conjugate brentuximab vedotin, which consists of the naked anti-CD30 antibody SGN-30 conjugated to the synthetic antitubulin agent monomethyl auristatin E. In 2011, brentuximab vedotin was approved by the US Food and Drug Administration for use in Hodgkin lymphoma and anaplastic large cell lymphoma based on clinical trial data showing high response rates in these indications. Ongoing trials are examining brentuximab vedotin after autologous stem cell transplantation, as part of chemotherapy combination regimens, and in other CD30-expressing malignancies, including primary mediastinal large B-cell lymphomas, diffuse large B-cell lymphoma, lymphoma positive for Epstein-Barr virus, peripheral T-cell lymphoma not otherwise specified, and cutaneous anaplastic large cell lymphoma.

  18. A Pharmacist-Staffed, Virtual Gout Management Clinic for Achieving Target Serum Uric Acid Levels: A Randomized Clinical Trial

    PubMed Central

    Goldfien, Robert; Pressman, Alice; Jacobson, Alice; Ng, Michele; Avins, Andrew

    2016-01-01

    Context: Relatively few patients with gout receive appropriate treatment. Objective: To determine whether a pharmacist-staffed gout management program is more effective than usual care in achieving target serum uric acid (sUA) levels in gout patients. Design: A parallel-group, randomized controlled trial of a pharmacist-staffed, telephone-based program for managing hyperuricemia vs usual care. Trial duration was 26 weeks. Main Outcome Measures: Primary outcome measure was achieving sUA levels at or below 6 mg/dL at the 26-week visit. Secondary outcome was mean change in sUA levels in the control and intervention groups. Participants were adults with recurrent gout and sUA levels above 6.0 mg/dL. Participants were randomly assigned to management by a clinical pharmacist following protocol or to monitoring of sUA levels but management of their gout by their usual treating physician. Results: Of 102 patients who met eligibility criteria, 77 subjects obtained a baseline sUA measurement and were entered into the trial. Among 37 participants in the intervention group, 13 (35%) had sUA levels at or below 6.0 mg/dL at 26 weeks, compared with 5 (13%) of 40 participants in the control group (risk ratio = 2.8, 95% confidence interval [CI] = 1.1 to 7.1, p = 0.03). The mean change in sUA levels among controls was +0.1 mg/dL compared with −1.5 mg/dL in the intervention group (sUA difference = −1.6, 95% CI = −0.9 to −2.4, p < 0.001). Conclusions: A structured pharmacist-staffed program was more effective than usual care for achieving target sUA levels. These results suggest a structured program could greatly improve gout management. PMID:27352414

  19. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    SciTech Connect

    Ataman, Ozlem U.; Sambrook, Sally J.; Wilks, Chris; Lloyd, Andrew; Taylor, Amanda E.; Wedge, Stephen R.

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such

  20. Survey and Rapid Detection of Bordetella pertussis in Clinical Samples Targeting the BP485 in China

    PubMed Central

    Liu, Wei; Xu, Yinghua; Dong, Derong; Li, Huan; Zhao, Xiangna; Li, Lili; Zhang, Ying; Wei, Xiao; Wang, Xuesong; Huang, Simo; Zeng, Ming; Huang, Liuyu; Zhang, Shumin; Yuan, Jing

    2015-01-01

    Bordetella pertussis is an important human respiratory pathogen. Here, we describe a loop-mediated isothermal amplification (LAMP) method for the rapid detection of B. pertussis in clinical samples based on a visual test. The LAMP assay detected the BP485 target sequence within 60 min with a detection limit of 1.3 pg/μl, a 10-fold increase in sensitivity compared with conventional PCR. All 31 non-pertussis respiratory pathogens tested were negative for LAMP detection, indicating the high specificity of the primers for B. pertussis. To evaluate the application of the LAMP assay to clinical diagnosis, of 105 sputum and nasopharyngeal samples collected from the patients with suspected respiratory infections in China, a total of 12 B. pertussis isolates were identified from 33 positive samples detected by LAMP-based surveillance targeting BP485. Strikingly, a 4.5 months old baby and her mother were found to be infected with B. pertussis at the same time. All isolates belonged to different B. pertussis multilocus sequence typing groups with different alleles of the virulence-related genes including four alleles of ptxA, six of prn, four of tcfA, two of fim2, and three of fim3. The diversity of B. pertussis carrying toxin genes in clinical strains indicates a rapid and continuing evolution of B. pertussis. This combined with its high prevalence will make it difficult to control. In conclusion, we have developed a visual detection LAMP assay, which could be a useful tool for rapid B. pertussis detection, especially in situations where resources are poor and in point-of-care tests. PMID:25798436

  1. Soy Protein Supplementation Reduces Clinical Indices in Type 2 Diabetes and Metabolic Syndrome

    PubMed Central

    Zhang, Yun-Bo; Chi, Mei-Hua

    2016-01-01

    Purpose Clinical trials have studied the use of soy protein for treating type 2 diabetes (T2D) and metabolic syndrome (MS). The purpose of this study was to outline evidence on the effects of soy protein supplementation on clinical indices in T2D and MS subjects by performing a meta-analysis of randomized controlled trials (RCTs). Materials and Methods We searched PubMed, EMBASE, and Cochrane databases up to March 2015 for RCTs. Pooled estimates and 95% confidence intervals (CIs) were calculated by the fixed-and-random-effects model. A total of eleven studies with eleven clinical variables met the inclusion criteria. Results The meta-analysis showed that fasting plasma glucose (FPG) [weighted mean difference (WMD), -0.207; 95% CI, -0.374 to -0.040; p=0.015], fasting serum insulin (FSI) (WMD, -0.292; 95% CI, -0.496 to -0.088; p=0.005), homeostasis model of assessment for insulin resistance index (HOMA-IR) (WMD, -0.346; 95% CI, -0.570 to -0.123; p=0.002), diastolic blood pressure (DBP) (WMD, -0.230; 95% CI, -0.441 to -0.019; p=0.033), low-density lipoprotein cholesterol (LDL-C) (WMD, -0.304; 95% CI, -0.461 to -0.148; p=0.000), total cholesterol (TC) (WMD, -0.386; 95% CI, -0.548 to -0.225; p=0.000), and C-reactive protein (CRP) (WMD, -0.510; 95% CI, -0.722 to -0.299; p=0.000) are significant reduced with soy protein supplementation, compared with a placebo control group, in T2D and MS patients. Furthermore, soy protein supplementation for longer duration (≥6 mo) significantly reduced FPG, LDL-C, and CRP, while that for a shorter duration (<6 mo) significantly reduced FSI and HOMA-IR. Conclusion Soy protein supplementation could be beneficial for FPG, FSI, HOMA-IR, DBP, LDL-C, TC, and CRP control in plasma. PMID:26996569

  2. Targeting services to reduce social inequalities in utilisation: an analysis of breast cancer screening in New South Wales

    PubMed Central

    Birch, Stephen; Haas, Marion; Savage, Elizabeth; Van Gool, Kees

    2007-01-01

    Background Many jurisdictions have used public funding of health care to reduce or remove price at the point of delivery of services. Whilst this reduces an important barrier to accessing care, it does nothing to discriminate between groups considered to have greater or fewer needs. In this paper, we consider whether active targeted recruitment, in addition to offering a 'free' service, is associated with a reduction in social inequalities in self-reported utilization of the breast screening services in NSW, Australia. Methods Using the 1997 and 1998 NSW Health Surveys we estimated probit models on the probability of having had a screening mammogram in the last two years for all women aged 40–79. The models examined the relative importance of socio-economic and geographic factors in predicting screening behaviour in three different needs groups – where needs were defined on the basis of a woman's age. Results We find that women in higher socio-economic groups are more likely to have been screened than those in lower groups for all age groups. However, the socio-economic effect is significantly less among women who were in the actively targeted age group. Conclusion This indicates that recruitment and follow-up was associated with a modest reduction in social inequalities in utilisation although significant income differences remain. PMID:17550622

  3. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism.

    PubMed

    Phillips, Emma; Lang, Verena; Bohlen, Jonathan; Bethke, Frederic; Puccio, Laura; Tichy, Diana; Herold-Mende, Christel; Hielscher, Thomas; Lichter, Peter; Goidts, Violaine

    2016-10-15

    In a previous study, Protein Kinase C iota (PRKCI) emerged as an important candidate gene for glioblastoma (GBM) stem-like cell (GSC) survival. Here, we show that PKCι is overexpressed and activated in patient derived GSCs compared with normal neural stem cells and normal brain lysate, and that silencing of PRKCI in GSCs causes apoptosis, along with loss of clonogenicity and reduced proliferation. Notably, PRKCI silencing reduces tumor growth in vivo in a xenograft mouse model. PKCι has been intensively studied as a therapeutic target in non-small cell lung cancer, resulting in the identification of an inhibitor, aurothiomalate (ATM), which disrupts the PKCι/ERK signaling axis. However, we show that, although sensitive to pharmacological inhibition via a pseudosubstrate peptide inhibitor, GSCs are much less sensitive to ATM, suggesting that PKCι acts along a different signaling axis in GSCs. Gene expression profiling of PRKCI-silenced GSCs revealed a novel role of the Notch signaling pathway in PKCι mediated GSC survival. A proximity ligation assay showed that Notch1 and PKCι are in close proximity in GSCs. Targeting PKCι in the context of Notch signaling could be an effective way of attacking the GSC population in GBM.

  4. Radium-223: From Radiochemical Development to Clinical Applications in Targeted Cancer Therapy

    SciTech Connect

    Bruland, Oyvind S.; Jonasdottir, Thora J.; Fisher, Darrell R.; Larsen, Roy H.

    2008-09-15

    The radiochemical properties of radium-223 (223Ra, T1/2 = 11.4 d) render this alpha-emitting radionuclide promising for targeted cancer therapy. Together with its short-lived daughters, each 223Ra decay produces four alpha-particle emissions—which enhance therapy effectiveness at the cellular level. In this paper, we review the recently published data reported for pre-clinical and clinical use of 223Ra in cancer treatment. We have evaluated two distinct chemical forms of 223Ra in vivo: 1) cationic 223Ra as dissolved RaCl2, and 2) liposome-encapsulated 223Ra. Cationic 223Ra seeks metabolically active osteoblastic bone and tumor lesions with high uptake and strong binding affinity based on its similarities to calcium. Based on these properties, we have advanced the clinical use of 223Ra for treating bone metastases from late-stage breast and prostate cancer. The results show impressive anti-tumor activity and improved overall survival in hormone-refractory prostate cancer patients with bone metastases. In other studies, we have evaluated the biodistribution and tumor uptake of liposomally encapsulated 223Ra in mice with human osteosarcoma xenografts, and in dogs with spontaneous osteosarcoma and associated soft tissue metastases. Results indicate excellent biodistributions in both species. In dogs, we found considerable uptake of liposomal 223Ra in cancer metastases in multiple organs, resulting in favorable tumor-to-normal soft tissue ratios. Collectively, these findings show an outstanding potential for 223Ra as a therapeutic agent.

  5. From lab to clinic: Extinction of cued cravings to reduce overeating.

    PubMed

    Jansen, Anita; Schyns, Ghislaine; Bongers, Peggy; van den Akker, Karolien

    2016-08-01

    Food cue reactivity is a strong motivation to eat, even in the absence of hunger. Therefore, food cue reactivity might sabotage healthy eating, induce weight gain and impede weight loss or weight maintenance. Food cue reactivity can be learned via Pavlovian appetitive conditioning: It is easily acquired but the extinction of appetitive responding seems to be more challenging. Several properties of extinction make it fragile: extinction does not erase the original learning and extinction is context-dependent. These properties threaten full extinction and increase the risk of full relapse. Extinction procedures are discussed to reduce or prevent the occurrence of rapid reacquisition, spontaneous recovery, renewal and reinstatement after extinction. A translation to food cue exposure treatment is made and suggestions are provided, such as conducting the exposure in relevant contexts, using occasional reinforcement and targeting expectancy violation instead of habituation. A new hypothesis proposed here is that the adding of inhibition training to strengthen inhibition skills that reduce instrumental responding, might be beneficial to improve food cue exposure effects.

  6. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery.

    PubMed

    Nahain, Abdullah-Al; Lee, Jung-Eun; Jeong, Ji Hoon; Park, Sung Young

    2013-11-11

    This present article demonstrates the strategy to prepare photoresponsive reduced graphene oxide with mussel inspired adhesive material dopamine (DN) and photochromic dye spiropyran (SP) conjugated to the backbone of the targeting ligand hyaluronic acid (HA; HA-SP). Graphene oxide (GO) was reduced by prepared HA-SP accepting the advantages of catechol chemistry under mildly alkaline condition enabling to achieve functionalized graphene (rGO/HA-SP) as fluorescent nanoparticles. Due to containing HA, rGO/HA-SP can bind to the CD44 cell receptors. The prepared rGO/HA-SP is able to retain its photochromic features and can be converted to merocyanine (MC) form upon irradiation with UV light (wavelength: 365 nm) displaying purple color. Photochromic behavior of rGO/HA-SP was monitored by UV-vis and fluorescence spectroscopy. In vitro fluorescence behavior, examined by confocal laser scanning microscope (CLSM), of rGO/HA-SP in cancerous A549 cell lines assured that efficient delivery of rGO/HA-SP was gained due to HA as targeting ligand. In this work, we have shown that in vivo fluorescence image of spiropyran is possible by administrating MC form solution of rGO/HA-SP using Balb/C mice as in vivo modal. Accumulation of rGO/HA-SP in tumor tissue from biodistribution analysis strongly supports the specific delivery of prepared graphene to the target destination. The well tuned drug release manner from the surface of rGO/HA-SP strongly recommends the developed material not only as fluorescent probe for diagnosis but also as a drug carrier in drug delivery system.

  7. In Vivo Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted Lipid Bilayer Nanoscale Vesicles.

    PubMed

    Hadjidemetriou, Marilena; Al-Ahmady, Zahraa; Mazza, Mariarosa; Collins, Richard F; Dawson, Kenneth; Kostarelos, Kostas

    2015-08-25

    The adsorption of proteins and their layering onto nanoparticle surfaces has been called the "protein corona". This dynamic process of protein adsorption has been extensively studied following in vitro incubation of many different nanoparticles with plasma proteins. However, the formation of protein corona under dynamic, in vivo conditions remains largely unexplored. Extrapolation of in vitro formed protein coronas to predict the fate and possible toxicological burden from nanoparticles in vivo is of great interest. However, complete lack of such direct comparisons for clinically used nanoparticles makes the study of in vitro and in vivo formed protein coronas of great importance. Our aim was to study the in vivo protein corona formed onto intravenously injected, clinically used liposomes, based on the composition of the PEGylated liposomal formulation that constitutes the anticancer agent Doxil. The formation of in vivo protein corona was determined after the recovery of the liposomes from the blood circulation of CD-1 mice 10 min postinjection. In comparison, in vitro protein corona was formed by the incubation of liposomes in CD-1 mouse plasma. In vivo and in vitro formed protein coronas were compared in terms of morphology, composition and cellular internalization. The protein coronas on bare (non-PEGylated) and monoclonal antibody (IgG) targeted liposomes of the same lipid composition were also comparatively investigated. A network of linear fibrillary structures constituted the in vitro formed protein corona, whereas the in vivo corona had a different morphology but did not appear to coat the liposome surface entirely. Even though the total amount of protein attached on circulating liposomes correlated with that observed from in vitro incubations, the variety of molecular species in the in vivo corona were considerably wider. Both in vitro and in vivo formed protein coronas were found to significantly reduce receptor binding and cellular internalization of

  8. Burnout and Work Demands Predict Reduced Job Satisfaction in Health Professionals Working In a Surgery Clinic

    PubMed Central

    Mijakoski, Dragan; Karadzinska-Bislimovska, Jovanka; Basarovska, Vera; Stoleski, Sasho; Minov, Jordan

    2015-01-01

    BACKGROUND: Burnout syndrome develops in health professionals (HPs) as a result of exposure to chronic emotional and interpersonal workplace stressors. Research demonstrates the links between burnout, work demands, and job satisfaction in hospital HPs. AIMS: To examine the associations between burnout, work demands and job satisfaction, and to demonstrate the mediation effect of emotional exhaustion on the relationship between work demands and job satisfaction in surgery clinic HPs. METHODS: Maslach Burnout Inventory was used for assessment of burnout. Work demands and job satisfaction were measured with Hospital Experience Scale and Job Satisfaction Survey, respectively. In order to examine the role of emotional exhaustion, depersonalization, and work demands, controlling for age, hospital tenure, and unit tenure, a hierarchical multiple regression models were tested for each job satisfaction factor. RESULTS: Job satisfaction was negatively predicted by emotional exhaustion. Certain types of work demands negatively predicted different factors of job satisfaction. Emotional exhaustion was a significant partial mediator of the relationship between work demands and job satisfaction. CONCLUSIONS: Adequate management of work demands, particularly excessive workload, time pressure, and lack of staff can lead to prevention of burnout and reduced job satisfaction in surgery clinic HPs, and contribute to better quality of patient care. PMID:27275216

  9. Cannabinoids against pain. Efficacy and strategies to reduce psychoactivity: a clinical perspective.

    PubMed

    Karst, Matthias; Wippermann, Sonja

    2009-02-01

    The clinical use of cannabinoids is currently a topic of interest not exclusively, but most importantly, concerning different areas of pain therapy. One of the major obstacles in developing clinically acceptable compounds is the cannabimimetic side-effect profile of delta-9-tetrahydrocannabinol (THC) and other cannabinoids. This article gives a brief overview of the endocannabinoid system, its components and functions and explains the current approaches to avoiding cannabimimetic side effects by separating them from the therapeutic effects. One of these approaches is the addition of cannabidiol (CBD) as well as the use of preparations suitable for oromucosal application. Also cannabinoids, which primarily stimulate peripheral cannabinoid-1 (CB1) receptors or selectively cannabinoid-2 (CB2) receptors, can further separate analgesic activity from cannabimimetic activity. Local or topical modes of application are another attempt aiming in the same direction. Modulating the endogenous cannabinoid tone (via the inhibition of endocannabinoid-metabolising enzymes) is another strategy. The combination of THC in low, non-psychoactive doses with opioids has a synergistic effect and reduces opioid tolerance effects. Available data from these approaches are summarised and their more and less promising aspects are discussed.

  10. Clinical effect of reducing curing times with high-intensity LED lights

    PubMed Central

    Ward, Justin D.; Wolf, Bethany J.; Leite, Luis P.; Zhou, Jing

    2016-01-01

    Objective To evaluate the clinical performance of brackets cured with a high-intensity, light-emitting diode (LED) with a shorter curing time. Materials and Methods Thirty-four patients and a total of 680 brackets were examined using a randomized split-mouth design. The maxillary right and mandibular left quadrants were cured for 6 seconds with a high-intensity LED light (3200 mW/cm2) and the maxillary left and mandibular right quadrants were cured for 20 seconds with a standard-intensity LED light (1200 mW/cm2). Alternating patients had the quadrants inverted for the curing protocol. The number and date of each first-time bracket failure was recorded from 199 to 585 days posttreatment. Results The bracket failure rate was 1.18% for both curing methods. The proportion of bracket failure was not significantly different between curing methods (P = 1.000), genders (P = 1.000), jaws (P = .725), sides (P = .725), or quadrants (P = .547). Posterior teeth exhibited a greater proportion of failures (2.21%) relative to anterior teeth (0.49%), although the difference was not statistically significant (P = .065). Conclusions No difference was found in bond failure rates between the two curing methods. Both methods showed bond failure rates low enough to be considered clinically sufficient. The high-intensity LED light used with a shorter curing time may be considered an advantage due to the reduced chair time. PMID:25760887

  11. Nurse-led risk assessment/management clinics reduce predicted cardiac morbidity and mortality in claudicants.

    PubMed

    Hatfield, Josephine; Gulati, Sumit; Abdul Rahman, Morhisham N A; Coughlin, Patrick A; Chetter, Ian C

    2008-12-01

    Nurse-led assessment/management of risk factors is effective in many chronic medical conditions. We aimed to evaluate whether this finding was true for patients with intermittent claudication and to analyze its impact on patient-reported quality of life and predicted mortality due to coronary heart disease. We prospectively studied a series of 78 patients (51 men; median age, 65 years [IQR: 56-74 years]), diagnosed with intermittent claudication and referred to a nurse-led risk assessment/management clinic (NLC) from a consultant-led vascular surgical clinic. The NLC used clinical care pathways to manage antiplatelet medication, smoking cessation, hyperlipidemia, hypertension, and diabetes and to provide exercise advice. All patients were reassessed at a 3 months. Medication compliance, smoking status, fasting lipid profiles, blood pressure, and HbA1c were recorded. Disease-specific quality of life was assessed using King's College VascuQoL and predicted cardiac morbidity and mortality were calculated using the PROCAM and Framingham risk scores. We found that NLC enrollment produced an antiplatelet and a statin compliance of 100%, a smoking cessation rate of 17% (9 patients) and significant improvements in total cholesterol (median, 5.2-4.5 mmol/l), LDL (median, 3.1-2.5 mmol/l) and triglyceride (median, 1.7-1.4 mmol/l) levels. Significant disease-specific quality of life improvements and significant reduction in both the PROCAM (14% to 10%) and Framingham (14% to 11%) coronary risk scores were observed. Providing care at NLCs for claudicants is effective in assessing and managing risk factors, improves disease-specific quality of life and reduces predicted morbidity and mortality due to coronary heart disease.

  12. High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Oxombre, B; Lee-Chang, C; Duhamel, A; Toussaint, M; Giroux, M; Donnier-Maréchal, M; Carato, P; Lefranc, D; Zéphir, H; Prin, L; Melnyk, P; Vermersch, P

    2015-01-01

    Background and Purpose Selective agonists of the sigma-1 receptor (σ1 protein) are generally reported to protect against neuronal damage and modulate oligodendrocyte differentiation. Human and rodent lymphocytes possess saturable, high-affinity binding sites for compounds binding to the σ1 protein and potential immunomodulatory properties have been described for σ1 protein ligands. Experimental autoimmune encephalomyelitis (EAE) is recognized as a valuable model of the inflammatory aspects of multiple sclerosis (MS). Here, we have assessed the role of a σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, in EAE. Experimental Approach EAE was induced in SJL/J female mice by active immunization with myelin proteolipid protein (PLP)139–151 peptide. The σ1 protein agonist was injected i.p. at the time of immunization (day 0). Disease severity was assessed clinically and by histopathological evaluation of the CNS. Phenotyping of B-cell subsets and regulatory T-cells were performed by flow cytometry in spleen and cervical lymph nodes. Key Results Prophylactic treatment of EAE mice with the σ1 protein agonist prevented mononuclear cell accumulation and demyelination in brain and spinal cord and increased T2 B-cells and regulatory T-cells, resulting in an overall reduction in the clinical progression of EAE. Conclusions and Implications This σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, decreased the magnitude of inflammation in EAE. This effect was associated with increased proportions of B-cell subsets and regulatory T-cells with potential immunoregulatory functions. Targeting of the σ1 protein might thus provide new therapeutic opportunities in MS. PMID:25521311

  13. Neurosteroid Binding Sites on the GABAA Receptor Complex as Novel Targets for Therapeutics to Reduce Alcohol Abuse and Dependence

    PubMed Central

    Hulin, Mary W.; Amato, Russell J.; Porter, Johnny R.; Filipeanu, Catalin M.; Winsauer, Peter J.

    2011-01-01

    Despite the prevalence of alcohol abuse and dependence in the US and Europe, there are only five approved pharmacotherapies for alcohol dependence. Moreover, these pharmacotherapeutic options have limited clinical utility. The purpose of this paper is to present pertinent literature suggesting that both alcohol and the neurosteroids interact at the GABAA receptor complex and that the neurosteroid sites on this receptor complex could serve as new targets for the development of novel therapeutics for alcohol abuse. This paper will also present data collected by our laboratory showing that one neurosteroid in particular, dehydroepiandrosterone (DHEA), decreases ethanol intake in rats under a variety of conditions. In the process, we will also mention relevant studies from the literature suggesting that both particular subtypes and subunits of the GABAA receptor play an important role in mediating the interaction of neurosteroids and ethanol. PMID:22110489

  14. A clinical score to reduce unnecessary antibiotic use in patients with sore throat

    PubMed Central

    McIsaac, W J; White, D; Tannenbaum, D; Low, D E

    1998-01-01

    OBJECTIVE: To validate a score based on clinical symptoms and signs for the identification of group A Streptococcus (GAS) infection in general practice patients with score throat. DESIGN: A single throat swab was used as the gold standard for diagnosing GAS infection. Clinical information was recorded by experienced family physicians on standardized encounter forms. Score criteria were identified by means of logistic regression modelling of data from patients enrolled in the first half of the study. The score was then validated among the remaining patients. SETTING: University-affiliated family medicine centre in Toronto. PATIENTS: A total of 521 patients aged 3 to 76 years presenting with a new upper respiratory tract infection from December 1995 to February 1997. OUTCOME MEASURES: Sensitivity, specificity and likelihood ratios for identification of GAS infection with the score approach compared with throat culture. Proportion of patients prescribed antibiotics, throat culture use, and sensitivity and specificity with usual physician care and with score-based recommendations were compared. RESULTS: A score was developed ranging in value from 0 to 4. The sensitivity of the score for identifying GAS infection was 83.1%, compared with 69.4% for usual physician care (p = 0.06); the specificity values of the 2 approaches were similar. Among patients aged 3 to 14 years, the sensitivity of the score approach was higher than that of usual physician care (96.9% v. 70.6%) (p < 0.05). The proportion of patients receiving initial antibiotic prescriptions would have been reduced 48% by following score-based recommendations compared with observed physician prescribing (p < 0.001), without any increase in throat culture use. CONCLUSIONS: An age-appropriate sore throat score identified GAS infection in children and adults with sore throat better than usual care by family physicians, with significant reductions in unnecessary prescribing of antibiotics. A randomized trial

  15. Challenges of Clinical Trial Design for Targeted Agents Against Pediatric Leukemias

    PubMed Central

    Mussai, Francis Jay; Yap, Christina; Mitchell, Christopher; Kearns, Pamela

    2015-01-01

    The past 40 years have seen significant improvements in both event-free and overall survival for children with acute lymphoblastic and acute myeloid leukemia (ALL and AML, respectively). Serial national and international clinical trials have optimized the use of conventional chemotherapeutic drugs and, along with improvements in supportive care that have enabled the delivery of more intensive regimens, have been responsible for the major improvements in patient outcome seen over the past few decades. However, the benefits of dose intensification have likely now been maximized, and over the same period, the identification of new cytotoxic drugs has been limited. Therefore, challenges remain if survival is to be improved further. In pediatric ALL, 5-year-survival rates of over 85% have been achieved with risk-stratified therapy, but a notable minority of patients will still not be cured. In pediatric AML, different challenges remain. A slower improvement in overall survival has taken place in this patient population. Despite the obvious morphological heterogeneity of AML blasts, biological stratification is comparatively limited, and translation into risk-stratified therapeutic approaches has only best characterized by the use of retinoic acid for t(15;17)-positive AML. Even where prognostic markers have been identified, limited therapeutic options or multi-drug resistance of AML blasts has limited the impact on patient benefit. For both, the acute morbidities of current treatment remain significant and may be life-threatening alone. In addition, the Childhood Cancer Survivor Study (CCSS) highlighted many leukemia survivors develop one or more chronic medical conditions attributable to treatment (1, 2). As the biology of leukemogenesis has become better understood, key molecules and intracellular pathways have been identified that offer the possibility of targeting directly the leukemia cells while sparing normal cells. Consequently, there is now a drive to develop

  16. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains

    PubMed Central

    Ramos, Carlos A.; Savoldo, Barbara; Torrano, Vicky; Ballard, Brandon; Zhang, Huimin; Dakhova, Olga; Liu, Enli; Carrum, George; Kamble, Rammurti T.; Gee, Adrian P.; Mei, Zhuyong; Wu, Meng-Fen; Liu, Hao; Grilley, Bambi; Rooney, Cliona M.; Brenner, Malcolm K.; Heslop, Helen E.; Dotti, Gianpietro

    2016-01-01

    BACKGROUND. Treatment of B cell malignancies with adoptive transfer of T cells with a CD19-specific chimeric antigen receptor (CAR) shows remarkable clinical efficacy. However, long-term persistence of T cells targeting CD19, a pan–B cell marker, also depletes normal B cells and causes severe hypogammaglobulinemia. Here, we developed a strategy to target B cell malignancies more selectively by taking advantage of B cell light Ig chain restriction. We generated a CAR that is specific for the κ light chain (κ.CAR) and therefore recognizes κ-restricted cells and spares the normal B cells expressing the nontargeted λ light chain, thus potentially minimizing humoral immunity impairment. METHODS. We conducted a phase 1 clinical trial and treated 16 patients with relapsed or refractory κ+ non-Hodgkin lymphoma/chronic lymphocytic leukemia (NHL/CLL) or multiple myeloma (MM) with autologous T cells genetically modified to express κ.CAR (κ.CARTs). Other treatments were discontinued in 11 of the 16 patients at least 4 weeks prior to T cell infusion. Six patients without lymphopenia received 12.5 mg/kg cyclophosphamide 4 days before κ.CART infusion (0.2 × 108 to 2 × 108 κ.CARTs/m2). No other lymphodepletion was used. RESULTS. κ.CART expansion peaked 1–2 weeks after infusion, and cells remained detectable for more than 6 weeks. Of 9 patients with relapsed NHL or CLL, 2 entered complete remission after 2 and 3 infusions of κ.CARTs, and 1 had a partial response. Of 7 patients with MM, 4 had stable disease lasting 2–17 months. No toxicities attributable to κ.CARTs were observed. CONCLUSION. κ.CART infusion is feasible and safe and can lead to complete clinical responses. TRIAL REGISTRATION. ClinicalTrials.gov NCT00881920. FUNDING. National Cancer Institute (NCI) grants 3P50CA126752 and 5P30CA125123 and Leukemia and Lymphoma Society (LLS) Specialized Centers of Research (SCOR) grant 7018. PMID:27270177

  17. Clinical evaluation of compounds targeting PD-1/PD-L1 pathway for cancer immunotherapy.

    PubMed

    Lu, Jing; Lee-Gabel, Linda; Nadeau, Michelle C; Ferencz, Thomas M; Soefje, Scott A

    2015-12-01

    Significant enthusiasm currently exists for new immunotherapeutic strategies: blocking the interaction between programmed death-1 receptor on T-cells and programmed death-ligand 1 on tumor cells to boost immune system stimulation to fight cancer. Immunomodulation with the antiprogrammed death-1/programmed death-ligand 1 monoclonal antibodies has shown to mediate tumor shrinkage and extend overall survival from several pivotal phase I/II studies in melanoma, renal cell carcinoma, and non-small cell lung cancer. This has prompted multiple large ongoing phase III trials with the expectation for fast-track FDA approvals to satisfy unmet medical needs. Compounds targeting the programmed death-1 pathway that are in clinical trials fall into two major categories, namely antiprogrammed death-1 antibodies: Nivolumab, MK-3475, and pidilizumab; and antiprogrammed death-ligand 1 antibodies: MPDL3280A, BMS-936559, MEDI4736, and MSB0010718C. We reviewed the clinical efficacy and safety of each compound based upon major registered clinical trials and published clinical data. Overall, response rate of more than 20% is consistently seen across all these trials, with maximal response of approximately 50% achieved by certain single antiprogrammed death-1 agents or when used in combination with cytotoxic T-lymphocyte antigen-4 blockade. The responses seen are early, durable, and have continued after treatment discontinuation. Immune-related adverse events are the most common side effects seen in these clinical trials. Overall, the skin and gastrointestinal tract are the most common organ systems affected by these compounds while hepatic, endocrine, and neurologic events are less frequent. These side effects are low grade, manageable, and typically resolve within a relatively short time frame with a predictable resolution pattern given proper management. We therefore propose detailed guidelines for management of major immune-related adverse events that are anticipated with

  18. Pegylated Trastuzumab Fragments Acquire an Increased in Vivo Stability but Show a Largely Reduced Affinity for the Target Antigen

    PubMed Central

    Selis, Fabio; Focà, Giuseppina; Sandomenico, Annamaria; Marra, Carla; Di Mauro, Concetta; Saccani Jotti, Gloria; Scaramuzza, Silvia; Politano, Annalisa; Sanna, Riccardo; Ruvo, Menotti; Tonon, Giancarlo

    2016-01-01

    PEGylation of biomolecules is a major approach to increase blood stream half-life, stability and solubility of biotherapeutics and to reduce their immunogenicity, aggregation potential and unspecific interactions with other proteins and tissues. Antibodies have generally long half-lives due to high molecular mass and stability toward proteases, however their size lowers to some extent their potential because of a reduced ability to penetrate tissues, especially those of tumor origin. Fab or otherwise engineered smaller fragments are an alternative but are less stable and are much less well retained in circulation. We have here investigated the effects of various PEGylations on the binding properties and in vivo half-life of Fab fragments derived from the enzymatic splitting of Trastuzumab. We find that PEGylation increases the half-life of the molecules but also strongly affects the ability to recognize the target antigen in a way that is dependent on the extent and position of the chemical modification. Data thus support the concept that polyethylene glycol (PEG) conjugation on Trastuzumab Fabs increases half-life but reduces their affinity and this is a fine balance, which must be carefully considered for the design of strategies based on the use of antibody fragments. PMID:27043557

  19. Reducing Conduct Problems among Children Exposed to Intimate Partner Violence: A Randomized Clinical Trial Examining Effects of Project Support

    ERIC Educational Resources Information Center

    Jouriles, Ernest N.; McDonald, Renee; Rosenfield, David; Stephens, Nanette; Corbitt-Shindler, Deborah; Miller, Pamela C.

    2009-01-01

    This study was a randomized clinical trial of Project Support, an intervention designed to reduce conduct problems among children exposed to intimate partner violence. Participants were 66 families (mothers and children) with at least 1 child exhibiting clinical levels of conduct problems. Families were recruited from domestic violence shelters.…

  20. Alpha-1 antitrypsin deficiency targeted testing and augmentation therapy: A Canadian Thoracic Society clinical practice guideline

    PubMed Central

    Marciniuk, DD; Hernandez, P; Balter, M; Bourbeau, J; Chapman, KR; Ford, GT; Lauzon, JL; Maltais, F; O’Donnell, DE; Goodridge, D; Strange, C; Cave, AJ; Curren, K; Muthuri, S

    2012-01-01

    Alpha-1 antitrypsin (A1AT) functions primarily to inhibit neutrophil elastase, and deficiency predisposes individuals to the development of chronic obstructive pulmonary disease (COPD). Severe A1AT deficiency occurs in one in 5000 to one in 5500 of the North American population. While the exact prevalence of A1AT deficiency in patients with diagnosed COPD is not known, results from small studies provide estimates of 1% to 5%. The present document updates a previous Canadian Thoracic Society position statement from 2001, and was initiated because of lack of consensus and understanding of appropriate patients suitable for targeted testing for A1AT deficiency, and for the use of A1AT augmentation therapy. Using revised guideline development methodology, the present clinical practice guideline document systematically reviews the published literature and provides an evidence-based update. The evidence supports the practice that targeted testing for A1AT deficiency be considered in individuals with COPD diagnosed before 65 years of age or with a smoking history of <20 pack years. The evidence also supports consideration of A1AT augmentation therapy in nonsmoking or exsmoking patients with COPD (forced expiratory volume in 1 s of 25% to 80% predicted) attributable to emphysema and documented A1AT deficiency (level ≤11 μmol/L) who are receiving optimal pharmacological and nonpharmacological therapies (including comprehensive case management and pulmonary rehabilitation) because of benefits in computed tomography scan lung density and mortality. PMID:22536580

  1. Optimal marker-strategy clinical trial design to detect predictive markers for targeted therapy.

    PubMed

    Zang, Yong; Liu, Suyu; Yuan, Ying

    2016-07-01

    In developing targeted therapy, the marker-strategy design (MSD) provides an important approach to evaluate the predictive marker effect. This design first randomizes patients into non-marker-based or marker-based strategies. Patients allocated to the non-marker-based strategy are then further randomized to receive either the standard or targeted treatments, while patients allocated to the marker-based strategy receive treatments based on their marker statuses. Little research has been done on the statistical properties of the MSD, which has led to some widespread misconceptions and placed clinical researchers at high risk of using inefficient designs. In this article, we show that the commonly used between-strategy comparison has low power to detect the predictive effect and is valid only under a restrictive condition that the randomization ratio within the non-marker-based strategy matches the marker prevalence. We propose a Wald test that is generally valid and also uniformly more powerful than the between-strategy comparison. Based on that, we derive an optimal MSD that maximizes the power to detect the predictive marker effect by choosing the optimal randomization ratios between the two strategies and treatments. Our numerical study shows that using the proposed optimal designs can substantially improve the power of the MSD to detect the predictive marker effect. We use a lung cancer trial to illustrate the proposed optimal designs.

