Bruno Garza, J L; Young, J G
2015-01-01
Extended use of conventional computer input devices is associated with negative musculoskeletal outcomes. While many alternative designs have been proposed, it is unclear whether these devices reduce biomechanical loading and musculoskeletal outcomes. To review studies describing and evaluating the biomechanical loading and musculoskeletal outcomes associated with conventional and alternative input devices. Included studies evaluated biomechanical loading and/or musculoskeletal outcomes of users' distal or proximal upper extremity regions associated with the operation of alternative input devices (pointing devices, mice, other devices) that could be used in a desktop personal computing environment during typical office work. Some alternative pointing device designs (e.g. rollerbar) were consistently associated with decreased biomechanical loading while other designs had inconsistent results across studies. Most alternative keyboards evaluated in the literature reduce biomechanical loading and musculoskeletal outcomes. Studies of other input devices (e.g. touchscreen and gestural controls) were rare, however, those reported to date indicate that these devices are currently unsuitable as replacements for traditional devices. Alternative input devices that reduce biomechanical loading may make better choices for preventing or alleviating musculoskeletal outcomes during computer use, however, it is unclear whether many existing designs are effective.
Load Balancing Strategies for Multiphase Flows on Structured Grids
NASA Astrophysics Data System (ADS)
Olshefski, Kristopher; Owkes, Mark
2017-11-01
The computation time required to perform large simulations of complex systems is currently one of the leading bottlenecks of computational research. Parallelization allows multiple processing cores to perform calculations simultaneously and reduces computational times. However, load imbalances between processors waste computing resources as processors wait for others to complete imbalanced tasks. In multiphase flows, these imbalances arise due to the additional computational effort required at the gas-liquid interface. However, many current load balancing schemes are only designed for unstructured grid applications. The purpose of this research is to develop a load balancing strategy while maintaining the simplicity of a structured grid. Several approaches are investigated including brute force oversubscription, node oversubscription through Message Passing Interface (MPI) commands, and shared memory load balancing using OpenMP. Each of these strategies are tested with a simple one-dimensional model prior to implementation into the three-dimensional NGA code. Current results show load balancing will reduce computational time by at least 30%.
NASA Astrophysics Data System (ADS)
Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth
2016-09-01
The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.
Computer program to compute buckling loads of simply supported anisotropic plates
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1973-01-01
Program handles several types of composites and several load conditions for each plate, both compressive or tensile membrane loads, and bending-stretching coupling via the concept of reduced bending rigidities. Vibration frequencies of homogeneous or layered anisotropic plates can be calculated by slightly modifying the program.
Reducing power consumption during execution of an application on a plurality of compute nodes
Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.
2013-09-10
Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: powering up, during compute node initialization, only a portion of computer memory of the compute node, including configuring an operating system for the compute node in the powered up portion of computer memory; receiving, by the operating system, an instruction to load an application for execution; allocating, by the operating system, additional portions of computer memory to the application for use during execution; powering up the additional portions of computer memory allocated for use by the application during execution; and loading, by the operating system, the application into the powered up additional portions of computer memory.
Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
Energy consumption program: A computer model simulating energy loads in buildings
NASA Technical Reports Server (NTRS)
Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.
1978-01-01
The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.
Structural Loads Analysis for Wave Energy Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi
2017-06-03
This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process.« less
2011-02-01
expected, with increased loading (or reduced axial -chord to pitch ratio for a given turning). In addition to minimizing design-point loss due to...5 Figure 2. Computed loading diagrams and Reynolds lapse rates for aft- (L1A) and mid- loaded (L1M) LPT blading (Clark et al., 2009...reference 22 in Welch, 2010) accomplishing the same 95° flow turning at high aerodynamic loading (Z = 1.34). .................8 Figure 3. Computed 2-D
Albiero, Alberto Maria; Benato, Renato
2016-09-01
Complications are frequently reported when combining computer assisted flapless surgery with an immediate loaded prefabricated prosthesis. The authors have combined computer-assisted surgery with the intraoral welding technique to obtain a precise passive fit of the immediate loading prosthesis. An edentulous maxilla was rehabilitated with four computer assisted implants welded together intraorally and immediately loaded with a provisional restoration. A perfect passive fit of the metal framework was obtained that enabled proper osseointegration of implants. Computer assisted preoperative planning has been shown to be effective in reducing the intraoperative time of the intraoral welding technique. No complications were observed at 1 year follow-up. This guided-welded approach is useful to achieve a passive fit of the provisional prosthesis on the inserted implants the same day as the surgery, reducing intraoperative time with respect to the traditional intraoral welding technique. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
2013-08-01
The SDM was subjected to forced small (0.5) sinusoidal pitching oscillations and derivatives were computed from measured model loads, angles of... aluminium alloy when subjected to both tensile and torsional loading. He joined the Aeronautical Research Laboratories (now called the Defence...oscillations and derivatives were computed from measured model loads, angles of attack, reduced frequency of oscillation and aircraft geometrical parameters
NASA Astrophysics Data System (ADS)
Matha, Denis; Sandner, Frank; Schlipf, David
2014-12-01
Design verification of wind turbines is performed by simulation of design load cases (DLC) defined in the IEC 61400-1 and -3 standards or equivalent guidelines. Due to the resulting large number of necessary load simulations, here a method is presented to reduce the computational effort for DLC simulations significantly by introducing a reduced nonlinear model and simplified hydro- and aerodynamics. The advantage of the formulation is that the nonlinear ODE system only contains basic mathematic operations and no iterations or internal loops which makes it very computationally efficient. Global turbine extreme and fatigue loads such as rotor thrust, tower base bending moment and mooring line tension, as well as platform motions are outputs of the model. They can be used to identify critical and less critical load situations to be then analysed with a higher fidelity tool and so speed up the design process. Results from these reduced model DLC simulations are presented and compared to higher fidelity models. Results in frequency and time domain as well as extreme and fatigue load predictions demonstrate that good agreement between the reduced and advanced model is achieved, allowing to efficiently exclude less critical DLC simulations, and to identify the most critical subset of cases for a given design. Additionally, the model is applicable for brute force optimization of floater control system parameters.
A computational parametric study on edge loading in ceramic-on-ceramic total hip joint replacements.
Liu, Feng; Feng, Li; Wang, Junyuan
2018-07-01
Edge loading in ceramic-on-ceramic total hip joint replacement is an adverse condition that occurs as the result of a direct contact between the head and the cup rim. It has been associated with translational mismatch in the centres of rotation of the cup and head, and found to cause severe wear and early failure of the implants. Edge loading has been considered in particular in relation to dynamic separation of the cup and head centres during a gait cycle. Research has been carried out both experimentally and computationally to understand the mechanism including the influence of bearing component positioning on the occurrence and severity of edge loading. However, it is experimentally difficult to measure both the load magnitude and duration of edge loading as it occurs as a short impact within the tight space of hip joints. Computationally, a dynamic contact model, for example, developed using the MSC ADAMS software for a multi-body dynamics simulation can be particularly useful for calculating the loads and characterising the edge loading. The aim of the present study was to further develop the computational model, and improve the predictions of contact force and the understanding of mechanism in order to provide guidance on design and surgical factors to avoid or to reduce edge loading and wear. The results have shown that edge loading can be avoided for a low range of translational mismatch in the centres of rotation of the cup and head during gait at the level of approximately 1.0 mm for a cup at 45° inclination, keeping a correct cup inclination at 45° is important to reduce the edge loading severity, and edge loading can be avoided for a certain range of translational mismatch of the cup and head centres with an increased swing phase load. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis of rotor vibratory loads using higher harmonic pitch control
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.
1992-01-01
Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.
NASA Technical Reports Server (NTRS)
White, C. W.
1981-01-01
The computational efficiency of the impedance type loads prediction method was studied. Three goals were addressed: devise a method to make the impedance method operate more efficiently in the computer; assess the accuracy and convenience of the method for determining the effect of design changes; and investigate the use of the method to identify design changes for reduction of payload loads. The method is suitable for calculation of dynamic response in either the frequency or time domain. It is concluded that: the choice of an orthogonal coordinate system will allow the impedance method to operate more efficiently in the computer; the approximate mode impedance technique is adequate for determining the effect of design changes, and is applicable for both statically determinate and statically indeterminate payload attachments; and beneficial design changes to reduce payload loads can be identified by the combined application of impedance techniques and energy distribution review techniques.
Subband Approach to Bandlimited Crosstalk Cancellation System in Spatial Sound Reproduction
NASA Astrophysics Data System (ADS)
Bai, Mingsian R.; Lee, Chih-Chung
2006-12-01
Crosstalk cancellation system (CCS) plays a vital role in spatial sound reproduction using multichannel loudspeakers. However, this technique is still not of full-blown use in practical applications due to heavy computation loading. To reduce the computation loading, a bandlimited CCS is presented in this paper on the basis of subband filtering approach. A pseudoquadrature mirror filter (QMF) bank is employed in the implementation of CCS filters which are bandlimited to 6 kHz, where human's localization is the most sensitive. In addition, a frequency-dependent regularization scheme is adopted in designing the CCS inverse filters. To justify the proposed system, subjective listening experiments were undertaken in an anechoic room. The experiments include two parts: the source localization test and the sound quality test. Analysis of variance (ANOVA) is applied to process the data and assess statistical significance of subjective experiments. The results indicate that the bandlimited CCS performed comparably well as the fullband CCS, whereas the computation loading was reduced by approximately eighty percent.
Lee, Ji Won; Lee, Geewon; Lee, Nam Kyung; Moon, Jin Il; Ju, Yun Hye; Suh, Young Ju; Jeong, Yeon Joo
2016-01-01
The aim of the study was to assess the effectiveness of the adaptive statistical iterative reconstruction (ASIR) for dual-energy computed tomography pulmonary angiography (DE-CTPA) with a reduced iodine load. One hundred forty patients referred for chest CT were randomly divided into a DE-CTPA group with a reduced iodine load or a standard CTPA group. Quantitative and qualitative image qualities of virtual monochromatic spectral (VMS) images with filtered back projection (VMS-FBP) and those with 50% ASIR (VMS-ASIR) in the DE-CTPA group were compared. Image qualities of VMS-ASIR images in the DE-CTPA group and ASIR images in the standard CTPA group were also compared. All quantitative and qualitative indices, except attenuation value of pulmonary artery in the VMS-ASIR subgroup, were superior to those in the VMS-FBP subgroup (all P < 0.001). Noise and signal-to-noise ratio of VMS-ASIR images were superior to those of ASIR images in the standard CTPA group (P < 0.001 and P = 0.007, respectively). Regarding qualitative indices, noise was significantly lower in VMS-ASIR images of the DE-CTPA group than in ASIR images of the standard CTPA group (P = 0.001). The ASIR technique tends to improve the image quality of VMS imaging. Dual-energy computed tomography pulmonary angiography with ASIR can reduce contrast medium volume and produce images of comparable quality with those of standard CTPA.
NASA Technical Reports Server (NTRS)
Gentz, Steve; Wood, Bill; Nettles, Mindy
2015-01-01
The interaction between shock waves and the wake shed from the forward booster/core attach hardware results in unsteady pressure fluctuations, which can lead to large buffeting loads on the vehicle. This task investigates whether computational tools can adequately predict these flows, and whether alternative booster nose shapes can reduce these loads. Results from wind tunnel tests will be used to validate the computations and provide design information for future Space Launch System (SLS) configurations. The current work combines numerical simulations with wind tunnel testing to predict buffeting loads caused by the boosters. Variations in nosecone shape, similar to the Ariane 5 design (fig. 1), are being evaluated with regard to lowering the buffet loads. The task will provide design information for the mitigation of buffet loads for SLS, along with validated simulation tools to be used to assess future SLS designs.
Track-train dynamic analysis and test program, truck static test
NASA Technical Reports Server (NTRS)
Nemes, A. G.
1974-01-01
A series of tests were conducted to define the characteristics of an ASF 11 Ride Truck Assembly including joint slop, friction and stiffness. Loading to the truck assembly included vertical load to simulate the car/pool loading combined with lateral or moment loading that resulted in desired truck deflections for the various phases of testing. All seven test conditions were successfully completed with load and deflection data being collected. No attempt is made to reduce the applicable data other than to provide computer plots.
NASA Technical Reports Server (NTRS)
Lichtenstein, J. H.
1978-01-01
An analytical method of computing the averaging effect of wing-span size on the loading of a wing induced by random turbulence was adapted for use on a digital electronic computer. The turbulence input was assumed to have a Dryden power spectral density. The computations were made for lift, rolling moment, and bending moment for two span load distributions, rectangular and elliptic. Data are presented to show the wing-span averaging effect for wing-span ratios encompassing current airplane sizes. The rectangular wing-span loading showed a slightly greater averaging effect than did the elliptic loading. In the frequency range most bothersome to airplane passengers, the wing-span averaging effect can reduce the normal lift load, and thus the acceleration, by about 7 percent for a typical medium-sized transport. Some calculations were made to evaluate the effect of using a Von Karman turbulence representation. These results showed that using the Von Karman representation generally resulted in a span averaging effect about 3 percent larger.
Mathematical and computational aspects of nonuniform frictional slip modeling
NASA Astrophysics Data System (ADS)
Gorbatikh, Larissa
2004-07-01
A mechanics-based model of non-uniform frictional sliding is studied from the mathematical/computational analysis point of view. This problem is of a key importance for a number of applications (particularly geomechanical ones), where materials interfaces undergo partial frictional sliding under compression and shear. We show that the problem is reduced to Dirichlet's problem for monotonic loading and to Riemman's problem for cyclic loading. The problem may look like a traditional crack interaction problem, however, it is confounded by the fact that locations of n sliding intervals are not known. They are to be determined from the condition for the stress intensity factors: KII=0 at the ends of the sliding zones. Computationally, it reduces to solving a system of 2n coupled non-linear algebraic equations involving singular integrals with unknown limits of integration.
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.
1979-01-01
The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.
Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle
NASA Astrophysics Data System (ADS)
Wang, Ten-See
2009-07-01
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
1999-01-01
The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.
Large scale cardiac modeling on the Blue Gene supercomputer.
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U; Weiss, Daniel L; Seemann, Gunnar; Dössel, Olaf; Pitman, Michael C; Rice, John J
2008-01-01
Multi-scale, multi-physical heart models have not yet been able to include a high degree of accuracy and resolution with respect to model detail and spatial resolution due to computational limitations of current systems. We propose a framework to compute large scale cardiac models. Decomposition of anatomical data in segments to be distributed on a parallel computer is carried out by optimal recursive bisection (ORB). The algorithm takes into account a computational load parameter which has to be adjusted according to the cell models used. The diffusion term is realized by the monodomain equations. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Heterogeneous anisotropy was included in the computation. Model weights as input for the decomposition and load balancing were set to (a) 1 for tissue and 0 for non-tissue elements; (b) 10 for tissue and 1 for non-tissue elements. Scaling results for 512, 1024, 2048, 4096 and 8192 computational nodes were obtained for 10 ms simulation time. The simulations were carried out on an IBM Blue Gene/L parallel computer. A 1 s simulation was then carried out on 2048 nodes for the optimal model load. Load balances did not differ significantly across computational nodes even if the number of data elements distributed to each node differed greatly. Since the ORB algorithm did not take into account computational load due to communication cycles, the speedup is close to optimal for the computation time but not optimal overall due to the communication overhead. However, the simulation times were reduced form 87 minutes on 512 to 11 minutes on 8192 nodes. This work demonstrates that it is possible to run simulations of the presented detailed cardiac model within hours for the simulation of a heart beat.
Assessing Cognitive Load Theory to Improve Student Learning for Mechanical Engineers
ERIC Educational Resources Information Center
Impelluso, Thomas J.
2009-01-01
A computer programming class for students of mechanical engineering was redesigned and assessed: Cognitive Load Theory was used to redesign the content; online technologies were used to redesign the delivery. Student learning improved and the dropout rate was reduced. This article reports on both attitudinal and objective assessment: comparing…
The Impact of Wireless Technology on Loading Trucks at an Auto Parts Distribution Center
ERIC Educational Resources Information Center
Goomas, David T.
2012-01-01
An intervention was introduced for truck loaders that used wireless vehicle mount computers that included auditory, visual feedback, and immediate data delivery. The implementation reliably reduced pallets from being loaded out of sequence for all outbound trucks in multistop routes. The role of the organizational behavior management (OBM)…
NASA Astrophysics Data System (ADS)
Park, Jin-Young; Lee, Dong-Eun; Kim, Byung-Soo
2017-10-01
Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and LCA (life cycle assessment) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review in the early design phase where it is difficult to obtain such information. In this study, computation system for construction quantity based on standard cross section of road drainage facilities was developed to compute construction quantity required for LCA using only information available in the early design phase to develop and verify the effectiveness of a model that can perform environmental load estimation. The result showed that it is an effective model that can be used in the early design phase as it revealed a 13.39% mean absolute error rate.
Kitayama, Shuzo; Nasser, Nasser A; Pilecki, Peter; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M
2011-05-01
To evaluate the effect of resin coating and occlusal loading on microleakage of class II computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic restorations. Molars were prepared for an mesio-occlusal-distal (MOD) inlay and were divided into two groups: non-coated (controls); and resin-coated, in which the cavity was coated with a combination of a dentin bonding system (Clearfil Protect Bond) and a flowable resin composite (Clearfil Majesty Flow). Ceramic inlays were fabricated using the CAD/CAM technique (CEREC 3) and cemented with resin cement (Clearfil Esthetic Cement). After 24 h of water storage, the restored teeth in each group were divided into two subgroups: unloaded or loaded with an axial force of 80 N at a rate of 2.5 cycles/s for 250,000 cycles while stored in water. After immersion in 0.25% Rhodamine B solution, the teeth were sectioned bucco-lingually at the mesial and distal boxes. Tandem scanning confocal microscopy (TSM) was used for evaluation of microleakage. The locations of the measurements were assigned to the cavity walls and floor. Loading did not have a significant effect on microleakage in either the resin-coated or non-coated group. Resin coating significantly reduced microleakage regardless of loading. The cavity floor exhibited greater microleakage compared to the cavity wall. TSM observation also revealed that microleakage at the enamel surface was minimal regardless of resin coating. In contrast, non-coated dentin showed extensive leakage, whereas resin-coated dentin showed decreased leakage. Resin coating with a combination of a dentin-bonding system and a flowable resin composite may be indicated prior to impression-taking when restoring teeth with CAD/CAM ceramic inlays in order to reduce microleakage at the tooth-resin interface.
Cloud computing task scheduling strategy based on differential evolution and ant colony optimization
NASA Astrophysics Data System (ADS)
Ge, Junwei; Cai, Yu; Fang, Yiqiu
2018-05-01
This paper proposes a task scheduling strategy DEACO based on the combination of Differential Evolution (DE) and Ant Colony Optimization (ACO), aiming at the single problem of optimization objective in cloud computing task scheduling, this paper combines the shortest task completion time, cost and load balancing. DEACO uses the solution of the DE to initialize the initial pheromone of ACO, reduces the time of collecting the pheromone in ACO in the early, and improves the pheromone updating rule through the load factor. The proposed algorithm is simulated on cloudsim, and compared with the min-min and ACO. The experimental results show that DEACO is more superior in terms of time, cost, and load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Keller, J.; LaCava, W.
2012-09-01
This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planetmore » load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.« less
Experimental and analytical investigation of active loads control for aircraft landing gear
NASA Technical Reports Server (NTRS)
Morris, D. L.; Mcgehee, J. R.
1983-01-01
A series hydraulic, active loads control main landing gear from a light, twin-engine civil aircraft was investigated. Tests included landing impact and traversal of simulated runway roughness. It is shown that the active gear is feasible and very effective in reducing the force transmitted to the airframe. Preliminary validation of a multidegree of freedom active gear flexible airframe takeoff and landing analysis computer program, which may be used as a design tool for active gear systems, is accomplished by comparing experimental and computed data for the passive and active gears.
Choi, Sulki
2017-01-01
PURPOSE The goal of this study was to evaluate the fracture resistances of various monolithic crowns fabricated by computer-aided design and computer-aided manufacturing (CAD/CAM) with different thickness. MATERIALS AND METHODS Test dies were fabricated as mandibular molar forms with occlusal reductions using CAD/CAM. With different occlusal thickness (1.0 or 1.5 mm), a polymer-infiltrated ceramic network (Enamic, EN), and zirconia-reinforced lithium silicate (Suprinity, SU and Celtra-Duo, CD) were used to fabricate molar crowns. Lithium disilicate (e.max CAD, EM) crowns (occlusal: 1.5 mm) were fabricated as control. Seventy crowns (n=10 per group) were bonded to abutments and stored in water for 24 hours. A universal testing machine was used to apply load to crown until fracture. The fractured specimens were examined with a scanning electron microscopy. RESULTS The type of ceramics and the occlusal thickness showed a significant interaction. With a recommended thickness (1.5 mm), the SU revealed the mean load similar to the EM, higher compared with those of the EN and CD. The fracture loads in a reduced thickness (1.0 mm) were similar among the SU, CD, and EN. The mean fracture load of the SU and CD enhanced significantly when the occlusal thickness increased, whereas that of the EN did not. CONCLUSION The fracture loads of monolithic crowns were differently influenced by the changes in occlusal thickness, depending on the type of ceramics. Within the limitations of this study, all the tested crowns withstood the physiological masticatory loads both at the recommended and reduced occlusal thickness. PMID:29279761
Nonlinear Reduced-Order Analysis with Time-Varying Spatial Loading Distributions
NASA Technical Reports Server (NTRS)
Prezekop, Adam
2008-01-01
Oscillating shocks acting in combination with high-intensity acoustic loadings present a challenge to the design of resilient hypersonic flight vehicle structures. This paper addresses some features of this loading condition and certain aspects of a nonlinear reduced-order analysis with emphasis on system identification leading to formation of a robust modal basis. The nonlinear dynamic response of a composite structure subject to the simultaneous action of locally strong oscillating pressure gradients and high-intensity acoustic loadings is considered. The reduced-order analysis used in this work has been previously demonstrated to be both computationally efficient and accurate for time-invariant spatial loading distributions, provided that an appropriate modal basis is used. The challenge of the present study is to identify a suitable basis for loadings with time-varying spatial distributions. Using a proper orthogonal decomposition and modal expansion, it is shown that such a basis can be developed. The basis is made more robust by incrementally expanding it to account for changes in the location, frequency and span of the oscillating pressure gradient.
Kitayama, Shuzo; Pilecki, Peter; Nasser, Nasser A; Bravis, Theodora; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M
2009-08-01
This study investigated the effect of resin coating and occlusal loading on adhesion and microleakage of all-ceramic crowns. Molars were prepared for an all-ceramic crown and were divided into two groups: non-coated (control) and resin-coated with Clearfil Tri-S Bond. Crowns were fabricated using CEREC 3 and cemented using Clearfil Esthetic Cement. After 24 h of storage in water, the restored teeth in each group were divided into two subgroups: unloaded, or loaded while stored in water. Mechanical loading was achieved with an axial force of 80 N at 2.5 cycles s(-1) for 250,000 cycles. After immersion in Rhodamine B, the specimens were sectioned and processed for microleakage evaluation by confocal microscopy, which was followed by further sectioning for microtensile bond testing. Loading had no significant effect on microleakage in either the resin-coated or non-resin-coated groups. Resin coating did not reduce the microleakage at the dentine interface but increased the microleakage at the enamel interface. All the beams fractured during slicing when non-coated and loaded. The bond strengths of non-coated and unloaded, resin-coated and unloaded, and resin-coated and loaded groups were 15.82 +/- 4.22, 15.17 +/- 5.24, and 12.97 +/- 5.82 MPa, respectively. Resin coating with Clearfil Tri-S Bond improved the bonding of resin cement to dentine for loaded specimens. However, it was not effective in reducing the microleakage, regardless of whether it was loaded or unloaded.
NASA Astrophysics Data System (ADS)
Liang, Ke; Sun, Qin; Liu, Xiaoran
2018-05-01
The theoretical buckling load of a perfect cylinder must be reduced by a knock-down factor to account for structural imperfections. The EU project DESICOS proposed a new robust design for imperfection-sensitive composite cylindrical shells using the combination of deterministic and stochastic simulations, however the high computational complexity seriously affects its wider application in aerospace structures design. In this paper, the nonlinearity reduction technique and the polynomial chaos method are implemented into the robust design process, to significantly lower computational costs. The modified Newton-type Koiter-Newton approach which largely reduces the number of degrees of freedom in the nonlinear finite element model, serves as the nonlinear buckling solver to trace the equilibrium paths of geometrically nonlinear structures efficiently. The non-intrusive polynomial chaos method provides the buckling load with an approximate chaos response surface with respect to imperfections and uses buckling solver codes as black boxes. A fast large-sample study can be applied using the approximate chaos response surface to achieve probability characteristics of buckling loads. The performance of the method in terms of reliability, accuracy and computational effort is demonstrated with an unstiffened CFRP cylinder.
Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2006-01-01
A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.
Method of up-front load balancing for local memory parallel processors
NASA Technical Reports Server (NTRS)
Baffes, Paul Thomas (Inventor)
1990-01-01
In a parallel processing computer system with multiple processing units and shared memory, a method is disclosed for uniformly balancing the aggregate computational load in, and utilizing minimal memory by, a network having identical computations to be executed at each connection therein. Read-only and read-write memory are subdivided into a plurality of process sets, which function like artificial processing units. Said plurality of process sets is iteratively merged and reduced to the number of processing units without exceeding the balance load. Said merger is based upon the value of a partition threshold, which is a measure of the memory utilization. The turnaround time and memory savings of the instant method are functions of the number of processing units available and the number of partitions into which the memory is subdivided. Typical results of the preferred embodiment yielded memory savings of from sixty to seventy five percent.
The origin of lattice instability in bcc tungsten under triaxial loading
NASA Astrophysics Data System (ADS)
Černý, Miroslav; Řehák, Petr; Pokluda, Jaroslav
2017-11-01
Stability of ideal bcc tungsten crystal under triaxial tensile loading was explored from first principles using an analysis of both elastic and dynamic stability. The triaxial stress state was considered as a superposition of axial and biaxial transverse stresses. The region of attainable stresses which was delimited using the computed tensile stress maxima was marginally reduced by occurrence of soft phonons in the crystal lattice. While, under purely hydrostatic tension, the crystal was predicted stable up to 48 GPa, greater magnitude of a differential stress reduced the value of a mean (hydrostatic) stress associated with first phonon instabilities to about 35 GPa. This value is rather close to that recently determined in experiment. Computed phonon spectra were successfully verified with the help of atomistic models of microscopic lattice deformation.
Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion
NASA Technical Reports Server (NTRS)
Gallo, C. A.; Thompson, W. K.; Lewandowski, B. E.; Humphreys, B. T.; Funk, J. H.; Funk, N. H.; Weaver, A. S.; Perusek, G. P.; Sheehan, C. C.; Mulugeta, L.
2015-01-01
Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.
Gonik, Bernard; Zhang, Ning; Grimm, Michele J
2003-04-01
A computer model was modified to study the impact of maternal endogenous and clinician-applied exogenous delivery loads on the contact force between the anterior fetal shoulder and the maternal symphysis pubis. Varying endogenous and exogenous loads were applied, and the contact force was determined. Experiments also examined the effect of pelvic orientation and the direction of load application on contact force behind the symphysis pubis. Exogenous loading forces (50-100 N) resulted in anterior shoulder contact forces of 107 to 127 N, with delivery accomplished at 100 N of applied load. Higher contact forces (147-272 N) were noted for endogenously applied loads (100-400 N), with delivery occurring at 400 N of maternal force. Pelvic rotation from lithotomy to McRoberts' positioning resulted in reduced contact forces. Downward lateral flexion of the fetal head led to little difference in contact force but required 30% more exogenous load to achieve delivery. Compared with clinician-applied exogenous force, larger maternally derived endogenous forces are needed to clear the impacted anterior fetal shoulder. This is associated with >2 times more contact force by the obstructing symphysis pubis. McRoberts' positioning reduces shoulder-symphysis pubis contact force. Lateral flexion of the fetal head results in the larger forces that are needed for delivery but has little effect on contact force. Model refinements are needed to examine delivery forces and brachial plexus stretching more specifically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi
This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process. The objective of this study is to verify the generalized body-modes approach in comparison to high-fidelity FSI simulations to accurately predict structural deflections and stress loads in a WEC. Two verification cases are considered, a free-floating barge and a fixed-bottom column. Details for both the generalized body-modes models and FSI models are first provided. Results for each of the models are then compared and discussed. Finally, based on the verification results obtained, future plans for incorporating the generalized body-modes method into the WEC simulation tool, WEC-Sim, and the overall WEC design process are discussed.« less
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
An analysis of running skyline load path.
Ward W. Carson; Charles N. Mann
1971-01-01
This paper is intended for those who wish to prepare an algorithm to determine the load path of a running skyline. The mathematics of a simplified approach to this running skyline design problem are presented. The approach employs assumptions which reduce the complexity of the problem to the point where it can be solved on desk-top computers of limited capacities. The...
Computer-Aided Teaching Using MATLAB/Simulink for Enhancing an IM Course With Laboratory Tests
ERIC Educational Resources Information Center
Bentounsi, A.; Djeghloud, H.; Benalla, H.; Birem, T.; Amiar, H.
2011-01-01
This paper describes an automatic procedure using MATLAB software to plot the circle diagram for two induction motors (IMs), with wound and squirrel-cage rotors, from no-load and blocked-rotor tests. The advantage of this approach is that it avoids the need for a direct load test in predetermining the IM characteristics under reduced power.…
Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation
NASA Astrophysics Data System (ADS)
Medina, H.; Mutu, R.
2017-07-01
An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.
Efficient 3-D finite element failure analysis of compression loaded angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Burns, S. W.; Herakovich, C. T.; Williams, J. G.
1987-01-01
Finite element stress analysis and the tensor polynomial failure criterion predict that failure always initiates at the interface between layers on the hole edge for notched angle-ply laminates loaded in compression. The angular location of initial failure is a function of the fiber orientation in the laminate. The dominant stress components initiating failure are shear. It is shown that approximate symmetry can be used to reduce the computer resources required for the case of unaxial loading.
Analysis of high aspect ratio jet flap wings of arbitrary geometry.
NASA Technical Reports Server (NTRS)
Lissaman, P. B. S.
1973-01-01
Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.
Real-time POD-CFD Wind-Load Calculator for PV Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huayamave, Victor; Divo, Eduardo; Ceballos, Andres
The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such asmore » those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals of reducing the total installed cost of solar energy systems by 75%. The largest percentage of the total installed cost of solar energy system is associated with balance of system cost, with up to 40% going to “soft” costs; which include customer acquisition, financing, contracting, permitting, interconnection, inspection, installation, performance, operations, and maintenance. The calculator that is being developed will provide wind loads in real-time for any solar system designs and suggest the proper installation configuration and hardware; and therefore, it is anticipated to reduce system design, installation and permitting costs.« less
Effect of roof strength in injury mitigation during pole impact.
Friedman, Keith; Hutchinson, John; Mihora, Dennis; Kumar, Sri; Frieder, Russell; Sances, Anthony
2007-01-01
Motor vehicle accidents involving pole impacts often result in serious head and neck injuries to occupants. Pole impacts are typically associated with rollover and side collisions. During such events, the roof structure is often deformed into the occupant survival space. The existence of a strengthened roof structure would reduce roof deformation and accordingly provide better protection to occupants. The present study examines the effect of reinforced (strengthened) roofs using experimental crash study and computer model simulation. The experimental study includes the production cab structure of a pickup truck. The cab structure was loaded using an actual telephone pole under controlled laboratory conditions. The cab structure was subjected to two separate load conditions at the A-pillar and door frame. The contact force and deformation were measured using a force gauge and potentiometer, respectively. A computer finite element model was created to simulate the experimental studies. The results of finite element model matched well with experimental data during two different load conditions. The validated finite element model was then used to simulate a reinforced roof structure. The reinforced roof significantly reduced the structural deformations compared to those observed in the production roof. The peak deformation was reduced by approximately 75% and peak velocity was reduced by approximately 50%. Such a reduction in the deformation of the roof structure helps to maintain a safe occupant survival space.
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.
An analytical solution for the squeeze film between a nondeformable sphere and groove
NASA Technical Reports Server (NTRS)
Allen, C. W.; Wilson, M. P.
1972-01-01
An analysis is presented to compute the film thickness, pressure and load relations between a rigid ball and rigid groove in normal approach when lubricated by a fluid with an exponential pressure-viscosity relationship. The geometry of the ball-groove system is reduced to the equivalent system of a paraboloid approaching a flat plate. Exact and approximate solutions are presented for the load and pressure relations. There is found to be a limiting load for a given geometry and lubricant regardless of the rate of approach.
ERIC Educational Resources Information Center
Lamb, Richard L.; Firestone, Jonah B.
2017-01-01
Conflicting explanations and unrelated information in science classrooms increase cognitive load and decrease efficiency in learning. This reduced efficiency ultimately limits one's ability to solve reasoning problems in the science. In reasoning, it is the ability of students to sift through and identify critical pieces of information that is of…
Comparison between a typical and a simplified model for blast load-induced structural response
NASA Astrophysics Data System (ADS)
Abd-Elhamed, A.; Mahmoud, S.
2017-02-01
As explosive blasts continue to cause severe damage as well as victims in both civil and military environments. There is a bad need for understanding the behavior of structural elements to such extremely short duration dynamic loads where it is of great concern nowadays. Due to the complexity of the typical blast pressure profile model and in order to reduce the modelling and computational efforts, the simplified triangle model for blast loads profile is used to analyze structural response. This simplified model considers only the positive phase and ignores the suction phase which characterizes the typical one in simulating blast loads. The closed from solution for the equation of motion under blast load as a forcing term modelled either typical or simplified models has been derived. The considered herein two approaches have been compared using the obtained results from simulation response analysis of a building structure under an applied blast load. The computed error in simulating response using the simplified model with respect to the typical one has been computed. In general, both simplified and typical models can perform the dynamic blast-load induced response of building structures. However, the simplified one shows a remarkably different response behavior as compared to the typical one despite its simplicity and the use of only positive phase for simulating the explosive loads. The prediction of the dynamic system responses using the simplified model is not satisfactory due to the obtained larger errors as compared to the system responses obtained using the typical one.
Indirect addressing and load balancing for faster solution to Mandelbrot Set on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1989-01-01
SIMD computers with local indirect addressing allow programs to have queues and buffers, making certain kinds of problems much more efficient. Examined here are a class of problems characterized by computations on data points where the computation is identical, but the convergence rate is data dependent. Normally, in this situation, the algorithm time is governed by the maximum number of iterations required by each point. Using indirect addressing allows a processor to proceed to the next data point when it is done, reducing the overall number of iterations required to approach the mean convergence rate when a sufficiently large problem set is solved. Load balancing techniques can be applied for additional performance improvement. Simulations of this technique applied to solving Mandelbrot Sets indicate significant performance gains.
Fiber pushout test: A three-dimensional finite element computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.
1990-01-01
A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computationally very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictional stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.
Development of an aeroelastic methodology for surface morphing rotors
NASA Astrophysics Data System (ADS)
Cook, James R.
Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.
Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes
Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; ...
2015-09-15
Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinearmore » normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.« less
Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les
NASA Astrophysics Data System (ADS)
Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.
2005-02-01
Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.
Data centers as dispatchable loads to harness stranded power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kibaek; Yang, Fan; Zavala, Victor M.
Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less
Data centers as dispatchable loads to harness stranded power
Kim, Kibaek; Yang, Fan; Zavala, Victor M.; ...
2016-07-20
Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less
Load-bearing capacity of all-ceramic posterior inlay-retained fixed dental prostheses.
Puschmann, Djamila; Wolfart, Stefan; Ludwig, Klaus; Kern, Matthias
2009-06-01
The purpose of this in vitro study was to compare the quasi-static load-bearing capacity of all-ceramic resin-bonded three-unit inlay-retained fixed dental prostheses (IRFDPs) made from computer-aided design/computer-aided manufacturing (CAD/CAM)-manufactured yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) frameworks with two different connector dimensions, with and without fatigue loading. Twelve IRFDPs each were made with connector dimensions 3 x 3 mm(2) (width x height) (control group) and 3 x 2 mm(2) (test group). Inlay-retained fixed dental prostheses were adhesively cemented on identical metal-models using composite resin cement. Subgroups of six specimens each were fatigued with maximal 1,200,000 loading cycles in a chewing simulator with a weight load of 25 kg and a load frequency of 1.5 Hz. The load-bearing capacity was tested in a universal testing machine for IRFDPs without fatigue loading and for IRFDPs that had not already fractured during fatigue loading. During fatigue testing one IRFDP (17%) of the test group failed. Under both loading conditions, IRFDPs of the control group exhibited statistically significantly higher load-bearing capacities than the test group. Fatigue loading reduced the load-bearing capacity in both groups. Considering the maximum chewing forces in the molar region, it seems possible to use zirconia ceramic as a core material for IRFDPs with a minimum connector dimension of 9 mm(2). A further reduction of the connector dimensions to 6 mm(2) results in a significant reduction of the load-bearing capacity.