  2. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer.

    PubMed

    Najjar, Yana G; Finke, James H

    2013-01-01

    Tumors escape immune recognition by several mechanisms, and induction of myeloid derived suppressor cells (MDSC) is thought to play a major role in tumor mediated immune evasion. MDSC arise from myeloid progenitor cells that do not differentiate into mature dendritic cells, granulocytes, or macrophages, and are characterized by the ability to suppress T cell and natural killer cell function. They are increased in patients with cancer including renal cell carcinoma (RCC), and their levels have been shown to correlate with prognosis and overall survival. Multiple methods of inhibiting MDSCs are currently under investigation. These can broadly be categorized into methods that (a) promote differentiation of MDSC into mature, non-suppressive cells (all trans retinoic acid, vitamin D), (b) decrease MDSC levels (sunitinib, gemcitabine, 5-FU, CDDO-Me), or (c) functionally inhibit MDSC (PDE-5 inhibitors, cyclooxygenase 2 inhibitors). Recently, several pre-clinical tumor models of combination therapy involving sunitinib plus vaccines and/or adoptive therapy have shown promise in MDSC inhibition and improved outcomes in the tumor bearing host. Current clinical trials are underway in RCC patients to assess not only the impact on clinical outcome, but how this combination can enhance anti-tumor immunity and reduce immune suppression. Decreasing immune suppression by MDSC in the cancer host may improve outcomes and prolong survival in this patient population.

  3. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    PubMed Central

    2012-01-01

    Background Radiotherapy (RT) is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV) in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI) in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs. PMID:22691275

  4. Impact of GPCRs in clinical medicine: genetic variants and drug targets

    PubMed Central

    Insel, Paul A.; Tang, Chih-Min; Hahntow, Ines; Michel, Martin C.

    2007-01-01

    Summary By virtue of their large number, widespread distribution and important roles in cell physiology and biochemistry, G-protein-coupled receptors (GPCR) play multiple important roles in clinical medicine. Here, we focus on 3 areas that subsume much of the recent work in this aspect of GPCR biology: 1) Monogenic diseases of GPCR; 2) Genetic variants of GPCR; and 3) Clinically useful pharmacological agonists and antagonists of GPCR. Diseases involving mutations of GPCR are rare, occurring in <1/1000 people, but disorders in which antibodies are directed against GPCR are more common. Genetic variants, especially single nucleotide polymorphisms (SNP), show substantial heterogeneity in frequency among different GPCRs but have not been evaluated for some GPCR. Many therapeutic agonists and antagonists target GPCR and show inter-subject variability in terms of efficacy and toxicity. For most of those agents, it remains an open question whether genetic variation in primary sequence of the GPCR is an important contributor to such inter-subject variability, although this is an active area of investigation. PMID:17081496

  5. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization.

    PubMed

    Rath, Barbara H; Wahba, Amy; Camphausen, Kevin; Tofilon, Philip J

    2015-11-01

    Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem-like cells (GSCs) were grown in coculture with human astrocytes. Using a trans-well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation-induced γH2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double-strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine-based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte-mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization.

  6. Improvement of the reverse tetracycline transactivator by single amino acid substitutions that reduce leaky target gene expression to undetectable levels.

    PubMed

    Roney, Ian J; Rudner, Adam D; Couture, Jean-François; Kærn, Mads

    2016-06-21

    Conditional gene expression systems that enable inducible and reversible transcriptional control are essential research tools and have broad applications in biomedicine and biotechnology. The reverse tetracycline transcriptional activator is a canonical system for engineered gene expression control that enables graded and gratuitous modulation of target gene transcription in eukaryotes from yeast to human cell lines and transgenic animals. However, the system has a tendency to activate transcription even in the absence of tetracycline and this leaky target gene expression impedes its use. Here, we identify single amino-acid substitutions that greatly enhance the dynamic range of the system in yeast by reducing leaky transcription to undetectable levels while retaining high expression capacity in the presence of inducer. While the mutations increase the inducer concentration required for full induction, additional sensitivity-enhancing mutations can compensate for this effect and confer a high degree of robustness to the system. The novel transactivator variants will be useful in applications where tight and tunable regulation of gene expression is paramount.

  7. Lives saved by tuberculosis control and prospects for achieving the 2015 global target for reducing tuberculosis mortality

    PubMed Central

    Floyd, Katherine; Korenromp, Eline L; Sismanidis, Charalambos; Bierrenbach, Ana L; Williams, Brian G; Atun, Rifat; Raviglione, Mario

    2011-01-01

    Abstract Objective To assess whether the global target of halving tuberculosis (TB) mortality between 1990 and 2015 can be achieved and to conduct the first global assessment of the lives saved by the DOTS/Stop TB Strategy of the World Health Organization (WHO). Methods Mortality from TB since 1990 was estimated for 213 countries using established methods endorsed by WHO. Mortality trends were estimated separately for people with and without human immunodeficiency virus (HIV) infection in accordance with the International classification of diseases. Lives saved by the DOTS/Stop TB Strategy were estimated with respect to the performance of TB control in 1995, the year that DOTS was introduced. Findings TB mortality among HIV-negative (HIV−) people fell from 30 to 20 per 100 000 population (36%) between 1990 and 2009 and could be halved by 2015. The overall decline (when including HIV-positive [HIV+] people, who comprise 12% of all TB cases) was 19%. Between 1995 and 2009, 49 million TB patients were treated under the DOTS/Stop TB Strategy. This saved 4.6–6.3 million lives, including those of 0.23–0.28 million children and 1.4–1.7 million women of childbearing age. A further 1 million lives could be saved annually by 2015. Conclusion Improvements in TB care and control since 1995 have greatly reduced TB mortality, saved millions of lives and brought within reach the global target of halving TB deaths by 2015 relative to 1990. Intensified efforts to reduce deaths among HIV+ TB cases are needed, especially in sub-Saharan Africa. PMID:21836756

  8. Survival of patients with metastatic leiomyosarcoma: the MD Anderson Clinical Center for targeted therapy experience.

    PubMed

    Wang, Zhijie; Shi, Naiyi; Naing, Aung; Janku, Filip; Subbiah, Vivek; Araujo, Dejka M; Patel, Shreyaskumar R; Ludwig, Joseph A; Ramondetta, Lois M; Levenback, Charles F; Ramirez, Pedro T; Piha-Paul, Sarina A; Hong, David; Karp, Daniel D; Tsimberidou, Apostolia M; Meric-Bernstam, Funda; Fu, Siqing

    2016-12-01

    Advanced stage leiomyosarcoma (LMS) is incurable with current systemic antitumor therapies. Therefore, there is clinical interest in exploring novel therapeutic regimens to treat LMS. We reviewed the medical records of 75 consecutive patients with histologically confirmed metastatic LMS, who had been referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center. To lay the foundation for potential phase I trials for the treatment of advanced LMS, we analyzed tumor response and survival outcome data. The frequent hotspot gene aberrations that we observed were the TP53 mutation (65%) and RB1 loss/mutation (45%) detected by Sequenom or next-generation sequencing. Among patients treated with gene aberration-related phase I trial therapy, the median progression-free survival was 5.8 months and the median overall survival was 15.9 months, significantly better than in patients without therapy (1.9 months, P = 0.001; and 8.7 months, P = 0.013, respectively). Independent risk factors that predicted shorter overall survival included hemoglobin <10 g/dL, body mass index <30 kg/m(2) , serum albumin <3.5 g/dL, and neutrophil above upper limit of normal. The median survivals were 19.9, 7.6, and 0.9 months for patients with 0, 1 or 2, and ≥3 of the above risk factors, respectively (P < 0.001). A prognostic scoring system that included four independent risk factors might predict survival in patients with metastatic LMS who were treated in a phase I trial. Gene aberration-related therapies led to significantly better clinical benefits, supporting that further exploration with novel mechanism-driven therapeutic regimens is warranted.

  9. Application of (212)Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation.

    PubMed

    Yong, Kwon; Brechbiel, Martin

    Targeted α-particle therapy (TAT), in which an α-particle emitting radionuclide is specifically directed to a biological target, is gaining more attention to treat cancers as new targets are validated. Bio-vectors such as monoclonal antibodies are able to selectively transport α-particles to destroy targeted cancer cells. TAT has the potential for an improved therapeutic ratio over β-particle targeted conjugate therapy. The short path length and the intense ionization path generated render α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking. (212)Pb is the longer-lived parent radionuclide of (212)Bi and serves as an in vivo generator of (212)Bi. (212)Pb has demonstrated significant utility in both in vitro and in vivo models. Recent evaluation of (212)Pb-TCMC-trastuzumab in a Phase I clinical trial has demonstrated the feasibility of (212)Pb in TAT for the treatment of ovarian cancer patients. This review highlights progress in radionuclide production, radiolabeling chemistry, molecular mechanisms, and application of (212)Pb to targeted pre-clinical and clinical radiation therapy for the management and treatment of cancer.

  10. Application of 212Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation

    PubMed Central

    Yong, Kwon; Brechbiel, Martin

    2015-01-01

    Targeted α-particle therapy (TAT), in which an α-particle emitting radionuclide is specifically directed to a biological target, is gaining more attention to treat cancers as new targets are validated. Bio-vectors such as monoclonal antibodies are able to selectively transport α-particles to destroy targeted cancer cells. TAT has the potential for an improved therapeutic ratio over β-particle targeted conjugate therapy. The short path length and the intense ionization path generated render α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking. 212Pb is the longer-lived parent radionuclide of 212Bi and serves as an in vivo generator of 212Bi. 212Pb has demonstrated significant utility in both in vitro and in vivo models. Recent evaluation of 212Pb-TCMC-trastuzumab in a Phase I clinical trial has demonstrated the feasibility of 212Pb in TAT for the treatment of ovarian cancer patients. This review highlights progress in radionuclide production, radiolabeling chemistry, molecular mechanisms, and application of 212Pb to targeted pre-clinical and clinical radiation therapy for the management and treatment of cancer. PMID:26858987

  11. Taking small steps towards targets - perspectives for clinical practice in diabetes, cardiometabolic disorders and beyond.

    PubMed

    Golay, A; Brock, E; Gabriel, R; Konrad, T; Lalic, N; Laville, M; Mingrone, G; Petrie, J; Phan, T-M; Pietiläinen, K H; Anderwald, C-H

    2013-04-01

    Big changes are hard. When trying to achieve guideline targets in diabetes and cardiometabolic disorders, patients can lack commitment or suffer despondency. It is much easier to make small changes in lifestyle or treatment, which are less noticeable and easier to manage long-term. Obesity is central to the cardiometabolic disorders, and even small weight losses of 2-5% can improve the cardiometabolic risk profile and substantially reduce the risk of developing type 2 diabetes. Likewise, small increases in physical activity, such as 15-30 min of brisk walking per day, can cut the risk of heart disease by 10%. Lifestyle or treatment changes that lead to small improvements in metabolic parameters also impact patient outcome - for example, a 5 mmHg decrease in blood pressure can translate into significant reductions in the rates of myocardial infarction and cardiovascular mortality. Benefits of small changes can also be seen in health economic outcome models. Implementing change at an individual versus a population level has different implications for overall benefit and patient motivation. Even very small steps taken in trying to reach guideline targets should represent a positive achievement for patients. Patient engagement is essential - only when patients commit themselves to change can benefits be maintained, and physicians should recognise their influence. Small changes in individual parameters can result in significant beneficial effects; however, a major impact can occur when small changes are made together in multiple parameters. More research is required to elucidate the full impact of small changes on patient outcome.

  12. Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers.

    PubMed

    Singh, Neha; Krishnakumar, Subramanian; Kanwar, Rupinder K; Cheung, Chun Hei Antonio; Kanwar, Jagat R

    2015-05-01

    Drug resistance is frequently found in cancer patients who have prolonged chemotherapeutic treatments. Overcoming this phenomenon to make therapy available to these patients is one of the most important features in developing effective cancer therapeutic strategies. Identification of drug resistance causative molecules is one of the most focused areas of cancer research today. Many molecules have been identified in conferring cancer cells the property of drug resistance, and various small molecule inhibitors have been developed to target these molecules to restore the sensitivity of different traditional chemotherapeutic agents, which are frequently found to exhibit reduced potency during prolonged treatment, in cancer patients. Survivin, a member of the inhibitor of apoptosis proteins (IAP) family, has been identified as one of the most crucial biomarkers in the recognition of drug resistance. Survivin is overexpressed in tumor cells, helping in its proliferation and survival, and its overexpression is positively correlated with poor prognosis for cancer patients. Targeted therapeutic measures to inhibit survivin in cancers, particularly drug-resistant tumors, are the recent focus of research for cancer treatment.

  13. Targets for future clinical trials in Huntington's disease: What's in the pipeline?

    PubMed Central

    Wild, Edward J; Tabrizi, Sarah J

    2014-01-01

    The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies. PMID:25155142

  14. Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion

    PubMed Central

    Yen, S-Y; Chen, S-R; Hsieh, J; Li, Y-S; Chuang, S-E; Chuang, H-M; Huang, M-H; Lin, S-Z; Harn, H-J; Chiou, T-W

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive brain tumour. The neoplasms are difficult to resect entirely because of their highly infiltration property and leading to the tumour edge is unclear. Gliadel wafer has been used as an intracerebral drug delivery system to eliminate the residual tumour. However, because of its local low concentration and short diffusion distance, patient survival improves non-significantly. Axl is an essential regulator in cancer metastasis and patient survival. In this study, we developed a controlled-release polyanhydride polymer loading a novel small molecule, n-butylidenephthalide (BP), which is not only increasing local drug concentration and extending its diffusion distance but also reducing tumour invasion, mediated by reducing Axl expression. First, we determined that BP inhibited the expression of Axl in a dose- and time-dependent manner and reduced the migratory and invasive capabilities of GBM cells. In addition, BP downregulated matrix metalloproteinase activity, which is involved in cancer cell invasion. Furthermore, we demonstrated that BP regulated Axl via the extracellular signal-regulated kinases pathway. Epithelial-to-mesenchymal transition (EMT) is related to epithelial cells in the invasive migratory mesenchymal cells that underlie cancer progression; we demonstrated that BP reduced the expression of EMT-related genes. Furthermore, we used the overexpression of Axl in GBM cells to prove that Axl is a crucial target in the inhibition of GBM EMT, migration and invasion. In an in vivo study, we demonstrated that BP inhibited tumour growth and suppressed Axl expression in a dose-dependent manner according to a subcutaneous tumour model. Most importantly, in an intracranial tumour model with BP wafer in situ treatment, we demonstrated that the BP wafer not only significantly increased the survival rate but also decreased Axl expression, and inhibited tumour invasion. These results contribute to the

  15. Semaphorin 3F expression is reduced in pregnancy complicated by preeclampsia. An observational clinical study

    PubMed Central

    Stallone, Giovanni; Matteo, Maria; Netti, Giuseppe Stefano; Infante, Barbara; Di Lorenzo, Adelaide; Prattichizzo, Clelia; Carlucci, Stefania; Trezza, Federica; Gesualdo, Loreto; Greco, Pantaleo

    2017-01-01

    Background and objective Preeclampsia is a systemic disorder, affecting 2–10% of pregnancies, characterized by a deregulated pro- and anti-angiogenic balance. Semaphorin 3F is an angiogenesis inhibitor. We aimed to investigate whether semaphorin 3F expression is modulated in preeclampsia. Design, setting, participants, and measurements We performed two observational single center cohort studies between March 2013 and August 2014. In the first we enrolled 110 consecutive women, undergoing an elective cesarean section; in the second we included 150 consecutive women undergoing amniocentesis for routine clinical indications at 16–18 week of gestation. Semaphorin 3F concentration was evaluated in maternal peripheral blood, venous umbilical blood and amniotic fluid, along with its placenta protein expression at the time of delivery in the first study group and in the amniotic fluid at 16–18 weeks of gestation in the second study group. Results In the first study 19 patients presented at delivery with preeclampsia. Semaphorin 3F placenta tissue expression was significantly reduced in preeclampsia. In addition, semaphorin 3F level at delivery was significantly lower in serum, amniotic fluid and venous umbilical blood of preeclamptic patients compared with normal pregnant women. In the prospective cohort study 14 women developed preeclampsia. In this setting, semaphorin 3F amniotic level at 16–18 weeks of gestation was reduced in women who subsequently developed preeclampsia compared to women with a normal pregnancy. ROC curve analysis showed that semaphorin 3F amniotic levels could identify women at higher risk of preeclampsia. Conclusions Semaphorin 3F might represent a predictive biomarker of preeclampsia. PMID:28350837

  16. EGCG-targeted p57/KIP2 reduces tumorigenicity of oral carcinoma cells: Role of c-Jun N-terminal kinase

    SciTech Connect

    Yamamoto, Tetsuya; Digumarthi, Hari; Aranbayeva, Zina; Wataha, John; Lewis, Jill; Messer, Regina; Qin, Haiyan; Dickinson, Douglas; Osaki, Tokio; Schuster, George S.; Hsu, Stephen

    2007-11-01

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) regulates gene expression differentially in tumor and normal cells. In normal human primary epidermal keratinocytes (NHEK), one of the key mediators of EGCG action is p57/KIP2, a cyclin-dependent kinase (CDK) inhibitor. EGCG potently induces p57 in NHEK, but not in epithelial cancer cells. In humans, reduced expression of p57 often is associated with advanced tumors, and tumor cells with inactivated p57 undergo apoptosis when exposed to EGCG. The mechanism of p57 induction by EGCG is not well understood. Here, we show that in NHEK, EGCG-induces p57 via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In p57-negative tumor cells, JNK signaling mediates EGCG-induced apoptosis, and exogenous expression of p57 suppresses EGCG-induced apoptosis via inhibition of c-Jun N-terminal kinase (JNK). We also found that restoration of p57 expression in tumor cells significantly reduced tumorigenicity in athymic mice. These results suggest that p57 expression may be an useful indicator for the clinical course of cancers, and could be potentially useful as a target for cancer therapies.

  17. Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index

    PubMed Central

    Erion, Mark D.; Cable, Edward E.; Ito, Bruce R.; Jiang, Hongjian; Fujitaki, James M.; Finn, Patricia D.; Zhang, Bao-Hong; Hou, Jinzhao; Boyer, Serge H.; van Poelje, Paul D.; Linemeyer, David L.

    2007-01-01

    Despite efforts spanning four decades, the therapeutic potential of thyroid hormone receptor (TR) agonists as lipid-lowering and anti-obesity agents remains largely unexplored in humans because of dose-limiting cardiac effects and effects on the thyroid hormone axis (THA), muscle metabolism, and bone turnover. TR agonists selective for the TRβ isoform exhibit modest cardiac sparing in rodents and primates but are unable to lower lipids without inducing TRβ-mediated suppression of the THA. Herein, we describe a cytochrome P450-activated prodrug of a phosphonate-containing TR agonist that exhibits increased TR activation in the liver relative to extrahepatic tissues and an improved therapeutic index. Pharmacokinetic studies in rats demonstrated that the prodrug (2R,4S)-4-(3-chlorophenyl)-2-[(3,5-dimethyl-4-(4′-hydroxy-3′-isopropylbenzyl)phenoxy)methyl]-2-oxido-[1,3,2]-dioxaphosphonane (MB07811) undergoes first-pass hepatic extraction and that cleavage of the prodrug generates the negatively charged TR agonist (3,5-dimethyl-4-(4′-hydroxy-3′-isopropylbenzyl)phenoxy)methylphosphonic acid (MB07344), which distributes poorly into most tissues and is rapidly eliminated in the bile. Enhanced liver targeting was further demonstrated by comparing the effects of MB07811 with 3,5,3′-triiodo-l-thyronine (T3) and a non-liver-targeted TR agonist, 3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)phenylacetic acid (KB-141) on the expression of TR agonist-responsive genes in the liver and six extrahepatic tissues. The pharmacologic effects of liver targeting were evident in the normal rat, where MB07811 exhibited increased cardiac sparing, and in the diet-induced obese mouse, where, unlike KB-141, MB07811 reduced cholesterol and both serum and hepatic triglycerides at doses devoid of effects on body weight, glycemia, and the THA. These results indicate that targeting TR agonists to the liver has the potential to lower both cholesterol and triglyceride levels with an

  18. Potential reduced exposure products (PREPs) for smokeless tobacco users: clinical evaluation methodology.

    PubMed

    Gray, Jennifer N; Breland, Alison B; Weaver, Michael; Eissenberg, Thomas

    2008-09-01

    Several potential reduced exposure products (PREPs) for smokeless tobacco (SLT) users are marketed in the United States, though their effects are largely unknown. These products include some that are low in tobacco-specific nitrosamines (TSNs), like Stonewall, a pressed tobacco tablet, and General snus, a moist snuff product produced in Sweden. Methodology assessing the toxicant exposure and effects of cigarette-like PREPs for smokers has been developed, and might be modified for use in evaluating PREPs for SLT users. This report describes two studies examining the toxicant exposure and effects of two PREPs for SLT users. Study 1 (n = 13) consisted of four 4.5-hr laboratory sessions where SLT products (own brand, Stonewall, General snus, and tobacco-free placebo) were used for four 30-min episodes and nicotine exposure and tobacco/nicotine abstinence symptoms were measured. Study 2 (n = 19) consisted of four 5-day ad libitum use periods when participants used own brand, Stonewall, General snus, or no SLT and urinary levels of metabolites of nicotine (cotinine) and the TSN 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNAL) and abstinence symptoms were measured. Compared with own brand, Stonewall was associated with lower levels of cotinine and NNAL, while General snus was associated with similar levels of cotinine and lower levels of NNAL. Abstinence symptoms generally did not differ across tobacco conditions. These results show that clinical laboratory methods can be used to evaluate the toxicant exposure and abstinence symptom suppression associated with PREPs for SLT users.

  19. Clinical and Surgical Strategies for Avoiding or Reducing Allogeneic Blood Transfusions

    PubMed Central

    dos Santos, Antonio Alceu; Baumgratz, Jose Francisco; Vila, Jose Henrique Andrade; Castro, Rodrigo Moreira; Bezerra, Rodrigo Freire

    2016-01-01

    Blood transfusions have still been used as a standard therapy to treat severe anemia. Current evidences point to both excessive allogeneic blood consumption and decreased donations, which result in reduced stocks in blood banks. Several studies have increasingly suggested a more restrictive transfusion practice for blood products. Currently, a number of autologous blood conservation protocols in surgeries have been noted. We report a case of severe anemia with 2.9 g/dL hemoglobin, which was successfully handled without using the standard therapy to treat anemia with hemotransfusions. Such a case of severe anemia condition resulted after the patient was submitted to ascending aortic aneurism repair, valvar aortic replacement, reimplantation of right coronary ostium, followed by a coronary artery bypass grafting and several postoperative complications. The main clinical and surgical strategies used in this case to avoid blood transfusions were acute normovolemic hemodilution, intraoperative blood cell salvage, and meticulous hemostasis, beyond epsilon-aminocaproic acid, desmopressin, prothrombin complex concentrate, human fibrinogen concentrate, factor VIIa recombinant, erythropoietin and hyperoxic ventilation. PMID:28197273

  20. Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking.

    PubMed

    Rinker, Jennifer A; Fulmer, Diana B; Trantham-Davidson, Heather; Smith, Maren L; Williams, Robert W; Lopez, Marcelo F; Randall, Patrick K; Chandler, L Judson; Miles, Michael F; Becker, Howard C; Mulholland, Patrick J

    2017-02-01

    Alcohol (ethanol) dependence is a chronic relapsing brain disorder partially influenced by genetics and characterized by an inability to regulate harmful levels of drinking. Emerging evidence has linked genes that encode KV7, KIR, and KCa2 K(+) channels with variation in alcohol-related behaviors in rodents and humans. This led us to experimentally test relations between K(+) channel genes and escalation of drinking in a chronic-intermittent ethanol (CIE) exposure model of dependence in BXD recombinant inbred strains of mice. Transcript levels for K(+) channel genes in the prefrontal cortex (PFC) and nucleus accumbens (NAc) covary with voluntary ethanol drinking in a non-dependent cohort. Transcripts that encode KV7 channels covary negatively with drinking in non-dependent BXD strains. Using a pharmacological approach to validate the genetic findings, C57BL/6J mice were allowed intermittent access to ethanol to establish baseline consumption before they were treated with retigabine, an FDA-approved KV7 channel positive modulator. Systemic administration significantly reduced drinking, and consistent with previous evidence, retigabine was more effective at reducing voluntary consumption in high-drinking than low-drinking subjects. We evaluated the specific K(+) channel genes that were most sensitive to CIE exposure and identified a gene subset in the NAc and PFC that were dysregulated in the alcohol-dependent BXD cohort. CIE-induced modulation of nine genes in the NAc and six genes in the PFC covaried well with the changes in drinking induced by ethanol dependence. Here we identified novel candidate genes in the NAc and PFC that are regulated by ethanol dependence and correlate with voluntary drinking in non-dependent and dependent BXD mice. The findings that Kcnq expression correlates with drinking and that retigabine reduces consumption suggest that KV7 channels could be pharmacogenetic targets to treat individuals with alcohol addiction.

  1. Reducing medication errors and increasing patient safety: case studies in clinical pharmacology.

    PubMed

    Benjamin, David M

    2003-07-01

    Today, reducing medication errors and improving patient safety have become common topics of discussion for the president of the United States, federal and state legislators, the insurance industry, pharmaceutical companies, health care professionals, and patients. But this is not news to clinical pharmacologists. Improving the judicious use of medications and minimizing adverse drug reactions have always been key areas of research and study for those working in clinical pharmacology. However, added to the older terms of adverse drug reactions and rational therapeutics, the now politically correct expression of medication error has emerged. Focusing on the word error has drawn attention to "prevention" and what can be done to minimize mistakes and improve patient safety. Webster's New Collegiate Dictionary has several definitions of error, but the one that seems to be most appropriate in the context of medication errors is "an act that through ingnorance, deficiency, or accident departs from or fails to achieve what should be done." What should be done is generally known as "the five rights": the right drug, right dose, right route, right time, and right patient. One can make an error of omission (failure to act correctly) or an error of commission (acted incorrectly). This article now summarizes what is currently known about medication errors and translates the information into case studies illustrating common scenarios leading to medication errors. Each case is analyzed to provide insight into how the medication error could have been prevented. "System errors" are described, and the application of failure mode effect analysis (FMEA) is presented to determine the part of the "safety net" that failed. Examples of reengineering the system to make it more "error proof" are presented. An error can be prevented. However, the practice of medicine, pharmacy, and nursing in the hospital setting is very complicated, and so many steps occur from "pen to patient" that there

  2. Clinic-based intervention reduces unprotected sexual behavior among HIV-infected patients in KwaZulu-Natal, South Africa: Results of a pilot study

    PubMed Central

    Cornman, Deborah H.; Kiene, Susan M.; Christie, Sarah; Fisher, William A.; Shuper, Paul A.; Pillay, Sandy; Friedland, Gerald H.; Thomas, Cyril Monty; Lodge, Linda; Fisher, Jeffrey D.

    2009-01-01

    Objective Evaluate the feasibility, fidelity, and effectiveness of an HIV prevention intervention delivered to HIV-infected patients by counselors during routine clinical care in KwaZulu-Natal, South Africa. Methods Total of 152 HIV-infected patients, aged 18 years and older, receiving clinical care at an urban hospital in South Africa, were randomly assigned to intervention or standard-of-care control counselors. Intervention counselors implemented a brief risk reduction intervention at each clinical encounter to help patients reduce their unprotected sexual behavior. Self-report questionnaires were administered at baseline and 6 months to assess number of unprotected sex events in previous 3 months. Results Intervention was delivered in 99% of routine patient visits, and included a modal 8 of 8 intervention steps. Although HIV-infected patients in both conditions reported more vaginal and anal sex events at 6-month follow-up than at baseline, patients who received the counselor-delivered intervention reported a significant decrease over time in number of unprotected sexual events. There was a marginally significant increase in these events among patients in the standard-of-care control condition. Conclusions A counselor-delivered HIV prevention intervention targeting HIV-infected patients appears to be feasible to implement with fidelity in the South African clinical care setting and effective at reducing unprotected sexual behavior. PMID:18645518

  3. Targeting temporomandibular disorder pain treatment to hormonal fluctuations: a randomized clinical trial.

    PubMed

    Turner, Judith A; Mancl, Lloyd; Huggins, Kimberly Hanson; Sherman, Jeffrey J; Lentz, Gretchen; LeResche, Linda

    2011-09-01

    Mounting evidence supports the importance of hormonal fluctuations in temporomandibular disorder (TMD) pain among women. Stabilizing influential hormones or having a plan and skills for coping with hormonally related increases in TMD pain, therefore, may be beneficial for women with TMD pain. This randomized clinical trial evaluated the short- and long-term efficacy of 3 interventions for women with TMD pain: (1) dental hygienist-delivered pain self-management training (SMT; n=59); (2) the same dental hygienist-delivered pain self-management training, but with a focus on menstrual cycle-related changes in pain and other symptoms (targeted SMT, or TSMT; n=55); and (3) continuous oral contraceptive therapy (6-month trial) aimed at stabilizing hormones believed to be influential in TMD pain (COCT; n=57). Study participants completed outcome (pain, activity interference, depression) and process (pain beliefs, catastrophizing, coping effectiveness) measures before randomization, and 6 and 12months later. Intent-to-treat analyses supported the benefits of the SMT and TSMT interventions relative to COCT. Targeting the self-management treatment to menstrual cycle-related symptoms did not increase the treatment's efficacy. The benefits of the self-management interventions relative to COCT for pain and activity interference were statistically significant at 12 months, but not at 6 months, whereas the benefits for the process measures generally were apparent at both time points. COCT was associated with multiple adverse events (none serious). The study provides further support for long-term benefits of a safe, low-intensity (2 in-person sessions and 6 brief telephone contacts), dental hygienist-delivered self-management treatment for TMD pain.

  4. Targeting Temporomandibular Disorder Pain Treatment to Hormonal Fluctuations: A Randomized Clinical Trial

    PubMed Central

    Turner, Judith A.; Mancl, Lloyd; Huggins, Kimberly Hanson; Sherman, Jeffrey J.; Lentz, Gretchen; LeResche, Linda

    2011-01-01

    Mounting evidence supports the importance of hormonal fluctuations in temporomandibular disorder (TMD) pain among women. Stabilizing influential hormones or having a plan and skills for coping with hormonally-related increases in TMD pain therefore may be beneficial for women with TMD pain. This randomized clinical trial evaluated the short- and long-term efficacy of three interventions for women with TMD pain: (1) dental hygienist-delivered pain self-management training (SMT; n = 59); (2) the same dental hygienist-delivered pain self-management training, but with a focus on menstrual cycle-related changes in pain and other symptoms (targeted SMT, or TSMT; n = 55); and (3) continuous oral contraceptive therapy (6 month trial), aimed at stabilizing hormones believed to be influential in TMD pain (COCT; n = 57). Study participants completed outcome (pain, activity interference, depression) and process (pain beliefs, catastrophizing, coping effectiveness) measures before randomization, and 6 and 12 months later. Intent-to-treat analyses supported the benefits of the SMT and TSMT interventions relative to COCT. Targeting the self-management treatment to menstrual cycle-related symptoms did not increase the treatment’s efficacy. The benefits of the self-management interventions relative to COCT for pain and activity interference were statistically significant at 12 months, but not at 6 months, whereas the benefits for the process measures generally were apparent at both timepoints. COCT was associated with multiple adverse events (none serious). The study provides further support for long-term benefits of a safe, low intensity (two in-person sessions and six brief telephone contacts), dental hygienist-delivered self-management treatment for TMD pain. PMID:21680092

  5. Linear Energy Transfer Painting With Proton Therapy: A Means of Reducing Radiation Doses With Equivalent Clinical Effectiveness

    SciTech Connect

    Fager, Marcus; Toma-Dasu, Iuliana; Kirk, Maura; Dolney, Derek; Diffenderfer, Eric S.; Vapiwala, Neha; Carabe, Alejandro

    2015-04-01

    Purpose: The purpose of this study was to propose a proton treatment planning method that trades physical dose (D) for dose-averaged linear energy transfer (LET{sub d}) while keeping the radiobiologically weighted dose (D{sub RBE}) to the target the same. Methods and Materials: The target is painted with LET{sub d} by using 2, 4, and 7 fields aimed at the proximal segment of the target (split target planning [STP]). As the LET{sub d} within the target increases with increasing number of fields, D decreases to maintain the D{sub RBE} the same as the conventional treatment planning method by using beams treating the full target (full target planning [FTP]). Results: The LET{sub d} increased 61% for 2-field STP (2STP) compared to FTP, 72% for 4STP, and 82% for 7STP inside the target. This increase in LET{sub d} led to a decrease of D with 5.3 ± 0.6 Gy for 2STP, 4.4 ± 0.7 Gy for 4STP, and 5.3 ± 1.1 Gy for 7STP, keeping the DRBE at 90% of the volume (DRBE, 90) constant to FTP. Conclusions: LET{sub d} painting offers a method to reduce prescribed dose at no cost to the biological effectiveness of the treatment.

  6. Clinical Outcomes according to the Achievement of Target Low Density Lipoprotein-Cholesterol in Patients with Acute Myocardial Infarction

    PubMed Central

    Ahn, Taehoon; Lee, Kyounghoon; Kang, Woong Chol; Han, Seung Hwan; Ahn, Youngkeun; Jeong, Myung Ho

    2017-01-01

    Background and Objectives The clinical outcome of patient with an acute myocardial infarction (AMI) undergoing percutaneous coronary intervention (PCI), with or without achievement of target low density lipoprotein-cholesterol (LDL-C), has little known information. This study investigated if target LDL-C level (below 70 mg/dL) achievements in patients with AMI showed better clinical outcomes or not. Subjects and Methods Between May 2008 and September 2012, this study enrolled 13473 AMI patients in a large-scale, prospective, multicenter Korean Myocardial Infarction (KorMI) registry. 12720 patients survived and 6746 patients completed a 1-year clinical follow up. Among them 3315 patients received serial lipid profile follow-ups. Propensity score matching was applied to adjust for differences in clinical baseline and angiographic characteristics, producing a total of 1292 patients (646 target LDL-C achievers vs. 646 non-achievers). The primary end point was the composite of a 1-year major adverse cardiac event (MACE) including cardiac death, recurrent myocardial infarction (MI), target lesion revascularization (TLR) and coronary artery bypass grafting. Results After propensity score matching, baseline clinical and angiographic characteristics were similar between the two groups. Clinical outcomes of the propensity score matched patients who showed no significant differences in cardiac death (0.5% vs. 0.5%, p=1.000), recurrent MI (1.1% vs. 0.8%, p=0.562), TLR (5.0% vs. 4.5%, p=0.649), MACEs (6.5% vs. 5.9%, p=0.644) and stent thrombosis (2.5% vs. 1.9%, p=0.560). Conclusion In this propensity-matched comparison, AMI patients undergoing PCI with a target LDL-C (below 70 mg/dL) achievement did not show better clinical outcomes. PMID:28154588

  7. Targeting stem cells by radiation: From the biological angle to clinical aspects

    PubMed Central

    Vallard, Alexis; Espenel, Sophie; Guy, Jean-Baptiste; Diao, Peng; Xia, Yaoxiong; El Meddeb Hamrouni, Anis; Ben Mrad, Majed; Falk, Alexander Tuan; Rodriguez-Lafrasse, Claire; Rancoule, Chloé; Magné, Nicolas

    2016-01-01

    Radiotherapy is a cornerstone of anticancer treatment. However in spite of technical evolutions, important rates of failure and of toxicity are still reported. Although numerous pre-clinical data have been published, we address the subject of radiotherapy-stem cells interaction from the clinical efficacy and toxicity perspective. On one side, cancer stem cells (CSCs) have been recently evidenced in most of solid tumor primary locations and are thought to drive radio-resistance phenomena. It is particularly suggested in glioblastoma, where CSCs were showed to be housed in the subventricular zone (SVZ). In recent retrospective studies, the radiation dose to SVZ was identified as an independent factor significantly influencing overall survival. On the other side, healthy tissue stem cells radio-destruction has been recently suggested to cause two of the most quality of life-impacting side effects of radiotherapy, namely memory disorders after brain radiotherapy, and xerostomia after head and neck radiotherapy. Recent publications studying the impact of a radiation dose decrease on healthy brain and salivary stem cells niches suggested significantly reduced long term toxicities. Stem cells comprehension should be a high priority for radiation oncologists, as this particular cell population seems able to widely modulate the efficacy/toxicity ratio of radiotherapy in real life patients. PMID:27621758

  8. Anatomic Boundaries of the Clinical Target Volume (Prostate Bed) After Radical Prostatectomy

    SciTech Connect

    Wiltshire, Kirsty L.; Brock, Kristy K.; Haider, Masoom A.; Zwahlen, Daniel; Kong, Vickie; Chan, Elisa; Moseley, Joanne; Bayley, Andrew; Catton, Charles; Chung, Peter W.M.; Gospodarowicz, Mary; Milosevic, Michael; Kneebone, Andrew; Warde, Padraig; Menard, Cynthia

    2007-11-15

    Purpose: We sought to derive and validate an interdisciplinary consensus definition for the anatomic boundaries of the postoperative clinical target volume (CTV, prostate bed). Methods and Materials: Thirty one patients who had planned for radiotherapy after radical prostatectomy were enrolled and underwent computed tomography and magnetic resonance imaging (MRI) simulation prior to radiotherapy. Through an iterative process of consultation and discussion, an interdisciplinary consensus definition was derived based on a review of published data, patterns of local failure, surgical practice, and radiologic anatomy. In validation, we analyzed the distribution of surgical clips in reference to the consensus CTV and measured spatial uncertainties in delineating the CTV and vesicourethral anastomosis. Clinical radiotherapy plans were retrospectively evaluated against the consensus CTV (prostate bed). Results: Anatomic boundaries of the consensus CTV (prostate bed) are described. Surgical clips (n = 339) were well distributed throughout the CTV. The vesicourethral anastomosis was accurately localized using central sagittal computed tomography reconstruction, with a mean {+-} standard deviation uncertainty of 1.8 {+-} 2.5 mm. Delineation uncertainties were small for both MRI and computed tomography (mean reproducibility, 0-3.8 mm; standard deviation, 1.0-2.3); they were most pronounced in the anteroposterior and superoinferior dimensions and at the superior/posterior-most aspect of the CTV. Retrospectively, the mean {+-} standard deviation CTV (prostate bed) percentage of volume receiving 100% of prescribed dose was only 77% {+-} 26%. Conclusions: We propose anatomic boundaries for the CTV (prostate bed) and present evidence supporting its validity. In the absence of gross recurrence, the role of MRI in delineating the CTV remains to be confirmed. The CTV is larger than historically practiced at our institution and should be encompassed by a microscopic tumoricidal dose.

  9. Impact Factors for Microinvasion in Intrahepatic Cholangiocarcinoma: A Possible System for Defining Clinical Target Volume

    SciTech Connect

    Bi Aihong; Zeng Zhaochong; Ji Yuan; Zeng Haiying; Xu Chen; Tang Zhaoyou; Fan Jia; Zhou Jian; Zeng Mengsu; Tan Yunshan

    2010-12-01

    Purpose: To quantify microscopic invasion of intrahepatic cholangiocarcinoma (IHC) into nontumor tissue and define the gross tumor volume (GTV)-to-clinical target volume (CTV) expansion necessary for radiotherapy. Methods and Materials: One-hundred IHC patients undergoing radical resection from January 2004 to July 2008 were enrolled in this study. Pathologic and clinical data including maximum tumor diameter, tumor boundary type, TNM stage, histologic grade, tumor markers, and liver enzymes were reviewed. The distance of microinvasion from the tumor boundary was measured by microscopy. The contraction coefficient for tumor measurements in radiographs and slide-mounted tissue was calculated. SPSS15.0 was used for statistical analysis. Results: Sixty-five patients (65%) exhibited tumor microinvasions. Microinvasions ranged from 0.4-8 mm, with 96% of patients having a microinvasion distance {<=}6 mm measured on slide. The radiograph-to-slide contraction coefficient was 82.1%. The degree of microinvasion was correlated with tumor boundary type, TNM stage, histologic grade, and serum levels of carbohydrate antigen 19-9, alanine aminotransferase, aspartate aminotransferase, {gamma}-glutamyltransferase and alkaline phosphatase. To define CTV accurately, we devised a scoring system based on combination of these factors. According to this system, a score {<=}1.5 is associated with 96.1% sensitivity in detecting patients with a microextension {<=}4.9 mm in radiographs, whereas a score {>=}2 has a 95.1% sensitivity in detecting microextension {<=}7.9 mm measured on radiograph. Conclusions: Patients with a score {<=}1.5 and {>=}2 require a radiographic GTV-to-CTV expansions of 4.9 and 7.9 mm, respectively, to encompass >95% of microinvasions.

  10. Pharmacological targeting of dopamine D3 receptors: Possible clinical applications of selective drugs.

    PubMed

    Pich, Emilio Merlo; Collo, Ginetta

    2015-09-01

    Dopamine D3 receptors have been pharmacologically engaged in humans since the development of the first antipsychotics and ergot-derivative dopamine (DA) agonists, even without knowing it. These agents were generally non-selective, developed primarily to target D2 receptors. In the last 10 years the understanding of the clinical implication of D3 receptors has been progressing also due to the identification of D3 gene polymorphisms, the use of more selective PET ligands such as [(11)C]-(+)-PHNO and the learning regarding the clinical use of the D3-preferential D2/D3 agonists ropinirole and pramipexole. A new specific neuroplasticity role of D3 receptor regarding dendrite arborisation outgrowth in dopaminergic neurons was also proposed to support, at least in part, the slowing of disease observed in subjects with Parkinson׳s Disease treated with DA agonists. Similar mechanisms could be at the basis of the antidepressant-like effects observed with DA agonists when co-administered with standard of care. Severe adverse event occurring with the use of anti-parkinsonian DA agonists in predisposed subjects, i.e., impulse control disorders, are now suggested to be putatively related to overactive D3 receptors. Not surprisingly, blockade of D3 receptors was proposed as treatment for addictive disorders, a goal that could be potentially achieved by repositioning buspirone, an anxiolytic drug with D3-preferential antagonistic features, or with novel selective D3 antagonists or partial agonists currently in development for schizophrenia. At the moment ABT-925 is the only selective D3 antagonist tested in schizophrenic patients in Phase II, showing an intriguing cognitive enhancing effects supported by preclinical data. Finally, exploratory pharmacogenetic analysis suggested that ABT-925 could be effective in a subpopulation of patients with a polymorphism on the D3 receptor, opening to a possible personalised medicine approach.

  11. Inhibition of SRF/myocardin reduces aortic stiffness by targeting vascular smooth muscle cell stiffening in hypertension

    PubMed Central

    Zhou, Ning; Lee, Jia-Jye; Stoll, Shaunrick; Ma, Ben; Wiener, Robert; Wang, Charles; Costa, Kevin D.; Qiu, Hongyu

    2017-01-01

    Aims Increased aortic stiffness is a fundamental manifestation of hypertension. However, the molecular mechanisms involved remain largely unknown. We tested the hypothesis that abnormal intrinsic vascular smooth muscle cell (VSMC) mechanical properties in large arteries, but not in distal arteries, contribute to the pathogenesis of aortic stiffening in hypertension, mediated by the serum response factor (SRF)/myocardin signalling pathway. Methods and results Four month old male spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were studied. Using atomic force microscopy, significant VSMC stiffening was observed in the large conducting aorta compared with the distal arteries in SHR (P < 0.001), however, this regional variation was not observed in WKY rats (P > 0.4). The increase of VSMC stiffness was accompanied by a parallel increase in the expression of SRF by 9.8-fold and of myocardin by 10.5-fold in thoracic aortic VSMCs from SHR vs. WKY rats, resulting in a significant increase of downstream stiffness-associated genes (all, P < 0.01 vs. WKY). Inhibition of SRF/myocardin expression selectively attenuated aortic VSMC stiffening, and normalized downstream targets in VSMCs isolated from SHR but not from WKY rats. In vivo, 2 weeks of treatment with SRF/myocardin inhibitor delivered by subcutaneous osmotic minipump significantly reduced aortic stiffness and then blood pressure in SHR but not in WKY rats, although concomitant changes in aortic wall remodelling were not detected during this time frame. Conclusions SRF/myocardin pathway acts as a pivotal mediator of aortic VSMC mechanical properties and plays a central role in the pathological aortic stiffening in hypertension. Attenuation of aortic VSMC stiffening by pharmacological inhibition of SRF/myocardin signalling presents a novel therapeutic strategy for the treatment of hypertension by targeting the cellular contributors to aortic stiffness. PMID:28003268

  12. Towards understanding the lifespan extension by reduced insulin signaling: bioinformatics analysis of DAF-16/FOXO direct targets in Caenorhabditis elegans

    PubMed Central

    Li, Yan-Hui; Zhang, Gai-Gai

    2016-01-01

    DAF-16, the C. elegans FOXO transcription factor, is an important determinant in aging and longevity. In this work, we manually curated FOXODB http://lyh.pkmu.cn/foxodb/, a database of FOXO direct targets. It now covers 208 genes. Bioinformatics analysis on 109 DAF-16 direct targets in C. elegans found interesting results. (i) DAF-16 and transcription factor PQM-1 co-regulate some targets. (ii) Seventeen targets directly regulate lifespan. (iii) Four targets are involved in lifespan extension induced by dietary restriction. And (iv) DAF-16 direct targets might play global roles in lifespan regulation. PMID:27027346

  13. Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Pasetto, Laura; Pozzi, Silvia; Castelnovo, Mariachiara; Basso, Manuela; Estevez, Alvaro G; Fumagalli, Stefano; De Simoni, Maria Grazia; Castellaneta, Valeria; Bigini, Paolo; Restelli, Elena; Chiesa, Roberto; Trojsi, Francesca; Monsurrò, Maria Rosaria; Callea, Leonardo; Malešević, Miroslav; Fischer, Gunter; Freschi, Mattia; Tortarolo, Massimo; Bendotti, Caterina; Bonetto, Valentina

    2017-02-08

    Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1(G93A) mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1(G93A) mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients.SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1(G93A) mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also

  14. A new Hydrocephalus Clinical Research Network protocol to reduce cerebrospinal fluid shunt infection.

    PubMed

    Kestle, John R W; Holubkov, Richard; Douglas Cochrane, D; Kulkarni, Abhaya V; Limbrick, David D; Luerssen, Thomas G; Jerry Oakes, W; Riva-Cambrin, Jay; Rozzelle, Curtis; Simon, Tamara D; Walker, Marion L; Wellons, John C; Browd, Samuel R; Drake, James M; Shannon, Chevis N; Tamber, Mandeep S; Whitehead, William E

    2016-04-01

    OBJECT In a previous report by the same research group (Kestle et al., 2011), compliance with an 11-step protocol was shown to reduce CSF shunt infection at Hydrocephalus Clinical Research Network (HCRN) centers (from 8.7% to 5.7%). Antibiotic-impregnated catheters (AICs) were not part of the protocol but were used off protocol by some surgeons. The authors therefore began using a new protocol that included AICs in an effort to reduce the infection rate further. METHODS The new protocol was implemented at HCRN centers on January 1, 2012, for all shunt procedures (excluding external ventricular drains [EVDs], ventricular reservoirs, and subgaleal shunts). Procedures performed up to September 30, 2013, were included (21 months). Compliance with the protocol and outcome events up to March 30, 2014, were recorded. The definition of infection was unchanged from the authors' previous report. RESULTS A total of 1935 procedures were performed on 1670 patients at 8 HCRN centers. The overall infection rate was 6.0% (95% CI 5.1%-7.2%). Procedure-specific infection rates varied (insertion 5.0%, revision 5.4%, insertion after EVD 8.3%, and insertion after treatment of infection 12.6%). Full compliance with the protocol occurred in 77% of procedures. The infection rate was 5.0% after compliant procedures and 8.7% after noncompliant procedures (p = 0.005). The infection rate when using this new protocol (6.0%, 95% CI 5.1%-7.2%) was similar to the infection rate observed using the authors' old protocol (5.7%, 95% CI 4.6%-7.0%). CONCLUSIONS CSF shunt procedures performed in compliance with a new infection prevention protocol at HCRN centers had a lower infection rate than noncompliant procedures. Implementation of the new protocol (including AICs) was associated with a 6.0% infection rate, similar to the infection rate of 5.7% from the authors' previously reported protocol. Based on the current data, the role of AICs compared with other infection prevention measures is unclear.

  15. Genetic markers as therapeutic target in rheumatoid arthritis: A game changer in clinical therapy?

    PubMed

    Ali, A M Mohamed Thoufic; Vino, S

    2016-11-01

    Rheumatoid arthritis (RA) is a chronic, inflammatory, multi-systemic autoimmune disease unremitted by genetic and environmental factors. The factors are crucial but inadequate in the development of disease; however, these factors can be representative of potential therapeutic targets and response to clinical therapy. Insights into the contribution of genetic risk factors are currently in progress with studies querying the genetic variation, their role in gene expression of coding and non-coding genes and other mechanisms of disease. In this review, we describe the significance of genetic markers architecture of RA through genome-wide association studies and meta-analysis studies. Further, it also reveals the mechanism of disease pathogenesis investigated through the mutual findings of functional and genetic studies of individual RA-associated genes, which includes HLA-DRB1, HLA-DQB1, HLA-DPB1, PADI4, PTPN22, TRAF1-C5, STAT4 and C5orf30. However, the genetic background of RA remains to be clearly depicted. Prospective efforts of the post-genomic and functional genomic period can travel toward real possible assessment of the genetic effect on RA. The discovery of novel genes associated with the disease can be appropriate in identifying potential biomarkers, which could assist in early diagnosis and aggressive treatment.

  16. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy

    PubMed Central

    Hulin-Curtis, S L; Uusi-Kerttula, H; Jones, R; Hanna, L; Chester, J D; Parker, A L

    2016-01-01

    Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cancer. PMID:27229159

  17. Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer.

    PubMed

    Zhao, Peng; Yu, Hai-Zheng; Cai, Jian-Hui

    2015-09-01

    Colon cancer is associated with a severe demographic and economic burden worldwide. The pathogenesis of colon cancer is highly complex and involves sequential genetic and epigenetic mechanisms. Despite extensive investigation, the pathogenesis of colon cancer remains to be elucidated. As the third most common type of cancer worldwide, the treatment options for colon cancer are currently limited. Human trophoblast cell‑surface marker (TROP‑2), is a cell‑surface transmembrane glycoprotein overexpressed by several types of epithelial carcinoma. In addition, TROP‑2 has been demonstrated to be associated with tumorigenesis and invasiveness in solid types of tumor. The aim of the present study was to investigate the protein expression of TROP‑2 in colon cancer tissues, and further explore the association between the expression of TROP‑2 and clinicopathological features of patients with colon cancer. The expression and localization of the TROP‑2 protein was examined using western blot analysis and immunofluorescence staining. Finally, the expression of TROP‑2 expression was correlated to conventional clinicopathological features of colon cancer using a χ2 test. The results revealed that TROP‑2 protein was expressed at high levels in the colon cancer tissues, which was associated with the development and pathological process of colon cancer. Therefore, TROP‑2 may be used as a biomarker to determine the clinical prognosis, and as a potential therapeutic target in colon cancer.

  18. New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development.

    PubMed

    Klahn, Philipp; Brönstrup, Mark

    2016-01-01

    The development of bacterial resistance against current antibiotic drugs necessitates a continuous renewal of the arsenal of efficacious drugs. This imperative has not been met by the output of antibiotic research and development of the past decades for various reasons, including the declining efforts of large pharma companies in this area. Moreover, the majority of novel antibiotics are chemical derivatives of existing structures that represent mostly step innovations, implying that the available chemical space may be exhausted. This review negates this impression by showcasing recent achievements in lead finding and optimization of antibiotics that have novel or unexplored chemical structures. Not surprisingly, many of the novel structural templates like teixobactins, lysocin, griselimycin, or the albicidin/cystobactamid pair were discovered from natural sources. Additional compounds were obtained from the screening of synthetic libraries and chemical synthesis, including the gyrase-inhibiting NTBI's and spiropyrimidinetrione, the tarocin and targocil inhibitors of wall teichoic acid synthesis, or the boronates and diazabicyclo[3.2.1]octane as novel β-lactamase inhibitors. A motif that is common to most clinically validated antibiotics is that they address hotspots in complex biosynthetic machineries, whose functioning is essential for the bacterial cell. Therefore, an introduction to the biological targets-cell wall synthesis, topoisomerases, the DNA sliding clamp, and membrane-bound electron transport-is given for each of the leads presented here.

  19. Targeting the kidney and glucose excretion with dapagliflozin: preclinical and clinical evidence for SGLT2 inhibition as a new option for treatment of type 2 diabetes mellitus.

    PubMed

    Whaley, Jean M; Tirmenstein, Mark; Reilly, Timothy P; Poucher, Simon M; Saye, Joanne; Parikh, Shamik; List, James F

    2012-01-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a novel class of glucuretic, antihyperglycemic drugs that target the process of renal glucose reabsorption and induce glucuresis independently of insulin secretion or action. In patients with type 2 diabetes mellitus, SGLT2 inhibitors have been found to consistently reduce measures of hyperglycemia, including hemoglobin A1c, fasting plasma glucose, and postprandial glucose, throughout the continuum of disease. By inducing the renal excretion of glucose and its associated calories, SGLT2 inhibitors reduce weight and have the potential to be disease modifying by addressing the caloric excess that is believed to be one of the root causes of type 2 diabetes mellitus. Additional benefits, including the possibility for combination with insulin-dependent antihyperglycemic drugs, a low potential for hypoglycemia, and the ability to reduce blood pressure, were anticipated from the novel mechanism of action and have been demonstrated in clinical studies. Mechanism-related risks include an increased incidence of urinary tract and genital infections and the possibility of over-diuresis in volume-sensitive patients. Taken together, the results of Phase III clinical studies generally point to a positive benefit-risk ratio across the continuum of diabetes patients. To date, data on dapagliflozin, a selective SGLT2 inhibitor in development, demonstrate that the kidney is an efficacious and safe target for therapy, and that SGLT2 inhibition may have benefits for patients with type 2 diabetes mellitus beyond glycemic control.

  20. Improving Situation Awareness to Reduce Unrecognized Clinical Deterioration and Serious Safety Events

    PubMed Central

    Muething, Stephen; Kotagal, Uma; Ashby, Marshall; Gallagher, Regan; Hall, Dawn; Goodfriend, Marty; White, Christine; Bracke, Tracey M.; DeCastro, Victoria; Geiser, Maria; Simon, Jodi; Tucker, Karen M.; Olivea, Jason; Conway, Patrick H.; Wheeler, Derek S.

    2013-01-01

    BACKGROUND AND OBJECTIVE: Failure to recognize and treat clinical deterioration remains a source of serious preventable harm for hospitalized patients. We designed a system to identify, mitigate, and escalate patient risk by using principles of high-reliability organizations. We hypothesized that our novel care system would decrease transfers determined to be unrecognized situation awareness failures events (UNSAFE). These were defined as any transfer from an acute care floor to an ICU where the patient received intubation, inotropes, or ≥3 fluid boluses in first hour after arrival or before transfer. METHODS: The setting for our observational time series study was a quaternary care children’s hospital. Before initiating tests of change, 2 investigators reviewed recent serious safety events (SSEs) and floor-to-ICU transfers. Collectively, 5 risk factors were associated with each event: family concerns, high-risk therapies, presence of an elevated early warning score, watcher/clinician gut feeling, and communication concerns. Using the model for improvement, an intervention was developed and tested to reliably and proactively identify patient risk and mitigate that risk through unit-based huddles. A 3-times daily inpatient huddle was added to ensure risks were escalated and addressed. Later, a “robust” and explicit plan for at-risk patients was developed and spread. RESULTS: The rate of UNSAFE transfers per 10 000 non-ICU inpatient days was significantly reduced from 4.4 to 2.4 over the study period. The days between inpatient SSEs also increased significantly. CONCLUSIONS: A reliable system to identify, mitigate, and escalate risk was associated with a near 50% reduction in UNSAFE transfers and SSEs. PMID:23230078

  1. Endothelial targeting with C1-inhibitor reduces complement activation in vitro and during ex vivo reperfusion of pig liver

    PubMed Central

    Bergamaschini, L; Gobbo, G; Gatti, S; Caccamo, L; Prato, P; Maggioni, M; Braidotti, P; Di Stefano, R; Fassati, L R

    2001-01-01

    Tissue damage during cold storage and reperfusion remains a major obstacle to wider use of transplantation. Vascular endothelial cells and complement activation are thought to be involved in the inflammatory reactions following reperfusion, so endothelial targeting of complement inhibitors is of great interest. Using an in vitro model of human umbilical vein endothelial cells (HUVEC) cold storage and an animal model of ex vivo liver reperfusion after cold ischaemia, we assessed the effect of C1-INH on cell functions and liver damage. We found that in vitro C1-INH bound to HUVEC in a manner depending on the duration of cold storage. Cell-bound C1-INH was functionally active since retained the ability to inhibit exogenous C1s. To assess the ability of cell-bound C1-INH to prevent complement activation during organ reperfusion, we added C1-INH to the preservation solution in an animal model of extracorporeal liver reperfusion. Ex vivo liver reperfusion after 8 h of cold ischaemia resulted in plasma C3 activation and reduction of total serum haemolytic activity, and at tissue level deposition of C3 associated with variable level of inflammatory cell infiltration and tissue damage. These findings were reduced when livers were stored in preservation solution containing C1-INH. Immunohistochemical analysis of C1-INH-treated livers showed immunoreactivity localized on the sinusoidal pole of the liver trabeculae, linked to sinusoidal endothelium, so it is likely that the protective effect was due to C1-INH retained by the livers. These results suggest that adding C1-INH to the preservation solution may be useful to reduce complement activation and tissue injury during the reperfusion of an ischaemic liver. PMID:11737055

  2. Endothelial targeting with C1-inhibitor reduces complement activation in vitro and during ex vivo reperfusion of pig liver.

    PubMed

    Bergamaschini, L; Gobbo, G; Gatti, S; Caccamo, L; Prato, P; Maggioni, M; Braidotti, P; Di Stefano, R; Fassati, L R

    2001-12-01

    Tissue damage during cold storage and reperfusion remains a major obstacle to wider use of transplantation. Vascular endothelial cells and complement activation are thought to be involved in the inflammatory reactions following reperfusion, so endothelial targeting of complement inhibitors is of great interest. Using an in vitro model of human umbilical vein endothelial cells (HUVEC) cold storage and an animal model of ex vivo liver reperfusion after cold ischaemia, we assessed the effect of C1-INH on cell functions and liver damage. We found that in vitro C1-INH bound to HUVEC in a manner depending on the duration of cold storage. Cell-bound C1-INH was functionally active since retained the ability to inhibit exogenous C1s. To assess the ability of cell-bound C1-INH to prevent complement activation during organ reperfusion, we added C1-INH to the preservation solution in an animal model of extracorporeal liver reperfusion. Ex vivo liver reperfusion after 8 h of cold ischaemia resulted in plasma C3 activation and reduction of total serum haemolytic activity, and at tissue level deposition of C3 associated with variable level of inflammatory cell infiltration and tissue damage. These findings were reduced when livers were stored in preservation solution containing C1-INH. Immunohistochemical analysis of C1-INH-treated livers showed immunoreactivity localized on the sinusoidal pole of the liver trabeculae, linked to sinusoidal endothelium, so it is likely that the protective effect was due to C1-INH retained by the livers. These results suggest that adding C1-INH to the preservation solution may be useful to reduce complement activation and tissue injury during the reperfusion of an ischaemic liver.

  3. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation

    PubMed Central

    Bárcena, Cristina; Stefanovic, Milica; Tutusaus, Anna; Joannas, Leonel; Menéndez, Anghara; García-Ruiz, Carmen; Sancho-Bru, Pau; Marí, Montserrat; Caballeria, Joan; Rothlin, Carla V.; Fernández-Checa, José C.; de Frutos, Pablo García; Morales, Albert

    2015-01-01

    Background & Aims Liver fibrosis, an important health concern associated to chronic liver injury that provides a permissive environment for cancer development, is characterized by accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells (HSCs). Axl, a receptor tyrosine kinase, and its ligand Gas6 are involved in cell differentiation, immune response and carcinogenesis. Methods HSCs were obtained from wild type and Axl−/− mice, treated with recombinant Gas6 protein (rGas6), Axl siRNAs or the Axl inhibitor BGB324, and analyzed by western blot and real-time PCR. Experimental fibrosis was studied in CCl4-treated wild type and Axl−/− mice, and in combination with Axl inhibitor. Gas6 and Axl serum levels were measured in alcoholic liver disease (ALD) and hepatitis C virus (HCV) patients. Results In primary mouse HSCs, Gas6 and Axl levels paralleled HSC activation. rGas6 phosphorylated Axl and AKT prior to HSC phenotypic changes, while Axl siRNA silencing reduced HSC activation. Moreover, BGB324 blocked Axl/AKT phosphorylation and diminished HSC activation. In addition, Axl KO mice displayed decreased HSC activation in vitro and liver fibrogenesis after chronic damage by CCl4 administration. Similarly, BGB324 reduced collagen deposition and CCl4-induced liver fibrosis in mice. Importantly, Gas6 and Axl serum levels increased in ALD and HCV patients, inversely correlating with liver functionality. Conclusions: The Gas6/Axl axis is required for full HSC activation. Gas6 and Axl serum levels increase in parallel to chronic liver disease progression. Axl targeting may be a therapeutic strategy for liver fibrosis management. PMID:25908269

  4. Association between the clinical classification of hypothyroidism and reduced TSH in LT4 supplemental replacement treatment for pregnancy in China.

    PubMed

    Zhang, Lyu; Zhang, Zhaoyun; Ye, Hongying; Zhu, Xiaoming; Li, Yiming

    2016-01-01

    The study was aimed to evaluate the effects of levothyroxine (LT4) supplemental replacement treatment for pregnancy and analyze the associations between the clinical classification of hypothyroidism and reduced thyroid-stimulating hormone (TSH) in LT4 therapy. Totally, 195 pregnant women with hypothyroidism receiving routine prenatal care were enrolled. They were categorized into three groups: overt hypothyroidism (OH), subclinical hypothyroidism (SCH) with negative thyroperoxidase antibody (TPOAb), and SCH with positive TPOAb. The association between the clinical classification and reduced TSH in LT4 supplemental replacement treatment was assessed. The results indicated that reduced TSH was significantly different among the groups according to the clinical classifications (p = 0.043). The result was also significantly different between patients with OH and patients with SCH and negative TPOAb (p = 0.036). Similar result was reported for the comparison between patients with OH and patients with SCH and positive TPOAb (p = 0.016). Multiple variable analyses showed that LT4 supplementation, gestational age and the variable of clinical classifications were associated with reduced TSH independently. Our data suggested that the therapeutic effect of substitutive treatment with LT4 was significantly associated with different clinical classifications of hypothyroidism in pregnancy and the treatment should begin as soon as possible after diagnosis.

  5. Reduced immobility in the forced swim test in mice with a targeted deletion of the leukemia inhibitory factor (LIF) gene.

    PubMed

    Pechnick, Robert N; Chesnokova, Vera M; Kariagina, Anastasia; Price, Shannon; Bresee, Catherine J; Poland, Russell E

    2004-04-01

    Cytokines are a large and diverse group of polypeptides that are rapidly released in response to tissue injury, infection, and inflammation. Besides their effects in the periphery, cytokines also affect the central nervous system (CNS). There has been increasing interest in the potential role of cytokines in the behavioral features of depressive disorders. One cytokine that might be a candidate for a role in the etiology of depression is leukemia inhibitory factor (LIF). LIF mRNA has been detected in the hypothalamus, hippocampus, amygdala, cerebellum, cerebral cortex, and basal forebrain nuclei. The role of LIF in the CNS has not been fully elucidated. Based upon the hypothesis that cytokines might have a role in depression, the present study characterized the behavior of mice with a targeted disruption of the LIF gene (LIF knockouts) in the forced swim test, an animal model used to measure depressive-like behavior and the response to antidepressants. It was found that LIF knockout mice show reduced immobility in the forced swim test, suggesting that LIF might have a potential role in the etiology of some forms of depression.

  6. Automatic Localization of Target Vertebrae in Spine Surgery: Clinical Evaluation of the LevelCheck Registration Algorithm

    PubMed Central

    Lo, Sheng-fu L.; Otake, Yoshito; Puvanesarajah, Varun; Wang, Adam S.; Uneri, Ali; De Silva, Tharindu; Vogt, Sebastian; Kleinszig, Gerhard; Elder, Benjamin D; Goodwin, C. Rory; Kosztowski, Thomas A.; Liauw, Jason A.; Groves, Mari; Bydon, Ali; Sciubba, Daniel M.; Witham, Timothy F.; Wolinsky, Jean-Paul; Aygun, Nafi; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2015-01-01

    Study Design A 3D-2D image registration algorithm, “LevelCheck,” was used to automatically label vertebrae in intraoperative mobile radiographs obtained during spine surgery. Accuracy, computation time, and potential failure modes were evaluated in a retrospective study of 20 patients. Objective To measurethe performance of the LevelCheck algorithm using clinical images acquired during spine surgery. Summary of Background Data In spine surgery, the potential for wrong level surgery is significant due to the difficulty of localizing target vertebrae based solely on visual impression, palpation, and fluoroscopy. To remedy this difficulty and reduce the risk of wrong-level surgery, our team introduced a program (dubbed LevelCheck) to automatically localize target vertebrae in mobile radiographs using robust 3D-2D image registration to preoperative CT. Methods Twenty consecutive patients undergoing thoracolumbar spine surgery, for whom both a preoperative CT scan and an intraoperative mobile radiograph were available, were retrospectively analyzed. A board-certified neuroradiologist determined the “true” vertebra levels in each radiograph. Registration of the preoperative CT to the intraoperative radiographwere calculated via LevelCheck, and projection distance errors were analyzed. Five hundred random initializations were performed for eachpatient, andalgorithm settings (viz., the number of robust multi-starts, ranging 50 to 200) were varied to evaluate the tradeoff between registration error and computation time. Failure mode analysis was performed by individually analyzing unsuccessful registrations (>5 mm distance error) observed with 50 multi-starts. Results At 200 robust multi-starts (computation time of ∼26 seconds), the registration accuracy was 100% across all 10,000 trials. As the number of multi-starts (and computation time) decreased, the registration remained fairly robust, down to 99.3% registration accuracy at 50 multi-starts (computation time

  7. Reduced expression of microRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11

    PubMed Central

    Drayton, Ross M; Dudziec, Ewa; Peter, Stefan; Bertz, Simone; Hartmann, Arndt; Bryant, Helen E; Catto, James WF

    2014-01-01

    Purpose Resistance to cisplatin-based chemotherapy is a major obstacle to bladder cancer treatment. We aimed to identify microRNAs that are dysregulated in cisplatin-resistant disease, ascertain how these contribute to a drug resistant phenotype and how this resistance might be overcome. Experimental Design MicroRNA expression in paired cisplatin resistant and sensitive cell lines was measured. Dysregulated microRNAs were further studied for their ability to mediate resistance. The nature of the cisplatin resistant phenotype was established by measurement of cisplatin/DNA adducts and intracellular glutathione. Candidate microRNAs were examined for their ability to (i) mediate resistance and (ii) alter the expression of a candidate target protein (SLC7A11); direct regulation of SLC7A11 was confirmed using a luciferase assay. SLC7A11 protein and mRNA, and microRNA-27a were quantified in patient tumour material. Results A panel of microRNAs were found to be dysregulated in cisplatin resistant cells. MicroRNA-27a was found to target the cystine/glutamate exchanger SLC7A11 and to contribute to cisplatin resistance through modulation of glutathione biosynthesis. In patients, SLC7A11 expression was inversely related to microRNA-27a expression, and those tumors with high mRNA expression or high membrane staining for SLC7A11 experienced poorer clinical outcomes. Resistant cell lines were resensitized by restoring microRNA-27a expression, or reducing SLC7A11 activity with an siRNA or with sulfasalazine. Conclusion Our findings indicate that microRNA-27a negatively regulates SLC7A11 in cisplatin-resistant bladder cancer, and shows promise as a marker for patients likely to benefit from cisplatin-based chemotherapy. SLC7A11 inhibition with sulfasalazine may be a promising therapeutic approach to the treatment of cisplatin-resistant disease. PMID:24516043

  8. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects

    PubMed Central

    Bramsen, Jesper B.; Pakula, Malgorzata M.; Hansen, Thomas B.; Bus, Claus; Langkjær, Niels; Odadzic, Dalibor; Smicius, Romualdas; Wengel, Suzy L.; Chattopadhyaya, Jyoti; Engels, Joachim W.; Herdewijn, Piet; Wengel, Jesper; Kjems, Jørgen

    2010-01-01

    Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2–8 of either siRNA strand counting from the 5′-end) and complementary sequences in the 3′UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNA–target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low. PMID:20453030

  9. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase.

    PubMed

    Clarkin, C E; Allen, S; Wheeler-Jones, C P; Bastow, E R; Pitsillides, A A

    2011-04-01

    4-Methylumbelliferone (4-MU) is described as a selective inhibitor of hyaluronan (HA) production. It is thought that 4-MU depletes UDP-glucuronic acid (UDP-GlcUA) substrate for HA synthesis and also suppresses HA-synthase expression. The possibility that 4-MU exerts at least some of its actions via regulation of UDP-glucose dehydrogenase (UGDH), a key enzyme required for both HA and sulphated-glycosaminoglycan (sGAG) production, remains unexplored. We therefore examined the effects of 4-MU on basal and retroviral UGDH-driven HA and sGAG release in cells derived from chick articular cartilage and its influence upon UGDH protein and mRNA expression and HA and sGAG production. We found that 4-MU: i) suppressed UGDH mRNA and protein expression and chondrogenic matrix accumulation in chick limb bud micromass culture, ii) significantly reduced both HA and sGAG production and iii) more selectively reversed the potentiating effects of UGDH overexpression on the production of HA than sGAG. Understanding how GAG synthesis is controlled and the mechanism of 4-MU action may inform its future clinical success.

  10. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase

    PubMed Central

    Clarkin, C.E.; Allen, S.; Wheeler-Jones, C.P.; Bastow, E.R.; Pitsillides, A.A.