Computational characterization of fracture healing under reduced gravity loading conditions.
Gadomski, Benjamin C; Lerner, Zachary F; Browning, Raymond C; Easley, Jeremiah T; Palmer, Ross H; Puttlitz, Christian M
2016-07-01
The literature is deficient with regard to how the localized mechanical environment of skeletal tissue is altered during reduced gravitational loading and how these alterations affect fracture healing. Thus, a finite element model of the ovine hindlimb was created to characterize the local mechanical environment responsible for the inhibited fracture healing observed under experimental simulated hypogravity conditions. Following convergence and verification studies, hydrostatic pressure and strain within a diaphyseal fracture of the metatarsus were evaluated for models under both 1 and 0.25 g loading environments and compared to results of a related in vivo study. Results of the study suggest that reductions in hydrostatic pressure and strain of the healing fracture for animals exposed to reduced gravitational loading conditions contributed to an inhibited healing process, with animals exposed to the simulated hypogravity environment subsequently initiating an intramembranous bone formation process rather than the typical endochondral ossification healing process experienced by animals healing in a 1 g gravitational environment. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1206-1215, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Computational analysis of high resolution unsteady airloads for rotor aeroacoustics
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.
1994-01-01
The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.
Wind Farm Flow Modeling using an Input-Output Reduced-Order Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter
Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less
Real-time polarization imaging algorithm for camera-based polarization navigation sensors.
Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli
2017-04-10
Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.
The impact of working technique on physical loads - an exposure profile among newspaper editors.
Lindegård, A; Wahlström, J; Hagberg, M; Hansson, G-A; Jonsson, P; Wigaeus Tornqvist, E
2003-05-15
The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.
Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M
2017-01-01
OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.
Dynamic load balance scheme for the DSMC algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jin; Geng, Xiangren; Jiang, Dingwu
The direct simulation Monte Carlo (DSMC) algorithm, devised by Bird, has been used over a wide range of various rarified flow problems in the past 40 years. While the DSMC is suitable for the parallel implementation on powerful multi-processor architecture, it also introduces a large load imbalance across the processor array, even for small examples. The load imposed on a processor by a DSMC calculation is determined to a large extent by the total of simulator particles upon it. Since most flows are impulsively started with initial distribution of particles which is surely quite different from the steady state, themore » total of simulator particles will change dramatically. The load balance based upon an initial distribution of particles will break down as the steady state of flow is reached. The load imbalance and huge computational cost of DSMC has limited its application to rarefied or simple transitional flows. In this paper, by taking advantage of METIS, a software for partitioning unstructured graphs, and taking the total of simulator particles in each cell as a weight information, the repartitioning based upon the principle that each processor handles approximately the equal total of simulator particles has been achieved. The computation must pause several times to renew the total of simulator particles in each processor and repartition the whole domain again. Thus the load balance across the processors array holds in the duration of computation. The parallel efficiency can be improved effectively. The benchmark solution of a cylinder submerged in hypersonic flow has been simulated numerically. Besides, hypersonic flow past around a complex wing-body configuration has also been simulated. The results have displayed that, for both of cases, the computational time can be reduced by about 50%.« less
Synthesis of stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Thornton, W. A.
1974-01-01
Computer programs for the synthesis of shells of various configurations were developed. The conditions considered are: (1) uniform shells (mainly cones) using a membrane buckling analysis, (2) completely uniform shells (cones, spheres, toroidal segments) using linear bending prebuckling analysis, and (3) revision of second design process to reduce the number of design variables to about 30 by considering piecewise uniform designs. A perturbation formula was derived and this allows exact derivatives of the general buckling load to be computed with little additional computer time.
A Computer Based Moire Technique To Measure Very Small Displacements
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Amadshahi, Mansour A.; Subbaraman, B.
1987-02-01
The accuracy that can be achieved in the measurement of very small displacements in techniques such as moire, holography and speckle is limited by the noise inherent to the utilized optical devices. To reduce the noise to signal ratio, the moire method can be utilized. Two system of carrier fringes are introduced, an initial system before the load is applied and a final system when the load is applied. The moire pattern of these two systems contains the sought displacement information and the noise common to the two patterns is eliminated. The whole process is performed by a computer on digitized versions of the patterns. Examples of application are given.
Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.
2017-10-24
The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.
A high performance load balance strategy for real-time multicore systems.
Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing
2014-01-01
Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper.
A High Performance Load Balance Strategy for Real-Time Multicore Systems
Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing
2014-01-01
Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper. PMID:24955382
Zhu, Xiaoning
2014-01-01
Rail mounted gantry crane (RMGC) scheduling is important in reducing makespan of handling operation and improving container handling efficiency. In this paper, we present an RMGC scheduling optimization model, whose objective is to determine an optimization handling sequence in order to minimize RMGC idle load time in handling tasks. An ant colony optimization is proposed to obtain near optimal solutions. Computational experiments on a specific railway container terminal are conducted to illustrate the proposed model and solution algorithm. The results show that the proposed method is effective in reducing the idle load time of RMGC. PMID:25538768
Symplectic modeling of beam loading in electromagnetic cavities
Abell, Dan T.; Cook, Nathan M.; Webb, Stephen D.
2017-05-22
Simulating beam loading in radio frequency accelerating structures is critical for understanding higher-order mode effects on beam dynamics, such as beam break-up instability in energy recovery linacs. Full wave simulations of beam loading in radio frequency structures are computationally expensive, and while reduced models can ignore essential physics, it can be difficult to generalize. Here, we present a self-consistent algorithm derived from the least-action principle which can model an arbitrary number of cavity eigenmodes and with a generic beam distribution. It has been implemented in our new Open Library for Investigating Vacuum Electronics (OLIVE).
Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga
2010-01-01
Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.
Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime
NASA Astrophysics Data System (ADS)
Cowan, B. M.; Kalmykov, S. Y.; Beck, A.; Davoine, X.; Bunkers, K.; Lifschitz, A. F.; Lefebvre, E.; Bruhwiler, D. L.; Shadwick, B. A.; Umstadter, D. P.; Umstadter
2012-08-01
Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code vorpal (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code calder-circ (Lifschitz, A. F. et al. 2009 Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. J. Comput. Phys. 228(5), 1803-1814) uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of two simulations indicates that these are free of numerical artefacts. Both approaches thus retrieve the physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver.
Force Limited Vibration Testing: Computation C2 for Real Load and Probabilistic Source
NASA Astrophysics Data System (ADS)
Wijker, J. J.; de Boer, A.; Ellenbroek, M. H. M.
2014-06-01
To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications, in which the factor C2 is besides the random vibration specification, the total mass and the turnover frequency of the load(test item), a very important parameter. A number of computational methods to estimate C2 are described in the literature, i.e. the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. Both the STDFS and the CTDFS describe in a very reduced (simplified) manner the load and the source (adjacent structure to test item transferring the excitation forces, i.e. spacecraft supporting an instrument).The motivation of this work is to establish a method for the computation of a realistic value of C2 to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand formulated a conservative estimation of C2 based on maximum modal effective mass and damping of the test item (load) , when no description of the supporting structure (source) is available [13].Marchand discussed the formal description of getting C 2 , using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source, in combination with the apparent mass and total mass of the the load. This method is very convenient to compute the factor C 2 . However, finite element models are needed to compute the spectra of the PSD of both the acceleration and force at the interface between load and source.Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CMSA method is suitable to compute the valueof the parameter C 2 .When no mathematical model of the source can be made available, estimations of the value C2 can be find in literature.In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The computation of the value C2 can be done in conjunction with the CMSA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively.Strength & stiffness design rules for spacecraft, instrumentation, units, etc. will be practiced, as mentioned in ECSS Standards and Handbooks, Launch Vehicle User's manuals, papers, books , etc. A probabilistic description of the design parameters is foreseen.As an example a simple experiment has been worked out.
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson; Krishnamurthy, Thiagaraja; Sykes, Nancy P.; Elishakoff, Isaac
1993-01-01
Computations were performed to determine the effect of an overall bow-type imperfection on the reliability of structural panels under combined compression and shear loadings. A panel's reliability is the probability that it will perform the intended function - in this case, carry a given load without buckling or exceeding in-plane strain allowables. For a panel loaded in compression, a small initial bow can cause large bending stresses that reduce both the buckling load and the load at which strain allowables are exceeded; hence, the bow reduces the reliability of the panel. In this report, analytical studies on two stiffened panels quantified that effect. The bow is in the shape of a half-sine wave along the length of the panel. The size e of the bow at panel midlength is taken to be the single random variable. Several probability density distributions for e are examined to determine the sensitivity of the reliability to details of the bow statistics. In addition, the effects of quality control are explored with truncated distributions.
Saito, Masatoshi
2010-08-01
This article describes the spectral optimization of dual-energy computed tomography using balanced filters (bf-DECT) to reduce the tube loadings and dose by dedicating to the acquisition of electron density information, which is essential for treatment planning in radiotherapy. For the spectral optimization of bf-DECT, the author calculated the beam-hardening error and air kerma required to achieve a desired noise level in an electron density image of a 50-cm-diameter cylindrical water phantom. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimal combination of tube voltages was 80 kV/140 kV in conjunction with Tb/Hf and Bi/Mo filter pairs; this combination agrees with that obtained in a previous study [M. Saito, "Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method," Med. Phys. 36, 3631-3642 (2009)], although the thicknesses of the filters that yielded a minimum tube output were slightly different from those obtained in the previous study. The resultant tube loading of a low-energy scan of the present bf-DECT significantly decreased from 57.5 to 4.5 times that of a high-energy scan for conventional DECT. Furthermore, the air kerma of bf-DECT could be reduced to less than that of conventional DECT, while obtaining the same figure of merit for the measurement of electron density and effective atomic number. The tube-loading and dose efficiencies of bf-DECT were considerably improved by sacrificing the quality of the noise level in the images of effective atomic number.
User's manual for the Graphical Constituent Loading Analysis System (GCLAS)
Koltun, G.F.; Eberle, Michael; Gray, J.R.; Glysson, G.D.
2006-01-01
This manual describes the Graphical Constituent Loading Analysis System (GCLAS), an interactive cross-platform program for computing the mass (load) and average concentration of a constituent that is transported in stream water over a period of time. GCLAS computes loads as a function of an equal-interval streamflow time series and an equal- or unequal-interval time series of constituent concentrations. The constituent-concentration time series may be composed of measured concentrations or a combination of measured and estimated concentrations. GCLAS is not intended for use in situations where concentration data (or an appropriate surrogate) are collected infrequently or where an appreciable amount of the concentration values are censored. It is assumed that the constituent-concentration time series used by GCLAS adequately represents the true time-varying concentration. Commonly, measured constituent concentrations are collected at a frequency that is less than ideal (from a load-computation standpoint), so estimated concentrations must be inserted in the time series to better approximate the expected chemograph. GCLAS provides tools to facilitate estimation and entry of instantaneous concentrations for that purpose. Water-quality samples collected for load computation frequently are collected in a single vertical or at single point in a stream cross section. Several factors, some of which may vary as a function of time and (or) streamflow, can affect whether the sample concentrations are representative of the mean concentration in the cross section. GCLAS provides tools to aid the analyst in assessing whether concentrations in samples collected in a single vertical or at single point in a stream cross section exhibit systematic bias with respect to the mean concentrations. In cases where bias is evident, the analyst can construct coefficient relations in GCLAS to reduce or eliminate the observed bias. GCLAS can export load and concentration data in formats suitable for entry into the U.S. Geological Survey's National Water Information System. GCLAS can also import and export data in formats that are compatible with various commonly used spreadsheet and statistics programs.
Efficient Computation Of Behavior Of Aircraft Tires
NASA Technical Reports Server (NTRS)
Tanner, John A.; Noor, Ahmed K.; Andersen, Carl M.
1989-01-01
NASA technical paper discusses challenging application of computational structural mechanics to numerical simulation of responses of aircraft tires during taxing, takeoff, and landing. Presents details of three main elements of computational strategy: use of special three-field, mixed-finite-element models; use of operator splitting; and application of technique reducing substantially number of degrees of freedom. Proposed computational strategy applied to two quasi-symmetric problems: linear analysis of anisotropic tires through use of two-dimensional-shell finite elements and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry and combinations exhibited by response of tire identified.
Distributed intrusion detection system based on grid security model
NASA Astrophysics Data System (ADS)
Su, Jie; Liu, Yahui
2008-03-01
Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.
Description of a MIL-STD-1553B Data Bus Ada Driver for the LeRC EPS Testbed
NASA Technical Reports Server (NTRS)
Mackin, Michael A.
1995-01-01
This document describes the software designed to provide communication between control computers in the NASA Lewis Research Center Electrical Power System Testbed using MIL-STD-1553B. The software drivers are coded in the Ada programming language and were developed on a MSDOS-based computer workstation. The Electrical Power System (EPS) Testbed is a reduced-scale prototype space station electrical power system. The power system manages and distributes electrical power from the sources (batteries or photovoltaic arrays) to the end-user loads. The electrical system primary operates at 120 volts DC, and the secondary system operates at 28 volts DC. The devices which direct the flow of electrical power are controlled by a network of six control computers. Data and control messages are passed between the computers using the MIL-STD-1553B network. One of the computers, the Power Management Controller (PMC), controls the primary power distribution and another, the Load Management Controller (LMC), controls the secondary power distribution. Each of these computers communicates with two other computers which act as subsidiary controllers. These subsidiary controllers are, in turn, connected to the devices which directly control the flow of electrical power.
NASA Astrophysics Data System (ADS)
Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts
2012-11-01
In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.
NASA Astrophysics Data System (ADS)
Errico, F.; Ichchou, M.; De Rosa, S.; Bareille, O.; Franco, F.
2018-06-01
The stochastic response of periodic flat and axial-symmetric structures, subjected to random and spatially-correlated loads, is here analysed through an approach based on the combination of a wave finite element and a transfer matrix method. Although giving a lower computational cost, the present approach keeps the same accuracy of classic finite element methods. When dealing with homogeneous structures, the accuracy is also extended to higher frequencies, without increasing the time of calculation. Depending on the complexity of the structure and the frequency range, the computational cost can be reduced more than two orders of magnitude. The presented methodology is validated both for simple and complex structural shapes, under deterministic and random loads.
Simulating Vibrations in a Complex Loaded Structure
NASA Technical Reports Server (NTRS)
Cao, Tim T.
2005-01-01
The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.
Identifying Optimal Measurement Subspace for the Ensemble Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Huang, Zhenyu; Welch, Greg
2012-05-24
To reduce the computational load of the ensemble Kalman filter while maintaining its efficacy, an optimization algorithm based on the generalized eigenvalue decomposition method is proposed for identifying the most informative measurement subspace. When the number of measurements is large, the proposed algorithm can be used to make an effective tradeoff between computational complexity and estimation accuracy. This algorithm also can be extended to other Kalman filters for measurement subspace selection.
Topology Optimization for Reducing Additive Manufacturing Processing Distortions
2017-12-01
features that curl or warp under thermal load and are subsequently struck by the recoater blade /roller. Support structures act to wick heat away and...was run for 150 iterations. The material properties for all examples were Young’s modulus E = 1 GPa, Poisson’s ratio ν = 0.25, and thermal expansion...the element-birth model is significantly more computationally expensive for a full op- timization run . Consider, the computational complexity of a
Introducing the Computer to Family Practice
Petreman, Mel
1984-01-01
The medical profession has been far more reluctant than the general business community to adopt the computer as a useful business tool. The experience of a group of five family physicians who have been using a computer since 1979 demonstrates that it is possible to achieve significant financial benefits, and to reduce the stress and workload of both physicians and office staff. The computerization of medical records, scheduling, and patient billing is discussed in detail. Physicians have controlled the paper load of the modern medical office by pioneering their own medical software system. PMID:21279036
A synchronized computational architecture for generalized bilateral control of robot arms
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan
1987-01-01
This paper describes a computational architecture for an interconnected high speed distributed computing system for generalized bilateral control of robot arms. The key method of the architecture is the use of fully synchronized, interrupt driven software. Since an objective of the development is to utilize the processing resources efficiently, the synchronization is done in the hardware level to reduce system software overhead. The architecture also achieves a balaced load on the communication channel. The paper also describes some architectural relations to trading or sharing manual and automatic control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-08-04
This code is an enhancement to the existing FLORIS code, SWR 14-20. In particular, this enhancement computes overall thrust and turbulence intensity throughout a wind plant. This information is used to form a description of the fatigue loads experienced throughtout the wind plant. FLORIS has been updated to include an optimization routine that optimizes FLORIS to minimize thrust and turbulence intensity (and therefore loads) across the wind plant. Previously, FLORIS had been designed to optimize power out of a wind plant. However, as turbines age, more wind plant owner/operators are looking for ways to reduce their fatigue loads without sacrificingmore » too much power.« less
An optimized network for phosphorus load monitoring for Lake Okeechobee, Florida
Gain, W.S.
1997-01-01
Phosphorus load data were evaluated for Lake Okeechobee, Florida, for water years 1982 through 1991. Standard errors for load estimates were computed from available phosphorus concentration and daily discharge data. Components of error were associated with uncertainty in concentration and discharge data and were calculated for existing conditions and for 6 alternative load-monitoring scenarios for each of 48 distinct inflows. Benefit-cost ratios were computed for each alternative monitoring scenario at each site by dividing estimated reductions in load uncertainty by the 5-year average costs of each scenario in 1992 dollars. Absolute and marginal benefit-cost ratios were compared in an iterative optimization scheme to determine the most cost-effective combination of discharge and concentration monitoring scenarios for the lake. If the current (1992) discharge-monitoring network around the lake is maintained, the water-quality sampling at each inflow site twice each year is continued, and the nature of loading remains the same, the standard error of computed mean-annual load is estimated at about 98 metric tons per year compared to an absolute loading rate (inflows and outflows) of 530 metric tons per year. This produces a relative uncertainty of nearly 20 percent. The standard error in load can be reduced to about 20 metric tons per year (4 percent) by adopting an optimized set of monitoring alternatives at a cost of an additional $200,000 per year. The final optimized network prescribes changes to improve both concentration and discharge monitoring. These changes include the addition of intensive sampling with automatic samplers at 11 sites, the initiation of event-based sampling by observers at another 5 sites, the continuation of periodic sampling 12 times per year at 1 site, the installation of acoustic velocity meters to improve discharge gaging at 9 sites, and the improvement of a discharge rating at 1 site.
NASA Astrophysics Data System (ADS)
Yagi Kim, Mika
As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; ...
2016-11-03
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
Gayathri, N K; Aparna, V; Maya, S; Biswas, Raja; Jayakumar, R; Mohan, C Gopi
2017-12-01
We present a computational investigation of binding affinity of different types of drugs with chitin nanocarriers. Understanding the chitn polymer-drug interaction is important to design and optimize the chitin based drug delivery systems. The binding affinity of three different types of anti-bacterial drugs Ethionamide (ETA) Methacycline (MET) and Rifampicin (RIF) with amorphous chitin nanoparticles (AC-NPs) were studied by integrating computational and experimental techniques. The binding energies (BE) of hydrophobic ETA, hydrophilic MET and hydrophobic RIF were -7.3kcal/mol, -5.1kcal/mol and -8.1kcal/mol respectively, with respect to AC-NPs, using molecular docking studies. This theoretical result was in good correlation with the experimental studies of AC-drug loading and drug entrapment efficiencies of MET (3.5±0.1 and 25± 2%), ETA (5.6±0.02 and 45±4%) and RIF (8.9±0.20 and 53±5%) drugs respectively. Stability studies of the drug encapsulated nanoparticles showed stable values of size, zeta and polydispersity index at 6°C temperature. The correlation between computational BE and experimental drug entrapment efficiencies of RIF, ETA and MET drugs with four AC-NPs strands were 0.999 respectively, while that of the drug loading efficiencies were 0.854 respectively. Further, the molecular docking results predict the atomic level details derived from the electrostatic, hydrogen bonding and hydrophobic interactions of the drug and nanoparticle for its encapsulation and loading in the chitin-based host-guest nanosystems. The present results thus revealed the drug loading and drug delivery insights and has the potential of reducing the time and cost of processing new antibiotic drug delivery nanosystem optimization, development and discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
System reliability of randomly vibrating structures: Computational modeling and laboratory testing
NASA Astrophysics Data System (ADS)
Sundar, V. S.; Ammanagi, S.; Manohar, C. S.
2015-09-01
The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.
Grubbs, J.W.; Pittman, J.R.
1997-01-01
Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations from the water samples collected from Perdido Bay indicated a significant amount of mixing of saltwater and freshwater. Mixing effects could greatly reduce the accuracy of estimates of net loads of nutrients or other substances. The study results indicate that acoustical techniques can yield acceptable estimates of instantaneous loads in Perdido Bay. However, estimates of net loads should be interpreted with great caution and may have unacceptably large errors, especially when saltwater and freshwater concentrations differ greatly.
Reduced complexity structural modeling for automated airframe synthesis
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1987-01-01
A procedure is developed for the optimum sizing of wing structures based on representing the built-up finite element assembly of the structure by equivalent beam models. The reduced-order beam models are computationally less demanding in an optimum design environment which dictates repetitive analysis of several trial designs. The design procedure is implemented in a computer program requiring geometry and loading information to create the wing finite element model and its equivalent beam model, and providing a rapid estimate of the optimum weight obtained from a fully stressed design approach applied to the beam. The synthesis procedure is demonstrated for representative conventional-cantilever and joined wing configurations.
Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.
NASA Astrophysics Data System (ADS)
Lu, Zheng; Lu, Xilin; Lu, Wensheng; Masri, Sami F.
2012-04-01
This paper presents a systematic experimental investigation of the effects of buffered particle dampers attached to a multi-degree-of-freedom (mdof) system under different dynamic loads (free vibration, random excitation as well as real onsite earthquake excitations), and analytical/computational study of such a system. A series of shaking table tests of a three-storey steel frame with the buffered particle damper system are carried out to evaluate the performance and to verify the analysis method. It is shown that buffered particle dampers have good performance in reducing the response of structures under dynamic loads, especially under random excitation case. It can effectively control the fundamental mode of the mdof primary system; however, the control effect for higher modes is variable. It is also shown that, for a specific container geometry, a certain mass ratio leads to more efficient momentum transfer from the primary system to the particles with a better vibration attenuation effect, and that buffered particle dampers have better control effect than the conventional rigid ones. An analytical solution based on the discrete element method is also presented. Comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system can be obtained. Properly designed buffered particle dampers can effectively reduce the response of lightly damped mdof primary system with a small weight penalty, under different dynamic loads.
NASA Astrophysics Data System (ADS)
Gan, Chee Kwan; Challacombe, Matt
2003-05-01
Recently, early onset linear scaling computation of the exchange-correlation matrix has been achieved using hierarchical cubature [J. Chem. Phys. 113, 10037 (2000)]. Hierarchical cubature differs from other methods in that the integration grid is adaptive and purely Cartesian, which allows for a straightforward domain decomposition in parallel computations; the volume enclosing the entire grid may be simply divided into a number of nonoverlapping boxes. In our data parallel approach, each box requires only a fraction of the total density to perform the necessary numerical integrations due to the finite extent of Gaussian-orbital basis sets. This inherent data locality may be exploited to reduce communications between processors as well as to avoid memory and copy overheads associated with data replication. Although the hierarchical cubature grid is Cartesian, naive boxing leads to irregular work loads due to strong spatial variations of the grid and the electron density. In this paper we describe equal time partitioning, which employs time measurement of the smallest sub-volumes (corresponding to the primitive cubature rule) to load balance grid-work for the next self-consistent-field iteration. After start-up from a heuristic center of mass partitioning, equal time partitioning exploits smooth variation of the density and grid between iterations to achieve load balance. With the 3-21G basis set and a medium quality grid, equal time partitioning applied to taxol (62 heavy atoms) attained a speedup of 61 out of 64 processors, while for a 110 molecule water cluster at standard density it achieved a speedup of 113 out of 128. The efficiency of equal time partitioning applied to hierarchical cubature improves as the grid work per processor increases. With a fine grid and the 6-311G(df,p) basis set, calculations on the 26 atom molecule α-pinene achieved a parallel efficiency better than 99% with 64 processors. For more coarse grained calculations, superlinear speedups are found to result from reduced computational complexity associated with data parallelism.
Progressive Damage and Failure Analysis of Composite Laminates
NASA Astrophysics Data System (ADS)
Joseph, Ashith P. K.
Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis tool is validated by comparing the simulations against experiments for a selected number of quasi-static loading cases.
Cern, Ahuva; Marcus, David; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2017-04-28
Remote drug loading into nano-liposomes is in most cases the best method for achieving high concentrations of active pharmaceutical ingredients (API) per nano-liposome that enable therapeutically viable API-loaded nano-liposomes, referred to as nano-drugs. This approach also enables controlled drug release. Recently, we constructed computational models to identify APIs that can achieve the desired high concentrations in nano-liposomes by remote loading. While those previous models included a broad spectrum of experimental conditions and dealt only with loading, here we reduced the scope to the molecular characteristics alone. We model and predict API suitability for nano-liposomal delivery by fixing the main experimental conditions: liposome lipid composition and size to be similar to those of Doxil® liposomes. On that basis, we add a prediction of drug leakage from the nano-liposomes during storage. The latter is critical for having pharmaceutically viable nano-drugs. The "load and leak" models were used to screen two large molecular databases in search of candidate APIs for delivery by nano-liposomes. The distribution of positive instances in both loading and leakage models was similar in the two databases screened. The screening process identified 667 molecules that were positives by both loading and leakage models (i.e., both high-loading and stable). Among them, 318 molecules received a high score in both properties and of these, 67 are FDA-approved drugs. This group of molecules, having diverse pharmacological activities, may be the basis for future liposomal drug development. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1973-01-01
This user's manual describes the FORTRAN IV computer program developed to compute the total vertical load, normal concentrated pressure loads, and the center of pressure of typical SRB water impact slapdown pressure distributions specified in the baseline configuration. The program prepares the concentrated pressure load information in punched card format suitable for input to the STAGS computer program. In addition, the program prepares for STAGS input the inertia reacting loads to the slapdown pressure distributions.
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.; Fink, M. R.; Jepson, W. D.
1979-01-01
Aerodynamic experiments were performed on an oscillating NACA 0012 airfoil utilizing a tunnel-spanning wing in both unswept and 30 degree swept configurations. The airfoil was tested in steady state and in oscillatory pitch about the quarter chord. The unsteady aerodynamic loading was measured using pressure transducers along the chord. Numerical integrations of the unsteady pressure transducer responses were used to compute the normal force, chord force, and moment components of the induced loading. The effects of sweep on the induced aerodynamic load response was examined. For the range of parameters tested, it was found that sweeping the airfoil tends to delay the onset of dynamic stall. Sweeping was also found to reduce the magnitude of the unsteady load variation about the mean response. It was determined that at mean incidence angles greater than 9 degrees, sweep tends to reduce the stability margin of the NACA 0012 airfoil; however, for all cases tested, the airfoil was found to be stable in pure pitch. Turbulent eddies were found to convect downstream above the upper surface and generate forward-moving acoustic waves at the trailing edge which move upstream along the lower surface.
Optimize Short Term load Forcasting Anomalous Based Feed Forward Backpropagation
NASA Astrophysics Data System (ADS)
Mulyadi, Y.; Abdullah, A. G.; Rohmah, K. A.
2017-03-01
This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward back propagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekday’s pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constant a value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.
Study on validation method for femur finite element model under multiple loading conditions
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu
2018-03-01
Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, C. M.; Tanner, John A.
1989-01-01
A computational procedure is presented for reducing the size of the analysis models of tires having unsymmetric material, geometry and/or loading. The two key elements of the procedure when applied to anisotropic tires are: (1) decomposition of the stiffness matrix into the sum of an orthotropic and nonorthotropic parts; and (2) successive application of the finite-element method and the classical Rayleigh-Ritz technique. The finite-element method is first used to generate few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The proposed technique has high potential for handling practical tire problems with anisotropic materials, unsymmetric imperfections and asymmetric loading. It is also particularly useful for use with three-dimensional finite-element models of tires.
Nawafleh, Noor; Öchsner, Andreas; George, Roy
2018-01-01
PURPOSE The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between 5℃ and 55℃. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments. PMID:29503716
A location selection policy of live virtual machine migration for power saving and load balancing.
Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.
A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing
Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24348165
NASA Technical Reports Server (NTRS)
Johnson, P. R.; Bardusch, R. E.
1974-01-01
A hydraulic control loading system for aircraft simulation was analyzed to find the causes of undesirable low frequency oscillations and loading effects in the output. The hypothesis of mechanical compliance in the control linkage was substantiated by comparing the behavior of a mathematical model of the system with previously obtained experimental data. A compensation scheme based on the minimum integral of the squared difference between desired and actual output was shown to be effective in reducing the undesirable output effects. The structure of the proposed compensation was computed by use of a dynamic programing algorithm and a linear state space model of the fixed elements in the system.
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.
2015-01-01
Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.
NASA Enterprise Visual Analysis
NASA Technical Reports Server (NTRS)
Lopez-Tellado, Maria; DiSanto, Brenda; Humeniuk, Robert; Bard, Richard, Jr.; Little, Mia; Edwards, Robert; Ma, Tien-Chi; Hollifield, Kenneith; White, Chuck
2007-01-01
NASA Enterprise Visual Analysis (NEVA) is a computer program undergoing development as a successor to Launch Services Analysis Tool (LSAT), formerly known as Payload Carrier Analysis Tool (PCAT). NEVA facilitates analyses of proposed configurations of payloads and packing fixtures (e.g. pallets) in a space shuttle payload bay for transport to the International Space Station. NEVA reduces the need to use physical models, mockups, and full-scale ground support equipment in performing such analyses. Using NEVA, one can take account of such diverse considerations as those of weight distribution, geometry, collision avoidance, power requirements, thermal loads, and mechanical loads.
Lattice Boltzmann for Airframe Noise Predictions
NASA Technical Reports Server (NTRS)
Barad, Michael; Kocheemoolayil, Joseph; Kiris, Cetin
2017-01-01
Increase predictive use of High-Fidelity Computational Aero- Acoustics (CAA) capabilities for NASA's next generation aviation concepts. CFD has been utilized substantially in analysis and design for steady-state problems (RANS). Computational resources are extremely challenged for high-fidelity unsteady problems (e.g. unsteady loads, buffet boundary, jet and installation noise, fan noise, active flow control, airframe noise, etc) ü Need novel techniques for reducing the computational resources consumed by current high-fidelity CAA Need routine acoustic analysis of aircraft components at full-scale Reynolds number from first principles Need an order of magnitude reduction in wall time to solution!
The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations
Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka
2011-01-01
Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007
Kernel analysis in TeV gamma-ray selection
NASA Astrophysics Data System (ADS)
Moriarty, P.; Samuelson, F. W.
2000-06-01
We discuss the use of kernel analysis as a technique for selecting gamma-ray candidates in Atmospheric Cherenkov astronomy. The method is applied to observations of the Crab Nebula and Markarian 501 recorded with the Whipple 10 m Atmospheric Cherenkov imaging system, and the results are compared with the standard Supercuts analysis. Since kernel analysis is computationally intensive, we examine approaches to reducing the computational load. Extension of the technique to estimate the energy of the gamma-ray primary is considered. .
NASA Astrophysics Data System (ADS)
Huang, Jinhui; Liu, Wenxiang; Su, Yingxue; Wang, Feixue
2018-02-01
Space networks, in which connectivity is deterministic and intermittent, can be modeled by delay/disruption tolerant networks. In space delay/disruption tolerant networks, a packet is usually transmitted from the source node to the destination node indirectly via a series of relay nodes. If anyone of the nodes in the path becomes congested, the packet will be dropped due to buffer overflow. One of the main reasons behind congestion is the unbalanced network traffic distribution. We propose a load balancing strategy which takes the congestion status of both the local node and relay nodes into account. The congestion status, together with the end-to-end delay, is used in the routing selection. A lookup-table enhancement is also proposed. The off-line computation and the on-line adjustment are combined together to make a more precise estimate of the end-to-end delay while at the same time reducing the onboard computation. Simulation results show that the proposed strategy helps to distribute network traffic more evenly and therefore reduces the packet drop ratio. In addition, the average delay is also decreased in most cases. The lookup-table enhancement provides a compromise between the need for better communication performance and the desire for less onboard computation.
Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2008-01-01
The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.
Zuo, Shan; Song, Y D; Wang, Lei; Song, Qing-wang
2013-01-01
Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the "NREL offshore 5 MW baseline wind turbine" being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control.
Zuo, Shan; Song, Y. D.; Wang, Lei; Song, Qing-wang
2013-01-01
Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the “NREL offshore 5 MW baseline wind turbine” being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control. PMID:24453834
Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.
The Role and Design of Screen Images in Software Documentation.
ERIC Educational Resources Information Center
van der Meij, Hans
2000-01-01
Discussion of learning a new computer software program focuses on how to support the joint handling of a manual, input devices, and screen display. Describes a study that examined three design styles for manuals that included screen images to reduce split-attention problems and discusses theory versus practice and cognitive load theory.…
Visits, Hits, Caching and Counting on the World Wide Web: Old Wine in New Bottles?
ERIC Educational Resources Information Center
Berthon, Pierre; Pitt, Leyland; Prendergast, Gerard
1997-01-01
Although web browser caching speeds up retrieval, reduces network traffic, and decreases the load on servers and browser's computers, an unintended consequence for marketing research is that Web servers undercount hits. This article explores counting problems, caching, proxy servers, trawler software and presents a series of correction factors…
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, Carl M.; Tanner, John A.
1987-01-01
A simple and efficient computational strategy for reducing both the size of a tire model and the cost of the analysis of tires in the presence of symmetry-breaking conditions (unsymmetry in the tire material, geometry, or loading) is presented. The strategy is based on approximating the unsymmetric response of the tire with a linear combination of symmetric and antisymmetric global approximation vectors (or modes). Details are presented for the three main elements of the computational strategy, which include: use of special three-field mixed finite-element models, use of operator splitting, and substantial reduction in the number of degrees of freedom. The proposed computational stategy is applied to three quasi-symmetric problems of tires: linear analysis of anisotropic tires, through use of semianalytic finite elements, nonlinear analysis of anisotropic tires through use of two-dimensional shell finite elements, and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry (and their combinations) exhibited by the tire response are identified.
NASA Astrophysics Data System (ADS)
Lubkowska, Wioletta
2017-11-01
The growing prevalence of health problems among computer workstation workers has become one of the biggest threats to the overall health of our population. That is why many modern scientists are looking for ways and methods to prevent and reverse these negative trends. The purpose of this article is to present the potential for practical use of computer programs to design an ergonomic workplace and postural loads. These programs help configure the computer workstation correctly and adopt the correct body position during work, which reduces the risk of health problems. Creating visually attractive programs helps encourage and inspire those who work with a computer to introduce ergonomic solutions and reject the sedentary lifestyle.
REGENERATIVE TRANSISTOR AMPLIFIER
Kabell, L.J.
1958-11-25
Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.
New reflective symmetry design capability in the JPL-IDEAS Structure Optimization Program
NASA Technical Reports Server (NTRS)
Strain, D.; Levy, R.
1986-01-01
The JPL-IDEAS antenna structure analysis and design optimization computer program was modified to process half structure models of symmetric structures subjected to arbitrary external static loads, synthesize the performance, and optimize the design of the full structure. Significant savings in computation time and cost (more than 50%) were achieved compared to the cost of full model computer runs. The addition of the new reflective symmetry analysis design capabilities to the IDEAS program allows processing of structure models whose size would otherwise prevent automated design optimization. The new program produced synthesized full model iterative design results identical to those of actual full model program executions at substantially reduced cost, time, and computer storage.
An experiment for determining the Euler load by direct computation
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.; Stein, Peter A.
1986-01-01
A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.