    2011-01-01

    4-Methylumbelliferone (4-MU) is described as a selective inhibitor of hyaluronan (HA) production. It is thought that 4-MU depletes UDP-glucuronic acid (UDP-GlcUA) substrate for HA synthesis and also suppresses HA-synthase expression. The possibility that 4-MU exerts at least some of its actions via regulation of UDP-glucose dehydrogenase (UGDH), a key enzyme required for both HA and sulphated-glycosaminoglycan (sGAG) production, remains unexplored. We therefore examined the effects of 4-MU on basal and retroviral UGDH-driven HA and sGAG release in cells derived from chick articular cartilage and its influence upon UGDH protein and mRNA expression and HA and sGAG production. We found that 4-MU: i) suppressed UGDH mRNA and protein expression and chondrogenic matrix accumulation in chick limb bud micromass culture, ii) significantly reduced both HA and sGAG production and iii) more selectively reversed the potentiating effects of UGDH overexpression on the production of HA than sGAG. Understanding how GAG synthesis is controlled and the mechanism of 4-MU action may inform its future clinical success. PMID:21292001

  11. Localization Accuracy of the Clinical Target Volume During Image-Guided Radiotherapy of Lung Cancer

    SciTech Connect

    Hugo, Geoffrey D.; Weiss, Elisabeth; Badawi, Ahmed; Orton, Matthew

    2011-10-01

    Purpose: To evaluate the position and shape of the originally defined clinical target volume (CTV) over the treatment course, and to assess the impact of gross tumor volume (GTV)-based online computed tomography (CT) guidance on CTV localization accuracy. Methods and Materials: Weekly breath-hold CT scans were acquired in 17 patients undergoing radiotherapy. Deformable registration was used to propagate the GTV and CTV from the first weekly CT image to all other weekly CT images. The on-treatment CT scans were registered rigidly to the planning CT scan based on the GTV location to simulate online guidance, and residual error in the CTV centroids and borders was calculated. Results: The mean GTV after 5 weeks relative to volume at the beginning of treatment was 77% {+-} 20%, whereas for the prescribed CTV, it was 92% {+-} 10%. The mean absolute residual error magnitude in the CTV centroid position after a GTV-based localization was 2.9 {+-} 3.0 mm, and it varied from 0.3 to 20.0 mm over all patients. Residual error of the CTV centroid was associated with GTV regression and anisotropy of regression during treatment (p = 0.02 and p = 0.03, respectively; Spearman rank correlation). A residual error in CTV border position greater than 2 mm was present in 77% of patients and 50% of fractions. Among these fractions, residual error of the CTV borders was 3.5 {+-} 1.6 mm (left-right), 3.1 {+-} 0.9 mm (anterior-posterior), and 6.4 {+-} 7.5 mm (superior-inferior). Conclusions: Online guidance based on the visible GTV produces substantial error in CTV localization, particularly for highly regressing tumors. The results of this study will be useful in designing margins for CTV localization or for developing new online CTV localization strategies.

  12. Defining the Clinical Target Volume for Bladder Cancer Radiotherapy Treatment Planning

    SciTech Connect

    Jenkins, Peter; Anjarwalla, Salim; Gilbert, Hugh; Kinder, Richard

    2009-12-01

    Purpose: There are currently no data for the expansion margin required to define the clinical target volume (CTV) around bladder tumors. This information is particularly relevant when perivesical soft tissue changes are seen on the planning scan. While this appearance may reflect extravesical extension (EVE), it may also be an artifact of previous transurethral resection (TUR). Methods and Materials: Eighty patients with muscle-invasive bladder cancer who had undergone radical cystectomy were studied. All patients underwent preoperative TUR and staging computed tomography (CT) scans. The presence and extent of tumor growth beyond the outer bladder wall was measured radiologically and histopathologically. Results: Forty one (51%) patients had histologically confirmed tumor extension into perivesical fat. The median and mean extensions beyond the outer bladder wall were 1.7 and 3.1 mm, respectively. Thirty five (44%) patients had EVE, as seen on CT scans. The sensitivity and specificity of CT scans for EVE were 56% and 79%, respectively. False-positive results were infrequent and not affected by either the timing or the amount of tissue resected at TUR. CT scans consistently tended to overestimate the extent of EVE. Tumor size and the presence of either lymphovascular invasion or squamoid differentiation predict a greater extent of EVE. Conclusions: In patients with radiological evidence of extravesical disease, the CTV should comprise the outer bladder wall plus a 10-mm margin. In patients with no evidence of extravesical disease on CT scans, the CTV should be restricted to the outer bladder wall plus a 6-mm margin. These recommendations would encompass microscopic disease extension in 90% of cases.

  13. Detection and specific targeting of hypoxic regions within solid tumors: current preclinical and clinical strategies.

    PubMed

    Bache, M; Kappler, M; Said, H M; Staab, A; Vordermark, D

    2008-01-01

    Poor oxygenation of solid tumors is a major indicator of adverse prognosis after standard treatment, e.g. radiotherapy. This observation founded on intratumoral pO(2) electrode measurements has been supported more recently by studies of injected hypoxia markers (pimonidazole, EF5) or hypoxia-related proteins (hypoxia-inducible factor-1alpha, carbonic anhydrase IX) detected immunohistochemically. Alternative approaches include imaging of tumor hypoxia by nuclear medicine studies and the measurement of hypoxia-related proteins (osteopontin) in patient plasma. Low oxygen levels as found in tumors are rarely observed in normal tissues. The presence of hypoxic tumor cells is therefore regarded not only as an adverse prognostic factor but as an opportunity for tumor-specific treatment. Classic approaches to normalize tumor oxygenation involve the breathing of modified gas mixtures and pharmacologic modification of blood flow as in the "accelerated radiotherapy, carbogen, nicotinamide" (ARCON) scheme. Specific killing of hypoxic tumor cells can potentially be achieved by hypoxia-selective cytotoxins (model substance tirapazamine), which has shown promise in head and neck cancer. Direct targeting of hypoxia-related molecules such as hypoxia-inducible factor-1alpha, the central regulator of the hypoxic response in tumor cells, is an attractive approach currently tested in preclinical models. For clinical applications, the appropriate combination of hypoxia detection for patient selection with a hypoxia-specific treatment is essential. A therapeutic benefit has been suggested for the selection of patients by plasma osteopontin level and treatment with the hypoxic radiosensitizer nimorazole in addition to radiotherapy, for selection by F-misonidazole positron-emission tomography (PET) and treatment with tirapazamine in addition to chemoradiation and for selection by pimonidazole immunohistochemistry and ARCON treatment, all in head and neck cancer.

  14. A project to reduce the rate of central line associated bloodstream infection in ICU patients to a target of zero

    PubMed Central

    Yaseen, Muhammad; Al-Hameed, Fahad; Osman, Khalid; Al-Janadi, Mansour; Al-Shamrani, Majid; Al-Saedi, Asim; Al-Thaqafi, Abdulhakeem

    2016-01-01

    Central venous catheters (CVCs) are life-saving and the majority of patients in intensive care units (ICUs) have them placed in order to receive medicine and fluids. However, the use of these catheters can result in serious bloodstream infections. The rate of Central Line Associated Blood Stream Infection (CLABSI) in Adult Intensive Care Units (ICUs) at King Abdulaziz Medical City Jeddah (KAMC-J) at the start of the project was 2.0/1000 line days in 2008. The Central Line (CL) Bundle by the Institute of Healthcare Improvement (IHI) was implemented at the same time with monitoring of compliance to the CL Bundle. The compliance to CL Bundle was very low at 37% in the same period. A multidisciplinary team was created to improve the compliance to the CL bundle which was expected to have an impact on the rate of CLABSI to achieve zero CLABSI events. The team continued to monitor and evaluate the progress on the compliance to the bundle as well as monitoring the CLABSI events using National Healthcare Safety Network diagnostic criteria. The real reduction in the rate of CLABSI was achieved in 2010 with 0.7/1,000 device days when the compliance to CL Bundle reached up to 98% in that year and 100% in the next two subsequent years. The project still continued and the rate continued to drop and the ultimate target of zero CLABSI was achieved in the year 2014 and maintained in the year 2015 with a sustained compliance of 100% to the CL Bundle. Successful implementation of CL Bundle can help in reducing the rates of CLABSI and achieving zero CLABSI events for a sustained period. PMID:27559470

  15. Icariside II Effectively Reduces Spatial Learning and Memory Impairments in Alzheimer's Disease Model Mice Targeting Beta-Amyloid Production.

    PubMed

    Yan, Lingli; Deng, Yuanyuan; Gao, Jianmei; Liu, Yuangui; Li, Fei; Shi, Jingshan; Gong, Qihai

    2017-01-01

    Icariside II (ICS II) is a broad-spectrum anti-cancer natural compound extracted from Herba Epimedii Maxim. Recently, the role of ICS II has been investigated in central nervous system, especially have a neuroprotective effect in Alzheimer's disease (AD). In this study, we attempted to investigate the effects of ICS II, on cognitive deficits and beta-amyloid (Aβ) production in APPswe/PS1dE9 (APP/PS1) double transgenic mice. It was found that chronic ICS II administrated not only effectively ameliorated cognitive function deficits, but also inhibited neuronal degeneration and reduced the formation of plaque burden. ICS II significantly suppressed Aβ production via promoting non-amyloidogenic APP cleavage process by up-regulating a disintegrin and metalloproteinase domain 10 (ADAM10) expression, inhibited amyloidogenic APP processing pathway by down-regulating amyloid precursor protein (APP) and β-site amyloid precursor protein cleavage enzyme 1 (BACE1) expression in APP/PS1 transgenic mice. Meanwhile, ICS II attenuated peroxisome proliferator-activated receptor-γ (PPARγ) degradation as well as inhibition of eukaryotic initiation factor α phosphorylation (p-eIF2α) and PKR endoplasmic reticulum regulating kinase phosphorylation (p-PERK). Moreover, phosphodiesterase type 5 inhibitors (PDE5-Is) have recently emerged as a possible therapeutic target for cognitive enhancement via inhibiting Aβ levels, and we also found that ICS II markedly decreased phosphodiesterase-5A (PDE5A) expression. In conclusion, the present study demonstrates that ICS II could attenuate spatial learning and memory impairments in APP/PS1 transgenic mice. This protection appears to be due to the increased ADAM10 expression and decreased expression of both APP and BACE1, resulting in inhibition of Aβ production in the hippocampus and cortex. Inhibition of PPARγ degradation and PERK/eIF2α phosphorylation are involved in the course, therefore suggesting that ICS II might be a promising

  16. Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents☆

    PubMed Central

    Pannekoek, Justine Nienke; van der Werff, Steven J.A.; van den Bulk, Bianca G.; van Lang, Natasja D.J.; Rombouts, Serge A.R.B.; van Buchem, Mark A.; Vermeiren, Robert R.J.M.; van der Wee, Nic J.A.

    2014-01-01

    Adolescent depression is associated with increased risk for suicidality, social and educational impairment, smoking, substance use, obesity, and depression in adulthood. It is of relevance to further our insight in the neurobiological mechanisms underlying this disorder in the developing brain, as this may be essential to optimize treatment and prevention of adolescent depression and its negative clinical trajectories. The equivocal findings of the limited number of studies on neural abnormalities in depressed youth stress the need for further neurobiological investigation of adolescent depression. We therefore performed a voxel-based morphometry study of the hippocampus, amygdala, superior temporal gyrus, and anterior cingulate cortex (ACC) in 26 treatment-naïve, clinically depressed adolescents and 26 pair-wise matched healthy controls. Additionally, an exploratory whole-brain analysis was performed. Clinically depressed adolescents showed a volume reduction of the bilateral dorsal ACC compared to healthy controls. However, no association was found between gray matter volume of the ACC and clinical severity scores for depression or anxiety. Our finding of a smaller ACC in clinically depressed adolescents is consistent with literature on depressed adults. Future research is needed to investigate if gray matter abnormalities precede or follow clinical depression in adolescents. PMID:24501702

  17. Targeting intensive versus conventional glycaemic control for type 1 diabetes mellitus: a systematic review with meta-analyses and trial sequential analyses of randomised clinical trials

    PubMed Central

    Kähler, Pernille; Grevstad, Berit; Almdal, Thomas; Gluud, Christian; Wetterslev, Jørn; Vaag, Allan; Hemmingsen, Bianca

    2014-01-01

    Objective To assess the benefits and harms of targeting intensive versus conventional glycaemic control in patients with type 1 diabetes mellitus. Design A systematic review with meta-analyses and trial sequential analyses of randomised clinical trials. Data sources The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded and LILACS to January 2013. Study selection Randomised clinical trials that prespecified different targets of glycaemic control in participants at any age with type 1 diabetes mellitus were included. Data extraction Two authors independently assessed studies for inclusion and extracted data. Results 18 randomised clinical trials included 2254 participants with type 1 diabetes mellitus. All trials had high risk of bias. There was no statistically significant effect of targeting intensive glycaemic control on all-cause mortality (risk ratio 1.16, 95% CI 0.65 to 2.08) or cardiovascular mortality (0.49, 0.19 to 1.24). Targeting intensive glycaemic control reduced the relative risks for the composite macrovascular outcome (0.63, 0.41 to 0.96; p=0.03), and nephropathy (0.37, 0.27 to 0.50; p<0.00001. The effect estimates of retinopathy, ketoacidosis and retinal photocoagulation were not consistently statistically significant between random and fixed effects models. The risk of severe hypoglycaemia was significantly increased with intensive glycaemic targets (1.40, 1.01 to 1.94). Trial sequential analyses showed that the amount of data needed to demonstrate a relative risk reduction of 10% were, in general, inadequate. Conclusions There was no significant effect towards improved all-cause mortality when targeting intensive glycaemic control compared with conventional glycaemic control. However, there may be beneficial effects of targeting intensive glycaemic control on the composite macrovascular outcome and on nephropathy, and detrimental effects on severe hypoglycaemia. Notably, the data for retinopathy and ketoacidosis were inconsistent

  18. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends

    PubMed Central

    2014-01-01

    The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data” challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. The MapReduce programming framework uses two tasks common in functional programming: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by

  19. [Margin determination from clinical to planning target volume for lung cancer treated with conformal or intensity-modulated irradiation].

    PubMed

    Berthelot, K; Thureau, S; Giraud, P

    2016-10-01

    Technological progress in radiotherapy enables more precision for treatment planning and delivery. The margin determination between the clinical target volume and the planning target volumes stem from the estimation of geometric uncertainties of the tumour localization into the radiation beam. The inner motion complexity of lung tumours has led to the use of 4D computed tomography and nurtures specific dosimetric concerns. Few strategies consisting in integrating tumour motion allow margin reduction regarding inner movements. The patient immobilization and onboard imagery improvement decrease the setup uncertainties. Each step between the initial planning imagery and treatment delivery has to be analysed as systematic or random errors to calculate the optimal planning margin.

  20. Detection of Clostridium tetani in human clinical samples using tetX specific primers targeting the neurotoxin.

    PubMed

    Ganesh, Madhu; Sheikh, Nasira K; Shah, Pooja; Mehetre, Gajanan; Dharne, Mahesh S; Nagoba, Basavraj S

    2016-01-01

    Tetanus resulting from ear injury remains an important health problem, particularly in the developing world. We report the successful detection of Clostridium tetani using tetX specific primers targeting the Cl. tetani neurotoxin. The sample was obtained from an ear discharge of a case of otogenic tetanus in a 2-year-old male child. Based on the culture results of the ear discharge, Gram staining and virulence testing by genotyping, a diagnosis of tetanus was confirmed. This is the first report from India on the successful detection of Cl. tetani in a human clinical sample using tetX specific primers targeting the Cl. tetani neurotoxin.

  1. Reducing health care delivery costs using clinical paths: a case study on improving hospital profitability.

    PubMed

    Clare, M; Sargent, D; Moxley, R; Forthman, T

    1995-01-01

    The process of merging and benchmarking clinical and financial data is pivotal to the development of appropriate clinical pathways. Bristol Regional Medical Center (BRMC), facing the challenge of managed care organizations (MCOs), instituted this process and achieved significant cost savings, largely because of the working partnership between the administration and its medical staff. In DRG 89, Simple Pneumonia and Pleurisy, Age Greater than 17 with CC, data adjusted for severity of illness and cost of living were furnished to BRMC by HCIA Inc. Major benchmark or "best practice" variations were incorporated into new clinical pathways, leading to decreased resource use, no compromise in the quality of care, and a beneficial halo effect on other unrelated DRGs.

  2. Targeted screening of high-risk cattle populations for BSE to augment mandatory reporting of clinical suspects.

    PubMed

    Doherr, M G; Heim, D; Fatzer, R; Cohen, C H; Vandevelde, M; Zurbriggen, A

    2001-09-20

    In Switzerland, the first case of bovine spongiform encephalopathy (BSE) was diagnosed in November 1990. Case numbers peaked in 1995, with a total of 352 BSE cases identified by 30 April 2000. Reporting of clinically suspect cattle is currently the most commonly used method world-wide to detect BSE cases. The effectiveness of mandatory reporting depends on a variety of factors; for other diseases passive surveillance underestimates the incidence of clinical cases. The efficiency of passive surveillance systems for BSE will remain unknown until screening tests able to identify clinically affected cattle have been applied in several countries. This paper provides the first detailed description of a targeted screening programme for BSE. Two populations of cows >24 months of age were included in the targeted screening: (i) cows found dead or culled on site where the carcass was submitted to rendering (fallen stock) and (ii) cows with health-related problems unfit for routine slaughter that were slaughtered under emergency procedures (emergency slaughter). Between 1992 and 1999, on average 81 clinical BSE suspects per year were reported to the veterinary authorities (passive surveillance), of which 43% were confirmed with BSE. A total of 30 clinical cases were captured by passive surveillance and an additional 20 BSE cases detected by targeted screening between May 1999 and April 2000. The odds of finding a BSE case was 49 times higher in the fallen stock and 58 times higher in emergency-slaughtered cattle when compared to passive surveillance. The targeted screening of fallen stock and emergency-slaughtered cattle considerably increased the number of detected cases in this 12-month period. Targeted-screening cases were on average 4 months younger than the clinical suspect cases. In conclusion, post-mortem testing of fallen stock and emergency-slaughtered cows >24 months for BSE is an important active surveillance element within a total surveillance system that

  3. Targeted 46-gene and clinical exome sequencing for mutations causing cardiomyopathies.

    PubMed

    Waldmüller, Stephan; Schroeder, Christopher; Sturm, Marc; Scheffold, Thomas; Imbrich, Kerstin; Junker, Sandra; Frische, Christian; Hofbeck, Michael; Bauer, Peter; Bonin, Michael; Gawaz, Meinrad; Gramlich, Michael

    2015-10-01

    With the implementation of high-throughput sequencing protocols, the exhaustive scanning of known and candidate disease genes has become a feasible approach to genetic testing of patients with cardiomyopathy. A primary objective of the present study was to assess the performance characteristics of a 46-gene next-generation sequencing (NGS) assay that targets well-established cardiomyopathy genes. A total of 25 samples were analyzed. Twelve of those had previously been sequenced using resequencing arrays and served as reference samples for the assessment of the assay's performance characteristics. The remaining 13 samples were derived from consecutive patients. Both the analytical sensitivity and the specificity of the assay were 100% and the percentage of low-coverage bases was 0.4%, at an average read depth of 210×. In order to assess the diagnostic yield of the test, 13 consecutive samples representing cases of Dilated (n = 7), Hypertrophic (n = 4) and Left Ventricular Non-Compaction Cardiomyopathy (n = 2), were subjected to the 46-gene NGS assay. Including predicted pathogenic variants in the gene TTN, a total of 22 variants (11 novel) were detected in 10 patients, with a clear preponderance of variants of unknown pathogenicity (class 3 variants, 21/22, 95%). Of the seven DCM cases, two were digenic, involving variants in the genes MYH7 and RBM20 in one case and in DSP and TTN in the other case. Three other patients carried single TTN variants predicted to be pathogenic. Of the four HCM patients, one was trigenic (LAMA4, PKP2 and TTN) and three were digenic (DSP and TTN, MYH7 and NEXN, NEXN and TTN, respectively). As to LVNC, one of the two patients had one variant in the gene ABCC9 and two predicted pathogenic variants in the gene TTN. Strikingly, out of the thirteen investigated cases, only a single case exhibited a likely pathogenic or pathogenic variant justifying a positive test report. The percentage of inconclusive cases thus amounted to 69%. Three cases

  4. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends.

    PubMed

    Mohammed, Emad A; Far, Behrouz H; Naugler, Christopher

    2014-01-01

    The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. THE MAPREDUCE PROGRAMMING FRAMEWORK USES TWO TASKS COMMON IN FUNCTIONAL PROGRAMMING: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by

  5. Clinical pharmacists' opportunities to reduce inappropriate prescription of QT-prolonging medications: calls to action.

    PubMed

    Dhanani, Trusha C; Mantovani, Emily H; Turner, J Rick

    2017-04-01

    All biologically active agents carry the potential to lead to adverse reactions in certain individuals, including serious cardiac adverse reactions. Since 2005, there has been an international regulatory landscape governing the investigation of a new drug's propensity to lead to the polymorphic ventricular tachycardia Torsades de Pointes (Torsades), a rare but potentially fatal occurrence. When a regulatory agency considers it appropriate, warning information is placed in a medicine's patient information leaflet (label) concerning drug-induced QT interval prolongation, a phenomenon associated with Torsades. In busy hospital settings, however, prescribers, including cardiologists, make injudicious prescribing decisions that put patients at risk. The science of cardiac safety, including the clinical trials that generate the information about QT prolongation in patient information leaflets, is frequently not part of the curriculum at Schools of Pharmacy. Given that medication-induced cardiotoxicity is extremely serious, we advocate that schools integrate the science of cardiac safety into existing therapeutics/therapeutic medication monitoring courses. Given their expert knowledge of pharmacology, pharmacists working as part of a hospital's clinical team would then be even better placed to review prescribing decisions concerning medications that prolong the QT interval, and alert prescribers in cases where reassessing their decisions seems prudent. National pharmacy societies or other pertinent professional societies could create practice guidelines to support graduates once employed as clinical pharmacists. Clinical pharmacists are well placed to be influential arbiters of safer prescribing decisions. Cardiac safety education during their pharmacy training and practice guideline support from professional societies during their careers can optimize this role.

  6. Review of the Interaction Between Body Composition and Clinical Outcomes in Metastatic Renal Cell Cancer Treated With Targeted Therapies

    PubMed Central

    Yip, Steven M.; Heng, Daniel Y.C.

    2016-01-01

    Treatment of metastatic renal cell cancer (mRCC) currently focuses on inhibition of the vascular endothelial growth factor pathway and the mammalian target of rapamycin (mTOR) pathway. Obesity confers a higher risk of RCC. However, the influence of obesity on clinical outcomes in mRCC in the era of targeted therapy is less clear. This review focuses on the impact of body composition on targeted therapy outcomes in mRCC. The International Metastatic Renal Cell Carcinoma Database Consortium database has the largest series of patients evaluating the impact of body mass index (BMI) on outcomes in mRCC patients treated with targeted therapy. Overall survival was significantly improved in overweight patients (BMI ≥ 25 kg/m2), and this observation was externally validated in patients who participated in Pfizer trials. In contrast, sarcopenia is consistently associated with increased toxicity to inhibitors of angiogenesis and mTOR. Strengthening patients with mRCC and sarcopenia, through a structured exercise program and dietary intervention, may improve outcomes in mRCC treated with targeted therapies. At the same time, the paradox of obesity being a risk factor for RCC while offering a better overall survival in response to targeted therapy needs to be further evaluated.

  7. Immunologic and clinical effects of targeting PD-1 in lung cancer.

    PubMed

    Harvey, R D

    2014-08-01

    Therapeutic antibodies that block the programmed cell death protein-1 (PD-1) immune checkpoint pathway prevent T-cell downregulation and promote immune responses against cancer. Several PD-1 pathway inhibitors have shown robust activity in initial trials. This article reviews the preclinical evidence, rationale, and clinical pharmacology of blockade of PD-1 or its ligands as therapy for lung cancer and provides an overview of agents in development, clinical evidence to date, and implications for clinical application.

  8. The diagnosis and management of neonatal hip instability: results of a clinical and targeted ultrasound screening program.

    PubMed

    Vane, Andrew G S; Gwynne Jones, David P; Dunbar, John D; Theis, Jean-Claude

    2005-01-01

    This article reports the results of a neonatal hip screening program comprising clinical screening and targeted ultrasound performed by orthopaedic surgeons. Over 7 years, from 1995 to 2001, there were 15,397 live births in the authors' region. Seven hundred thirty-three babies (4.8% of births) were referred for hip ultrasound: 80% for risk factors and 20% for instability. Eighty-three babies (5.4/1,000) were splinted in a Pavlik harness. Three of these subsequently required surgery (1.9/1,000). Ten patients (0.65/1000) presented with hip dislocation after 12 weeks of age, nine of whom required open or closed reduction (0.56/1,000). From 1978 to 1985, when neonatal pediatricians clinically screened all babies, 18 babies presented late from 13,707 births (1.3/1000). Since the introduction of orthopaedic screening and targeted ultrasound, there has been a significant reduction in late diagnosis in the authors' institution.

  9. Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 mimetics.

    PubMed

    Frederick, Dennie T; Salas Fragomeni, Roberto A; Schalck, Aislyn; Ferreiro-Neira, Isabel; Hoff, Taylor; Cooper, Zachary A; Haq, Rizwan; Panka, David J; Kwong, Lawrence N; Davies, Michael A; Cusack, James C; Flaherty, Keith T; Fisher, David E; Mier, James W; Wargo, Jennifer A; Sullivan, Ryan J

    2014-01-01

    While response rates to BRAF inhibitiors (BRAFi) are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with BRAFi treatment led us to hypothesize that combining BRAFi with a BCL-2 inhibitor (the BH3-mimetic navitoclax) would improve outcome. We tested this hypothesis in cell lines and in mice. Pretreatment mRNA levels of BCL-2 negatively correlated with maximal tumor regression. Early increases in mRNA levels were seen in BIM, BCL-XL, BID and BCL2-W, as were decreases in MCL-1 and BCL2A. No significant changes were observed with BCL-2. Using reverse phase protein array (RPPA), significant increases in protein levels were found in BIM and BID. No changes in mRNA or protein correlated with response. Concurrent BRAF (PLX4720) and BCL2 (navitoclax) inhibition synergistically reduced viability in BRAF mutant cell lines and correlated with down-modulation of MCL-1 and BIM induction after PLX4720 treatment. In xenograft models, navitoclax enhanced the efficacy of PLX4720. The combination of a selective BRAF inhibitor with a BH3-mimetic promises to be an important therapeutic strategy capable of enhancing the clinical efficacy of BRAF inhibition in many patients that might otherwise succumb quickly to de novo resistance. Trial registrations: ClinicalTrials.gov NCT01006980; ClinicalTrials.gov NCT01107418; ClinicalTrials.gov NCT01264380; ClinicalTrials.gov NCT01248936; ClinicalTrials.gov NCT00949702; ClinicalTrials.gov NCT01072175.

  10. NCI Requests Targets for Monoclonal Antibody Production and Characterization - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.

  11. Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity

    PubMed Central

    Pogue, Sarah L.; Taura, Tetsuya; Bi, Mingying; Yun, Yong; Sho, Angela; Mikesell, Glen; Behrens, Collette; Sokolovsky, Maya; Hallak, Hussein; Rosenstock, Moti; Sanchez, Eric; Chen, Haiming; Berenson, James; Doyle, Anthony; Nock, Steffen; Wilson, David S.

    2016-01-01

    Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα’s TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity. PMID:27611189

  12. RT-PCR using glycoprotein target is more sensitive for the detection of Ebola virus in clinical samples.

    PubMed

    Yang, Mingjuan; Ke, Yuehua; Zhang, Wenyi; Liu, Chao; Yang, Ruifu; Chen, Zeliang

    2017-03-01

    The recent largest ever Ebola virus disease (EVD) outbreak in West Africa has been of worldwide concern, causing huge economic losses and constituting serious threat to the local residents and health care workers. Rapid detection of Ebola virus (EBOV) using RT-PCR has been suggested to be of great value in stopping the outbreak, because it is highly sensitive and specific and can return results within hours. In this study, 210 clinical samples, including 109 blood and 101 nasopharyngeal swab samples were used to compare the performance of glycoprotein (GP) and nucleoprotein (NP) gene targets for the detection of EBOV. The analytical sensitivity of both assays were 10 molecules/μL. For clinical samples, the sensitivity of the assay targeting GP gene is higher than that of NP gene (respectively 98% and 94%) and the specificities for both targets were 100%. In addition, the positive samples in the RT-PCR assay targeting GP showed lower cycle threshold values and higher virus loads than NP gene.

  13. The Long-Term Effectiveness of a Selective, Personality-Targeted Prevention Program in Reducing Alcohol Use and Related Harms: A Cluster Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Newton, Nicola C.; Conrod, Patricia J.; Slade, Tim; Carragher, Natacha; Champion, Katrina E.; Barrett, Emma L.; Kelly, Erin V.; Nair, Natasha K.; Stapinski, Lexine; Teesson, Maree

    2016-01-01

    Background: This study investigated the long-term effectiveness of Preventure, a selective personality-targeted prevention program, in reducing the uptake of alcohol, harmful use of alcohol, and alcohol-related harms over a 3-year period. Methods: A cluster randomized controlled trial was conducted to assess the effectiveness of Preventure.…

  14. Clinical interventions and smoking ban methods to reduce infants' and children's exposure to environmental tobacco smoke.

    PubMed

    Wewers, Mary Ellen; Uno, Mariko

    2002-01-01

    Environmental tobacco smoke (ETS) exposure is a serious health threat to infants and children. Clinical efforts, primarily educational, have been associated with modest improvements in ETS reduction. Smoking bans may provide a much larger impact but have yet to be systematically evaluated. Home smoking bans are also surrounded by social, economic, legal, and political challenges. Nurses, as health care providers, play a critical role in this comprehensive health promotion effort.

  15. Evaluation of an Intervention among Adolescents to Reduce Preventive Misconception in HIV Vaccine Clinical Trials

    PubMed Central

    Lally, Michelle; Goldsworthy, Richard; Sarr, Moussa; Kahn, Jessica; Brown, Larry; Peralta, Ligia; Zimet, Greg

    2014-01-01

    Purpose Placebo and randomization are important concepts that must be understood before youth can safely participate in HIV vaccine studies or other biomedical trials for HIV prevention. These concepts are central to the phenomenon of preventive misconception which may be associated with an increase in risk behavior among study participants related to mistaken beliefs. Persuasive messaging, traditionally used in the field of marketing, could enhance educational efforts associated with randomized clinical trials. Methods Two educational brochures were designed to increase knowledge about HIV vaccine clinical trials via 1 and 2-sided persuasive messaging. Through the Adolescent Medicine Trials Network, 120 youth were enrolled, administered a mock HIV vaccine trial consent, and then randomized to receive either no supplemental information or one of the two brochures. Results The 2-sided brochure group in which common clinical trial misconceptions were acknowledgedand then refuted had significantly higher scores on knowledge of randomization and interpretation of side effects than the consent-only control group, and willingness to participate in an HIV vaccine trial was not decreased with the use of this brochure. Conclusion Two sided persuasive messaging improves understanding of the concepts of randomization and placebo among youth who would consider participating in an HIV vaccine trial. Further evaluation of this approach should be considered for at-risk youth participating in an actual trial of a biomedical intervention for HIV prevention. PMID:24613097

  16. Can We Reduce Negative Blood Cultures With Clinical Scores and Blood Markers? Results From an Observational Cohort Study

    PubMed Central

    Laukemann, Svenja; Kasper, Nina; Kulkarni, Prasad; Steiner, Deborah; Rast, Anna Christina; Kutz, Alexander; Felder, Susan; Haubitz, Sebastian; Faessler, Lukas; Huber, Andreas; Fux, Christoph A.; Mueller, Beat; Schuetz, Philipp

    2015-01-01

    Abstract Only a small proportion of blood cultures routinely performed in emergency department (ED) patients is positive. Multiple clinical scores and biomarkers have previously been examined for their ability to predict bacteremia. Conclusive clinical validation of these scores and biomarkers is essential. This observational cohort study included patients with suspected infection who had blood culture sampling at ED admission. We assessed 5 clinical scores and admission concentrations of procalcitonin (PCT), C-reactive protein (CRP), lymphocyte and white blood cell counts, the neutrophil-lymphocyte count ratio (NLCR), and the red blood cell distribution width (RDW). Two independent physicians assessed true blood culture positivity. We used logistic regression models with area under the curve (AUC) analysis. Of 1083 patients, 104 (9.6%) had positive blood cultures. Of the clinical scores, the Shapiro score performed best (AUC 0.729). The best biomarkers were PCT (AUC 0.803) and NLCR (AUC 0.700). Combining the Shapiro score with PCT levels significantly increased the AUC to 0.827. Limiting blood cultures only to patients with either a Shapiro score of ≥4 or PCT > 0.1 μg/L would reduce negative sampling by 20.2% while still identifying 100% of positive cultures. Similarly, a Shapiro score ≥3 or PCT >0.25 μg/L would reduce cultures by 41.7% and still identify 96.1% of positive blood cultures. Combination of the Shapiro score with admission levels of PCT can help reduce unnecessary blood cultures with minimal false negative rates. The study was registered on January 9, 2013 at the ‘ClinicalTrials.gov’ registration web site (NCT01768494). PMID:26656373

  17. Can We Reduce Negative Blood Cultures With Clinical Scores and Blood Markers? Results From an Observational Cohort Study.

    PubMed

    Laukemann, Svenja; Kasper, Nina; Kulkarni, Prasad; Steiner, Deborah; Rast, Anna Christina; Kutz, Alexander; Felder, Susan; Haubitz, Sebastian; Faessler, Lukas; Huber, Andreas; Fux, Christoph A; Mueller, Beat; Schuetz, Philipp

    2015-12-01

    Only a small proportion of blood cultures routinely performed in emergency department (ED) patients is positive. Multiple clinical scores and biomarkers have previously been examined for their ability to predict bacteremia. Conclusive clinical validation of these scores and biomarkers is essential.This observational cohort study included patients with suspected infection who had blood culture sampling at ED admission. We assessed 5 clinical scores and admission concentrations of procalcitonin (PCT), C-reactive protein (CRP), lymphocyte and white blood cell counts, the neutrophil-lymphocyte count ratio (NLCR), and the red blood cell distribution width (RDW). Two independent physicians assessed true blood culture positivity. We used logistic regression models with area under the curve (AUC) analysis.Of 1083 patients, 104 (9.6%) had positive blood cultures. Of the clinical scores, the Shapiro score performed best (AUC 0.729). The best biomarkers were PCT (AUC 0.803) and NLCR (AUC 0.700). Combining the Shapiro score with PCT levels significantly increased the AUC to 0.827. Limiting blood cultures only to patients with either a Shapiro score of ≥4 or PCT > 0.1 μg/L would reduce negative sampling by 20.2% while still identifying 100% of positive cultures. Similarly, a Shapiro score ≥3 or PCT >0.25 μg/L would reduce cultures by 41.7% and still identify 96.1% of positive blood cultures.Combination of the Shapiro score with admission levels of PCT can help reduce unnecessary blood cultures with minimal false negative rates.The study was registered on January 9, 2013 at the 'ClinicalTrials.gov' registration web site (NCT01768494).

  18. A Novel Integration Effort to Reduce the Risk for Alcohol-Exposed Pregnancy Among Women Attending Urban STD Clinics

    PubMed Central

    Hutton, Heidi E.; Chander, Geetanjali; Green, Patricia P.; Hutsell, Catherine A.; Weingarten, Kimberly

    2014-01-01

    Alcohol-exposed pregnancy (AEP) is a significant public health problem in the United States. Sexually transmitted disease (STD) clinics serve female clients with a high prevalence of heavy alcohol consumption coupled with ineffective contraceptive use. Project CHOICES (Changing High-Risk AlcOhol Use and Increasing Contraception Effectiveness) is an evidence-based, brief intervention to lower risk of AEP by targeting alcohol and contraceptive behaviors through motivational interviewing and individualized feedback. We describe our experience integrating and implementing CHOICES in STD clinics. This endeavor aligns with CDC's National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention's program collaboration and service integration strategic priority to strengthen collaborative work across disease areas and integrate services provided by related programs at the client level. PMID:24385650

  19. Does Reducing Withdrawal Severity Mediate Nicotine Patch Efficacy? A Randomized Clinical Trial

    ERIC Educational Resources Information Center

    Ferguson, Stuart G.; Shiffman, Saul; Gwaltney, Chad J.

    2006-01-01

    Nicotine replacement therapy (NRT) repeatedly has been shown to improve smoking treatment outcome. The major mechanism posited for this improvement in outcome is that NRT reduces nicotine craving and withdrawal. The authors tested this hypothesized mechanism of action using real-time data on craving and withdrawal, collected by ecological…

  20. Recent results from clinical trials using SERMs to reduce the risk of breast cancer.

    PubMed

    Vogel, Victor G

    2006-11-01

    Selective estrogen receptor modulators (SERMs) are used for the treatment of invasive breast cancer. Chemoprevention is the use of specific natural or synthetic chemical agents to reverse, suppress, or prevent the progression of premalignant lesions to invasive carcinoma. The finding of a decrease in contralateral breast cancer incidence following tamoxifen administration for adjuvant therapy led to its use in breast cancer prevention. Four large trials have used tamoxifen, the prototypical SERM, as a breast cancer chemopreventive agent with differing results. In the National Surgical Adjuvant Breast and Bowel Project's (NSABP) Breast Cancer Prevention Trial (BCPT), tamoxifen reduced the risk of invasive breast cancer by 49%. Tamoxifen also reduced the incidence of benign breast disease as well as the number of breast biopsies in the treated women. Three other randomized prevention trials comparing tamoxifen with placebo have been reported and show a reduction in breast cancer incidence of 38%. Serum levels of estrone sulfate and testosterone are significantly associated with breast cancer risk, and estradiol appears to be more strongly associated with breast cancer in high-risk women. Raloxifene is comparable to tamoxifen in its ability to reduce the risk of breast cancer in postmenopausal, high-risk women and has fewer side effects, as shown in the study of tamoxifen and raloxifene. Several ongoing and planned studies will evaluate the ability of aromatase inhibitors to reduce the risk of breast cancer in women at increased risk.

  1. Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation.

    PubMed

    Kim, Janice J; Bridle, Byram W; Ghia, Jean-Eric; Wang, Huaqing; Syed, Shahzad N; Manocha, Marcus M; Rengasamy, Palanivel; Shajib, Mohammad Sharif; Wan, Yonghong; Hedlund, Peter B; Khan, Waliul I

    2013-05-01

    Mucosal inflammation in conditions ranging from infective acute enteritis or colitis to inflammatory bowel disease is accompanied by alteration in serotonin (5-hydroxytryptamine [5-HT]) content in the gut. Recently, we have identified an important role of 5-HT in the pathogenesis of experimental colitis. 5-HT type 7 (5-HT7) receptor is one of the most recently identified members of the 5-HT receptor family, and dendritic cells express this receptor. In this study, we investigated the effect of blocking 5-HT7 receptor signaling in experimental colitis with a view to develop an improved therapeutic strategy in intestinal inflammatory disorders. Colitis was induced with dextran sulfate sodium (DSS) or dinitrobenzene sulfonic acid (DNBS) in mice treated with selective 5-HT7 receptor antagonist SB-269970, as well as in mice lacking 5-HT7 receptor (5-HT7(-/-)) and irradiated wild-type mice reconstituted with bone marrow cells harvested from 5-HT7(-/-) mice. Inhibition of 5-HT7 receptor signaling with SB-269970 ameliorated both acute and chronic colitis induced by DSS. Treatment with SB-269970 resulted in lower clinical disease, histological damage, and proinflammatory cytokine levels compared with vehicle-treated mice post-DSS. Colitis severity was significantly lower in 5-HT7(-/-) mice and in mice reconstituted with bone marrow cells from 5-HT7(-/-) mice compared with control mice after DSS colitis. 5-HT7(-/-) mice also had significantly reduced DNBS-induced colitis. These observations provide us with novel information on the critical role of the 5-HT7 receptor in immune response and inflammation in the gut, and highlight the potential benefit of targeting this receptor to alleviate the severity of intestinal inflammatory disorders such as inflammatory bowel disease.

  2. The role of clinical pharmacists in educating nurses to reduce drug-food interactions (absorption phase) in hospitalized patients.

    PubMed

    Abbasi Nazari, Mohammad; Salamzadeh, Jamshid; Hajebi, Giti; Gilbert, Benjamin

    2011-01-01

    Drug-food interactions can increase or decrease drug effects, resulting in therapeutic failure or toxicity. Activities that reduce these interactions play an important role for clinical pharmacists. This study was planned and performed in order to determine the role of clinical pharmacist in the prevention of absorption drug-food interactions through educating the nurses in a teaching hospital affiliated to Shahid Beheshti University of Medical Sciences, Tehran, Iran. The rate of interactions was determined using direct observation methods before and after the nurse training courses in four wards including gastrointestinal-liver, endocrine, vascular surgery and nephrology. Training courses consisted of the nurse attendance lecture delivered by a clinical pharmacist which included receiving information pamphlets. Total incorrect drug administration fell down from 44.6% to 31.5%. The analysis showed that the rate of absorption drug-food interactions significantly decreased after the nurse training courses (p < 0.001). Clinical pharmacist can play an important role in nurse training as an effective method to reduce drug-food interactions in hospitals.

  3. Analysis of the gyrA Gene of Clinical Yersinia ruckeri Isolates with Reduced Susceptibility to Quinolones

    PubMed Central

    Gibello, Alicia; Porrero, M. Concepción; Blanco, M. Mar; Vela, Ana I.; Liébana, Pilar; Moreno, Miguel A.; Fernández-Garayzábal, José F.; Domínguez, Lucas

    2004-01-01

    Antimicrobial susceptibility of seven clinical strains of Yersinia ruckeri representative of those isolated between 1994 and 2002 from a fish farm with endemic enteric redmouth disease was studied. All isolates displayed indistinguishable pulsed-field gel electrophoresis restriction patterns, indicating that they represented a single strain. However, considering both inhibition zone diameters (IZD) and MICs, the isolates recovered in 2001-2002 formed a separate cluster with lower levels of susceptibility to all the quinolones tested, especially nalidixic acid (NA) and oxolinic acid (OA), compared with the isolates recovered between 1994 and 1998. Analysis of the PCR product of the quinolone resistance-determining region of the gyrA gene from clinical isolates of Y. ruckeri with reduced susceptibility to OA and NA revealed a single amino acid substitution, Ser-83 to Arg-83 (Escherichia coli numbering). Identical substitution was observed in induced OA-resistant mutant strains, which displayed IZD and MICs of quinolones similar to those of the clinical isolates of Y. ruckeri with reduced susceptibility to these antimicrobial agents. These data indicate in that for Y. ruckeri, the substitution of Ser by Arg at position 83 of the gyrA gene is associated with reduced susceptibility to quinolones. PMID:14711693

  4. Analysis of the gyrA gene of clinical Yersinia ruckeri isolates with reduced susceptibility to quinolones.

    PubMed

    Gibello, Alicia; Porrero, M Concepción; Blanco, M Mar; Vela, Ana I; Liébana, Pilar; Moreno, Miguel A; Fernández-Garayzábal, José F; Domínguez, Lucas

    2004-01-01

    Antimicrobial susceptibility of seven clinical strains of Yersinia ruckeri representative of those isolated between 1994 and 2002 from a fish farm with endemic enteric redmouth disease was studied. All isolates displayed indistinguishable pulsed-field gel electrophoresis restriction patterns, indicating that they represented a single strain. However, considering both inhibition zone diameters (IZD) and MICs, the isolates recovered in 2001-2002 formed a separate cluster with lower levels of susceptibility to all the quinolones tested, especially nalidixic acid (NA) and oxolinic acid (OA), compared with the isolates recovered between 1994 and 1998. Analysis of the PCR product of the quinolone resistance-determining region of the gyrA gene from clinical isolates of Y. ruckeri with reduced susceptibility to OA and NA revealed a single amino acid substitution, Ser-83 to Arg-83 (Escherichia coli numbering). Identical substitution was observed in induced OA-resistant mutant strains, which displayed IZD and MICs of quinolones similar to those of the clinical isolates of Y. ruckeri with reduced susceptibility to these antimicrobial agents. These data indicate in that for Y. ruckeri, the substitution of Ser by Arg at position 83 of the gyrA gene is associated with reduced susceptibility to quinolones.

  5. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting

    PubMed Central

    Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-01-01

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of “protein corona” and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers. PMID:26594360

  6. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting.

    PubMed

    Li, Yuancheng; Lin, Run; Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-05-07

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of "protein corona" and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers.

  7. Targeting chronic lymphocytic leukemia using CIGB-300, a clinical-stage CK2-specifc cell-permeable peptide inhibitor

    PubMed Central

    Martins, Leila R.; Perera, Yasser; Lúcio, Paulo; Silva, Maria G.; Perea, Silvio E.; Barata, João T.

    2014-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable malignancy, urging for the identifcation of new molecular targets for therapeutic intervention. CLL cells rely on overexpression and hyperactivation of the ubiquitous serine/threonine protein kinase CK2 for their viability in vitro. CIGB-300 is a cell-permeable selective CK2 inhibitor peptide undergoing clinical trials for several cancers. Here, we show that CIGB-300 promotes activation of the tumor suppressor PTEN and abrogates PI3K-mediated downstream signaling in CLL cells. In accordance, CIGB-300 decreases the viability and proliferation of CLL cell lines, promotes apoptosis of primary leukemia cells and displays antitumor efcacy in a xenograft mouse model of human CLL. Our studies provide pre-clinical support for the testing and possible inclusion of CK2 inhibitors in the clinical arsenal against CLL. PMID:24473900

  8. Clinical Pathway Improves Pediatrics Asthma Management in the Emergency Department and Reduces Admissions

    PubMed Central

    Bekmezian, Arpi; Fee, Christopher; Weber, Ellen

    2015-01-01

    Objective Poor adherence to NIH Asthma Guidelines may result in unnecessary admissions for children presenting to the emergency department (ED) with exacerbations. We determine the effect of implementing an evidence-based ED clinical pathway on corticosteroid and bronchodilator administration and imaging utilization, and the subsequent effect on hospital admissions in a US ED. Methods Prospective, interventional study of pediatric (≤21 years) visits to an academic ED between 2011 and 2013 with moderate-severe asthma exacerbations. A multidisciplinary team designed a one-page clinical pathway based on NIH guidelines. Nurses, respiratory therapists, and physicians attended educational sessions prior to pathway implementation. Adjusting for demographics, acuity, and ED volume, we compared timing and appropriateness of corticosteroid and bronchodilator administration, and chest radiograph (CXR) utilization with historical controls from 2006–2011. Subsequent hospital admission rates were also compared. Results 379 post-intervention visits were compared with 870 controls. Corticosteroids were more likely to be administered during post-intervention visits (96% vs. 78%, adjusted OR 6.35; 95%CI 3.17–12.73). Post-intervention, median time to corticosteroid administration was 45 minutes faster (RR 0.74; 95%CI 0.67–0.81) and more patients received corticosteroids within 1 hour of arrival (45% vs 18%, OR 3.5; 95%CI 2.50–4.90). More patients received >1 bronchodilator dose within 1 hour (36% vs 24%, OR 1.65; 95%CI 1.23–2.21) and fewer received CXRs (27% vs 42%, OR 0.7; 95%CI 0.52–0.94). There were fewer admissions post-intervention (13% vs. 21%, OR 0.53; 95%CI 0.37–0.76). Conclusion A clinical pathway is associated with improved adherence to NIH guidelines and, subsequently, fewer hospital admissions for pediatric ED patients with asthma exacerbations. PMID:25985707

  9. Clinical strategies for complete denture rehabilitation in a patient with Parkinson disease and reduced neuromuscular control.

    PubMed

    Haralur, Satheesh B

    2015-01-01

    The dentist has a large role in geriatric health care for the ever increasing elder population with associated physical and neurological disorders. The Parkinson disease is progressive neurological disorder with resting tremor, bradykinesia, akinesia, and postural instability. The psychological components of disease include depression, anxiety, and cognitive deficiency. Poor oral hygiene, increased susceptibility for dental caries, and periodontal diseases predispose them to early edentulism. The number of Parkinson affected patients visiting dental clinic seeking complete denture is growing. This case report explains the steps involved in the complete denture rehabilitation of Parkinson patient. The effective prosthesis will help in alleviating functional, aesthetic, and psychological disabilities of the patient.

  10. Phase II Clinical Trials: D-methionine to Reduce Noise-Induced Hearing Loss

    DTIC Science & Technology

    2012-03-01

    loss (NIHL) and tinnitus in our troops. Hypotheses: Primary Hypothesis: Administration of oral D-methionine prior to and during weapons...reduce or prevent noise-induced tinnitus . Primary outcome to test the primary hypothesis: Pure tone air-conduction thresholds. Primary outcome to...test the secondary hypothesis: Tinnitus questionnaires. Specific Aims: 1. To determine whether administering oral D-methionine (D-met) can

  11. Reducing supervisee anxiety: Effects of a role induction intervention for clinical supervision.

    PubMed

    Ellis, Michael V; Hutman, Heidi; Chapin, Julie

    2015-10-01

    We investigated the effectiveness of a theoretically based role induction (RI) intervention that aimed to clarify supervisee and supervisor role expectations and reduce supervisee anxiety, compared to standard supervision (no-RI). Initially, a feasibility study investigated whether a RI for beginning supervisees would work in the context of a replicated single-subject experimental design; specifically, it assessed whether the RI condition (n = 2) would result in decreased anxiety compared to baseline and a no-RI condition (n = 2). Results suggested that the RI appeared viable and mitigated supervisee anxiety. To address the deficiencies of the feasibility study, for the main study, a more rigorous experimental multiple-baseline research design with randomization procedures was employed to test the effectiveness of the RI intervention for reducing supervisee anxiety in 2 developmentally different groups: beginning supervisees (n = 4) and predoctoral interns (n = 5). Specifically, this study investigated whether supervisee anxiety would be lower following the RI intervention for both groups and whether beginning supervisees would experience larger decreases in anxiety relative to interns. The 3 most salient findings were (a) the efficacy of a RI procedure for reducing the anxiety of novice counselor trainees was tentatively supported, (b) anxiety varied, sometimes markedly, from session to session, but nevertheless was not as pervasive as theorized, and (c) supervisee developmental level appeared to moderate the effects of the RI on supervisee anxiety, such that the RI decreased anxiety for most beginning supervisees and initially increased anxiety for interns. Implications for theory, research, and training are discussed.

  12. Changing the treatment of heart failure with reduced ejection fraction: clinical use of sacubitril-valsartan combination

    PubMed Central

    Kaplinsky, Edgardo

    2016-01-01

    Despite significant therapeutic advances, patients with chronic heart failure (HF) remain at high risk of morbidity and mortality. Sacubitril valsartan (previously known as LCZ696) is a new oral agent approved for the treatment of symptomatic chronic heart failure in adults with reduced ejection fraction. It is described as the first in class angiotensin receptor neprilysin inhibitor (ARNI) since it incorporates the neprilysin inhibitor, sacubitril and the angiotensin II receptor antagonist, valsartan. Neprilysin is an endopeptidase that breaks down several vasoactive peptides including natriuretic peptides (NPs), bradykinin, endothelin and angiotensin II (Ang-II). Therefore, a natural consequence of its inhibition is an increase of plasmatic levels of both, NPs and Ang-II (with opposite biological actions). So, a combined inhibition of these both systems (Sacubitril / valsartan) may enhance the benefits of NPs effects in HF (natriuresis, diuresis, etc) while Ang-II receptor is inhibited (reducing vasoconstriction and aldosterone release). In a large clinical trial (PARADIGM-HF with 8442 patients), this new agent was found to significantly reduce cardiovascular and all cause mortality as well as hospitalizations due to HF (compared to enalapril). This manuscript reviews clinical evidence for sacubitril valsartan, dosing and cautions, future directions and its considered place in the therapy of HF with reduced ejection fraction. PMID:28133468

  13. Prophylactic administration of ponazuril reduces clinical signs and delays seroconversion in horses challenged with Sarcocystis neurona.

    PubMed

    Furr, M; McKenzie, H; Saville, W J A; Dubey, J P; Reed, S M; Davis, W

    2006-06-01

    The ability of ponazuril to prevent or limit clinical signs of equine protozoal myeloencephalitis (EPM) after infection with Sarcocystis neurona was evaluated. Eighteen horses were assigned to 1 of 3 groups: no treatment, 2.5 mg/kg ponazuril, or 5.0 mg/kg ponazuril. Horses were administered ponazuril, once per day, beginning 7 days before infection (study day 0) and continuing for 28 days postinfection. On day 0, horses were stressed by transport and challenged with 1 million S. neurona sporocysts per horse. Sequential neurologic examinations were performed, and serum and cerebrospinal fluid were collected and assayed for antibodies to S. neurona. All horses in the control group developed neurologic signs, whereas only 71 and 40% of horses in the 2.5 and 5.0 mg/kg ponazuril groups, respectively, developed neurologic abnormalities. This was significant at P = 0.034 by using Fisher exact test. In addition, seroconversion was decreased in the 5.0 mg/kg group compared with the control horses (100 vs. 40%; P = 0.028). Horses with neurologic signs were killed, and a post-mortem examination was performed. Mild-to-moderate, multifocal signs of neuroinflammation were observed. These results confirm that treatment with ponazuril at 5.0 mg/kg minimizes, but does not eliminate, infection and clinical signs of EPM in horses.

  14. Mandatory Provider Review And Pain Clinic Laws Reduce The Amounts Of Opioids Prescribed And Overdose Death Rates.

    PubMed

    Dowell, Deborah; Zhang, Kun; Noonan, Rita K; Hockenberry, Jason M

    2016-10-01

    To address the opioid overdose epidemic in the United States, states have implemented policies to reduce inappropriate opioid prescribing. These policies could affect the coincident heroin overdose epidemic by either driving the substitution of heroin for opioids or reducing simultaneous use of both substances. We used IMS Health's National Prescription Audit and government mortality data to examine the effect of these policies on opioid prescribing and on prescription opioid and heroin overdose death rates in the United States during 2006-13. The analysis revealed that combined implementation of mandated provider review of state-run prescription drug monitoring program data and pain clinic laws reduced opioid amounts prescribed by 8 percent and prescription opioid overdose death rates by 12 percent. We also observed relatively large but statistically insignificant reductions in heroin overdose death rates after implementation of these policies. This combination of policies was effective, but broader approaches to address these coincident epidemics are needed.

  15. Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy

    PubMed Central

    Borah, A; Raveendran, S; Rochani, A; Maekawa, T; Kumar, D S

    2015-01-01

    Extensive cancer research in the past few decades has identified the existence of a rare subpopulation of stem cells in the grove of cancer cells. These cells are known as the cancer stem cells marked by the presence of surface biomarkers, multi-drug resistance pumps and deregulated self-renewal pathways (SRPs). They have a crucial role in provoking cancer cells leading to tumorigenesis and its progressive metastasis. Cancer stem cells (CSCs) are much alike to normal stem cells in their self-renewal mechanisms. However, deregulations in the SRPs are seen in CSCs, making them resistant to conventional chemotherapeutic agents resulting in the tumor recurrence. Current treatment strategies in cancer fail to detect and differentiate the CSCs from their non-tumorigenic progenies owing to absence of specific biomarkers. Now, it has become imperative to understand complex functional biology of CSCs, especially the signaling pathways to design improved treatment strategies to target them. It is hopeful that the SRPs in CSCs offer a promising target to alter their survival strategies and impede their tumorigenic potential. However, there are many perils associated with the direct targeting method by conventional therapeutic agents such as off targets, poor bioavailability and poor cellular distribution. Recent evidences have shown an increased use of small molecule antagonists directly to target these SRPs may lead to severe side-effects. An alternative to solve these issues could be an appropriate nanoformulation. Nanoformulations of these molecules could provide an added advantage for the selective targeting of the pathways especially Hedgehog, Wnt, Notch and B-cell-specific moloney murine leukemia virus integration site 1 in the CSCs while sparing the normal stem cells. Hence, to achieve this goal a complete understanding of the molecular pathways corroborate with the use of holistic nanosystem (nanomaterial inhibition molecule) could possibly be an encouraging direction

  16. Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes.

    PubMed

    Jin, Huajun; Kanthasamy, Arthi; Ghosh, Anamitra; Anantharam, Vellareddy; Kalyanaraman, Balaraman; Kanthasamy, Anumantha G

    2014-08-01

    Parkinson's disease is a progressive neurodegenerative disease in the elderly, and no cure or disease-modifying therapies exist. Several lines of evidence suggest that mitochondrial dysfunction and oxidative stress have a central role in the dopaminergic neurodegeneration of Parkinson's disease. In this context, mitochondria-targeted therapies that improve mitochondrial function may have great promise in the prevention and treatment of Parkinson's disease. In this review, we discuss the recent developments in mitochondria-targeted antioxidants and their potential beneficial effects as a therapy for ameliorating mitochondrial dysfunction in Parkinson's disease.

  17. Concepts and targets in triple-negative breast cancer: recent results and clinical implications

    PubMed Central

    Saha, Poornima; Nanda, Rita

    2016-01-01

    Triple-negative breast cancer (TNBC) is a heterogeneous disease in which tumors are defined by lack of expression of the estrogen receptor (ER), the progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) receptor. No targeted therapies are available for the treatment of TNBC, and chemotherapy remains the standard of care. Gene expression profiling has identified six distinct molecular subtypes of TNBC. The identification of novel targets, coupled with the development of therapies for different subsets of TNBC, holds great promise for the future treatment of this aggressive form of breast cancer. This review focuses on novel therapies in development for the treatment of TNBC. PMID:27583027

  18. Observational clinical study on the effects of different dosing regimens on vancomycin target levels in critically ill patients: Continuous versus intermittent application.

    PubMed

    Tafelski, S; Nachtigall, I; Troeger, Uwe; Deja, Maria; Krannich, Alexander; Günzel, Karsten; Spies, C

    2015-01-01

    Different dosing regimens for vancomycin are in clinical use: intermittent infusion and continuous administration. The intention of using these different dosing regimens is to reduce toxicity, to achieve target levels faster and to avoid treatment failure. The aim of this phase IV study was to compare safety and effectiveness in both administration regimens. The study was conducted in 2010 and 2011 in three postoperative intensive care units (ICUs) in a tertiary care university hospital in Berlin, Germany. Adult patients with vancomycin therapy and therapeutic drug monitoring were included. Out of 675 patients screened, 125 received vancomycin therapy, 39% with intermittent and 61% with continuous administration. Patients with continuous administration achieved target serum levels significantly earlier (median day 3 versus 4, p=0.022) and showed fewer sub-therapeutic serum levels (41% versus 11%, p<0.001). ICU mortality rate, duration of ICU stay and duration of ventilation did not differ between groups. Acute renal failure during the ICU stay occurred in 35% of patients with intermittent infusion versus 26% of patients with continuous application (p=0.324). In conclusion, continuous administration of vancomycin allowed more rapid achievement of targeted drug levels with fewer sub-therapeutic vancomycin levels observed. This might indicate that patients with more severe infections or higher variability in renal function could benefit from this form of administration.

  19. Clinical efficiency of low-level diode laser in reducing dentin hypersensitivity

    NASA Astrophysics Data System (ADS)

    Clavijo, E. M. A.; Clavijo, V. R. G.; Bandéca, M. C.; Nadalin, M. R.; Andrade, M. F.; Saad, J. R. C.; Pelegrine, A. A.

    2009-10-01

    Dentin hipersensitivity (DH) is a relatively common clinical condition, especially in periodontal patients after treatment. In this study it was evaluated 28 teeth who presented dentin hypersensitivity. The teeth were subjected to clinical and radiographic exams and were divided into groups following the treatment and the time of examination after application proposed: GI: PO 3% (Potassium Oxalate—group control)/Baseline; GII: PO 3%/3 days after first session; GIII: PO 3%/6 days; GIV: PO 3%/30 days; GV: PO 3%/60 days; GVI: PO 3%/90 days; GVII: Laser (Low_level diode laser with 110 mW/cm2)/Baseline; GVIII: Laser/7 days after first session; GIX: Laser/14 days; GX: Laser/30 days; GXI: Laser/60 days; and GXII: Laser/90 days. The groups I-VI, the teeth were subjected to 3 applications (GI-GIII) of desensitizing agent at regular intervals of seven days. The Groups VII-XI, each tooth was subjected to three applications (GVII-GIX) in three different points (mesial, meddle and distal surfaces) with an interval of 72 h. The time of application in each point was of 33 s and the patients from both groups were followed up to 90 days. The nonparametric test Friedman (α = 0.05) was applied and the test of Mann Whitney (α = 0.05) was used to compare the time of examination between groups. The application of Laser was effective 6 days after first session and to PO was 30 days. It was observed that both treatments were effective for the reduction of dentin hypersensitivity, however the laser presented better effectiveness.

  20. Appropriately Targeting Group Interventions for Academic Success Adopting the Clinical Model and PAR Profiles

    ERIC Educational Resources Information Center

    Johnson, Craig W.; Johnson, Ronald; Steigman, Michael; Odo, Chioma; Vijayan, Suvendra; Tata, Devadatta V.

    2016-01-01

    Prevalence of academic risk (PAR) group profiles provide data enabling empirically based group-specialized prescriptions for targeted academic success interventions to increase student retention, completion, and graduation rates, while improving allocation of institutional resources. Postsecondary student attrition engenders student debt,…

  1. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation

    PubMed Central

    Rincon, Melvin Y.; VandenDriessche, Thierry; Chuah, Marinee K.

    2015-01-01

    Gene therapy is a promising modality for the treatment of inherited and acquired cardiovascular diseases. The identification of the molecular pathways involved in the pathophysiology of heart failure and other associated cardiac diseases led to encouraging preclinical gene therapy studies in small and large animal models. However, the initial clinical results yielded only modest or no improvement in clinical endpoints. The presence of neutralizing antibodies and cellular immune responses directed against the viral vector and/or the gene-modified cells, the insufficient gene expression levels, and the limited gene transduction efficiencies accounted for the overall limited clinical improvements. Nevertheless, further improvements of the gene delivery technology and a better understanding of the underlying biology fostered renewed interest in gene therapy for heart failure. In particular, improved vectors based on emerging cardiotropic serotypes of the adeno-associated viral vector (AAV) are particularly well suited to coax expression of therapeutic genes in the heart. This led to new clinical trials based on the delivery of the sarcoplasmic reticulum Ca2+-ATPase protein (SERCA2a). Though the first clinical results were encouraging, a recent Phase IIb trial did not confirm the beneficial clinical outcomes that were initially reported. New approaches based on S100A1 and adenylate cyclase 6 are also being considered for clinical applications. Emerging paradigms based on the use of miRNA regulation or CRISPR/Cas9-based genome engineering open new therapeutic perspectives for treating cardiovascular diseases by gene therapy. Nevertheless, the continuous improvement of cardiac gene delivery is needed to allow the use of safer and more effective vector doses, ultimately bringing gene therapy for heart failure one step closer to reality. PMID:26239654

  2. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation.

    PubMed

    Rincon, Melvin Y; VandenDriessche, Thierry; Chuah, Marinee K

    2015-10-01

    Gene therapy is a promising modality for the treatment of inherited and acquired cardiovascular diseases. The identification of the molecular pathways involved in the pathophysiology of heart failure and other associated cardiac diseases led to encouraging preclinical gene therapy studies in small and large animal models. However, the initial clinical results yielded only modest or no improvement in clinical endpoints. The presence of neutralizing antibodies and cellular immune responses directed against the viral vector and/or the gene-modified cells, the insufficient gene expression levels, and the limited gene transduction efficiencies accounted for the overall limited clinical improvements. Nevertheless, further improvements of the gene delivery technology and a better understanding of the underlying biology fostered renewed interest in gene therapy for heart failure. In particular, improved vectors based on emerging cardiotropic serotypes of the adeno-associated viral vector (AAV) are particularly well suited to coax expression of therapeutic genes in the heart. This led to new clinical trials based on the delivery of the sarcoplasmic reticulum Ca(2+)-ATPase protein (SERCA2a). Though the first clinical results were encouraging, a recent Phase IIb trial did not confirm the beneficial clinical outcomes that were initially reported. New approaches based on S100A1 and adenylate cyclase 6 are also being considered for clinical applications. Emerging paradigms based on the use of miRNA regulation or CRISPR/Cas9-based genome engineering open new therapeutic perspectives for treating cardiovascular diseases by gene therapy. Nevertheless, the continuous improvement of cardiac gene delivery is needed to allow the use of safer and more effective vector doses, ultimately bringing gene therapy for heart failure one step closer to reality.

  3. Communicating clinical research to reduce cancer risk through diet: Walnuts as a case example.

    PubMed

    Toner, Cheryl D

    2014-08-01

    Inflammation is one mechanism through which cancer is initiated and progresses, and is implicated in the etiology of other conditions that affect cancer risk and prognosis, such as type 2 diabetes, cardiovascular disease, and visceral obesity. Emerging human evidence, primarily epidemiological, suggests that walnuts impact risk of these chronic diseases via inflammation. The published literature documents associations between walnut consumption and reduced risk of cancer, and mortality from cancer, diabetes, and cardiovascular disease, particularly within the context of the Mediterranean Diet. While encouraging, follow-up in human intervention trials is needed to better elucidate any potential cancer prevention effect of walnuts, per se. In humans, the far-reaching positive effects of a plant-based diet that includes walnuts may be the most critical message for the public. Indeed, appropriate translation of nutrition research is essential for facilitating healthful consumer dietary behavior. This paper will explore the translation and application of human evidence regarding connections with cancer and biomarkers of inflammation to the development of dietary guidance for the public and individualized dietary advice. Strategies for encouraging dietary patterns that may reduce cancer risk will be explored.

  4. Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse

    SciTech Connect

    Nishimura, H.; Nakamura, H.; Tanabe, M.; Fujiwara, T.; Yamamoto, N.; Fujioka, S.; Mima, K.; Mishra, R.; Sentoku, Y.; Mancini, R.; Hakel, P.; Ohshima, S.; Batani, D.; Veltcheva, M.; Desai, T.; Jafer, R.; Kawamura, T.; Koike, F.

    2011-02-15

    Heat transport in reduced-mass targets irradiated with a high intensity laser pulse was studied. K{alpha} lines from partially ionized chlorine embedded in the middle of a triple-layered plastic target were measured to evaluate bulk electron temperature in the tracer region inside the target. Two groups of K{alpha} lines, one from Cl{sup +}-Cl{sup 6+} (hereby called ''cold K{alpha}''), and the other from Cl{sup 9+} and Cl{sup 10+} (''shifted K{alpha}'') are observed from different regions within the target. Two-dimensional collisional particle-in-cell simulations show two distinct heating mechanisms occurring concurrently: uniform heating by refluxing electrons and local heating by diffusive electrons in the central region. These two heating processes, which made the target temperature distribution nonuniform, are responsible for producing the two groups of K{alpha} lines in the experiment. The blue-shift of cold K{alpha} lines in the experiment is the signature of higher temperatures achieved by the refluxing heating in smaller-mass targets.

  5. Therapeutic targeting of ERBB2 in breast cancer: understanding resistance in the laboratory and combating it in the clinic.

    PubMed

    Fabi, Alessandra; Mottolese, Marcella; Segatto, Oreste

    2014-07-01

    ERBB2 gene amplification occurs in about one quarter of breast carcinomas (BCs) and identifies a distinct clinical subset of BC. The introduction in the clinic of Trastuzumab, a humanized monoclonal antibody (mAb) directed to the ERBB2 extracellular domain, has had a great impact on the therapeutic management of ERBB2+ BC. Yet, not all patients respond to Trastuzumab and resistance develops also among patients that initially benefit from Trastuzumab-based regimens. Pre-clinical studies have discovered several mechanisms through which tumor cells may escape from Trastuzumab-mediated ERBB2 inhibition. These include rewiring of the ErbB signaling network, loss of ERBB2 expression, expression of ERBB2 isoforms refractory to Trastuzumab inhibition, vicarious signaling by non-ErbB tyrosine kinases and constitutive activation of downstream signaling routes, such as the PI3K pathway. While the relative contribution of each of these mechanisms to establishing Trastuzumab resistance in the clinical setting is not fully understood, much attention has been focused on abating resistance by achieving complete blockade of ERBB2-containing dimers. This approach, propelled by the development of novel anti-ERBB2 therapeutics, has led to the recent approval of Lapatinib, Pertuzumab and T-DM1 as additional anti-ERBB2 therapeutics in BC. However, full success is far from being achieved and resistance to ERBB2 targeting remains a relevant problem in the clinical management of BC. Herein, we provide an overview of biological and molecular bases underpinning resistance to ERBB2 therapeutics in BC, discuss outstanding issues in the field of ERBB2 therapeutic targeting and elaborate on future directions of translational research on ERBB2+ breast cancer.

  6. Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect

    PubMed Central

    Cao, Hua; Chen, Zhi-Xiang; Wang, Kai; Ning, Meng-Meng; Zou, Qing-An; Feng, Ying; Ye, Yang-Liang; Leng, Ying; Shen, Jian-Hua

    2016-01-01

    TGR5 activation of enteroendocrine cells increases glucagon-like peptide 1 (GLP-1) release, which maintains glycemic homeostasis. However, TGR5 activation in the gallbladder and heart is associated with severe side effects. Therefore, intestinally-targeted TGR5 agonists were suggested as potential hypoglycemic agents with minimal side effects. However, until now no such compounds with robust glucose-lowering effects were reported, especially in diabetic animal models. Herein, we identify a TGR5 agonist, 26a, which was proven to be intestinally-targeted through pharmacokinetic studies. 26a was used as a tool drug to verify the intestinally-targeted strategy. 26a displayed a robust and long-lasting hypoglycemic effect in ob/ob mice (once a day dosing (QD) and 18-day treatment) owing to sustained stimulation of GLP-1 secretion, which suggested that robust hypoglycemic effect could be achieved with activation of TGR5 in intestine alone. However, the gallbladder filling effect of 26a was rather complicated. Although the gallbladder filling effect of 26a was decreased in mice after once a day dosing, this side effect was still not eliminated. To solve the problem above, several research strategies were raised for further optimization. PMID:27339735

  7. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth.

    PubMed

    Soman, Neelesh R; Baldwin, Steven L; Hu, Grace; Marsh, Jon N; Lanza, Gregory M; Heuser, John E; Arbeit, Jeffrey M; Wickline, Samuel A; Schlesinger, Paul H

    2009-09-01

    The in vivo application of cytolytic peptides for cancer therapeutics is hampered by toxicity, nonspecificity, and degradation. We previously developed a specific strategy to synthesize a nanoscale delivery vehicle for cytolytic peptides by incorporating the nonspecific amphipathic cytolytic peptide melittin into the outer lipid monolayer of a perfluorocarbon nanoparticle. Here, we have demonstrated that the favorable pharmacokinetics of this nanocarrier allows accumulation of melittin in murine tumors in vivo and a dramatic reduction in tumor growth without any apparent signs of toxicity. Furthermore, direct assays demonstrated that molecularly targeted nanocarriers selectively delivered melittin to multiple tumor targets, including endothelial and cancer cells, through a hemifusion mechanism. In cells, this hemifusion and transfer process did not disrupt the surface membrane but did trigger apoptosis and in animals caused regression of precancerous dysplastic lesions. Collectively, these data suggest that the ability to restrain the wide-spectrum lytic potential of a potent cytolytic peptide in a nanovehicle, combined with the flexibility of passive or active molecular targeting, represents an innovative molecular design for chemotherapy with broad-spectrum cytolytic peptides for the treatment of cancer at multiple stages.

  8. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth

    PubMed Central

    Soman, Neelesh R.; Baldwin, Steven L.; Hu, Grace; Marsh, Jon N.; Lanza, Gregory M.; Heuser, John E.; Arbeit, Jeffrey M.; Wickline, Samuel A.; Schlesinger, Paul H.

    2009-01-01

    The in vivo application of cytolytic peptides for cancer therapeutics is hampered by toxicity, nonspecificity, and degradation. We previously developed a specific strategy to synthesize a nanoscale delivery vehicle for cytolytic peptides by incorporating the nonspecific amphipathic cytolytic peptide melittin into the outer lipid monolayer of a perfluorocarbon nanoparticle. Here, we have demonstrated that the favorable pharmacokinetics of this nanocarrier allows accumulation of melittin in murine tumors in vivo and a dramatic reduction in tumor growth without any apparent signs of toxicity. Furthermore, direct assays demonstrated that molecularly targeted nanocarriers selectively delivered melittin to multiple tumor targets, including endothelial and cancer cells, through a hemifusion mechanism. In cells, this hemifusion and transfer process did not disrupt the surface membrane but did trigger apoptosis and in animals caused regression of precancerous dysplastic lesions. Collectively, these data suggest that the ability to restrain the wide-spectrum lytic potential of a potent cytolytic peptide in a nanovehicle, combined with the flexibility of passive or active molecular targeting, represents an innovative molecular design for chemotherapy with broad-spectrum cytolytic peptides for the treatment of cancer at multiple stages. PMID:19726870

  9. Monte-Carlo model development for evaluation of current clinical target volume definition for heterogeneous and hypoxic glioblastoma.