NASA Astrophysics Data System (ADS)
Ravishankar, Bharani
Conventional space vehicles have thermal protection systems (TPS) that provide protection to an underlying structure that carries the flight loads. In an attempt to save weight, there is interest in an integrated TPS (ITPS) that combines the structural function and the TPS function. This has weight saving potential, but complicates the design of the ITPS that now has both thermal and structural failure modes. The main objectives of this dissertation was to optimally design the ITPS subjected to thermal and mechanical loads through deterministic and reliability based optimization. The optimization of the ITPS structure requires computationally expensive finite element analyses of 3D ITPS (solid) model. To reduce the computational expenses involved in the structural analysis, finite element based homogenization method was employed, homogenizing the 3D ITPS model to a 2D orthotropic plate. However it was found that homogenization was applicable only for panels that are much larger than the characteristic dimensions of the repeating unit cell in the ITPS panel. Hence a single unit cell was used for the optimization process to reduce the computational cost. Deterministic and probabilistic optimization of the ITPS panel required evaluation of failure constraints at various design points. This further demands computationally expensive finite element analyses which was replaced by efficient, low fidelity surrogate models. In an optimization process, it is important to represent the constraints accurately to find the optimum design. Instead of building global surrogate models using large number of designs, the computational resources were directed towards target regions near constraint boundaries for accurate representation of constraints using adaptive sampling strategies. Efficient Global Reliability Analyses (EGRA) facilitates sequentially sampling of design points around the region of interest in the design space. EGRA was applied to the response surface construction of the failure constraints in the deterministic and reliability based optimization of the ITPS panel. It was shown that using adaptive sampling, the number of designs required to find the optimum were reduced drastically, while improving the accuracy. System reliability of ITPS was estimated using Monte Carlo Simulation (MCS) based method. Separable Monte Carlo method was employed that allowed separable sampling of the random variables to predict the probability of failure accurately. The reliability analysis considered uncertainties in the geometry, material properties, loading conditions of the panel and error in finite element modeling. These uncertainties further increased the computational cost of MCS techniques which was also reduced by employing surrogate models. In order to estimate the error in the probability of failure estimate, bootstrapping method was applied. This research work thus demonstrates optimization of the ITPS composite panel with multiple failure modes and large number of uncertainties using adaptive sampling techniques.
Performance Analysis and Portability of the PLUM Load Balancing System
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
1998-01-01
The ability to dynamically adapt an unstructured mesh is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult. To address this problem, we have developed PLUM, an automatic portable framework for performing adaptive numerical computations in a message-passing environment. PLUM requires that all data be globally redistributed after each mesh adaption to achieve load balance. We present an algorithm for minimizing this remapping overhead by guaranteeing an optimal processor reassignment. We also show that the data redistribution cost can be significantly reduced by applying our heuristic processor reassignment algorithm to the default mapping of the parallel partitioner. Portability is examined by comparing performance on a SP2, an Origin2000, and a T3E. Results show that PLUM can be successfully ported to different platforms without any code modifications.
Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone.
Rabotyagov, Sergey; Campbell, Todd; Jha, Manoj; Gassman, Philip W; Arnold, Jeffrey; Kurkalova, Lyubov; Secchi, Silvia; Feng, Hongli; Kling, Catherine L
2010-09-01
In 2008, the hypoxic zone in the Gulf of Mexico, measuring 20 720 km2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This study combines the tools of evolutionary computation with a water quality model and cost data to develop a trade-off frontier for the Upper Mississippi River Basin specifying the least cost of achieving nutrient reductions and the location of the agricultural conservation practices needed. The frontier allows policymakers and stakeholders to explicitly see the trade-offs between cost and nutrient reductions. For example, the cost of reducing annual nitrate-N loadings by 30% is estimated to be US$1.4 billion/year, with a concomitant 36% reduction in P and the cost of reducing annual P loadings by 30% is estimated to be US$370 million/year, with a concomitant 9% reduction in nitrate-N.
Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion
NASA Technical Reports Server (NTRS)
Camarena, Ernesto; Vu, Bruce T.
2011-01-01
The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.
Dynamic Load-Balancing for Distributed Heterogeneous Computing of Parallel CFD Problems
NASA Technical Reports Server (NTRS)
Ecer, A.; Chien, Y. P.; Boenisch, T.; Akay, H. U.
2000-01-01
The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel, distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub- domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation environment and algorithms. These tools are dynamic in nature because of the chances in the computer environment during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the problems associated with this application will be discussed. Also, the developed algorithms were combined with the load sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be presented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.
Computational design analysis for deployment of cardiovascular stents
NASA Astrophysics Data System (ADS)
Tammareddi, Sriram; Sun, Guangyong; Li, Qing
2010-06-01
Cardiovascular disease has become a major global healthcare problem. As one of the relatively new medical devices, stents offer a minimally-invasive surgical strategy to improve the quality of life for numerous cardiovascular disease patients. One of the key associative issues has been to understand the effect of stent structures on its deployment behaviour. This paper aims to develop a computational model for exploring the biomechanical responses to the change in stent geometrical parameters, namely the strut thickness and cross-link width of the Palmaz-Schatz stent. Explicit 3D dynamic finite element analysis was carried out to explore the sensitivity of these geometrical parameters on deployment performance, such as dog-boning, fore-shortening, and stent deformation over the load cycle. It has been found that an increase in stent thickness causes a sizeable rise in the load required to deform the stent to its target diameter, whilst reducing maximum dog-boning in the stent. An increase in the cross-link width showed that no change in the load is required to deform the stent to its target diameter, and there is no apparent correlation with dog-boning but an increased fore-shortening with increasing cross-link width. The computational modelling and analysis presented herein proves an effective way to refine or optimise the design of stent structures.
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.
1993-01-01
Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.
Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F
2016-06-14
Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Differences in muscle load between computer and non-computer work among office workers.
Richter, J M; Mathiassen, S E; Slijper, H P; Over, E A B; Frens, M A
2009-12-01
Introduction of more non-computer tasks has been suggested to increase exposure variation and thus reduce musculoskeletal complaints (MSC) in computer-intensive office work. This study investigated whether muscle activity did, indeed, differ between computer and non-computer activities. Whole-day logs of input device use in 30 office workers were used to identify computer and non-computer work, using a range of classification thresholds (non-computer thresholds (NCTs)). Exposure during these activities was assessed by bilateral electromyography recordings from the upper trapezius and lower arm. Contrasts in muscle activity between computer and non-computer work were distinct but small, even at the individualised, optimal NCT. Using an average group-based NCT resulted in less contrast, even in smaller subgroups defined by job function or MSC. Thus, computer activity logs should be used cautiously as proxies of biomechanical exposure. Conventional non-computer tasks may have a limited potential to increase variation in muscle activity during computer-intensive office work.
Load Variation Influences on Joint Work During Squat Exercise in Reduced Gravity
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.; Guilliams, Mark E.; Ploutz-Snyder, Lori L.
2011-01-01
Resistance exercises that load the axial skeleton, such as the parallel squat, are incorporated as a critical component of a space exercise program designed to maximize the stimuli for bone remodeling and muscle loading. Astronauts on the International Space Station perform regular resistance exercise using the Advanced Resistive Exercise Device (ARED). Squat exercises on Earth entail moving a portion of the body weight plus the added bar load, whereas in microgravity the body weight is 0, so all load must be applied via the bar. Crewmembers exercising in microgravity currently add approx.70% of their body weight to the bar load as compensation for the absence of the body weight. This level of body weight replacement (BWR) was determined by crewmember feedback and personal experience without any quantitative data. The purpose of this evaluation was to utilize computational simulation to determine the appropriate level of BWR in microgravity necessary to replicate lower extremity joint work during squat exercise in normal gravity based on joint work. We hypothesized that joint work would be positively related to BWR load.
A Status Review of the Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) Project
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Funk, Christy; Keller, Donald F.; Ringertz, Ulf
2016-01-01
An overview of recent progress regarding the computational aeroelastic and aeroservoelastic (ASE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed to date with a focus on unstructured CFD grids, computational aeroelastic analyses, sonic boom propagation studies that include static aeroelastic effects, and gust loads analyses. In addition, flutter boundaries using aeroelastic Reduced-Order Models (ROMs) are presented at various Mach numbers of interest. Details regarding a collaboration with the Royal Institute of Technology (KTH, Stockholm, Sweden) to design, fabricate, and test a full-span aeroelastic wind-tunnel model are also presented.
Hubbell, David Wellington; Matejka, Donald Quintin
1959-01-01
An investigation of fluvial sediments of the Middle Loup River at Dunning, Nebr., was begun in 1946 and expanded in 1949 to provide information on sediment transportation. Construction of an artificial turbulence flume at which the total sediment discharge of the Middle Loup River at Dunning, Nebr., could be measured with suspended-sediment sampling equipment was completed in 1949. Since that time. measurements have been made at the turbulence flume and at several selected sections in a reach upstream and downstream from the flume. The Middle Loup River upstream from Dunning traverses the sandhills region of north-central Nebraska and has a drainage area of approximately 1,760 square miles. The sandhills are underlain by the Ogallala formation of Tertiary age and are mantled by loess and dune sand. The topography is characterized by northwest-trending sand dunes, which are stabilized by grass cover. The valley floor upstream from Dunning is generally about half a mile wide, is about 80 feet lower than the uplands, and is composed of sand that was mostly stream deposited. The channel is defined by low banks. Bank erosion is prevalent and is the source of most of the sediment load. The flow originates mostly from ground-water accretion and varies between about 200 and 600 cfs (cubic feet per second). Measured suspended-sediment loads vary from about 200 to 2,000 tons per day, of which about 20 percent is finer than 0.062 millimeter and 100 percent is finer than 0.50 millimeter. Total sediment discharges vary from about 500 to 3,500 tons per day, of which about 10 percent is finer than 0.062 millimeter, about 90 percent is finer than 0.50 millimeter, and about 98 percent is finer than 2.0 millimeters. The measured suspended-sediment discharge in the reach near Dunning averages about one-half of the total sediment discharge as measured at the turbulence flume. This report contains information collected during the period October 1, 1948, to September 30, 1952. The information includes sediment discharges; particle-size analyses of total load, of measured suspended sediment, and of bed material; water discharges and other hydraulic data for the turbulence flume and the selected sections. Sediment discharges have been computed with several different formulas, and insofar as possible, each computed load has been compared with data from the turbulence flume. Sediment discharges computed with the Einstein procedure did not agree well, in general, with comparable measured loads. However, a satisfactory representative cross section for the reach could not be determined with the cross sections that were selected for this investigation. If the computed cross section was narrower and deeper than a representative cross section for the reach, computed loads were high; and if the computed cross section was wider and shallower than a representative cross section for the reach, computed loads were low. Total sediment discharges computed with the modified Einstein procedure compared very well with the loads of individual size ranges and the measured total loads at the turbulence flume. Sediment discharges computed with the Straub equation averaged about twice the measured total sediment discharge at the turbulence flume. Bed-load discharges computed with the Kalinske equation were of about the right magnitude; however, high computed loads were associated with low total loads, low unmeasured loads, and low concentrations of measured suspended sediment coarser than 0.125 millimeter. Bed-load discharges computed with the Schoklitsch equation seemed somewhat high; about one-third of the computed loads were slightly higher than comparable unmeasured loads. Although, in general, high computed discharges with the Schoklitsch equation were associated with high measured total loads, high unmeasured loads, and high concentrations of measured suspended sediment coarser than 0.125 millimeter, the trend was not consistent. Bed-load discharges computed
Fast H.264/AVC FRExt intra coding using belief propagation.
Milani, Simone
2011-01-01
In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.
Three layers multi-granularity OCDM switching system based on learning-stateful PCE
NASA Astrophysics Data System (ADS)
Wang, Yubao; Liu, Yanfei; Sun, Hao
2017-10-01
In the existing three layers multi-granularity OCDM switching system (TLMG-OCDMSS), F-LSP, L-LSP and OC-LSP can be bundled as switching granularity. For CPU-intensive network, the node not only needs to compute the path but also needs to bundle the switching granularity so that the load of single node is heavy. The node will paralyze when the traffic of the node is too heavy, which will impact the performance of the whole network seriously. The introduction of stateful PCE(S-PCE) will effectively solve these problems. PCE is composed of two parts, namely, the path computation element and the database (TED and LSPDB), and returns the result of path computation to PCC (path computation clients) after PCC sends the path computation request to it. In this way, the pressure of the distributed path computation in each node is reduced. In this paper, we propose the concept of Learning PCE (L-PCE), which uses the existing LSPDB as the data source of PCE's learning. By this means, we can simplify the path computation and reduce the network delay, as a result, improving the performance of network.
Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.
2017-01-01
INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.
NASA general aviation crashworthiness seat development
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Alfaro-Bou, E.
1979-01-01
Three load limiting seat concepts for general aviation aircraft designed to lower the deceleration of the occupant in the event of a crash were sled tested and evaluated with reference to a standard seat. Dummy pelvis accelerations were reduced up to 50 percent with one of the concepts. Computer program MSOMLA (Modified Seat Occupant Model for Light Aircraft) was used to simulate the behavior of a dummy passenger in a NASA full-scale crash test of a twin engine light aircraft. A computer graphics package MANPLOT was developed to pictorially represent the occupant and seat motion.
Mechanical stability analysis on spherical sandwich sheet at low temperature loading conditions
NASA Astrophysics Data System (ADS)
Wang, Shanshuai; Li, Shuhui; Li, Zhimin
2013-12-01
The spherical sandwich sheet (S-S-S) is generally used in the aerospace industry, for example, the airplane, the rocket's fairing, the spacecraft and the satellite for the purpose of heat-insulation, weight-saving and dimension-reducing. The stability of the S-S-S is of general concern because of its particularly thin but large size. For some S-S-S used in fuel tank storing liquid oxygen of the rocket, it must be facing low temperature down to about -183 °C. Low temperature condition affects the stability of the S-S-S and then causes buckling of the structure. In this paper, a finite element (FE) model is established for evaluating the stability of the S-S-S via the sequential coupling mode. The material mechanical properties related to temperature are concerned in the FE model. The buckling modes and critical buckling loading are predicted accurately, since the FE model includes heat transfer simulating, thermal stress computing, buckling and post buckling process. It is found that the thermal stress generated from the low temperature loading reduces the critical buckling loading and changes the buckling modes of the S-S-S.
Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure
NASA Technical Reports Server (NTRS)
Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.
2010-01-01
A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.
Performance tradeoffs in static and dynamic load balancing strategies
NASA Technical Reports Server (NTRS)
Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.
1986-01-01
The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.
SPACEBAR: Kinematic design by computer graphics
NASA Technical Reports Server (NTRS)
Ricci, R. J.
1975-01-01
The interactive graphics computer program SPACEBAR, conceived to reduce the time and complexity associated with the development of kinematic mechanisms on the design board, was described. This program allows the direct design and analysis of mechanisms right at the terminal screen. All input variables, including linkage geometry, stiffness, and applied loading conditions, can be fed into or changed at the terminal and may be displayed in three dimensions. All mechanism configurations can be cycled through their range of travel and viewed in their various geometric positions. Output data includes geometric positioning in orthogonal coordinates of each node point in the mechanism, velocity and acceleration of the node points, and internal loads and displacements of the node points and linkages. All analysis calculations take at most a few seconds to complete. Output data can be viewed at the scope and also printed at the discretion of the user.
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
Distributing an executable job load file to compute nodes in a parallel computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooding, Thomas M.
Distributing an executable job load file to compute nodes in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: determining, by a compute node in the parallel computer, whether the compute node is participating in a job; determining, by the compute node in the parallel computer, whether a descendant compute node is participating in the job; responsive to determining that the compute node is participating in the job or that the descendant compute node is participating in the job, communicating, by the compute node to a parent compute node, an identification of a data communications linkmore » over which the compute node receives data from the parent compute node; constructing a class route for the job, wherein the class route identifies all compute nodes participating in the job; and broadcasting the executable load file for the job along the class route for the job.« less
Robust simulation of buckled structures using reduced order modeling
NASA Astrophysics Data System (ADS)
Wiebe, R.; Perez, R. A.; Spottswood, S. M.
2016-09-01
Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.
A data colocation grid framework for big data medical image processing: backend design
NASA Astrophysics Data System (ADS)
Bao, Shunxing; Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.
2018-03-01
When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop and HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available.
A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design.
Bao, Shunxing; Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A
2018-03-01
When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available.
A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design
Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.
2018-01-01
When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework’s performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available. PMID:29887668
OpenSim Model Improvements to Support High Joint Angle Resistive Exercising
NASA Technical Reports Server (NTRS)
Gallo, Christopher; Thompson, William; Lewandowski, Beth; Humphreys, Brad
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Rigorous testing of these proposed devices in space flight is difficult so computational modeling provides an estimation of the muscle forces and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts
Parameter Optimization of Pseudo-Rigid-Body Models of MRI-Actuated Catheters
Greigarn, Tipakorn; Liu, Taoming; Çavuşoğlu, M. Cenk
2016-01-01
Simulation and control of a system containing compliant mechanisms such as cardiac catheters often incur high computational costs. One way to reduce the costs is to approximate the mechanisms with Pseudo-Rigid-Body Models (PRBMs). A PRBM generally consists of rigid links connected by spring-loaded revolute joints. The lengths of the rigid links and the stiffnesses of the springs are usually chosen to minimize the tip deflection differences between the PRBM and the compliant mechanism. In most applications, only the relationship between end load and tip deflection is considered. This is obviously not applicable for MRI-actuated catheters which is actuated by the coils attached to the body. This paper generalizes PRBM parameter optimization to include loading and reference points along the body. PMID:28261009
1980-05-01
engineering ,ZteNo D R RPTE16 research w 9 laboratory COMPARISON OF BUILDING LOADS ANALYSIS AND SYSTEM THERMODYNAMICS (BLAST) AD 0 5 5,0 3COMPUTER PROGRAM...Building Loads Analysis and System Thermodynamics (BLAST) computer program. A dental clinic and a battalion headquarters and classroom building were...Building and HVAC System Data Computer Simulation Comparison of Actual and Simulated Results ANALYSIS AND FINDINGS
NASA Technical Reports Server (NTRS)
Mcgowan, David M.; Bostic, Susan W.; Camarda, Charles J.
1993-01-01
The development of two advanced reduced-basis methods, the force derivative method and the Lanczos method, and two widely used modal methods, the mode displacement method and the mode acceleration method, for transient structural analysis of unconstrained structures is presented. Two example structural problems are studied: an undamped, unconstrained beam subject to a uniformly distributed load which varies as a sinusoidal function of time and an undamped high-speed civil transport aircraft subject to a normal wing tip load which varies as a sinusoidal function of time. These example problems are used to verify the methods and to compare the relative effectiveness of each of the four reduced-basis methods for performing transient structural analyses on unconstrained structures. The methods are verified with a solution obtained by integrating directly the full system of equations of motion, and they are compared using the number of basis vectors required to obtain a desired level of accuracy and the associated computational times as comparison criteria.
Camilleri, Matt J; Malige, Ajith; Fujimoto, Jeffrey; Rempel, David M
2013-01-01
Direct touch displays can improve the human-computer experience and productivity; however, the higher hand locations may increase shoulder fatigue. Palm rejection (PR) technology may reduce shoulder loads by allowing the palms to rest on the display and increase productivity by registering the touched content and fingertips through the palms rather than shoulders. The effects of PR were evaluated by having participants perform touch tasks while posture and reaction force on the display were measured. Enabling PR, during which the subjects could place the palms on the display (but were not required to), resulted in increased wrist extension, force applied to the display and productivity, and less discomfort, but had no effect on the self-selected positioning of the display. Participants did not deliberately place their palms on the display; therefore, there was no reduction in shoulder load and the increased productivity was not due to improved hand registration. The increased productivity may have been due to reduced interruptions from palm contacts or reduced motor control demands.
A generalized threshold model for computing bed load grain size distribution
NASA Astrophysics Data System (ADS)
Recking, Alain
2016-12-01
For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.
Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffers, Matthew A.; Chaney, Larry; Rugh, John P.
When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward gridmore » connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.« less
Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffers, Matthew; Chaney, Lawrence; Rugh, John
When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward gridmore » connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.« less
Dennerlein, J T; Yang, M C
2001-01-01
Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.
NASA Astrophysics Data System (ADS)
Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi
2017-09-01
A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.
Wolfand, Jordyn M; Bell, Colin D; Boehm, Alexandria B; Hogue, Terri S; Luthy, Richard G
2018-06-05
Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log 10 to above 3-log 10 ; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log 10 , while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log 10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log 10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.
Optimum Heart Rate to Minimize Pulsatile External Cardiac Power
NASA Astrophysics Data System (ADS)
Pahlevan, Niema; Gharib, Morteza
2011-11-01
The workload on the left ventricle is composed of steady and pulsatile components. Clinical investigations have confirmed that an abnormal pulsatile load plays an important role in the pathogenesis of left ventricular hypertrophy (LVH) and progression of LVH to congestive heart failure (CHF). The pulsatile load is the result of the complex dynamics of wave propagation and reflection in the compliant arterial vasculature. We hypothesize that aortic waves can be optimized to reduce the left ventricular (LV) pulsatile load. We used an in-vitro experimental approach to investigate our hypothesis. A unique hydraulic model was used for in-vitro experiments. This model has physical and dynamical properties similar to the heart-aorta system. Different compliant models of the artificial aorta were used to test the hypothesis under various aortic rigidities. Our results indicate that: i) there is an optimum heart rate that minimizes LV pulsatile power (this is in agreement with our previous computational study); ii) introducing an extra reflection site at the specific location along the aorta creates constructive wave conditions that reduce the LV pulsatile power.
Scan Directed Load Balancing for Highly-Parallel Mesh-Connected Computers
1991-07-01
DTIC ~ ELECTE OCT 2 41991 AD-A242 045 Scan Directed Load Balancing for Highly-Parallel Mesh-Connected Computers’ Edoardo S. Biagioni Jan F. Prins...Department of Computer Science University of North Carolina Chapel Hill, N.C. 27599-3175 USA biagioni @cs.unc.edu prinsOcs.unc.edu Abstract Scan Directed...MasPar Computer Corpora- tion. Bibliography [1] Edoardo S. Biagioni . Scan Directed Load Balancing. PhD thesis., University of North Carolina, Chapel Hill
Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer, C. D.; Krishnan, S.; Srinivasan, A.
Diffusion Monte Carlo is the most accurate widely used Quantum Monte Carlo method for the electronic structure of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency and avoid accumulation of systematic errors on parallel machines. The load balancing step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receivingmore » at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL showing up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that requires load balancing.« less
NASA Technical Reports Server (NTRS)
Lucas, S. H.; Davis, R. C.
1992-01-01
A user's manual is presented for MacPASCO, which is an interactive, graphic, preprocessor for panel design. MacPASCO creates input for PASCO, an existing computer code for structural analysis and sizing of longitudinally stiffened composite panels. MacPASCO provides a graphical user interface which simplifies the specification of panel geometry and reduces user input errors. The user draws the initial structural geometry and reduces user input errors. The user draws the initial structural geometry on the computer screen, then uses a combination of graphic and text inputs to: refine the structural geometry; specify information required for analysis such as panel load and boundary conditions; and define design variables and constraints for minimum mass optimization. Only the use of MacPASCO is described, since the use of PASCO has been documented elsewhere.
Mellon, Stephen J; Grammatopoulos, George; Andersen, Michael S; Pandit, Hemant G; Gill, Harinderjit S; Murray, David W
2015-01-21
Edge-loading in patients with metal-on-metal resurfaced hips can cause high serum metal ion levels, the development of soft-tissue reactions local to the joint called pseudotumours and ultimately, failure of the implant. Primary edge-loading is where contact between the femoral and acetabular components occurs at the edge/rim of the acetabular component whereas impingement of the femoral neck on the acetabular component's edge causes secondary or contrecoup edge-loading. Although the relationship between the orientation of the acetabular component and primary edge-loading has been identified, the contribution of acetabular component orientation to impingement and secondary edge-loading is less clear. Our aim was to estimate the optimal acetabular component orientation for 16 metal-on-metal hip resurfacing arthroplasty (MoMHRA) subjects with known serum metal ion levels. Data from motion analysis, subject-specific musculoskeletal modelling and Computed Tomography (CT) measurements were used to calculate the dynamic contact patch to rim (CPR) distance and impingement risk for 3416 different acetabular component orientations during gait, sit-to-stand, stair descent and static standing. For each subject, safe zones free from impingement and edge-loading (CPR <10%) were defined and, consequently, an optimal acetabular component orientation was determined (mean inclination 39.7° (SD 6.6°) mean anteversion 14.9° (SD 9.0°)). The results of this study suggest that the optimal acetabular component orientation can be determined from a patient's motion and anatomy. However, 'safe' zones of acetabular component orientation associated with reduced risk of dislocation and pseudotumour are also associated with a reduced risk of edge-loading and impingement. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.
1975-01-01
An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.
Dynamic Load Balancing for Grid Partitioning on a SP-2 Multiprocessor: A Framework
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
Computational requirements of full scale computational fluid dynamics change as computation progresses on a parallel machine. The change in computational intensity causes workload imbalance of processors, which in turn requires a large amount of data movement at runtime. If parallel CFD is to be successful on a parallel or massively parallel machine, balancing of the runtime load is indispensable. Here a framework is presented for dynamic load balancing for CFD applications, called Jove. One processor is designated as a decision maker Jove while others are assigned to computational fluid dynamics. Processors running CFD send flags to Jove in a predetermined number of iterations to initiate load balancing. Jove starts working on load balancing while other processors continue working with the current data and load distribution. Jove goes through several steps to decide if the new data should be taken, including preliminary evaluate, partition, processor reassignment, cost evaluation, and decision. Jove running on a single EBM SP2 node has been completely implemented. Preliminary experimental results show that the Jove approach to dynamic load balancing can be effective for full scale grid partitioning on the target machine IBM SP2.
Dynamic Load Balancing For Grid Partitioning on a SP-2 Multiprocessor: A Framework
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
Computational requirements of full scale computational fluid dynamics change as computation progresses on a parallel machine. The change in computational intensity causes workload imbalance of processors, which in turn requires a large amount of data movement at runtime. If parallel CFD is to be successful on a parallel or massively parallel machine, balancing of the runtime load is indispensable. Here a framework is presented for dynamic load balancing for CFD applications, called Jove. One processor is designated as a decision maker Jove while others are assigned to computational fluid dynamics. Processors running CFD send flags to Jove in a predetermined number of iterations to initiate load balancing. Jove starts working on load balancing while other processors continue working with the current data and load distribution. Jove goes through several steps to decide if the new data should be taken, including preliminary evaluate, partition, processor reassignment, cost evaluation, and decision. Jove running on a single IBM SP2 node has been completely implemented. Preliminary experimental results show that the Jove approach to dynamic load balancing can be effective for full scale grid partitioning on the target machine IBM SP2.
Computational strategies for tire monitoring and analysis
NASA Technical Reports Server (NTRS)
Danielson, Kent T.; Noor, Ahmed K.; Green, James S.
1995-01-01
Computational strategies are presented for the modeling and analysis of tires in contact with pavement. A procedure is introduced for simple and accurate determination of tire cross-sectional geometric characteristics from a digitally scanned image. Three new strategies for reducing the computational effort in the finite element solution of tire-pavement contact are also presented. These strategies take advantage of the observation that footprint loads do not usually stimulate a significant tire response away from the pavement contact region. The finite element strategies differ in their level of approximation and required amount of computer resources. The effectiveness of the strategies is demonstrated by numerical examples of frictionless and frictional contact of the space shuttle Orbiter nose-gear tire. Both an in-house research code and a commercial finite element code are used in the numerical studies.
LabVIEW Serial Driver Software for an Electronic Load
NASA Technical Reports Server (NTRS)
Scullin, Vincent; Garcia, Christopher
2003-01-01
A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.
A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Ji, Yunfeng; Guo, Konghui
2014-12-01
In this paper, a reduced-order sliding mode observer (RO-SMO) is developed for vehicle state estimation. Several improvements are achieved in this paper. First, the reference model accuracy is improved by considering vehicle load transfers and using a precise nonlinear tyre model 'UniTire'. Second, without the reference model accuracy degraded, the computing burden of the state observer is decreased by a reduced-order approach. Third, nonlinear system damping is integrated into the SMO to speed convergence and reduce chattering. The proposed RO-SMO is evaluated through simulation and experiments based on an in-wheel motor electric vehicle. The results show that the proposed observer accurately predicts the vehicle states.
Automated validation of a computer operating system
NASA Technical Reports Server (NTRS)
Dervage, M. M.; Milberg, B. A.
1970-01-01
Programs apply selected input/output loads to complex computer operating system and measure performance of that system under such loads. Technique lends itself to checkout of computer software designed to monitor automated complex industrial systems.
From the track to the ocean: Using flow control to improve marine bio-logging tags for cetaceans
Fiore, Giovani; Anderson, Erik; Garborg, C. Spencer; Murray, Mark; Johnson, Mark; Moore, Michael J.; Howle, Laurens
2017-01-01
Bio-logging tags are an important tool for the study of cetaceans, but superficial tags inevitably increase hydrodynamic loading. Substantial forces can be generated by tags on fast-swimming animals, potentially affecting behavior and energetics or promoting early tag removal. Streamlined forms have been used to reduce loading, but these designs can accelerate flow over the top of the tag. This non-axisymmetric flow results in large lift forces (normal to the animal) that become the dominant force component at high speeds. In order to reduce lift and minimize total hydrodynamic loading this work presents a new tag design (Model A) that incorporates a hydrodynamic body, a channel to reduce fluid speed differences above and below the housing and wing to redirect flow to counter lift. Additionally, three derivatives of the Model A design were used to examine the contribution of individual flow control features to overall performance. Hydrodynamic loadings of four models were compared using computational fluid dynamics (CFD). The Model A design eliminated all lift force and generated up to ~30 N of downward force in simulated 6 m/s aligned flow. The simulations were validated using particle image velocimetry (PIV) to experimentally characterize the flow around the tag design. The results of these experiments confirm the trends predicted by the simulations and demonstrate the potential benefit of flow control elements for the reduction of tag induced forces on the animal. PMID:28196148
An automated approach to magnetic divertor configuration design
NASA Astrophysics Data System (ADS)
Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.
2015-01-01
Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.
Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighton, Daniel; Rugh, John
Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 degmore » C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosard, D.D.; Steltz, W.G.
1986-10-01
Properly sized turbine and boiler bypass systems permit two-shift cycling operation of units, shorten start-up time, and reduce life expenditures of plant components. With bypasses installed, faster startups can reduce fuel costs by $100,000 per year for a typical 500-MW fossil-fired unit. This report discusses the technical characteristics of existing bypass systems and provides guidelines for sizing bypass systems to achieve economical and reliable two-shift operation. The collection and analysis of startup data from several generating units were used in conjunction with computer simulations to illustrate the effects of adding various arrangements and sizes of steam bypass systems. The report,more » which indicates that shutdown procedures have significant impact on subsequent startup and loading time, describes operating practices to optimize the effectiveness of bypass systems. To determine the effectiveness of large turbine bypass systems of less than 100% capacity in preventing boiler trips following load rejection, transient field data were compared to a load rejection simulation using the modular modeling system (MMS). The MMS was then used to predict system response to other levels of load rejection. 7 refs., 87 figs., 8 tabs.« less
Comparison of computer codes for calculating dynamic loads in wind turbines
NASA Technical Reports Server (NTRS)
Spera, D. A.
1977-01-01
Seven computer codes for analyzing performance and loads in large, horizontal axis wind turbines were used to calculate blade bending moment loads for two operational conditions of the 100 kW Mod-0 wind turbine. Results were compared with test data on the basis of cyclic loads, peak loads, and harmonic contents. Four of the seven codes include rotor-tower interaction and three were limited to rotor analysis. With a few exceptions, all calculated loads were within 25 percent of nominal test data.
Efficient Resources Provisioning Based on Load Forecasting in Cloud
Hu, Rongdong; Jiang, Jingfei; Liu, Guangming; Wang, Lixin
2014-01-01
Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to application's actual resources demand. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can effectively reduce resources consumption while meeting service level agreements requirements. PMID:24701160
Computational Fluid Dynamic Analysis of Hydrodynamic forces on inundated bridge decks
NASA Astrophysics Data System (ADS)
Afzal, Bushra; Guo, Junke; Kerenyi, Kornel
2010-11-01
The hydraulic forces experienced by an inundated bridge deck have great importance in the design of bridges. Flood flows or hurricane add significant hydrodynamic loading on bridges, possibly resulting in failure of the bridge superstructures. The objective of the study is to establish validated computational practice to address research needs of the transportation community via computational fluid dynamic simulations. The reduced scale experiments conducted at Turner-Fairbank Highway Research Center establish the foundations of validated computational practices to address the research needs of the transportation community. Three bridge deck prototypes were used: a typical six-girder highway bridge deck, a three-girder deck, and a streamlined deck designed to better withstand the hydraulic forces. Results of the study showed that the streamlined deck significantly reduces drag, lift, and moment coefficient in comparison to the other bridge deck types. The CFD results matched the experimental data in terms of the relationship between inundation ratio and force measured at the bridge. The results of the present research will provide a tool for designing new bridges and retrofitting old ones.
Stormwater quality processes for three land-use areas in Broward County, Florida
Mattraw, H.C.; Miller, Robert A.
1981-01-01
Systematic collection and chemical analysis of stormwater runoff samples from three small urban areas in Broward County, Florida, were obtained between 1974 and 1977. Thirty or more runoff-constituent loads were computed for each of the homogeneous land-use areas. The areas sampled were single family residential, highway, and a commercial shopping center. Rainfall , runoff, and nutrient and metal analyses were stored in a data-management system. The data-management system permitted computation of loads, publication of basic-data reports and the interface of environmental and load information with a comprehensive statistical analysis system. Seven regression models relating water quality loads to characteristics of peak discharge, antecedent conditions, season, storm duration and rainfall intensity were constructed for each of the three sites. Total water-quality loads were computed for the collection period by summing loads for individual storms. Loads for unsampled storms were estimated by using regression models and records of storm precipitation. Loadings, pounds per day per acre of hydraulically effective impervious area, were computed for the three land-use types. Total nitrogen, total phosphorus, and total residue loadings were highest in the residential area. Chemical oxygen demand and total lead loadings were highest in the commercial area. Loadings of atmospheric fallout on each watershed were estimated by bulk precipitation samples collected at the highway and commercial site. (USGS)
A screening-level modeling approach to estimate nitrogen ...
This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explore best management practice (BMP) implementation to reduce loading. The modeling framework uses a hybrid statistical and process based approach to estimate source of pollutants, their transport and decay in the terrestrial and aquatic parts of watersheds. The framework is developed in the ArcGIS environment and is based on the total maximum daily load (TMDL) balance model. Nitrogen (N) is currently addressed in the framework, referred to as WQM-TMDL-N. Loading for each catchment includes non-point sources (NPS) and point sources (PS). NPS loading is estimated using export coefficient or event mean concentration methods depending on the temporal scales, i.e., annual or daily. Loading from atmospheric deposition is also included. The probability of a nutrient load to exceed a target load is evaluated using probabilistic risk assessment, by including the uncertainty associated with export coefficients of various land uses. The computed risk data can be visualized as spatial maps which show the load exceedance probability for all stream segments. In an application of this modeling approach to the Tippecanoe River watershed in Indiana, USA, total nitrogen (TN) loading and risk of standard exce
A theoretical framework for strain-related trabecular bone maintenance and adaptation.
Ruimerman, R; Hilbers, P; van Rietbergen, B; Huiskes, R
2005-04-01
It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for these mechanisms we have proposed a mathematical theory (Nature 405 (2000) 704). This theory is based on hypothetical osteocyte stimulation of osteoblast bone formation, as an effect of elevated strain in the bone matrix, and a role for microcracks and disuse in promoting osteoclast resorption. Applied in a 2-D Finite Element Analysis model, the theory explained the formation of trabecular patterns. In this article we present a 3-D FEA model based on the same theory and investigated its potential morphological predictability of metabolic reactions to mechanical loads. The computations simulated the development of trabecular morphological details during growth, relative to measurements in growing pigs, reasonably realistic. They confirmed that the proposed mechanisms also inherently lead to optimal stress transfer. Alternative loading directions produced new trabecular orientations. Reduction of load reduced trabecular thickness, connectivity and mass in the simulation, as is seen in disuse osteoporosis. Simulating the effects of estrogen deficiency through increased osteoclast resorption frequencies produced osteoporotic morphologies as well, as seen in post-menopausal osteoporosis. We conclude that the theory provides a suitable computational framework to investigate hypothetical relationships between bone loading and metabolic expressions.
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.
2015-04-02
A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loadsmore » is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.« less
Simulated building energy demand biases resulting from the use of representative weather stations
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; ...
2017-11-06
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
Simulated building energy demand biases resulting from the use of representative weather stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
Dynamic load balancing of applications
Wheat, Stephen R.
1997-01-01
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.
Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.
Effect of contact ratio on spur gear dynamic load
NASA Technical Reports Server (NTRS)
Liou, Chuen-Huei; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.
1992-01-01
A computer simulation is presented which shows how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented was performed using the NASA gear dynamics code, DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low contact ratio gears (contact ratio less than 2.0), increasing the contact ratio reduced the gear dynamic load. For high contact ratio gears (contact ratio = or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high contact ratio gears minimized dynamic load better than low contact ratio gears.
An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST
NASA Astrophysics Data System (ADS)
Hang, Xu; Jun, Zhao
2018-05-01
Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.
NASA Technical Reports Server (NTRS)
Chao, H. C.; Baxter, M.; Cheng, H. S.
1983-01-01
A computer method for determining the dynamic load between spiral bevel pinion and gear teeth contact along the path of contact is described. The dynamic load analysis governs both the surface temperature and film thickness. Computer methods for determining the surface temperature, and film thickness are presented along with results obtained for a pair of typical spiral bevel gears.
Improved look-up table method of computer-generated holograms.
Wei, Hui; Gong, Guanghong; Li, Ni
2016-11-10
Heavy computation load and vast memory requirements are major bottlenecks of computer-generated holograms (CGHs), which are promising and challenging in three-dimensional displays. To solve these problems, an improved look-up table (LUT) method suitable for arbitrarily sampled object points is proposed and implemented on a graphics processing unit (GPU) whose reconstructed object quality is consistent with that of the coherent ray-trace (CRT) method. The concept of distance factor is defined, and the distance factors are pre-computed off-line and stored in a look-up table. The results show that while reconstruction quality close to that of the CRT method is obtained, the on-line computation time is dramatically reduced compared with the LUT method on the GPU and the memory usage is lower than that of the novel-LUT considerably. Optical experiments are carried out to validate the effectiveness of the proposed method.
Collectively loading an application in a parallel computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.
Collectively loading an application in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: identifying, by a parallel computer control system, a subset of compute nodes in the parallel computer to execute a job; selecting, by the parallel computer control system, one of the subset of compute nodes in the parallel computer as a job leader compute node; retrieving, by the job leader compute node from computer memory, an application for executing the job; and broadcasting, by the job leader to the subset of compute nodes in the parallel computer, the application for executing the job.
Ambica, Khetarpal; Mahendran, Kavitha; Talwar, Sangeeta; Verma, Mahesh; Padmini, Govindaswamy; Periasamy, Ravishankar
2013-01-01
This investigation sought to compare the fracture resistance under static and fatigue loading of endodontically treated teeth restored with fiber-reinforced composite posts and experimental dentin posts milled from human root dentin by using computer-aided design/computer-aided manufacturing. Seventy maxillary central incisors were obturated and divided into 4 groups: control group without any post (n = 10), carbon fiber post group (n = 20), glass fiber post group (n = 20), and dentin post group (n = 20). Control group teeth were prepared to a height of 5 mm. In all other teeth, post space was prepared; a post was cemented, and a core build-up was provided. Half the samples from each group were statistically loaded until failure, and the remaining half were subjected to cyclic loading, followed by monostatic load until fracture. One-way analysis of variance and Bonferroni multiple comparisons revealed a significant difference among test groups. The control group demonstrated highest fracture resistance (935.03 ± 33.53 N), followed by the dentin post group (793.12 ± 33.69 N), glass fiber post group (603.44 ± 46.67 N), and carbon fiber post group (497.19 ± 19.27 N) under static loading. These values reduced to 786.69 ± 29.64 N, 646.34 ± 26.56 N, 470 ± 36.34 N, and 379.71 ± 13.95 N, respectively, after cyclic loading. Results suggest that human dentin can serve as post material under static and fatigue loading. Although at an early stage in research, the use of dentin posts in root-filled teeth looks promising. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Mohino-Herranz, Inma; Gil-Pita, Roberto; Ferreira, Javier; Rosa-Zurera, Manuel; Seoane, Fernando
2015-10-08
Determining the stress level of a subject in real time could be of special interest in certain professional activities to allow the monitoring of soldiers, pilots, emergency personnel and other professionals responsible for human lives. Assessment of current mental fitness for executing a task at hand might avoid unnecessary risks. To obtain this knowledge, two physiological measurements were recorded in this work using customized non-invasive wearable instrumentation that measures electrocardiogram (ECG) and thoracic electrical bioimpedance (TEB) signals. The relevant information from each measurement is extracted via evaluation of a reduced set of selected features. These features are primarily obtained from filtered and processed versions of the raw time measurements with calculations of certain statistical and descriptive parameters. Selection of the reduced set of features was performed using genetic algorithms, thus constraining the computational cost of the real-time implementation. Different classification approaches have been studied, but neural networks were chosen for this investigation because they represent a good tradeoff between the intelligence of the solution and computational complexity. Three different application scenarios were considered. In the first scenario, the proposed system is capable of distinguishing among different types of activity with a 21.2% probability error, for activities coded as neutral, emotional, mental and physical. In the second scenario, the proposed solution distinguishes among the three different emotional states of neutral, sadness and disgust, with a probability error of 4.8%. In the third scenario, the system is able to distinguish between low mental load and mental overload with a probability error of 32.3%. The computational cost was calculated, and the solution was implemented in commercially available Android-based smartphones. The results indicate that execution of such a monitoring solution is negligible compared to the nominal computational load of current smartphones.
Development of an efficient procedure for calculating the aerodynamic effects of planform variation
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Geller, E. W.
1981-01-01
Numerical procedures to compute gradients in aerodynamic loading due to planform shape changes using panel method codes were studied. Two procedures were investigated: one computed the aerodynamic perturbation directly; the other computed the aerodynamic loading on the perturbed planform and on the base planform and then differenced these values to obtain the perturbation in loading. It is indicated that computing the perturbed values directly can not be done satisfactorily without proper aerodynamic representation of the pressure singularity at the leading edge of a thin wing. For the alternative procedure, a technique was developed which saves most of the time-consuming computations from a panel method calculation for the base planform. Using this procedure the perturbed loading can be calculated in about one-tenth the time of that for the base solution.
Chen, Siyuan; Epps, Julien; Chen, Fang
2013-01-01
Using the task-evoked pupillary response (TEPR) to index cognitive load can contribute significantly to the assessment of memory function and cognitive skills in patients. However, the measurement of pupillary response is currently limited to a well-controlled lab environment due to light reflex and also relies heavily on expensive video-based eye trackers. Furthermore, commercial eye trackers are usually dedicated to gaze direction measurement, and their calibration procedure and computing resource are largely redundant for pupil-based cognitive load measurement (PCLM). In this study, we investigate the validity of cognitive load measurement with (i) pupil light reflex in a less controlled luminance background; (ii) a low-cost infrared (IR) webcam for the TEPR in a controlled luminance background. ANOVA results show that with an appropriate baseline selection and subtraction, the light reflex is significantly reduced, suggesting the possibility of less constrained practical applications of PCLM. Compared with the TEPR from a commercial remote eye tracker, a low-cost IR webcam achieved a similar TEPR pattern and no significant difference was found between the two devices in terms of cognitive load measurement across five induced load levels.
Effect of Thermal Storage on the Performance of a Wood Pellet-fired Residential Boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Butcher
Interest in the direct use of biomass for thermal applications as a renewable technology is increasing as is also focus on air pollutant emissions from these sources and methods to minimize the impact. This work has focused on wood pellet-fired residential boilers, which are the cleanest fuel in this category. In the residential application the load varies strongly over the course of a year and a high fraction of the load is typically under 15% of the maximum boiler capacity. Thermal storage can be used even with boilers which have modulation capacity typically to 30% of the boiler maximum. Onemore » common pellet boiler was tested at full load and also at the minimum load used in the U.S. certification testing (15%). In these tests the load was steady over the test period. Testing was also done with an emulated load profile for a home in Albany, N.Y. on a typical January, March, and April day. In this case the load imposed on the boiler varied hourly under computer control, based on the modeled load for the example case used. The boiler used has a nominal output of 25 kW and a common mixed hardwood/softwood commercial pellet was used. Moisture content was 3.77%. A dilution tunnel approach was used for the measurement of particulate emissions, in accordance with U.S. certification testing requirements. The test results showed that the use of storage strongly reduces cycling rates under part load conditions. The transients which occur as these boilers cycle contribute to increased particulate emissions and reduced efficiency. The time period of a full cycle at a given load condition can be increased by increasing the storage tank volume and/or increasing the control differential range. It was shown that increasing the period strongly increased the measured efficiency and reduced the particulate emission (relative to the no storage case). The impact was most significant at the low load levels. Storage tank heat loss is shown to be a significant factor in thermal efficiency, particularly at low load. Different methods to measure this heat loss were explored. For one of the tanks evaluated the efficiency loss at the 15% load point was found to be as high as 7.9%. Where storage is used good insulation on the tank, insulation on the piping, and attention to fittings are recommended.« less
ERIC Educational Resources Information Center
Garner, Stuart
2009-01-01
This paper reports on the findings from a quantitative research study into the use of a software tool that was built to support a part-complete solution method (PCSM) for the learning of computer programming. The use of part-complete solutions to programming problems is one of the methods that can be used to reduce the cognitive load that students…
Ramkumar, Barathram; Sabarimalai Manikandan, M.
2017-01-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal. PMID:28529758
Xie, Yanfei; Szeto, Grace P Y; Dai, Jie; Madeleine, Pascal
2016-01-01
This study aimed to examine differences in muscle activity between young people with and without neck-shoulder pain (n = 20 in each group), when they performed texting on a smartphone. Texting was compared between using both hands ('bilateral texting') and with only one hand ('unilateral texting'). Texting tasks were also compared with computer typing. Surface electromyography from three proximal postural muscles and four distal hand/thumb muscles on the right side was recorded. Compared with healthy controls, young people with neck-shoulder pain showed altered motor control consisting of higher muscle activity in the cervical erector spinae and upper trapezius when performing texting and typing tasks. Generally, unilateral texting was associated with higher muscle loading compared with bilateral texting especially in the forearm muscles. Compared with computer typing, smartphone texting was associated with higher activity in neck extensor and thumb muscles but lower activity in upper and lower trapezius as well as wrist extensors. This study demonstrated that symptomatic individuals had increased muscle activity in the neck–shoulder region when texting on a smartphone. Contemporary ergonomic guidelines should include advice on how to interact with handheld electronic devices to achieve a relaxed posture and reduced muscle load in order to reduce the risk of musculoskeletal disorders.
Bhattarai, Bishnu P.; Myers, Kurt S.; Bak-Jensen, Brigitte; ...
2017-05-17
This paper determines optimum aggregation areas for a given distribution network considering spatial distribution of loads and costs of aggregation. An elitist genetic algorithm combined with a hierarchical clustering and a Thevenin network reduction is implemented to compute strategic locations and aggregate demand within each area. The aggregation reduces large distribution networks having thousands of nodes to an equivalent network with few aggregated loads, thereby significantly reducing the computational burden. Furthermore, it not only helps distribution system operators in making faster operational decisions by understanding during which time of the day will be in need of flexibility, from which specificmore » area, and in which amount, but also enables the flexibilities stemming from small distributed resources to be traded in various power/energy markets. A combination of central and local aggregation scheme where a central aggregator enables market participation, while local aggregators materialize the accepted bids, is implemented to realize this concept. The effectiveness of the proposed method is evaluated by comparing network performances with and without aggregation. Finally, for a given network configuration, steady-state performance of aggregated network is significantly accurate (≈ ±1.5% error) compared to very high errors associated with forecast of individual consumer demand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu P.; Myers, Kurt S.; Bak-Jensen, Brigitte
This paper determines optimum aggregation areas for a given distribution network considering spatial distribution of loads and costs of aggregation. An elitist genetic algorithm combined with a hierarchical clustering and a Thevenin network reduction is implemented to compute strategic locations and aggregate demand within each area. The aggregation reduces large distribution networks having thousands of nodes to an equivalent network with few aggregated loads, thereby significantly reducing the computational burden. Furthermore, it not only helps distribution system operators in making faster operational decisions by understanding during which time of the day will be in need of flexibility, from which specificmore » area, and in which amount, but also enables the flexibilities stemming from small distributed resources to be traded in various power/energy markets. A combination of central and local aggregation scheme where a central aggregator enables market participation, while local aggregators materialize the accepted bids, is implemented to realize this concept. The effectiveness of the proposed method is evaluated by comparing network performances with and without aggregation. Finally, for a given network configuration, steady-state performance of aggregated network is significantly accurate (≈ ±1.5% error) compared to very high errors associated with forecast of individual consumer demand.« less
Active Control of F/A-18 Vertical Tail Buffeting using Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawerence J.; Harrand, Vincent J.
2003-01-01
Vertical tail buffeting is a serious multidisciplinary problem that limits the performance of twin-tail fighter aircraft. The buffet problem occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. This paper describes a multidisciplinary computational investigation for buffet load alleviation of full F/A-18 aircraft using distributed piezoelectric actuators. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the smart structure are expressed with a three-dimensional finite element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, fluid-structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. Peak values of the power spectral density of tail tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. RMS values of tip acceleration are reduced by as much as 12%.
Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M
2017-02-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.
Platform-Independence and Scheduling In a Multi-Threaded Real-Time Simulation
NASA Technical Reports Server (NTRS)
Sugden, Paul P.; Rau, Melissa A.; Kenney, P. Sean
2001-01-01
Aviation research often relies on real-time, pilot-in-the-loop flight simulation as a means to develop new flight software, flight hardware, or pilot procedures. Often these simulations become so complex that a single processor is incapable of performing the necessary computations within a fixed time-step. Threads are an elegant means to distribute the computational work-load when running on a symmetric multi-processor machine. However, programming with threads often requires operating system specific calls that reduce code portability and maintainability. While a multi-threaded simulation allows a significant increase in the simulation complexity, it also increases the workload of a simulation operator by requiring that the operator determine which models run on which thread. To address these concerns an object-oriented design was implemented in the NASA Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. The design provides a portable and maintainable means to use threads and also provides a mechanism to automatically load balance the simulation models.
Parallelized reliability estimation of reconfigurable computer networks
NASA Technical Reports Server (NTRS)
Nicol, David M.; Das, Subhendu; Palumbo, Dan
1990-01-01
A parallelized system, ASSURE, for computing the reliability of embedded avionics flight control systems which are able to reconfigure themselves in the event of failure is described. ASSURE accepts a grammar that describes a reliability semi-Markov state-space. From this it creates a parallel program that simultaneously generates and analyzes the state-space, placing upper and lower bounds on the probability of system failure. ASSURE is implemented on a 32-node Intel iPSC/860, and has achieved high processor efficiencies on real problems. Through a combination of improved algorithms, exploitation of parallelism, and use of an advanced microprocessor architecture, ASSURE has reduced the execution time on substantial problems by a factor of one thousand over previous workstation implementations. Furthermore, ASSURE's parallel execution rate on the iPSC/860 is an order of magnitude faster than its serial execution rate on a Cray-2 supercomputer. While dynamic load balancing is necessary for ASSURE's good performance, it is needed only infrequently; the particular method of load balancing used does not substantially affect performance.
Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method
NASA Astrophysics Data System (ADS)
Salajegheh, Eysa; Gholizadeh, Saeed; Khatibinia, Mohsen
2008-03-01
The optimal seismic design of structures requires that time history analyses (THA) be carried out repeatedly. This makes the optimal design process inefficient, in particular, if an evolutionary algorithm is used. To reduce the overall time required for structural optimization, two artificial intelligence strategies are employed. In the first strategy, radial basis function (RBF) neural networks are used to predict the time history responses of structures in the optimization flow. In the second strategy, a binary particle swarm optimization (BPSO) is used to find the optimum design. Combining the RBF and BPSO, a hybrid RBF-BPSO optimization method is proposed in this paper, which achieves fast optimization with high computational performance. Two examples are presented and compared to determine the optimal weight of structures under earthquake loadings using both exact and approximate analyses. The numerical results demonstrate the computational advantages and effectiveness of the proposed hybrid RBF-BPSO optimization method for the seismic design of structures.
Dynamic load balancing of applications
Wheat, S.R.
1997-05-13
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter A.; Stewart, Gordon; Lackner, Matthew
Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, whichmore » is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads.« less
Reduced functional loads alter the physical characteristics of the bone-PDL-cementum complex
Niver, Eric L.; Leong, Narita; Greene, Janelle; Curtis, Donald; Ryder, Mark I.; Ho, Sunita P.
2011-01-01
Background Adaptive properties of the bone-PDL-tooth complex have been identified by changing the magnitude of functional loads using small-scale animal models such as rodents. Reported adaptive responses as a result of lower loads due to softer diet include decreased muscle development, change in structure-function relationship of the cranium, narrowed PDL-space, changes in mineral level of the cortical bone and alveolar jaw bone, and glycosaminoglycans of the alveolar bone. However, the adaptive role of the dynamic bone-PDL-cementum complex due to prolonged reduced loads has not been fully explained to date, especially with regards to concurrent adaptations of bone, PDL and cementum. Hence, the temporal effect of reduced functional loads on physical characteristics such as morphology and mechanical properties, and mineral profiles of the bone-periodontal ligament (PDL)-cementum complex using a rat model was investigated. Materials and Methods Two groups of six-week-old male Sprague-Dawley rats were fed nutritionally identical food with a stiffness range of 127–158N/mm for hard pellet or 0.32–0.47N/mm for soft powder forms. Spatio-temporal adaptation of the bone-PDL-cementum complex was identified by mapping changes in: 1) PDL-collagen orientation and birefringence using polarized light microscopy, bone and cementum adaptation using histochemistry, and bone and cementum morphology using micro X-ray computed tomography, 2) mineral profiles of the PDL-cementum and PDL-bone interfaces by X-ray attenuation, and 3) microhardness of bone and cementum by microindentation of specimens at ages six, eight, twelve, and fifteen weeks. Results Reduced functional loads over prolonged time resulted in 1) altered PDL orientation and decreased PDL collagen birefringence indicating decreased PDL turnover rate and decreased apical cementum resorption; 2) a gradual increase in X-ray attenuation, owing to mineral differences, at the PDL-bone and PDL-cementum interfaces without significant differences in the gradients for either group; 3) significantly (p<0.05) lower microhardness of alveolar bone (0.93±0.16 GPa) and secondary cementum (0.803±0.13 GPa) compared to the higher load group (1.10±0.17 GPa and 0.940±0.15 GPa respectively) at fifteen weeks indicating a temporal effect of loads on local mineralization of bone and cementum. Conclusions Based on the results from this study, the effect of reduced functional loads for a prolonged time could differentially affect morphology and mechanical properties, and mineral variations and of the local load-bearing sites in a bone-PDL-cementum complex. These observed local changes in turn could help explain the overall biomechanical function and adaptations of the tooth-bone joint. From a clinical translation perspective, our study provides an insight into modulation of load on the complex for improved tooth function during periodontal disease, and/or orthodontic and prosthodontic treatments. PMID:21848615
A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.
Shen, Lili; Guo, Jiming; Wang, Lei
2018-06-06
The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.
DSS 14 64-meter antenna. Computed RF pathlength changes under gravity loadings
NASA Technical Reports Server (NTRS)
Katow, M. S.
1981-01-01
Using a computer model of the reflector structure and its supporting assembly of the 64-m antenna rotating about the elevation axis, the radio frequency (RF) pathlengths changes resulting from gravity loadings were computed. A check on the computed values was made by comparing the computed foci offsets with actual field readings of the Z or axial focussing required for elevation angle changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter; Damiani, Rick R.; Dykes, Katherine
2017-01-09
A new adaptive stratified importance sampling (ASIS) method is proposed as an alternative approach for the calculation of the 50 year extreme load under operational conditions, as in design load case 1.1 of the the International Electrotechnical Commission design standard. ASIS combines elements of the binning and extrapolation technique, currently described by the standard, and of the importance sampling (IS) method to estimate load probability of exceedances (POEs). Whereas a Monte Carlo (MC) approach would lead to the sought level of POE with a daunting number of simulations, IS-based techniques are promising as they target the sampling of the inputmore » parameters on the parts of the distributions that are most responsible for the extreme loads, thus reducing the number of runs required. We compared the various methods on select load channels as output from FAST, an aero-hydro-servo-elastic tool for the design and analysis of wind turbines developed by the National Renewable Energy Laboratory (NREL). Our newly devised method, although still in its infancy in terms of tuning of the subparameters, is comparable to the others in terms of load estimation and its variance versus computational cost, and offers great promise going forward due to the incorporation of adaptivity into the already powerful importance sampling concept.« less
Cloudgene: A graphical execution platform for MapReduce programs on private and public clouds
2012-01-01
Background The MapReduce framework enables a scalable processing and analyzing of large datasets by distributing the computational load on connected computer nodes, referred to as a cluster. In Bioinformatics, MapReduce has already been adopted to various case scenarios such as mapping next generation sequencing data to a reference genome, finding SNPs from short read data or matching strings in genotype files. Nevertheless, tasks like installing and maintaining MapReduce on a cluster system, importing data into its distributed file system or executing MapReduce programs require advanced knowledge in computer science and could thus prevent scientists from usage of currently available and useful software solutions. Results Here we present Cloudgene, a freely available platform to improve the usability of MapReduce programs in Bioinformatics by providing a graphical user interface for the execution, the import and export of data and the reproducibility of workflows on in-house (private clouds) and rented clusters (public clouds). The aim of Cloudgene is to build a standardized graphical execution environment for currently available and future MapReduce programs, which can all be integrated by using its plug-in interface. Since Cloudgene can be executed on private clusters, sensitive datasets can be kept in house at all time and data transfer times are therefore minimized. Conclusions Our results show that MapReduce programs can be integrated into Cloudgene with little effort and without adding any computational overhead to existing programs. This platform gives developers the opportunity to focus on the actual implementation task and provides scientists a platform with the aim to hide the complexity of MapReduce. In addition to MapReduce programs, Cloudgene can also be used to launch predefined systems (e.g. Cloud BioLinux, RStudio) in public clouds. Currently, five different bioinformatic programs using MapReduce and two systems are integrated and have been successfully deployed. Cloudgene is freely available at http://cloudgene.uibk.ac.at. PMID:22888776
Method and apparatus for transfer function simulator for testing complex systems
NASA Technical Reports Server (NTRS)
Kavaya, M. J. (Inventor)
1985-01-01
A method and apparatus for testing the operation of a complex stabilization circuit in a closed loop system is presented. The method is comprised of a programmed analog or digital computing system for implementing the transfer function of a load thereby providing a predictable load. The digital computing system employs a table stored in a microprocessor in which precomputed values of the load transfer function are stored for values of input signal from the stabilization circuit over the range of interest. This technique may be used not only for isolating faults in the stabilization circuit, but also for analyzing a fault in a faulty load by so varying parameters of the computing system as to simulate operation of the actual load with the fault.
Preliminary weight and costs of sandwich panels to distribute concentrated loads
NASA Technical Reports Server (NTRS)
Belleman, G.; Mccarty, J. E.
1976-01-01
Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.
Parallel performance optimizations on unstructured mesh-based simulations
Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; ...
2015-06-01
This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches.more » We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.« less
Optimizing physicians' instruction of PACS through e-learning: cognitive load theory applied.
Devolder, P; Pynoo, B; Voet, T; Adang, L; Vercruysse, J; Duyck, P
2009-03-01
This article outlines the strategy used by our hospital to maximize the knowledge transfer to referring physicians on using a picture archiving and communication system (PACS). We developed an e-learning platform underpinned by the cognitive load theory (CLT) so that in depth knowledge of PACS' abilities becomes attainable regardless of the user's prior experience with computers. The application of the techniques proposed by CLT optimizes the learning of the new actions necessary to obtain and manipulate radiological images. The application of cognitive load reducing techniques is explained with several examples. We discuss the need to safeguard the physicians' main mental processes to keep the patient's interests in focus. A holistic adoption of CLT techniques both in teaching and in configuration of information systems could be adopted to attain this goal. An overview of the advantages of this instruction method is given both on the individual and organizational level.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
Rapid reduced-order numerical models are being investigated as candidates to simulate the dynamics of a flexible launch vehicle during atmospheric ascent. There has also been the extension of these new approaches to include gust response. These methods are used to perform aeroelastic and gust response analyses at isolated Mach numbers. Such models require a method to time march through a succession of ascent Mach numbers. An approach is presented for interpolating reduced-order models of the unsteady aerodynamics at successive Mach numbers. The transonic Mach number range is considered here since launch vehicles can suffer the highest dynamic loads through this range. Realistic simulations of the flexible vehicle behavior as it traverses this Mach number range are presented. The response of the vehicle due to gusts is computed. Uncertainties in root mean square and maximum bending moment and crew module accelerations are presented due to assumed probability distributions in design parameters, ascent flight conditions, gusts. The primary focus is on the uncertainty introduced by modeling fidelity. It is found that an unsteady reduced order model produces larger excursions in the root mean square loading and accelerations than does a quasi-steady reduced order model.
Analysis of gear reducer housing using the finite element method
NASA Astrophysics Data System (ADS)
Miklos, I. Zs; Miklos, C. C.; Alic, C. I.; Raţiu, S.
2018-01-01
The housing is an important component in the construction of gear reducers, having the role of fixing the relative position of the shafts and toothed wheels. At the same time, the housing takes over, via the bearings, the shaft loads resulting when the toothed wheel is engaging another toothed mechanism (i.e. power transmission through belts or chains), and conveys them to the foundation on which it is anchored. In this regard, in order to ensure the most accurate gearing, a high stiffness of the housing is required. In this paper, we present the computer-aided 3D modelling of the housing (in cast version) of a single stage cylindrical gear reducer, using the Autodesk Inventor Professional software, on the principle of constructive sizing. For the housing resistance calculation, we carried out an analysis using the Autodesk Simulation Mechanical software to apply the finite element method, based on the actual loads, as well as a comparative study of the stress and strain distribution, for several tightening values of the retaining bolts that secure the cover and the foundation housing.
King, Mark A; Glynn, Jonathan A; Mitchell, Sean R
2011-11-01
A subject-specific angle-driven computer model of a tennis player, combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts, was developed to determine the effect of ball-racket impacts on loading at the elbow for one-handed backhand groundstrokes. Matching subject-specific computer simulations of a typical topspin/slice one-handed backhand groundstroke performed by an elite tennis player were done with root mean square differences between performance and matching simulations of < 0.5 degrees over a 50 ms period starting from ball impact. Simulation results suggest that for similar ball-racket impact conditions, the difference in elbow loading for a topspin and slice one-handed backhand groundstroke is relatively small. In this study, the relatively small differences in elbow loading may be due to comparable angle-time histories at the wrist and elbow joints with the major kinematic differences occurring at the shoulder. Using a subject-specific angle-driven computer model combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts allows peak internal loading, net impulse, and shock due to ball-racket impact to be calculated which would not otherwise be possible without impractical invasive techniques. This study provides a basis for further investigation of the factors that may increase elbow loading during tennis strokes.
Computational knee ligament modeling using experimentally determined zero-load lengths.
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models.
Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.
A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software
NASA Technical Reports Server (NTRS)
Boppana, Abhishektha; Sefcik, Ryan; Myers, Jerry G.; Lewandowski, Beth
2016-01-01
Individuals who experience decreases in load-bearing bone densities can be subject to a higher risk of bone fracture during daily activity. Astronauts may lose up to nine percent of their load-bearing bone density for every month they spend in space [1]. Because of this, specialized countermeasures reduce percent loss in bone density and reduce fracture risk upon returning to Earth. Astronauts will typically not be at risk for fracture during spaceflight, because of the lesser loads experienced in microgravity conditions. However, once back on Earth, astronauts have an increased risk for bone fracture as a result of weakened bone and return to 1G conditions [2]. It is therefore important to understand the significance of any bone density loss in addition to developing exercises in an attempt to limit losses in bone strength. NASA seeks to develop a deeper understanding of fracture risk through the development of a computational bone strength model to assess the bone fracture risk of astronauts pre-flight and post-flight. This study addresses the several key processes needed to develop such strength analyses using medical image processing and finite element modeling.
Silva, Bhagya Nathali; Khan, Murad; Han, Kijun
2018-02-25
The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.
Biomechanical effects of mobile computer location in a vehicle cab.
Saginus, Kyle A; Marklin, Richard W; Seeley, Patricia; Simoneau, Guy G; Freier, Stephen
2011-10-01
The objective of this research is to determine the best location to place a conventional mobile computer supported by a commercially available mount in a light truck cab. U.S. and Canadian electric utility companies are in the process of integrating mobile computers into their fleet vehicle cabs. There are no publications on the effect of mobile computer location in a vehicle cab on biomechanical loading, performance, and subjective assessment. The authors tested four locations of mobile computers in a light truck cab in a laboratory study to determine how location affected muscle activity of the lower back and shoulders; joint angles of the shoulders, elbows, and wrist; user performance; and subjective assessment. A total of 22 participants were tested in this study. Placing the mobile computer closer to the steering wheel reduced low back and shoulder muscle activity. Joint angles of the shoulders, elbows, and wrists were also closer to neutral angle. Biomechanical modeling revealed substantially less spinal compression and trunk muscle force. In general, there were no practical differences in performance between the locations. Subjective assessment indicated that users preferred the mobile computer to be as close as possible to the steering wheel. Locating the mobile computer close to the steering wheel reduces risk of injuries, such as low back pain and shoulder tendonitis. Results from the study can guide electric utility companies in the installation of mobile computers into vehicle cabs. Results may also be generalized to other industries that use trucklike vehicles, such as construction.
NASA Technical Reports Server (NTRS)
Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.
2001-01-01
Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.
Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto
2015-11-01
Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Mullaney, John R.; Schwarz, Gregory E.
2013-01-01
The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.
Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettin, Giorgia
2015-05-01
The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up tomore » 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.« less
NASA Technical Reports Server (NTRS)
Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.
1990-01-01
A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.
Versino, Daniele; Bronkhorst, Curt Allan
2018-01-31
The computational formulation of a micro-mechanical material model for the dynamic failure of ductile metals is presented in this paper. The statistical nature of porosity initiation is accounted for by introducing an arbitrary probability density function which describes the pores nucleation pressures. Each micropore within the representative volume element is modeled as a thick spherical shell made of plastically incompressible material. The treatment of porosity by a distribution of thick-walled spheres also allows for the inclusion of micro-inertia effects under conditions of shock and dynamic loading. The second order ordinary differential equation governing the microscopic porosity evolution is solved withmore » a robust implicit procedure. A new Chebyshev collocation method is employed to approximate the porosity distribution and remapping is used to optimize memory usage. The adaptive approximation of the porosity distribution leads to a reduction of computational time and memory usage of up to two orders of magnitude. Moreover, the proposed model affords consistent performance: changing the nucleation pressure probability density function and/or the applied strain rate does not reduce accuracy or computational efficiency of the material model. The numerical performance of the model and algorithms presented is tested against three problems for high density tantalum: single void, one-dimensional uniaxial strain, and two-dimensional plate impact. Here, the results using the integration and algorithmic advances suggest a significant improvement in computational efficiency and accuracy over previous treatments for dynamic loading conditions.« less
Tensile and shear loading of four fcc high-entropy alloys: A first-principles study
NASA Astrophysics Data System (ADS)
Li, Xiaoqing; Schönecker, Stephan; Li, Wei; Varga, Lajos K.; Irving, Douglas L.; Vitos, Levente
2018-03-01
Ab initio density-functional calculations are used to investigate the response of four face-centered-cubic (fcc) high-entropy alloys (HEAs) to tensile and shear loading. The ideal tensile and shear strengths (ITS and ISS) of the HEAs are studied by employing first-principles alloy theory formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation. We benchmark the computational accuracy against literature data by studying the ITS under uniaxial [110] tensile loading and the ISS for the [11 2 ¯] (111 ) shear deformation of pure fcc Ni and Al. For the HEAs, we uncover the alloying effect on the ITS and ISS. Under shear loading, relaxation reduces the ISS by ˜50 % for all considered HEAs. We demonstrate that the dimensionless tensile and shear strengths are significantly overestimated by adopting two widely used empirical models in comparison with our ab initio calculations. In addition, our predicted relationship between the dimensionless shear strength and shear instability are in line with the modified Frenkel model. Using the computed ISS, we derive the half-width of the dislocation core for the present HEAs. Employing the ratio of ITS to ISS, we discuss the intrinsic ductility of HEAs and compare it with a common empirical criterion. We observe a strong linear correlation between the shear instability and the ratio of ITS to ISS, whereas a weak positive correlation is found in the case of the empirical criterion.
Simulation of Propellant Loading System Senior Design Implement in Computer Algorithm
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak
2010-01-01
Propellant loading from the Storage Tank to the External Tank is one of the very important and time consuming pre-launch ground operations for the launch vehicle. The propellant loading system is a complex integrated system involving many physical components such as the storage tank filled with cryogenic fluid at a very low temperature, the long pipe line connecting the storage tank with the external tank, the external tank along with the flare stack, and vent systems for releasing the excess fuel. Some of the very important parameters useful for design purpose are the prediction of pre-chill time, loading time, amount of fuel lost, the maximum pressure rise etc. The physics involved for mathematical modeling is quite complex due to the fact the process is unsteady, there is phase change as some of the fuel changes from liquid to gas state, then conjugate heat transfer in the pipe walls as well as between solid-to-fluid region. The simulation is very tedious and time consuming too. So overall, this is a complex system and the objective of the work is student's involvement and work in the parametric study and optimization of numerical modeling towards the design of such system. The students have to first become familiar and understand the physical process, the related mathematics and the numerical algorithm. The work involves exploring (i) improved algorithm to make the transient simulation computationally effective (reduced CPU time) and (ii) Parametric study to evaluate design parameters by changing the operational conditions
Flight-Time Identification of a UH-60A Helicopter and Slung Load
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; McCoy, Allen H.; Tischler, Mark B.; Tucker, George E.; Gatenio, Pinhas; Marmar, Dani
1998-01-01
This paper describes a flight test demonstration of a system for identification of the stability and handling qualities parameters of a helicopter-slung load configuration simultaneously with flight testing, and the results obtained.Tests were conducted with a UH-60A Black Hawk at speeds from hover to 80 kts. The principal test load was an instrumented 8 x 6 x 6 ft cargo container. The identification used frequency domain analysis in the frequency range to 2 Hz, and focussed on the longitudinal and lateral control axes since these are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities. Results were computed for stability margins, handling qualities parameters and load pendulum stability. The computations took an average of 4 minutes before clearing the aircraft to the next test point. Important reductions in handling qualities were computed in some cases, depending, on control axis and load-slung combination. A database, including load dynamics measurements, was accumulated for subsequent simulation development and validation.
Energy 101: Energy Efficient Data Centers
None
2018-04-16
Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance componentsâup to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.
NASA Technical Reports Server (NTRS)
Plankey, B.
1981-01-01
A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Biswas, Rupak; Simon, Horst D.
1996-01-01
The computational requirements for an adaptive solution of unsteady problems change as the simulation progresses. This causes workload imbalance among processors on a parallel machine which, in turn, requires significant data movement at runtime. We present a new dynamic load-balancing framework, called JOVE, that balances the workload across all processors with a global view. Whenever the computational mesh is adapted, JOVE is activated to eliminate the load imbalance. JOVE has been implemented on an IBM SP2 distributed-memory machine in MPI for portability. Experimental results for two model meshes demonstrate that mesh adaption with load balancing gives more than a sixfold improvement over one without load balancing. We also show that JOVE gives a 24-fold speedup on 64 processors compared to sequential execution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.
1979-06-01
The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests and/or deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four degrees of ovalization of the nozzle: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The computed side load physics caused by the nozzle out-of-roundness and its effect on nozzle side load are reported and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versino, Daniele; Bronkhorst, Curt Allan
The computational formulation of a micro-mechanical material model for the dynamic failure of ductile metals is presented in this paper. The statistical nature of porosity initiation is accounted for by introducing an arbitrary probability density function which describes the pores nucleation pressures. Each micropore within the representative volume element is modeled as a thick spherical shell made of plastically incompressible material. The treatment of porosity by a distribution of thick-walled spheres also allows for the inclusion of micro-inertia effects under conditions of shock and dynamic loading. The second order ordinary differential equation governing the microscopic porosity evolution is solved withmore » a robust implicit procedure. A new Chebyshev collocation method is employed to approximate the porosity distribution and remapping is used to optimize memory usage. The adaptive approximation of the porosity distribution leads to a reduction of computational time and memory usage of up to two orders of magnitude. Moreover, the proposed model affords consistent performance: changing the nucleation pressure probability density function and/or the applied strain rate does not reduce accuracy or computational efficiency of the material model. The numerical performance of the model and algorithms presented is tested against three problems for high density tantalum: single void, one-dimensional uniaxial strain, and two-dimensional plate impact. Here, the results using the integration and algorithmic advances suggest a significant improvement in computational efficiency and accuracy over previous treatments for dynamic loading conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozano, M.C.; Chalfoun, N.V.