    PubMed

    Moghaddasi, L; Bezak, E; Harriss-Phillips, W

    2016-05-07

    Clinical target volume (CTV) determination may be complex and subjective. In this work a microscopic-scale tumour model was developed to evaluate current CTV practices in glioblastoma multiforme (GBM) external radiotherapy. Previously, a Geant4 cell-based dosimetry model was developed to calculate the dose deposited in individual GBM cells. Microscopic extension probability (MEP) models were then developed using Matlab-2012a. The results of the cell-based dosimetry model and MEP models were combined to calculate survival fractions (SF) for CTV margins of 2.0 and 2.5 cm. In the current work, oxygenation and heterogeneous radiosensitivity profiles were incorporated into the GBM model. The genetic heterogeneity was modelled using a range of α/β values (linear-quadratic model parameters) associated with different GBM cell lines. These values were distributed among the cells randomly, taken from a Gaussian-weighted sample of α/β values. Cellular oxygen pressure was distributed randomly taken from a sample weighted to profiles obtained from literature. Three types of GBM models were analysed: homogeneous-normoxic, heterogeneous-normoxic, and heterogeneous-hypoxic. The SF in different regions of the tumour model and the effect of the CTV margin extension from 2.0-2.5 cm on SFs were investigated for three MEP models. The SF within the beam was increased by up to three and two orders of magnitude following incorporation of heterogeneous radiosensitivities and hypoxia, respectively, in the GBM model. However, the total SF was shown to be overdominated by the presence of tumour cells in the penumbra region and to a lesser extent by genetic heterogeneity and hypoxia. CTV extension by 0.5 cm reduced the SF by a maximum of 78.6  ±  3.3%, 78.5  ±  3.3%, and 77.7  ±  3.1% for homogeneous and heterogeneous-normoxic, and heterogeneous hypoxic GBMs, respectively. Monte-Carlo model was developed to quantitatively evaluate SF for genetically

  10. Monte-Carlo model development for evaluation of current clinical target volume definition for heterogeneous and hypoxic glioblastoma

    NASA Astrophysics Data System (ADS)

    Moghaddasi, L.; Bezak, E.; Harriss-Phillips, W.

    2016-05-01

    Clinical target volume (CTV) determination may be complex and subjective. In this work a microscopic-scale tumour model was developed to evaluate current CTV practices in glioblastoma multiforme (GBM) external radiotherapy. Previously, a Geant4 cell-based dosimetry model was developed to calculate the dose deposited in individual GBM cells. Microscopic extension probability (MEP) models were then developed using Matlab-2012a. The results of the cell-based dosimetry model and MEP models were combined to calculate survival fractions (SF) for CTV margins of 2.0 and 2.5 cm. In the current work, oxygenation and heterogeneous radiosensitivity profiles were incorporated into the GBM model. The genetic heterogeneity was modelled using a range of α/β values (linear-quadratic model parameters) associated with different GBM cell lines. These values were distributed among the cells randomly, taken from a Gaussian-weighted sample of α/β values. Cellular oxygen pressure was distributed randomly taken from a sample weighted to profiles obtained from literature. Three types of GBM models were analysed: homogeneous-normoxic, heterogeneous-normoxic, and heterogeneous-hypoxic. The SF in different regions of the tumour model and the effect of the CTV margin extension from 2.0-2.5 cm on SFs were investigated for three MEP models. The SF within the beam was increased by up to three and two orders of magnitude following incorporation of heterogeneous radiosensitivities and hypoxia, respectively, in the GBM model. However, the total SF was shown to be overdominated by the presence of tumour cells in the penumbra region and to a lesser extent by genetic heterogeneity and hypoxia. CTV extension by 0.5 cm reduced the SF by a maximum of 78.6  ±  3.3%, 78.5  ±  3.3%, and 77.7  ±  3.1% for homogeneous and heterogeneous-normoxic, and heterogeneous hypoxic GBMs, respectively. Monte-Carlo model was developed to quantitatively evaluate SF for genetically

  11. Novel Representation of Clinical Information in the ICU: Developing User Interfaces which Reduce Information Overload.

    PubMed

    Pickering, B W; Herasevich, V; Ahmed, A; Gajic, O

    2010-01-01

    The introduction of electronic medical records (EMR) and computerized physician order entry (CPOE) into the intensive care unit (ICU) is transforming the way health care providers currently work. The challenge facing developers of EMR's is to create products which add value to systems of health care delivery. As EMR's become more prevalent, the potential impact they have on the quality and safety, both negative and positive, will be amplified. In this paper we outline the key barriers to effective use of EMR and describe the methodology, using a worked example of the output. AWARE (Ambient Warning and Response Evaluation), is a physician led, electronic-environment enhancement program in an academic, tertiary care institution's ICU. The development process is focused on reducing information overload, improving efficiency and eliminating medical error in the ICU.

  12. Mechanistic Validation of a Clinical Lead Stapled Peptide that Reactivates p53 by Dual HDM2 and HDMX Targeting

    PubMed Central

    Wachter, Franziska; Morgan, Ann M.; Godes, Marina; Mourtada, Rida; Bird, Gregory H.; Walensky, Loren D.

    2016-01-01

    Hydrocarbon-stapled peptides that display key residues of the p53 transactivation domain have emerged as bona fide clinical candidates for reactivating the tumor suppression function of p53 in cancer by dual targeting of the negative regulators HDM2 and HDMX. A recent study questioned the mechanistic specificity of such stapled peptides based on interrogating their capacity to disrupt p53/HDM2 and p53/HDMX complexes in living cells using a new recombinase enhanced bimolecular luciferase complementation platform (ReBiL). Here, we directly evaluate the cellular uptake, intracellular targeting selectivity, and p53-dependent cytotoxicity of the clinical prototype ATSP-7041. We find that under standard serum-containing tissue culture conditions, ATSP-7041 achieves intracellular access without membrane disruption, dose-dependently dissociates both p53/HDM2 and p53/HDMX complexes but not an unrelated protein complex in long-term ReBiL experiments, and is selectively cytotoxic to cancer cells bearing wild-type p53 by inducing a surge in p53 protein level. These studies underscore the importance of a thorough step-wise approach, including consideration of the time-dependence of cellular uptake and intracellular distribution, in evaluating and advancing stapled peptides for clinical translation. PMID:27721413

  13. Mechanistic validation of a clinical lead stapled peptide that reactivates p53 by dual HDM2 and HDMX targeting.

    PubMed

    Wachter, F; Morgan, A M; Godes, M; Mourtada, R; Bird, G H; Walensky, L D

    2016-10-10

    Hydrocarbon-stapled peptides that display key residues of the p53 transactivation domain have emerged as bona fide clinical candidates for reactivating the tumor suppression function of p53 in cancer by dual targeting of the negative regulators HDM2 and HDMX. A recent study questioned the mechanistic specificity of such stapled peptides based on interrogating their capacity to disrupt p53/HDM2 and p53/HDMX complexes in living cells using a new recombinase enhanced bimolecular luciferase complementation platform (ReBiL). Here, we directly evaluate the cellular uptake, intracellular targeting selectivity and p53-dependent cytotoxicity of the clinical prototype ATSP-7041. We find that under standard serum-containing tissue culture conditions, ATSP-7041 achieves intracellular access without membrane disruption, dose-dependently dissociates both p53/HDM2 and p53/HDMX complexes but not an unrelated protein complex in long-term ReBiL experiments, and is selectively cytotoxic to cancer cells bearing wild-type p53 by inducing a surge in p53 protein level. These studies underscore the importance of a thorough stepwise approach, including consideration of the time-dependence of cellular uptake and intracellular distribution, in evaluating and advancing stapled peptides for clinical translation.Oncogene advance online publication, 10 October 2016; doi:10.1038/onc.2016.361.

  14. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    SciTech Connect

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles close-in to the target

  15. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells.

    PubMed

    Shen, Zheyu; Wu, Hao; Yang, Sugeun; Ma, Xuehua; Li, Zihou; Tan, Mingqian; Wu, Aiguo

    2015-11-01

    One big challenge with active targeting of nanocarriers is non-specific binding between targeting molecules and non-target moieties expressed on non-cancerous cells, which leads to non-specific uptake of nanocarriers by non-cancerous cells. Here, we propose a novel Trojan-horse targeting strategy to hide or expose the targeting molecules of nanocarriers on-demand. The non-specific uptake by non-cancerous cells can be reduced because the targeting molecules are hidden in hydrophilic polymers. The nanocarriers are still actively targetable to cancer cells because the targeting molecules can be exposed on-demand at tumor regions. Typically, Fe3O4 nanocrystals (FN) as magnetic resonance imaging (MRI) contrast agents were encapsulated into albumin nanoparticles (AN), and then folic acid (FA) and pH-sensitive polymers (PP) were grafted onto the surface of AN-FN to construct PP-FA-AN-FN nanoparticles. Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), transmission electron microscope (TEM) and gel permeation chromatography (GPC) results confirm successful construction of PP-FA-AN-FN. According to difference of nanoparticle-cellular uptake between pH 7.4 and 5.5, the weight ratio of conjugated PP to nanoparticle FA-AN-FN (i.e. graft density) and the molecular weight of PP (i.e. graft length) are optimized to be 1.32 and 5.7 kDa, respectively. In vitro studies confirm that the PP can hide ligand FA to prevent it from binding to cells with FRα at pH 7.4 and shrink to expose FA at pH 5.5. In vivo studies demonstrate that our Trojan-horse targeting strategy can reduce the non-specific uptake of the PP-FA-AN-FN by non-cancerous cells. Therefore, our PP-FA-AN-FN might be used as an accurately targeted MRI contrast agent.

  16. Reduced Susceptibility to Cefepime in Clinical Isolates of Enterobacteriaceae Producing OXA-1 Beta-Lactamase.

    PubMed

    Torres, Eva; López-Cerero, Lorena; Rodríguez-Martínez, José Manuel; Pascual, Álvaro

    2016-03-01

    An increase of Enterobacteriaceae isolates with reduced susceptibility to cefepime (FEP) and amoxicillin/clavulanate (AMC) has been observed in our area. The aim of this study was to characterize this antibiotic resistance phenotype and its molecular epidemiology. A total of 33 Enterobacteriaceae strains were studied. blaOXA-1 genes and their genetic environment were analyzed by polymerase chain reaction (PCR) and sequencing. Plasmids were transferred by conjugation and/or transformation and classified using PCR-based inc/rep typing and IncF subtyping. Escherichia coli isolates were typed by phylogroup, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Outer membrane proteins were studied by sodium dodecylsulfate-polyacrylamide gel electrophoresis and expression of blaOXA-1 genes by reverse transcription-PCR. FEP minimum inhibitory concentration yielded values of 1-16 mg/L. Twenty-nine (87.9%) isolates produced OXA-1, of which 24 (82.7%) were located in class 1 integron, and 9 (27.3%) produced TEM-1. Among the 24 E. coli OXA-1-producers, PFGE revealed two main clusters: one belonged to C-ST88 and the other to B23-ST131. Thirteen plasmids containing blaOXA-1 were transferred, nine belonged to IncF replicon (4 F2:A1:B-, 2 F1:A1:B1, 1 F1:A2:B-, 1 F18:A2:B1, 1 F5:A-:B1) and four were nontypeable. In conclusion, reduced susceptibility to FEP was mostly due to OXA-1 beta-lactamase. In E. coli, this increase is mainly due to the dissemination of two clones, which have captured different IncF plasmids. Among non-E. coli strains, five isolates produced OXA-1 and one isolate produced only TEM-1.

  17. "Green Oncology": the Italian medical oncologists' challenge to reduce the ecological impact of their clinical activity.

    PubMed

    Bretti, Sergio; Porcile, Gianfranco; Romizi, Roberto; Palazzo, Salvatore; Oliani, Cristina; Crispino, Sergio; Labianca, Roberto

    2014-01-01

    For decades Western medicine has followed a biomedical model based on linear thinking and an individualized, disease-oriented doctor-patient relationship. Today this framework must be replaced by a biopsychosocial model based on complexity theory and a person-oriented medical team-patient relationship, taking into account the psychological and social determinants of health and disease. However, the new model is already proving no longer adequate or appropriate, and current events are urging us to develop an ecological model in which the medical team takes into account both individual illness and population health as a whole, since we are all part of the biosphere. In recent years, the rising costs of cancer treatment have raised a serious issue of economic sustainability. As the population of our planet, we now need to rapidly address this issue, and everyone of us must try to reduce their ecological footprint, measured as CO2 production. Medical oncologists need to reduce the ecological footprint of their professional activity by lowering the consumption of economic resources and avoiding environmental damage as much as possible. This new paradigm is endorsed by the Italian College of Hospital Medical Oncology Directors (CIPOMO). A working group of this organization has drafted the "Green Oncology Position Paper": a proposal of Italian medical oncology (in accordance with international guidelines) that oncologists, while aiming for the same end results, make a commitment toward the more appropriate management of health care and the careful use of resources in order to protect the environment and the ecosphere during the daily exercise of their professional activities.

  18. Effectiveness of physical activity in reducing pain in patients with fibromyalgia: a blinded randomized clinical trial.

    PubMed

    Kayo, Andrea Harumi; Peccin, Maria Stella; Sanches, Carla Munhoz; Trevisani, Virgínia Fernandes Moça

    2012-08-01

    The purpose of this study was to evaluate and compare the effectiveness of muscle-strengthening exercises (MS) and a walking program (WA) in reducing pain in patients with fibromyalgia. Ninety women, 30-55 years of age, diagnosed with fibromyalgia according to the American College of Rheumatology 1990 criteria, were randomized into 3 groups: WA Group, MS Group, and control group. Pain (visual analog scale) was evaluated as the primary outcome. Physical functioning (Fibromyalgia Impact Questionnaire, FIQ), health-related quality of life (Short-Form 36 Health Survey, SF-36), and use of medication were evaluated as secondary outcomes. Assessments were performed at baseline, 8, 16, and 28 weeks. Intention-to-treat and efficacy analyses were conducted. Sixty-eight patients completed the treatment protocol. All 3 groups showed improvement after the 16-week treatment compared to baseline. At the 28-week follow-up, pain reduction was similar for the WA and MS groups (P = 0.39), but different from the control group (P = 0.01). At the end of the treatment, 80% of subjects in the control group took pain medication, but only 46.7% in the WA and 41.4% in the MS groups. Mean FIQ total scores were lower for the WA and MS groups (P = 0.96) compared with the control group (P < 0.01). Patients in the WA and MS groups reported higher scores (better health status) than controls in almost all SF-36 subscales. MS was as effective as WA in reducing pain regarding all study variables; however, symptoms management during the follow-up period was more efficient in the WA group.

  19. Massage and Reiki used to reduce stress and anxiety: Randomized Clinical Trial

    PubMed Central

    Kurebayashi, Leonice Fumiko Sato; Turrini, Ruth Natalia Teresa; de Souza, Talita Pavarini Borges; Takiguchi, Raymond Sehiji; Kuba, Gisele; Nagumo, Marisa Toshi

    2016-01-01

    ABTRACT Objective: to evaluate the effectiveness of massage and reiki in the reduction of stress and anxiety in clients at the Institute for Integrated and Oriental Therapy in Sao Paulo (Brazil). Method: clinical tests randomly done in parallel with an initial sample of 122 people divided into three groups: Massage + Rest (G1), Massage + Reiki (G2) and a Control group without intervention (G3). The Stress Systems list and the Trace State Anxiety Inventory were used to evaluate the groups at the start and after 8 sessions (1 month), during 2015. Results: there were statistical differences (p = 0.000) according to the ANOVA (Analysis of Variance) for the stress amongst the groups 2 and 3 (p = 0.014) with a 33% reductions and a Cohen of 0.78. In relation to anxiety-state, there was a reduction in the intervention groups compared with the control group (p < 0.01) with a 21% reduction in group 2 (Cohen of 1.18) and a 16% reduction for group 1 (Cohen of 1.14). Conclusion: Massage + Reiki produced better results amongst the groups and the conclusion is for further studies to be done with the use of a placebo group to evaluate the impact of the technique separate from other techniques. RBR-42c8wp PMID:27901219

  20. Conservative methods for reducing lateral translation postures of the head: a nonrandomized clinical control trial.

    PubMed

    Harrison, Deed E; Cailliet, Rene; Betz, Joseph; Haas, Jason W; Harrison, Donald D; Janik, Tadeusz J; Holland, Burt

    2004-07-01

    Fifty-one retrospective, consecutive patients were compared to twenty-six prospective volunteer controls in a nonrandomized clinical control trial. Both groups had chronic neck pain and lateral head translation posture. For treatment subjects, beginning and follow-up pain scales and anteroposterior (AP) cervical radiographs were obtained after 12.8 weeks of care (average of 37 visits), while the duration was a mean of 12 months for control subjects. Digitized radiographs were analyzed for Risser-Ferguson angles and a horizontal translation distance of C2 from a vertical line through T3. For treatment, patients received the Harrison mirror-image postural methods, which include mechanically assisted manipulation, opposite head posture exercise, and opposite head translation posture traction. While no significant differences were found in the control group subjects' pain scores and AP radiographic measurements, statistically significant improvements were observed in the treatment group subjects' pain scores and lateral translation displacements of C2 compared to T3 (pretrial score: 13.7 mm, posttrial score: 6.8 mm) and in angle measurements.

  1. Potential clinical insights into microRNAs and their target genes in esophageal carcinoma.

    PubMed

    Li, Su Q; Wang, He M; Cao, Xiu F

    2011-12-01

    Esophageal carcinoma (EC) are characterized by dysregulation of microRNAs, which play an important roles as a posttranscriptional regulators in protein synthesis, and are involved in cellular processes, such as proliferation, apoptosis, and differentiation. Recently, altered miRNAs expression has been comprehensively studied in EC by high-throughput technology. Increased understanding of miRNAs target genes and their potential regulatory mechanisms have clarified the miRNAs activities and may provide exciting opportunities for cancer diagnosis and miRNA-based genetherapy. Here, we reviewed the most recently discovered miRNA target genes, with particular emphasis on the deciphering of their possible mechanisms and the potential roles in miRNAs-based tumour therapeutics.

  2. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies.

    PubMed

    Ulbrich, Karel; Holá, Kateřina; Šubr, Vladimir; Bakandritsos, Aristides; Tuček, Jiří; Zbořil, Radek

    2016-05-11

    Targeted delivery combined with controlled drug release has a pivotal role in the future of personalized medicine. This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways. Attention is devoted to the tailored conjugation of targeting ligands (e.g., enzymes, antibodies, peptides) to drug carrier systems. Similarly, the approaches toward controlled drug release are discussed. Various polymer-drug conjugates based, for example, on polyethylene glycol (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric micelles, and nanoparticle carriers are explored with respect to absorption, distribution, metabolism, and excretion (ADME scheme) of administrated drug. Design and structure of superparamagnetic iron oxide nanoparticles (SPION) and condensed magnetic clusters are classified according to the mechanism of noncovalent drug loading involving hydrophobic and electrostatic interactions, coordination chemistry, and encapsulation in porous materials. Principles of covalent conjugation of drugs with SPIONs including thermo- and pH-degradable bonds, amide linkage, redox-cleavable bonds, and enzymatically-cleavable bonds are also thoroughly described. Finally, results of clinical trials obtained with polymeric and magnetic carriers are analyzed highlighting the potential advantages and future directions in targeted anticancer therapy.

  3. Role of Clinical Pharmacology in the Development and Approval of Immunotherapies Targeting Immune Checkpoints.

    PubMed

    Rahman, A

    2016-12-01

    Immune surveillance plays a critical role in preventing the development and progression of cancer. Immune modulators, such as interferon-gamma or interleukin-2, have been a part of the cancer treatment armament over the past few decades. However, new understandings regarding the role of the costimulatory and coinhibitory molecules associated with T-cells and antigen-presenting cells as well as tumor necrosis factor receptors and ligands have ushered the new era of immunotherapy for cancer treatment. We now know that primary cancer cells evade screening by the innate immune system, proliferate, and form metastases by upregulating immune inhibitory pathways referred to as immune checkpoints. The recent development of therapies that target immune checkpoints, such as cytotoxic T lymphocyte antigen 4, programmed cell death 1, programmed cell death ligand 1, indoleamine 2,3-dioxygenase, T-cell immunoglobulin and mucin domain 3, and lymphocyte activation gene 3 precisely target the immune system and give new hope for treating various types of cancer. In select marker-enriched populations, immunotherapies provide high response rates as well as durable responses in terms of progression-free survival and overall survival. Numerous factors, such as patient's immune system, the expression of targets on both immune and cancer cells, maintenance of an effective drug exposure, and tolerability to these agents may play a role in this unique observation.

  4. Targeting and Structuring Information Resource Use: A Path toward Informed Clinical Decisions

    ERIC Educational Resources Information Center

    Mangrulkar, Rajesh S.

    2004-01-01

    A core skill for all physicians to master is that of information manager. Despite a rapidly expanding set of electronic and print-based information resources, clinicians continue to answer their clinical queries predominantly through informal or formal consultation. Even as new tools are brought to market, the majority of them present information…

  5. Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours

    PubMed Central

    Wong, Stephen Q.; Li, Jason; Salemi, Renato; Sheppard, Karen E.; Hongdo Do; Tothill, Richard W.; McArthur, Grant A.; Dobrovic, Alexander

    2013-01-01

    Massively parallel sequencing offers the ability to interrogate a tumour biopsy for multiple mutational changes. For clinical samples, methodologies must enable maximal extraction of available sequence information from formalin-fixed and paraffin-embedded (FFPE) material. We assessed the use of targeted capture for mutation detection in FFPE DNA. The capture probes targeted the coding region of all known kinase genes and selected oncogenes and tumour suppressor genes. Seven melanoma cell lines and matching FFPE xenograft DNAs were sequenced. An informatics pipeline was developed to identify variants and contaminating mouse reads. Concordance of 100% was observed between unfixed and formalin-fixed for reported COSMIC variants including BRAF V600E. mutations in genes not conventionally screened including ERBB4, ATM, STK11 and CDKN2A were readily detected. All regions were adequately covered with independent reads regardless of GC content. This study indicates that hybridisation capture is a robust approach for massively parallel sequencing of FFPE samples. PMID:24336498

  6. Reducing the overuse of βhCG measurements in the emergency gynaecology clinic.

    PubMed

    Frost, Lucy

    2016-01-01

    Serial βhCG testing can be a helpful tool in deciding how to manage pregnancy of unknown location. Its use in emergency gynaecology clinics can prevent unnecessary admission and intervention. However, despite NICE Guidelines on when it is safe to opt for conservative management, it was identified that there was a problem with over-testing of βhCG when patients could be discharged with instructions to repeat a urinary pregnancy test in two weeks. Two PDSA cycles were undertaken to improve the awareness of NICE guidelines: the first involved formal and informal educational sessions and the second involved the inclusion of a guideline summary on the front of patients' notes when they were having serial βhCG tests for doctors to refer to. Case notes were reviewed for 157 women who had βhCG tests at baseline and 48 hours. Of these, 139 were suitable for serial βhCG testing, and 83 of these were suitable for discharge after 48 hours. Of the 83 patients that were eligible for discharge, there were 31 unnecessary βhCG tests done, 23 of which were prior to intervention. A significant improvement was noted, with between 4-10 unnecessary βhCG tests per fortnight prior to intervention, 0-3 following the first intervention, and 0-2 following the second. Reduction in unnecessary βhCG testing has positive implications for patients, who do not have to take unnecessary time off work, prolong an already very distressing period, and have unnecessary blood tests. There are also cost and time saving implications for the hospital.

  7. A Randomized Clinical Trial of a Telephone Depression Intervention to Reduce Employee Presenteeism and Absenteeism

    PubMed Central

    Lerner, Debra; Adler, David A.; Rogers, William H.; Chang, Hong; Greenhill, Annabel; Cymerman, Elina; Azocar, Francisca

    2015-01-01

    Objectives The study tested an intervention aimed at improving work functioning among middle-aged and older adults with depression and work limitations. Methods A randomized clinical trial allocated an initial sample of 431 eligible employed adults (age ≥45) to a work-focused intervention (WFI) or usual care. Inclusion criteria were depression as measured by the Patient Health Questionnaire–9 (PHQ-9) and at-work limitations indicated by a productivity loss score ≥5% on the Work Limitations Questionnaire (WLQ). Study sites included 19 employers and five related organizations. Telephone-based counseling provided three integrated modalities: care coordination, cognitive-behavioral therapy strategy development, and work coaching and modification. Effectiveness (change in productivity loss scores from preintervention to four months postintervention) was tested with mixed models adjusted for confounders. Secondary outcomes included change in WLQ work performance scales, self-reported absences, and depression. Results Of 1,227 eligible employees (7% of screened), 431 (35%) enrolled and 380 completed the study (12% attrition). At-work productivity loss improved 44% in the WFI group versus 13% in usual care (difference in change, p<.001). WFI group scores on the four WLQ scales improved 44% to 47%, significantly better than in usual care (p<.001 for each scale). Absence days declined by 53% in the WFI group versus 13% in usual care (difference in change, p<.001). Mean PHQ-9 depression symptom severity scores declined 51% for WFI versus 26% for usual care (difference in change, p<.001). Conclusions The WFI was more effective than usual care at four-month follow-up. Given increasing efforts to provide more patient-centered, value-based care, the WFI could be an important resource. PMID:25726984

  8. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions

    PubMed Central

    Phillips, Evan; Montero, Pablo H.; Cheal, Sarah M.; Stambuk, Hilda; Durack, Jeremy C.; Sofocleous, Constantinos T.; Meester, Richard J. C.; Wiesner, Ulrich; Patel, Snehal

    2015-01-01

    Early diagnosis and treatment of melanoma are essential to minimizing morbidity and mortality. The presence of lymph node metastases is a vital prognostic predictor, and accurate identification by imaging has important implications for disease staging, prognosis, and clinical outcome. Sentinel lymph node (SLN) mapping procedures are limited by a lack of intraoperative visualization tools that can aid accurate determination of disease spread and delineate nodes from adjacent critical neural and vascular structures. Newer methods for circumventing these issues can exploit a variety of imaging tools, including biocompatible particle-based platforms coupled with portable device technologies for use with image-guided surgical and interventional procedures. We describe herein a clinically-translated, integrin-targeting platform for use with both PET and optical imaging that meets a number of key design criteria for improving SLN tissue localization and retention, target-to-background ratios, and clearance from the site of injection and the body. The use of such agents for selectively probing critical cancer targets may elucidate important insights into cellular and molecular processes that govern metastatic disease spread. Coupled with portable, real-time optical camera systems, we show that pre-operative PET imaging findings for mapping metastatic disease in clinically-relevant larger-animal models can be readily translated into the intraoperative setting for direct visualization of the draining tumor lymphatics and fluorescent SLN/s with histologic correlation. The specificity of this platform, relative to the standard-of-care radiotracer, 18F-FDG, for potentially discriminating metastatic disease from inflammatory processes is also discussed in the setting of surgically-based or interventionally-driven therapies. PMID:23138852

  9. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy

    PubMed Central

    Wang, Xiaoli; Luo, Yijun; Li, Minghuan; Yan, Hongjiang; Sun, Mingping; Fan, Tingyong

    2016-01-01

    Background Postoperative radiotherapy has shown positive efficacy in lowering the recurrence rate and improving the survival rate for patients with esophageal squamous cell carcinoma (ESCC). However, controversies still exist about the postoperative prophylactic radiation target volume. This study was designed to analyze the patterns of recurrence and to provide a reference for determination of the postoperative radiotherapy target volume for patients with midthoracic ESCC. Patients and methods A total of 338 patients with recurrent or metastatic midthoracic ESCC after radical surgery were retrospectively examined. The patterns of recurrence including locoregional and distant metastasis were analyzed for these patients. Results The rates of lymph node (LN) metastasis were 28.4% supraclavicular, 77.2% upper mediastinal, 32.0% middle mediastinal, 50.0% lower mediastinal, and 19.5% abdominal LNs. In subgroup analyses, the rate of abdominal LN metastasis was significantly higher in patients with histological node-positive than that in patients with histological node-negative (P=0.033). Further analysis in patients with histological node-positive demonstrated that patients with three or more positive nodes are more prone to abdominal LN metastasis, compared with patients with one or two positive nodes (χ2=4.367, P=0.037). The length of tumor and histological differentiation were also the high-risk factors for abdominal LN metastasis. Conclusion For midthoracic ESCC with histological node-negative, or one or two positive nodes, the supraclavicular and stations 2, 4, 5, and 7 LNs should be delineated as clinical target volume of postoperative prophylactic irradiation, and upper abdominal LNs should be excluded. While for midthoracic ESCC with three or more positive nodes, upper abdominal LNs should also be included. The length of tumor and histological differentiation should be considered comprehensively to design the clinical target volume for radiotherapy. PMID

  10. Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells.

    PubMed

    Wu, Yan; Hurren, Rose; MacLean, Neil; Gronda, Marcela; Jitkova, Yulia; Sukhai, Mahadeo A; Minden, Mark D; Schimmer, Aaron D

    2015-08-01

    AML (acute myeloid leukemia) cells have a unique reliance on mitochondrial metabolism and fatty acid oxidation (FAO). Thus, blocking FAO is a potential therapeutic strategy to target these malignant cells. In the current study, we assessed plasma membrane carnitine transporters as novel therapeutic targets for AML. We examined the expression of the known plasma membrane carnitine transporters, OCTN1, OCTN2, and CT2 in AML cell lines and primary AML samples and compared expression to normal hematopoietic cells. Of the three carnitine transporters, CT2 demonstrated the greatest differential expression between AML and normal cells. Using shRNA, we knocked down CT2 and demonstrated that target knockdown impaired the function of the transporter. In addition, knockdown of CT2 reduced the growth and viability of AML cells with high expression of CT2 (OCI-AML2 and HL60), but not low expression. CT2 knockdown reduced basal oxygen consumption without a concomitant increase in glycolysis. Thus, CT2 may be a novel target for a subset of AML.

  11. Does free pregnancy testing reduce service denial in family planning clinics? A cluster-randomized experiment in Zambia and Ghana

    PubMed Central

    Stanback, John; Vance, Gwyneth; Asare, Gloria; Kasonde, Prisca; Kafulubiti, Beatrice; Chen, Mario; Janowitz, Barbara

    2013-01-01

    ABSTRACT Background: In many countries, pregnancy tests are not freely available in family planning clinics. As a result, providers sometimes deny services to non-menstruating clients due to uncertainty about pregnancy. Few clients are actually pregnant, yet denied clients run the risk of becoming pregnant, and those sent to pharmacies pay inflated prices for inexpensive tests. To assess the programmatic effect of free pregnancy testing, we conducted cluster-randomized trials in Ghana and Zambia, assessing clients' uptake of contraception in family planning clinics. Methods: In each country, 5 clinics were randomized to intervention status and 5 to control. Service data from 2,028 new, non-menstruating clients in Zambia and 1,556 in Ghana were collected. Intervention clinics received supplies of pregnancy tests, and staff were instructed to use tests as needed to help exclude pregnancy. Control clinics received no intervention. The primary outcome was the proportion of non-menstruating clients denied an effective contraceptive method. Cost-effectiveness was also evaluated. Results: In Zambia, clients in intervention and control clinics faced a similar risk of service denial at baseline, 15% and 17%, respectively. At follow-up, denial remained unchanged at 17% in control clinics, but decreased significantly to 4% in intervention sites. Clients in Zambia were 4.4 (95% confidence interval [CI] = 1.3–14.4) times more likely to be denied a method in control sites versus intervention sites (P<.01). Results from Ghana were inconclusive. Cost of a “denial averted” in Zambia was estimated to be US$0.59. Interpretation: Zambia results suggest that availability of free pregnancy testing significantly reduced contraceptive service denial, although results from Ghana preclude an unqualified recommendation. Authors conclude that free pregnancy testing in family planning clinics may make strong public health sense in those developing countries where denial to non

  12. Clinical outcome following use of transconjunctival approach in reducing orbitozygomaticomaxillary complex fractures

    PubMed Central

    Kumar, Saurabh; Shubhalaksmi, S.

    2016-01-01

    Background: The increasing emphasis on the open reduction and internal fixation of orbito-zygomatico-maxillary complex fractures has led to a more critical appraisal of the various surgical approaches to the orbital and zygomatic skeleton. Transconjunctival approach popularized by Tessier although credited to Bourquet in 1924 offer excellent exposure of the orbito-zygomatico-maxillary complex fracture especially the infra-orbital rim, frontozygomatic suture and the orbital floor. The argument against a transconjunctival access focuses primarily on concern about limited exposure that apparently makes accurate reduction and osteosynthesis of displaced fracture fragments difficult or impossible. Also, due to close association with eye and various ocular complications reported in the literature, most of the surgeons feel skeptical about using this approach. Aim: The aim of this study is to analyze the efficacy of transconjunctival approach in the treatment of orbito-zygomatico-maxillary complex fractures by evaluating the functional and esthetic results and its associated complications. Material and Method: We report a series of eight patients who have undergone fracture repair of the orbito-zygomatico-maxillary complex via a transconjunctival approach. Postoperative patient evaluation was performed with specific attention paid towards wound healing, functional stability, esthetic appearance and postoperative ocular complications. Postoperatively clinical examination along with radiographic examination was done to evaluate the position of the zygoma and determine the adequacy of fracture reduction. Results: In all the patients excellent surgical exposure has been achieved for reduction and rigid fixation of the fracture fragments. None of the patients had any form of complication related to the approach. There were no postoperative ocular complications. Only one patient had postoperative chemosis which was transient and subsided subsequently. All the patients had

  13. Why oral calcium supplements may reduce renal stone disease: report of a clinical pilot study

    PubMed Central

    Williams, C; Child, D; Hudson, P; Davies, G; Davies, M; John, R; Anandaram, P; De Bolla, A R

    2001-01-01

    Aims—To investigate whether increasing the daily baseline of gut calcium can cause a gradual downregulation of the active intestinal transport of calcium via reduced parathyroid hormone (PTH) mediated activation of vitamin D, and to discuss why such a mechanism might prevent calcium oxalate rich stones. To demonstrate the importance of seasonal effects upon the evaluation of such data. Methods—Within an intensive 24 hour urine collection regimen, daily calcium supplementation (500 mg) was given to five stone formers for a 10 week period during a six month crossover study. In a further population of patients on follow up for previous renal stone disease, observations were made on 1066 24 hour urine samples collected over five years in respect of seasonal effects relevant to the interpretation of the study. Results—In the group of patients on calcium supplements the following results were found. During calcium supplementation, the proportion of urine calcium to oxalate was higher (increased calcium to oxalate molar ratio), the 24 hour urine product of calcium and oxalate did not rise, and urine oxalate was lower during the first six weeks of supplementation. Twenty four hour urine calcium was 10.2% higher than baseline in the final four weeks of the 10 weeks of supplementation. Twenty four hour urine phosphate was 11.4% lower during the first six weeks of supplementation, but then rose while the patients were still on supplementation; renal tubular reabsorption of phosphate (TmP/GFR) mirrored the urine phosphate changes inversely. PTH was higher after stopping supplementation, but 1,25-(OH)2-cholecalciferol changes were not detected. In the 1066 urine samples collected over five years the following results were found. Calcium and oxalate excretion correlated positively and not inversely. Urine calcium and phosphate excretion were 5.5% and 2.5% higher, respectively, in "light" months of the year compared with "dark" months. A post summer decline in both urine

  14. Developing clinical practice guidelines: target audiences, identifying topics for guidelines, guideline group composition and functioning and conflicts of interest

    PubMed Central

    2012-01-01

    Clinical practice guidelines are one of the foundations of efforts to improve health care. In 1999, we authored a paper about methods to develop guidelines. Since it was published, the methods of guideline development have progressed both in terms of methods and necessary procedures and the context for guideline development has changed with the emergence of guideline clearing houses and large scale guideline production organisations (such as the UK National Institute for Health and Clinical Excellence). It therefore seems timely to, in a series of three articles, update and extend our earlier paper. In this first paper we discuss: the target audience(s) for guidelines and their use of guidelines; identifying topics for guidelines; guideline group composition (including consumer involvement) and the processes by which guideline groups function and the important procedural issue of managing conflicts of interest in guideline development. PMID:22762776

  15. Vascular-targeted photodynamic of prostate cancer phase with Tookad for recurrent prostate cancer following radiation therapy: initial clinical studies

    NASA Astrophysics Data System (ADS)

    Weersink, Robert A.; Wilson, Brian C.; Bogaards, Arjen; Gertner, Mark R.; Davidson, Sean R. H.; Haider, Masoom A.; Elhilali, Mostafa; Trachtenberg, John

    2007-02-01

    We report on the first clinical application of vascular-targeted photodynamic therapy using a bacteriopheophorbide derivative, Tookad, in patients with localized prostate cancer following external beam radiation therapy. Patients received either escalating intravenous drug doses at a fixed light dose or escalated light doses at the highest photosensitizer dose. Two cylindrically diffusing fibers were placed transperineally in the prostate, along with light monitoring fibers in the prostate, urethra and rectum. Treatment response was assessed with 7-day gadolinium-enhanced T1-weighted MRI and 6-month biopsy. Lesion formation was strongly drug and light dose-dependent, with an apparent threshold response. Early biochemical and MRI responses support the clinical potential of TOOKAD-PDT to treat locally-recurrent prostate cancer.