Bogota, Colombia, is the third highest capital in South America, its location near the equator assures high altitudes over the horizon and almost 5 hours of daily mean sunshine. Since 1981, efforts for using natural energy instead of nonrenewable fuel have been targeted to Colombia`s residential construction industry. This paper focuses on a computer aided design process for passive solar low-income row housing in Bogota. Thermal comfort for this tropical climate has been achieved through employing ``Guadua,`` a strong bamboo specie,as an alternative wall system to the traditional brick, adobe, or concrete structures. Through computer analysis, several energy conservation andmore » passive solar strategies have been optimized for a case study row housing type common to the region. The load savings compared to a 6 inch CMU house totaled 72%, while the operating cost has been reduced by 71%. Furthermore, this lightweight and inexpensive ``Guadua`` material has reduced the construction cost by 30%.« less
NASA Astrophysics Data System (ADS)
Moro, A. C.; Nadesh, R. K.
2017-11-01
The cloud computing paradigm has transformed the way we do business in today’s world. Services on cloud have come a long way since just providing basic storage or software on demand. One of the fastest growing factor in this is mobile cloud computing. With the option of offloading now available to mobile users, mobile users can offload entire applications onto cloudlets. With the problems regarding availability and limited-storage capacity of these mobile cloudlets, it becomes difficult to decide for the mobile user when to use his local memory or the cloudlets. Hence, we take a look at a fast algorithm that decides whether the mobile user should go for cloudlet or rely on local memory based on an offloading probability. We have partially implemented the algorithm which decides whether the task can be carried out locally or given to a cloudlet. But as it becomes a burden on the mobile devices to perform the complete computation, so we look to offload this on to a cloud in our paper. Also further we use a file compression technique before sending the file onto the cloud to further reduce the load.
Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA
Xia, Fei; Dou, Yong; Zhou, Xingming; Yang, Xuejun; Xu, Jiaqing; Zhang, Yang
2009-01-01
Background In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design. Results RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%. Conclusion To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (ViennaPackage – 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU. PMID:19208138
Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading
NASA Astrophysics Data System (ADS)
Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva
2012-02-01
This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R2 = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.
Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading.
Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva
2012-02-01
This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R(2) = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.
Levesque, V.A.; Hammett, K.M.
1997-01-01
The Myakka and Peace River Basins constitute more than 60 percent of the total inflow area and contribute more than half the total tributary inflow to the Charlotte Harbor estuarine system. Water discharge and nutrient enrichment have been identified as significant concerns in the estuary, and consequently, it is important to accurately estimate the magnitude of discharges and nutrient loads transported by inflows from both rivers. Two methods for estimating discharge and nutrient loads from tidally affected reaches of the Myakka and Peace Rivers were compared. The first method was a tidal-estimation method, in which discharge and nutrient loads were estimated based on stage, water-velocity, discharge, and water-quality data collected near the mouths of the rivers. The second method was a traditional basin-ratio method in which discharge and nutrient loads at the mouths were estimated from discharge and loads measured at upstream stations. Stage and water-velocity data were collected near the river mouths by submersible instruments, deployed in situ, and discharge measurements were made with an acoustic Doppler current profiler. The data collected near the mouths of the Myakka River and Peace River were filtered, using a low-pass filter, to remove daily mixed-tide effects with periods less than about 2 days. The filtered data from near the river mouths were used to calculate daily mean discharge and nutrient loads. These tidal-estimation-method values were then compared to the basin-ratio-method values. Four separate 30-day periods of differing streamflow conditions were chosen for monitoring and comparison. Discharge and nutrient load estimates computed from the tidal-estimation and basin-ratio methods were most similar during high-flow periods. However, during high flow, the values computed from the tidal-estimation method for the Myakka and Peace Rivers were consistently lower than the values computed from the basin-ratio method. There were substantial differences between discharges and nutrient loads computed from the tidal-estimation and basin-ratio methods during low-flow periods. Furthermore, the differences between the methods were not consistent. Discharges and nutrient loads computed from the tidal-estimation method for the Myakka River were higher than those computed from the basin-ratio method, whereas discharges and nutrients loads computed by the tidal-estimation method for the Peace River were not only lower than those computed from the basin-ratio method, but they actually reflected a negative, or upstream, net movement. Short-term tidal measurement results should be used with caution, because antecedent conditions can influence the discharge and nutrient loads. Continuous tidal data collected over a 1- or 2-year period would be necessary to more accurately estimate the tidally affected discharge and nutrient loads for the Myakka and Peace River Basins.
Computational methods for structural load and resistance modeling
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Millwater, H. R.; Harren, S. V.
1991-01-01
An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.
Automated Wing Twist And Bending Measurements Under Aerodynamic Load
NASA Technical Reports Server (NTRS)
Burner, A. W.; Martinson, S. D.
1996-01-01
An automated system to measure the change in wing twist and bending under aerodynamic load in a wind tunnel is described. The basic instrumentation consists of a single CCD video camera and a frame grabber interfaced to a computer. The technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed (and known) third dimensional coordinate, namely the spanwise location. The measurement technique has been used successfully at the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley Research Center. The advantages and limitations (including targeting) of the technique are discussed. A major consideration in the development was that use of the technique must not appreciably reduce wind tunnel productivity.
Trunk Acceleration for Neuroprosthetic Control of Standing – a Pilot Study
Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.
2013-01-01
This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared to optimal, constant excitation. PMID:21975251
Trunk acceleration for neuroprosthetic control of standing: a pilot study.
Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J
2012-02-01
This pilot study investigated the potential of using trunk acceleration feedback control of center of pressure (COP) against postural disturbances with a standing neuroprosthesis following paralysis. Artificial neural networks (ANNs) were trained to use three-dimensional trunk acceleration as input to predict changes in COP for able-bodied subjects undergoing perturbations during bipedal stance. Correlation coefficients between ANN predictions and actual COP ranged from 0.67 to 0.77. An ANN trained across all subject-normalized data was used to drive feedback control of ankle muscle excitation levels for a computer model representing a standing neuroprosthesis user. Feedback control reduced average upper-body loading during perturbation onset and recovery by 42% and peak loading by 29% compared with optimal, constant excitation.
On the dimension of complex responses in nonlinear structural vibrations
NASA Astrophysics Data System (ADS)
Wiebe, R.; Spottswood, S. M.
2016-07-01
The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to model.
NASA Astrophysics Data System (ADS)
Eichhorn, M.; Taruffi, A.; Bauer, C.
2017-04-01
The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.
Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522
Degradation forecast for PEMFC cathode-catalysts under cyclic loads
NASA Astrophysics Data System (ADS)
Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.
2017-08-01
Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.
NASA Astrophysics Data System (ADS)
Hojo, M.; Osawa, K.; Adachi, T.; Inoue, Y.; Osamura, K.; Ochiai, S.; Ayai, N.; Hayashi, K.
2010-11-01
Tensile strain tolerance of the critical current in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) composite superconductor is dramatically improved when the tape is laminated with stainless steel. For practical applications, it is important to understand whether this reinforcement by lamination is effective under fatigue loading. In the present study, we carried out fatigue tests in LN2 and measured the critical current at the specific fatigue cycles to clarify the strain tolerance of the critical current in stainless steel-laminated drastically innovative Bi2223 (DI-BSCCO®) tapes. The fatigue tests were carried out using a computer-controlled 10 kN servo-hydraulic fatigue testing machine with a load cell capacity of 2.5 kN. Tests under static loading showed that the irreversible stress at which the critical current is reduced by 1% from the original value (tensile stress at Ic/Ic0 = 0.99) was 315 MPa when measured at unloading state. The present fatigue tests results indicated that the critical current was maintained at over 98% of the original value at unloading state after stress cycles of 106 when the static irreversible stress was selected as the maximum stress under fatigue loading. Thus, laminated DI-BSCCO tapes showed excellent mechanical properties even under fatigue loading.
Influence of surface finishing on fracture load and failure mode of glass ceramic crowns.
Mores, Rafael Tagliari; Borba, Márcia; Corazza, Pedro Henrique; Della Bona, Álvaro; Benetti, Paula
2017-10-01
Ceramic restorations often require adjustments using diamond rotary instruments, which damage the glazed surface. The effect of these adjustments on the fracture behavior of these restorations is unclear. The purpose of this in vitro study was to evaluate the influence of induced surface defects on the fracture load and mode of failure of lithium disilicate-based (LDS) glass ceramic restorations. Premolar crowns were obtained from LDS computer-aided design and computer-aided manufacturing blocks (n=60) and glazed. The crowns were bonded to dentin analog dies and divided into 5 groups (n=12), as follows: glaze; abrasion (diamond rotary instrument 2135); abrasion and reglaze; abrasion and polishing (diamond rotary instrument 2135F, 2135 FF, and polishing devices); and polishing. The topography of the crowns was examined by scanning electron microscopy, and roughness was measured. A compressive load (0.5 mm/min) was applied by a piston to the center of the lingual cusp until fracture. The fracture load was recorded and data were statistically analyzed by ANOVA and the Tukey HSD test (α=.05). Fractured crowns were examined to determine the fracture origin. Polishing and/or reglazing resulted in lower roughness than for the abraded group (P<.05), which did not affect the fracture loads (P=.696). Catastrophic fracture with origin at the intaglio surface was the mode of failure for all the crowns. The experiment design successfully submitted the crowns to a clinical stress state, resulting in a clinically relevant failure. Reglazing or polishing were effective in reducing surface defects. Surface treatments had no effect on the immediate catastrophic failure of LDS crowns. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
Theory of a Traveling Wave Feed for a Planar Slot Array Antenna
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2012-01-01
Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.
A comparison of queueing, cluster and distributed computing systems
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Nelson, Michael L.
1993-01-01
Using workstation clusters for distributed computing has become popular with the proliferation of inexpensive, powerful workstations. Workstation clusters offer both a cost effective alternative to batch processing and an easy entry into parallel computing. However, a number of workstations on a network does not constitute a cluster. Cluster management software is necessary to harness the collective computing power. A variety of cluster management and queuing systems are compared: Distributed Queueing Systems (DQS), Condor, Load Leveler, Load Balancer, Load Sharing Facility (LSF - formerly Utopia), Distributed Job Manager (DJM), Computing in Distributed Networked Environments (CODINE), and NQS/Exec. The systems differ in their design philosophy and implementation. Based on published reports on the different systems and conversations with the system's developers and vendors, a comparison of the systems are made on the integral issues of clustered computing.
Reliability and Creep/Fatigue Analysis of a CMC Component
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.
2007-01-01
High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.
Niver, E L; Leong, N; Greene, J; Curtis, D; Ryder, M I; Ho, S P
2011-12-01
Adaptive properties of the bone-periodontal ligament-tooth complex have been identified by changing the magnitude of functional loads using small-scale animal models, such as rodents. Reported adaptive responses as a result of lower loads due to softer diet include decreased muscle development, change in structure-function relationship of the cranium, narrowed periodontal ligament space, and changes in the mineral level of the cortical bone and alveolar jaw bone and in the glycosaminoglycans of the alveolar bone. However, the adaptive role of the dynamic bone-periodontal ligament-cementum complex to prolonged reduced loads has not been fully explained to date, especially with regard to concurrent adaptations of bone, periodontal ligament and cementum. Therefore, in the present study, using a rat model, the temporal effect of reduced functional loads on physical characteristics, such as morphology and mechanical properties and the mineral profiles of the bone-periodontal ligament-cementum complex was investigated. Two groups of 6-wk-old male Sprague-Dawley rats were fed nutritionally identical food with a stiffness range of 127-158 N/mm for hard pellet or 0.3-0.5 N/mm for soft powder forms. Spatio-temporal adaptation of the bone-periodontal ligament-cementum complex was identified by mapping changes in the following: (i) periodontal ligament collagen orientation and birefringence using polarized light microscopy, bone and cementum adaptation using histochemistry, and bone and cementum morphology using micro-X-ray computed tomography; (ii) mineral profiles of the periodontal ligament-cementum and periodontal ligament-bone interfaces by X-ray attenuation; and (iii) microhardness of bone and cementum by microindentation of specimens at ages 6, 8, 12 and 15 wk. Reduced functional loads over prolonged time resulted in the following adaptations: (i) altered periodontal ligament orientation and decreased periodontal ligament collagen birefringence, indicating decreased periodontal ligament turnover rate and decreased apical cementum resorption; (ii) a gradual increase in X-ray attenuation, owing to mineral differences, at the periodontal ligament-bone and periodontal ligament-cementum interfaces, without significant differences in the gradients for either group; (iii) significantly (p < 0.05) lower microhardness of alveolar bone (0.93 ± 0.16 GPa) and secondary cementum (0.803 ± 0.13 GPa) compared with the higher load group insert bone = (1.10 ± 0.17 and cementum = 0.940 ± 0.15 GPa, respectively) at 15 wk, indicating a temporal effect of loads on the local mineralization of bone and cementum. Based on the results from this study, the effect of reduced functional loads for a prolonged time could differentially affect morphology, mechanical properties and mineral variations of the local load-bearing sites in the bone-periodontal ligament-cementum complex. These observed local changes in turn could help to explain the overall biomechanical function and adaptations of the tooth-bone joint. From a clinical translation perspective, our study provides an insight into modulation of load on the complex for improved tooth function during periodontal disease and/or orthodontic and prosthodontic treatments. © 2011 John Wiley & Sons A/S.
A historical perspective of the YF-12A thermal loads and structures program
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.; Quinn, Robert D.
1996-01-01
Around 1970, the Y-F-12A loads and structures efforts focused on numerous technological issues that needed defining with regard to aircraft that incorporate hot structures in the design. Laboratory structural heating test technology with infrared systems was largely created during this program. The program demonstrated the ability to duplicate the complex flight temperatures of an advanced supersonic airplane in a ground-based laboratory. The ability to heat and load an advanced operational aircraft in a laboratory at high temperatures and return it to flight status without adverse effects was demonstrated. The technology associated with measuring loads with strain gages on a hot structure was demonstrated with a thermal calibration concept. The results demonstrated that the thermal stresses were significant although the airplane was designed to reduce thermal stresses. Considerable modeling detail was required to predict the heat transfer and the corresponding structural characteristics. The overall YF-12A research effort was particularly productive, and a great deal of flight, laboratory, test and computational data were produced and cross-correlated.
Collectively loading programs in a multiple program multiple data environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.
Techniques are disclosed for loading programs efficiently in a parallel computing system. In one embodiment, nodes of the parallel computing system receive a load description file which indicates, for each program of a multiple program multiple data (MPMD) job, nodes which are to load the program. The nodes determine, using collective operations, a total number of programs to load and a number of programs to load in parallel. The nodes further generate a class route for each program to be loaded in parallel, where the class route generated for a particular program includes only those nodes on which the programmore » needs to be loaded. For each class route, a node is selected using a collective operation to be a load leader which accesses a file system to load the program associated with a class route and broadcasts the program via the class route to other nodes which require the program.« less
NASA Technical Reports Server (NTRS)
Klein, M.; Reynolds, J.; Ricks, E.
1989-01-01
Load and stress recovery from transient dynamic studies are improved upon using an extended acceleration vector in the modal acceleration technique applied to structural analysis. Extension of the normal LTM (load transformation matrices) stress recovery to automatically compute margins of safety is presented with an application to the Hubble space telescope.
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1977-01-01
A finite element computer program which enables the analysis of distortions and stresses occurring in compounds having a relative interference is presented. The program is limited to situations in which the loading is axisymmetric. Loads arising from the interference fit(s) and external, inertial, and thermal loadings are accommodated. The components comprise several different homogeneous isotropic materials whose properties may be a function of temperature. An example illustrating the data input and program output is given.
Parallelization of Nullspace Algorithm for the computation of metabolic pathways
Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel
2011-01-01
Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581
An analysis of the viscous flow through a compact radial turbine by the average passage approach
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Beach, Timothy A.
1990-01-01
A steady, three-dimensional viscous average passage computer code is used to analyze the flow through a compact radial turbine rotor. The code models the flow as spatially periodic from blade passage to blade passage. Results from the code using varying computational models are compared with each other and with experimental data. These results include blade surface velocities and pressures, exit vorticity and entropy contour plots, shroud pressures, and spanwise exit total temperature, total pressure, and swirl distributions. The three computational models used are inviscid, viscous with no blade clearance, and viscous with blade clearance. It is found that modeling viscous effects improves correlation with experimental data, while modeling hub and tip clearances further improves some comparisons. Experimental results such as a local maximum of exit swirl, reduced exit total pressures at the walls, and exit total temperature magnitudes are explained by interpretation of the flow physics and computed secondary flows. Trends in the computed blade loading diagrams are similarly explained.
Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
2010-01-01
The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.
Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael
2013-01-01
Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518
Design of an oil squeeze film damper bearing for a multimass flexible-rotor bearing system
NASA Technical Reports Server (NTRS)
Cunningham, R. E.; Gunter, E. J., Jr.; Fleming, D. P.
1975-01-01
A single-mass flexible-rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible, damped support attenuates the amplitudes of motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor with rigid bearing supports.
Design of a squeeze-film damper for a multi-mass flexible rotor
NASA Technical Reports Server (NTRS)
Cunningham, R. E.; Fleming, D. P.; Gunter, E. J.
1975-01-01
A single mass flexible rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible support attenuates the rotor motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze-film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor on rigid bearing supports.
An improved V-Lambda solution of the matrix Riccati equation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Markley, F. Landis
1988-01-01
The authors present an improved algorithm for computing the V-Lambda solution of the matrix Riccati equation. The improvement is in the reduction of the computational load, results from the orthogonality of the eigenvector matrix that has to be solved for. The orthogonality constraint reduces the number of independent parameters which define the matrix from n-squared to n (n - 1)/2. The authors show how to specify the parameters, how to solve for them and how to form from them the needed eigenvector matrix. In the search for suitable parameters, the analogy between the present problem and the problem of attitude determination is exploited, resulting in the choice of Rodrigues parameters.
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.
Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006
Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.
2008-01-01
Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.
NASA Astrophysics Data System (ADS)
Mémin, Anthony; Viswanathan, Vishnu; Fienga, Agnes; Santamarìa-Gómez, Alvaro; Boy, Jean-Paul; Cavalié, Olivier; Deleflie, Florent; Exertier, Pierre; Bernard, Jean-Daniel; Hinderer, Jacques
2017-04-01
Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the observations. We investigate the discrepancy observed in the seasonal variations of the position at the CERGA station, South of France. We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR, LLR and InSAR. We investigate the consistency between the station motions deduced from these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models. Using the surface-mass models, we estimate that the seasonal signal due to loading deformation at the CERGA station is about 8-9, 1-2 and 1-2 mm peak-to-peak in Up, North and East component, respectively. There is a very good correlation between GPS observations and non-tidal loading predicted deformation due to atmosphere, ocean and hydrology which is the main driver of seasonal signal at CERGA. Despite large error bars, LLR observations agree reasonably well with GPS and non-tidal loading predictions in Up component. Local deformation as observed by InSAR is very well correlated with GPS observations corrected for non-tidal loading. Finally, we estimate local mass changes using the absolute gravity measurement campaigns available at the station and the global models of surface-mass change. We compute the induced station motion that we compare with the local deformation observed by InSAR and GPS.
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin J.
2013-01-01
The Mobile Thread Task Manager (MTTM) is being applied to parallelizing existing flight software to understand the benefits and to develop new techniques and architectural concepts for adapting software to multicore architectures. It allocates and load-balances tasks for a group of threads that migrate across processors to improve cache performance. In order to balance-load across threads, the MTTM augments a basic map-reduce strategy to draw jobs from a global queue. In a multicore processor, memory may be "homed" to the cache of a specific processor and must be accessed from that processor. The MTTB architecture wraps access to data with thread management to move threads to the home processor for that data so that the computation follows the data in an attempt to avoid L2 cache misses. Cache homing is also handled by a memory manager that translates identifiers to processor IDs where the data will be homed (according to rules defined by the user). The user can also specify the number of threads and processors separately, which is important for tuning performance for different patterns of computation and memory access. MTTM efficiently processes tasks in parallel on a multiprocessor computer. It also provides an interface to make it easier to adapt existing software to a multiprocessor environment.
Ardestani, Marzieh Mostafavizadeh; Chen, Zhenxian; Wang, Ling; Lian, Qin; Liu, Yaxiong; He, Jiankang; Li, Dichen; Jin, Zhongmin
2014-10-01
There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a "trial-and-error" approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject. This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis. Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Simulated building energy demand biases resulting from the use of representative weather stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the potential reduction in bias from using an increasing number of weather stations over the western U.S. The approach is based on deriving temperature and load time series using incrementally more weather stations, ranging from 8 to roughly 150, tomore » capture weather across different seasons. Using 8 stations, one from each climate zone, across the western U.S. results in an average absolute summertime temperature bias of 7.2°F with respect to a spatially-resolved gridded dataset. The mean absolute bias drops to 2.8°F using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.8%, a significant error for capacity expansion planners who may use these types of simulations. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20-40% overestimation of peak building loads during both summer and winter. Using weather stations close to population centers reduces both mean and peak load biases. This approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
A computer program for simulating salinity loads in streams
Glover, Kent C.
1978-01-01
A FORTRAN IV program that simulates salinity loads in streams is described. Daily values of stream-discharge in cubic feet per second, or stream-discharge and specific conductance in micromhos, are used to estimate daily loads in tons by one of five available methods. The loads are then summarized by computing either total and mean monthly loads or various statistics for each calendar day. Results are output in tabular and, if requested, punch card format. Under selection of appropriate methods for estimating and summarizing daily loads is provided through the coding of program control cards. The program is designed to interface directly with data retrieved from the U.S. Geological Survey WATSTORE Daily Values File. (Woodard-USGS)
NASA Technical Reports Server (NTRS)
Krasteva, Denitza T.
1998-01-01
Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.
Optimization of an electromagnetic linear actuator using a network and a finite element model
NASA Astrophysics Data System (ADS)
Neubert, Holger; Kamusella, Alfred; Lienig, Jens
2011-03-01
Model based design optimization leads to robust solutions only if the statistical deviations of design, load and ambient parameters from nominal values are considered. We describe an optimization methodology that involves these deviations as stochastic variables for an exemplary electromagnetic actuator used to drive a Braille printer. A combined model simulates the dynamic behavior of the actuator and its non-linear load. It consists of a dynamic network model and a stationary magnetic finite element (FE) model. The network model utilizes lookup tables of the magnetic force and the flux linkage computed by the FE model. After a sensitivity analysis using design of experiment (DoE) methods and a nominal optimization based on gradient methods, a robust design optimization is performed. Selected design variables are involved in form of their density functions. In order to reduce the computational effort we use response surfaces instead of the combined system model obtained in all stochastic analysis steps. Thus, Monte-Carlo simulations can be applied. As a result we found an optimum system design meeting our requirements with regard to function and reliability.
NASA Astrophysics Data System (ADS)
Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.
2012-11-01
The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.
Life Prediction for a CMC Component Using the NASALIFE Computer Code
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.
2005-01-01
The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.
NASA Technical Reports Server (NTRS)
Estes, R. H.
1977-01-01
A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.
Estimation of Local Bone Loads for the Volume of Interest.
Kim, Jung Jin; Kim, Youkyung; Jang, In Gwun
2016-07-01
Computational bone remodeling simulations have recently received significant attention with the aid of state-of-the-art high-resolution imaging modalities. They have been performed using localized finite element (FE) models rather than full FE models due to the excessive computational costs of full FE models. However, these localized bone remodeling simulations remain to be investigated in more depth. In particular, applying simplified loading conditions (e.g., uniform and unidirectional loads) to localized FE models have a severe limitation in a reliable subject-specific assessment. In order to effectively determine the physiological local bone loads for the volume of interest (VOI), this paper proposes a novel method of estimating the local loads when the global musculoskeletal loads are given. The proposed method is verified for the three VOI in a proximal femur in terms of force equilibrium, displacement field, and strain energy density (SED) distribution. The effect of the global load deviation on the local load estimation is also investigated by perturbing a hip joint contact force (HCF) in the femoral head. Deviation in force magnitude exhibits the greatest absolute changes in a SED distribution due to its own greatest deviation, whereas angular deviation perpendicular to a HCF provides the greatest relative change. With further in vivo force measurements and high-resolution clinical imaging modalities, the proposed method will contribute to the development of reliable patient-specific localized FE models, which can provide enhanced computational efficiency for iterative computing processes such as bone remodeling simulations.
Wash load and bed-material load transport in the Yellow River
Yang, C.T.; Simoes, F.J.M.
2005-01-01
It has been the conventional assumption that wash load is supply limited and is only indirectly related to the hydraulics of a river. Hydraulic engineers also assumed that bed-material load concentration is independent of wash load concentration. This paper provides a detailed analysis of the Yellow River sediment transport data to determine whether the above assumptions are true and whether wash load concentration can be computed from the original unit stream power formula and the modified unit stream power formula for sediment-laden flows. A systematic and thorough analysis of 1,160 sets of data collected from 9 gauging stations along the Middle and Lower Yellow River confirmed that the method suggested by the conjunctive use of the two formulas can be used to compute wash load, bed-material load, and total load in the Yellow River with accuracy. Journal of Hydraulic Engineering ?? ASCE.
Miller, Ross H; Hamill, Joseph
2009-08-01
Biomechanical aspects of running injuries are often inferred from external loading measurements. However, previous research has suggested that relationships between external loading and potential injury-inducing internal loads can be complex and nonintuitive. Further, the loading response to training interventions can vary widely between subjects. In this study, we use a subject-specific computer simulation approach to estimate internal and external loading of the distal tibia during the impact phase for two runners when running in shoes with different midsole cushioning parameters. The results suggest that: (1) changes in tibial loading induced by footwear are not reflected by changes in ground reaction force (GRF) magnitudes; (2) the GRF loading rate is a better surrogate measure of tibial loading and stress fracture risk than the GRF magnitude; and (3) averaging results across groups may potentially mask differential responses to training interventions between individuals.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.
1974-01-01
General-purpose program performs exact instability analyses for structures such as unidirectionally-stiffened, rectangular composite panels. Program was written in FORTRAN IV and COMPASS for CDC-series computers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliaga, José I., E-mail: aliaga@uji.es; Alonso, Pedro; Badía, José M.
We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousandsmore » degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.« less
Predictive Scheduling for Electric Vehicles Considering Uncertainty of Load and User Behaviors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; Huang, Rui; Wang, Yubo
2016-05-02
Un-coordinated Electric Vehicle (EV) charging can create unexpected load in local distribution grid, which may degrade the power quality and system reliability. The uncertainty of EV load, user behaviors and other baseload in distribution grid, is one of challenges that impedes optimal control for EV charging problem. Previous researches did not fully solve this problem due to lack of real-world EV charging data and proper stochastic model to describe these behaviors. In this paper, we propose a new predictive EV scheduling algorithm (PESA) inspired by Model Predictive Control (MPC), which includes a dynamic load estimation module and a predictive optimizationmore » module. The user-related EV load and base load are dynamically estimated based on the historical data. At each time interval, the predictive optimization program will be computed for optimal schedules given the estimated parameters. Only the first element from the algorithm outputs will be implemented according to MPC paradigm. Current-multiplexing function in each Electric Vehicle Supply Equipment (EVSE) is considered and accordingly a virtual load is modeled to handle the uncertainties of future EV energy demands. This system is validated by the real-world EV charging data collected on UCLA campus and the experimental results indicate that our proposed model not only reduces load variation up to 40% but also maintains a high level of robustness. Finally, IEC 61850 standard is utilized to standardize the data models involved, which brings significance to more reliable and large-scale implementation.« less
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.
Behaviour of Frictional Joints in Steel Arch Yielding Supports
NASA Astrophysics Data System (ADS)
Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel
2014-10-01
The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.
Kang, K-T.; Koh, Y-G.; Son, J.; Kwon, O-R.; Baek, C.; Jung, S. H.
2016-01-01
Objectives Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1. PMID:28094763
Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.
Silva, Bhagya Nathali; Khan, Murad; Han, Kijun
2018-01-01
The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346
Aeroelastic deformation of a perforated strip
NASA Astrophysics Data System (ADS)
Guttag, M.; Karimi, H. H.; Falcón, C.; Reis, P. M.
2018-01-01
We perform a combined experimental and numerical investigation into the static deformation of perforated elastic strips under uniform aerodynamic loading at high-Reynolds-number conditions. The static shape of the porous strips, clamped either horizontally or vertically, is quantified as they are deformed by wind loading, induced by a horizontal flow. The experimental profiles are compared to numerical simulations using a reduced model that takes into account the normal drag force on the deformed surface. For both configurations (vertical and horizontal clamping), we compute the drag coefficient of the strip, by fitting the experimental data to the model, and find that it decreases as a function of porosity. Surprisingly, we find that, for every value of porosity, the drag coefficients for the horizontal configuration are larger than those of the vertical configuration. For all data in both configurations, with the exception of the continuous strip clamped vertically, a linear relation is found between the porosity and drag. Making use of this linearity, we can rescale the drag coefficient in a way that it becomes constant as a function of the Cauchy number, which relates the force due to fluid loading on the elastic strip to its bending rigidity, independently of the material properties and porosity of the strip and the flow speed. Our findings on flexible strips are contrasted to previous work on rigid perforated plates. These results highlight some open questions regarding the usage of reduced models to describe the deformation of flexible structures subjected to aerodynamic loading.
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Dart, J. A.
1982-01-01
New pulse generator programmed to produce pulses from several ports at different pulse lengths and intervals and virtually any combination and sequence. Unit contains a 256-word-by-16-bit memory loaded with instructions either manually or by computer. Once loaded, unit operates independently of computer.
Heuristic approaches for energy-efficient shared restoration in WDM networks
NASA Astrophysics Data System (ADS)
Alilou, Shahab
In recent years, there has been ongoing research on the design of energy-efficient Wavelength Division Multiplexing (WDM) networks. The explosive growth of Internet traffic has led to increased power consumption of network components. Network survivability has also been a relevant research topic, as it plays a crucial role in assuring continuity of service with no disruption, regardless of network component failure. Network survivability mechanisms tend to utilize considerable resources such as spare capacity in order to protect and restore information. This thesis investigates techniques for reducing energy demand and enhancing energy efficiency in the context of network survivability. We propose two novel heuristic energy-efficient shared protection approaches for WDM networks. These approaches intend to save energy by setting on sleep mode devices that are not being used while providing shared backup paths to satisfy network survivability. The first approach exploits properties of a math series in order to assign weight to the network links. It aims at reducing power consumption at the network indirectly by aggregating traffic on a set of nodes and links with high traffic load level. Routing traffic on links and nodes that are already under utilization makes it possible for the links and nodes with no load to be set on sleep mode. The second approach is intended to dynamically route traffic through nodes and links with high traffic load level. Similar to the first approach, this approach computes a pair of paths for every newly arrived demand. It computes these paths for every new demand by comparing the power consumption of nodes and links in the network before the demand arrives with their potential power consumption if they are chosen along the paths of this demand. Simulations of two different networks were used to compare the total network power consumption obtained using the proposed techniques against a standard shared-path restoration scheme. Shared-path restoration is a network survivability method in which a link-disjoint backup path and wavelength is reserved at the time of call setup for a working path. However, in order to reduce spare capacity consumption, this reserved backup path and wavelength may be shared with other backup paths. Pool Sharing Scheme (PSS) is employed to implement shared-path restoration scheme [1]. In an optical network, the failure of a single link leads to the failure of all the lightpaths that pass through that particular link. PSS ensures that the amount of backup bandwidth required on a link to restore the failed connections will not be more than the total amount of reserved backup bandwidth on that link. Simulation results indicate that the proposed approaches lead to up to 35% power savings in WDM networks when traffic load is low. However, power saving decreases to 14% at high traffic load level. Furthermore, in terms of the total capacity consumption for working paths, PSS outperforms the two proposed approaches, as expected. In terms of total capacity consumption all the approaches behave similarly. In general, at low traffic load level, the two proposed approaches behave similar to PSS in terms of average link load, and the ratio of block demands. Nevertheless, at high traffic load, the proposed approaches result in higher ratio of blocked demands than PSS. They also lead to higher average link load than PSS for the equal number of generated demands.
Watershed Effects on Streamflow Quantity and Quality in Six Watersheds of Gwinnett County, Georgia
Landers, Mark N.; Ankcorn, Paul D.; McFadden, Keith W.
2007-01-01
Watershed management is critical for the protection and enhancement of streams that provide multiple benefits for Gwinnett County, Georgia, and downstream communities. Successful watershed management requires an understanding of how stream quality is affected by watershed characteristics. The influence of watershed characteristics on stream quality is complex, particularly for the nonpoint sources of pollutants that affect urban watersheds. The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources (formerly known as Public Utilities), established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. Between 1996 and 2003, more than 10,000 analyses were made for more than 430 water-quality samples. Continuous-flow and water-quality data have been collected since 1998. Loads have been computed for selected constituents from 1998 to 2003. Changing stream hydrology is a primary driver for many other water-quality and aquatic habitat effects. Primary factors affecting stream hydrology (after watershed size and climate) within Gwinnett County are watershed slope and land uses. For the six study watersheds in Gwinnett County, watershedwide imperviousness up to 12 percent does not have a well-defined influence on stream hydrology, whereas two watersheds with 21- and 35-percent impervious area are clearly impacted. In the stream corridor, however, imperviousness from 1.6 to 4.4 percent appears to affect baseflow and stormflow for all six watersheds. Relations of concentrations to discharge are used to develop regression models to compute constituent loads using the USGS LOAD ESTimator model. A unique method developed in this study is used to calibrate the model using separate baseflow and stormflow sample datasets. The method reduced model error and provided estimates of the load associated with the baseflow and stormflow parts of the hydrograph. Annual load of total suspended sediment is a performance criterion in Gwinnett County's Watershed Protection Plan. Median concentrations of total suspended solids in stormflow range from 30 to 180 times greater than in baseflow. This increase in total suspended solids concentration with increasing discharge has a multiplied effect on total suspended solids load, 97 to 99 percent of which is transported during stormflow. Annual total suspended solids load is highly dependent on annual precipitation; between 1998 and 2003 load for the wettest year was up to 28 times greater than for the driest year. Average annual total suspended solids yield from 1998-2003 in the six watersheds increased with high-density and transportation/utility land uses, and generally decreased with low-density residential, estate/park, and undeveloped land uses. Watershed characteristics also were related to annual loads of total phosphorus, dissolved phosphorus, total nitrogen, total dissolved solids, biochemical oxygen demand, and total zinc, as well as stream alkalinity. Flow-adjusted total suspended solids, total phosphorus, and total zinc stormflow concentrations between 1996 and 2003 have a seasonal pattern in five of the six watersheds. Flow-adjusted concentrations typically peak during late summer, between July and August. The seasonal pattern is stronger for more developed watersheds and may be related to seasonal land-disturbance activities and/or to seasonal rainfall intensity, both of which increase in summer. Adjusting for seasonality in the computation of constituent load caused the standard error of annual total suspended solids load to improve by an average of 11 percent, and increased computed summer total suspended solids loads by an average of 45 percent and decreased winter total suspended solids loads by an average of 40 percent. Total annual loads changed by less than 5 percent on the average. Graphical and statistical analyses do not indicate a time tre
Borges Radaelli, Manuel Tomás; Idogava, Henrique Takashi; Spazzin, Aloisio Oro; Noritomi, Pedro Yoshito; Boscato, Noéli
2018-04-30
An occlusal device is frequently recommended for patients with bruxism to protect implant-supported restorations and prevent marginal bone loss. Scientific evidence to support this treatment is lacking. The purpose of this 3-dimensional (3D) finite element study was to evaluate the influence of an acrylic resin occlusal device, implant length, and insertion depth on stress distribution with functional and parafunctional loadings. Computer-aided design software was used to construct 8 models. The models were composed of a mandibular bone section including the second premolar and first and second molars. Insertion depths (bone level and 2 mm subcrestal) were simulated at the first molar. Three natural antagonist maxillary teeth and the placement or not of an occlusal device were simulated. Functional (200-N axial and 10-N oblique) and parafunctional (1000-N axial and 25-N oblique) forces were applied. Finite element analysis (FEA) was used to determine the maximum principal stress for the cortical and trabecular bone and von Mises for implant and prosthetic abutment. Stress concentration was observed at the abutment-implant and the implant-bone interfaces. Occlusal device placement changed the pattern of stress distribution and reduced stress levels from parafunctional loading in all structures, except in the trabecular bone. Implants with subcrestal insertion depths had reduced stress at the implant-abutment interface and cortical bone around the implant abutment, while the stress increased in the bone in contact with the implant. Parafunctional loading increased the stress levels in all structures when compared with functional loading. An occlusal device resulted in the lowest stress levels at the abutment and implant and the most favorable stress distribution between the cortical and trabecular bone. Under parafunctional loading, an occlusal device was more effective in reducing stress distribution for longer implants inserted at bone level. Subcrestally, implant insertion yielded the most favorable biomechanical conditions at the abutment-implant interface and at the coronal surface of the cortical bone, mainly when there was no occlusal device. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors
Code of Federal Regulations, 2013 CFR
2013-01-01
....010 is based on a 20 percent tolerance in the total power loss at full-load and fixed output power... measured full-load efficiency of unit i. Step 3. Compute the sample standard deviation (S1) of the measured full-load efficiency of the n1 units in the first sample as follows: ER83AD04.006 Step 4. Compute the...
10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors
Code of Federal Regulations, 2014 CFR
2014-01-01
....010 is based on a 20 percent tolerance in the total power loss at full-load and fixed output power... measured full-load efficiency of unit i. Step 3. Compute the sample standard deviation (S1) of the measured full-load efficiency of the n1 units in the first sample as follows: ER83AD04.006 Step 4. Compute the...
10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors
Code of Federal Regulations, 2012 CFR
2012-01-01
....010 is based on a 20 percent tolerance in the total power loss at full-load and fixed output power... measured full-load efficiency of unit i. Step 3. Compute the sample standard deviation (S1) of the measured full-load efficiency of the n1 units in the first sample as follows: ER83AD04.006 Step 4. Compute the...
Rotorcraft Brownout Advanced Understanding, Control, and Mitigation
2014-10-31
rotor disk loading , blade loading , number and placement of rotors, number of blades, blade twist, blade tip shape, fuselage shape, as well as...Mechanical Engineering • Ramani Duraiswami, Ph.D., Associate Professor, Department of Computer Science & Insti- tute for Advanced Computer Studies • Nail ...23, 2013. 71. Mulinti, R., Corfman, K., and Kiger, K. T., “Particle-Turbulence Interaction of Suspended Load by Forced Jet Impinging on a Mobile
Parallel Performance Optimizations on Unstructured Mesh-based Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas
2015-01-01
© The Authors. Published by Elsevier B.V. This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cachemore » efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.« less
The EST Model for Predicting Progressive Damage and Failure of Open Hole Bending Specimens
NASA Technical Reports Server (NTRS)
Joseph, Ashith P. K.; Waas, Anthony M.; Pineda, Evan J.
2016-01-01
Progressive damage and failure in open hole composite laminate coupons subjected to flexural loading is modeled using Enhanced Schapery Theory (EST). Previous studies have demonstrated that EST can accurately predict the strength of open hole coupons under remote tensile and compressive loading states. This homogenized modeling approach uses single composite shell elements to represent the entire laminate in the thickness direction and significantly reduces computational cost. Therefore, when delaminations are not of concern or are active in the post-peak regime, the version of EST presented here is a good engineering tool for predicting deformation response. Standard coupon level tests provides all the input data needed for the model and they are interpreted in conjunction with finite element (FE) based simulations. Open hole bending test results of three different IM7/8552 carbon fiber composite layups agree well with EST predictions. The model is able to accurately capture the curvature change and deformation localization in the specimen at and during the post catastrophic load drop event.
Multitasking the three-dimensional transport code TORT on CRAY platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azmy, Y.Y.; Barnett, D.A.; Burre, C.A.
1996-04-01
The multitasking options in the three-dimensional neutral particle transport code TORT originally implemented for Cray`s CTSS operating system are revived and extended to run on Cray Y/MP and C90 computers using the UNICOS operating system. These include two coarse-grained domain decompositions; across octants, and across directions within an octant, termed Octant Parallel (OP), and Direction Parallel (DP), respectively. Parallel performance of the DP is significantly enhanced by increasing the task grain size and reducing load imbalance via dynamic scheduling of the discrete angles among the participating tasks. Substantial Wall Clock speedup factors, approaching 4.5 using 8 tasks, have been measuredmore » in a time-sharing environment, and generally depend on the test problem specifications, number of tasks, and machine loading during execution.« less
The energy performance of thermochromic glazing
NASA Astrophysics Data System (ADS)
Diamantouros, Pavlos
This study investigated the energy performance of thermochromic glazing. It was done by simulating the model of a small building in a highly advanced computer program (EnergyPlus - U.S. DOE). The physical attributes of the thermochromic samples examined came from actual laboratory samples fabricated in UCL's Department of Chemistry (Prof I. P. Parkin). It was found that they can substantially reduce cooling loads while requiring the same heating loads as a high end low-e double glazing. The reductions in annual cooling energy required were in the 20%-40% range depending on sample, location and building layout. A series of sensitivity analyses showed the importance of switching temperature and emissivity factor in the performance of the glazing. Finally an ideal pane was designed to explore the limits this technology has to offer.
Two-time scale fatigue modelling: application to damage
NASA Astrophysics Data System (ADS)
Devulder, Anne; Aubry, Denis; Puel, Guillaume
2010-05-01
A temporal multiscale modelling applied to fatigue damage evolution in cortical bone is presented. Microdamage accumulation in cortical bone, ensued from daily activities, leads to impaired mechanical properties, in particular by reducing the bone stiffness and inducing fatigue. However, bone damage is also known as a stimulus to bone remodelling, whose aim is to repair and generate new bone, adapted to its environment. This biological process by removing fatigue damage seems essential to the skeleton lifetime. As daily activities induce high frequency cycles (about 10,000 cycles a day), identifying two-time scale is very fruitful: a fast one connected with the high frequency cyclic loading and a slow one related to a quasi-static loading. A scaling parameter is defined between the intrinsic time (bone lifetime of several years) and the high frequency loading (few seconds). An asymptotic approach allows to decouple the two scales and to take into account history effects (Guennouni and Aubry in CR Acad Sci Paris Ser II 20:1765-1767, 1986). The method is here applied to a simple case of fatigue damage and a real cortical bone microstructure. A significant reduction in the amount of computation time in addition to a small computational error between time homogenized and non homogenized models are obtained. This method seems thus to give new perspectives to assess fatigue damage and, with regard to bone, to give a better understanding of bone remodelling.
NASA Technical Reports Server (NTRS)
Ball, R. E.
1972-01-01
A digital computer program known as SATANS (static and transient analysis, nonlinear, shells) for the geometrically nonlinear static and dynamic response of arbitrarily loaded shells of revolution is presented. Instructions for the preparation of the input data cards and other information necessary for the operation of the program are described in detail and two sample problems are included. The governing partial differential equations are based upon Sanders' nonlinear thin shell theory for the conditions of small strains and moderately small rotations. The governing equations are reduced to uncoupled sets of four linear, second order, partial differential equations in the meridional and time coordinates by expanding the dependent variables in a Fourier sine or cosine series in the circumferential coordinate and treating the nonlinear modal coupling terms as pseudo loads. The derivatives with respect to the meridional coordinate are approximated by central finite differences, and the displacement accelerations are approximated by the implicit Houbolt backward difference scheme with a constant time interval. The boundaries of the shell may be closed, free, fixed, or elastically restrained. The program is coded in the FORTRAN 4 language and is dimensioned to allow a maximum of 10 arbitrary Fourier harmonics and a maximum product of the total number of meridional stations and the total number of Fourier harmonics of 200. The program requires 155,000 bytes of core storage.
Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Singhal, S. N.; Chamis, C. C.
1996-01-01
This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies.
Dual-Anode Nickel/Hydrogen Cell
NASA Technical Reports Server (NTRS)
Gahn, Randall F.; Ryan, Timothy P.
1994-01-01
Use of two hydrogen anodes in nickel/hydrogen cell reduces ohmic and concentration polarizations contributing to internal resistance, yielding cell with improved discharging performance compared to single-anode cell. Dual-anode concept incorporated into nickel/hydrogen cells of individual pressure-vessel type (for use aboard spacecraft) and common pressure-vessel type, for use on Earth to store electrical energy from photovoltaic sources, "uninterruptible" power supplies of computer and telephone systems, electric vehicles, and load leveling on power lines. Also applicable to silver/hydrogen and other metal/gas batteries.
1992-10-01
Manual CI APPENDIX D: Drawing Navigator Field Test D1 DISTRIBUTION Accesion For NTIS CRA&I OTIC TAB Unannouncea JustiteCdtOn By Distribution I "".i•I...methods replace manual methods, the automation will handle the data for the designer, thus reducing error and increasing throughput. However, the two...actively move data from one automation tool (CADD) to the other (the analysis program). This intervention involves a manual rekeying of data already in
Structures Technology for Future Aerospace Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.
2000-01-01
An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.
GCLAS: a graphical constituent loading analysis system
McKallip, T.E.; Koltun, G.F.; Gray, J.R.; Glysson, G.D.
2001-01-01
The U. S. Geological Survey has developed a program called GCLAS (Graphical Constituent Loading Analysis System) to aid in the computation of daily constituent loads transported in stream flow. Due to the relative paucity with which most water-quality data are collected, computation of daily constituent loads is moderately to highly dependent on human interpretation of the relation between stream hydraulics and constituent transport. GCLAS provides a visual environment for evaluating the relation between hydraulic and other covariate time series and the constituent chemograph. GCLAS replaces the computer program Sedcalc, which is the most recent USGS sanctioned tool for constructing sediment chemographs and computing suspended-sediment loads. Written in a portable language, GCLAS has an interactive graphical interface that permits easy entry of estimated values and provides new tools to aid in making those estimates. The use of a portable language for program development imparts a degree of computer platform independence that was difficult to obtain in the past, making implementation more straightforward within the USGS' s diverse computing environment. Some of the improvements introduced in GCLAS include (1) the ability to directly handle periods of zero or reverse flow, (2) the ability to analyze and apply coefficient adjustments to concentrations as a function of time, streamflow, or both, (3) the ability to compute discharges of constituents other than suspended sediment, (4) the ability to easily view data related to the chemograph at different levels of detail, and (5) the ability to readily display covariate time series data to provide enhanced visual cues for drawing the constituent chemograph.
Short-term Power Load Forecasting Based on Balanced KNN
NASA Astrophysics Data System (ADS)
Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei
2018-03-01
To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.
Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abumeri, Galib; Abdi, Frank
2012-02-16
The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
ERIC Educational Resources Information Center
Kaheru, Sam J.; Kriek, Jeanne
2016-01-01
A study on the effect of the use of computer simulations (CS) on the acquisition of knowledge and cognitive load was undertaken with 104 Grade 11 learners in four schools in rural South Africa on the physics topic geometrical optics. Owing to the lack of resources a teacher-centred approach was followed in the use of computer simulations. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooding, Thomas M.
Distributing an executable job load file to compute nodes in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: determining, by a compute node in the parallel computer, whether the compute node is participating in a job; determining, by the compute node in the parallel computer, whether a descendant compute node is participating in the job; responsive to determining that the compute node is participating in the job or that the descendant compute node is participating in the job, communicating, by the compute node to a parent compute node, an identification of a data communications linkmore » over which the compute node receives data from the parent compute node; constructing a class route for the job, wherein the class route identifies all compute nodes participating in the job; and broadcasting the executable load file for the job along the class route for the job.« less
Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.
2014-12-01
Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization threshold of the rock. However, the peak loading stress must exceed the qsUCS of the rock, otherwise quasi-static fracturing occurs. Pulverized rocks found in the field are therefore witnesses of previous large earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posch, M.; Kaemaeri, J.; Forsius, M.
The main objectives of this study were to identify the regions in Fennoscandia where the critical loads of sulfur (S) and acidifying nitrogen (N) for lakes are exceeded and to investigate the consequences for deposition reductions, with special emphasis on the possible trade-offs between S and N deposition in order to achieve nonexceedance. In the steady-state model for calculating critical loads and their exceedances, all relevant processes acting as sinks for N and S are considered. The critical loads of N and S are interrelated (defining the so-called critical load function), and therefore a single critical load for one pollutantmore » cannot be defined without making assumptions about the other. Comparing the present N and S deposition with the critical function for each lake allows determination of the percentage of lakes in the different regions of Fennoscandia where: (1) S reductions alone can achieve nonexceedance. (2) N reductions alone are sufficient, and (3) both N and S reductions are required but to a certain degree interchangeable. Secondly, deposition reduction requirements were assessed by fixing the N deposition to the present level, in this way analyzing the reductions required for S, and by computing the percentage of lakes exceeded in Finland, Norway and Sweden for every possible percent deposition reduction in S and N, in this way showing the (relative) effectiveness of reducing S and/or N deposition. The results showed clear regional patterns in the S and N reduction requirements. In practically the whole of Finland and the northern parts of Scandinavia man-made acidification of surface waters could be avoided by reducing S deposition alone. In the southern parts of Sweden some reductions in N deposition are clearly needed in addition to those for S. In southern Norway strong reductions are required for both N and S deposition. 55 refs., 5 figs.« less
I/O load balancing for big data HPC applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Arnab K.; Goyal, Arpit; Wang, Feiyi
High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutionsmore » typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.« less
Low load for disruptive mutations in autism genes and their biased transmission
Iossifov, Ivan; Levy, Dan; Allen, Jeremy; Ye, Kenny; Ronemus, Michael; Lee, Yoon-ha; Yamrom, Boris; Wigler, Michael
2015-01-01
We previously computed that genes with de novo (DN) likely gene-disruptive (LGD) mutations in children with autism spectrum disorders (ASD) have high vulnerability: disruptive mutations in many of these genes, the vulnerable autism genes, will have a high likelihood of resulting in ASD. Because individuals with ASD have lower fecundity, such mutations in autism genes would be under strong negative selection pressure. An immediate prediction is that these genes will have a lower LGD load than typical genes in the human gene pool. We confirm this hypothesis in an explicit test by measuring the load of disruptive mutations in whole-exome sequence databases from two cohorts. We use information about mutational load to show that lower and higher intelligence quotients (IQ) affected individuals can be distinguished by the mutational load in their respective gene targets, as well as to help prioritize gene targets by their likelihood of being autism genes. Moreover, we demonstrate that transmission of rare disruptions in genes with a lower LGD load occurs more often to affected offspring; we show transmission originates most often from the mother, and transmission of such variants is seen more often in offspring with lower IQ. A surprising proportion of transmission of these rare events comes from genes expressed in the embryonic brain that show sharply reduced expression shortly after birth. PMID:26401017
MIRADS-2 Implementation Manual
NASA Technical Reports Server (NTRS)
1975-01-01
The Marshall Information Retrieval and Display System (MIRADS) which is a data base management system designed to provide the user with a set of generalized file capabilities is presented. The system provides a wide variety of ways to process the contents of the data base and includes capabilities to search, sort, compute, update, and display the data. The process of creating, defining, and loading a data base is generally called the loading process. The steps in the loading process which includes (1) structuring, (2) creating, (3) defining, (4) and implementing the data base for use by MIRADS are defined. The execution of several computer programs is required to successfully complete all steps of the loading process. This library must be established as a cataloged mass storage file as the first step in MIRADS implementation. The procedure for establishing the MIRADS Library is given. The system is currently operational for the UNIVAC 1108 computer system utilizing the Executive Operating System. All procedures relate to the use of MIRADS on the U-1108 computer.
Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Doug; Ziegler, Andrew C.
2010-01-01
Over the last decade, use of a method for computing suspended-sediment concentration and loads using turbidity sensors—primarily nephelometry, but also optical backscatter—has proliferated. Because an in- itu turbidity sensor is capa le of measuring turbidity instantaneously, a turbidity time series can be recorded and related directly to time-varying suspended-sediment concentrations. Depending on the suspended-sediment characteristics of the measurement site, this method can be more reliable and, in many cases, a more accurate means for computing suspended-sediment concentrations and loads than traditional U.S. Geological Survey computational methods. Guidelines and procedures for estimating time s ries of suspended-sediment concentration and loading as a function of turbidity and streamflow data have been published in a U.S. Geological Survey Techniques and Methods Report, Book 3, Chapter C4. This paper is a summary of these guidelines and discusses some of the concepts, s atistical procedures, and techniques used to maintain a multiyear suspended sediment time series.
NASA Astrophysics Data System (ADS)
Bottasso, C. L.; Croce, A.; Riboldi, C. E. D.
2014-06-01
The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way.
Ji, Haoran; Wang, Chengshan; Li, Peng; ...
2017-09-20
The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Haoran; Wang, Chengshan; Li, Peng
The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less
14 CFR 25.527 - Hull and main float load factors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... float load factors. (a) Water reaction load factors n W must be computed in the following manner: (1... following values are used: (1) n W=water reaction load factor (that is, the water reaction divided by...
Energy consumption and load profiling at major airports. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J.
1998-12-01
This report describes the results of energy audits at three major US airports. These studies developed load profiles and quantified energy usage at these airports while identifying procedures and electrotechnologies that could reduce their power consumption. The major power consumers at the airports studied included central plants, runway and taxiway lighting, fuel farms, terminals, people mover systems, and hangar facilities. Several major findings emerged during the study. The amount of energy efficient equipment installed at an airport is directly related to the age of the facility. Newer facilities had more energy efficient equipment while older facilities had much of themore » original electric and natural gas equipment still in operation. As redesign, remodeling, and/or replacement projects proceed, responsible design engineers are selecting more energy efficient equipment to replace original devices. The use of computer-controlled energy management systems varies. At airports, the primary purpose of these systems is to monitor and control the lighting and environmental air conditioning and heating of the facility. Of the facilities studied, one used computer management extensively, one used it only marginally, and one had no computer controlled management devices. At all of the facilities studied, natural gas is used to provide heat and hot water. Natural gas consumption is at its highest in the months of November, December, January, and February. The Central Plant contains most of the inductive load at an airport and is also a major contributor to power consumption inefficiency. Power factor correction equipment was used at one facility but was not installed at the other two facilities due to high power factor and/or lack of need.« less
Anderson, Ryan T; Pacaccio, Douglas J; Yakacki, Christopher M; Carpenter, R Dana
2016-09-01
Tibio-talo-calcaneal (TTC) arthrodesis is an end-stage treatment for patients with severe degeneration of the ankle joint. This treatment consists of using an intramedullary nail (IM) to fuse the calcaneus, talus, and tibia bones together into one construct. Poor bone quality within the joint prior to surgery is common and thus the procedure has shown complications due to non-union. However, a new FDA-approved IM nail has been released that houses a nickel titanium (NiTi) rod that uses its inherent pseudoelastic material properties to apply active compression across the fusion site. Finite element analysis was performed to model the mechanical response of the NiTi within the device. A bone model was then developed based on a quantitative computed tomography (QCT) image for anatomical geometry and bone material properties. A total bone and device system was modeled to investigate the effect of bone quality change and gather load-sharing properties during gait loading. It was found that during the highest magnitude loading of gait, the load taken by the bone was more than 50% higher than the load taken by the nail. When comparing the load distribution during gait, results from this study would suggest that the device helps to prevent stress shielding by allowing a more even distribution of load between bone and nail. In conditions where bone quality may vary patient-to-patient, the model indicates that a 10% decrease in overall bone modulus (i.e. material stiffness) due to reduced bone mineral density would result in higher stresses in the nail (3.4%) and a marginal decrease in stress for the bone (0.5%). The finite element model presented in this study can be used as a quantitative tool to further understand the stress environment of both bone and device for a TTC fusion. Furthermore, the methodology presented gives insight on how to computationally program and use the unique material properties of NiTi in an active compression state useful for bone fracture healing or fusion treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Boxberger, John I.; Orlansky, Amy S.; Sen, Sounok; Elliott, Dawn M.
2009-01-01
The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminglycan content alters dynamic mechanics. We hypothesized (1) that dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) that the disc would behave more elastically at higher frequencies, and finally, (3) that dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase-ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5 Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress. PMID:19539936
Optimization of cryoprotectant loading into murine and human oocytes.
Karlsson, Jens O M; Szurek, Edyta A; Higgins, Adam Z; Lee, Sang R; Eroglu, Ali
2014-02-01
Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethyl sulfoxide (Me(2)SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me(2)SO exposure time, revealing that neither shrinkage nor Me(2)SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me(2)SO addition appears to result from interactions between the effects of Me(2)SO toxicity and osmotic stress. We also investigated Me(2)SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me(2)SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me(2)SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach. Copyright © 2013 Elsevier Inc. All rights reserved.
Optimization of Cryoprotectant Loading into Murine and Human Oocytes
Karlsson, Jens O.M.; Szurek, Edyta A.; Higgins, Adam Z.; Lee, Sang R.; Eroglu, Ali
2014-01-01
Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethylsulfoxide (Me2SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me2SO exposure time, revealing that neither shrinkage nor Me2SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me2SO addition appears to result from interactions between the effects of Me2SO toxicity and osmotic stress. We also investigated Me2SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me2SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me2SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach. PMID:24246951
Stress analysis method for clearance-fit joints with bearing-bypass loads
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1989-01-01
Within a multi-fastener joint, fastener holes may be subjected to the combined effects of bearing loads and loads that bypass the hole to be reacted elsewhere in the joint. The analysis of a joint subjected to search combined bearing and bypass loads is complicated by the usual clearance between the hole and the fastener. A simple analysis method for such clearance-fit joints subjected to bearing-bypass loading has been developed in the present study. It uses an inverse formulation with a linear elastic finite-element analysis. Conditions along the bolt-hole contact arc are specified by displacement constraint equations. The present method is simple to apply and can be implemented with most general purpose finite-element programs since it does not use complicated iterative-incremental procedures. The method was used to study the effects of bearing-bypass loading on bolt-hole contact angles and local stresses. In this study, a rigid, frictionless bolt was used with a plate having the properties of a quasi-isotropic graphite/epoxy laminate. Results showed that the contact angle as well as the peak stresses around the hole and their locations were strongly influenced by the ratio of bearing and bypass loads. For single contact, tension and compression bearing-bypass loading had opposite effects on the contact angle. For some compressive bearing-bypass loads, the hole tended to close on the fastener leading to dual contact. It was shown that dual contact reduces the stress concentration at the fastener and would, therefore, increase joint strength in compression. The results illustrate the general importance of accounting for bolt-hole clearance and contact to accurately compute local bolt-hole stresses for combined bearings and bypass loading.
NASA Technical Reports Server (NTRS)
Stoll, Frederick
1993-01-01
The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.
User document for computer programs for ring-stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1973-01-01
A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.
Hielscher, Andreas H; Bartel, Sebastian
2004-02-01
Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.
Employing static excitation control and tie line reactance to stabilize wind turbine generators
NASA Technical Reports Server (NTRS)
Hwang, H. H.; Mozeico, H. V.; Guo, T.
1978-01-01
An analytical representation of a wind turbine generator is presented which employs blade pitch angle feedback control. A mathematical model was formulated. With the functioning MOD-0 wind turbine serving as a practical case study, results of computer simulations of the model as applied to the problem of dynamic stability at rated load are also presented. The effect of the tower shadow was included in the input to the system. Different configurations of the drive train, and optimal values of the tie line reactance were used in the simulations. Computer results revealed that a static excitation control system coupled with optimal values of the tie line reactance would effectively reduce oscillations of the power output, without the use of a slip clutch.
A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam
In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor)
2003-01-01
A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.
Loads calibrations of strain gage bridges on the DAST project Aeroelastic Research Wing (ARW-1)
NASA Technical Reports Server (NTRS)
Eckstrom, C. V.
1980-01-01
The details of and results from the procedure used to calibrate strain gage bridges for measurement of wing structural loads for the DAST project ARW-1 wing are presented. Results are in the form of loads equations and comparison of computed loads vs. actual loads for two simulated flight loading conditions.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
View southeast of computer controlled energy monitoring system. System replaced ...
View southeast of computer controlled energy monitoring system. System replaced strip chart recorders and other instruments under the direct observation of the load dispatcher. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA
Distributed computing for membrane-based modeling of action potential propagation.
Porras, D; Rogers, J M; Smith, W M; Pollard, A E
2000-08-01
Action potential propagation simulations with physiologic membrane currents and macroscopic tissue dimensions are computationally expensive. We, therefore, analyzed distributed computing schemes to reduce execution time in workstation clusters by parallelizing solutions with message passing. Four schemes were considered in two-dimensional monodomain simulations with the Beeler-Reuter membrane equations. Parallel speedups measured with each scheme were compared to theoretical speedups, recognizing the relationship between speedup and code portions that executed serially. A data decomposition scheme based on total ionic current provided the best performance. Analysis of communication latencies in that scheme led to a load-balancing algorithm in which measured speedups at 89 +/- 2% and 75 +/- 8% of theoretical speedups were achieved in homogeneous and heterogeneous clusters of workstations. Speedups in this scheme with the Luo-Rudy dynamic membrane equations exceeded 3.0 with eight distributed workstations. Cluster speedups were comparable to those measured during parallel execution on a shared memory machine.
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Chai, V. W.; Lascu, D.; Urbenajo, R.; Wong, P.
1978-01-01
The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin.
An acceleration framework for synthetic aperture radar algorithms
NASA Astrophysics Data System (ADS)
Kim, Youngsoo; Gloster, Clay S.; Alexander, Winser E.
2017-04-01
Algorithms for radar signal processing, such as Synthetic Aperture Radar (SAR) are computationally intensive and require considerable execution time on a general purpose processor. Reconfigurable logic can be used to off-load the primary computational kernel onto a custom computing machine in order to reduce execution time by an order of magnitude as compared to kernel execution on a general purpose processor. Specifically, Field Programmable Gate Arrays (FPGAs) can be used to accelerate these kernels using hardware-based custom logic implementations. In this paper, we demonstrate a framework for algorithm acceleration. We used SAR as a case study to illustrate the potential for algorithm acceleration offered by FPGAs. Initially, we profiled the SAR algorithm and implemented a homomorphic filter using a hardware implementation of the natural logarithm. Experimental results show a linear speedup by adding reasonably small processing elements in Field Programmable Gate Array (FPGA) as opposed to using a software implementation running on a typical general purpose processor.
Live load testing and load rating of five reinforced concrete bridges.
DOT National Transportation Integrated Search
2014-10-01
Five cast-in-place concrete T-beam bridges Eustis #5341, Whitefield #3831, Cambridge #3291, Eddington #5107, : and Albion #2832 were live load tested. Revised load ratings were computed either using test data or detailed : analysis when possi...
NASA Astrophysics Data System (ADS)
van Rooij, Michael P. C.
Current turbomachinery design systems increasingly rely on multistage Computational Fluid Dynamics (CFD) as a means to assess performance of designs. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and evaluation of aerodynamic performance. A design methodology is presented which greatly improves the process of achieving design-point aerodynamic matching. It is based on a three-dimensional viscous inverse design method which generates the blade camber surface based on prescribed pressure loading, thickness distribution and stacking line. This inverse design method has been extended to allow blading analysis and design in a multi-blade row environment. Blade row coupling was achieved through a mixing plane approximation. Parallel computing capability in the form of MPI has been implemented to reduce the computational time for multistage calculations. Improvements have been made to the flow solver to reach the level of accuracy required for multistage calculations. These include inclusion of heat flux, temperature-dependent treatment of viscosity, and improved calculation of stress components and artificial dissipation near solid walls. A validation study confirmed that the obtained accuracy is satisfactory at design point conditions. Improvements have also been made to the inverse method to increase robustness and design fidelity. These include the possibility to exclude spanwise sections of the blade near the endwalls from the design process, and a scheme that adjusts the specified loading area for changes resulting from the leading and trailing edge treatment. Furthermore, a pressure loading manager has been developed. Its function is to automatically adjust the pressure loading area distribution during the design calculation in order to achieve a specified design objective. Possible objectives are overall mass flow and compression ratio, and radial distribution of exit flow angle. To supplement the loading manager, mass flow inlet and exit boundary conditions have been implemented. Through appropriate combination of pressure or mass flow inflow/outflow boundary conditions and loading manager objectives, increased control over the design intent can be obtained. The three-dimensional multistage inverse design method with pressure loading manager was demonstrated to offer greatly enhanced blade row matching capabilities. Multistage design allows for simultaneous design of blade rows in a mutually interacting environment, which permits the redesigned blading to adapt to changing aerodynamic conditions resulting from the redesign. This ensures that the obtained blading geometry and performance implied by the prescribed pressure loading distribution are consistent with operation in the multi-blade row environment. The developed methodology offers high aerodynamic design quality and productivity, and constitutes a significant improvement over existing approaches used to address design-point aerodynamic matching.
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaptation on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load inbalances among processors on a parallel machine. This paper described the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution coast is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35 percent of the mesh is randomly adapted. For large scale scientific computations, our load balancing strategy gives an almost sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remappier yields processor assignments that are less than 3 percent of the optimal solutions, but requires only 1 percent of the computational time.
Dynamic VMs placement for energy efficiency by PSO in cloud computing
NASA Astrophysics Data System (ADS)
Dashti, Seyed Ebrahim; Rahmani, Amir Masoud
2016-03-01
Recently, cloud computing is growing fast and helps to realise other high technologies. In this paper, we propose a hieratical architecture to satisfy both providers' and consumers' requirements in these technologies. We design a new service in the PaaS layer for scheduling consumer tasks. In the providers' perspective, incompatibility between specification of physical machine and user requests in cloud leads to problems such as energy-performance trade-off and large power consumption so that profits are decreased. To guarantee Quality of service of users' tasks, and reduce energy efficiency, we proposed to modify Particle Swarm Optimisation to reallocate migrated virtual machines in the overloaded host. We also dynamically consolidate the under-loaded host which provides power saving. Simulation results in CloudSim demonstrated that whatever simulation condition is near to the real environment, our method is able to save as much as 14% more energy and the number of migrations and simulation time significantly reduces compared with the previous works.
Integrated large view angle hologram system with multi-slm
NASA Astrophysics Data System (ADS)
Yang, ChengWei; Liu, Juan
2017-10-01
Recently holographic display has attracted much attention for its ability to generate real-time 3D reconstructed image. CGH provides an effective way to produce hologram, and spacial light modulator (SLM) is used to reconstruct the image. However the reconstructing system is usually very heavy and complex, and the view-angle is limited by the pixel size and spatial bandwidth product (SBP) of the SLM. In this paper a light portable holographic display system is proposed by integrating the optical elements and host computer units.Which significantly reduces the space taken in horizontal direction. CGH is produced based on the Fresnel diffraction and point source method. To reduce the memory usage and image distortion, we use an optimized accurate compressed look up table method (AC-LUT) to compute the hologram. In the system, six SLMs are concatenated to a curved plane, each one loading the phase-only hologram in a different angle of the object, the horizontal view-angle of the reconstructed image can be expanded to about 21.8°.
A novel strategy for load balancing of distributed medical applications.
Logeswaran, Rajasvaran; Chen, Li-Choo
2012-04-01
Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Tae-Hyuk; Sandu, Adrian; Watson, Layne T.
2015-08-01
Ensembles of simulations are employed to estimate the statistics of possible future states of a system, and are widely used in important applications such as climate change and biological modeling. Ensembles of runs can naturally be executed in parallel. However, when the CPU times of individual simulations vary considerably, a simple strategy of assigning an equal number of tasks per processor can lead to serious work imbalances and low parallel efficiency. This paper presents a new probabilistic framework to analyze the performance of dynamic load balancing algorithms for ensembles of simulations where many tasks are mapped onto each processor, andmore » where the individual compute times vary considerably among tasks. Four load balancing strategies are discussed: most-dividing, all-redistribution, random-polling, and neighbor-redistribution. Simulation results with a stochastic budding yeast cell cycle model are consistent with the theoretical analysis. It is especially significant that there is a provable global decrease in load imbalance for the local rebalancing algorithms due to scalability concerns for the global rebalancing algorithms. The overall simulation time is reduced by up to 25 %, and the total processor idle time by 85 %.« less
Integrated Software for Analyzing Designs of Launch Vehicles
NASA Technical Reports Server (NTRS)
Philips, Alan D.
2003-01-01
Launch Vehicle Analysis Tool (LVA) is a computer program for preliminary design structural analysis of launch vehicles. Before LVA was developed, in order to analyze the structure of a launch vehicle, it was necessary to estimate its weight, feed this estimate into a program to obtain pre-launch and flight loads, then feed these loads into structural and thermal analysis programs to obtain a second weight estimate. If the first and second weight estimates differed, it was necessary to reiterate these analyses until the solution converged. This process generally took six to twelve person-months of effort. LVA incorporates text to structural layout converter, configuration drawing, mass properties generation, pre-launch and flight loads analysis, loads output plotting, direct solution structural analysis, and thermal analysis subprograms. These subprograms are integrated in LVA so that solutions can be iterated automatically. LVA incorporates expert-system software that makes fundamental design decisions without intervention by the user. It also includes unique algorithms based on extensive research. The total integration of analysis modules drastically reduces the need for interaction with the user. A typical solution can be obtained in 30 to 60 minutes. Subsequent runs can be done in less than two minutes.
Effect of Dynamic Rolling Oscillations on Twin Tail Buffet Response
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.
1999-01-01
The effect of dynamic rolling oscillations of delta-wing/twin-tail configuration on twin-tail buffet response is investigated. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. The configuration model is statically pitched at 30 deg. angle of attack and then forced to oscillate in roll around the symmetry axis at a constant amplitude of 4 deg. and reduced frequency of pi and 2(pi). The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. This multidisciplinary problem is solved using three sets of equations on a dynamic multi-block grid structure. The first set is the unsteady, full Navier-Stokes equations, the second set is the aeroelastic equations for coupled bending and torsion vibrations of the tails, and the third set is the grid-displacement equations. The configuration is investigated for inboard position of the twin tails which corresponds to a separation distance between the twin tails of 33% wing span. The computed results are compared with the results of stationary configuration, which previously have been validated using experimental data. The results conclusively showed that the rolling oscillations of the configuration have led to higher loads, higher deflections, and higher excitation peaks than those of the stationary configuration. Moreover, increasing the reduced frequency has led to higher loads and excitation peaks and lower bending and torsion deflections and acceleration.
Yang, Guoxiang; Best, Elly P H
2015-09-15
Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marhadi, Kun Saptohartyadi
Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.
Nuutinen, Teija; Roos, Eva; Ray, Carola; Villberg, Jari; Välimaa, Raili; Rasmussen, Mette; Holstein, Bjørn; Godeau, Emmanuelle; Beck, Francois; Léger, Damien; Tynjälä, Jorma
2014-08-01
This study investigated whether computer use is associated with health symptoms through sleep duration among 15-year olds in Finland, France and Denmark. We used data from the WHO cross-national Health Behaviour in School-aged Children study collected in Finland, France and Denmark in 2010, including data on 5,402 adolescents (mean age 15.61 (SD 0.37), girls 53%). Symptoms assessed included feeling low, irritability/bad temper, nervousness, headache, stomachache, backache, and feeling dizzy. We used structural equation modeling to explore the mediating effect of sleep duration on the association between computer use and symptom load. Adolescents slept approximately 8 h a night and computer use was approximately 2 h a day. Computer use was associated with shorter sleep duration and higher symptom load. Sleep duration partly mediated the association between computer use and symptom load, but the indirect effects of sleep duration were quite modest in all countries. Sleep duration may be a potential underlying mechanism behind the association between computer use and health symptoms.
An intelligent multi-media human-computer dialogue system
NASA Technical Reports Server (NTRS)
Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.
1988-01-01
Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.
Predicting Flows of Rarefied Gases
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Wilmoth, Richard G.
2005-01-01
DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.
Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems
NASA Astrophysics Data System (ADS)
Adler, Matthew Adam
2009-12-01
Better lifetime predictions of systems subjected to fatigue loading are needed in support of the optimization of the costs of life-cycle engineering. In particular, the climate is especially encouraging for the development of safer aircraft. One issue is that aircraft experience complex fatigue loading and current methods for the prediction of fatigue damage accumulation rely on intensive computational tools that are not currently carried onboard during flight. These tools rely on complex models that are made more difficult by the complicated load spectra themselves. This presents an overhead burden as offline analysis must be performed at an offsite facility. This architecture is thus unable to provide online, timely information for on-board use. The direct objective of this research was to facilitate the real-time fatigue damage assessments of on-board systems with a particular emphasis on aging aircraft. To achieve the objective, the goal of this research was to simplify flight spectra. Variable-amplitude spectra, in which the load changes on a cycle-by-cycle basis, cannot readily be supported by an onboard system because the models required to predict fatigue crack growth during variable-amplitude loading are too complicated. They are too complicated because variable-amplitude fatigue crack growth analysis must be performed on a cycle-by-cycle basis as no closed-form solution exists. This makes these calculations too time-consuming and requires impractical, heavy onboard systems or offsite facilities. The hypothesis is to replace a variable-amplitude spectrum with an equivalent constant-amplitude spectrum. The advantage is a dramatic reduction in the complexity of the problem so that damage predictions can be made onboard by simple, fast calculations in real-time without the need to add additional weight to the aircraft. The intent is to reduce the computational burden and facilitate on-board projection of damage evolution and prediction for the accurate monitoring and management of aircraft. A spectrum reduction method was proposed and experimentally validated that reduces a variable-amplitude spectrum to a constant-amplitude equivalent. The reduction from a variable-amplitude (VA) spectrum to a constant-amplitude equivalent (CAE) was proposed as a two-part process. Preliminary spectrum reduction is first performed by elimination of those loading events shown to be too negligible to significantly contribute to fatigue crack growth. This is accomplished by rainflow counting. The next step is to calculate the appropriate, equivalent maximum and minimum loads by means of a root-mean-square average. This reduced spectrum defines the CAE and replaces the original spectrum. The simplified model was experimentally shown to provide the approximately same fatigue crack growth as the original spectrum. Fatigue crack growth experiments for two dissimilar aircraft spectra across a wide-range of stress-intensity levels validated the proposed spectrum reduction procedure. Irrespective of the initial K-level, the constant-amplitude equivalent spectra were always conservative in crack growth rate, and were so by an average of 50% over the full range tested. This corresponds to a maximum 15% overestimation in driving force Delta K. Given other typical sources of scatter that occur during fatigue crack growth, a consistent 50% conservative prediction on crack growth rate is very satisfying. This is especially attractive given the reduction in cost gained by the simplification. We now have a seamless system that gives an acceptably good approximation of damage occurring in the aircraft. This contribution is significant because in a very simple way we now have given a path to bypass the current infrastructure and ground-support requirements. The decision-making is now a lot simpler. In managing an entire fleet we now have a workable system where the strength is in no need for a massive, isolated computational center. The fidelity of the model gives credence because experimental data show that the approximate spectrum model captures the essential spectrum response. The discrepancy between the models is such that an experimental parameter is sufficient to converge the models. The proposed spectrum reduction procedure significantly mitigates the computational burden and allows for the probabilistic assessment of fatigue in real-time. This, in turn, provides support for crack-growth monitoring systems in facilitation of aircraft prognosis and fleet management.
cudaMap: a GPU accelerated program for gene expression connectivity mapping.