  16. Comparative analysis of antisense oligonucleotide sequences targeting exon 53 of the human DMD gene: Implications for future clinical trials.

    PubMed

    Popplewell, Linda J; Adkin, Carl; Arechavala-Gomeza, Virginia; Aartsma-Rus, Annemieke; de Winter, Christa L; Wilton, Steve D; Morgan, Jennifer E; Muntoni, Francesco; Graham, Ian R; Dickson, George

    2010-02-01

    Duchenne muscular dystrophy (DMD) is caused by the lack of functional dystrophin protein, most commonly as a result of a range of out-of-frame mutations in the DMD gene. Modulation of pre-mRNA splicing with antisense oligonucleotides (AOs) to restore the reading frame has been demonstrated in vitro and in vivo, such that truncated but functional dystrophin is expressed. AO-induced skipping of exon 51 of the DMD gene, which could treat 13% of DMD patients, has now progressed to clinical trials. We describe here the methodical, cooperative comparison, in vitro (in DMD cells) and in vivo (in a transgenic mouse expressing human dystrophin), of 24 AOs of the phosphorodiamidate morpholino oligomer (PMO) chemistry designed to target exon 53 of the DMD gene, skipping of which could be potentially applicable to 8% of patients. A number of the PMOs tested should be considered worthy of development for clinical trial.

  17. Clinical Evaluation of Perspiration Reducing Effects of a Kampo Formula, Shigyaku-san, on Palmoplantar Hidrosis.

    PubMed

    Ninomiya, Fumino

    2008-06-01

    Palmoplantar hidrosis is common in patients who are susceptible to strains on the autonomic nervous system, and stress and mental strain have been proven to produce sweating in this population. Shigyaku-san (Sini san, TJ-35: Tsumura & Co.) is effective for relieving stagnation of 'liver Qi and vital energy' in traditional Chinese medicine theory; this brings about improvement of palmoplantar hidrosis. The effect of Shigyaku-san on 40 patients was evaluated based on changes in palmoplantar sweat volume and skin temperature before and after stress loading. We also measured changes in the palmoplantar sweat volume and skin temperature due to stress load in 35 healthy controls who did not receive Shigyaku-san. Before treatment, the pre-stress sweat volume in patients was larger than that in healthy controls, however, after Shigyaku-san treatment, their pre-stress sweat volume decreased. With stress, the sweat volume increased in both patients and controls, but the net increase in the patients was larger than that in healthy controls. After Shigyaku-san treatment, the net increase of sweat volume due to stress was smaller than that of pretreatment, however, it did not show a significant difference with that of healthy controls. The palmoplantar skin temperature of the patients before treatment was lower than that of healthy controls. Palmoplantar skin temperature rose with stress loading in healthy controls, but decreased in pretreatment patients. Shigyaku-san treatment reduced the palmoplantar perspiration in palmoplantar hidrosis patients at rest and under stress. Furthermore, it also improved other serious complications, especially coldness of the extremities.

  18. Clinical Evaluation of Perspiration Reducing Effects of a Kampo Formula, Shigyaku-san, on Palmoplantar Hidrosis

    PubMed Central

    2008-01-01

    Palmoplantar hidrosis is common in patients who are susceptible to strains on the autonomic nervous system, and stress and mental strain have been proven to produce sweating in this population. Shigyaku-san (Sini san, TJ-35: Tsumura & Co.) is effective for relieving stagnation of ‘liver Qi and vital energy’ in traditional Chinese medicine theory; this brings about improvement of palmoplantar hidrosis. The effect of Shigyaku-san on 40 patients was evaluated based on changes in palmoplantar sweat volume and skin temperature before and after stress loading. We also measured changes in the palmoplantar sweat volume and skin temperature due to stress load in 35 healthy controls who did not receive Shigyaku-san. Before treatment, the pre-stress sweat volume in patients was larger than that in healthy controls, however, after Shigyaku-san treatment, their pre-stress sweat volume decreased. With stress, the sweat volume increased in both patients and controls, but the net increase in the patients was larger than that in healthy controls. After Shigyaku-san treatment, the net increase of sweat volume due to stress was smaller than that of pretreatment, however, it did not show a significant difference with that of healthy controls. The palmoplantar skin temperature of the patients before treatment was lower than that of healthy controls. Palmoplantar skin temperature rose with stress loading in healthy controls, but decreased in pretreatment patients. Shigyaku-san treatment reduced the palmoplantar perspiration in palmoplantar hidrosis patients at rest and under stress. Furthermore, it also improved other serious complications, especially coldness of the extremities. PMID:18604249

  19. Research on reducing radiation exposure for clinical applications of X-ray attenuation

    NASA Astrophysics Data System (ADS)

    Jeon, Min-Cheol; Han, Man-Seok; So, Woon-Young; Lee, Hyeon-Guck; Kim, Yong-Kyun; Lee, Seung-Yeol

    2014-02-01

    This study was aimed at identifing areas with low radiation exposure where workers could be taken in the examination room in case that they had to hold the patients by estimating the attenuation of primary radiation and measuring the spatial distribution of scattered radiation. The laboratory equipment included on the X-ray generator, a phantom (human phantom), and a dosimeter. The experiment measured the performance of the examination system (dose reproducibility), the dose of primary radiation (X-rays), and the dose of scattered radiation (secondary radiation). Both the primary and the scattered radiation were attenuated by a factor of tube in vacuum experimental tests of the inverse square law. In this study, the attenuation was 2 ˜ 2.246 for primary radiation and 2 ˜ 2.105 for secondary radiation. Natural attenuation occurred as the X-rays passed through air, and an attenuation equation was established in this study. The equation for primary radiation (1st dose) was y = A1* exp(- x/t1)+ y0. The high-intensity contour of the direction for the cathode was wider than that of the direction for the anode, showing a wide range on the rear side of the cathode and on the rear side of the anode. We tried to find the positions where the workers' radiation exposure could be reduced. When the medical radiation workers have to hold the patient for an abdominal examination, they should be placed towards the tube anode and on the left side of the patient. For a lumbar-spine lateral examination, they should be placed towards the tube anode and behind the patient, and for a femur AP (anterior-posterior) examination, they should be placed towards the tube anode and on the right side of the patient.

  20. Small Interfering RNA Targeting Mitochondrial Calcium Uniporter Improves Cardiomyocyte Cell Viability in Hypoxia/Reoxygenation Injury by Reducing Calcium Overload

    PubMed Central

    Oropeza-Almazán, Yuriana; Vázquez-Garza, Eduardo; Chapoy-Villanueva, Héctor; Torre-Amione, Guillermo

    2017-01-01

    Intracellular Ca2+ mishandling is an underlying mechanism in hypoxia/reoxygenation (H/R) injury that results in mitochondrial dysfunction and cardiomyocytes death. These events are mediated by mitochondrial Ca2+ (mCa2+) overload that is facilitated by the mitochondrial calcium uniporter (MCU) channel. Along this line, we evaluated the effect of siRNA-targeting MCU in cardiomyocytes subjected to H/R injury. First, cardiomyocytes treated with siRNA demonstrated a reduction of MCU expression by 67%, which resulted in significant decrease in mitochondrial Ca2+ transport. siRNA treated cardiomyocytes showed decreased mitochondrial permeability pore opening and oxidative stress trigger by Ca2+ overload. Furthermore, after H/R injury MCU silencing decreased necrosis and apoptosis levels by 30% and 50%, respectively, and resulted in reduction in caspases 3/7, 9, and 8 activity. Our findings are consistent with previous conclusions that demonstrate that MCU activity is partly responsible for cellular injury induced by H/R and support the concept of utilizing siRNA-targeting MCU as a potential therapeutic strategy. PMID:28337252

  1. Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] α-synuclein mice.

    PubMed

    Lindström, Veronica; Fagerqvist, Therese; Nordström, Eva; Eriksson, Fredrik; Lord, Anna; Tucker, Stina; Andersson, Jessica; Johannesson, Malin; Schell, Heinrich; Kahle, Philipp J; Möller, Christer; Gellerfors, Pär; Bergström, Joakim; Lannfelt, Lars; Ingelsson, Martin

    2014-09-01

    Several lines of evidence suggest that accumulation of aggregated alpha-synuclein (α-synuclein) in the central nervous system (CNS) is an early pathogenic event in Parkinson's disease and other Lewy body disorders. In recent years, animal studies have indicated immunotherapy with antibodies directed against α-synuclein as a promising novel treatment strategy. Since large α-synuclein oligomers, or protofibrils, have been demonstrated to possess pronounced cytotoxic properties, such species should be particularly attractive as therapeutic targets. In support of this, (Thy-1)-h[A30P] α-synuclein transgenic mice with motor dysfunction symptoms were found to display increased levels of α-synuclein protofibrils in the CNS. An α-synuclein protofibril-selective monoclonal antibody (mAb47) was evaluated in this α-synuclein transgenic mouse model. As measured by ELISA, 14month old mice treated for 14weeks with weekly intraperitoneal injections of mAb47 displayed significantly lower levels of both soluble and membrane-associated protofibrils in the spinal cord. Besides the lower levels of pathogenic α-synuclein demonstrated, a reduction of motor dysfunction in transgenic mice upon peripheral administration of mAb47 was indicated. Thus, immunotherapy with antibodies targeting toxic α-synuclein species holds promise as a future disease-modifying treatment in Parkinson's disease and related disorders.

  2. Toward intracellular targeted delivery of cancer therapeutics: progress and clinical outlook for brain tumor therapy.

    PubMed

    Pandya, Hetal; Debinski, Waldemar

    2012-08-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.

  3. Clinical associations and potential novel antigenic targets of autoantibodies directed against rods and rings in chronic hepatitis C infection

    PubMed Central

    2013-01-01

    Background Chronic hepatitis C virus (HCV) infection is frequently associated with extrahepatic autoimmune disorders while interferon (IFN) and ribavirin treatment may exacerbate these conditions. Autoantibodies from HCV patients identify a novel indirect immunofluorescence (IIF) pattern on HEp-2 cells characterized by cytoplasmic rods and rings (RR). Our objectives were to determine the prevalence and clinical associations of RR autoantibodies in HCV patients, and identify related novel autoantibody targets. Methods Sera from 315 patients with HCV (301 treatment naive, 14 treated with interferon and/or ribavirin) were analyzed for the presence of RR antibodies by IIF on commercially available HEp-2 cell substrates. Antibodies to inosine monophosphate dehydrogenase 2 (IMPDH2) and cytidine triphosphate synthase 1 (CTPS1) were detected by addressable laser bead assay and other potential targets were identified by immunoscreening a protein microarray. Clinical and demographic data including HCV genotype, mode of infection, prior antiviral therapy, and histological findings were compared between RR antibody positive (RR+) and negative (RR-) patients. Results The median age of the HCV cohort was 51 years, 61% were male, and 76% were infected with HCV genotype 1 (G1). Four percent (n=14) had been treated with IFN-based therapy (IFN monotherapy, n=3; IFN/ribavirin, n=11); all had a sustained virologic response. In total, 15 patients (5% of the cohort) were RR+. RR+ and RR- patients had similar demographic and clinical characteristics including age, sex, mode of HCV infection, prevalence of the G1 HCV genotype, and moderate to severe fibrosis. Nevertheless, RR+ patients were significantly more likely than RR- cases to have been treated with IFN-based therapy (33% vs. 3%; adjusted odds ratio 20.5 [95% confidence interval 5.1-83.2]; P<0.0005). Only 1/10 RR positive sera had detectable antibodies to IMPHD2 and none had antibodies to CTPS1. Potentially important autoantibody

  4. Targeting Cognitive Frailty: Clinical and Neurobiological Roadmap for a Single Complex Phenotype.

    PubMed

    Panza, Francesco; Seripa, Davide; Solfrizzi, Vincenzo; Tortelli, Rosanna; Greco, Antonio; Pilotto, Alberto; Logroscino, Giancarlo

    2015-01-01

    Late-life cognitive disorders may be prevented by influencing age-related conditions such as frailty, characterized by decreased resistance to stressors and increased risk for adverse health outcomes. In the present review article, we examined clinical and epidemiological studies investigating the possible role of different frailty models in modulating the risk of Alzheimer's disease (AD), dementia, vascular dementia (VaD), mild cognitive impairment (MCI), and late-life cognitive impairment/decline that have been published over the past 3 years. Both deficit accumulation and physical frailty models were associated with late-life cognitive impairment/decline, incident dementia, AD, MCI, VaD, non-AD dementias, and AD pathology, proposing cognitive frailty as a new clinical construct with coexisting physical frailty and cognitive impairment in nondemented older subjects. Two subtypes of this new clinical condition have been recently proposed: "potentially reversible" cognitive frailty and "reversible" cognitive frailty. The physical factors should be physical prefrailty and frailty, while the cognitive impairment of potentially reversible cognitive frailty should be MCI (Clinical Dementia rating Scale = 0.5), while the cognitive impairment of reversible cognitive frailty should be pre-MCI Subjective Cognitive Decline (SCD), as recently proposed by the SCD Initiative Working Group. The mechanisms underlying the cognitive-frailty link are multifactorial and vascular, inflammatory, nutritional, and metabolic influences may be of major relevance. Considering both physical frailty and cognition as a single complex phenotype may be crucial in the prevention of dementia and its subtypes with secondary preventive trials on cognitive frail older subjects.

  5. Targeting heterogeneity of adrenocortical carcinoma: Evaluation and extension of preclinical tumor models to improve clinical translation

    PubMed Central

    Hantel, Constanze; Shapiro, Igor; Poli, Giada; Chiapponi, Costanza; Bidlingmaier, Martin; Reincke, Martin; Luconi, Michaela; Jung, Sara; Beuschlein, Felix

    2016-01-01

    In recent years it has been recognized that clinical translation of novel therapeutic strategies for patients with adrenocortical carcinoma (ACC) often fails. These disappointing results indicate that the currently utilized tumor models only poorly reflect relevant pathophysiology and, thereby, do not predict clinical applicability of novel pharmacological approaches. However, also the development of new preclinical ACC models has remained a challenge with only one human cell line (NCI-H295R) and one recently established human pediatric xenograft model (SJ-ACC3) being available for this highly heterogeneous malignancy. Our current study furthermore reveals a poor reproducibility of therapeutic action between different clones of the most commonly used tumor model NCI-H295R. In an attempt to broaden the current preclinical armamentarium, we aimed at the development of patient-individual tumor models. During these studies, one xenograft (MUC-1) displayed marked engraftment and sustained tumor growth. MUC-1 tumor analysis revealed highly vascularized, proliferating and SF-1 positive xenografts. In a next step, we characterized all currently available human tumor models for ACC for Ki67, SF-1 and EGF-receptor status in comparison with MUC-1-xenografts. In addition, we established a primary culture, which is now viable over 31 passages with sustained nuclear SF-1 and cytoplasmic 3βHSD immuno-positivity. Subsequent investigation of therapeutic responsiveness upon treatment with the current systemic gold standard EDP-M (etoposide, doxorubicin, cisplatin and mitotane) demonstrated maintenance of the clinically observed drug resistance for MUC-1 exclusively. In summary, we provide evidence for a novel patient-derived tumor model with the potential to improve clinical prediction of novel therapeutic strategies for patients with ACC. PMID:27764813

  6. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance

    PubMed Central

    Bencherif, Merouane

    2009-01-01

    A number of studies have confirmed the potential for neuronal nicotinic acetylcholine receptor (NNR)-mediated neuroprotection and, more recently, its anti-inflammatory effects. The mechanistic overlap between these pathways and the ubiquitous effects observed following diverse insults suggest that NNRs modulate fundamental pathways involved in cell survival. These results have wide-reaching implications for the design of experimental therapeutics that regulate inflammatory and anti-apoptotic responses through NNRs and represent an initial step toward understanding the benefits of novel therapeutic strategies for the management of central nervous system disorders that target neuronal survival and associated inflammatory processes. PMID:19498416

  7. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies

    PubMed Central

    Vici, P; Pizzuti, L; Mariani, L; Zampa, G; Santini, D; Di Lauro, L; Gamucci, T; Natoli, C; Marchetti, P; Barba, M; Maugeri-Saccà, M; Sergi, D; Tomao, F; Vizza, E; Di Filippo, S; Paolini, F; Curzio, G; Corrado, G; Michelotti, A; Sanguineti, G; Giordano, A; De Maria, R; Venuti, A

    2016-01-01

    ABSTRACT Human papillomavirus (HPV) is widely known as a cause of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e. E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their peculiarities, these oncogenes represent an excellent target for cancer immunotherapy. In this work the authors highlight the potential use of therapeutic vaccines as safe and effective pharmacological tools in cervical disease, focusing on vaccines that have reached the clinical trial phase. Many therapeutic HPV vaccines have been tested in clinical trials with promising results. Adoptive T-cell therapy showed clinical activity in a phase II trial involving advanced CC patients. A phase II randomized trial showed clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN. Several trials involving peptide-protein-based vaccines and live-vector based vaccines demonstrated that these approaches are effective in CIN as well as in advanced CC patients. HPV therapeutic vaccines must be regarded as a therapeutic option in cervical disease. The synergic combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, immunomodulators or immune checkpoint inhibitors opens a new and interesting scenario in this disease. PMID:27063030

  8. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology

    PubMed Central

    Gao, Li; Wang, Xiao-dong; Niu, Yang-yang; Duan, Dan-dan; Yang, Xue; Hao, Jian; Zhu, Cui-hong; Chen, Dan; Wang, Ke-xin; Qin, Xue-mei; Wu, Xiong-zhi

    2016-01-01

    Traditional Chinese medicine (TCM) has been used to treat tumors for years and has been demonstrated to be effective. However, the underlying molecular mechanisms of herbs remain unclear. This study aims to ascertain molecular targets of herbs prolonging survival time of patients with advanced hepatocellular carcinoma (HCC) based on network pharmacology, and to establish a research method for accurate treatment of TCM. The survival benefit of TCM treatment with Chinese herbal medicine (CHM) was proved by Kaplan–Meier method and Cox regression analysis among 288 patients. The correlation between herbs and survival time was performed by bivariate correlation analysis. Network pharmacology method was utilized to construct the active ingredient-target networks of herbs that were responsible for the beneficial effects against HCC. Cox regression analysis showed CHM was an independent favorable prognostic factor. The median survival time was 13 months and the 5-year overall survival rates were 2.61% in the TCM group, while there were 6 months, 0 in the non-TCM group. Correlation analysis demonstrated that 8 herbs closely associated with prognosis. Network pharmacology analysis revealed that the 8 herbs regulated multiple HCC relative genes, among which the genes affected proliferation (KRAS, AKT2, MAPK), metastasis (SRC, MMP), angiogenesis (PTGS2) and apoptosis (CASP3) etc. PMID:27143508

  9. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology.

    PubMed

    Gao, Li; Wang, Xiao-Dong; Niu, Yang-Yang; Duan, Dan-Dan; Yang, Xue; Hao, Jian; Zhu, Cui-Hong; Chen, Dan; Wang, Ke-Xin; Qin, Xue-Mei; Wu, Xiong-Zhi

    2016-05-04

    Traditional Chinese medicine (TCM) has been used to treat tumors for years and has been demonstrated to be effective. However, the underlying molecular mechanisms of herbs remain unclear. This study aims to ascertain molecular targets of herbs prolonging survival time of patients with advanced hepatocellular carcinoma (HCC) based on network pharmacology, and to establish a research method for accurate treatment of TCM. The survival benefit of TCM treatment with Chinese herbal medicine (CHM) was proved by Kaplan-Meier method and Cox regression analysis among 288 patients. The correlation between herbs and survival time was performed by bivariate correlation analysis. Network pharmacology method was utilized to construct the active ingredient-target networks of herbs that were responsible for the beneficial effects against HCC. Cox regression analysis showed CHM was an independent favorable prognostic factor. The median survival time was 13 months and the 5-year overall survival rates were 2.61% in the TCM group, while there were 6 months, 0 in the non-TCM group. Correlation analysis demonstrated that 8 herbs closely associated with prognosis. Network pharmacology analysis revealed that the 8 herbs regulated multiple HCC relative genes, among which the genes affected proliferation (KRAS, AKT2, MAPK), metastasis (SRC, MMP), angiogenesis (PTGS2) and apoptosis (CASP3) etc.

  10. Targeting AMCase reduces esophageal eosinophilic inflammation and remodeling in a mouse model of egg induced eosinophilic esophagitis.

    PubMed

    Cho, Jae Youn; Rosenthal, Peter; Miller, Marina; Pham, Alexa; Aceves, Seema; Sakuda, Shohei; Broide, David H

    2014-01-01

    Studies of AMCase inhibition in mouse models of lung eosinophilic inflammation have produced conflicting results with some studies demonstrating inhibition of eosinophilic inflammation and others not. No studies have investigated the role of AMCase inhibition in eosinophilic esophagitis (EoE). We have used a mouse model of egg (OVA) induced EoE to determine whether pharmacologic inhibition of AMCase with allosamidin reduced eosinophilic inflammation and remodeling in the esophagus in EoE. Administration of intra-esophageal OVA for 6weeks to BALB/c mice induced increased levels of esophageal eosinophils, mast cells, and features of esophageal remodeling (fibrosis, basal zone hyperplasia, deposition of the extracellular matrix protein fibronectin). Administration of intraperitoneal (ip) allosamidin to BALB/c mice significantly inhibited AMCase enzymatic activity in the esophagus. Pharmacologic inhibition of AMCase with ip allosamidin inhibited both OVA induced increases in esophageal eosinophilic inflammation and OVA induced esophageal remodeling (fibrosis, epithelial basal zone hyperplasia, extracellular matrix deposition of fibronectin). This inhibition of eosinophilic inflammation in the esophagus by ip allosamidin was associated with reduced eotaxin-1 expression in the esophagus. Oral allosamidin inhibited eosinophilic inflammation in the epithelium but did not inhibit esophageal remodeling. These studies suggest that pharmacologic inhibition of AMCase results in inhibition of eosinophilic inflammation and remodeling in the esophagus in a mouse model of egg induced EoE partially through effects in the esophagus on reducing chemokines (i.e. eotaxin-1) implicated in the pathogenesis of EoE.

  11. Protocol for a randomised controlled trial for Reducing Arthritis Fatigue by clinical Teams (RAFT) using cognitive–behavioural approaches

    PubMed Central

    Hewlett, S; Ambler, N; Almeida, C; Blair, P S; Choy, E; Dures, E; Hammond, A; Hollingworth, W; Kirwan, J; Plummer, Z; Rooke, C; Thorn, J; Tomkinson, K; Pollock, J

    2015-01-01

    Introduction Rheumatoid arthritis (RA) fatigue is distressing, leading to unmanageable physical and cognitive exhaustion impacting on health, leisure and work. Group cognitive–behavioural (CB) therapy delivered by a clinical psychologist demonstrated large improvements in fatigue impact. However, few rheumatology teams include a clinical psychologist, therefore, this study aims to examine whether conventional rheumatology teams can reproduce similar results, potentially widening intervention availability. Methods and analysis This is a multicentre, randomised, controlled trial of a group CB intervention for RA fatigue self-management, delivered by local rheumatology clinical teams. 7 centres will each recruit 4 consecutive cohorts of 10–16 patients with RA (fatigue severity ≥6/10). After consenting, patients will have baseline assessments, then usual care (fatigue self-management booklet, discussed for 5–6 min), then be randomised into control (no action) or intervention arms. The intervention, Reducing Arthritis Fatigue by clinical Teams (RAFT) will be cofacilitated by two local rheumatology clinicians (eg, nurse/occupational therapist), who will have had brief training in CB approaches, a RAFT manual and materials, and delivered an observed practice course. Groups of 5–8 patients will attend 6×2 h sessions (weeks 1–6) and a 1 hr consolidation session (week 14) addressing different self-management topics and behaviours. The primary outcome is fatigue impact (26 weeks); secondary outcomes are fatigue severity, coping and multidimensional impact, quality of life, clinical and mood status (to week 104). Statistical and health economic analyses will follow a predetermined plan to establish whether the intervention is clinically and cost-effective. Effects of teaching CB skills to clinicians will be evaluated qualitatively. Ethics and dissemination Approval was given by an NHS Research Ethics Committee, and participants will provide written

  12. A clinic-based youth development program to reduce sexual risk behaviors among adolescent girls: prime time pilot study.

    PubMed

    Sieving, Renee E; Bernat, Debra H; Resnick, Michael D; Oliphant, Jennifer; Pettingell, Sandra; Plowman, Shari; Skay, Carol

    2012-07-01

    Multifaceted, sustained efforts are needed to reduce early pregnancy and sexually transmitted diseases among high-risk adolescents. An important area for research is testing youth development interventions offered through clinic settings, where access to high-risk adolescents is plentiful and few efforts have rigorously evaluated a dual approach of building protective factors while addressing risk. This article presents findings from a pilot study of Prime Time, a clinic-based youth development intervention to reduce sexual risk behaviors among girls at risk for early pregnancy. Girls aged 13 to 17 years meeting specified risk criteria were assigned to Prime Time treatment groups. The Prime Time intervention included a combination of case management services and peer leadership groups. Participants completed self-report surveys at baseline, 12 and 18 months following enrollment. At 12 months, the intervention group reported significantly fewer sexual partners than the control group. At 18 months, the intervention group reported significantly more consistent condom use with trends toward more consistent hormonal and dual method use. Dose-response analyses suggested that relatively high levels of exposure to a youth development intervention were needed to change contraceptive use behaviors among adolescents at risk for early pregnancy. Given promising findings, further testing of the Prime Time intervention is warranted.

  13. Targeted Proteomics of Human Metapneumovirus in Clinical Samples and Viral Cultures.

    PubMed

    Foster, Matthew W; Gerhardt, Geoff; Robitaille, Lynda; Plante, Pier-Luc; Boivin, Guy; Corbeil, Jacques; Moseley, M Arthur

    2015-10-20

    The rapid, sensitive, and specific identification of infectious pathogens from clinical isolates is a critical need in the hospital setting. Mass spectrometry (MS) has been widely adopted for identification of bacterial pathogens, although polymerase chain reaction remains the mainstay for the identification of viral pathogens. Here, we explored the capability of MS for the detection of human metapneumovirus (HMPV), a common cause of respiratory tract infections in children. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) sequencing of a single HMPV reference strain (CAN97-83) was used to develop a multiple reaction monitoring (MRM) assay that employed stable isotope-labeled peptide internal standards for quantitation of HMPV. Using this assay, we confirmed the presence of HMPV in viral cultures from 10 infected patients and further assigned genetic lineage based on the presence/absence of variant peptides belonging to the viral matrix and nucleoproteins. Similar results were achieved for primary clinical samples (nasopharyngeal aspirates) from the same individuals. As validation, virus lineages, and variant coding sequences, were confirmed by next-generation sequencing of viral RNA obtained from the culture samples. Finally, separate dilution series of HMPV A and B lineages were used to further refine and assess the robustness of the assay and to determine limits of detection in nasopharyngeal aspirates. Our results demonstrate the applicability of MRM for identification of HMPV, and assignment of genetic lineage, from both viral cultures and clinical samples. More generally, this approach should prove tractable as an alternative to nucleic-acid based sequencing for the multiplexed identification of respiratory virus infections.

  14. Targeted molecular investigation in patients within the clinical spectrum of Auriculocondylar syndrome.

    PubMed

    Romanelli Tavares, Vanessa L; Zechi-Ceide, Roseli M; Bertola, Debora R; Gordon, Christopher T; Ferreira, Simone G; Hsia, Gabriella S P; Yamamoto, Guilherme L; Ezquina, Suzana A M; Kokitsu-Nakata, Nancy M; Vendramini-Pittoli, Siulan; Freitas, Renato S; Souza, Josiane; Raposo-Amaral, Cesar A; Zatz, Mayana; Amiel, Jeanne; Guion-Almeida, Maria L; Passos-Bueno, Maria Rita

    2017-04-01

    Auriculocondylar syndrome, mainly characterized by micrognathia, small mandibular condyle, and question mark ears, is a rare disease segregating in an autosomal dominant pattern in the majority of the families reported in the literature. So far, pathogenic variants in PLCB4, GNAI3, and EDN1 have been associated with this syndrome. It is caused by a developmental abnormality of the first and second pharyngeal arches and it is associated with great inter- and intra-familial clinical variability, with some patients not presenting the typical phenotype of the syndrome. Moreover, only a few patients of each molecular subtype of Auriculocondylar syndrome have been reported and sequenced. Therefore, the spectrum of clinical and genetic variability is still not defined. In order to address these questions, we searched for alterations in PLCB4, GNAI3, and EDN1 in patients with typical Auriculocondylar syndrome (n = 3), Pierre Robin sequence-plus (n = 3), micrognathia with additional craniofacial malformations (n = 4), or non-specific auricular dysplasia (n = 1), which could represent subtypes of Auriculocondylar syndrome. We found novel pathogenic variants in PLCB4 only in two of three index patients with typical Auriculocondylar syndrome. We also performed a detailed comparative analysis of the patients presented in this study with those previously published, which showed that the pattern of auricular abnormality and full cheeks were associated with molecularly characterized individuals with Auriculocondylar syndrome. Finally, our data contribute to a better definition of a set of parameters for clinical classification that may be used as a guidance for geneticists ordering molecular testing for Auriculocondylar syndrome. © 2017 Wiley Periodicals, Inc.

  15. Targeting chronic lymphocytic leukemia cells in the tumor microenviroment: A review of the in vitro and clinical trials to date

    PubMed Central

    Crassini, Kyle; Mulligan, Stephen P; Best, O Giles

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world. Despite significant advances in therapy over the last decade CLL remains incurable. Current front-line therapy often consists of chemoimmunotherapy-based regimens, most commonly the fludarabine, cyclophosphamide plus rituximab combination, but rates of relapse and refractory disease are high among these patients. Several key signaling pathways are now known to mediate the survival and proliferation of CLL cells in vivo, the most notable of which are the pathways mediated by the B-cell receptor (BCR) and cytokine receptors. A better understanding of the pathogenesis of the disease, the underlying biology of the CLL-cell and the roles of the tumour microenvironment has provided the rationale for trials of a range of novel, more targeted therapeutic agents. In particular, clinical trials of ibrutinib and idelalisib, which target the Brutons tyrosine kinase and the delta isoform of phosphoinositol-3 kinase components of the BCR signaling pathway respectively, have shown extremely promising results. Here we review the current literature on the key signaling pathways and interactions of CLL cells that mediate the survival and proliferation of the leukemic cells. For each we describe the results of the recent clinical trials and in vitro studies of novel therapeutic agents. PMID:26301230

  16. Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications.

    PubMed

    Tortora, Giampaolo; Ciardiello, Fortunato; Gasparini, Giampietro

    2008-09-01

    Cellular heterogeneity, redundancy of molecular pathways and effects of the microenvironment contribute to the survival, motility and metastasis of cells in solid tumors. It is unlikely that tumors are entirely dependent on only one abnormally activated signaling pathway; consequently, treatment with an agent that interferes with a single target may be insufficient. Combined blockade of functionally linked and relevant multiple targets has become an attractive therapeutic strategy. The EGFR and ERBB2 (HER2) pathways and VEGF-dependent angiogenesis have a pivotal role in cancer pathogenesis and progression. Robust experimental evidence has shown that these pathways are functionally linked and has demonstrated a suggested role for VEGF in the acquired resistance to anti-ERBB drugs when these receptors are pharmacologically blocked. Combined inhibition of ERBB and VEGF signaling interferes with a molecular feedback loop responsible for acquired resistance to anti-ERBB agents and promotes apoptosis while ablating tumor-induced angiogenesis. To this aim, either two agents highly selective against VEGF and ERBB respectively, or, alternatively, a single multitargeted agent, can be used. Preclinical studies have proven the efficacy of both these approaches and early clinical studies have provided encouraging results. This Review discusses the experimental rationale for, preclinical studies of and clinical trials on combined blockade of ERBB and VEGF signaling.

  17. Urokinase-type plasminogen activator receptor (uPAR) as a promising new imaging target: potential clinical applications

    PubMed Central

    Persson, Morten; Kjaer, Andreas

    2013-01-01

    Urokinase-type plasminogen activator receptor (uPAR) has been shown to be of special importance during cancer invasion and metastasis. However, currently, tissue samples are needed for measurement of uPAR expression limiting the potential as a clinical routine. Therefore, non-invasive methods are needed. In line with this, uPAR has recently been identified as a very promising imaging target candidate. uPAR consists of three domains attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor and binds it natural ligand uPA with high affinity to localize plasminogen activation at the cell surface. Due to the importance of uPAR in cancer invasion and metastasis, a number of high-affinity ligands have been identified during the last decades. These ligands have recently been used as starting point for the development of a number of ligands for imaging of uPAR using various imaging modalities such as optical imaging, magnetic resonance imaging, single photon emission computer tomography (SPECT) and positron emission topography (PET). In this review, we will discuss recent advances in the development of uPAR-targeted imaging ligands according to imaging modality. In addition, we will discuss the potential future clinical application for uPAR imaging as a new imaging biomarker. PMID:23701192

  18. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials

    PubMed Central

    Lin, Ann; Giuliano, Christopher J; Sayles, Nicole M; Sheltzer, Jason M

    2017-01-01

    The Maternal Embryonic Leucine Zipper Kinase (MELK) has been reported to be a genetic dependency in several cancer types. MELK RNAi and small-molecule inhibitors of MELK block the proliferation of various cancer cell lines, and MELK knockdown has been described as particularly effective against the highly-aggressive basal/triple-negative subtype of breast cancer. Based on these preclinical results, the MELK inhibitor OTS167 is currently being tested as a novel chemotherapy agent in several clinical trials. Here, we report that mutagenizing MELK with CRISPR/Cas9 has no effect on the fitness of basal breast cancer cell lines or cell lines from six other cancer types. Cells that harbor null mutations in MELK exhibit wild-type doubling times, cytokinesis, and anchorage-independent growth. Furthermore, MELK-knockout lines remain sensitive to OTS167, suggesting that this drug blocks cell division through an off-target mechanism. In total, our results undermine the rationale for a series of current clinical trials and provide an experimental approach for the use of CRISPR/Cas9 in preclinical target validation that can be broadly applied. DOI: http://dx.doi.org/10.7554/eLife.24179.001 PMID:28337968

  19. Reduced white matter integrity and its correlation with clinical symptom in first-episode, treatment-naive generalized anxiety disorder.

    PubMed

    Wang, Wei; Qian, Shaowen; Liu, Kai; Li, Bo; Li, Min; Xin, Kuolin; Sun, Gang

    2016-11-01

    The purpose of this study was to explore white matter microstructural alterations in the patients with generalized anxiety disorder (GAD) using diffusion tensor imaging (DTI) technique, and to assess neural associations with the symptom severity. Twenty-eight first-episode, treatment-naive GAD patients without co-morbidities and 28 matched healthy controls underwent DTI acquisition and clinical symptom assessments. Tract-based spatial statistics (TBSS) was used to analyze white matter microstructural abnormalities in patients with GAD, as well as their associations with clinical symptom scores in a voxel-wise manner. Compared to controls, patients showed decreased fractional anisotropy (FA) values in 7 clusters of white matter in bilateral uncinate fasciculus, body of corpus callosum, left middle cingulum (cingulate gyrus), bilateral anterior thalamic radiation and corona radiate, right anterior limb of internal capsule, bilateral inferior frontal-occipital fasciculus, bilateral superior and inferior longitudinal fasciculus, and increased mean diffusivity and radial diffusivity in widespread white matter regions. Reduced FA values in right uncinate fasciculus, left cingulum bundle showed significantly negative correlations with clinical symptom severity for Hamilton anxiety Rating Scale scores. Our findings suggest microstructural abnormalities in uncinate fasciculus and cingulum bundle play key roles in the underlying neural basis of GAD.