McArt, Darragh G; Bankhead, Peter; Dunne, Philip D; Salto-Tellez, Manuel; Hamilton, Peter; Zhang, Shu-Dong
2013-10-11
Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.
Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.
2009-01-01
In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.
Methods and apparatus for reduction of asymmetric rotor loads in wind turbines
Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee
2006-10-10
A method for reducing load and providing yaw alignment in a wind turbine includes measuring displacements or moments resulting from asymmetric loads on the wind turbine. These measured displacements or moments are used to determine a pitch for each rotor blade to reduce or counter asymmetric rotor loading and a favorable yaw orientation to reduce pitch activity. Yaw alignment of the wind turbine is adjusted in accordance with the favorable yaw orientation and the pitch of each rotor blade is adjusted in accordance with the determined pitch to reduce or counter asymmetric rotor loading.
Mass Memory Storage Devices for AN/SLQ-32(V).
1985-06-01
tactical programs and libraries into the AN/UYK-19 computer , the RP-16 microprocessor, and other peripheral processors (e.g., ADLS and Band 1) will be...software must be loaded into computer memory from the 4-track magnetic tape cartridges (MTCs) on which the programs are stored. Program load begins...software. Future computer programs , which will reside in peripheral processors, include the Automated Decoy Launching System (ADLS) and Band 1. As
NASA Technical Reports Server (NTRS)
Estes, R. H.
1977-01-01
A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables.
Computing Operating Characteristics Of Bearing/Shaft Systems
NASA Technical Reports Server (NTRS)
Moore, James D.
1996-01-01
SHABERTH computer program predicts operating characteristics of bearings in multibearing load-support system. Lubricated and nonlubricated bearings modeled. Calculates loads, torques, temperatures, and fatigue lives of ball and/or roller bearings on single shaft. Provides for analysis of reaction of system to termination of supply of lubricant to bearings and other lubricated mechanical elements. Valuable in design and analysis of shaft/bearing systems. Two versions of SHABERTH available. Cray version (LEW-14860), "Computing Thermal Performances Of Shafts and Bearings". IBM PC version (MFS-28818), written for IBM PC-series and compatible computers running MS-DOS.
Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.
Investigation of distributor vane jets to decrease the unsteady load on hydro turbine runner blades
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.
2012-11-01
As the runner blades of a Francis hydroturbine pass though the wakes created from the wicket gates, they experience a significant change in absolute velocity, flow angle, and pressure. The concept of adding jets to the trailing edge of the wicket gates is proposed as a method for reducing the dynamic load on the hydroturbine runner blades. Computational experiments show a decrease in velocity variation experienced by the runner blade with the addition of the jets. The decrease in velocity variation resulted in a 43% decrease in global torque variation at the runner passing frequency. However, an increased variation was observed at the wicket gate passing frequency. Also, a 5.7% increase in average global torque was observed with the addition of blowing from the trailing-edge of the wicket gates.
[Basic principles and results of brachytherapy in gynecological oncology].
Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V
2014-01-01
The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.
Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv
2001-01-01
Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.
Beckwée, David; Vaes, Peter; Shahabpour, Maryam; Muyldermans, Ronald; Rommers, Nikki; Bautmans, Ivan
2015-12-01
Bone marrow lesions (BMLs) are considered as predictors of pain, disability, and structural progression of knee osteoarthritis. The relationship between knee loading and BMLs is not yet completely understood. To summarize the available evidence regarding the relationship between joint loading and the prevalence and progression of BMLs in the tibiofemoral joint. Meta-analysis. Three databases (PubMed, Web of Science, and The Cochrane Library) were systematically screened for studies encompassing BMLs and changes in knee loading. A methodological quality assessment was conducted, and a meta-analysis computing overall odds ratios (ORs) was performed where possible. A total of 29 studies involving 7641 participants were included. Mechanical loading was categorized as body weight and composition, compartmental load, structural lesion, and physical activity. High compartmental loads and structural lesions increased the risk for BMLs (overall ORs ranging from 1.56 [95% CI, 1.13-2.15] to 8.2 [95% CI, 4.4-15.1]; P = .006). Body weight increased the risk for BMLs to a lesser extent (overall OR, 1.03; 95% CI, 1.01-1.05; P = .007). Contradictory results for the effect of physical activity on BMLs were found. Augmented compartmental loads and structural lesions increased the risk of the presence or progression of BMLs. Body weight increased the risk for BMLs to a lesser extent. Contradictory results for the effect of physical activity on BMLs may be explained by a dose-response relationship, knee alignment, and structural lesions. It has been shown that unloading the knee temporarily may induce beneficial effects on osteoarthritis-related structural changes. Therefore, an early recognition of BMLs in the aging athlete's knee may provide information to counter the onset and aggravation of symptomatic knee osteoarthritis by reducing the knee load. © 2015 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shorgin, Sergey Ya.; Pechinkin, Alexander V.; Samouylov, Konstantin E.
Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. Formore » better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures.« less
NASA Astrophysics Data System (ADS)
Miles, M.; Karki, U.; Hovanski, Y.
2014-10-01
Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.
Dibb, Alan T; Nightingale, Roger W; Chancey, V Carol; Fronheiser, Lucy E; Tran, Laura; Ottaviano, Danielle; Meyers, Barry S
2006-11-01
This study evaluated the biofidelity of both the Hybrid III and the THOR-NT anthropomorphic test device (ATD) necks in quasistatic tension-bending and pure-bending by comparing the responses of both the ATDs with results from validated computational models of the living human neck. This model was developed using post-mortem human surrogate (PMHS) osteoligamentous response corridors with effective musculature added (Chancey, 2005). Each ATD was tested using a variety of end-conditions to create the tension-bending loads. The results were compared using absolute difference, RMS difference, and normalized difference metrics. The THOR-NT was tested both with and without muscle cables. The THOR-NT was also tested with and without the central safety cable to test the effect of the cable on the behavior of the ATD. The Hybrid III was stiffer than the model for all tension-bending end conditions. Quantitative measurement of the differences in response showed more close agreement between the THOR-NT and the model than the Hybrid III and the model. By contrast, no systematic differences were observed in the head kinematics. The muscle cables significantly stiffened the THOR-NT by effectively reducing the laxity from the occipital condyle (OC) joint. The cables also shielded the OC upper neck load cell from a significant portion of the applied loads. The center safety significantly stiffened the response and decreased the fidelity, particularly in modes of loading in which tensile forces were large and bending moments small. This study compares ATD responses to computational models in which the models include PMHS response corridors while correcting for problems associated with cadaveric muscle. While controversial and requiring considerable diligence, these kinds of approaches show promise in assessing ATD biofidelity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Michael; Karki, U.; Hovanski, Yuri
Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN.more » Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.« less
NASA Technical Reports Server (NTRS)
Mcdonald, Gary H.
1987-01-01
The MSFC bearing seal material tester (BSMT) can be used to evaluate the SSME high pressure oxygen turbopump (HPOTP) bearing performance. The four HPOTP bearings have both an imposed radial and axial load. These radial and axial loads are caused by the HPOTP's shaft, main impeller, preburner impeller, turbine and by the LOX coolant flow through the bearings, respectively. These loads coupled with bearing geometry and operating speed can define bearing contact angle, contact Hertz stress, and heat generation rates. The BSMT has the capability of operating at HPOTP shaft speeds, provide proper coolant flowrates but can only apply an axial load. Due to the inability to operate the bearings in the BSMT with an applied radial load, it is important to develop an equivalency between the applied axial loads and the actual HPOTP loadings. A shaft-bearing-thermal computer code (SHABERTH/SINDA) is used to simulate the BSMT bearing-shaft geometry and thermal-fluid operating conditions.
Non-Deterministic Dynamic Instability of Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2004-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.
Dynamic Probabilistic Instability of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2009-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.
Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles using the VLOADS 1.4 Program
NASA Technical Reports Server (NTRS)
Graham, J. B.; Luz, P. L.
1998-01-01
To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle's length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative-the time-consuming, and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 work book on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.
Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Bliss, Donald B.; Wachspress, Daniel A.; Boschitsch, Alexander H.; Chua, Kiat
1990-01-01
The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight.
Composite Load Spectra for Select Space Propulsion Structural Components
NASA Technical Reports Server (NTRS)
Ho, Hing W.; Newell, James F.
1994-01-01
Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.
Olympic Village thermal energy storage experiment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, R.A.; Saylor, C.M.
Four thermal energy storage (TES) systems were operated in identical dormitory-style buildings of the Raybrook Correctional Facility, formerly the housing for the athletes at the 1980 Winter Olympic Games in Lake Placid, New York. The objectives of the project were to assess the ability of these TES systems to be controlled so as to modify load profiles favorably, and to assess the ability to maintain comfortable indoor conditions under those control strategies. Accordingly, the test was designed to evaluate the effect on load profiles of appropriate control algorithms for the TES systems, collect comprehensive TES operating data, and identify neededmore » research and development to improve the effectiveness of the TES systems. The four similar dormitory buildings were used to compare electric slab heating on grade, ceramic brick storage heating, pressurized-hot-water heating, and heat pumps with hot-water storage. In a fifth similar building, a conventional (non-TES) forced air electric resistance heat system was used. The four buildings with TES systems also had electric resistance heating for backup. A remote computer-based monitoring and control system was used to implement the control algorithms and to collect data from the site. For a 25% TES saturation of electric heat customers on the NMPC system, production costs were reduced by up to $2,235,000 for the New York Power Pool. The winter peak load was reduced by up to 223 MW. The control schedules developed were successful in reducing on-peak energy consumption while maintaining indoor conditions as close to the comfort level as possible considering the test environment.« less
Ocean Tide Loading Computation
NASA Technical Reports Server (NTRS)
Agnew, Duncan Carr
2005-01-01
September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.
Study of inducer load and stress, volume 2
NASA Technical Reports Server (NTRS)
1972-01-01
A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.
NASA Technical Reports Server (NTRS)
Rogallo, Vernon L; Yaggy, Paul F; Mccloud, John L , III
1956-01-01
A simplified procedure is shown for calculating the once-per-revolution oscillating aerodynamic thrust loads on propellers of tractor airplanes at zero yaw. The only flow field information required for the application of the procedure is a knowledge of the upflow angles at the horizontal center line of the propeller disk. Methods are presented whereby these angles may be computed without recourse to experimental survey of the flow field. The loads computed by the simplified procedure are compared with those computed by a more rigorous method and the procedure is applied to several airplane configurations which are believed typical of current designs. The results are generally satisfactory.
Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations
NASA Technical Reports Server (NTRS)
Chrisochoides, Nikos
1995-01-01
We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.
Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less
An evaluation of superminicomputers for thermal analysis
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Vidal, J. B.; Jones, G. K.
1962-01-01
The feasibility and cost effectiveness of solving thermal analysis problems on superminicomputers is demonstrated. Conventional thermal analysis and the changing computer environment, computer hardware and software used, six thermal analysis test problems, performance of superminicomputers (CPU time, accuracy, turnaround, and cost) and comparison with large computers are considered. Although the CPU times for superminicomputers were 15 to 30 times greater than the fastest mainframe computer, the minimum cost to obtain the solutions on superminicomputers was from 11 percent to 59 percent of the cost of mainframe solutions. The turnaround (elapsed) time is highly dependent on the computer load, but for large problems, superminicomputers produced results in less elapsed time than a typically loaded mainframe computer.
Balancing Particle and Mesh Computation in a Particle-In-Cell Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, Patrick H; D'Azevedo, Eduardo; Hager, Robert
2016-01-01
The XGC1 plasma microturbulence particle-in-cell simulation code has both particle-based and mesh-based computational kernels that dominate performance. Both of these are subject to load imbalances that can degrade performance and that evolve during a simulation. Each separately can be addressed adequately, but optimizing just for one can introduce significant load imbalances in the other, degrading overall performance. A technique has been developed based on Golden Section Search that minimizes wallclock time given prior information on wallclock time, and on current particle distribution and mesh cost per cell, and also adapts to evolution in load imbalance in both particle and meshmore » work. In problems of interest this doubled the performance on full system runs on the XK7 at the Oak Ridge Leadership Computing Facility compared to load balancing only one of the kernels.« less
Dynamic Load Balancing for Adaptive Computations on Distributed-Memory Machines
NASA Technical Reports Server (NTRS)
1999-01-01
Dynamic load balancing is central to adaptive mesh-based computations on large-scale parallel computers. The principal investigator has investigated various issues on the dynamic load balancing problem under NASA JOVE and JAG rants. The major accomplishments of the project are two graph partitioning algorithms and a load balancing framework. The S-HARP dynamic graph partitioner is known to be the fastest among the known dynamic graph partitioners to date. It can partition a graph of over 100,000 vertices in 0.25 seconds on a 64- processor Cray T3E distributed-memory multiprocessor while maintaining the scalability of over 16-fold speedup. Other known and widely used dynamic graph partitioners take over a second or two while giving low scalability of a few fold speedup on 64 processors. These results have been published in journals and peer-reviewed flagship conferences.
Definition and maintenance of a telemetry database dictionary
NASA Technical Reports Server (NTRS)
Knopf, William P. (Inventor)
2007-01-01
A telemetry dictionary database includes a component for receiving spreadsheet workbooks of telemetry data over a web-based interface from other computer devices. Another component routes the spreadsheet workbooks to a specified directory on the host processing device. A process then checks the received spreadsheet workbooks for errors, and if no errors are detected the spreadsheet workbooks are routed to another directory to await initiation of a remote database loading process. The loading process first converts the spreadsheet workbooks to comma separated value (CSV) files. Next, a network connection with the computer system that hosts the telemetry dictionary database is established and the CSV files are ported to the computer system that hosts the telemetry dictionary database. This is followed by a remote initiation of a database loading program. Upon completion of loading a flatfile generation program is manually initiated to generate a flatfile to be used in a mission operations environment by the core ground system.
Accelerated treatment protocols: full arch treatment with interim and definitive prostheses.
Drago, Carl
2012-01-01
With the advent of titanium, root form implants and osseointegration, dental treatment has undergone a metamorphosis in recent years. These new techniques enable dentists to provide anchorage for various kinds of prostheses that improve masticatory function, esthetics, and comfort for patients. Implant treatment protocols have been improved relative to implant macro- and micro-geometries, surgical and prosthetic components, and treatment times. Over the past 20 years, immediate occlusal function (also known as loading) has been established as a predictable treatment modality, provided certain specific criteria are met. In many cases, edentulous patients, crippled by the loss of their teeth, can undergo outpatient surgical and prosthetic procedures and return to a masticatory function that is near normal--sometimes after only one day of surgical and prosthetic treatment. This treatment option is also available for patients with advanced, generalized periodontal disease. Computer-assisted design/Computer-assisted manufacturing (CAD/CAM) has transformed how dental prostheses are made, offering improved accuracy, longevity, and biocompatibility; along with reduced labor costs and fewer complications than casting technologies. This article reviews the principles associated with immediate occlusal loading and illustrates one specific accelerated prosthodontic treatment protocol used to treat edentulous and partially edentulous patients with interim and definitive prostheses.
NASA Astrophysics Data System (ADS)
Majta, J.; Zurek, A. K.; Trujillo, C. P.; Bator, A.
2003-09-01
This work presents validation of the integrated computer model to predict the impact of the microstructure evolution on the mechanical behavior of niobium-microalloyed steels under dynamic loading conditions. The microstructurally based constitutive equations describing the mechanical behavior of the mixed α and γ phases are proposed. It is shown that for a given finishing temperature and strain, the Nb steel exhibits strong influence of strain rate on the flow stress and final structure. This tendency is also observed in calculated results obtained using proposed modeling procedures. High strain rates influence the deformation mechanism and reduce the extent of recovery occurring during and after deformation and, in turn, increase the driving force for transformation. On the other hand, the ratio of nucleation rate to growth rate increases for lower strain rates (due to the higher number of nuclei that can be produced during an extended loading time) leading to the refined ferrite structure. However, as it was expected such behavior produces higher inhomogeneity in the final product. Multistage quasistatic compression tests and test using the Hopkinson Pressure Bar under different temperature, strain, and strain rate conditions, are used for verification of the proposed models.
Discontinuously Stiffened Composite Panel under Compressive Loading
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Rivers, James M.; Chamis, Christos C.; Murthy, Pappu L. N.
1995-01-01
The design of composite structures requires an evaluation of their safety and durability under service loads and possible overload conditions. This paper presents a computational tool that has been developed to examine the response of stiffened composite panels via the simulation of damage initiation, growth, accumulation, progression, and propagation to structural fracture or collapse. The structural durability of a composite panel with a discontinuous stiffener is investigated under compressive loading induced by the gradual displacement of an end support. Results indicate damage initiation and progression to have significant effects on structural behavior under loading. Utilization of an integrated computer code for structural durability assessment is demonstrated.
Computational evaluation of load carriage effects on gait balance stability.
Mummolo, Carlotta; Park, Sukyung; Mangialardi, Luigi; Kim, Joo H
2016-01-01
Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load.
Yuan, Zeng-Nian; Chen, Hua; Li, Jing-Ming; Dai, Bin; Zhang, Wei-Bin
2018-05-04
In order to study the fracture behavior and structure evolution of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB)-based polymer bonded explosive in thermal-mechanical loading, in-situ studies were performed on X-ray computed tomography system using quasi-static Brazilian test. The experiment temperature was set from −20 °C to 70 °C. Three-dimensional morphology of cracks at different temperatures was obtained through digital image process. The various fracture modes were compared by scanning electron microscopy. Fracture degree and complexity were defined to quantitatively characterize the different types of fractures. Fractal dimension was used to characterize the roughness of the crack surface. The displacement field of particles in polymer bonded explosive (PBX) was used to analyze the interior structure evolution during the process of thermal-mechanical loading. It was found that the brittleness of PBX reduced, the fracture got more tortuous, and the crack surface got smoother as the temperature rose. At lower temperatures, especially lower than glass transition temperature of binders, there were slipping and shear among particles, and particles tended to displace and disperse; while at higher temperatures, especially above the glass transition temperature of binders, there was reorganization of particles and particles tended to merge, disperse, and reduce sizes, rather than displacing.
NASA Astrophysics Data System (ADS)
Werner, Brian Thomas
Composite structures have long been used in many industries where it is advantageous to reduce weight while maintaining high stiffness and strength. Composites can now be found in an ever broadening range of applications: sporting equipment, automobiles, marine and aerospace structures, and energy production. These structures are typically sandwich panels composed of fiber reinforced polymer composite (FRPC) facesheets which provide the stiffness and the strength and a low density polymeric foam core that adds bending rigidity with little additional weight. The expanding use of composite structures exposes them to high energy, high velocity dynamic loadings which produce multi-axial dynamic states of stress. This circumstance can present quite a challenge to designers, as composite structures are highly anisotropic and display properties that are sensitive to loading rates. Computer codes are continually in development to assist designers in the creation of safe, efficient structures. While the design of an optimal composite structure is more complex, engineers can take advantage of the effect of enhanced energy dissipation displayed by a composite when loaded at high strain rates. In order to build and verify effective computer codes, the underlying assumptions must be verified by laboratory experiments. Many of these codes look to use a micromechanical approach to determine the response of the structure. For this, the material properties of the constituent materials must be verified, three-dimensional constitutive laws must be developed, and failure of these materials must be investigated under static and dynamic loading conditions. In this study, simple models are sought not only to ease their implementation into such codes, but to allow for efficient characterization of new materials that may be developed. Characterization of composite materials and sandwich structures is a costly, time intensive process. A constituent based design approach evaluates potential combinations of materials in a much faster and more efficient manner.
Heuijerjans, Ashley; Matikainen, Marko K.; Julkunen, Petro; Eliasson, Pernilla; Aspenberg, Per; Isaksson, Hanna
2015-01-01
Background Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendon’s biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a poroviscoelastic fibre-reinforced model, previously successful in capturing cartilage biomechanical behaviour, can depict the biomechanical behaviour of the rat Achilles tendon found experimentally. Materials and Methods We developed a new material model of the Achilles tendon, which considers the tendon’s main constituents namely: water, proteoglycan matrix and collagen fibres. A hyperelastic formulation of the proteoglycan matrix enabled computations of large deformations of the tendon, and collagen fibres were modelled as viscoelastic. Specimen-specific finite element models were created of 9 rat Achilles tendons from an animal experiment and simulations were carried out following a repetitive tensile loading protocol. The material model parameters were calibrated against data from the rats by minimising the root mean squared error (RMS) between experimental force data and model output. Results and Conclusions All specimen models were successfully fitted to experimental data with high accuracy (RMS 0.42-1.02). Additional simulations predicted more compliant and soft tendon behaviour at reduced strain-rates compared to higher strain-rates that produce a stiff and brittle tendon response. Stress-relaxation simulations exhibited strain-dependent stress-relaxation behaviour where larger strains produced slower relaxation rates compared to smaller strain levels. Our simulations showed that the collagen fibres in the Achilles tendon are the main load-bearing component during tensile loading, where the orientation of the collagen fibres plays an important role for the tendon’s viscoelastic response. In conclusion, this model can capture the repetitive loading and unloading behaviour of intact and healthy Achilles tendons, which is a critical first step towards understanding tendon homeostasis and function as this biomechanical response changes in diseased tendons. PMID:26030436
Assessment of Cracks in Stress Concentration Regions with Localized Plastic Zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, E.
1998-11-25
Marty brittle fracture evaluation procedures include plasticity corrections to elastically computed stress intensity factors. These corrections, which are based on the existence of a plastic zone in the vicinity of the crack tip, can overestimate the plasticity effect for a crack embedded in a stress concentration region in which the elastically computed stress exceeds the yield strength of the material in a localized zone. The interactions between the crack, which acts to relieve the high stresses driving the crack, plasticity effects in the stress concentration region, and the nature and source of the loading are examined by formulating explicit flawmore » finite element models for a crack emanating from the root of a notch located in a panel subject to an applied tensile stress. The results of these calculations provide conditions under which a crack-tip plasticity correction based on the Irwin plastic zone size overestimates the plasticity effect. A failure assessment diagram (FAD) curve is used to characterize the effect of plasticity on the crack driving force and to define a less restrictive plasticity correction for cracks at notch roots when load-controlled boundary conditions are imposed. The explicit flaw finite element results also demonstrate that stress intensity factors associated with load-controlled boundary conditions, such as those inherent in the ASME Boiler and Pressure Vessel Code as well as in most handbooks of stress intensity factors, can be much higher than those associated with displacement-controlled conditions, such as those that produce residual or thermal stresses. Under certain conditions, the inclusion of plasticity effects for cracks loaded by displacement-controlled boundary conditions reduces the crack driving force thus justifying the elimination of a plasticity correction for such loadings. The results of this study form the basis for removing unnecessary conservatism from flaw evaluation procedures that utilize plasticity corrections.« less
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem
2015-01-01
The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on a given device to help formulate exercise prescriptions and other operational considerations. With this in mind, NASA's Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) laboratory and NSBRI-funded researchers by developing and implementing well-validated computational models of exercises with advanced exercise device concepts. This report focuses specifically on lower-body resistance exercises performed with the Hybrid Ultimate Lifting Kit (HULK) device as a deliverable to the AEC Project.
Optimizing Cognitive Load for Learning from Computer-Based Science Simulations
ERIC Educational Resources Information Center
Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.
2006-01-01
How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…
Investigation of the Behavior of Thin-Walled Panels with Cutouts
NASA Technical Reports Server (NTRS)
Podorozhny, A. A.
1946-01-01
The present paper deals with the computation and methods of reinforcement of stiffened panels with cutouts under bending loads such as are applied to the sides of a fuselage. A comparison is maade between the computed and test results. Results are presented of tests on panels with cutouts under tensile and compressive loads.
ERIC Educational Resources Information Center
Schwonke, Rolf
2015-01-01
Instructional design theories such as the "cognitive load theory" (CLT) or the "cognitive theory of multimedia learning" (CTML) explain learning difficulties in (computer-based) learning usually as a result of design deficiencies that hinder effective schema construction. However, learners often struggle even in well-designed…
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
Population-based learning of load balancing policies for a distributed computer system
NASA Technical Reports Server (NTRS)
Mehra, Pankaj; Wah, Benjamin W.
1993-01-01
Effective load-balancing policies use dynamic resource information to schedule tasks in a distributed computer system. We present a novel method for automatically learning such policies. At each site in our system, we use a comparator neural network to predict the relative speedup of an incoming task using only the resource-utilization patterns obtained prior to the task's arrival. Outputs of these comparator networks are broadcast periodically over the distributed system, and the resource schedulers at each site use these values to determine the best site for executing an incoming task. The delays incurred in propagating workload information and tasks from one site to another, as well as the dynamic and unpredictable nature of workloads in multiprogrammed multiprocessors, may cause the workload pattern at the time of execution to differ from patterns prevailing at the times of load-index computation and decision making. Our load-balancing policy accommodates this uncertainty by using certain tunable parameters. We present a population-based machine-learning algorithm that adjusts these parameters in order to achieve high average speedups with respect to local execution. Our results show that our load-balancing policy, when combined with the comparator neural network for workload characterization, is effective in exploiting idle resources in a distributed computer system.
NASA Technical Reports Server (NTRS)
Nolte, W. E.
1976-01-01
LOADS determines rigid body vehicle shears, bending moments and axial loads on a space vehicle due to aerodynamic loads and propellant inertial loads. An example hand calculation is presented and was used to check LOADS. A brief description of the program and the equations used are presented. LOADS is operational on the Univac 1110, occupies 10505 core and typically takes less than one(1) second of CAU time to execute.
Ganguly, Arnab; Alexeenko, Alina A; Schultz, Steven G; Kim, Sherry G
2013-10-01
A physics-based model for the sublimation-transport-condensation processes occurring in pharmaceutical freeze-drying by coupling product attributes and equipment capabilities into a unified simulation framework is presented. The system-level model is used to determine the effect of operating conditions such as shelf temperature, chamber pressure, and the load size on occurrence of choking for a production-scale dryer. Several data sets corresponding to production-scale runs with a load from 120 to 485 L have been compared with simulations. A subset of data is used for calibration, whereas another data set corresponding to a load of 150 L is used for model validation. The model predictions for both the onset and extent of choking as well as for the measured product temperature agree well with the production-scale measurements. Additionally, we study the effect of resistance to vapor transport presented by the duct with a valve and a baffle in the production-scale freeze-dryer. Computation Fluid Dynamics (CFD) techniques augmented with a system-level unsteady heat and mass transfer model allow to predict dynamic process conditions taking into consideration specific dryer design. CFD modeling of flow structure in the duct presented here for a production-scale freeze-dryer quantifies the benefit of reducing the obstruction to the flow through several design modifications. It is found that the use of a combined valve-baffle system can increase vapor flow rate by a factor of 2.2. Moreover, minor design changes such as moving the baffle downstream by about 10 cm can increase the flow rate by 54%. The proposed design changes can increase drying rates, improve efficiency, and reduce cycle times due to fewer obstructions in the vapor flow path. The comprehensive simulation framework combining the system-level model and the detailed CFD computations can provide a process analytical tool for more efficient and robust freeze-drying of bio-pharmaceuticals. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flathers, M.B.; Bache, G.E.
1999-10-01
Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute weremore » analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.« less
The Role of Scientific Studies in Building Consensus in ...
We present a new approach for characterizing the potential of scientific studies to reduce conflict among stakeholders in an analytic-deliberative environmental decision-making process. The approach computes a normalized metric, the Expected Consensus Index of New Research (ECINR), for identifying where additional scientific research will best support improved decisions and resolve possible conflicts over preferred management actions. The ECINR reflects the expected change in agreement among parties over preferred management actions with the implementation and consideration of new scientific studies. We demonstrate the ECINR method based on a preliminary application to coral reef protection and restoration in the Gua´nica Bay Watershed, Puerto Rico, focusing on assessing and managing anthropogenic stressors, including sedimentation and pollution from landbased sources such as sewage, agriculture, and development. Structured elicitations of values and beliefs conducted at a coral reef decision support workshop held at La Parguera, Puerto Rico, are used to develop information for illustrating the methodology. The ECINR analysis was focused on a final study group of seven stakeholders, consisting of resource managers and scientists, who were not in agreement on the efficacy and respective benefits of reducing loadings from three sources: sewage, agriculture, and development. The scenario assumed that loadings would be reduced incrementally from each source through
Sánchez-Álvarez, David; Rodríguez-Pérez, Francisco-Javier
2018-01-01
In this paper, we present a work based on the computational load distribution among the homogeneous nodes and the Hub/Sink of Wireless Sensor Networks (WSNs). The main contribution of the paper is an early decision support framework helping WSN designers to take decisions about computational load distribution for those WSNs where power consumption is a key issue (when we refer to “framework” in this work, we are considering it as a support tool to make decisions where the executive judgment can be included along with the set of mathematical tools of the WSN designer; this work shows the need to include the load distribution as an integral component of the WSN system for making early decisions regarding energy consumption). The framework takes advantage of the idea that balancing sensors nodes and Hub/Sink computational load can lead to improved energy consumption for the whole or at least the battery-powered nodes of the WSN. The approach is not trivial and it takes into account related issues such as the required data distribution, nodes, and Hub/Sink connectivity and availability due to their connectivity features and duty-cycle. For a practical demonstration, the proposed framework is applied to an agriculture case study, a sector very relevant in our region. In this kind of rural context, distances, low costs due to vegetable selling prices and the lack of continuous power supplies may lead to viable or inviable sensing solutions for the farmers. The proposed framework systematize and facilitates WSN designers the required complex calculations taking into account the most relevant variables regarding power consumption, avoiding full/partial/prototype implementations, and measurements of different computational load distribution potential solutions for a specific WSN. PMID:29570645
Large holographic displays for real-time applications
NASA Astrophysics Data System (ADS)
Schwerdtner, A.; Häussler, R.; Leister, N.
2008-02-01
Holography is generally accepted as the ultimate approach to display three-dimensional scenes or objects. Principally, the reconstruction of an object from a perfect hologram would appear indistinguishable from viewing the corresponding real-world object. Up to now two main obstacles have prevented large-screen Computer-Generated Holograms (CGH) from achieving a satisfactory laboratory prototype not to mention a marketable one. The reason is a small cell pitch CGH resulting in a huge number of hologram cells and a very high computational load for encoding the CGH. These seemingly inevitable technological hurdles for a long time have not been cleared limiting the use of holography to special applications, such as optical filtering, interference, beam forming, digital holography for capturing the 3-D shape of objects, and others. SeeReal Technologies has developed a new approach for real-time capable CGH using the socalled Tracked Viewing Windows technology to overcome these problems. The paper will show that today's state of the art reconfigurable Spatial Light Modulators (SLM), especially today's feasible LCD panels are suited for reconstructing large 3-D scenes which can be observed from large viewing angles. For this to achieve the original holographic concept of containing information from the entire scene in each part of the CGH has been abandoned. This substantially reduces the hologram resolution and thus the computational load by several orders of magnitude making thus real-time computation possible. A monochrome real-time prototype measuring 20 inches has been built and demonstrated at last year's SID conference and exhibition 2007 and at several other events.
Accelerating Climate and Weather Simulations through Hybrid Computing
NASA Technical Reports Server (NTRS)
Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark
2011-01-01
Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.
Tracking and Control of a Neutral Particle Beam Using Multiple Model Adaptive Meer Filter.
1987-12-01
34 method incorporated by Zicker in 1983 [32]. Once the beam estimation problem had been solved, the problem of beam control was examined. Zicker conducted a...filter. Then, the methods applied by Meer, and later Zicker , to reduce the computational load of a simple Meer filter, will be presented. 2.5.1 Basic...number of possible methods to prune the hypothesis tree and chose the "Best Half Method" as the most viable (21). Zicker [323, applied the work of Weiss
Creep Measurement Video Extensometer
NASA Technical Reports Server (NTRS)
Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John
2011-01-01
Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.
Vibration analysis of rotor systems using reduced subsystem models
NASA Technical Reports Server (NTRS)
Fan, Uei-Jiun; Noah, Sherif T.
1989-01-01
A general impedance method using reduced submodels has been developed for the linear dynamic analysis of rotor systems. Formulated in terms of either modal or physical coordinates of the subsystems, the method enables imbalance responses at specific locations of the rotor systems to be efficiently determined from a small number of 'master' degrees of freedom. To demonstrate the capability of this impedance approach, the Space Shuttle Main Engine high-pressure oxygen turbopump has been investigated to determine the bearing loads due to imbalance. Based on the same formulation, an eigenvalue analysis has been performed to study the system stability. A small 5-DOF model has been utilized to illustrate the application of the method to eigenvalue analysis. Because of its inherent characteristics of allowing formulation of reduced submodels, the impedance method can significantly increase the computational speed.
Selbig, William R.; Bannerman, Roger T.
2007-01-01
Recent technological improvements have increased the ability of street sweepers to remove sediment and other debris from street surfaces; the effect of these technological advancements on stormwater quality is largely unknown. The U.S. Geological Survey, in cooperation with the City of Madison and the Wisconsin Department of Natural Resources, evaluated three street-sweeper technologies from 2002 through 2006. Regenerative-air, vacuum-assist, and mechanical-broom street sweepers were operated on a frequency of once per week (high frequency) in separate residential basins in Madison, Wis., to measure each sweeper's ability to not only reduce street-dirt yield but also improve the quality of stormwater runoff. A second mechanical-broom sweeper operating on a frequency of once per month (low frequency) was also evaluated to measure reductions in street-dirt yield only. A paired-basin study design was used to compare street-dirt and stormwater-quality samples during a calibration (no sweeping) and a treatment period (weekly sweeping). The basis of this paired-basin approach is that the relation between paired street-dirt and stormwater-quality loads for the control and tests basins is constant until a major change is made at one of the basins. At that time, a new relation will develop. Changes in either street-dirt and/or stormwater quality as a result of street sweeping could then be quantified by use of statistical tests. Street-dirt samples collected weekly during the calibration period and twice per week during the treatment period, once before and once after sweeping, were dried and separated into seven particle-size fractions ranging from less than 63 micrometers to greater than 2 millimeters. Street-dirt yield evaluation was based on a computed mass per unit length of pounds per curb-mile. An analysis of covariance was used to measure the significance of the effect of street sweeping at the end of the treatment period and to quantify any reduction in street-dirt yield. Both the regenerative-air and vacuum-assist sweepers produced reductions in street-dirt yield at the 5-percent significance level. Street-dirt yield was reduced by an average of 76, 63, and 20 percent in the regenerative-air, vacuum-assist, and high-frequency broom basins, respectively. The low-frequency broom basin showed no significant reductions in street-dirt yield. Sand-size particles (greater than 63 micrometers) recorded the greatest overall reduction. Street-sweeper pickup efficiency was determined by computing the difference between weekly street-dirt yields before and after sweeping cleaning. The regenerative-air and vacuum-assist sweepers had similar pickup efficiencies of 25 and 30 percent, respectively. The mechanical broom sweeper operating at high frequency was considerably less efficient, removing an average of 5 percent of street-dirt yield. The effects of street sweeping on stormwater quality were evaluated by use of statistical tests to compare event mean concentrations and loads computed for individual storms at the control and test basins. Loads were computed by multiplying the event mean concentrations by storm-runoff volumes. Only ammonia-nitrogen for the test basin with the vacuum-assist sweeper showed significant load increases over the control basin, at the 10-percent significance level, of 63 percent. Difficulty in detecting significant changes in constituent stormwater-quality loads could be due, in part, to the large amount of variability in the data. Coefficients of variation for the majority of constituent loads were greater than 1, indicating substantial variability. The ability to detect changes in constituent stormwater-quality loads was likely hampered by an inadequate number of samples in the data set. However, sediment transport in the storm-sewer pipe, sediment washing onto the street from other source areas, winter sand application, and sampling challenges were additional sources of variability within each study ba
Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.
2016-12-22
Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at the two study sites, particularly in using turbidity to compute suspended-sediment concentrations in the Williamson River. This proof-of-concept effort for computing total phosphorus concentrations using turbidity at the Williamson and Wood River sites also has shown that with additional samples over a wide range of flow regimes, high-temporal-resolution total phosphorus loads can be estimated on a daily, monthly, and annual basis, along with uncertainties for total phosphorus and suspended-sediment concentrations computed using regression models. Sediment-corrected backscatter at the Wood River has potential for estimating suspended-sediment loads from the Wood River Valley as well, with additional analysis of the variable streamflow measured at that site. Suspended-sediment and total phosphorus loads with a high level of temporal resolution will be useful to water managers, restoration practitioners, and scientists in the Upper Klamath Basin working toward the common goal of decreasing nutrient and sediment loads in Upper Klamath Lake.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, in combination with state modeling in the abc-frame of reference, are used for global 3D magnetic field analysis and machine performance computation under rated load and overload condition in an example 14.3 kVA modified Lundell alternator. The results vividly demonstrate the 3D nature of the magnetic field in such machines, and show how this model can be used as an excellent tool for computation of flux density distributions, armature current and voltage waveform profiles and harmonic contents, as well as computation of torque profiles and ripples. Use of the model in gaining insight into locations of regions in the magnetic circuit with heavy degrees of saturation is demonstrated. Experimental results which correlate well with the simulations of the load case are given.
Scheduling based on a dynamic resource connection
NASA Astrophysics Data System (ADS)
Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.
2017-02-01
The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J.
2017-01-01
This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone’s internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms. PMID:28652932
Mustansar, Zartasha; McDonald, Samuel A; Sellers, William Irvin; Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J; Margetts, Lee
2017-01-01
This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone's internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.
Dissociable Roles of Different Types of Working Memory Load in Visual Detection
Konstantinou, Nikos; Lavie, Nilli
2013-01-01
We contrasted the effects of different types of working memory (WM) load on detection. Considering the sensory-recruitment hypothesis of visual short-term memory (VSTM) within load theory (e.g., Lavie, 2010) led us to predict that VSTM load would reduce visual-representation capacity, thus leading to reduced detection sensitivity during maintenance, whereas load on WM cognitive control processes would reduce priority-based control, thus leading to enhanced detection sensitivity for a low-priority stimulus. During the retention interval of a WM task, participants performed a visual-search task while also asked to detect a masked stimulus in the periphery. Loading WM cognitive control processes (with the demand to maintain a random digit order [vs. fixed in conditions of low load]) led to enhanced detection sensitivity. In contrast, loading VSTM (with the demand to maintain the color and positions of six squares [vs. one in conditions of low load]) reduced detection sensitivity, an effect comparable with that found for manipulating perceptual load in the search task. The results confirmed our predictions and established a new functional dissociation between the roles of different types of WM load in the fundamental visual perception process of detection. PMID:23713796
McCormick, Paul V.; Campbell, Sharon G.
2007-01-01
A literature review of best management practices to reduce nutrient loading was performed to provide information for resource managers in the Klamath Basin, Oregon. Although BMPs have already been implemented in the watershed, some sense of their effectiveness in reducing phosphorus loading and their cost for installation and maintenance is still lacking. This report discusses both causes of nutrient loading and a wide-variety of BMPs used to treat or reduce causal factors. We specifically focused on cattle grazing as the principal land-use and causal factor for nutrient loading in the Klamath Basin above Upper Klamath Lake, Oregon. Several BMP types, including stream corridor fencing, riparian buffer strips and constructed wetlands, seem to have potential for reducing phosphorus loading that may result from cattle grazing. However, no single BMP is likely to be the most effective in all locations or situations.
High perceptual load leads to both reduced gain and broader orientation tuning
Stolte, Moritz; Bahrami, Bahador; Lavie, Nilli
2014-01-01
Due to its limited capacity, visual perception depends on the allocation of attention. The resultant phenomena of inattentional blindness, accompanied by reduced sensory visual cortex response to unattended stimuli in conditions of high perceptual load in the attended task, are now well established (Lavie, 2005; Lavie, 2010, for reviews). However, the underlying mechanisms for these effects remain to be elucidated. Specifically, is reduced perceptual processing under high perceptual load a result of reduced sensory signal gain, broader tuning, or both? We examined this question with psychophysical measures of orientation tuning under different levels of perceptual load in the task performed. Our results show that increased perceptual load leads to both reduced sensory signal and broadening of tuning. These results clarify the effects of attention on elementary visual perception and suggest that high perceptual load is critical for attentional effects on sensory tuning. PMID:24610952
Visual short-term memory load reduces retinotopic cortex response to contrast.
Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli
2012-11-01
Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olama, Mohammed M; Sharma, Isha; Kuruganti, Teja
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis ofmore » building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.« less
Precision pointing compensation for DSN antennas with optical distance measuring sensors
NASA Technical Reports Server (NTRS)
Scheid, R. E.
1989-01-01
The pointing control loops of Deep Space Network (DSN) antennas do not account for unmodeled deflections of the primary and secondary reflectors. As a result, structural distortions due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade pointing accuracy. The design proposed here can provide real-time bias commands to the pointing control system to compensate for environmental effects on pointing performance. The bias commands can be computed in real time from optically measured deflections at a number of points on the primary and secondary reflectors. Computer simulations with a reduced-order finite-element model of a DSN antenna validate the concept and lead to a proposed design by which a ten-to-one reduction in pointing uncertainty can be achieved under nominal uncertainty conditions.
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Qin, Zunqi; Zou, Shengliang
2014-04-01
We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry-Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.
[Stressor and stress reduction strategies for computer software engineers].
Asakura, Takashi
2002-07-01
First, in this article we discuss 10 significant occupational stressors for computer software engineers, based on the review of the scientific literature on their stress and mental health. The stressors include 1) quantitative work overload, 2) time pressure, 3) qualitative work load, 4) speed and diffusion of technological innovation, and technological divergence, 5) low discretional power, 6) underdeveloped career pattern, 7) low earnings/reward from jobs, 8) difficulties in managing a project team for software development and establishing support system, 9) difficulties in customer relations, and 10) personality characteristics. In addition, we delineate their working and organizational conditions that cause such occupational stressors in order to find strategies to reduce those stressors in their workplaces. Finally, we suggest three stressor and stress reduction strategies for software engineers.
Singular perturbation techniques for real time aircraft trajectory optimization and control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1982-01-01
The usefulness of singular perturbation methods for developing real time computer algorithms to control and optimize aircraft flight trajectories is examined. A minimum time intercept problem using F-8 aerodynamic and propulsion data is used as a baseline. This provides a framework within which issues relating to problem formulation, solution methodology and real time implementation are examined. Theoretical questions relating to separability of dynamics are addressed. With respect to implementation, situations leading to numerical singularities are identified, and procedures for dealing with them are outlined. Also, particular attention is given to identifying quantities that can be precomputed and stored, thus greatly reducing the on-board computational load. Numerical results are given to illustrate the minimum time algorithm, and the resulting flight paths. An estimate is given for execution time and storage requirements.
NASA Technical Reports Server (NTRS)
Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John
2011-01-01
A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.
Application of Interface Technology in Progressive Failure Analysis of Composite Panels
NASA Technical Reports Server (NTRS)
Sleight, D. W.; Lotts, C. G.
2002-01-01
A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.
Effects of Imbalanced Muscle Loading on Hip Joint Development and Maturation
Ford, Caleb A.; Nowlan, Niamh C.; Thomopoulos, Stavros; Killian, Megan L.
2017-01-01
The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. PMID:27391299
A method to approximate a closest loadability limit using multiple load flow solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong
A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less
A root-mean-square approach for predicting fatigue crack growth under random loading
NASA Technical Reports Server (NTRS)
Hudson, C. M.
1981-01-01
A method for predicting fatigue crack growth under random loading which employs the concept of Barsom (1976) is presented. In accordance with this method, the loading history for each specimen is analyzed to determine the root-mean-square maximum and minimum stresses, and the predictions are made by assuming the tests have been conducted under constant-amplitude loading at the root-mean-square maximum and minimum levels. The procedure requires a simple computer program and a desk-top computer. For the eleven predictions made, the ratios of the predicted lives to the test lives ranged from 2.13 to 0.82, which is a good result, considering that the normal scatter in the fatigue-crack-growth rates may range from a factor of two to four under identical loading conditions.
NASA Astrophysics Data System (ADS)
Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.
2010-08-01
The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.
NASA Technical Reports Server (NTRS)
Chen, L.-T.; Dugundji, J.
1979-01-01
A preliminary study conducted by Kerrebrock et al. (1976) has shown that the torsional rigidity of untwisted thin blades of a transonic compressor can be reduced significantly by transient thermal stresses. The aerodynamic loads have various effects on blade vibration. One effect is that gas bending loads may result in a bending-torsion coupling which may change the characteristics of the torsion and bending vibration of the blade. For a general study of transient-temperature distribution within a rotor stage, a finite-element heat-conduction analysis was developed. The blade and shroud are divided into annular elements. With a temperature distribution obtained from the heat-conduction analysis and a prescribed gas bending load distribution along the blade span, the static deformation and moment distributions of the blade can be solved iteratively using the finite-element method. The reduction of the torsional rigidity of pretwisted blades caused by the thermal stress effect is then computed. The dynamic behavior of the blade is studied by a modified Galerkin's method.
NASA Technical Reports Server (NTRS)
Boshar, John
1947-01-01
A preliminary analytical investigation was made to determine the feasibility of the basic idea of controlled failure points as safety valves for the primary airplane structure. The present analysis considers the possibilities of the breakable wing tip which, in failing as a weak link, would relieve the bending moments on the wing structure. The analysis was carried out by computing the time histories of the wing and stabilizer angle of attack in a 10g pull-up for an XF8F airplane with tips fixed and comparing the results with those for the same maneuver, that is, elevator motion but with tips jettisoned at 8g. The calculations indicate that the increased stability accompanying the loss of the wing tips reduces the bending moment an additional amount above that which would be expected from the initial loss in lift and the inboard shift in load. The vortex shed when the tips are lost may induce a transient load requiring that the tail be made stronger than otherwise.
Distributed and cooperative task processing: Cournot oligopolies on a graph.
Pavlic, Theodore P; Passino, Kevin M
2014-06-01
This paper introduces a novel framework for the design of distributed agents that must complete externally generated tasks but also can volunteer to process tasks encountered by other agents. To reduce the computational and communication burden of coordination between agents to perfectly balance load around the network, the agents adjust their volunteering propensity asynchronously within a fictitious trading economy. This economy provides incentives for nontrivial levels of volunteering for remote tasks, and thus load is shared. Moreover, the combined effects of diminishing marginal returns and network topology lead to competitive equilibria that have task reallocations that are qualitatively similar to what is expected in a load-balancing system with explicit coordination between nodes. In the paper, topological and algorithmic conditions are given that ensure the existence and uniqueness of a competitive equilibrium. Additionally, a decentralized distributed gradient-ascent algorithm is given that is guaranteed to converge to this equilibrium while not causing any node to over-volunteer beyond its maximum task-processing rate. The framework is applied to an autonomous-air-vehicle example, and connections are drawn to classic studies of the evolution of cooperation in nature.
NASA Technical Reports Server (NTRS)
Liu, G. C.; Morris, C. E. K., Jr.; Koenig, R. W.
1983-01-01
An analytical study has been conducted to evaluate the potential endurance of remotely piloted, low speed, high altitude, long endurance airplanes designed with 1990 technology. The baseline configuration was a propeller driven, sailplane like airplane powered by turbine engines that used JP-7, liquid methane, or liquid hydrogen as fuel. Endurance was measured as the time spent between 60,000 feet and an engine limited maximum altitude of 70,000 feet. Performance was calculated for a baseline vehicle and for configurations derived by varying aerodynamic, structural or propulsion parameters. Endurance is maximized by reducing wing loading and engine size. The level of maximum endurance for a given wing loading is virtually the same for all three fuels. Constraints due to winds aloft and propulsion system scaling produce maximum endurance values of 71 hours for JP-7 fuel, 70 hours for liquid methane, and 65 hours for liquid hydrogen. Endurance is shown to be strongly effected by structural weight fraction, specific fuel consumption, and fuel load. Listings of the computer program used in this study and sample cases are included in the report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, B.; Misra, A.; Fricke, B.A.
1997-12-31
A computer algorithm was developed that estimates the latent and sensible heat loads due to the bulk refrigeration of fruits and vegetables. The algorithm also predicts the commodity moisture loss and temperature distribution which occurs during refrigeration. Part 1 focused upon the thermophysical properties of commodities and the flowfield parameters which govern the heat and mass transfer from fresh fruits and vegetables. This paper, Part 2, discusses the modeling methodology utilized in the current computer algorithm and describes the development of the heat and mass transfer models. Part 2 also compares the results of the computer algorithm to experimental datamore » taken from the literature and describes a parametric study which was performed with the algorithm. In addition, this paper also reviews existing numerical models for determining the heat and mass transfer in bulk loads of fruits and vegetables.« less
Validation of the solar heating and cooling high speed performance (HISPER) computer code
NASA Technical Reports Server (NTRS)
Wallace, D. B.
1980-01-01
Developed to give a quick and accurate predictions HISPER, a simplification of the TRNSYS program, achieves its computational speed by not simulating detailed system operations or performing detailed load computations. In order to validate the HISPER computer for air systems the simulation was compared to the actual performance of an operational test site. Solar insolation, ambient temperature, water usage rate, and water main temperatures from the data tapes for an office building in Huntsville, Alabama were used as input. The HISPER program was found to predict the heating loads and solar fraction of the loads with errors of less than ten percent. Good correlation was found on both a seasonal basis and a monthly basis. Several parameters (such as infiltration rate and the outside ambient temperature above which heating is not required) were found to require careful selection for accurate simulation.
46 CFR 111.60-7 - Demand loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REQUIREMENTS Wiring Materials and Methods § 111.60-7 Demand loads. Generator, feeder, and bus-tie cables must be selected on the basis of a computed load of not less than the demand load given in Table 111.60-7... 46 Shipping 4 2010-10-01 2010-10-01 false Demand loads. 111.60-7 Section 111.60-7 Shipping COAST...
46 CFR 111.60-7 - Demand loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
... REQUIREMENTS Wiring Materials and Methods § 111.60-7 Demand loads. Generator, feeder, and bus-tie cables must be selected on the basis of a computed load of not less than the demand load given in Table 111.60-7... 46 Shipping 4 2011-10-01 2011-10-01 false Demand loads. 111.60-7 Section 111.60-7 Shipping COAST...
Load theory of selective attention and cognitive control.
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W; Viding, Essi
2004-09-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings suggest 2 selective attention mechanisms: a perceptual selection mechanism serving to reduce distractor perception in situations of high perceptual load that exhaust perceptual capacity in processing relevant stimuli and a cognitive control mechanism that reduces interference from perceived distractors as long as cognitive control functions are available to maintain current priorities (low cognitive load). This theory resolves the long-standing early versus late selection debate and clarifies the role of cognitive control in selective attention. ((c) 2004 APA, all rights reserved)
The measurement of total sediment load in alluvial streams
Benedict, P.C.; Matejka, D.Q.; McNown, John S.; Boyer, M.C.
1953-01-01
The measurement of the total sediment load transported by streams that flow in alluvial channels has been a perplexing problem to engineers and geologists for over a century. Until the last decade the development of equipment to measure bed load and suspended load was carried on almost independently, and without primary consideration of the fundamental laws governing the transportation of fluvial sediments. French investigators during the nineteenth century described methods of measurement and a mathematical approach for computing the rate of bed-load movement. The comprehensive laboratory investigations by Gilbert early in this century provided data that are still being used for studies of sediment transport. Detailed laboratory investigations of bed-load movement conducted during the last two decades by a number of investigators have resulted in the development of additional mathematical formulas for computing rates of bed-load movement. Likewise, studies of turbulent flow have provided the turbulence suspension theory for suspended sediment as it is known today.
Impact of remote sensing upon the planning, management, and development of water resources
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L.; Fowler, T. R.; Frech, S. L.
1975-01-01
Principal water resources users were surveyed to determine the impact of remote data streams on hydrologic computer models. Analysis of responses demonstrated that: most water resources effort suitable to remote sensing inputs is conducted through federal agencies or through federally stimulated research; and, most hydrologic models suitable to remote sensing data are federally developed. Computer usage by major water resources users was analyzed to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era.
Assessing the physical loading of wearable computers.
Knight, James F; Baber, Chris
2007-03-01
Wearable computers enable workers to interact with computer equipment in situations where previously they were unable. Attaching a computer to the body though has an unknown physical effect. This paper reports a methodology for addressing this, by assessing postural effects and the effect of added weight. Using the example of arm-mounted computers (AMCs), the paper shows that adopting a posture to interact with an AMC generates fatiguing levels of stress and a load of 0.54 kg results in increased level of stress and increased rate of fatigue. The paper shows that, due to poor postures adopted when wearing and interacting with computers and the weight of the device attached to the body, one possible outcome for prolonged exposure is the development of musculoskeletal disorders.
Task allocation in a distributed computing system
NASA Technical Reports Server (NTRS)
Seward, Walter D.
1987-01-01
A conceptual framework is examined for task allocation in distributed systems. Application and computing system parameters critical to task allocation decision processes are discussed. Task allocation techniques are addressed which focus on achieving a balance in the load distribution among the system's processors. Equalization of computing load among the processing elements is the goal. Examples of system performance are presented for specific applications. Both static and dynamic allocation of tasks are considered and system performance is evaluated using different task allocation methodologies.
Rest Intervals Reduce the Number of Loading Bouts Required to Enhance Bone Formation
Srinivasan, Sundar; Ausk, Brandon J.; Bain, Steven D.; Gardiner, Edith M.; Kwon, Ronald Y.; Gross, Ted S.
2015-01-01
Purpose As our society becomes increasingly sedentary, compliance with exercise regimens that require numerous high-energy activities each week become less likely. Alternatively, given an osteogenic exercise intervention that required minimal effort, it is reasonable to presume that participation would be enhanced. Insertion of brief rest-intervals between each cycle of mechanical loading holds potential to achieve this result as substantial osteoblast function is activated by many fewer loading repetitions within each loading bout. Here, we examined the complementary hypothesis that the number of bouts/wk of rest-inserted loading could be reduced from 3/wk without loss of osteogenic efficacy. Methods We conducted a series of 3 wk in vivo experiments that non-invasively exposed the right tibiae of mice to either cyclic (1 Hz) or rest-inserted loading interventions and quantified osteoblast function via dynamic histomorphometry. Results While reducing loading bouts from 3/wk (i.e., 9 total bouts) to 1/wk (3 total bouts) effectively mitigated the osteogenic benefit of cyclic loading, the same reduction did not significantly reduce periosteal bone formation parameters induced by rest-inserted loading. The osteogenic response was robust to the timing of the rest-inserted loading bouts (3 bouts in the first week vs 1 bout/wk for three weeks). However, elimination of any single bout of the three 1/wk bouts mitigated the osteogenic response to rest-inserted loading. Finally, periosteal osteoblast function assessed after the 3 wk intervention was not sensitive to the timing or number of rest-inserted loading bouts. Conclusions We conclude that rest-inserted loading holds potential to retain the osteogenic benefits of mechanical loading with significantly reduced frequency of bouts of activity while also enabling greater flexibility in the timing of the activity. PMID:25207932
NASA Astrophysics Data System (ADS)
Kumar, Saurav; Godrej, Adil N.; Grizzard, Thomas J.
2016-09-01
Pre-development conditions are an easily understood state to which watershed nonpoint nutrient reduction targets may be referenced. Using the pre-development baseline, a "developed-excess" measure may be computed for changes due to anthropogenic development. Developed-excess is independent of many geographical, physical, and hydrological characteristics of the region and after normalization by area may be used for comparison among various sub-sets of the watershed, such as jurisdictions or land use types. We have demonstrated this method by computing pre-development nitrogen and phosphorus loads entering the Occoquan Reservoir from its tributary watershed in Northern Virginia. The pre-development loads in this study were computed using the calibrated water quality models for the period 2002-2007. Current forest land was used as a surrogate for pre-development land use conditions for the watershed and developed-excess was estimated for fluvial loads of Total Inorganic Nitrogen (TIN) and Orthophosphate-Phosphorus (OP) by subtracting simulated predevelopment loads from observed loads. It was observed that within the study period (2002-2007), the average annual developed-excess represented about 30% of the TIN and OP average annual loads exported to the reservoir. Comparison of the two disturbed land use types, urban and agricultural, showed that urban land uses exported significantly more excess nonpoint nutrient load per unit area than agricultural land uses.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III
1991-01-01
Two matched filter theory based schemes are described and illustrated for obtaining maximized and time correlated gust loads for a nonlinear aircraft. The first scheme is computationally fast because it uses a simple 1-D search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multi-dimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.
1991-01-01
This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.
Design for progressive fracture in composite shell structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Murthy, Pappu L. N.
1992-01-01
The load carrying capability and structural behavior of composite shell structures and stiffened curved panels are investigated to provide accurate early design loads. An integrated computer code is utilized for the computational simulation of composite structural degradation under practical loading for realistic design. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. Progressive fracture investigations providing design insight for several classes of composite shells are presented. Results demonstrate the significance of local defects, interfacial regions, and stress concentrations on the structural durability of composite shells.
PIP-II Cryogenic System and the Evolution of Superfluid Helium Cryogenic Plant Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy
2017-01-01
PIP-II cryogenic system: Superfluid Helium Cryogenic Plant (SHCP) and Cryogenic Distribution System (CDS) connecting the SHCP and the SC Linac (25 cryomodules) PIP-II Cryogenic System Static and dynamic heat loads for the SC Linac and static load of CDS listed out Simulation study carried out to compute SHe flow requirements for each cryomodule Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation presented From computed heat load and pressure drop values, SHCP basic specifications evolved.
Load Balancing Unstructured Adaptive Grids for CFD Problems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid
1996-01-01
Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.
Evaluation of MOSTAS computer code for predicting dynamic loads in two-bladed wind turbines
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.
1979-01-01
Calculated dynamic blade loads are compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-0 wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multiblade coordinate transformation for two-bladed rotors to solve the equations of motion by standard eigenanalysis. The results obtained with this approximate analysis do not agree with dynamic blade load amplifications at or close to resonance conditions. The results of the second version, which accounts for periodic coefficients while solving the equations by a time history integration, compare well with the measured data.
Nontidal Loading Applied in VLBI Geodetic Analysis
NASA Astrophysics Data System (ADS)
MacMillan, D. S.
2015-12-01
We investigate the application of nontidal atmosphere pressure, hydrology, and ocean loading series in the analysis of VLBI data. The annual amplitude of VLBI scale variation is reduced to less than 0.1 ppb, a result of the annual components of the vertical loading series. VLBI site vertical scatter and baseline length scatter is reduced when these loading models are applied. We operate nontidal loading services for hydrology loading (GLDAS model), atmospheric pressure loading (NCEP), and nontidal ocean loading (JPL ECCO model). As an alternative validation, we compare these loading series with corresponding series generated by other analysis centers.
NASA Astrophysics Data System (ADS)
Pravdivtsev, Andrey V.
2012-06-01
The article presents the approach to the design wide-angle optical systems with special illumination and instantaneous field of view (IFOV) requirements. The unevenness of illumination reduces the dynamic range of the system, which negatively influence on the system ability to perform their task. The result illumination on the detector depends among other factors from the IFOV changes. It is also necessary to consider IFOV in the synthesis of data processing algorithms, as it directly affects to the potential "signal/background" ratio for the case of statistically homogeneous backgrounds. A numerical-analytical approach that simplifies the design of wideangle optical systems with special illumination and IFOV requirements is presented. The solution can be used for optical systems which field of view greater than 180 degrees. Illumination calculation in optical CAD is based on computationally expensive tracing of large number of rays. The author proposes to use analytical expression for some characteristics which illumination depends on. The rest characteristic are determined numerically in calculation with less computationally expensive operands, the calculation performs not every optimization step. The results of analytical calculation inserts in the merit function of optical CAD optimizer. As a result we reduce the optimizer load, since using less computationally expensive operands. It allows reducing time and resources required to develop a system with the desired characteristics. The proposed approach simplifies the creation and understanding of the requirements for the quality of the optical system, reduces the time and resources required to develop an optical system, and allows creating more efficient EOS.
Makhsous, Mohsen; Lin, Fang; Bankard, James; Hendrix, Ronald W; Hepler, Matthew; Press, Joel
2009-01-01
Background Compared to standing posture, sitting decreases lumbar lordosis, increases low back muscle activity, disc pressure, and pressure on the ischium, which are associated with occupational LBP. A sitting device that reduces spinal load and low back muscle activities may help increase sitting comfort and reduce LBP risk. The objective of this study is to investigate the biomechanical effect of sitting with a reduced ischial support and an enhanced lumbar support (Off-Loading) on load, interface pressure and muscle activities. Methods A laboratory test in low back pain (LBP) and asymptomatic subjects was designed to test the biomechanical effect of using the Off-Loading sitting posture. The load and interface pressure on seat and the backrest, and back muscle activities associated with usual and this Off-Loading posture were recorded and compared between the two postures. Results Compared with Normal (sitting upright with full support of the seat and flat backrest) posture, sitting in Off-Loading posture significantly shifted the center of the force and the peak pressure on the seat anteriorly towards the thighs. It also significantly decreased the contact area on the seat and increased that on the backrest. It decreased the lumbar muscle activities significantly. These effects are similar in individuals with and without LBP. Conclusion Sitting with reduced ischial support and enhanced lumbar support resulted in reduced sitting load on the lumbar spine and reduced the lumbar muscular activity, which may potentially reduce sitting-related LBP. PMID:19193245
2012-08-01
based impulsive loading ......................................... 48 4.4 Computational modeling of USLS ...56 4.5 Underwater Shock Loading Simulator ( USLS ) ...................................................... 59 4.6 Concluding...42 Figure 4.1 Schematic of Underwater Shock Loading Simulator ( USLS ). A high-velocity projectile hits the flyer-plate and creates a stress
14 CFR 135.63 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...
14 CFR 135.63 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...
14 CFR 135.63 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...
14 CFR 135.63 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...
14 CFR 135.63 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of gravity limits; (5) The center of gravity of the loaded aircraft, except that the actual center of gravity need not be computed if the aircraft is loaded according to a loading schedule or other approved method that ensures that the center of gravity of the loaded aircraft is within approved limits. In those...
Speech rate reduction and "nasality" in normal speakers.
Brancewicz, T M; Reich, A R
1989-12-01
This study explored the effects of reduced speech rate on nasal/voice accelerometric measures and nasality ratings. Nasal/voice accelerometric measures were obtained from normal adults for various speech stimuli and speaking rates. Stimuli included three sentences (one obstruent-loaded, one semivowel-loaded, and one containing a single nasal), and /pv/ syllable trains.. Speakers read the stimuli at their normal rate, half their normal rate, and as slowly as possible. In addition, a computer program paced each speaker at rates of 1, 2, and 3 syllables per second. The nasal/voice accelerometric values revealed significant stimulus effects but no rate effects. The nasality ratings of experienced listeners, evaluated as a function of stimulus and speaking rate, were compared to the accelerometric measures. The nasality scale values demonstrated small, but statistically significant, stimulus and rate effects. However, the nasality percepts were poorly correlated with the nasal/voice accelerometric measures.
Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.
2007-01-01
The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.
Research on H2 speed governor for diesel engine of marine power station
NASA Astrophysics Data System (ADS)
Huang, Man-Lei
2007-09-01
The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.
Flexible server-side processing of climate archives
NASA Astrophysics Data System (ADS)
Juckes, Martin; Stephens, Ag; Damasio da Costa, Eduardo
2014-05-01
The flexibility and interoperability of OGC Web Processing Services are combined with an extensive range of data processing operations supported by the Climate Data Operators (CDO) library to facilitate processing of the CMIP5 climate data archive. The challenges posed by this peta-scale archive allow us to test and develop systems which will help us to deal with approaching exa-scale challenges. The CEDA WPS package allows users to manipulate data in the archive and export the results without first downloading the data -- in some cases this can drastically reduce the data volumes which need to be transferred and greatly reduce the time needed for the scientists to get their results. Reductions in data transfer are achieved at the expense of an additional computational load imposed on the archive (or near-archive) infrastructure. This is managed with a load balancing system. Short jobs may be run in near real-time, longer jobs will be queued. When jobs are queued the user is provided with a web dashboard displaying job status. A clean split between the data manipulation software and the request management software is achieved by exploiting the extensive CDO library. This library has a long history of development to support the needs of the climate science community. Use of the library ensures that operations run on data by the system can be reproduced by users using the same operators installed on their own computers. Examples using the system deployed for the CMIP5 archive will be shown and issues which need to be addressed as archive volumes expand into the exa-scale will be discussed.
Flexible server-side processing of climate archives
NASA Astrophysics Data System (ADS)
Juckes, M. N.; Stephens, A.; da Costa, E. D.
2013-12-01
The flexibility and interoperability of OGC Web Processing Services are combined with an extensive range of data processing operations supported by the Climate Data Operators (CDO) library to facilitate processing of the CMIP5 climate data archive. The challenges posed by this peta-scale archive allow us to test and develop systems which will help us to deal with approaching exa-scale challenges. The CEDA WPS package allows users to manipulate data in the archive and export the results without first downloading the data -- in some cases this can drastically reduce the data volumes which need to be transferred and greatly reduce the time needed for the scientists to get their results. Reductions in data transfer are achieved at the expense of an additional computational load imposed on the archive (or near-archive) infrastructure. This is managed with a load balancing system. Short jobs may be run in near real-time, longer jobs will be queued. When jobs are queued the user is provided with a web dashboard displaying job status. A clean split between the data manipulation software and the request management software is achieved by exploiting the extensive CDO library. This library has a long history of development to support the needs of the climate science community. Use of the library ensures that operations run on data by the system can be reproduced by users using the same operators installed on their own computers. Examples using the system deployed for the CMIP5 archive will be shown and issues which need to be addressed as archive volumes expand into the exa-scale will be discussed.
Calibration of aero-structural reduced order models using full-field experimental measurements
NASA Astrophysics Data System (ADS)
Perez, R.; Bartram, G.; Beberniss, T.; Wiebe, R.; Spottswood, S. M.
2017-03-01
The structural response of hypersonic aircraft panels is a multi-disciplinary problem, where the nonlinear structural dynamics, aerodynamics, and heat transfer models are coupled. A clear understanding of the impact of high-speed flow effects on the structural response, and the potential influence of the structure on the local environment, is needed in order to prevent the design of overly-conservative structures, a common problem in past hypersonic programs. The current work investigates these challenges from a structures perspective. To this end, the first part of this investigation looks at the modeling of the response of a rectangular panel to an external heating source (thermo-structural coupling) where the temperature effect on the structure is obtained from forward looking infrared (FLIR) measurements and the displacement via 3D-digital image correlation (DIC). The second part of the study uses data from a previous series of wind-tunnel experiments, performed to investigate the response of a compliant panel to the effects of high-speed flow, to train a pressure surrogate model. In this case, the panel aero-loading is obtained from fast-response pressure sensitive paint (PSP) measurements, both directly and from the pressure surrogate model. The result of this investigation is the use of full-field experimental measurements to update the structural model and train a computational efficient model of the loading environment. The use of reduced order models, informed by these full-field physical measurements, is a significant step toward the development of accurate simulation models of complex structures that are computationally tractable.
Efficacy of visor and helmet for blast protection assessed using a computational head model
NASA Astrophysics Data System (ADS)
Singh, D.; Cronin, D. S.
2017-11-01
Head injury resulting from blast exposure has been identified as a challenge that may be addressed, in part, through improved protective systems. Existing detailed head models validated for blast loading were applied to investigate the influence of helmet visor configuration, liner properties, and shell material stiffness. Response metrics including head acceleration and intracranial pressures (ICPs) generated in brain tissue during primary blast exposure were used to assess and compare helmet configurations. The addition of a visor was found to reduce peak head acceleration and positive ICPs. However, negative ICPs associated with a potential for injury were increased when a visor and a foam liner were present. In general, the foam liner material was found to be more significant in affecting the negative ICP response than positive ICP or acceleration. Shell stiffness was found to have relatively small effects on either metric. A strap suspension system, modeled as an air gap between the head and helmet, was more effective in reducing response metrics compared to a foam liner. In cases with a foam liner, lower-density foam offered a greater reduction of negative ICPs. The models demonstrated the "underwash" effect in cases where no foam liner was present; however, the reflected pressures generated between the helmet and head did not translate to significant ICPs in adjacent tissue, when compared to peak ICPs from initial blast wave interaction. This study demonstrated that the efficacy of head protection can be expressed in terms of load transmission pathways when assessed with a detailed computational model.
Xu, Chun; Silder, Amy; Zhang, Ju; Hughes, Julie; Unnikrishnan, Ginu; Reifman, Jaques; Rakesh, Vineet
2016-10-01
Prior studies have assessed the effects of load carriage on the tibia. Here, we expand on these studies and investigate the effects of load carriage on joint reaction forces (JRFs) and the resulting spatiotemporal stress/strain distributions in the tibia. Using full-body motion and ground reaction forces from a female subject, we computed joint and muscle forces during walking for four load carriage conditions. We applied these forces as physiological loading conditions in a finite-element (FE) analysis to compute strain and stress. We derived material properties from computed tomography (CT) images of a sex-, age-, and body mass index-matched subject using a mesh morphing and mapping algorithm, and used them within the FE model. Compared to walking with no load, the knee JRFs were the most sensitive to load carriage, increasing by as much as 26.2% when carrying a 30% of body weight (BW) load (ankle: 16.4% and hip: 19.0%). Moreover, our model revealed disproportionate increases in internal JRFs with increases in load carriage, suggesting a coordinated adjustment in the musculature functions in the lower extremity. FE results reflected the complex effects of spatially varying material properties distribution and muscular engagement on tibial biomechanics during walking. We observed high stresses on the anterior crest and the medial surface of the tibia at pushoff, whereas high cumulative stress during one walking cycle was more prominent in the medioposterior aspect of the tibia. Our findings reinforce the need to include: (1) physiologically accurate loading conditions when modeling healthy subjects undergoing short-term exercise training and (2) the duration of stress exposure when evaluating stress-fracture injury risk. As a fundamental step toward understanding the instantaneous effect of external loading, our study presents a means to assess the relationship between load carriage and bone biomechanics.
14 CFR 25.531 - Hull and main float takeoff condition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... wing lift is assumed to be zero; and (b) A downward inertia load, corresponding to a load factor computed from the following formula, must be applied: EC28SE91.038 where— n=inertia load factor; C TO...
14 CFR 25.531 - Hull and main float takeoff condition.
Code of Federal Regulations, 2013 CFR
2013-01-01
... wing lift is assumed to be zero; and (b) A downward inertia load, corresponding to a load factor computed from the following formula, must be applied: EC28SE91.038 where— n=inertia load factor; C TO...
14 CFR 25.531 - Hull and main float takeoff condition.
Code of Federal Regulations, 2014 CFR
2014-01-01
... wing lift is assumed to be zero; and (b) A downward inertia load, corresponding to a load factor computed from the following formula, must be applied: EC28SE91.038 where— n=inertia load factor; C TO...
14 CFR 25.531 - Hull and main float takeoff condition.
Code of Federal Regulations, 2012 CFR
2012-01-01
... wing lift is assumed to be zero; and (b) A downward inertia load, corresponding to a load factor computed from the following formula, must be applied: EC28SE91.038 where— n=inertia load factor; C TO...
Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Cvitkovich, Michael K.; O'Brien, T. Kevin; Minguet, Pierre J.
2000-01-01
A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from skin. In a second step, a two dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location, Hence. Unstable delamination propagation is likely to occur as observed in the experiments.
Testing and Analysis of Composite Skin/Stringer Debonding under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Cvitkovich, Michael; OBrien, Kevin; Minguet, Pierre J.
2000-01-01
A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. In a second step, a two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location. Hence, unstable delamination propagation is likely to occur as observed in the experiments.
NASA Astrophysics Data System (ADS)
Park, Sang-Gon; Jeong, Dong-Seok
2000-12-01
In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.