  20. Targeting 20-HETE producing enzymes in cancer – rationale, pharmacology, and clinical potential

    PubMed Central

    Alexanian, Anna; Sorokin, Andrey

    2013-01-01

    Studies demonstrate that lipid mediator 20-Hydroxyeicosatetraenoic acid (20-HETE) synthesis and signaling are associated with the growth of cancer cells in vitro and in vivo. Stable 20-HETE agonists promote the proliferation of cancer cells, whereas selective inhibitors of the 20-HETE-producing enzymes of the Cytochrome (CYP450)4A and CYP4F families can block the proliferation of glioblastoma, prostate, renal cell carcinoma, and breast cancer cell lines. A recent observation that the expression of CYP4A/4F genes was markedly elevated in thyroid, breast, colon, and ovarian cancer further highlights the significance of 20-HETE-producing enzymes in the progression of different types of human cancer. These findings provide the rationale for targeting 20-HETE-producing enzymes in human cancers and set the basis for the development of novel therapeutic strategies for anticancer treatment. PMID:23569388

  1. Targeting IL-17 in psoriasis: from cutaneous immunobiology to clinical application.

    PubMed

    Ariza, Maria-Eugenia; Williams, Marshall V; Wong, Henry K

    2013-02-01

    Psoriasis vulgaris is a chronic, immune-mediated inflammatory skin disease associated with complex genetic susceptibility. Although the hallmark of psoriasis is characterized by cutaneous inflammation and keratinocyte hyperproliferation, recent studies show that the pathologic features observed in psoriasis arises as a result of innate and adaptive immune activation in genetically prone individuals. Studies focused on the microenvironment in the skin of psoriasis lesions have revealed novel cellular and cytokine abnormalities of the immune system. One pathway important is the role of the T(H)17/IL-17 dysregulation. The recent development of biologics that target the IL-17 cytokine pathway has confirmed the importance of T(H)17 and IL-17 homeostasis in the skin and yielded potent therapies in the treatment of psoriasis, and potentially other autoimmune diseases.

  2. The Molecular, Cellular and Clinical Consequences of Targeting the Estrogen Receptor Following Estrogen Deprivation Therapy

    PubMed Central

    Fan, Ping; Maximov, Philipp Y.; Curpan, Ramona F.; Abderrahman, Balkees; Jordan, V. Craig

    2015-01-01

    During the past twenty years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed “morning after pill”, was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite “antiestrogen” resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER Modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women’s health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term Hormone Replacement Therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells. PMID:26052034

  3. Comprehensive molecular pathology analysis of small bowel adenocarcinoma reveals novel targets with potential for clinical utility

    PubMed Central

    Kelly, Paul; Fuchs, Marc-Aurel; Alderdice, Matthew; McCabe, Clare M.; Bingham, Victoria; McGready, Claire; Tripathi, Shailesh; Emmert-Streib, Frank; Loughrey, Maurice B.; McQuaid, Stephen; Maxwell, Perry; Hamilton, Peter W.; Turkington, Richard; James, Jacqueline A.; Wilson, Richard H.; Salto-Tellez, Manuel

    2015-01-01

    Small bowel accounts for only 0.5% of cancer cases in the US but incidence rates have been rising at 2.4% per year over the past decade. One-third of these are adenocarcinomas but little is known about their molecular pathology and no molecular markers are available for clinical use. Using a retrospective 28 patient matched normal-tumor cohort, next-generation sequencing, gene expression arrays and CpG methylation arrays were used for molecular profiling. Next-generation sequencing identified novel mutations in IDH1, CDH1, KIT, FGFR2, FLT3, NPM1, PTEN, MET, AKT1, RET, NOTCH1 and ERBB4. Array data revealed 17% of CpGs and 5% of RNA transcripts assayed to be differentially methylated and expressed respectively (p < 0.01). Merging gene expression and DNA methylation data revealed CHN2 as consistently hypermethylated and downregulated in this disease (Spearman −0.71, p < 0.001). Mutations in TP53 which were found in more than half of the cohort (15/28) and Kazald1 hypomethylation were both were indicative of poor survival (p = 0.03, HR = 3.2 and p = 0.01, HR = 4.9 respectively). By integrating high-throughput mutational, gene expression and DNA methylation data, this study reveals for the first time the distinct molecular profile of small bowel adenocarcinoma and highlights potential clinically exploitable markers. PMID:26315110

  4. Comprehensive molecular pathology analysis of small bowel adenocarcinoma reveals novel targets with potential for clinical utility.

    PubMed

    Alvi, Muhammad A; McArt, Darragh G; Kelly, Paul; Fuchs, Marc-Aurel; Alderdice, Matthew; McCabe, Clare M; Bingham, Victoria; McGready, Claire; Tripathi, Shailesh; Emmert-Streib, Frank; Loughrey, Maurice B; McQuaid, Stephen; Maxwell, Perry; Hamilton, Peter W; Turkington, Richard; James, Jacqueline A; Wilson, Richard H; Salto-Tellez, Manuel

    2015-08-28

    Small bowel accounts for only 0.5% of cancer cases in the US but incidence rates have been rising at 2.4% per year over the past decade. One-third of these are adenocarcinomas but little is known about their molecular pathology and no molecular markers are available for clinical use. Using a retrospective 28 patient matched normal-tumor cohort, next-generation sequencing, gene expression arrays and CpG methylation arrays were used for molecular profiling. Next-generation sequencing identified novel mutations in IDH1, CDH1, KIT, FGFR2, FLT3, NPM1, PTEN, MET, AKT1, RET, NOTCH1 and ERBB4. Array data revealed 17% of CpGs and 5% of RNA transcripts assayed to be differentially methylated and expressed respectively (p < 0.01). Merging gene expression and DNA methylation data revealed CHN2 as consistently hypermethylated and downregulated in this disease (Spearman -0.71, p < 0.001). Mutations in TP53 which were found in more than half of the cohort (15/28) and Kazald1 hypomethylation were both were indicative of poor survival (p = 0.03, HR = 3.2 and p = 0.01, HR = 4.9 respectively). By integrating high-throughput mutational, gene expression and DNA methylation data, this study reveals for the first time the distinct molecular profile of small bowel adenocarcinoma and highlights potential clinically exploitable markers.

  5. Molecular and Clinical Aspects of the Target Therapy with the Calcimimetic Cinacalcet in the Treatment of Parathyroid Tumors.

    PubMed

    Mingione, Alessandra; Verdelli, Chiara; Terranegra, Annalisa; Soldati, Laura; Corbetta, Sabrina

    2015-01-01

    Parathyroid tumors are almost invariably associated with parathormone (PTH) hypersecretion resulting in primary (PHPT) or secondary (SHPT) hyperparathyroidism. PHPT is the third most common endocrine disorder with a prevalence of 1-2% in post-menopausal women; SHPT is a major complication of chronic kidney failure, the prevalence of which is increasing. The calciumsensing receptor (CASR) is the key molecule regulating PTH synthesis and release from the parathyroid cells in response to changes in extracellular calcium concentrations. A potent calcimimetic, cinacalcet, has been developed in the last ten years and made available for medical treatment of both PHPT and SHPT. Cinacalcet has been demonstrated to be effective in inhibiting PTH secretion, though the drug fails to normalize PTH release, both in PHPT and SHPT patients with different degrees of disease severity, including patients with parathyroid carcinomas and with MEN1-related parathyroid tumors. Here we reviewed the molecular aspects of CASR target therapy and the effect of the CASR gene single nucleotide polymorphisms. Clinical data concerning the efficacy and safety of cinacalcet in controlling hyperparathyroidism are reported, focusing on the treatment of the different types of parathyroid tumors. Finally, limits of this target therapy are analyzed, pointing out the lack of efficacy in improving kidney and bone morbidities in PHPT and cardiovascular diseases in SHPT. Though cinacalcet is a target therapeutic option for parathyroid tumors, further approaches are warranted to fully control these metabolic disorders and the underlying tumors.

  6. What Would You Ideally Do if There Were No Targets? An Ethnographic Study of the Unintended Consequences of Top-Down Governance in Two Clinical Settings

    ERIC Educational Resources Information Center

    Allard, Jon; Bleakley, Alan

    2016-01-01

    Top-down policy directives, such as targets and their associated protocols, may be driven politically rather than clinically and can be described as macro-political texts. While targets supposedly provide incentives for healthcare services, they may unintentionally shape practices of accommodation rather than implementation, deflecting…

  7. Development and clinical utility of a novel diagnostic nystagmus gene panel using targeted next-generation sequencing.

    PubMed

    Thomas, Mervyn G; Maconachie, Gail DE; Sheth, Viral; McLean, Rebecca J; Gottlob, Irene

    2017-04-05

    Infantile nystagmus (IN) is a genetically heterogeneous disorder arising from variants of genes expressed within the developing retina and brain. IN presents a diagnostic challenge and patients often undergo numerous investigations. We aimed to develop and assess the utility of a next-generation sequencing (NGS) panel to enhance the diagnosis of IN. We identified 336 genes associated with IN from the literature and OMIM. NimbleGen Human custom array was used to enrich the target genes and sequencing was performed using HiSeq2000. Using reference genome material (NA12878), we show the sensitivity (98.5%) and specificity (99.9%) of the panel. Fifteen patients with familial IN were sequenced using the panel. Two authors were masked to the clinical diagnosis. We identified variants in 12/15 patients in the following genes: FRMD7 (n=3), CACNA1F (n=2), TYR (n=5), CRYBA1 (n=1) and TYRP1 (n=1). In 9/12 patients, the clinical diagnosis was consistent with the genetic diagnosis. In 3/12 patients, the results from the genetic diagnoses (TYR, CRYBA1 and TYRP1 variants) enabled revision of clinical diagnoses. In 3/15 patients, we were unable to determine a genetic diagnosis. In one patient, copy number variation analysis revealed a FRMD7 deletion. This is the first study establishing the clinical utility of a diagnostic NGS panel for IN. We show that the panel has high sensitivity and specificity. The genetic information from the panel will lead to personalised diagnosis and management of IN and enable accurate genetic counselling. This will allow development of a new clinical care pathway for IN.European Journal of Human Genetics advance online publication, 5 April 2017; doi:10.1038/ejhg.2017.44.

  8. Spatially Targeted Applications of Reduced-Risk Insecticides for Economical Control of Grape Berry Moth, Paralobesia viteana (Lepidoptera: Tortricidae).

    PubMed

    Mason, Keith S; Roubos, Craig R; Teixeira, Luis A F; Isaacs, Rufus

    2016-07-19

    The grape berry moth, Paralobesia viteana Clemens (Lepidoptera: Tortricidae), is a key economic pest of vineyards in eastern North America, and prevention of fruit infestation is particularly challenging along vineyard borders that are adjacent to wooded areas containing wild grape (Vitis spp.). For three years, infestation and damage in vineyards where reduced-risk insecticides were applied to borders at timings based on a degree day model (Integrated Pest Management program) were compared to that in vineyards where broad-spectrum insecticides were applied across the whole vineyard (Standard program). Infestation at vineyard borders immediately prior to harvest was consistently lower in IPM vineyards than in Standard program vineyards, and in two of the years this was also true at veraison (fruit coloring). Grape berry moth infestation was similar between treatments at vineyard interiors throughout the study, despite no insecticide applications to the interiors of the IPM program vineyards. Populations of two other key vineyard pests, the eastern grape leafhopper, Erythroneura comes (Say) (Hemiptera: Cicadellidae), and Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), were not significantly different between programs, and natural enemy captures on yellow sticky traps were also similar. The per hectare cost of insecticides applied in the IPM program was consistently lower than for the Standard program, with a significant difference in the third year of this study. We demonstrate how spatially selective applications of reduced-risk insecticides can provide improved control of grape berry moth at lower cost than standard broad-spectrum insecticide-based programs.

  9. Mitomycin C induces fibroblasts apoptosis and reduces epidural fibrosis by regulating miR-200b and its targeting of RhoE.

    PubMed

    Sun, Yu; Ge, Yingbin; Fu, Yuxuan; Yan, Lianqi; Cai, Jun; Shi, Kun; Cao, Xiaojian; Lu, Chun

    2015-10-15

    Mitomycin C (MMC) is known to reduce epidural fibrosis, but the underlying mechanisms have not yet been elucidated. Aberrant miR-200b expressions have been reported in multiple types of fibrotic tissues from many diseases. The aim of this study was to clarify the mechanism by which MMC induces fibroblasts apoptosis and reduces epidural fibrosis. The expression of miR-200b in human fibroblasts was determined after MMC treatment, and the targeted association between miR-200b and RhoE was determined using the luciferase activity assay. The effects of MMC and miR-200b on human fibroblasts apoptosis were evaluated using flow cytometry and western blot analysis. The effects of MMC and miR-200b on epidural fibrosis were evaluated using the Rydell classification, hydroxyproline content, apoptotic cell count and histological analysis. The study revealed that MMC could significantly downregulate miR-200b expression and induce human fibroblasts apoptosis. The direct downregulation of miR-200b could induce human fibroblasts apoptosis. Furthermore, we identified the binding sequence for miR-200b within the 3' untranslated region of RhoE. RhoE was confirmed to be a direct target of miR-200b, and RhoE itself acted as a promoter of fibroblasts apoptosis. The inhibition of miR-200b increased fibroblasts apoptosis and reduced epidural fibrosis in rats, which was in accordance with the effect of MMC. This study suggests that MMC induces fibroblasts apoptosis and reduces epidural fibrosis by regulating miR-200b expression and its targeting of RhoE.

  10. A review of the preclinical and clinical evidence for protein kinase C as a target for drug development for bipolar disorder.

    PubMed

    DiazGranados, Nancy; Zarate, Carlos A

    2008-12-01

    In this article, we review preclinical studies investigating the role of protein kinase C (PKC) as it pertains to mania and effective antimanic agents. We then discuss clinical studies conducted with tamoxifen, a relatively selective PKC inhibitor, in acute bipolar mania. We conclude that PKC is an important target-arguably the first mechanistically distinct drug target for bipolar disorder. PKC holds considerable promise as a novel target for developing a new line of treatments for bipolar disorder.

  11. NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea

    PubMed Central

    Honkura, Yohei; Matsuo, Hirotaka; Murakami, Shohei; Sakiyama, Masayuki; Mizutari, Kunio; Shiotani, Akihiro; Yamamoto, Masayuki; Morita, Ichiro; Shinomiya, Nariyoshi; Kawase, Tetsuaki; Katori, Yukio; Motohashi, Hozumi

    2016-01-01

    Noise-induced hearing loss (NIHL) is one of the most common sensorineural hearing deficits. Recent studies have demonstrated that the pathogenesis of NIHL is closely related to ischemia-reperfusion injury of cochlea, which is caused by blood flow decrease and free radical production due to excessive noise. This suggests that protecting the cochlea from oxidative stress is an effective therapeutic approach for NIHL. NRF2 is a transcriptional activator playing an essential role in the defense mechanism against oxidative stress. To clarify the contribution of NRF2 to cochlear protection, we examined Nrf2–/– mice for susceptibility to NIHL. Threshold shifts of the auditory brainstem response at 7 days post-exposure were significantly larger in Nrf2–/– mice than wild-type mice. Treatment with CDDO-Im, a potent NRF2-activating drug, before but not after the noise exposure preserved the integrity of hair cells and improved post-exposure hearing levels in wild-type mice, but not in Nrf2–/– mice. Therefore, NRF2 activation is effective for NIHL prevention. Consistently, a human NRF2 SNP was significantly associated with impaired sensorineural hearing levels in a cohort subjected to occupational noise exposure. Thus, high NRF2 activity is advantageous for cochlear protection from noise-induced injury, and NRF2 is a promising target for NIHL prevention. PMID:26776972

  12. NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea.

    PubMed

    Honkura, Yohei; Matsuo, Hirotaka; Murakami, Shohei; Sakiyama, Masayuki; Mizutari, Kunio; Shiotani, Akihiro; Yamamoto, Masayuki; Morita, Ichiro; Shinomiya, Nariyoshi; Kawase, Tetsuaki; Katori, Yukio; Motohashi, Hozumi

    2016-01-18

    Noise-induced hearing loss (NIHL) is one of the most common sensorineural hearing deficits. Recent studies have demonstrated that the pathogenesis of NIHL is closely related to ischemia-reperfusion injury of cochlea, which is caused by blood flow decrease and free radical production due to excessive noise. This suggests that protecting the cochlea from oxidative stress is an effective therapeutic approach for NIHL. NRF2 is a transcriptional activator playing an essential role in the defense mechanism against oxidative stress. To clarify the contribution of NRF2 to cochlear protection, we examined Nrf2(-/-) mice for susceptibility to NIHL. Threshold shifts of the auditory brainstem response at 7 days post-exposure were significantly larger in Nrf2(-/-) mice than wild-type mice. Treatment with CDDO-Im, a potent NRF2-activating drug, before but not after the noise exposure preserved the integrity of hair cells and improved post-exposure hearing levels in wild-type mice, but not in Nrf2(-/-) mice. Therefore, NRF2 activation is effective for NIHL prevention. Consistently, a human NRF2 SNP was significantly associated with impaired sensorineural hearing levels in a cohort subjected to occupational noise exposure. Thus, high NRF2 activity is advantageous for cochlear protection from noise-induced injury, and NRF2 is a promising target for NIHL prevention.

  13. Targeting of miR9/NOTCH1 interaction reduces metastatic behavior in triple-negative breast cancer.

    PubMed

    Mohammadi-Yeganeh, Samira; Mansouri, Ardalan; Paryan, Mahdi

    2015-11-01

    Many reports have indicated deregulation of a variety of microRNAs (miRNAs) in human cancers. In this study, we appraised miR-9 correlation with NOTCH1 involved in Notch signaling in metastatic breast cancer. The Notch signaling pathway has been approved to be associated with the development and progression of many human cancers, including breast cancer, but the precise mechanism has remained unknown. To the best of our knowledge, this is the first study that introduces miR-9 and NOTCH1 correlation as an effective factor in breast cancer. We found that miR-9 expression was decreased in MDA-MB-231 breast cancer cells compared with MCF-10A normal breast cell line. However, NOTCH1 was upregulated in the metastatic breast cancer cells. Furthermore, luciferase assay revealed a significant inverse correlation between miR-9 and NOTCH1. Overexpression of Notch signaling via Notch1 intracellular domain in MDA-MB-231 cell line was suppressed by lentiviruses expressing miR-9. Taken together, the results obtained by MTT, flow cytometry, migration, and wound healing assays showed that it is possible to inhibit metastasis and induce pro-apoptotic state by induction of miR-9 expression in MDA-MB-231 cells but with no effect on cell proliferation. These results shows that miR-9, by direct targeting of NOTCH1, can reveal a suppressor-like activity in metastatic breast cancer cells.

  14. Mitochondria-targeted antioxidant SkQ1 reduces age-related alterations in the ultrastructure of the lacrimal gland

    PubMed Central

    Bakeeva, Lora E.; Eldarov, Chupalav M.; Vangely, Irina M.; Kolosova, Nataliya G.; Vays, Valeriya B.

    2016-01-01

    Dry eye syndrome is an eye disorder affecting many people at an old age. Because dry eye syndrome is accelerated by aging, a useful approach to the prevention of this syndrome may be an intervention into the aging process. Previously, we showed that the mitochondria-targeted antioxidant SkQ1 delays manifestations of aging and inhibits the development of age-related diseases including dry eye syndrome. Nevertheless, the link between SkQ1's effects and its suppression of age-related changes in the lacrimal gland remains unclear. Here we demonstrated that dietary supplementation with SkQ1 (250 nmol/[kg body weight] daily) starting at age 1.5 months significantly alleviated the pathological changes in lacrimal glands of Wistar rats by age 24 months. By this age, lacrimal glands underwent dramatic deterioration of the ultrastructure that was indicative of irreversible disturbances in these glands' functioning. In contrast, in SkQ1-treated rats, the ultrastructure of the lacrimal gland was similar to that in much younger rats. Morphometric analysis of electron-microscopic specimens of lacrimal glands revealed the presence of numerous secretory granules in acinar cells and a significant increase in the number of operating intercalary ducts. Our results confirm that dietary supplementation with SkQ1 is a promising approach to healthy ageing and to prevention of aberrations in the lacrimal gland that underlie dry eye syndrome. PMID:27852065

  15. Live simian immunodeficiency virus vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability.

    PubMed

    Smith, Anthony J; Wietgrefe, Stephen W; Shang, Liang; Reilly, Cavan S; Southern, Peter J; Perkey, Katherine E; Duan, Lijie; Kohler, Heinz; Müller, Sybille; Robinson, James; Carlis, John V; Li, Qingsheng; Johnson, R Paul; Haase, Ashley T

    2014-09-15

    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic's epicenter in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer Ab production and neonatal FcR-mediated concentration of these Abs on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. In this study, we identify blocking CD4(+) T cell recruitment to thereby inhibit local expansion of infected founder populations as a second correlate of protection. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine.

  16. Live SIV vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability

    PubMed Central

    Smith, Anthony J; Wietgrefe, Stephen W.; Shang, Liang; Reilly, Cavan S.; Southern, Peter J.; Perkey, Katherine E.; Duan, Lijie; Kohler, Heinz; Muller, Sybille; Robinson, James; Carlis, John V.; Li, Qingsheng; Johnson, R. Paul; Haase, Ashley T.

    2014-01-01

    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicentre in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We have identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer antibody production and neonatal Fc receptor (FcRn)-mediated concentration of these antibodies on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. Here we identify as a second protection correlate, blocking CD4+ T cell recruitment to inhibit local expansion of infected founder populations. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine. PMID:25143442

  17. Progression-Free Survival as a Surrogate for Overall Survival in Clinical Trials of Targeted Therapy in Advanced Solid Tumors.

    PubMed

    Michiels, Stefan; Saad, Everardo D; Buyse, Marc

    2017-03-23

    Over the past 15 years, targeted therapy has revolutionized the systemic treatment of cancer. In parallel, there has been a growing debate on the choice of end points in clinical trials in oncology. This debate basically hinges on the choice between overall survival (OS) and progression-free survival (PFS). PFS is advantageous because it is measured earlier than OS, requires a smaller sample size than OS to achieve the desired power, and is not influenced by cross-over. On the other hand, PFS is prone to measurement error and bias, and may not capture the entire treatment effect on the outcomes of most interest to patients with an incurable disease: a prolonged survival and improved quality of life. Therefore, how can we choose between two imperfect end points? The answer to this question would certainly be made easier if PFS could be demonstrated to be a valid surrogate for OS. The validation of a surrogate end point is best made using individual-patient data (IPD) from randomized trials, which allows for standardized assessments of the patient-level and the trial-level correlations between surrogate and final end points. Proper IPD meta-analytical evaluations for targeted agents have still been rare, and to our knowledge only three studies on this topic are currently available in the metastatic setting: one in breast cancer, one in colorectal cancer and one in lung cancer. Although these three studies suffer from limitations inherent to the availability of IPD and the design of the original clinical trials, they have not been able to validate PFS as surrogate for OS, because only modest correlations were found between these two end points, both at the patient and at the trial level. Even if properly conducted surrogate-endpoint evaluations have thus far been unsuccessful, these evaluations are a step in the right direction and can be expected to be applied on a much larger scale in the era of data sharing of clinical trials.

  18. Methods for identification and confirmation of targeted subgroups in clinical trials: A systematic review

    PubMed Central

    Ondra, Thomas; Dmitrienko, Alex; Friede, Tim; Graf, Alexandra; Miller, Frank; Stallard, Nigel; Posch, Martin

    2016-01-01

    ABSTRACT Important objectives in the development of stratified medicines include the identification and confirmation of subgroups of patients with a beneficial treatment effect and a positive benefit-risk balance. We report the results of a literature review on methodological approaches to the design and analysis of clinical trials investigating a potential heterogeneity of treatment effects across subgroups. The identified approaches are classified based on certain characteristics of the proposed trial designs and analysis methods. We distinguish between exploratory and confirmatory subgroup analysis, frequentist, Bayesian and decision-theoretic approaches and, last, fixed-sample, group-sequential, and adaptive designs and illustrate the available trial designs and analysis strategies with published case studies. PMID:26378339

  19. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical use--improves psoriasis in a human xenograft transplantation model.

    PubMed

    Stenderup, Karin; Rosada, Cecilia; Shanebeck, Kurt; Brady, William; Van Brunt, Michael P; King, Gordon; Marelli, Marcello; Slagle, Paul; Xu, Hengyu; Nairn, Natalie W; Johnson, Jeffrey; Wang, Aijun A; Li, Gary; Thornton, Kenneth C; Dam, Tomas N; Grabstein, Kenneth H

    2015-10-01

    Targeting more than one molecule in multifactorial diseases involving several disease mediators may provide improved therapeutic efficacy. Psoriasis is a multifactorial disease in which interleukin (IL)-6 and IL-23 are important disease mediators because they facilitate development of Th17 cells; widely accepted to be associated with psoriasis. To meet the need for new therapeutics, we aimed to create a clinically relevant bispecific drug, by combining the inhibitory properties of anti-IL-6 and anti-IL-23 antibodies, exhibiting high affinity, high stability and the ability to be produced in high yield. The bispecific molecule AZ17 was created by combining high affinity binding domains originating from monoclonal antibodies targeting human IL-6 and IL-23. To allow for high and efficient production, AZ17 was assembled by site-specific bioconjugation from two individual single chain fragment variables that were synthesized separately in Escherichia coli. To improve stability and extend pharmacokinetics, a flexible poly-ethylene glycol molecule was used as linker. In preclinical psoriasis models, AZ17 reduced IL-23-induced ear inflammation and improved psoriasis in a xenograft transplantation model where psoriasis skin is transplanted onto immune-deficient mice. The data presented here suggest AZ17 to be a promising drug candidate in psoriasis and other inflammatory diseases associated with Th17 cell development.

  20. Performance Scores in General Practice: A Comparison between the Clinical versus Medication-Based Approach to Identify Target Populations

    PubMed Central

    Saint-Lary, Olivier; Boisnault, Philippe; Naiditch, Michel; Szidon, Philippe; Duhot, Didier; Bourgueil, Yann; Pelletier-Fleury, Nathalie

    2012-01-01

    Context From one country to another, the pay-for-performance mechanisms differ on one significant point: the identification of target populations, that is, populations which serve as a basis for calculating the indicators. The aim of this study was to compare clinical versus medication-based identification of populations of patients with diabetes and hypertension over the age of 50 (for men) or 60 (for women), and any consequences this may have on the calculation of P4P indicators. Methods A comparative, retrospective, observational study was carried out with clinical and prescription data from a panel of general practitioners (GPs), the Observatory of General Medicine (OMG) for the year 2007. Two indicators regarding the prescription for statins and aspirin in these populations were calculated. Results We analyzed data from 21.690 patients collected by 61 GPs via electronic medical files. Following the clinical-based approach, 2.278 patients were diabetic, 8,271 had hypertension and 1.539 had both against respectively 1.730, 8.511 and 1.304 following the medication-based approach (% agreement = 96%, kappa = 0.69). The main reasons for these differences were: forgetting to code the morbidities in the clinical approach, not taking into account the population of patients who were given life style and diet rules only or taking into account patients for whom morbidities other than hypertension could justify the use of antihypertensive drugs in the medication-based approach. The mean (confidence interval) per doctor was 33.7% (31.5–35.9) for statin indicator and 38.4% (35.4–41.4) for aspirin indicator when the target populations were identified on the basis of clinical criteria whereas they were 37.9% (36.3–39.4) and 43.8% (41.4–46.3) on the basis of treatment criteria. Conclusion The two approaches yield very “similar” scores but these scores cover different realities and offer food for thought on the possible usage of these indicators in the

  1. Cocktail of Superoxide Dismutase and Fasudil Encapsulated in Targeted Liposomes Slows PAH Progression at a Reduced Dosing Frequency.

    PubMed

    Gupta, Nilesh; Rashid, Jahidur; Nozik-Grayck, Eva; McMurtry, Ivan F; Stenmark, Kurt R; Ahsan, Fakhrul

    2017-03-06

    Currently, two or more pulmonary vasodilators are used to treat pulmonary arterial hypertension (PAH), but conventional vasodilators alone cannot reverse disease progression. In this study, we tested the hypothesis that a combination therapy comprising a vasodilator plus a therapeutic agent that slows pulmonary arterial remodeling and right heart hypertrophy is an efficacious alternative to current vasodilator-based PAH therapy. Thus, we encapsulated a cocktail of superoxide dismutase (SOD), a superoxide scavenger, and fasudil, a specific rho-kinase inhibitor, into a liposomal formulation equipped with a homing peptide, CAR. We evaluated the effect of the formulations on pulmonary hemodynamics in monocrotaline-induced PAH rats (MCT-induced PAH) and assessed the formulation's efficacy in slowing the disease progression in Sugen-5416/hypoxia-induced PAH rats (SU/hypoxia-induced PAH). For acute studies, we monitored both mean pulmonary and systemic arterial pressures (mPAP and mSAP) for 2 to 6 h after a single dose of the plain drugs or formulations. In chronic studies, PAH rats received plain drugs every 48 h and the formulations every 72 h for 21 days. In MCT-induced PAH rats, CAR-modified liposomes containing fasudil plus SOD elicited a more pronounced, prolonged, and selective reduction in mPAP than unmodified liposomes and plain drugs did. In SU/hypoxia-induced PAH rats, the formulation produced a >50% reduction in mPAP and slowed right ventricular hypertrophy. When compared with individual plain drugs or combination, CAR-modified-liposomes containing both drugs reduced the extent of collagen deposition, muscularization of arteries, increased SOD levels in the lungs, and decreased the expression of pSTAT-3 and p-MYPT1. Overall, CAR-modified-liposomes of SOD plus fasudil, given every 72 h, was as efficacious as plain drugs, given every 48 h, suggesting that the formulation can reduce the total drug intake, systemic exposures, and dosing frequency.

  2. Chemotherapies and targeted therapies in advanced hepatocellular carcinoma: from laboratory to clinic.

    PubMed

    Voiculescu, Mihai; Winkler, Robert E; Moscovici, Marius; Neuman, Manuela G

    2008-09-01

    Chronic liver diseases alone or in conjunction with other risk factors result in increased liver damage leading to inflammation and fibrosis of the liver and rising rates of liver cirrhosis, hepatic decompensation and hepatocellular carcinoma (HCC). This review will address the determinants of liver injury at the initiation of the tumor and the risk factors for rapid disease progression. Regardless of the etiology, the unifying feature of these tumors are their propensity to arise upon a background of inflammation and fibrosis. Liver disease is often associated with enhanced hepatocyte apoptosis, which is the case in viral and autoimmune hepatitis, cholestatic diseases, and metabolic disorders. Disruption of apoptosis is responsible for HCC. The mechanisms by which apoptosis occurs in the liver might provide insights into HCC and suggest possible treatments. We aim to better understand the factors that distinguish a relatively long course of HCC from one with rapid progression. We will accomplish this task with three integrated ideas: 1 - the role of epidemiology in establishing the risk factors of co-morbidity with alcohol and hepatitis viruses; 2 - the role of apoptosis and anti-apoptotic signals in the progression of HCC; and 3 - the role of new advancements that have emerged in the field of molecular-directed chemotherapeutics in HCC in recent years. This review will also aim to describe the molecular targeted therapies of non-resectable HCC and the ways of effective combination in this otherwise chemo-resistant tumor.

  3. Mitochondria-related miR-151a-5p reduces cellular ATP production by targeting CYTB in asthenozoospermia.

    PubMed

    Zhou, Ran; Wang, Rong; Qin, Yufeng; Ji, Juan; Xu, Miaofei; Wu, Wei; Chen, Minjian; Wu, Di; Song, Ling; Shen, Hongbing; Sha, Jiahao; Miao, Dengshun; Hu, Zhibin; Xia, Yankai; Lu, Chuncheng; Wang, Xinru

    2015-12-02

    Mitochondria, acting as the energy metabolism factory, participate in many key biological processes, including the maintenance of sperm viability. Mitochondria-related microRNA (miRNA), encoded by nuclear genome or mitochondrial genome, may play an important regulatory role in the control of mitochondrial function. To investigate the potential role of mitochondria-related miRNAs in asthenozoospermia, we adopted a strategy consisting of initial screening by TaqMan Low Density Array (TLDA) and further validation with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Validation of the profiling results was conducted in two independent phases. Eventually, two seminal plasma miRNAs (sp-miRs) (miR-101-3p, let-7b-5p) were found to be significantly decreased, while sp-miR-151a-5p was significantly increased in severe asthenozoospermia cases compared with healthy controls. To further study their potential roles in asthenozoospermia, we then evaluated mitochondrial function of GC-2 cells transfected with these potentially functional miRNAs. Our results demonstrated that transfection with miR-151a-5p mimics decreased the mitochondrial respiratory activity. Besides, Adenosine Triphosphate (ATP) level was decreased when transfected with miR-151a-5p mimics. In addition, Cytochrome b (Cytb) mRNA and protein levels were also decreased when miR-151a-5p was overexpressed. These results indicate that miR-151a-5p may participate in the regulation of cellular respiration and ATP production through targeting Cytb.

  4. Mitochondria-related miR-151a-5p reduces cellular ATP production by targeting CYTB in asthenozoospermia

    PubMed Central

    Zhou, Ran; Wang, Rong; Qin, Yufeng; Ji, Juan; Xu, Miaofei; Wu, Wei; Chen, Minjian; Wu, Di; Song, Ling; Shen, Hongbing; Sha, Jiahao; Miao, Dengshun; Hu, Zhibin; Xia, Yankai; Lu, Chuncheng; Wang, Xinru

    2015-01-01

    Mitochondria, acting as the energy metabolism factory, participate in many key biological processes, including the maintenance of sperm viability. Mitochondria-related microRNA (miRNA), encoded by nuclear genome or mitochondrial genome, may play an important regulatory role in the control of mitochondrial function. To investigate the potential role of mitochondria-related miRNAs in asthenozoospermia, we adopted a strategy consisting of initial screening by TaqMan Low Density Array (TLDA) and further validation with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Validation of the profiling results was conducted in two independent phases. Eventually, two seminal plasma miRNAs (sp-miRs) (miR-101-3p, let-7b-5p) were found to be significantly decreased, while sp-miR-151a-5p was significantly increased in severe asthenozoospermia cases compared with healthy controls. To further study their potential roles in asthenozoospermia, we then evaluated mitochondrial function of GC-2 cells transfected with these potentially functional miRNAs. Our results demonstrated that transfection with miR-151a-5p mimics decreased the mitochondrial respiratory activity. Besides, Adenosine Triphosphate (ATP) level was decreased when transfected with miR-151a-5p mimics. In addition, Cytochrome b (Cytb) mRNA and protein levels were also decreased when miR-151a-5p was overexpressed. These results indicate that miR-151a-5p may participate in the regulation of cellular respiration and ATP production through targeting Cytb. PMID:26626315

  5. Studies on Deimmunization of Antileukaemic L-Asparaginase to have Reduced Clinical Immunogenicity--An in silico Approach.

    PubMed

    Ramya, L N; Pulicherla, Krishna Kanth

    2015-09-01

    Protein therapeutics, particularly of heterologous origin are shown to elicit immunogenic responses which result in adverse allergic reactions in spite of their promising clinical benefit. L-Asparaginase is one such well known chemotherapeutic agent that has enhanced the survival rates to 90 % in the treatment of acute lymphoblastic leukaemia for past 30 years. But the use of this enzyme is accompanied by hypersensitive reactions ranging from allergy to anaphylactic shock which have a drastic influence in t